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ABSTRACT

The research reported 1in this thesis develops strategies for
applying self-tuning control theory to multivariable processes.
Self-tuning control of scslar processes is now reasonably well
established, and attention is being turned to the multivariable
problem, with its attendant computational burden to overcome, and
additional considerations such as interaction and decoupling.
This thesis suggests methods for dealing with these problems, and
implements the controllers on one of the readily available desk-

top microcomputer systems, providing a cheap yet effective

controller.

Tne research builds on the work of Clarke and Gawthrop [1975,
1979] on implicit controllers. The explicit schemes are derived
from controllers developed by Wellstead and others [1979,(a) and
(b)], using the work on multivariable controllers by Borisson
[1979] and 1latterly Koivo [1980]. The full multivariable
controller relies on standard techniques for pole placement

reported by Wolovich [1974].

The proposed controllers remove interactions between loops, and
other disturbances, and ensure that each loop output attains the
set-point required for that loop. 1In particular, the explicit
pole-placing controller requires a pole-placing calculation for
each loop, and removes the interactions with a minimum-variance-
like action, the resulting controller being modest in

computational needs.

A solution 1is also proposed for the full multivariable pole-
placing problem, which allows a comparison to be made between the
full multivariable solution and the simpler controllers proposed.
It is found that the full multivariable controller demands more
computation, but that the resulting control may be no different

from that achieved with the simpler controller.
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The programs which are described are written in Fortran, in the
form of subroutines which are designed for incorporation into
existing control program suites. Alternatively, they may be run
with a dedicated supervisory program to handle timing, input and
output, display and‘storage of information. The subroutines are
general in their application, and the information they need for

any particular process may be established interactively using an

offline program.

Simulation results are presented which confirm the robustness of
the pole placing controller, and indicate that the proposed
techniques may be used to stabilise and control a wide variety of
processes; those which are non-minimum phase, certain non-linear
or unstable processes. On-line control of a commercial heat
exchanger process 1is reported, the process being similar to
others which have been reported, thus providing a point of
comparison of self-tuning control with other techniques. The
process is multivariable. Good control is achieved, particularly
in the face of perturbations to the process which result 1in
changes to the parameters of the model describing the process
behaviour, conditions under which some other controllers may not

be suitable.

This research has contributed techniques which may be applied
successfully to multivariable self-tuning control. Efficient
programs have been written which implement the controllers on a
microcomputer. Suggestions for future work include the
development of a program generator which will allow more compact
code to be developed, dedicated to a particular process, and
which will execute more quickly. Strategies which tetter enable
self-tuning controllers to deal with non-linear processes are

also of interest.
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NOTATION

Boldface letters are used to represent polynomials, polynomial
matrices or matrices. A polynomial is an expression in the back-
ward shift operator q° . Thus:

2 -nA

A(q'1} = ag + a1q"1 * azq_ vee *aaq

np, is defined to be the order of the polynomial A. Polynomials
operate on process variables so that:

A(q~Dy(t)

agy(t) + ajq"1y(t) * s * anAq‘nAy(t)

aoy(t) + a1y(t~1) % san anAy(tﬂnA)

y is only defined at discrete time instants, y(t) being the
(sampled) value of y at the present time. y(t—1), y(t-2) e
represent values of y at previous sampling instants. The sampling
intefY81 is not explicitly stated. The dependence of a polynomial
on gq will be omitted for brevity unless ambiguity results.

A polynomial matrix may be represented equivalently by:
= = -nB
B = B, + Byq + ...+ Bpa
where tne B; are m x p matrices, or by:

By By, ... B1p

=
[

B

.- LR

mi Bmp
where the Bij are scalar polynomials of order ng.

The sca}ar quantity A(1) is the value of polynomial A evaluated
with q  =1.

Processes may be represented in Auto Regressive Moving Average
(ARMA) form by:

Ay(t) = g ¥Bu(t) + ¢ ¥Dv(t) + Ce(t) + a

A, B, C and D are polynomials (or polynomial matrices)
representing a scalar (or a multivariable) process. The process

time delay k is expressed as a whole number of sampling

intervals. y(t) is the process output, u(t) the controlled input,

v(t) a measured disturbance and e(t) a white noise sequence. d is.
an offset.

y(t|t-k) is the predicted value of y at time t, given information up to

and including time t-k.
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Principal symbols used in this thesis

k

i,j,l,m,n

A, B, C, D

A1, A2, B1, C1

A', B, D", A", B"

vit
e(t), e'(t), e"(t)
a, d'

H,C,RE
Fl’)
S1, S2

P’ P" Q! Q'! R’ s
L, H, B1, B2

g(t), ¢,(t), K

X, 0, x(t)

A, T, T
A5

time delay
indices

Process polynomials/polynomial matrices

Process output
Process set-point
Controlled input
Measured disturbance
White noise sequences
Offset values
Controller polynomials
Hu(t) + Gy(T) + Ew(t) = O
Multivariable pole placing polynomial
matrix
Polynomials for servo control
General polynomials

Scalar quantities

General vectors

Polynomials specifying poles for
pole placement

Observer polynomial
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