Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Biopolymer Networks: Image Analysis, Reconstruction and Modeling

A thesis presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Physics

at Massey University, Manawat \bar{u} , New Zealand

Pablo Hernandez-Cerdan 2018

It's not about the end, it's all about the path. ¡Buen camino!.

Abstract

The aim of this work is to extract the architecture of biopolymer networks from 3D images. This is motivated to further understand non-affine regimes, found during network formation and in low-density biopolymer networks, where the geometry of a network has a fundamental role in defining its mechanical properties.

Firstly, developed image analysis tools were extended to 3D and contributed to high-performance open-source libraries for image analysis. These developments in isotropic wavelets will help in extracting realistic networks by removing spurious noise generated during image acquisition.

Secondly, images of biopolymer gels from transmission electron microscopy (TEM), were used to reliably extract the network architecture. The imaged material was also studied with small-angle x-ray scattering (SAXS), and the comparison showed a strong agreement for network-size features.

Thirdly, spatial graphs were extracted from the image. A one-to-one map is provided between image and graph, keeping all the geometric information from the image. This then opened the door to using analytical tools from the complex networks field to characterize images.

Finally, statistical distributions extracted from three graph properties were used to reconstruct a completely in-silico network using a simulated annealing technique to generate new networks. This can be used as a computational exploration tool of how network behavior depends on network architecture.

Acknowledgements

A special thank to my supervisor Bill Williams whose support, openness, and vision of science is encouraging. As Brad would say, I will be forever indebted to your supervision and I add: and from all the stuff that I have learned from you beyond academia, specially your humane values and the love for dumplings. Thanks to Brad Mansel, Leif Lundin and Andrew Leis for the collaboration comparing scattering and imaging techniques, Allan Raudsepp for providing the confocal microscopy images for actin, and to all my group mates from the Biophysics and Soft Matter group, for all the shared moments, and how easy they made my adaptation to a new country. Finally, I am grateful to the MacDiarmid Institute for constantly providing the enrichment opportunity to meet other peer students and researchers, and to the staff of the Institute of Fundamental Sciences for its kindness dealing with all sort of issues.

In the personal side, I would like to thank my family, from who I have inherited, directly and indirectly, all the principles I stand for and made me realize how privileged I am to have them. And Martica! Without you here in New Zealand this quest would have been impossible, or faster, who knows, but way less enjoyable for sure. It has been a pleasure habernos re-encontrado por kiwi-land. And even we got married, in English!!, crazy, but made me feel extremely fortunate. Thanks really for all your support.

This research was supported by the MacDiarmid Institute, the Riddet Institute, and Massey University, New Zealand.

Contents

Α	bstra	act	ii
A	ckno	wledgements	iii
С	ontei	nts	iv
Li	ist of	Figures	vii
Li	ist of	Publications	x
A	bbre	viations	xi
1	Inti	roduction	1
	1.1	Soft matter and biopolymers	1
	1.2	Semiflexible single chains: WLC model	2
	1.3	Networks of semiflexible chains:	5
	1.4	Bulk Rheology	8
		1.4.1 Linear viscoelasticity	8
		1.4.2 Nonlinear behaviour: strain stiffening	9
	1.5	Network Structure	11
		1.5.1 Mikado Networks	11
		1.5.2 Lattice Models	12
		1.5.3 Eight-chain Models	13
	1.6	Motivation	14
2	Isot	cropic and Steerable Wavelets in N Dimensions. A multiresolution	
	ana	lysis framework	16
	2.1	Motivation	16
	2.2	Abstract	16
	2.3	Wavelet Multiresolution Analysis	17
		2.3.1 Introduction	17
		2.3.2 Motivation: spatial and frequency resolution	18
		2.3.3 Wavelet transformation	19
		2.3.4 Wavelet Pyramid	21
		2.3.5 Isotropic wavelets	22
	2.4	Riesz Transform	25
		2.4.1 Monogenic Signal	26

		2.4.2 Generalized Riesz Transform	7
		2.4.3 Generalized Steerable Framework	7
	2.5	Implementation Details	8
		2.5.1 Summary	8
		2.5.2 Frequency Iterators	9
		2.5.3 Wavelet Transform	0
		2.5.4 Riesz Transform	1
		2.5.5 Structure Tensor	1
		2.5.6 Phase Analysis	2
	2.6	A guided example:	2
		2.6.1 Input in the frequency domain.	3
		2.6.2 Choosing an isotropic wavelet	3
		2.6.3 Forward / Analysis	3
		2.6.4 Inverse / Reconstruction	4
		2.6.5 PhaseAnalyzer	6
	2.7	Conclusion and future work	1
	2.8	Acknowledgements	2
3	Vali	dation of Transmission Electron-Microscopy Imaging: Comparison	
	with	A SAXS 43	3
	3.1	Motivation	3
	3.2	Abstract	3
	3.3	Introduction	4
	3.4	Materials and methods	5
	3.5	Results and Discussion	3
		3.5.1 Qualitative Structural Features))
		3.5.2 Consistency Between Techniques at Different Lengthscales)
		3.5.3 Image Processing	2
		3.5.4 Extracting Persistence Lengths	1
	3.6	Conclusions	Ś
4	Spa	tial Graph Extraction: Analysis of microscopy images to obtain network	
	arch	iitecture 58	3
	4.1	Motivation	3
	4.2	Introduction	3
		4.2.1 Notation	0
	4.3	Denoising	1
	4.4	Segmentation	2
		4.4.1 Binarization	3
		4.4.1.1 Region Growing Segmentation	4
		4.4.2 Hole Filling	5
	4.5	Skeletonization	ô
		4.5.1 Distance maps	3
		4.5.2 Critical Kernels Framework	3
	4.6	Spatial Graph Extraction	2
	4.7	Statistical distributions of graph properties	4
	4.8	Testing existing thinning algorithms	5

		4.8.1	FIbeR Extraction -FIRE
			4.8.1.1 Results in FIRE
		4.8.2	Avizo: XSkeleton79
			4.8.2.1 Avizo results:
	4.9	Applic	ation of the Network Analysis Pipeline to Different Biopolymer Networks. 84
		4.9.1	Confocal Light Microscopy: Actin
		4.9.2	TEM preparation
		4.9.3	Transmission Electron Microscopy: Carrageenan
		4.9.4	Transmission Electron Microscopy: Pectin
	4.10	Conclu	1sions
5	Rec	onstru	cting networks from statistical distributions 99
	5.1	Motiva	ation
	5.2	Metho	$ds \dots \dots$
	5.3	Euclid	ean Graph Generation Algorithm
	5.4	Result	s
6	Con	clusio	as and Future Work 106
Ŭ	61	Scope	of Thesis 106
	6.2	Summ	ary
	6.3	Concli	usions 108
	6.4	Future	work
	0.1	6.4.1	Network Formation 109
		6.4.2	Long time behaviour: network quakes and aging 109
		6.4.3	ITKBoostGraph 110
		6.4.4	Complex Networks Tools
		6.4.5	Public Database
A	Pub	olicatio	ns and Open Source Contributions 111
	A.1	Open	Source Contributions $\ldots \ldots 111$
		A.1.1	ITKIsotropicWavelets
		A.1.2	Radial Intensity FFT
		A.1.3	FFT Radial Intensity
		A.1.4	DGtal: Critical Kernels Framework
		A.1.5	Spatial Graph Extraction

Glossary

114

 $\mathbf{116}$

References

vi

List of Figures

 Force extension curve: CEWLC	1.1	Optical Tweezers	5
 Strain-stiffening in semiflexible polymers	1.2	Force extension curve: CEWLC	6
 Affine and non-affine deformations	1.3	Strain-stiffening in semiflexible polymers	9
 Affine and non-affine phases	1.4	Affine and non-affine deformations	10
 Mikado network used as a starting scaffold for dynamics simulations, from Ref. [31]	1.5	Affine and non-affine phases	11
 17. Unit cell of a face-centred-cubic lattice, from Ref. [40]	1.6	Mikado network used as a starting scaffold for dynamics simulations, from Ref. [31]	12
 1.8 Eight-chain model under shear, from left to right: initial state, a rotation, and a simple shear, from Ref. Palmer and Boyce [30]	17	Unit cell of a face-centered-cubic lattice from Ref [40]	13
 The changes over time/space of a signal are not captured by the FFT 1 Simultaneous spatial and frequency resolution of different transformations. Δt, Δf 1 Forward 2.3a and Inverse wavelet 2.3b two-level pyramid with two high pass sub-bands	1.8	Eight-chain model under shear, from left to right: initial state, a rotation, and a simple shear, from Ref. Palmer and Boyce [30]	14
 2.2 Simultaneous spatial and frequency resolution of different transformations. Δt, Δf 1 2.3 Forward 2.3a and Inverse wavelet 2.3b two-level pyramid with two high pass sub-bands	2.1	The changes over time/space of a signal are not captured by the FFT	18
 2.3 Forward 2.3a and Inverse wavelet 2.3b two-level pyramid with two high pass sub-bands	2.2	Simultaneous spatial and frequency resolution of different transformations. $\Delta t, \Delta f$	19
 2.4 Forward wavelet pyramid with a classic two level filter bank and only one sub-band, HP is the high pass filter, and LP low pass	2.3	Forward 2.3a and Inverse wavelet 2.3b two-level pyramid with two high pass sub-bands.	21
 2.5 Tilling of the frequency domain by isotropic wavelets when the dilation factor is 2. All the wavelets fulfill the conditions from Proposition 2.3. The mother wavelets are represented at i = 0. 2.6 Shape of SubBands when HighPassSubBands = 5, sub-bands increase the frequency resolution, but can generate extra artifacts in the spatial domain due to the sharp frequency cut-offs. 2.7 The original image looks like a regular check-board, but it isn't. Pixels in the regions A and B have the same intensity value (129), however our vision system performs local phase analysis that allows us to treat A,B regions as different, keeping a global checker-board structure. 2.7b uses a non-linear map of intensity-color to enhance the irregular checker board structure. 3.8 (Results of the phase analysis (with soft threshold) for different number of scales in the wavelet pyramid. The input image is a checker-board of size 512x512). 3.9 Using six scales (Level: 6), results for different number of high frequency sub-bands. 3.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 3.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 3.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 3.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 3.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 3.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 4.10 the frequency resolution. Both results use Simoncelli wavelet, but there is not 	2.4	Forward wavelet pyramid with a classic two level filter bank and only one sub-band HP is the high pass filter and LP low pass	22
 2.6 Shape of SubBands when HighPassSubBands = 5, sub-bands increase the frequency resolution, but can generate extra artifacts in the spatial domain due to the sharp frequency cut-offs	2.5	Tiling of the frequency domain by isotropic wavelets when the dilation factor is 2. All the wavelets fulfill the conditions from Proposition 2.3. The mother wavelets are represented at $i = 0$	24
 2.7 The original image looks like a regular check-board, but it isn't. Pixels in the regions A and B have the same intensity value (129), however our vision system performs local phase analysis that allows us to treat A,B regions as different, keeping a global checker-board structure. 2.7b uses a non-linear map of intensity-color to enhance the irregular checker board structure	2.6	Shape of SubBands when HighPassSubBands = 5, sub-bands increase the frequency resolution, but can generate extra artifacts in the spatial domain due to the sharp frequency cut-offs	24
 a different, keeping a global checker-board structure. 2.10 uses a non-intear map of intensity-color to enhance the irregular checker board structure	2.7	The original image looks like a regular check-board, but it isn't. Pixels in the regions A and B have the same intensity value (129), however our vision system performs local phase analysis that allows us to treat A,B regions as different keeping a global checker board structure. 2 7b uses a non-linear map	20
 2.8 (Results of the phase analysis (with soft threshold) for different number of scales in the wavelet pyramid. The input image is a checker-board of size 512x512). 2.9 Using six scales (Level: 6), results for different number of high frequency sub-bands. 2.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 2.10b is the result of a phase analysis with the Monogenic signal for a wavelet pyramid of 8 levels and only one high pass sub band. 2.10c is the same pyramid but with 10 high pass bands to increase the frequency resolution. Both results use Simoncelli wavelet, but there is not 		of intensity-color to enhance the irregular checker board structure	37
 2.9 Using six scales (Level: 6), results for different number of high frequency sub-bands. 2.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 2.10b is the result of a phase analysis with the Monogenic signal for a wavelet pyramid of 8 levels and only one high pass sub band. 2.10c is the same pyramid but with 10 high pass bands to increase the frequency resolution. Both results use Simoncelli wavelet, but there is not 	2.8	(Results of the phase analysis (with soft threshold) for different number of scales in the wavelet pyramid. The input image is a checker-board of size $512x512$).	38
2.10 The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 2.10b is the result of a phase analysis with the Monogenic signal for a wavelet pyramid of 8 levels and only one high pass sub band. 2.10c is the same pyramid but with 10 high pass bands to increase the frequency resolution. Both results use Simoncelli wavelet, but there is not	2.9	Using six scales (Level: 6), results for different number of high frequency	20
much difference using Held, or Vow mother wavelets	2.10	The optical illusion generated by 2.10a the Hermann grid is generated by the local phase analysis of our vision. 2.10b is the result of a phase analysis with the Monogenic signal for a wavelet pyramid of 8 levels and only one high pass sub band. 2.10c is the same pyramid but with 10 high pass bands to increase the frequency resolution. Both results use Simoncelli wavelet, but there is not much difference using Held, or Vow mother wavelets	<u> </u>

Biopolymer network (actin) 3D image enhanced and denoised using phase analysis with the Monogenic signal, with a wavelet pyramid of 4 levels and 4 high pass sub-bands using Simoncelli isotropic wavelet.	41
The Graphical User Interface (GUI) of the image analysis software developed herein. A non-interactive interface is also provided for batch processing, along with python scripts for plotting and manipulation of the generated data	48
Montages of TEM images obtained from different polysaccharides, as described in the text.	49
SAXS results for the three samples shown in the TEM micrographs of figure 3.2, in the absence of TEM sample preparation. Black lines signify power law fitting, as is described in section 3.1 of the text.	50
Comparison of data obtained from TEM best practice and SAXS. Good agreement can be seen in the large network scale (at low qs). The shaded area shows the upper q range (smaller than 20 nm or equivalently 25 pixels). The top x-axis shows the corresponding real-space length scale, where $d = 2\pi/q$	53
Results obtained when applying two widely-used de-noising techniques: total variation regularization (TV) and multi-scale wavelet denoising using a BLS-GSM algorithm	53
Visual comparison of the de-noised pectin TEM images (Fig 3.2a). (a) shows a region from the unmodified original image, (b): de-noised image using a total variation method [78] with $\lambda = 0.15$, (c) shows the same region after applying a multi-scale wavelet approach using the BLS-GSM algorithm [58] with $\sigma = 28.4$. Only high-frequency regions are affected by de-noising algorithms, as reflected in the generated L α plots shown in Fig. 3.5a	54
A TEM micrograph with FibreApp tracking output shown in blue. The insert shows the internal contour length vs mean-square end-to-end distance calculated from the corresponding tracking parameters.	55
Visualization of a Spatial Graph (4.1a) and the corresponding adjacency list (4.1b). The graph is represented in blue, formed by nodes (voxels with id) and edges connecting them. The voxel positions (in brackets in 4.1a) of nodes and	
edge points are stored as labels in the adjacency list	59
Pre-processing the image (actin): denoising with wavelets and total variation methods.	62
Different threshold values on networks	63
Thin image of a pectin network after skeletonization performed with the critical kernels framework (see subsection 4.9.4) and visualized with a 3D Viewer. The skeleton keeps the topology of the original object, is thin, centered, and robust against rough and noisy boundaries.	67
Distance map - Actin	68
Asymmetric thinning algorithm with persistence, from Ref. [91]	70
Asymmetric thinning of a volume with different parameters. (a): Ultimate skeleton, only voxels that conserve topology are kept. (b): keeps 1-isthmus as	
part of the skeleton. (c): 1-isthmus with persistence parameter $p = 10$	71
Skeletonization	72
the largest edges between tri-connected nodes with degree 3. Numbers show the number of edges (degree) of each node.	74
	Biopolymer network (actin) 3D image enhanced and denoised using phase analysis with the Monogenic signal, with a wavelet pyramid of 4 levels and 4 high pass sub-bands using Simoncelli isotropic wavelet The Graphical User Interface (GUI) of the image analysis software developed herein. A non-interactive interface is also provided for batch processing, along with python scripts for plotting and manipulation of the generated data Montages of TEM images obtained from different polysaccharides, as described in the text

4.10	Spatial Graph where vertices with degree 2 are deleted, and its position are stored as edge points in the new edges. Numbers in circles represent degree of	
	each node.	74
4.11	FIRE algorithm - Find LMP	77
4.12	Fire: Step by step for $T_P = 0.12$	78
4.13	Distributions of length and degree in FIRE	79
4.14	Avizo image: Actin network visualization and workspace	80
4.15	Distributions of length, degree, and cosines with Avizo for actin with $T=30, P=5$	82
4.16	Distributions of length, degree, and cosines with Avizo for actin with T=21,P=5	83
4.17	Actin spatial graph extraction steps.	88
4.18 4.19 4.20	Statistical distributions (PDF) of actin network. Computed properties of the graph are represented in histograms with bins and normalized by area to obtain the PDF. Orange line shows the function with parameters obtained from a non-linear least squares fit to the data. Green lines show the same function with fixed parameters: 4.18a: mean degree (Z) of the network, 4.18c: mean (μ_l) and standard deviation (s_l) of logarithmic end-to-end distances, 4.18d mean (μ_l) and standard deviation (s_l) of logarithmic contour lengths. Histogram bins: end-to-end distances (30), direction cosines (21) contour lengths (30) Statistical distributions (PDF) of Potassium Carrageenan network. Computed properties of the graph are represented in histograms with bins and normalized	90 93
	by area to obtain the PDF. Orange line shows the function with parameters obtained from a non-linear least squares fit to the data. Green lines show the same function with fixed parameters: 4.20a: mean degree (Z) of the network, 4.20c: mean (μ_l) and standard deviation (s_l) of logarithmic end-to-end distances, 4.20d mean (μ_l) and standard deviation (s_l) of logarithmic contour lengths. Histogram bins: end-to-end distances (50), direction cosines (21) contour lengths	
4.01	$(50) \qquad \qquad$	94
4.21 4.22	Pectin spatial graph extraction steps. Statistical distributions (PDF) of Pectin network. Computed properties of the graph are represented in histograms with bins and normalized by area to obtain the PDF. Orange line shows the function with parameters obtained from a non-linear least squares fit to the data. Green lines show the same function with fixed parameters: 4.22a: mean degree (Z) of the network, 4.22c: mean (μ_l) and standard deviation (s_l) of logarithmic end-to-end distances, 4.22d mean (μ_l) and standard deviation (s_l) of logarithmic contour lengths. Histogram bins: end-to-end distances (50), direction cosines (21) contour lengths (50)	96
		- •
$5.1 \\ 5.2 \\ 5.3$	Collagen distributions	100 104 105
6.1	Scheme of the thesis	108

List of Publications

- Pablo Hernandez-Cerdan. "Isotropic and Steerable Wavelets in N Dimensions. A Multiresolution Analysis Framework for ITK." In: arXiv:1710.01103 [cs] (Oct. 2017). arXiv: 1710.01103 [cs].
- Pablo Hernandez-Cerdan, Bradley W. Mansel, Andrew Leis, Leif Lundin, and Martin A.K. Williams. "Structural Analysis of Polysaccharide Networks by Transmission Electron Microscopy: Comparison with Small-Angle X-Ray Scattering." In: *Biomacromolecules* (Jan. 2018). ISSN: 1525-7797. DOI: 10.1021/acs.biomac.7b01773.
- Hina Shah, Pablo Hernandez, Francois Budin, Deepak Chittajallu, Jean-Baptiste Vimort, Rick Walter, André Mol, Asma Khan, and Beatriz Paniagua. "Automatic Quantification Framework to Detect Cracks in Teeth." In: *Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging.* Vol. 10578. International Society for Optics and Photonics, Mar. 2018, 105781K. DOI: 10.1117/12.2293603.

Abbreviations

AFM	Atomic force microscopy.
BGL	Boost Graph Library. c++ library.
CEWLC	Clickable extensible wormlike chain.
DFT	Discrete Fourier Transform, representation of data in frequency domain.
DGtal	Digital Geometry Tools and Algorithms. c++ library.
\mathbf{EtE}	End to end.
EWLC	Extensible wormlike chain.
\mathbf{FE}	Force extension (curve).
\mathbf{FFT}	Fast Fourier Transform, specific algorithm of DFT.
ITK	Insight ToolKit. Image Analysis c++ library specialized to work with ND images.
LAOS	Large amplitude oscillatory shear (rheology).
LMP	Local maximum point.
MRA	Multiresolution framework.
MSD	Mean square displacement.
NP	Nucleation point.
PME	Pectin-methylesterase.
SAXS	Small angle X-ray scattering .
SEM	Scanning electron microscopy.
TEM	Transmission electron microscopy.
\mathbf{TV}	Total Variation (regularization, denoising method).
WLC	Wormlike chain.