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Abstract 

We look at two aspects of t he evolution of RNA. 

First we look at RNA replication dynamics in an early RNA world context. Ex­

perimental evidence (Spiegelman et al. l9G5, Biebricher et al. 1981) shows that 

under some conditions RNA evolves towards small quickly replicating molecules . 

vVe investigate what conditions are sufficient for a population of RNA molecules 

to evolve towards a balanced population of molecules. This is a population not 

completely dominated by a single length of rnolecule. We consider two models: A 

linear model in which indel rate is inversely proportional to length and a game the­

ory model in which reproductive efficiency depends on the distribution of molecule 

lengths within a population (this is linked to catalytic efficiency) . Models are in­

vestigated using analytic, numerical and simulat ion methods. The linear model is 

not sufficient to support a population wi th balanced length distribu tion. Simulation 

methods show that the game theory model may support such a populat ion. 

We next look at RNA evolution in the context of RNA virus evolution. Using 

virus samples taken over a thirty year period we investigate the evolution of Respira­

tory Syncytial Virus (RSV) in New Zealand. RSV most strongly affects infants and 

the elderly, causing cold like symptoms in mild cases and bronchioli t is or occas ion­

ally death in severe cases . New Zealand has a higher incidence of RSV bronchiolitis 

per head of population than many other developed countries. We compare New 

Zealand strains of the virus to those isolated overseas to investigate if New Zealand 

may have significantly different strains. We look at the evolution of the virus within 

New Zealand looking for evidence of antigenic drift , as well as analysing substitution 

rates and selection at individual codon sites. No evidence is found to suggest that 

New Zealand has significant ly different strains of RSV from other countries. We 

conclude the higher rate of severe RSV in New Zealand must be caused by factors 

other than virus strain. The portion of the virus analysed shows strong evidence of 

being under posit ive selective pressure. This and other analyses suggest that RSV 

may be undergoing antigenic drift. 
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Preface 

This project initially start d as a PhD thesis and was transmuted into a l\Iasters the. is 

aft er one year for personal reasons. In its initial stages the proj ect fo cused on RN A 

replication dynamics in an R\"A world situation. Simulations for this study were done on 

the Helix supercomputing cluster. 

I also "·anted to do some more practical work o \\·hen data became available a t the 

i\Ialaghan In. titut on Respiratory Syncytial Virus (RSV) I agre d to analy. it as part of 

a project investigating RSV in I\ew Zealand lead by Dr. Joanna Kirman of the l\ Ialaghan 

Insti t ute. 

The majori ty of the analyses in both parts of this proj ect were done using R (R Devel­

opment Core Team 2004). High speed simulation code was writt en in ANSI C. Parallel 

code used the :\ IPI Parallel library. 

Motivat ion: R\"A. wi t h its abili ty to encode both genotype (sequence) and phenotype 

(folding) in the same molecule i thought to have preceded D\"A and protein as a carrier 

of genetic informat ion by some scientists. An R\"A \\·orld. in which R\"A is the primary 

information carrying and catalytic molecule. is post ulated to have been the first stage 

of evolution. The plausibility and structure of uch a world rests on how RNA behaves. 

This motivates the study of early R\: A evolution. 

The study of RSV is motivated primarily by its medical ignificance. RSV has it largest 

effect in infants where it causes cold like symptoms in mild cases and bronchiolitis and 

occasionally death in severe cases. RSV data over a long time period (30 year ) is not 

often available, and there is little data available on New Zealand RSV. so the discovery of 

New Zealand RSV samples from 1967 to 1997 in an ESR freezer offers a useful opportunity 

to study this viru . 
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1 INTRODUCTION 1 

1 Introduction 

This thesis invecstigates several aspects of the evolution of biological molecules. R~A is 

the molecule ,vc concentrate on. \Ve tah- a brid look at RS A in section 1. 1. 

In Section 2 we look at hmv RNA might have been involved in the early development oflifo. 

Eigen ( 1971) considers constant length self replicating biomolecules ( specifically R:\' A). 

Eigen's model goes from early chemical sdf organization in evolution to the formation 

of hypercydes. which are self-replicating autocatalytic cycles. There is some argument 

over the veracity of his claims for hypercycles as the path to more complex biomolecules 

( Boerlijst and Hoge,veg 1991. Zintzaras et al. 2002). however our area of interest lies before 

the formation of hypercycles in the area of H.'\A evolution. \Ve look at variable length self 

replicating biomolecules and ask the question: Can ,ve find a set of conditions sufficient to 

create a stable population of molecules with a balanced length clistribntion? This question 

arises from experiment al obsrTvations (Spiegelman et al. 1965. Diebricher et al. 1981) 

shov;ing that. under some conditions. R .\' A will evolw tuwards ;-:t highly biased (short) 

length distribution. This unlike what is seen in nature today. \Ve attempt to answer 

this question by using mathematical models and simulation methods to investigate R.\'A 

replication dynamics in different model systems. 

In section 3 we move from the theoretical to the practical implications of R.\'A evolution. 

\Ve look at the evolntion of Respiratory Syncytial Virus (RSV) in .\'cw Zealand. RSV 

is common in infants. 11ild infection causeR symptoms similar to a cormnon cold. sewre 

infection can ca1rne bronchiolitis and death . .\'ew Zealand has a higher incidence of hospital 

admissions from RSV bronchiolitis than many other developed countries (Vogel et al. 

2003). \Ve investigate if this is due to :'\ew Zealand having different strains of HSY to 

other countries. as well as looking at the characteristics of the virus's evolution in .\'ew 

Zealand. 
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1.1 What is RNA? 

Rl\'A stands for R iboNucleic Acid which is a single stranded cousin to DNA. RNA like 

D:\f A is constructed from a linear chain of nucleotides attached to a sugar phosphate 

backbone. Unlike D:\iA. Rl\'A is usually single st randed and the nucleotides used are 

Adenine. Cytosine. Guanine and ·racil (not Thvmine) ofteu aLlJre ,·iateu tu A. C. G and 

Due to their ingle stranded nature R:\" A molecules are free to fold back on themselves. 

This weans that nucleotides that fold to be adj acent can form hydrogen bonds (base-pair) 

creating 2D tructures such as loops and hairpins. Different nucleotides form different 

strengths of bond. Tlw strongest bond is C = G follo,,·ed by A = U. There is also weak 

binding affini ty in the bond C - A. Bases " ·ith strong base pairing affinities are said 

to complement each other. C and G are complem ntary base pairs as are A and . The 

2D structures formed by Rl\ A can in t urn fold in 3D space to form complex structures. 

Some of these 30 structures will provide the chemical binding sit es which allow R:'\A to 

catalyse chemical reaction . 

:---Iodern theories of the origin of life assume an R:'\ A-,vorld st age (Yarns 1999). Thi is a 

tage of evolution that is dominated by R::\'A. In the e theories founding populations of 

R:\fA molecules are produced by natural R:-JA synthesis from nucleotides on ancient earth . 

RN A replica tion is aided by catalytic RN A call d ribozymes. Th founding population 

gradually evolves. by mechanisms such as that discussed in Eigcn (1971 ), towards the 

production of protein and eventually DNA. The itua tion in the Rl\'A-world differs from 

the modern situation ; in the RNA-world RNA was both catalyst and information carrying 

molecule. In the modern situation the function of catalyst and information carrier are 

separated between protein and DNA respectively. RNA cat alysts for RNA processing 

(ribozymes) are essential to the RNA-world hypothesis as they form the basis for theori s 

of self-replicating system of RNA molecules. Though the existence of efficient ribozymes 

is yet to be experimentally proven, there is reason to believe it will be, with groups such as 

that of David Bartel (Lawrence and Bartel 2003) finding molecules that have good RNA 

polymerase activity but limited processivity (their ability to catalyse other molecules is 
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not long lived). 

In a hypothetical R:'.\A ,vorld environment containing frep nucleotides and rihozymes some 

RNA sequpnces can undergo replication (Spiegelman et al. 1965). This process involves a 

complementary copy of the molecnle being created from the origi11al by pairing each base 

in the original umvound strand with its complement. This complement is complemented 

in turn to create a replica of the original sequence. There are 110 known error correcting 

mechanisms in this process so R:\"A replication is prone to errors. Errors can take the 

form of miscoded bases (called 'substitutions·) or the addition or deletion of bases from 

the molecule (these are called insertions and deletions resrwctivcly and are collectivel:v 

referred to as indels). 

In this thesis we look at a formal model of aspects of the early R:\"A world (section 2) as 

,vell as how RNA. in the form of R::'\A viruses. evolves in the ,vorld today (section 3). 




