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Abstract

We look at two aspects of the evolution of RNA.

First we look at RNA replication dynamics in an early RNA world context. Ex-
perimental evidence (Spiegelman et al. 1965, Biebricher ef al. 1981) shows that
under some conditions RNA evolves towards small quickly replicating molecules.
We investigate what conditions are sufficient for a population of RNA molecules
to evolve towards a balanced population of molecules. This is a population not
completely dominated by a single length of molecule. We consider two models: A
linear model in which indel rate is inversely proportional to length and a game the-
ory model in which reproductive efficiency depends on the distribution of molecule
lengths within a population (this is linked to catalytic efficiency). Models are in-
vestigated using analytic, numerical and simulation methods. The linear model is
not sufficient to support a population with balanced length distribution. Simulation

methods show that the game theory model may support such a population.

We next look at RNA evolution in the context of RNA virus evolution. Using
virus samples taken over a thirty year period we investigate the evolution of Respira-
tory Syncytial Virus (RSV) in New Zealand. RSV most strongly affects infants and
the elderly, causing cold like symptoms in mild cases and bronchiolitis or occasion-
ally death in severe cases. New Zealand has a higher incidence of RSV bronchiolitis
per head of population than many other developed countries. We compare New
Zealand strains of the virus to those isolated overseas to investigate if New Zealand
may have significantly different strains. We look at the evolution of the virus within
New Zealand looking for evidence of antigenic drift, as well as analysing substitution
rates and selection at individual codon sites. No evidence is found to suggest that
New Zealand has significantly different strains of RSV from other countries. We
conclude the higher rate of severe RSV in New Zealand must be caused by factors
other than virus strain. The portion of the virus analysed shows strong evidence of
being under positive selective pressure. This and other analyses suggest that RSV

may be undergoing antigenic drift.
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Preface

This project initially started as a PhD thesis and was transmuted into a Masters thesis
after one year for personal reasons. In its initial stages the project focused on RNA
replication dynamics in an RNA world situation. Simulations for this study were done on
the Helix supercomputing cluster.

[ also wanted to do some more practical work so when data became available at the
Malaghan Institute on Respiratory Syncytial Virus (RSV) I agreed to analyse it as part of
a project investigating RSV in New Zealand lead by Dr. Joanna Kirman of the Malaghan

Institute.

The majority of the analyses in both parts of this project were done using R (R Devel-
opment Core Team 2004). High speed simulation code was written in ANSI C. Parallel

code used the MPI Parallel library.

Motivation: RNA. with its ability to encode both genotype (sequence) and phenotype
(folding) in the same molecule is thought to have preceded DNA and protein as a carrier
of genetic information by some scientists. An RNA world, in which RNA is the primary
information carrying and catalytic molecule, is postulated to have been the first stage
of evolution. The plausibility and structure of such a world rests on how RNA behaves.

This motivates the study of early RNA evolution.

The study of RSV is motivated primarily by its medical significance. RSV has it largest
effect in infants where it causes cold like symptoms in mild cases and bronchiolitis and
occasionally death in severe cases. RSV data over a long time period (30 years) is not
often available, and there is little data available on New Zealand RSV, so the discovery of
New Zealand RSV samples from 1967 to 1997 in an ESR freezer offers a useful opportunity

to study this virus.
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I INTRODUCTION 1

1 Introduction

This thesis mvestigates several aspects of the evolution of biological molecules. RNA s

the molecide we concetrate o, We rake a briel ook at BN A iy section 1.1,

In Section 2 we look at how RNA might have been involved i the carly developiient of life.
Eigen {1971) considers constant lengih self veplicaring biomolecules {specifically RNAL
Eiven's wmodel goes from carly chemideal self organization in evolution ro the formation
of hvpereveles, which ave self-replicating awrocatalvric eveles. Theve is sowme argument
over the veracity of his claims for Iivpereveles as the parl to more complex biomolecnles
(Bocerlipst and Hogewey 1991, Zint zavas of al. 2002). however our area of interest lies hetore
the Tormation of hypereveles in the arca of RNA evoluiion. We look at variable length self
replicating biomolectles and ask the question: Can we find a set of conditions safficient to
create a stable population of wolecules with a balanced length distribution” This question
arizes o experinnental observations (Spiegelman of ol 1965, Biebricher of ol 19%1)
showine that. under some conditions, RNA will evolve tawards a highly biased {shovry
leneth ¢histribution.  This nnlike what is seen in nature today, Woe artempt o answer
this question by using nwathematical models and simmlarion merhods to investigate BN A

replication dynamics in different wmodel systems,

i1 section 3 we move from the theoretical to the practical hnplications of RNA evolution.
We Jook at the evolmtion of Respiratory Svnevtial Virus (RSV) in New Zealand, RSV
s conmyon 1n iufants, VAld nfection cavses svmptoms similar 1o a conunon cold. severe
tfect ion can canse bronchiolitis and deatl. New Zealand lias a higher inctdence of hospital
adnussions from RSV bronchiolitis than many other developed conntries (Vogel of al.
20033, \We investigate if this s due to New Zealand having differenr strains of RSV to
other conntries. as well ax looking at the characteristios of the virus's evolution in New

Zealaned.




1 INTRODUCTION

o

1.1 What is RNA?

RNA stands for RiboNucleic Acid which is a single stranded cousin to DNA. RNA like
DNA is constructed from a linear chain of nucleotides attached to a sugar phosphate
backbone. Unlike DNA, RNA is usually single stranded and the nucleotides used are
Adenine, Cytosine., Guanine and Uracil (not Thymine) often abbreviated to A, C. G and
L.

Due to their single stranded nature RNA molecules are free to fold back on themselves.
This means that nucleotides that fold to be adjacent can form hydrogen bonds (base-pair)
creating 2D structures such as loops and hairpins. Different nucleotides form different
strengths of bond. The strongest bond is C' = G followed by A = U. There is also weak
binding affinity in the bond ' — A. Bases with strong base pairing affinities are said
to complement each other, C and G are complementary base pairs as are A and U. The
2D structures formed by RNA can in turn fold in 3D space to form complex structures.
Some of these 3D structures will provide the chemical binding sites which allow RNA to

catalyse chemical reactions.

Modern theories of the origin of life assume an RNA-world stage (Yarus 1999). This is a
stage of evolution that is dominated by RNA. In these theories founding populations of
RNA molecules are produced by natural RNA synthesis from nucleotides on ancient earth.
RNA replication is aided by catalytic RNA called ribozymes. The founding population
gradually evolves, by mechanisms such as that discussed in Eigen (1971). towards the
production of protein and eventually DNA. The situation in the RNA-world differs from
the modern situation; in the RNA-world RNA was both catalyst and information carrying
molecule. In the modern situation the functions of catalyst and information carrier are
separated between protein and DNA respectively. RNA catalysts for RNA processing
(ribozymes) are essential to the RNA-world hypothesis as they form the basis for theories
of self-replicating systems of RNA molecules. Though the existence of efficient ribozymes
is yet to be experimentally proven, there is reason to believe it will be, with groups such as
that of David Bartel (Lawrence and Bartel 2003) finding molecules that have good RNA

polymerase activity but limited processivity (their ability to catalyse other molecules is



I INTRODUCTION 3

i

not long Hyved).

In a hypothetical RNA world enviromnent coutaining freemmeleotides and ribozyvines some
RNA seqnences ean nndergo veplication (Spiegehnan of af. 1965 ). This process involves a
cotmplementary copy of the molecule bheing ereated from the original by paning each base
i the original nmwonnd strand with its complement. This complement is commplement ed
i tarn 1o ereate a replica of the original sequence. There are no known error correcting
mechanisis in this process so BNA replication is prone to ervors. Errors can take the
form of wiseoded hases {(catled substinutions™t or the addition or deletion of bLases trom
the molecule {(these ave called insertions and deletions respectively and are collectively
referved to as iudels).

[n this rhesis we look at o fornial model of aspects of the earlv RNA world {section 2} as

well as how BNAL i the fonn of BNA virnsess evolves i the worid today (section 3.






