Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A Novel, Neuroscience-based Control Paradigm for Wearable Assistive Devices

A thesis presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Engineering

at Massey University, Albany, New Zealand.

Frazer Kingsley Noble

2013

The author declares that this is his own work, except where due acknowledgement has been given. This thesis is submitted in fulfilment of the requirements of a PhD. in Engineering at Massey University, Albany, New Zealand.

This thesis describes the research carried out by the author at the School of Engineering and Advanced Technology (SEAT), Massey University Albany, New Zealand from November 2009 to February 2013, supervised by Associate Professor Dr. Johan Potgieter and Professor Dr. Peter Xu.

Acknowledgements

I would like to express my deep gratitude to my supervisors, Associate Professor Johan Potgieter and Professor Peter Xu: their encouragement, guidance, and support over these few years has helped me grow as an independent researcher.

I would also like to extend my thanks to the faculty of Massey University's School of Engineering and Advanced Technology for their assistance. Special thanks is offered to Professor Olaf Diegel for his support.

On a personal note, I would like to acknowledge the support of my parents, David and Cristine Noble; brother and sister, Rhys and Frances-Elise Noble; and grandparents, Kingsley and Dawn Collins, and Stella Noble.

I would also like to thank the friends who supported and motivated me during the course of my studies.

Finally, I thank God, through whom all things are possible.

The author was supported with a Massey University Doctoral Scholarship

Abstract

The biological domain has evolved in such a way that it efficiently overcomes many problems we struggle to solve in the engineering domain; for example, bipedal locomotion, which requires a number of desirable attributes, e.g. compliance and adaptability. As such, the aim of this research has been to provide a bridge between the biological and engineering domains, capturing these attributes, and developing an enabling control technology. The application of this research has been around wearable assistive devices: devices that assist rehabilitation and recuperation of lost or impaired functions or enable an end user to perform difficult to complete tasks. As such, this thesis presents a novel, neuroscience-based control technology for wearable assistive devices. Major contributions of this work include reproducing both biological movement's compliant and adaptive properties in the engineering domain.

The presented approach consists of using an assistive device, whose joints are antagonistically actuated using compliant pneumatic muscles, and central pattern generators. The assistive device's actuators make the arm robust to collision and give it smooth, compliant motion. The pattern generators produce the rhythmic commands of the joints of the assistive device, and the feedback of the joints' motion is used to modify each pattern generator's behaviour. The pattern generator enables the resonant properties of the assistive device to be exploited to perform a number of simulated rhythmic tasks.

As well as providing a wealth of simulated and real data to support this approach, this thesis implements integrate-and-fire, Izhikevich, and Hodgkin-Huxley neuron models, comparing their output based on firing patterns observed in neurons of the nervous system. These observations can be used as a mechanism for deciding the "realism" needed to represent a neural system's characteristics. In addition, Hill's muscle model has been presented, and simulation of an implemented soleus muscle carried out. Parametric variation provides quantitative insight into passive and active series and parallel elements' roles in generating tension and tension's timeresponse characteristics. Furthermore, an antagonistically coupled pair of extensor and flexor muscles have been presented and shown to effect compliant joint actuation of a modelled limb under differential activation. Co-activation of the extensor and flexor has been shown to increase a joint's stiffness, leading to increased stability and rejection of limb perturbation.

Thesis Supervisor: Johan Potgieter Title: Associate Professor

Thesis Supervisor: Peter Xu Title: Professor

Contents

1	Intr	roduction	1
	1.1	Synopsis	1
	1.2	Approach	3
	1.3	Comparisons	6
	1.4	Contributions	9
	1.5	Thesis outline	11
	1.6	Notes on Data in the Thesis	14
2	Lite	erature Review	15
	2.1	Introduction	15
	2.2	Assistive Devices and Control	16
	2.3	Organisation of the Nervous System	24
	2.4	Neurons and Neuron Models	27
	2.5	Skeletal Muscle, Models, and Engineering Parallels	30
	2.6	Muscle Sensory Organs	37
	2.7	Pattern Generating Pathways and Models	40
	2.8	Summary	48
3	Hill	's Model, Parametric Variation, and Antagonistic Actuation	51
	3.1	Introduction	52
	3.2	Hill's muscle model	53
	3.3	Determining muscle's properties	55
	3.4	Methodology	56

	3.5	Muscle Parameter Fitting	57
	3.6	Passive and Active Muscle Parameter Analysis	58
	3.7	Antagonistic Actuation	63
	3.8	Summary	66
4	Nov	vel Central Pattern Generator and Analysis	70
	4.1	Introduction	71
	4.2	The Central Pattern Generator	72
	4.3	Analysis Methodology	79
	4.4	Pattern Generator Describing Function	82
	4.5	Limit Cycle Stability	85
	4.6	Parameter Evaluation	86
	4.7	Summary	87
5	The	e McKibben Muscle, Antagonistic Actuation, and Antagonistic	2
	Cor	ntrollers	90
	5.1	Introduction	91
	5.2	The McKibben Muscle Model	92
	5.3	Methodology	95
	5.4	Static and Dynamic Modelling	96
	5.5	Antagonistic Coupling	99
	5.6	Antagonistic Actuator Control Paradigm	104
	5.7	Summary	106
6	\mathbf{Ass}	istive Device Controller and Antagonistic Actuator	109
	6.1	Introduction	110
	6.2	Methodology	112
	6.3	Fabricated McKibben Muscle	113
	6.4	Static and Dynamic Assistive Device Controller properties	121
	6.5	Antagonistic Actuator and Realised Controller	123
	6.6	Static and Dynamic Actuator and Controller properties	130
	6.7	Summary	131

7	Con	clusion	135
	7.1	Future Work	135
	7.2	Discussion	137
	7.3	Summary	140
References		144	

List of Figures

1-1	Assistive device control schematic	5
1-2	Pattern generator and wearable assistive device coupling	6
1-3	Comparison between traditional and compliant control	7
1-4	Comparison between traditional and pattern generator control	8
1 - 5	Graph of thesis' chapters, topics, and contributions	12
2-1	Block diagram of literature review's sections and topics	17
2-2	Active wearable assistive device	20
2-3	Passive supportive assistive devices	21
2-4	Raytheon's XOS2 active exoskeleton.	22
2-5	Schematic of the closed-loop control paradigm	23
2-6	Overview of the anatomical organisation of the nervous system	24
2-7	Divisions of the nervous system and external view of the brain and	
	spinal cord	25
2-8	Example of neurons in the nervous system	28
2-9	The nervous system's skeletal muscle	31
2-10	Myosin and actin ratcheting mechanism.	32
2-11	Hill's muscle model	34
2-12	Example pneumatic McKibben muscle	35
2-13	The muscle spindle sensory organ	38
2-14	The muscle spindle sensory organ	39
2-15	Rybak et al.'s central pattern generator model	46
2-16	Matsuoka central pattern generator	48

3-1	Hill's muscle model	55
3-2	Hill muscle model ramp stretched tension	59
3-3	Hill muscle model parameter' effects on passive tension	62
3-4	Hill muscle model parameter' effects on active tension	64
3-5	Differential activation of antagonistic Hill-type muscle models	67
3-6	Coactivation of antagonistic Hill-type muscle models	68
4-1	Schematic of the pattern generator.	73
4-2	Dirac delta plot	75
4-3	Linear kernel.	76
4-4	Natural central pattern generator output	77
4-5	Pattern generator behaviour under changing tonic T excitation	78
4-6	Plot of pattern generator and coupled system	78
4-7	Power density spectrum of the pattern generator	79
4-8	Coupled pattern generator and system schematic	80
4-9	Phase plot of the coupled pattern generator and system $L(j\omega)$	82
4-10	Coupled pattern generator and system Bode plot	84
4-11	Complex plane plot of coupled system's $N(A, j\omega)$ and $J(j\omega)$	85
4-12	Figure showing the effect of varying the damping ratio of the linear	
	system.	88
4-13	Power density spectrum for coupled pattern generator with changing	
	system dynamics	88
5-1	Basic McKibben muscle model's force, contraction ratio plot	96
5-2	Static friction-incorporating McKibben muscle model's force, contrac-	
	tion ratio plot	98
5-3	Dynamic friction-incorporating McKibben muscle model's force, con-	
	traction ratio plot.	100
5-4	Differential activation of antagonistic McKibben muscles	102
5-5	Coactivation of antagonistic McKibben muscles	103
5-6	Schematic of the torque controller, differential pressure controller, an-	
	tagonistic muscles, and modelled limb.	105

5 - 7	Differential pressure controller's evoked transient response 106
5-8	Torque controller's evoked transient response
6-1	Assistive device control schematic
6-2	McKibben muscle testing apparatus
6-3	Fabricated pneumatic McKibben muscle
6-4	Fabricated McKibben muscle's force-length plot ($P = [1,3,5]$ bar) 119
6-5	Fabricated McKibben muscle's force-length plot ($P = [2,4]$ bar) 120
6-6	Optimised McKibben muscle's force-length plot ($P = [1,3,5]$ bar) 121
6-7	Optimised McKibben muscle's force-length change plot $(P = [2,4] \text{ bar}).122$
6-8	Assistive Device controller's evoked transient response plots 124
6-9	Driven assistive device controller's transient response plot 125
6-10	BeagleBoard-xM embedded target
6-11	Arduino Uno sensor interface
6-12	Static antagonistic actuator's transient response plot
6-13	Dynamic antagonistic actuator's transient response plot 133
7-1	Multiple degree-of-freedom manipulator
7-2	Block diagram of thesis' chapters and topics

List of Tables

3.1	Hill-type muscle model parameters used during simulation
6.1	Table of fitted force curve parameters $(P = 1 \text{ bar})$
6.2	Table of fitted force curve parameters $(P = 2 \text{ bar})$
6.3	Table of fitted force curve parameters ($P = 3$ bar)
6.4	Table of fitted force curve parameters $(P = 4 \text{ bar})$
6.5	Table of fitted force curve parameters ($P = 5$ bar)
6.6	Table of optimised McKibben muscle model's parameters 122
6.7	Table of RMS values of optimised McKibben muscle model's parameters. 122