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ABSTRACT

The equation of state for symmetric nuclear matter and finite nuclei has been

investigated using self-consistent Hartree Fock approach. Several versions of Skyrme

effective interaction and Hill-Wheeler formula are employed in the calculation. The

finite size effect parameter aF , which is introduced into the Hill-Wheeler formula, is

determined by comparing theoretical calculations and experimental results for the zero

temperature properties. The dependence of aF on the effective interaction employed

has been studied. It was found that different versions of Skyrme force lead to different

values for aF apart from SKI and SKIII which gave a similar value. Also, the aF values

obtained with Skyrme interaction were different from what was obtained with Gogny

force with the exception of SKV interaction which gave a value of aF = 0.35 identical

to the value obtained with D1 Gogny interaction. The critical points of the first order

phase transition for the nuclear matter and finite size nuclei calculated with the several

versions of Skyrme force were different from each other. The largest value of critical

temperature for nuclear matter is given by SKV force as Tc = 39.45 MeV, while SKIII

interaction gives the smallest value as Tc = 21.65 MeV. Similarly, the largest value

of the critical density is given by SKV interaction. The critical points depend on the

number of nucleons in the system and Tc decreases as the number of nucleons in the

system decreases.
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1 INTRODUCTION

1 Introduction

The investigation of properties of nuclear matter (NM) and finite nuclei is one of the

significant subjects in nuclear physics and astrophysics and has been receiving great attention.

The main motivation behind numerous theoretical studies is the developments of heavy-ion

collisions [1, 2]. Empirically, heavy-ion collisions have been done [3] as cited in [4], to obtain

unknown properties of hot nucleus described in collisions [5, 6]. Theoretically, a number of

works have been devoted to the study of the equation of state (EOS) of nuclear matter and

the critical features [7–15], by using several methods of calculations and various effective

nucleon-nucleon (NN) interactions [16].

The heavy-ion experiments show evidence for a transition from the liquid to a gas phase

where the average distance of the interparticle is larger than the interaction range of the

interparticle [17]. In the line with a phase transition is a critical temperature above which the

gaseous phase can exist [18]. In view of empirical results of relativistic heavy-ion collisions,

the critical temperature is a very interesting point [19]. In an earlier paper published by

Jaqamin, Mekjian and Zamick [18], this point was demonstrated in a system of infinite NM

where the calculations were carried out without considering the coulomb effects.

In Ref. [20], it was predicted that the number of nucleons produced in any nuclear collision

cannot extend more than a few hundred nucleons. Therefore, the properties of an infinite

system are not adequate in describing a finite system. It is worth pointing out that the

boundaries of nucleus might play a great role in performing the calculations. The finite size

effect cannot be ignored in the calculations of the equation of state and critical phenomena,

due to the fact of its large effect [18].

Jaqamin and his co-workers [20] have demonstrated that such a finite size effect can be taken

into account by including the formula of Hill and Wheeler in the calculations. However, the

validity of the EOS of thermodynamic properties in a finite size system is not assured.

In other words, the geometry of interfacial region in finite nuclear matter can affect the

measuring of some quantities such as pressure [18]. As it is hazardous to determine the
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1 INTRODUCTION

pressure in a finite system, they have taken advantage of similar results that have been

found between the EOS produced by (P −ρ) isotherms and those given by (μ−ρ) isotherms

in the case of infinite NM [18].

Therefore, a successful attempt has been done [20], to investigate the liquid-gas phase

transition in a system consisting of a limited number of nucleons where the finite size effect

and coulomb interaction are included. They have suggested a procedure for the study of

the critical points in a finite size system by investigating the relation between the chemical

potential and the density (μ− ρ) isotherms instead of the pressure and the density (P − ρ)

isotherms. It was found that the finite size effect and coulomb interaction could reduce the

critical temperature by about 5 ∼ 10 MeV and about 1 ∼ 3 MeV, respectively [20].

Furthermore, they demonstrated that studying the EOS of a finite system by working with

chemical potential μ = μ(ρ) instead of working with pressure P = P (ρ) would be a promising

method since it is easier to calculate the chemical potential than the pressure. It was pointed

out [21] that the rearrangement effect needs to be included in the Hartree Fock approximation

with density dependent versions of effective NN interaction. At finite temperature, Su and

Lin showed [22] that the rearrangement effect can be taken into account by a rearrangement

term in the chemical potential.

Wang and Yang [23] as cited in [2] pointed out that adopting directly the formula of

Hill-Wheeler in the EOS calculations for nucleus as in Refs.[16, 20] cannot correctly predict

binding energies and other zero temperature properties. Cao and Yang [2] modified the

Hill-Wheeler expression in the study with Gogny effective interaction in the framework

of Hartree Fock approximation aiming to produce better agreement between theoretical

calculations and experimental results for the nucleus properties at zero temperature. Such

an adjustment can be done by introducing a finite size effect parameter (aF ) in the formula

of Hill-Wheeler. The value obtained for aF in [2] is aF = 0.35. It is interesting to study

whether the value of aF depends on the effective interaction employed.
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1 INTRODUCTION

In the present work, we aim to study the zero temperature properties and liquid-gas phase

transition for the NM and finite nuclei by employing Skyrme effective interaction and the

Hill-Wheeler formula. Our approach is based on Hartree Fock approximation in which the

mean field is constructed from the effective interaction between particles in a self-bound

manner. This method has a great advantage over the other methods in the NM calculations

due to its ability to simplify a many-body problem to one-body problem.

The selection of effective NN interaction plays an essential role in studying the gross properties

of NM and phase transtion [24]. There are several types of the effective interactions, and each

type is normally introduced into different parameter sets. Among these effective interactions

the most popular choices are Gogny interaction and Skyrme interaction. The latter will be

employed in our study. The versions that will be used in this study are SKI, SKII, SKIII,

SKIV, and SKV interactions.

This thesis is organized according to the following outline. A brief review of many-body

theory is given in Chapter 2. The mean field theory and the effective interaction are presented

in Chapter 3. This chapter is mostly devoted to reviewing in detail Hartree Fock mean field

method and Skyrme effective interaction. The formulisms used in the EOS calculation are

derived in Chapter 4. We determined the finite size parameter aF by comparing theoretical

calculations and experimental data for the binding energies for a set of nuclei, and then we

computed the critical temperature for the first order phase transition. Su and Lin [15, 24]

have calculated the critical temperature for the liquid-gas phase transition of NM system

using a real time Green’s function method and Skyrme interactions. Our findings will be

presented and compared with their results in Chapter 5. Also the value for the finite size

effect parameter that has been found in [2] using Gogny interaction will be compared with

that found here employing Skyrme interaction. Finally, summary and conclusion are given

in Chapter 6.
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2 NUCLEAR MANY-BODY SYSTEM

2 Nuclear Many-Body System

The quantum many-body theory has played an essential role in describing the properties of a

system containing a large number of particles. Generally, this theory provides sufficient tools

to describe several systems, starting from the inner structure of the nucleon to the enormous

objects in outer space. A big picture of many-body systems is that we can generalize a

large number of varied problems in a common approximation. This picture makes the many

particles theory take a significant place in the physics area. Although the initial discovery of

this theory was in the fifties, it is still an important source of theoretical studies for physicists

[25]. In fact, it requires a deep understanding of different mathematical approximations such

as Hartree Fock approach, in order to treat the many-body problem [26].

In the standard nuclear physics, the many-body problem has a simple definition. At the first

step, one selects the particles which are the nucleons, i.e. the neutron and the proton. Then,

the interaction between the chosen particles is given. After that the Shrödinger equation

should be solved initially. To make the problem simpler, one usually considers an infinite

system of nucleons with same number of protons and neutrons. This homogeneous system

corresponds to symmetric nuclear matter, and the coulomb interactions among protons are

often neglected. It means that one can treat nuclear matter as a large nucleus to depict

qualitatively the interior of the neutron stars and heavy nuclei [27].

2.1 Nuclear Matter

Nuclear matter is composed of a huge number of nucleons which are composed of even smaller

objects known as quraks. The hierarchy of the nuclear matter constitutions is depicted in

Fig.1. Moreover, NM is considered as an idealized system of elementary particles interacting

via strong interactions, i.e. nuclear force. Since the protons are charged particles, the

coulomb interaction should be accounted in addition to the nuclear force [28]. Generally

speaking, as these subatomic particles are described by the statistics of Fermi-Dirac, they
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2.2 Nuclear Force 2 NUCLEAR MANY-BODY SYSTEM

are characterized as fermions. According to that their wave functions, Φ ≡ Φ(r, s, τ), can be

propagated into a momentum space with spin (s =↑, ↓) and isospin τ = p, n [29].

Figure 1: The hierarchy of the nuclear matter structure. Nuclei consist of nucleons (i.e.

protons and neutrons) and nucleons consist of quarks (Lacroix, 2011, P.10).

2.2 Nuclear Force

One of the essential aims of theoretical physics in NM is to determine the bulk nuclear

properties by using a nucleon-nucleon force. However, the information of nuclear forces is

not yet completed due to the complexity associated with systems involving a large number

of nucleons [29]. There are three methods for deriving nuclear force. The first one is that

the interaction between nucleons is derived by the exchange of meson and this force was

predicted by Yukawa. In this case, the interaction between nucleons is called a realistic

force. The second one is a phenomenological method in which the nucleus is treated as a

system consisting of N-nucleons that interact among themselves where the most fundamental

interaction mainly happens between two-nucleons. This force is called a phenomenological

effective interaction. The third way depends on the theory of effective field to construct the
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2.3 Nuclear Matter Phases 2 NUCLEAR MANY-BODY SYSTEM

force between nucleons, and thereby the other particles which ignored in other methods are

included [30].

2.3 Nuclear Matter Phases

Liquid-gas phase transition has been observed in the experiments of heavy-ion collisions. It

means that there are two distinct phases coexistence in NM at certain temperature range [31].

Fig.2 indicates a collision of two large fragments in nuclear matter. As we can see, the friction

between the two major fragments leads them to heat up. Then, individual nucleons and

smaller fragments are produced in this reaction. In such reactions, the fragments temperature

and the energy provided to the system can be measured.

We can determine the temperature from the Maxwell distribution and calculate the total

energy from detecting all the nucleons generated in the final state. As a matter of fact, the

contribution of the energy supplied to the particles is separated from the lost energy during

the collision. The temperature of the fragments depends on the energy added to the system.

In Fig.3 one can observe that the temperature increases rapidly as the excitation energies

(E/N) are increased up to about 4 MeV/Nucleon. In the region between 4 MeV and 10

MeV, it is found that the temperature remains steady, while at higher energies it grows

strongly. This behaviour is similar to that found in the water evaporation process where

the phase transition from liquid into vapor is observed around the boiling temperature. In

nuclear matter case, although the energy is supplied to the system, the temperature does

not change until the system undergoes a phase transition [32].

6
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Therefore, we can describe the temperature dependence explained above as a liquid-gas

phase transition of nuclear matter. The logical interpretation for the phase transition is that

nucleons form as a layer around the nucleus in a gaseous phase when the temperature is at 4

MeV. This layer of nucleons does not steam, but it exchanges energy with the liquid nucleus

to be in equilibrium. The heating up of the nucleon gas can only happen if the nucleon liquid

evaporates completely.

Figure 2: The collision of two fragments in nuclear matter (Povh et al., 1995, P.317).
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2.3 Nuclear Matter Phases 2 NUCLEAR MANY-BODY SYSTEM

Figure 3: The temperature of the fragments in a collision of two nuclei (197Au) as

a function of the excitation of energy per nucleon. The behaviour of the

temperature can be understood as a phase transition in nuclear matter (Povh

et al., 1995, P.318).
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3 Mean Field Theory

The self-consistent mean field approach has played a central part in providing a great

understanding of microscopic quantum mechanical matter. It is a fundamental technique

in the study of a many-body system where the exact solution of the problem is unknown

[28]. In this technique, the many-body problem is systematically mapped onto a one-body

density matrix. The philosophy of the mean field scheme is illustrated in Fig.4.

Figure 4: The explanation of the mean field method where particles interact through a

self-bound mean field instead of many-body interaction in the initial problem

(Lacroix, 2011, P.10).

One of the main procedures to introduce the mean field is based on choosing a set of single

particle wave functions that are used to build a density matrix of one-body. Therefore, the

Hamiltonian of observing system can be formed as the density functionals. As reported

by Hohenberg-Kohn Theorem [33], generally, the information of these densities may be

used to infer a clear description about the wave functions of this system and also the

ground state observables. This is convenient since the one-body density matrix includes

the same information of the ground state system of N single particle wave functions. As

a consequence, the ground state energy is the most significant observable which can be

obtained by minimizing the energy with respect to the density of the single particle, and

this can be achieved by the variational principle. In fact, an explicit description for the NM

and nuclei properties can be obtained successfully by applying the mean field theory within

a system based on Hartree Fock approximation [34].

9



3.1 Hartree Fock Formalism 3 MEAN FIELD THEORY

3.1 Hartree Fock Formalism

The main concept of the Hartree Fock approach is that the mutual interactions between

particles can cause an average potential which can be felt by each interacting nucleon.

Basically, the nucleus is considered as a system of many fermions which means any state of

nucleus must be related to an antisymmetric wave function under the exchange of any two

nucleons [29].

In the Hartree Fock (HF) approximation the wave function Φ of ground state for any

nucleus with N nucleons is a Slater determinant which is constructed from a complete

orthonormal set of the single particle wave functions [35]. Such states are known as the

HF basis, ϕi(ri, si, τi) where ri, si, τi denote the coordinates of space, spin and isospin of the

i-th nucleon, respectively. The form of the Slater determinant can be written as:

ΦHF (r, s, τ) =
1√
N

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1, s1, τ1) ϕ2(r1, s1, τ1) .. ϕN(r1, s1, τ1)

ϕ1(r2, s2, τ2) ϕ2(r2, s2, τ2) .. ϕN(r2, s2, τ2)

: :
. . .

ϕ1(rN , sN , τN) ϕ2(rN , sN , τN) .. ϕN(rN , sN , τN)

∣∣∣∣∣∣∣∣∣∣∣∣

Initially, in any particular calculations, the exact picture for the single particle states is

undetermined. However, it is possible to approximate it by oscillator wave functions [36],

where the number of the single particle states represents the number of nucleons in the

nucleus.

It is worth starting with the full many-body Hamiltonian for a system consisting of N-particles

that can be written in terms of a sum of kinetic energies and two-body potentials [37],

H =
�
2

2

N∑
i

−→∇2
i

mτi

+
1

2

N∑
i �=j

V (ri, rj), (3.2)

where V (ri, rj) is the interaction between two bodies which includes the effective NN interaction

Vi
N
j

N as well as the coulomb interaction V N
c

N .
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3.1 Hartree Fock Formalism 3 MEAN FIELD THEORY

From the expectation value of the Hamiltonian with respect to the HF wave function ΦHF ,

the total energy (E) of the ground state can be found by

Eo
HF = 〈ΦHF |H|ΦHF 〉

=
N∑
i=1

〈i|t|i〉 +
1

2

N∑
i,j=1

〈ij|V |ij〉 − 1

2

N∑
i,j=1

〈ij|V |ji〉

=
N∑
i=1

∫
drϕ∗

i (r)

(
− �

2

2m

−→∇2
i

)
ϕi(r)

+
1

2

N∑
i,j=1

∫ ∫
drdr′ϕ∗

i (r)ϕ∗
j(r

′)V (r, r′)ϕi(r)ϕj(r
′)

− 1

2

N∑
i,j=1

∫ ∫
drdr′ϕ∗

i (r)ϕ∗
j(r

′)V (r, r′)ϕi(r
′)ϕj(r).

(3.3)

The last term in Eq.(3.3) includes asymmetric states resulting from the exchange of any two

nucleons in the system.

In order to drive HF equations, the expectation value of E has to be minimized to produce the

lowest energy for the system, and this could be realized by applying a variational principle,

δ

δϕ∗
i (r)

[
Eo

HF −
N∑
i

εi

∫
drϕ∗

i (r)ϕi(r)

]
= 0, (3.4)

where εi are the Lagrange multipliers, and we have

δϕ∗
i (r

′)
δϕ∗

b(r)
= δibδ(r − r′).

It is useful to mention that the first derivative of the total E expectation value with respect

to the overall wave function of the single particle has to be zero, and in order to achieve the

normalization of the wave functions, the εi parameter has been added in Eq.(3.4).

11



3.1 Hartree Fock Formalism 3 MEAN FIELD THEORY

Then, one can obtain the HF equations for the wave functions of the single particle,

[
− �

2

2m
∇2 +

N∑
i

∫
dr′ϕ∗

i (r
′)V (r, r′)ϕi(r

′)
]
ϕb(r)

−
N∑
i

∫
dr′ϕ∗

i (r)V (r, r′)ϕi(r
′)ϕb(r

′) = εbϕb(r),

(3.5)

where εi turn out to be the energies of a single particle. The second term in Eq.(3.5) is a

local term which known as the direct or Hartree potential,

UD(r) =
N∑
i

∫
dr′ϕ∗

i (r
′)V (r, r′)ϕi(r

′).

The last term in Eq.(3.5) is a non-local term and known as the exchange or Fock potential.

Uex =
N∑
i

ϕ∗
i (r)V (r, r′)ϕi(r

′).

Eq.(3.5) can be expressed as

− �
2

2m
∇2ϕb(r) + UD(r)ϕb(r) −

∫
dr′Uex(r, r′)ϕb(r

′) = εbϕb(r). (3.6)

This equation is similar to Shrödinger equation of one-body, apart from the non-local term,

and its solution will be a set of single particle states. That means, however, there will be

a close set of non-linear equations that require to be solved self-consistently by using the

iteration method for a given effective force V (r1, r2), as illustrated in Fig.5. Starting with an

initial set for the wave functions ϕi(r) of the single particle, one can solve the HF equation

after calculating the direct term and the exchange term to obtain the new values of the wave

functions ϕi(r) and energies (εi) for the single particle. This process is repeated until the

desire accuracy is achieved [28].

Within the mean field method, the investigated system may be determined by selecting the

relevant potential of the two-body. For all interacting nucleons in the system, the Coulomb

and kinetic interactions are independent of V (r1, r2) which need well-founded approximation

to drive them [38], and the potential V (r) can be calculated in various ways [34].
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3.1 Hartree Fock Formalism 3 MEAN FIELD THEORY

Figure 5: Steps to solve Hatree Fock equations self-consistently. Firstly, the single particle

states have to be selected. Then, one can compute the mean field Hamiltonian.

New single particle states are found by diagonalizing the Hamiltonian. This

procedure is repeated until the convergence is realized (Lacroix, 2011, P.16).

The potential and parameters in the expression of the potential are determined by comparing

theoretical calculations with experimental data [29]. It is essential to phenomenologically

treat a system consisting of many bodies, due to the non-linear growth of the potential

for these bodies. Therefore, effective interactions are commonly used within Hartree Fock

mean field approximation. The effective NN interaction can be defined as the potential of

a long-range part of two-body interaction in the medium of NM [39]. The two common

distinguished types of the effective interaction, which are extensively employed, are Skyrme

effective interaction and Gogny effective interaction. In this work, we concentrated on the

calculations with the Skyrme interaction. The results obtained with Skyrme interactions are

compared with results from Gogny interaction.
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3.2 Skyrme Effective Interaction 3 MEAN FIELD THEORY

3.2 Skyrme Effective Interaction

The Skyrme effective interaction is a density-dependent zero-range effective interaction.

Initially, it was suggested by Vartherin and Brink [40]. It can be written in terms of a

two-body and a three-body parts as cited in [41]. The standard expression of the Skyrme

force of the two-body part can be written as [42],

Vi
N
j

N = to(1 + xoPSij
)δ(ri − rj)

+
1

2
t1(1 + x1PSij

) × [←−
K 2

ijδ(ri − rj) + δ(ri − rj)
−→
K 2

ij

]

+ t2(1 + x2PSij
)[
←−
K ijδ(ri − rj)

−→
K ij]

+
1

6
t3(1 + x3PSij

)ρσ
(
ri + rj

2

)
δ(ri − rj)

+ iWo

←−
K ijδ(ri − rj)(

−→
S i +

−→
S j) ×−→

K ij,

(3.7)

where ρ is the nucleon density, and ti, xi, σ and Wo are the Skyrme interaction parameters

which describe the strengths of these interaction terms [41] and can be found by fitting

experimental data. The values of these parameters are recorded in Table 1. PSij
= (1 +

−→
S i

−→
S j)/2 is the operator of spin exchange.

−→
S i is Pauli spin operator and

−→
K ij and

←−
K ij are

the momentum operators.
−→
K ij = −i(

−→∇ i − −→∇j)/2 operates on the wave functions to the

right, and
←−
K ij = i(

←−∇ i −←−∇j)/2 operates to the left. The zero term to represents the central

potential, and t1 and t2 are non-local terms [40].

Table 1: The parameters for different versions of Skyrme interaction. The values are

taken from Ref.[24].

Force to(MeV fm3) t1(MeV fm5) t2(MeV fm5) t3(MeV fm(3+3σ)) σ

SKI -1057.3 235.9 -100 14463.5 1

SKII -1169.9 585.6 -27.1 9331.1 1

SKIII -1128.75 395 -95 14000 1

SKIV -1205.6 765 35 5000 1

SKV -1248.29 970.56 107.22 0 1
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3.3 Gogny Effective Interaction

The Gogny interaction is composed of a set of density-independent finite-range terms in

addition to the zero-range terms [43]. It has been widely used in the calculation of the HF

mean field as well as the pairing field in NM and nuclei [42]. It has the form [44]

Vi
N
j

N =
∑
ij

(Wi + BiP
s
ij −HiP

τ
ij −MiP

s
ijP

τ
ij)exp[−(ri − rj)

2/μ2
i ]

+ to(1 + xoP
s
ij)ρ

σδ(ri − rj)

+ iWLS(Si + Sj) · −→∇ × δ(ri − rj)
−→∇ ,

(3.8)

where ρ is the nucleon density, and Wi, Bi, Hi, Mi, to, xo, σ and WLS are parameters. The

values of these parameters for D1 interaction are listed in Table 2.

The first part in Eq.(3.8) corresponds to the finite-range interaction, and the second term is

the zero-rang term [2]. The spin-orbit contribution introduced as the last term is similar to

that of Skyrme expression [45].

Table 2: The parameters of Gogny D1 effective interaction. The values are taken from

Ref.[2].

Body μi(fm) Wi(MeV ) Bi(MeV ) Hi(MeV ) Mi(MeV )

1 0.7 -402.4 -100 -496.2 -23.56

2 1.2 -21.3 -11.77 37.24 -68.81

to = 1350 MeV.fm4, σ = 1/3, WLS = 115 MeV.fm5, xo = 1.
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3.4 Skyrme Hartree Fock Quations

The Skyrme effective interaction has been widely employed in the study of properties of

nuclear matter and nucleus [46]. As it was pointed out in [29] that the total energy (E) for

nucleus is given by

E = 〈Φ|H|Φ〉 = 〈Φ|T +
1

2

N∑
ij

(Vij + Vc)|Φ〉

=

∫
drH(r) =

∫
dr[Hkin(r) + Hc(r) + Hsky(r)].

(3.9)

The kinetic energy density is given by

Hkin(r) =
�
2k2

2

[
1

mp

+
1

mn

]
, (3.10)

where mp and mn are the masses for the proton and neutron, respectively.

The coulomb potential is known as a long-range interaction, which will give a divergence in

the result if it is inserted directly in the matrix calculation of plane wave functions. Therefore,

a phenomenological expression of coulomb potential is used to simplify the calculations [2].

The average coulomb energy per proton in a uniform charged sphere is given by

Hc(r) = aZ2

[
1 − 5

(
3

16πZ

) 2
3

− 1

Z

]
A− 4

3ρ
1
3 , (3.11)

where a = 1.50 [2].

The total Hamlitonian can be expressed as a summation of different terms

Hsky = Ho + H3 + Hm∗ + Hf inite + Hs−o + Hs−g, (3.12)

where the Ho is the zero-ranage term, H3 deontes the density-dependent term, Hm∗ is the

effective mass term, Hf inite corresponds to a finite term, the spin-orbit term is Hs−o, and

the tensor term Hs−g is resulted from the tensor coupling with spin and gradient. We can
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get the expression of these terms by evaluating Hsky as

Hsky =
1

2

∑∫
dr1dr2dr

′
1dr

′
2ϕ

∗
i (r

′
1)ϕ

∗
j(r

′
2)Vsky(r1, r2)(1 − P̂rP̂sP̂τ )ϕi(r1)ϕj(r2), (3.13)

where Pr, Ps and Pτ are the exchange operators for position, spin and isospin, respectively.

The value of position operator, Pr, depends on the power of momentum operator K and

it equals 1 or -1 according to the momentum power being odd or even, respectively. The

isospin exchange operator, Pτ , yields δτ1τ2 , where τi = 1
2

for a proton and τi = −1
2

for a

neutron. The reason for considering the isospin is owing to the postulate that says there is

no charge mixing in HF states. The exchange operator value of spin has been previously

mentioned.

Without symmetry constraints or any further suppositions, the Skyrme force terms are

evaluated and expressed as illustrated in [29, 40, 47], and some useful identities are given in

Appendix A.

3.4.1 The Zero-Range Term

The zero-range or central term is proportional to to in the Skyrme force formalism Eq.(3.7), given

by to(1 + xoP̂
s
ij)δ(ri − rj). Inserting it in Eq.(3.13), with Pr = 1, we will have

∫
Ho(r)dr =

1

2

N∑
ij

〈ij|to(1 + xoP̂
s
12)δ(ri − rj)(1 − P̂ r

12P̂
s
12P̂

τ
12)|ij〉, (3.14)

where

(1 + xoP̂
s
12)(1 − P̂ r

12P̂
s
12P̂

τ
12) = 1 +

1

2
(xo − δτ1τ2)(1 +

−→
S 1 · −→S 2) − xoδτ1τ2 . (3.15)

We also have

∫
Ho(r)dr =

to
2

N∑
ij

〈ij|δ(r1 − r2)(1 +
1

2
(xo − δτ1τ2)(1 +

−→
S1 · −→S2) − (xo − δτ1τ2)|ij〉. (3.16)
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Using the following identities

N∑
ij

〈ij|δ(r1 − r2)|ij〉 =
N∑
ij

∫
dr1dr2ϕ

∗
i (r1)ϕ

∗
j(r2)δ(r1 − r2)ϕi(r1)ϕj(r2)

=
N∑
ij

∫
dr1ϕ

∗
i (r1)ϕ

∗
j(r1)ϕi(r1)ϕj(r1) =

∫
ρ2dr,

(3.17)

N∑
ij

〈ij|δ(r1 − r2)δτ1τ2 |ij〉 =

∫
(ρ2n − ρ2p)dr, (3.18)

and
N∑
ij

〈ij|δ(r1 − r2)
−→
S i

−→
S j|ij〉 =

N∑
ij

〈ij|δ(r1 − r2)
−→
S i

−→
S jδτ1τ2 |ij〉 = 0, (3.19)

one has ∫
Ho(r)dr =

to
2

∑
ij

〈ij|δ(r1 − r2)|ij〉

− to
2

∑
ij

〈ij|xoδ(r1 − r2)δτ1τ2 |ij〉

+
to
4

∑
ij

〈ij|(xo − δτ1τ2)δ(r1 − r2)(1 +
−→
S 1

−→
S 2)|ij〉.

(3.20)

Thus one has∫
Ho(r)dr =

∫
(
1

2
toρ

2 − 1

2
toxo(ρ

2
n + ρ2p) +

1

4
toxoρ

2 − 1

4
to(ρ

2
n + ρ2p))dr

=

∫
1

4
to[ρ

2(2 + xo) − (ρ2n + ρ2p)(2xo + 1)].

(3.21)

3.4.2 The Density Dependence Term

The density dependence term, the term proportional to t3 in Eq.(3.7), is important in

describing a finite nucleus [34]. Its expression can be derived in a similar way as to,

(1 + x3P̂
s
12)(1 − P̂ r

12P̂
s
12P̂

τ
12) = 1 +

x3

2
− 1

2
δτ1τ2 +

x3

2

−→
S 1

−→
S 2 − 1

2
δτ1τ2

−→
S 1

−→
S 2 − x3δτ1τ2 . (3.22)
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∫
H3(r)dr =

t3
2

∑
ij

〈ij|1
6

(1 + x3P̂
s
ij)ρ

σ

(
ri − rj

2

)
δ(ri − rj)(1 − P̂ r

12P̂
s
12P̂

τ
12)|ij〉

=
t3
12

(1 +
x3

2
)
∑
ij

〈ij|ρσ
(
ri − rj

2

)
δ(ri − rj)|ij〉

− t3
24

∑
ij

〈ij|ρσ
(
ri − rj

2

)
δ(ri − rj)δτ1τ2 |ij〉

+
t3
24

x3

∑
ij

〈ij|ρσ
(
ri − rj

2

)
δ(ri − rj)

−→
S 1

−→
S 2|ij〉

− t3
24

∑
ij

〈ij|ρσ
(
ri − rj

2

)
δ(ri − rj)

−→
S 1

−→
S 2δτ1τ2 |ij〉

− t3
12

x3

∑
ij

〈ij|ρσ
(
ri − rj

2

)
δ(ri − rj)δτ1τ2 |ij〉.

(3.23)

The final form for the density dependence term is

H3(r) =
t3
12

ρσ
[
ρ2(1 +

x3

2
) − (

1

2
+ x3)(ρ

2
n + ρ2p)

]
. (3.24)

3.4.3 The Momentum Dependence Term

We start with t1 term
t1
2

(1 + x1P̂ s
i j)

[←−
K 2

i j +
−→
K 2

i j

]
δ(ri − rj). (3.25)

We have

←−
K 2

ij +
−→
K 2

ij = −1

4

[−→∇2
1 +

−→∇2
2 +

←−∇2
1 +

←−∇2
2 − 2

−→∇1
−→∇2 − 2

←−∇1
←−∇2

]
, (3.26)

and −→∇2ρ =
∑
i

−→∇[−→∇ϕ∗
i (r)ϕi(r) + ϕ∗

i

−→∇ϕi(r)
]

=
∑
i

[−→∇2ϕ∗
i (r)ϕI(r) + 2

−→∇ϕ∗
i (r)

−→∇ϕi(r) + ϕ∗
i (r)

−→∇2ϕi(r)
]

= 2τ + 2
∑
i

−→∇2ϕ∗
i (r)ϕi(r).

(3.27)
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Thus, we have
−→∇2ϕ∗

i (r)ϕi(r) = ϕ∗
i (r)

−→∇2ϕi(r) = −τ +
1

2

−→∇2ρ, (3.28)

and ∑
ij

〈ij|δ(r1 − r2)
−→∇2

1|ij〉 =

∫ (− τρ +
1

2
ρ
−→∇2ρ

)
dr, (3.29)

where
−→∇2

1 =
−→∇2

2 =
←−∇2

1 =
←−∇2

2.

We have

∑
ij

〈ij|δ(r1 − r2)
−→∇2

1δτ1τ2 |ij〉 =

∫ [− τnρn − τpρp +
1

2
ρn
−→∇2ρn +

1

2
ρp
−→∇2ρp

]
dr, (3.30)

and

∑
ij

〈ij|δ(r1 − r2)
−→∇1

−→∇2|ij〉 =
∑
ij

∫
dr1dr2ϕ

∗
i (r1)

−→∇ϕi(r1)ϕ
∗
j(r2)

−→∇ϕj(r2)δ(r1 − r2)

=
∑
ij

∫
dr1ϕ

∗
i (r1)

−→∇ϕi(r1)

∫
dr2ϕ

∗
j(r2)

−→∇ϕj(r2)δ(r1 − r2)

=
∑
ij

(
−
∫

dr1
−→∇ϕ∗

i (r1)ϕi(r1)

)(
−
∫

dr2
−→∇ϕ∗

j(r2)ϕj(r2)δ(r1 − r2)

)

=
1

4

∫
dr(

−→∇ρ)2,

(3.31)

and ∑
ij

〈ij|δ(r1 − r2)
−→∇1

−→∇2δτ1τ2 |ij〉 =
1

4

∫
d3r

[
(
−→∇ρn)2 + (

−→∇ρp)
2
]
, (3.32)

we have the identity

(
−→∇1

−→∇2)(
−→
S 1

−→
S 2) =

1

3
(
−→∇1

−→
S 1)(

−→∇2
−→
S 2)+

1

2
(
−→∇1×−→

S 1)(
−→∇2×−→

S 2)+(
−→∇1×−→

S 1)
(2)(

−→∇2×−→
S 2)

(2).

(3.33)

With the assumption of symmetry and invariance of time reversal,we have

∑
i

ϕ∗
i (r)(

−→∇−→
S )ϕi(r) =

∑
i

ϕ∗
i (r)(

−→∇ ×−→
S )(2)ϕi(r) = 0. (3.34)
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Hence∑
ij

〈ij|δ(r1 − r2)(
−→∇1

−→∇2)(
−→
S 1

−→
S 2)|ij〉

=
1

2

∑
ij

∫
dr1dr2δ(r1 − r2)ϕ

∗
i (r1)(

−→∇1 ×−→
S 1)ϕi(r1)ϕ

∗
j(r2)(

−→∇2 ×−→
S 2)ϕj(r2)

= −1

2

∫
J2dr,

(3.35)

where

− i
∑
i

ϕ∗
i (r)(

−→∇ i ×−→
S i)ϕi(r) = J(r), (3.36)

and ∑
ij

〈ij|δ(r1 − r2)(
−→∇1

−→∇2)(
−→
S 1

−→
S 2)δτ1τ2 |ij〉 = −1

2

∫
dr(J2

n + J2
p ). (3.37)

With

(1 + x1P̂
s
12)(1 − P̂ r

12P̂
s
12P̂

τ
12) = 1 +

1

2
(x1 − δτ1τ2)(1 +

−→
S 1 · −→S 2) − x1δτ1τ2 , (3.38)

we get∫
H1(r)dr =

1

2

∑
ij

〈ij|t1
2

(1 + x1P̂
s
ij)δ(ri − rj)

[←−
K 2

ij +
−→
K 2

ij

](
1 − P̂ r

12P̂
s
12P̂

τ
12

)|ij〉

=
∑
ij

〈ij| − t1
16

δ(ri − rj)
[←−
K 2

ij +
−→
K 2

ij

]|ij〉

+
∑
ij

〈ij| − t1
32

δ(ri − rj)(x1 − δτ1τ2)
[←−
K 2

ij +
−→
K 2

ij

]
(1 +

−→
S 1

−→
S 2)|ij〉

+
∑
ij

〈ij| − t1
16

x1δ(ri − rj)δτ1τ2
[←−
K 2

i j +
−→
K 2

i j

]|ij〉.

(3.39)

Thus we have∫
H1(r)dr =

t1
16

∫
dr
(
4τρ− 2ρ

−→∇2ρ + (
−→∇ρ)2

)

− t1
16

x1

∫
dr
(− 2τρ + 2ρ

−→∇2ρ− 1

2
(
−→∇ρ)2

)− t1
16

∫
x1J

2dr

− t1
16

x1

∫
dr
(− 2τnρn − 2τpρp + ρn

−→∇2ρn + ρp
−→∇2ρp

)

− t1
32

∫
dr
[
(
−→∇ρn)2 + (

−→∇ρp)
2
]

+
t1
16

∫ (
J2
n + J2

P

)
dr

− t1
16

x1

∫
dr(−4τnρn − 4τpρp + 2ρn

−→∇2ρn + 2ρp
−→∇2ρp)

− t1
16

x1

∫
dr
[
(
−→∇ρn)2 + (

−→∇ρp)
2
]
.

(3.40)
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Finally, we obtain

H1(r) =
t1
16

(
1 +

x1

2

)[
4τρ− 3ρ

−→∇2ρ
]

− t1
16

(
1

2
+ x)

[
4τnρn + 4τpρp − 3ρn

−→∇2ρn − 3ρp
−→∇2ρp

]

+
t1
16

(− x1J
2 + J2

n + J2
p

)
.

(3.41)

Now we move to t2 term [
t2(1 + x2P̂

s
ij)
←−
K ijδ(r1 − r2)

−→
K ij

]
. (3.42)

We have to find

∫
H2(r)dr =

1

2

∑
ij

〈ij|t2(1 + x2P̂
s
ij)
←−
K ijδ(r1 − r2)

−→
K ij(1 − P̂ r

12P̂
s
12P̂

τ
12)|ij〉. (3.43)

In this case where the momentum power is odd, the position exchange operator, P̂ r
12 = −1,

we get

P̂ r
12P̂

s
12P̂

τ
12 = −1

2
(1 +

−→
S 1

−→
S 2)δτ1τ2 .

Therefore

(1 + x2P̂
s
ij)(P̂

r
12P̂

s
12P̂

τ
12) = 1 +

x2

2
+

1

2
(x2 + δτ1τ2)

−→
S 1

−→
S 2 +

(1

2
+ x2

)
δτ1τ2 . (3.44)

We use the processes as in term t1 in addition to the following expression,

−→
K ij

←−
K ij =

1

4

[−→∇ i

←−∇ i +
−→∇j

←−∇j −−→∇ i

←−∇j −−→∇j

←−∇ i

]
. (3.45)

We have∫
H2(r)dr =

1

2

∑
ij

〈ij|t2(1 + x2P̂
s
ij)
←−
K ijδ(r1 − r2)

−→
K ij(1 − P̂ r

12P̂
s
12P̂

τ
12)|ij〉

=
t2
2

(1 +
x2

2
)
∑
ij

〈ij|←−K ij

−→
K ijδ(r1 − r2)|ij〉

+
t2
2

(
1

2
+ x2)

∑
ij

〈ij|←−K ij
−→
K ijδ(r1 − r2)δτ1τ2 |ij〉

+
t2
4
x2〈ij|←−K ij

−→
K ijδ(r1 − r2)

−→
S 1

−→
S 2|ij〉

+
t2
4
〈ij|←−K ij

−→
K ijδ(r1 − r2)

−→
S 1

−→
S 2δτ1τ2 |ij〉.

(3.46)
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Then, we have

H2(r) =
t2
16

(2 + x2)
(
2τρ +

1

2
ρ
−→∇2ρ

)

+
t2
16

(1 + 2x2)
(
2τnρn + 2τpρp +

1

2
ρn
−→∇2ρn +

1

2
ρp
−→∇2ρp

)

− t2
16

(
x2J

2 + J2
n + J2

p

)
.

(3.47)

3.4.4 The Spin-Orbit Term

The spin-orbit term is proposed originally by Bell and Skyrme [48], and within the mean

field method, it gives rise to the potential of one-body [49]. The contribution from this term

only appears with triplet states where P̂ r
12 = −1, P̂ s

12 = 1.

To calculate

∫
Hs−o(r)dr =

1

2

∑
ij

〈ij|iWo

←−
K ijδ(ri − rj)(

−→
S i +

−→
S j) ×−→

K ij(1 − P̂ r
12P̂

s
12P̂

τ
12)|ij〉, (3.48)

we use the following results

←−
K ij ×−→

K ij =
1

4

(←−∇ i ×−→∇ i
←−∇j ×−→∇j −←−∇j ×−→∇ i −←−∇ i ×−→∇j

)
, (3.49)

and

4(
−→
S i +

−→
S j)

←−
K ij ×−→

K ij =
−→
S i(

←−∇ i ×−→∇ i) +
−→
S i(

←−∇j ×−→∇j) −−→
S i(

←−∇j ×−→∇ i)

−−→
S i(

←−∇ i ×−→∇j) +
−→
S j(

←−∇ i ×−→∇ i) +
−→
S j(

←−∇j ×−→∇j)

−−→
S j(

←−∇j ×−→∇ i) +
−→
S j(

←−∇ i ×−→∇j)

= 2
−→
S i(

←−∇ i ×−→∇ i) + 2
−→
S i(

←−∇j ×−→∇j)

− 2
−→
S i(

←−∇j ×−→∇ i +
←−∇ i ×−→∇j).

(3.50)
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Thus we have∫
Hs−o(r)dr =

iWo

4

∑
ij

〈ij|δ(ri − rj)
−→
S i(

←−∇ i ×−→∇ i)(1 + δτiτj)|ij〉

+
iWo

4

∑
ij

〈ij|δ(ri − rj)
−→
S i(

←−∇j ×−→∇j)(1 + δτiτj)|ij〉

− iWo

4

∑
ij

〈ij|δ(ri − rj)
−→
S i(

←−∇ i ×−→∇j)(1 + δτiτj)|ij〉

− iWo

4

∑
ij

〈ij|δ(ri − rj)
−→
S i(

←−∇j ×−→∇ i)(1 + δτiτj)|ij〉.

(3.51)

The contribution of the second term will vanish, and also we have

−→
S i(

←−∇ i ×−→∇ i) = −2
−→∇j(

−→∇ i ×−→
S i)

−−→
S i(

←−∇ i ×−→∇j) = −−→∇j(
−→∇ i ×−→

S i)

−→
S i(

←−∇j ×−→∇ i) =
−→∇j(

−→∇ i ×−→
S i).

(3.52)

Therefore, we have

∫
Hs−o(r)dr = −iWo

∑
ij

〈ij|δ(ri − rj)(1 + δτiτj)
−→∇j(

−→∇ i ×−→
S i)|ij〉

= −iWo

∑
ij

∫
dr1dr2δ(ri − rj)(1 + δτiτj)ϕ

∗
j

−→∇ϕjϕ
∗
i (
−→∇ i ×−→

S i)ϕi

=
Wo

2

∫
dr
(−→∇ρJ +

−→∇ρnJn +
−→∇ρpJp

)

= −Wo

2

∫
dr
(
ρ
−→∇J + ρn

−→∇Jn + ρp
−→∇Jp

)
.

(3.53)
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The final expression of Skyrme energy density can be written as

Hsky(r) =
to
4

[
ρ2(2 + xo) − (ρ2n + ρ2p)(2xo + 1)

]

+
t1
16

(1 +
x1

2
)
[
4τρ− 3ρ

−→∇2ρ
]

− t1
16

(
1

2
+ x1)

[
4τnρn + 4τpρp − 3ρn

−→∇2ρn − 3ρp
−→∇2ρp

]

+
t1
16

(− x1J
2 + J2

n + J2
p

)
+

t2
16

(2 + x2)
(
2τρ +

1

2
ρ
−→∇2ρ

)

+
t2
16

(1 + 2x2)
[
2τnρn + 2τpρp +

1

2
ρn
−→∇2ρn +

1

2
ρp
−→∇2ρp

]

− t2
16

(
x2J

2 + J2
n + J2

p

)
+

t3
12

ρσ
[
ρ2(1 +

x3

2
) − (

1

2
+ x3)(ρ

2
n + ρ2p)

]

− Wo

2

∫
dr
(
ρ
−→∇J + ρn

−→∇Jn + ρp
−→∇Jp

)
.

(3.54)

To make it more explicit, we can express each term in Eq.(3.54) as follows,

Ho(r) =
to
4

[
ρ2(2 + xo) − (ρ2n + ρ2p)(2xo + 1)

]
, (3.55)

H3(r) =
t3
24

ρσ
[
ρ2(2 + x3) − (1 + 2x3)(ρ

2
n + ρ2p)

]
, (3.56)

Hm∗(r) =
1

8
[t1(2 + x1) + t2(2 + x2)]τρ +

1

8

[
t2(1 + 2x2) − t1(1 + 2x1)

]
, (3.57)

Hf inite(r) =
1

32

[
3t1(2 + x1) − t2(2 + x2)

]
(
−→∇ρ)2

− 1

32
[3t1(2x1 + 1) + t2(2x2 + 1)]

[
(
−→∇ρn)2 + (

−→∇ρp)
2
]
,

(3.58)

Hs−o(r) =
Wo

2

[
J · −→∇ρ + Jn · −→∇ρn + Jp · −→∇ρp

]
, (3.59)

Hs−g(r) = − 1

16
(t1x1 + t2x2)J

2 +
1

16
(t1 − t2)

[
J2
n + J2

p

]
, (3.60)
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where the nucleon density ρ(r) = ρp(r) + ρn(r), the kinetic energy τ(r), and the current

densities J(r), are given by

ρ(r) =
∑
is

ϕ∗
i (r, s, τ)ϕi(r, s, τ), (3.61)

τ(r) =
∑
is

−→∇ϕ∗
i (r, s, τ)

−→∇ϕi(r, s, τ), (3.62)

and

J(r) = −i
∑
iss′

ϕ∗
i (r, s, τ)

[−→∇ ∑
is

ϕi(r, s
′, τ) × 〈s|−→s |s′〉

]
. (3.63)
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4 The Equation of State Calculation

This chapter presents the formulism used in the calculation of the Equation of State (EOS)

for NM and finite nuclei. Firstly, we described our model with the Skyrme interaction for

symmetric nuclear matter and finite nuclei. Then, we calculated the static properties and

elucidated how the finite size parameter aF can be determined. Finally, we described the

procedures for deriving the chemical potential and determining the critical temperature.

4.1 The Model Description

The model employed earlier in Ref. [42], has been used in this work with Skyrme effective

interaction,

V NN
ij = to(1 + xoPSij

)δ(ri − rj)

+
1

2
t1(1 + x1PSij

) × [
←−
K 2

ijδ(ri − rj) + δ(ri − rj)
−→
K 2

ij]

+ t2(1 + x2PSij
)[
←−
K ijδ(ri − rj)

−→
K ij]

+
1

6
t3(1 + x3PSij

)ρσ
(
ri + rj

2

)
δ(ri − rj)

+ iWo
←−
K ijδ(ri − rj)(

−→
S i +

−→
S j) ×−→

K ij.

(4.1)

As we shall concentrate on a symmetric case in our calculations, only zero-range and density

dependence terms need to be included in Skyrme force Eq.(4.1). Several versions of Skyrme

force can be found in literature [50].

In this paper, SKI, SKII, SKIII, SKIV and SKV parameterizations will be employed. The

procedure used in our calculations is the self-consistent Hartree Fock approximation1. It

needs to be implemented numerically.

1This procedure has been illustrated in Chapter 3.
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According to HF approximation, the total energy of NM is obtained from the expectation

value of Skyrme interaction

E(ρ, T ) = υ

∫
n(k)

�
2k2

2m

d3k

(2π)3

+
υ2

2

∫
n(k1)n(k2)

d3k1
(2π)3

d3k2
(2π)3

〈−→k 1

−→
k 2|VNN |−→k 1

−→
k 2〉a,

(4.2)

where υ = (2s + 1)(2τ + 1) = 4 is the factor due to spin and isospin degeneracy, n(k) is the

momentum distribution which obeys Fermi-Dirac distribution, and the subscript a indicates

that only antisymmetric matrix elements are required.

4.1.1 Symmetric Nuclear Matter

The meaning of symmetric nuclear matter is related to the fact that for each neutron there

is a proton (i.e. the system is homogeneous), thereby

Z = N =
A

2
,

where A is the mass number, Z and N are the proton and neutron number, respectively.

Furthermore, the density, ρ is constant in this system, so that

ρp = ρn =
ρ

2
.

Another property regarding symmetric matter is that there is no spin-polarization, namely,

the distribution of the spin being random [51]. In our calculations we can describe the NM

as a box with volume V, which tends to infinity. In this case, the effect of the volume is

only considered in calculating the energy, without any contribution from the surface term.

It is well-known that the wave function of the single particle in an infinite system can be

described by a plane wave function. Also, the momentum is fixed due to the fact that the

system does not change under translations in the space. So, the total number of nucleons in

the system between k and k + dk in the momentum space can be obtained from,

dNk =
V

2π2
k2dk. (4.3)
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4.1.2 Finite System

This section is devoted to explaining the significant considerations related to the distinguished

procedures in the calculations for the infinite and finite systems. In a finite system, we should

consider the effect from the finite size which has been emphasized in the work performed

by Jagaman et al. [20]. In this work, the model used is a box of a surface S and volume V

containing N-nucleons. The finite size effect can be studied approximately with Hill-Wheeler

formula,

dNk = V

[
k2dk

2π2
− S

V

kdk

8π
+

L

V

dk

8π

]
. (4.4)

This expression was initially calculated for a cuboid with dimensions a, b, and c. The surface

area of the cuboid is S and the linear size is L = 2a + 2b + 2c. Generally, it is valid for

any regular system, and for a spherical nuclei with radius R, one has S = 4πR2 and L = 2πR.

Ref.[2] pointed out that the simple model used to derive Eq.(4.4) cannot be applied directly

to a nucleus, since the wave function of the single particle in finite size system cannot be

plane wave function if there are interactions between nucleons. The number of state given

in Eq.(4.4) is an approximation in computing dNk.

It was found [2] that calculations for the zero temperature properties employing Eq.(4.4)

for six typical nuclei with Gogny effective interaction do not agree with the experimental

results; the calculated binding energies are much smaller than that found experimentally.

This difference between the experimental data and the calculated results becomes more

serious with the decreasing of nucleon number in the system. This suggests Eq.(4.4) does

not include the finite size effect suitably. It is expected that the EOS calculations that have

been carried out with Eq.(4.4) are not rigorous.
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Cao and Yang introduced a finite size parameter (aF ) in Eq.(4.4) to account for the difference

in the wave function between the nucleus and infinite system,

dNk = V
k2dk

2π2
+ aF

[
−
(

4πρ

3A

) 1
3 3kdk

8π
+

(
4πρ

3A

) 2
3 3dk

16π

]
. (4.5)

A value of aF = 0.35 was obtained for calculations with Gogny force. It should be noted

that if aF is taken to be 1, then Eq.(4.5) will become Eq.(4.4), and also become Eq.(4.3) as

N → ∞.

The binding energies calculated in Ref.[2] are listed in Table 3. Our first interest is to

determine the value for the parameter of the finite size effect in the calculation with Skyrme

force to investigate the dependence on the effective forces employed. Then, we will study

the liquid-gas phase transition for nuclear matter and nuclei.

Table 3: The ground state energies for six typical nuclei employing Eq.(4.4) and Gogny

interaction found in Ref.[2].

Nuclei
Binding Energy(MeV)

Exp. Eq.(4.5) Eq.(4.4)

40
20Ca 8.55 8.97 -1.01

56
28Ni 8.64 8.82 -0.60

90
40Zr 8.71 8.72 0.66

156
62 Sm 8.25 8.02 1.20

208
82 Pb 7.87 7.45 1.30

238
92 U 7.57 7.15 1.29
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4.2 Zero Temperature Properties

The primary purpose in this part is to study the saturation properties of symmetric NM

and nuclei in order to deduce the value of the finite size effect parameter aF . Therefore,

we will consider zero temperature matter which is completely degenerate according to the

fermi gas method. In fact, this approximation is a powerful tool for NM where its validity

is guaranteed for a wide range of energies.

It is worth pointing out that the single particle2 momentum k in a system at zero temperature

is below the fermi level. In other words, the energy εi is lower than the fermi energy εf , and

the occupation number ni of the single particles equals 1 as seen in Fig.6. The saturation

density ρo can be directly written in terms of fermi momentum kf

ρ = υ

∫ kf

0

d3k

(2π)3
n(k)

=
2

3π2
k3
f ,

(4.6)

where n(k) = 1 for k < kf and zero elsewhere. We should mention that the integration is

evaluated over the fermi sphere, i.e. k being from 0 to kf , and also d3k
(2π)3

is equivalently

replaced with dNk for finite system.

We also can calculate the saturation energy using the same technique. To carry out this

calculation, it requires firstly to find the kinetic energy,

Ekin = υ

∫ kf

0

n(k)
�
2k2

2m

d3k

(2π)3
=

υV k3
f

10π2

�
2k2

f

2m
. (4.7)

We can use the definition of the fermi energy

εf =
�
2k2

f

2m
.

2Note that here, the fermi momentum for the neutron and proton are identical as we consider the NM is

symmetric and ignore coloumb interaction.
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Also we take advantage from the saturation density Eq.(4.6) where the fermi momentum is

k3
f =

3π2

2
ρ.

Thus, the kinetic energy per nucleon is

Ekin =
3

5
εf . (4.8)

Now we move to finding the mean field from

u(k) = υ

∫
n(k′)

d3k′

(2π)3
〈kk′|VNN |kk′〉a. (4.9)

Indeed, for the Skyrme effective interaction, the solution for the HF mean field equations is

not very complicated because of the simplicity of its structure. Most significantly, we can

note in Eq.(4.9) the mean field does not depend on the temperature. The solution of the

mean field can be written as

u(k) =
�
2k2

2m
� ρ + u(k), (4.10)

where the first term depends on the momentum. � ρ can be readily obtained from the

effective mass definition,

m∗(ρ)

m
=

[
1 +

2m

�2

1

16
(3t1 + 5t2 + 4t2x2)ρ

]−1

=
1

1+ � ρ
. (4.11)

Thus

� ρ =
2m

�2

1

16
(3t1 + 5t2 + 4t2x2)ρ. (4.12)

The second term in Eq.(4.10) amounts to

u(k) =
3

4
toρ +

t3
16

(σ + 1)ρσ+1, (4.13)

which includes the contribution from the rearrangement potential that yields

uR(k) =
1

16
σt3ρ

σ+1. (4.14)

Such contribution needs to be included in the calculation for the chemical potential. The

reason for its importance is that it can guarantee the density relation, ρ = 1
V

∑
k n(k) [2].

32



4.2 Zero Temperature Properties 4 THE EQUATION OF STATE CALCULATION

By integrating Eq.(4.9) from 0 to kf with the help of Eq.(4.3), and also introducing effective

mass, one has3

u(k) =
�
2k2

f

2m∗ +

(
3

4
toρ +

t3
8
ρσ+1

)

=
�
2k2

f

2m
+

3

80
(3t1 + 5t2 + 4t2x2)ρk

2
f +

(
3

4
toρ +

t3
8
ρσ+1

)
.

(4.15)

Now one can obtain the ground state energy from Eq.(4.8) and Eq. (4.15),

E

N
(ρ, T = 0) =

3

5
εf +

3

80
(3t1 + 5t2)ρk

2
f +

3

8
toρ +

1

16
t3ρ

σ+1. (4.16)

One can calculate the binding energy and the saturation density by employing,

(
∂E

∂ρ

)
ρ=ρo

= 0. (4.17)

Now we move to the calculations for the finite system. In this case, we have to include the

finite size effect parameter in our calculations. The density relation Eq.(4.6) for the NM

needs to be modified for the finite system as

ρ =
k3
f

6π2
+ aF

[
−
(

4πρ

3A

) 1
3 3k2

f

16π
+

(
4πρ

3A

) 2
3 3kf

16π

]
. (4.18)

kf is obtained from Eq.(4.18) numerically. Then we can use Eq.(4.16) with the help of

Eq.(4.18) to calculate the binding energy for several symmetric nuclei. Finally, we can

determine the value for aF via fitting experimental data.

3It should be noted that we have to remove the rearrangement contribution.
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Figure 6: The indication of the fermi level distribution, where the energy, εi, and the

occupation number, ni, for the single particles are lower than the fermi energy,

εf (Lacroix, 2011, P.10).

4.3 Liquid-Gas Phase Transition

It is well-known that a phase transition can only be observed in the thermodynamic limit (i.e.

infinite system and constant density) where the phase transition can be seen as singularity

behaviour (i.e. at least a sudden change). Such singularity will not appear in finite systems

due to the partition function4 being an analytic function of the temperature and the full

Hamiltonian [20, 53].

It is useful to clarify this point by considering the specific heat. The liquid-gas phase

transition can be observed in infinite NM as the specific heat shows a sharp lambda-type

singularity at the critical temperature Tc(N). In a finite system, however, such a sharp

singularity cannot appear for the specific heat, but it can be seen as a large peak at a limited

temperature Tlim(N) which trends to the critical temperature Tc(N) when the

4The partition function is formed to present a statistical ensemble in order to extract thermodynamic

variables of an equilibrium system [52].
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number of particles approaches infinity [20]. Namely, the limited temperature Tlim(N) that

approaches Tc(N) as N −→ ∞ can be considered as Tc(N) for the finite system. The critical

temperature is shifted to a lower value and the singularity behaviour appears as finite peaks,

resulting from the finite size effect [20].

4.4 Critical Temperature

The critical temperature can be generally determined from the inflection point of the pressure-

density curves or the chemical potential-density curves,

∂P

∂ρ
= 0 =

∂2P

∂2ρ
,

∂μ

∂ρ
= 0 =

∂2μ

∂2ρ
.

(4.19)

The two isotherms P vs ρ and μ vs ρ, are related via Helmholtz function,

P = ρμ− F, (4.20)

where F = E
V

corresponds to Helmholtz function of free energy density, and

μ =

[
∂F

∂ρ

]
T

.

From the above discussions, it seems that the EOS derived from P vs ρ isotherms is equivalent

to that given by the μ vs ρ isotherms. Thus, rather than working with pressure, it is desirable

to deal with the chemical potential for the following reason. In any system, there are different

phases transitions, the pressure measuring is not simple due to the fact that the geometry

of the boundary region can influence the determining of the pressure.

4.5 Chemical Potential

In this section we shall calculate the chemical potential for symmetric infinite NM and also

a system consisting of N-nucleons in the framework of Hartree Fock. The method used here

to find the chemical potential is given in Ref.[42].

35



4.5 Chemical Potential 4 THE EQUATION OF STATE CALCULATION

The distribution of the momentum states, n(k), follows the Fermi-Dirac distribution

n(k) = [1 + exp(ke + u(k) + μ)β]−1, (4.21)

where ke = �
2k2

2m
is the kinetic energy of the single particle, u(k) corresponds to the HF

mean field, μ is the chemical potential, and β = 1
kBT

.

As we can see the momentum distribution depends on the mean field as well as the chemical

potential. The mean field has been previously found in Eq.(4.15), while the chemical

potential can be readily obtained from inverting the total density relation. It is worth

rewriting this relation Eq.(4.6),

ρ = υ

∫
d3k

(2π)3
n(k). (4.22)

At fixed temperature, we can self-consistently solve Eq.(4.21) and Eq.(4.22) by using a

numerical method. Therefore, the chemical potential, μ, can be obtained as a function of

the density, ρ. These processes are repeated many times for different temperatures until the

critical temperature is found.
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5 Results and Discussion

In this chapter, we present our results on determining the finite size effect parameter aF and

on the study of liquid-gas phase transition for nuclear matter and nuclei.

5.1 Zero Temperature Properties

In the zero temperature limit, the internal energy of the nuclear matter and nuclei becomes

the ground state energies. The binding energy and the saturation density can be calculated

by employing
(
∂E
∂ρ

)
ρ=ρo

= 0, where

E

N
(ρ, T = 0) =

3

5
εf +

3

80
(3t1 + 5t2)ρk

2
f +

3

8
toρ +

1

16
t3ρ

σ+1, (5.1)

for the NM. The binding energy is given by E(ρ = ρo, T = 0).

5.1.1 Infinite Nuclear Matter

In the case of infinity NM, it is found that the energy per nucleon determined by using the

various versions of Skyrme interaction are between 15 and 16 MeV, while the saturation

density is between 0.14 and 0.15 fm−3. Table 4 displays our findings for the saturation

properties given by using Skyrme interaction. These results are in good agreement with the

experimental values Eb  16 MeV and ρo  0.16fm−3 [28]. The E ∼ ρ isotherms given

by the five sets of Skyrme interaction are shown in Fig.7. It can be seen that all the five

sets of Skyrme interaction follow a similar behaviour starting from the initial point until the

saturation point, and then their behaviour slightly diverges.
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Table 4: The saturation properties of nuclear matter calculated with different versions of

Skyrme interaction.

Force Eb(MeV) ρo(fm
−3)

SKI 16.0 0.150

SKII 15.9 0.140

SKIII 15.8 0.140

SKIV 15.9 0.150

SKV 16.0 0.155

Figure 7: Nuclear matter E ∼ ρ isotherms calculated with SKI, SKII, SKIII, SKIV, and

SKV interaction.
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5.1.2 Finite Size Effect Parameter and Saturation Properties

The binding energies of five nuclei have been calculated in order to obtain the value of the

finite size effect parameter aF , which is introduced into the Hill-Wheeler formula,

dNk = V
k2dk

2π2
+ aF

[
−
(

4πρ

3A

) 1
3 3kdk

8π
+

(
4πρ

3A

) 2
3 3dk

16π

]
. (5.2)

The parameter aF is determined by fitting the calculated binding energies with the experimental

data5.

The obtained values for aF for different sets of Skyrme force are given in Table 5, while the

zero temperature properties calculated with Eq.(5.2) for several nuclei are listed in Table 6.

We found that the binding energies of the five nuclei are generally in good agreement with

the experimental data. However, for the SKI force one needs a very small value of aF in

order to achieve a better agreement between theoretical calculation and experimental data.

This may indicate some problems in the calculations or in the force itself.

The saturation densities ρo of these nuclei given by the various sets of Skyrme interaction

are between 0.13 and 0.22 fm−3. Only the densities given by SKI and SKIII interaction

are in good agreement with ρo = 0.13fm−3 that is obtained in Ref.[2] by employing the

phenomenological formula R = roA
1
3 and R = (3/4πρo)

1
3 , with ro = 1.21 ∼ 1.22.

Fig. 8 shows the E ∼ ρ isotherms for 56
28Ni calculated by employing SKIV interaction and

Eq.(5.2) for aF = 1.0 and 0.55. The calculation with aF = 1.0 does not allow the formation

of a bound state. This suggests that it is necessary to study the finite size effect of a nucleus

with the modified Hill-Wheeler formula with aF �= 1.0.

5The experimental data is taken from Ref. [54].
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It is found that each set of Skyrme interaction takes a different value of aF apart from SKI

and SKIII forces which lead to the same value of aF = 0.01. This difference in the value of

aF for different versions of Skyrme force is expected. As we noticed from previous studies

the properties of NM employing several sets of Skyrme interaction were distinguishable from

each other. For example, the critical points as well as the effective masses at the critical

density and the saturation density employing several sets of Skyrme interaction are different

as found in Ref. [24]. Table 7 indicates the different values of the NM properties obtained

in Ref. [24]. Also, they found from an extensive detailed comparison that the behaviour of

each version of Skyrme force is different from the other.

In our opinion, this difference in aF values might result from the difference in values of the

forces parameters (to, t1, t2, t3), especially, t2. As it is obvious from our results, this parameter

may be the main reason for resulting different values of aF . The smallest value of aF = 0.01

is given by SKI and SKIII which take the smallest values of t2, while the largest value of

aF = 0.55 is given by the SKV interaction which takes the largest value of t2.

Also, we found that the only SKV interaction gives a value of aF that is consistent with that

given in Ref.[2] by employing Gogny D1 effective interaction.

Table 5: The calculated values of aF with different versions of Skyrme interaction.

Force SKI SKII SKIII SKIV SKV

aF 0.01 0.17 0.01 0.35 0.55
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Table 6: The saturation properties for different nuclei obtained with different versions of

Skyrme interaction, where (Exp.) means the experimental data.

Nuclei 80
40Zr

56
28Ni 40

20Ca 36
18Ar

28
14Si

Binding Energy(Eb)MeV

Exp. 8.37 8.64 8.55 8.51 8.44

SKI 6.49 6.48 6.48 6.48 6.47

SKII 7.34 7.89 8.25 8.34 7.40

SKIII 8.44 8.47 8.49 8.50 8.51

SKIV 8.56 8.61 8.45 8.37 7.60

SKV 9.92 8.69 7.31 6.84 5.70

Saturation Density (ρo)fm
−3

SKI 0.13 0.13 0.13 0.13 0.13

SKII 0.16 0.16 0.16 0.16 0.15

SKIII 0.13 0.13 0.13 0.13 0.13

SKIV 0.19 0.18 0.18 0.18 0.18

SKV 0.24 0.22 0.21 0.21 0.20

Table 7: The values of some properties for nuclear matter obtained in Ref.[24] employing

several sets of Skyrme interaction, where the effective masses at the critical

density and at the saturation density are denoted by (m∗/m)c and (m∗/m)o,

respectively.

Properties SKI SKII SKIII SKIV SKV

Tc(MeV ) 20.12 16.75 17.95 16.00 14.55

ρc(fm
−3) 0.061 0.580 0.056 0.057 0.048

(m∗/m)c 0.963 0.779 0.893 0.703 0.744

(m∗/m)o 0.913 0.577 0.760 0.471 0.382
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5.2 Liquid-Gas Phase Transition 5 RESULTS AND DISCUSSION

Figure 8: The E ∼ ρ isotherms for 56
28Ni obtained from Eq.(5.2) with aF = 1.0 and 0.55

given by SKIV interaction.

5.2 Liquid-Gas Phase Transition

We have solved self-consistently the equation of state at finite temperature that was introduced

in Chapter 4. The chemical potential and the density are extracted at each point in the

iterative procedure. Thus, the chemical potential is plotted as a function of density and

the μ ∼ ρ isotherms have been used to determine the critical temperature and the critical

density. In what follows the critical temperature (Tc) and the critical density (ρc) have been

extracted for the NM and finite size systems.

5.2.1 Infinite Nuclear Matter

The μ ∼ ρ isotherms for the nuclear matter calculated with the SKI interaction at different

temperatures are shown in Fig.9.
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The critical temperature and density calculated are listed in Table 8. It is found that

the critical points of infinite NM obtained by the different sets of Skyrme interaction are

not identical. The μ ∼ ρ isotherms for the NM calculated with different sets of Skyrme

interaction at T=16 MeV are shown in Fig.10. The isotherms calculated with the SKI and

SKIII are similar, while the other isotherms are distinguishable from each other.

The critical temperatures are found to be in the range of 21.69 MeV ∼ 39.45 MeV, while

the critical densities are between 0.06 and 0.14 fm−3. Our findings disagree with that given

in Ref. [24] apart from SKI interaction. The results given in Ref.[24] are included in Table

8. This unambiguous difference between the results found here and that found in Ref.[24]

might come from using different methods for the calculations. A real time Green’s function

method is used in Ref.[24]. In the next part we will discuss the finite size case.

Table 8: The critical values of the temperature Tc(MeV ) and the density ρc(fm
−3)

calculated in this work and in Ref.[24] for an infinite nuclear matter with different

versions of Skyrme interaction.

This work

Critical Points SKI SKII SKIII SKIV SKV

Tc(MeV ) 21.687 24.090 21.650 28.340 39.450

ρc(fm
−3) 0.064 0.075 0.062 0.095 0.146

Ref.[24]
Tc(MeV ) 20.030 16.480 17.920 16.610 16.770

ρc(fm
−3) 0.05 ∼ 0.06 fm−3
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Figure 9: Nuclear matter μ ∼ ρ isotherms calculated with SKI interaction at different

temperatures.

Figure 10: Nuclear matter μ ∼ ρ isotherms calculated with SKI, SKII, SKIII, SKIV, and

SKV interactions at T=16 MeV.
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5.2.2 Finite Size Systems

We have determined the critical temperature and density for systems with a finite number of

nucleons (N=100,1000,10000). The finite size effect has been taken into account by inserting

the parameter of finite size effect aF where it takes different values depending on the set of

Skyrme interaction employed.

The μ ∼ ρ isotherms have been calculated for a different number of nucleons N at finite

temperature. Fig.11 shows the μ ∼ ρ isotherms for SKIV interaction with different N at

T=16.0 MeV. As it can be seen, the chemical potential decreases as N increase. This means

the size of the nucleons has a significant effect on the findings for the different sets of Skyrme

interaction. Furthermore, we have found various isotherms for SKII interaction at various

temperatures where the number of nucleons is fixed, as plotted in Fig.12. One can see that

increasing the temperature leads to a decrease in the chemical potential.

The critical features obtained for the different sizes using the various sets of Skyrme interaction

are listed in Table 9. It is found that the critical values given by different versions of Skyrme

interaction are different from each other, apart from SKI and SKIII interactions.

It is found that the critical temperature calculated with the SKV interaction drops by about

8 MeV when N is changed from 10000 to 100, while the Tc calculated with the other versions

of Skyrme interaction only drops by about 1 ∼ 3 MeV.

We found that the critical features obtained from our calculations with Eq.(5.2) by inserting

the value of aF are very different from that with Eq.(4.4) for all Skyrme interaction, except

for SKI. The critical points determined with Eq.(4.4) and reported in Ref.[15] are listed in

Table 10. The critical temperatures calculated in this work are much larger than those found

in Ref.[15]. For example, the Tc calculated in our work with SKV interaction for N=10000 is

36.43 MeV which is larger by about 24.17 MeV than that found in Ref.[15]. Additionally, we

noticed in our findings that the difference between the critical temperatures for the different

N employing the different sets of Skyrme force, except SKV is small. Such a small difference

was not reported in Ref. [15].
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From Table 9, one can conclude that the finite size effect parameter aF plays a role in

reducing the difference in the calculation for the critical temperature for the finite nuclei

employing various sets of the Skyrme force.

Figs. 13 and 14 illustrate the difference between the isotherms calculated with Eq.(5.2) and

with Eq.(4.4).

Table 9: The critical values of the temperature Tc(MeV ) and the density ρc(fm
−3) for

different sizes calculated with different versions of Skyrme interaction.

Number of Nucleons Critical Points SKI SKII SKIII SKIV SKV

10000
Tc(MeV ) 21.68 23.84 21.64 27.51 36.43

ρc(fm
−3) 0.062 0.074 0.062 0.094 0.135

1000
Tc(MeV ) 21.67 23.57 21.63 26.59 33.30

ρc(fm
−3) 0.063 0.073 0.061 0.091 0.122

100
Tc(MeV ) 21.66 23.05 21.60 24.85 27.70

ρc(fm
−3) 0.062 0.073 0.061 0.084 0.104

Table 10: The values of the critical points for different sizes (N=100, 1000, 10000)

obtained in a previous study [15] with Eq.(4.4) using Skyrme interaction.

Critical Temperature Tc(MeV )

Number of Nucleons SKI SKII SKIII SKIV SKV

10000 19.06 15.12 16.48 14.66 12.26

1000 17.96 13.34 15.53 12.43 11.56

100 15.25 9.71 12.69 8.31 6.56

Critical Density(ρc)=0.05 ∼ 0.06 fm−3
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Figure 11: The μ ∼ ρ isotherms calculated with SKIV interaction in different sizes at

T=16.0 MeV.

Figure 12: The μ ∼ ρ isotherms calculated for N=1000 with SKII interaction at different

temperatures.
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Figure 13: The μ ∼ ρ isotherms calculated with Eq.(4.4) and SKV interaction in different

sizes at T=16.0 MeV.

Figure 14: The μ ∼ ρ isotherms calculated with Eq.(5.2) and SKV interaction in different

sizes at T=16.0 MeV.

48



6 SUMMARY AND CONCLUSION

6 Summary and Conclusion

The equation of state for nuclear matter and finite nuclei has been studied using self-consistent

Hartree Fock approximation and mean field theory. The Skyrme effective nuclear force and

the Hill-Wheeler formula are employed in the calculation. The finite size effect parameter

aF is determined by comparing theoretical calculations and experimental results for the

saturation properties.

The effective interaction employed has a great influence on the value of aF ; different versions

of Skyrme force lead to different values for aF apart from SKI and SKIII which give a similar

value for aF . Also, aF values obtained with Skyrme interaction are generally different from

that obtained with Gogny force with the exception of SKV interaction which gives a similar

value for aF as the D1 Gogny interaction.

The zero temperature properties of the nuclear matter calculated with the Skyrme interaction

are consistent with the experimental data. In the case of finite nuclei, we found a value of

aF < 1 is essential for the formation of a bound state of nucleons. The calculated zero

temperature properties for the finite nuclei are reasonable, but the saturation densities

given by SKV interaction are larger than ρo = 0.13fm−3 which is obtained by using a

phenomenological formula.

The critical points of the first order phase transition for the nuclear matter and finite size

nuclei calculated with the several versions of Skyrme force are distinguishable from each

other. The largest value of critical temperature for nuclear matter is given by SKV force as

Tc = 39.45 MeV , while SKIII interaction gives the smallest value as Tc = 21.65 MeV .

Similarly, the largest value of the critical density is given by SKV interaction as ρc =

0.146fm−3. It is found that the critical temperature decreases as the number of nucleons in

the system decreases.
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The critical features calculated with aF are significantly different from those calculated with

aF = 1.0. We can conclude that the inclusion of the finite size parameter aF leads to a

reduction in the difference between the chemical potential ∼ density isotherms obtained for

systems with different numbers of nucleons.

Our results for the liquid-gas phase transition are different from that presented in a previous

study, which requires further investigation. In the future study, it is of interest to calculate

the pressure ∼ density isotherms and make a comparison with the results reported in this

work.
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A APPENDIX

A Appendix

The identities used in the energy density calculations are included in this appendix. First,

it is assumed that the single particle state |i〉 is invariant under time reversal. This means

the state of the time reversal, |−→i 〉 = K|i〉, is occupied as well. Therefore the operator of the

time reversal can be formed as, K = −iŜyK
∗, where K∗ corresponds to the operator of the

complex-conjugation. The state of single particle under time reversal is given by

ϕ−
i (r, s, τ) = −i

∑
s′
〈s|Ŝy|s′〉, (A.1)

where r, s and τ denote the coordinates of space, spin and isospin of the nucleon, respectively.

The spin operator Sy can be described by the Pauli matrix ,

Sy =

⎡
⎣0 −i

i 0

⎤
⎦ , (A.2)

and the states for spin up, S+ 1
2
, and spin down, S− 1

2
, are given by

S+ 1
2

=

⎡
⎣1

0

⎤
⎦ , S− 1

2
=

⎡
⎣0

1

⎤
⎦ . (A.3)

We also used

〈s|Ŝy|s′〉 = −2isδ−s,s′ . (A.4)

Thus

ϕ−
i (r, s, τ) = −2sϕ∗

i (r,−s, τ). (A.5)
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It is assumed that the time-reversed states are invariant, thus we have

∑
i

ϕ∗
i (r, s1, τ)ϕi(r, s2, τ)

=
1

2

∑
i

[
ϕ∗
i (r, s1, τ)ϕi(r, s2, τ) + ϕ−

i
∗(r, s1, τ)ϕ−

i (r, s2, τ)
]

=
1

2

∑
i

[
ϕ∗
i (r, s1, τ)ϕi(r, s2, τ) + 4s1s2ϕ

∗
i (r,−s1, τ)ϕi(r,−s2, τ)

]
.

(A.6)

Therefore, for the case s1 = s2, one has

∑
i

ϕ∗
i (r, s1, τ)ϕi(r, s1, τ) =

1

2

∑
i

[
ϕ∗
i (r, s1, τ)ϕi(r, s1, τ) + ϕ∗

i (r,−s1, τ)ϕi(r,−s1, τ)
]

=
1

2

∑
is

[
ϕ∗
i (r, s1, τ)ϕi(r, s1, τ)

]
=

1

2
ρτ (r),

(A.7)

and for the case s1 = −s2, one has

∑
i

ϕ∗
i (r, s1, τ)ϕi(r,−s1, τ) = 0. (A.8)

Therefore, one obtains

∑
i

ϕ∗
i (r, s1, τ)ϕi(r,−s2, τ) =

1

2
δs1s2ρτ (r). (A.9)

Using identities

〈s|Sx|s′〉 = δs,s′ ,

〈s|Sy|s′〉 = −2isδs,s′ ,

〈s|Sz|s′〉 = 2sδs,s′ ,

(A.10)

one has ∑
is1s2

ϕ∗
i (r, s1, τ)〈s1|−→s |s2〉ϕi(r, s2, τ) = 0. (A.11)
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