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0.1 Abstract

Food-borne diseases contribute substantially to morbidity and mortality rates worldwide.
The deleterious impact of these diseases on human health, concurrent with the associ-
ated socioeconomic cost has led to an increased demand for the production of safe food
globally. Consequently, agencies such as the World Health Organization (WHO) and the
Food and Agriculture Organization (FAO) have resolved to address this issue. In this
vein, scientific, risk-based approaches which facilitate estimation of the probability of
disease occurrence, the magnitude of the disease and efficacious control measures have
been recommended for use internationally.

Many pathogens have been implicated as aetiological agents of food-borne disease.
The WHO has identified non-typhoid&almonella Escherichia coliand thermophilic
Campylobacteas zoonotic food-borne pathogens of greatest importance. These pathogens
can be transmitted to humans through pork consumption. This thesis therefore proposes
a suite of novel, mechanistic, semi-stochastic, quantitative, modular process risk models
describing the propagation of these three pathogens from the live pig at the abattoir, to
pork chops sold at retail. The model is developed for use in risk-based, quantitative mi-
crobial exposure assessments in New Zealand and can be employed to explore different
intervention strategies targeted at mitigating contamination levels of these pathogens on
pork chops.

The models comprise multiple, coupled, differential and difference equations. These
equations explicitly describe bacterial growth, inactivation, removal, cross-contamination
and food partitioning occurring in continuous and discrete time in abattoirs and at retail.
Distributions of pathogen numbers on the surface of carcasses, and prevalence levels are
output by the models at different stages of abattoir processing and pork chop production.
Both dressed pork carcases exiting abattoirs in New Zealand and pork chops at retail are
predicted to contain low surface contamination levels of the pathogens under considera-
tion, while a small percentage is estimated to be highly contaminated.

Median contamination levels on dressed pork exiting the abattoir are predicted to be
less than one cfu/ctn Generally, there are large reductions in surface bacterial num-
bers for all three organisms from the time the live pig enters the abattoir, to sale of the
pork chop at retail. The introduction of a second singeing procedure immediately post-

evisceration in the abattoir is predicted by our models, to be an effective mitigation strat-
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egy, with estimated reductions in median pathogen levels of 100%. This control measure
is considered to be more effective than coverage of the anal region of the pig during evis-
ceration. This latter mitigation strategy was predicted to result in 10% — 44% reduction
of median pathogen contamination levels.

At retail, pork chops are also estimated to contain low numbers of these pathogens.
Therefore handling of the raw pork chop soon after purchase from retail outlets may be
associated with a low risk of contracting salmonellosis, colibacillosis and campylobacte-
riosis. This risk can be further reduced by placing pork chops in a blast chiller for 12 hours
prior to display. When this mitigation strategy was modelled the outputs indicated a 15%
— 61% reduction in the maximum pathogen levels on pork chops, 44 — 100% reduction in
the 10" — 90" range and 14% — 50% reduction in pathogen prevalence levels.

Detailed investigation revealed the limitations of a specific modelling approach. We
determined that the population-based modelling approach is not an appropriate alternative
to the individual-based modelling approach when there is a large disparity in contamina-
tion levels between processed carcasses. Therefore the former technique should not be
used in the presence of large heterogeneity with respect to the number of bacteria on the
food unit of interest, or when bacterial populations input into the model are described
with large variances.

This thesis demonstrates the application of a suite of novel risk models in the pork food
chain. We propose use in quantitative microbial exposure assessments. The applicability
of these models is not only limited to the pork chain or to the above mentioned pathogens,
but by modification of parameters, the entire model, or portions thereof can be extrapo-
lated to other animal species undergoing similar abattoir procedures with pathogens of
analogous epidemiological patterns. Finally the information provided by the models can
be instrumental in assisting risk managers in their decision-making and policy develop-
ment undertakings and provide guidance to effectively and strategically funnel limited

resources.
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0.3 Nomenclature

CAC
cfu
cm
FAO

kg

ml

mm
MPRM
NZ
NZFSA
OIE

QOMRA
RA

sd

UK
USA
WHO

Codex Alimentarius Commission
colony forming units

centimetre

Food and Agriculture Organization
gram

kilogram

millilitre

millimetre

Modular Process Risk Model

New Zealand

New Zealand Food Safety Authority

Organisation International des Epizooties or World Organi-
sation for Animal Health

Quantitative Microbial Risk Assessment
Risk Assessment

Standard deviation

United Kingdom

United States of America

World Health Organization
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0.4 Glossary

In this thesis the following terms are defined as stated below:

e Contamination:
The presence of bacteria on the surface of the pig carcass, which may or may not be
associated with faecal material; or the presence of unwanted material on the surface

of an object.

e Cross-contamination

The movement of bacteria from one object to another.

e Deterministic Model:
A model that predicts point estimate outputs and does not incorporate the element

of chance or contain randomly varying components.

e Inactivation:

The action of rendering an organism non-pathogenic.

e Infection:

Bacterial colonisation of the gastro-intestinal tract and associated tissues.

o Model:;

A simplified representation of a realistic phenomenon.

e Stochastic Model
A model in which the element of chance is explicitly described so that each realiza-

tion of the model can output different results for the same initial values.
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0.5 Symbols and Units

Symbol

T1

T2

af75

area

Qg s

Description Units

rate of pathogen movement from water to carcass in scalding mihute
rate of pathogen movement from carcass to water in scalding mihute
rate of pathogen movement from dehairing machine to carcass minute
pathogen inactivation rate on carcass in singeing mirlute

rate of pathogen movement between carcasses in storage/chilling ~*hour
pathogen inactivation/growth rate on pork chop day
transmission parameter minate
rate of pathogen movement from carcass to the dehairing machine mtinute
pathogen inactivation rate on carcasses in scalding mikhute
pathogen inactivation rate in water in scalding mimite
probability that each cfu of bacteria moves from the carcass

exterior to the knife (pork chop models) cfu
probability that each cfu of bacteria moves from the faeces

to the knife (abattoir models) cfd
relative proportion of pork chop surface area with respect to the

half carcass %
probability that each cfu of bacteria moves from the carcass

exterior to the knife (abattoir models) cfl
probability that each cfu of bacteria moves from the knife to the

carcass exterior (pork chop models) <fu

probability that each cfu of bacteria moves from the knife to the

carcass exterior (pork chop models) <fu
probability of inactivation from the knife per cfu of bacteria

(pork chop models) cful
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Symbol

Ce,S

Ce,S

n

Description Units

probability of inactivation from the knife per cfu of

bacteria (abattoir models) cfl
probability of inactivation and removal from carcass

exterior (abattoir models) cfd
probability of bacterial inactivation and removal from carcass
exterior (pork chop models) cfd
concentration of bacteria in faeces cfu/g
smoothing parameter

kernel function

pathogen inactivation rate on carcass in storage/chilling “Hour
pathogen inactivation rate on pork chop in storage/chilling hbur
time minute*
decimal reduction time minuté
time days!
pork chop contamination level after cross-contamination cfu

pathogen numbers on skin of the pork chop after partitioning
when z-30,000 cfu
pathogen numbers on skin of the pork chop after

partitioning when z:30,000 cfu
bacteria numbers on half carcass cfu
probability that bacteria are present on area of

carcass in contact with knife for evisceration cut cfu
faecal quantity output from pig in dehairing g
pathogen numbers in faeces released from carcass

in dehairing cfu



Symbol
C

Ch
Cs

Description Units

probability of transfer of bacteria from carcass

surface to the knife cfu!
pathogen numbers on halved carcass in storage cfu
pathogen numbers on another halved carcass

in storage cfu
probability of bacteria on the region to be trimmed
coming into contact with knife cfut
probability of transfer of bacteria to knife cft
probability that bacteria are present on area of carcass
in contact with knife during halving cfut
probability of transfer of bacteria to knife cfl

probability of inactivation of bacteria on carcass skin  <fu

number of infected animals pigs
pathogen numbers on dehairing machine cfu
bacterial load in environment cfu

pathogen concentration in the faecal material

in dehairing cfulg
pathogen concentration in infected faeces

in lairage cfu/g
pathogen numbers in leaking faeces from a carcass cfu
total number of bacteria in a pen in the lairage cfu
pathogen number on saw after cutting pork chop cfu
pathogen number on pork chop after partitioning cfu

pathogen number on skin surface of the pork chop

after cross-contamination process cfu
pathogen number on skin surface of the pork chop

in intervention strategy cfu

bacterial load on carcass surface cfu

Xiii
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Symbol Description Units
Nystorage  Pathogen number on halved carcass from abattoir cfu
Deut probability of pathogen present on skin surface

of the pork chop
Py pathogen numbers on carcass in dehairing cfu
Py pathogen numbers on carcass in scalding cfu
P, pathogen numbers on carcass in singeing cfu
Prob probability of an animal being infected in lairage
R probability of removal of bacteria on the carcass skin ~&fu
S number of susceptible animals pigs
So pathogen numbers on carcass before singeing cfu
Sy pathogen numbers on carcass after singeing cfu
T temperature °C
Th total infected faecal material in lairage g
w pathogen numbers in water in scalding cfu
Wy mass of leaking faeces g
X cross-contamination

Y inactivation
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