Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

E.1 Instrumentation

E.1.1 UV/Visible spectroscopy

UV-Visible absorbance spectra were recorded on a Shimadzu UV-3101PC spectrophotometer. Small molecule complexes were recorded in acetonitrile at 10^{-5} M and the polymeric analogues were recorded in chloroform at 10^{-5} M.

E.1.2 Vibrational spectroscopy

All ground state vibrational measurements were taken using KBr disks on a Nicolet 5700 FT-IR spectrometer. Continuous wave excitation was used for all Raman measurements. A Modu-laser Stellar-Pro argon laser provided 6–8 mW of 488 and 514 nm excitation at the sample. Raman and Rayleigh scattering light was collected from the cell using a 180° backscattering geometry. Rayleigh scattering was rejected using Raman edge filters from Iridian Technologies. The scattered photons were focused onto the entrance slit (110 μ m) of an Acton Spectra Pro® 2550i, 0.500 m imaging single stage monochromator/spectrograph and detected with a Roper Scientific Spec-10:100B CCD detector, controlled by WinSpec software. The detector was liquid nitrogen cooled to –110°C. Raman scattering was dispersed with a 1200 g/mm holographic diffraction grating.

E.1.3 Electrochemistry

Cyclic voltammetry was obtained using a glassy carbon working electrode, Pt counter electrode and Ag/AgCl reference electrode, $v = 0.1 \text{ V s}^{-1}$ on a BAS 100B Electrochemical Workstation (Bioanalytical System Inc). Complexes were recorded in acetonitrile, 0.1 M TBAPF₆ at 10⁻³ M.

E.2 Computational

E.2.1 Accuracy of DFT models

-

 Table E.2.1.1 Mean difference in bond length between crystallographic data and DFT models.

Complex	Mean difference in bond length (Å)
$[Ru(L^{1})_{2}](PF_{6})_{2}$	0.073
$[\operatorname{Ru}(\operatorname{L}^1)(\operatorname{Terpy})](\operatorname{PF}_6)_2$	0.016
$[Ru(L^1)(PhTerpy)](PF_6)_2$	0.026
$[Ru(L^2)_2](PF_6)_2$	0.027
$[Ru(L^3)(Terpy)](PF_6)_2$	0.027
$[Ru(L^3)(PhTerpy)](PF_6)_2$	0.039
$[Ru(L1)(bbp)](PF_6)_2$	0.027
$[\operatorname{Ru}(\operatorname{L}^1)(\operatorname{bpp})](\operatorname{PF}_6)_2$	0.040

Complex	MAD values (cm ⁻¹)
$[\operatorname{Ru}(\operatorname{L}^1)_2](\operatorname{PF}_6)_2$	6.17
$[Ru(L^1)(Terpy)](PF_6)_2$	4.84
$[Ru(L^1)(PhTerpy)](PF_6)_2$	5.81
$[Ru(L^2)_2](PF_6)_2$	3.96
$[Ru(L^2)(Terpy)](PF_6)_2$	4.19
$[Ru(L^2)(PhTerpy)](PF_6)_2$	3.63
$[Ru(L^3)(Terpy)](PF_6)_2$	5.62
$[Ru(L^3)(PhTerpy)](PF_6)_2$	3.57
$[\operatorname{Ru}(\operatorname{L}^1)(\operatorname{bbp})](\operatorname{PF}_6)_2$	3.08
$[\operatorname{Ru}(\operatorname{L}^2)(\operatorname{bbp})](\operatorname{PF}_6)_2$	3.43
$[Ru(L^4)(Terpy)](PF_6)_2$	6.96
$[Ru(L^4)(PhTerpy)](PF_6)_2$	3.60
$[\operatorname{Ru}(\operatorname{L}^1)(\operatorname{bpp})](\operatorname{PF}_6)_2$	6.21
$[Ru(L^2)(bpp)](PF_6)_2$	4.12

 Table E.2.1.2 MAD values for each DFT model.

E.3 Assignment of the Electronic Spectra

λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
539	2.3675	0.0089	HOMO → LUMO	0.69	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO-2 → LUMO	0.13	$Ru \rightarrow OTerpy(L^1)$	
523	2.3675	0,0025	HOMO-2 \rightarrow LUMO+1	0.15	$Ru \rightarrow OTerpy(L^1)$	MLCT
			0MU-1 → LUMO	0.66	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 \rightarrow LUMO+1	0.17	$Ru \rightarrow OTerpy(L^1)$	
202		0.0166	HOMO-1 \rightarrow LUMO+3	-0.10	$Ru \rightarrow OTerpy(L^1)$	
chc	2.4320	CCTO'O	HOMO → LUMO+1	0.60	$Ru \rightarrow OTerpy(L^1)$	MILUI
			HOM0 → LUM0+2	-0.26	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-2 → LUMO	0.50	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 \rightarrow LUMO+1	0.19	$Ru \rightarrow OTerpy(L^1)$	
480	2.5809	0.0575	HOMO \rightarrow LUMO+1	0.10	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO+2	0.35	$Ru \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+3	0.20	$Ru \rightarrow OTerpy(L^1)$	

Table E.3.1 First 10 excitations of $[Ru(L^1)_2]^{2+}$

λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 \rightarrow LUMO+1	0.11	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 \rightarrow LUMO+1	0.48	$Ru \rightarrow OTerpy(L^1)$	
467	2.6547	0.0221	HOM0 → LUM0+1	-0.13	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOM0 → LUM0+2	0.12	$Ru \rightarrow OTerpy(L^1)$	
			HOM0 → LUM0+3	-0.44	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-2 → LUMO	-0.18	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 \rightarrow LUMO+1	-0.25	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 \rightarrow LUMO+2	-0.37	$Ru \rightarrow OTerpy(L^1)$	
458	2.7075	0.0610	HOMO-1 \rightarrow LUMO+3	-0.13	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOM0 → LUM0+1	0.18	$Ru \rightarrow OTerpy(L^1)$	
			HOM0 → LUM0+2	0.42	$Ru \rightarrow OTerpy(L^1)$	
			HOM0 \rightarrow LUM0+3	-0.13	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-2 \rightarrow LUMO+1	0.27	$Ru \rightarrow OTerpy(L^1)$	
151		0.0416	HOMO-2 \rightarrow LUMO+2	0.58	$Ru \rightarrow OTerpy(L^1)$	
101	7.144	0.0410	HOMO-2 \rightarrow LUMO+3	0.16	$Ru \rightarrow OTerpy(L^1)$	MILCI
			HOMO-1 → LUMO+2	-0.16	$Ru \rightarrow OTerpy(L^1)$	

Table E.3.1 Continued First 10 excitations of $[Ru(L^1)_2]^{2+}$

Μnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
539	2.29	0.01070	HOMO → LUMO	0.68	$R_{LI} \rightarrow OTerpy(L^1)$	MLCT
15	, c	0.010.0	HOMO \rightarrow LUMO+1	0.63	Ru → Terpy	TO IN
110	4.42	76010.0	HOMO → LUMO+2	-0.24	$Ru \rightarrow OTerpy(L^1)$ and Terpy	MILUI
			HOMO-2 → LUMO	0.24	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-2 \rightarrow LUMO+1	0.10	Ru → Terpy	
			HOMO-1 → LUMO	0.43	$R_{U} \rightarrow OTerpy(L^{1})$	
+	60.7	00000.0	HOMO → LUMO+1	-0.14	Ru → Terpy	MILUI
			HOMO → LUMO+2	-0,43	$Ru \rightarrow OTerpy(L^1) + Terpy$	
			HOMO → LUMO+3	-0.11	$Ru \rightarrow Terpy$	
			HOMO-2 \rightarrow LUMO+1	0,49	Ru → Terpy	
			$HOMO-1 \rightarrow LUMO+1$	-0.26	$Ru \rightarrow Terpy$	
458	2.70	0.0632	HOMO → LUMO+1	0.13	$Ru \rightarrow Terpy$	MLCT
			HOMO → LUMO+2	0.11	$Ru \rightarrow OTerpy(L^1) + Terpy$	
			HOMO → LUMO+3	0.35	Ru → Terpy	

Table E.3.2 First 10 excitations of $[Ru(L^1)(Terpy)]^{2+}$

у/пт	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-1 \rightarrow LUMO+1	0.21	$Ru \rightarrow Terpy$	
LVV			HOMO-1 → LUMO+2	0.61	$Ru \rightarrow OTerpy(L^1) + Terpy$	
Ì	4.1.7	1070'0	HOMO-1 \rightarrow LUMO+3	0.14	Ru → Terpy	MILCI
			HOMO → LUMO+3	0.13	$Ru \rightarrow Terpy$	
			HOMO-2 → LUMO+1	0.16	Ru → Terpy	
			HOMO-2 → LUMO+2	0.58	Ru \rightarrow OTerpy(L ¹) + Terpy	
776		0.0100	H0M0-2 → LUM0+3	0.13	$Ru \rightarrow Terpy$	
0	1.1	7010'0	HOMO-1 → LUMO+2	0.11	$Ru \rightarrow OTerpy(L^1) + Terpy$	MILLI
			HOMO → LUMO+2	0.15	Ru \rightarrow OTerpy(L ¹) + Terpy	
			HOMO → LUMO+3	-0.15	Ru → Terpy	
			HOM0-2 → LUMO	0.14	$R_{U} \rightarrow OTerpy(L^{1})$	
			HOMO-2 → LUMO+2	-0.26	$Ru \rightarrow OTerpy(L^1) + Terpy$	
677	Co C	0 1670	HOMO-1 → LUMO	0.25	$Ru \rightarrow OTerpy(L^1)$	
ł	7.90	C/01'0	HOMO \rightarrow LUMO+1	0.19	$Ru \rightarrow Terpy$	
			HOMO → LUMO+2	0.40	$Ru \rightarrow OTerpy(L^1) + Terpy$	
			HOMO → LUMO+3	-0.30	Ru → Terpy	

Table E.3.2 Continued First 10 excitations of $[Ru(L^1)(Terpy)]^{2+}$

λ/nm	E/eV	ſ	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 → LUMO+3	-0.26	Ru → Terpy	
426	2.91	0.0375	HOMO-1 → LUMO+2	-0.13	$Ru \rightarrow OTerpy(L^1) + Terpy$	MLCT
			H0M0-1 → LUM0+3	0.61	$Ru \rightarrow Terpy$	
			HOMO-2 → LUMO+2	0.14	$Ru \rightarrow OTerpy(L^1) + Terpy$	1.5 17
425	2.91	0.0213	HOM0-2 → LUM0+3	0.60	Ru → Terpy	MLCT
			H0M0-1 → LUM0+3	0.29	$Ru \rightarrow Terpy$	
			HOMO-2 → LUMO	0.12	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-2 → LUMO+1	-0.24	Ru → Terpy	
			H0M0-2 → LUM0+2	0.12	$Ru \rightarrow OTerpy(L^1) + Terpy$	
000	010		HOMO-1 → LUMO	0.21	$Ru \rightarrow OTerpy(L^1)$	
000	۶.L۶	0.0024	HOMO-1 → LUMO+1	0.13	Ru → Terpy	MILUI
			HOMO → LUMO+2	0.13	$Ru \rightarrow OTerpy(L^1) + Terpy$	
			HOMO → LUMO+3	0.41	Ru → Terpy	
			HOMO → LUMO+8	-0.24	$Ru \rightarrow OTerpy(L^1) + Phosphazene$	

Table E.3.2 Continued First 10 excitations of $[Ru(L^1)(Terpy)]^{2+}$

λnm	E/eV	ĥ	Orbital transition(s)	Coefficients	Major Contributors	Assignment
539	2.29	0.0085	HOMO → LUMO	0.68	$Ru \rightarrow OTerpy(L^1)$	MLCT
303	и С		HOMO-2 \rightarrow LUMO+1	-0.16	Ru → PhTerpy	TOIM
C7C	CC.7	ncnn.n	HOMO-1 → LUMO	0.66	$Ru \rightarrow OTerpy(L^1)$	MILUI
			HOM0-1 \rightarrow LUM0+1	-0.37	$Ru \rightarrow PhTerpy$	
515	2.40	0.0146	HOMO-1 → LUMO+2	-0.10	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUM0+1	0.55	Ru → PhTerpy	
			HOMO-2 → LUMO	0.49	Ru \rightarrow OTerpy(L ¹)	
027	03 0	2201.0	HOMO-1 \rightarrow LUMO+1	-0.25	$R_{u} \rightarrow PhTerpy$	
1	00.7	0/11/0	HOMO-1 \rightarrow LUMO+2	0.12	$Ru \rightarrow OTerpy(L^1)$	MILCI
			HOMO → LUM0+2	-0.38	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 \rightarrow LUMO+1	0.42	$R_{\rm u} \rightarrow PhTerpy$	
			HOMO-1 \rightarrow LUMO+3	-0.14	Ru → PhTerpy	
468	2.64	0.1131	HOMO → LUMO+1	0.32	Ru → PhTerpy	MLCT
			HOMO → LUMO+2	-0.29	$Ru \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+3	0.28	Ru → PhTerpy	

Table E.3.3 First 10 excitations of $[Ru(L^1)(PhTerpy)]^{2+}$

E.3.3	Continued Fi	rst 10 excitati	ions of [Ru(L ¹)(Ph	Т
Assignment	MLCT	MLCT	MLCT	
SI		~		

λ nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignm
			HOMO-1 \rightarrow LUMO+2	0.56	$Ru \rightarrow OTerpy(L^1)$	
757	i	02000	HOMO-I \rightarrow LUMO+3	-0.20	Ru → PhTerpy	
004	7.11	0,000	HOMO → LUMO+2	0:30	$Ru \rightarrow OTerpy(L^1)$	MLC
			HOMO → LUMO+3	0.12	Ru → PhTerpy	
			HOMO-2 \rightarrow LUMO+1	-0.13	Ru → PhTerpy	
448	2.76	0.0430	HOMO-2 → LUMO+2	0.65	$Ru \rightarrow OTerpy(L^1)$	MLC
			HOMO-2 → LUMO+3	-0.14	Ru → PhTerpy	
			HOMO-2 → LUMO	0.23	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 \rightarrow LUMO+2	-0.27	$Ru \rightarrow OTerpy(L^1)$	
444	2.78	0.1615	HOMO → LUMO+1	-0.11	Ru → PhTerpy	MLC
			HOM0 → LUM0+2	-0.32	$Ru \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+3	-0.45	Ru → PhTerpy	

Table E. [erpy)]²⁺

H	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
I			HOMO-2 → LUMO	-0.15	$Ru \rightarrow OTerpy(L^1)$	
			HOM0-1 \rightarrow LUM0+2	0.24	$Ru \rightarrow OTerpy(L^1)$	
	2.83	0.0936	HOM0-1 \rightarrow LUM0+3	0.56	Ru → PhTerpy	MLCT
			HOMO → LUMO+2	-0.10	$Ru \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+3	0.22	$Ru \rightarrow PhTerpy$	
			HOMO-2 → LUMO	-0.27	$Ru \rightarrow OTerpy(L^1)$	
			HOM0-1 \rightarrow LUM0+1	-0.23	Ru → PhTerpy	
			HOM0-1 \rightarrow LUM0+3	-0.28	Ru → PhTerpy	
		00000	HOMO-1 →LUMO+8	0.14	$Ru \rightarrow OTerpy(L^1) + PhTerpy$	
	01.6	0,0088	HOMO → LUMO+1	-0.12	Ru → PhTerpy	MLUI
			HOMO → LUMO+2	-0.16	$Ru \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+3	0.32	$R_{u} \rightarrow PhTerpy$	
			HOMO → LUMO+8	-0.19	$\mathtt{Ru} \not \to \mathtt{OTerpy}(\mathtt{L}^1) + \mathtt{PhTerpy}$	

Table E.3.3 Continued First 10 excitations of $[Ru(L^1)(PhTerpy)]^{2+}$

Мпш	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
528	2.34	0.0122	HOMO-2 → LUMO	0.68	Ru \rightarrow OPhTerpy(L ²)	MLCT
518	2.39	0.0131	HOM0-2 → LUM0+1	0.68	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO-2 → LUMO+2	-0,19	$Ru \rightarrow OPhTerpy(L^2)$	
490	2.53	0.5243	HOMO-1 → LUMO	0.48	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
			HOM0-1 → LUM0+1	0.43	$\mathrm{Ru} \not \to \mathrm{OPhTerpy}(\mathrm{L}^2)$	
			HOMO-2 \rightarrow LUMO+2	0.19	$Ru \rightarrow OPhTerpy(L^2)$	
			HOM0-2 → LUM0+3	0.43	$Ru \rightarrow OPhTerpy(L^2)$	
468	2.70	0.0200	H0M0-2 → LUM0+9	-0,11	Ru \rightarrow OPhTerpy(L ²)	MLCT
			HOMO-1 → LUMO	-0.29	$Ru \rightarrow OPhTerpy(L^2)$	
			HOMO → LUMO+1	0.39	$Ru \rightarrow OPhTerpy(L^2)$	
			HOMO-3 → LUMO+2	-0,10	$Ru \rightarrow OPhTerpy(L^2)$	
457	2.70	0.0028	HOMO \rightarrow LUMO+2	0.67	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO → LUMO+3	0.14	$Ru \rightarrow OPhTerpy(L^2)$	

Table E.3.4 First 10 excitations of $[Ru(L^2)_2]^{2+}$

tors Assignment	(L^2)		(L ²)		(L ²)	(L ²)	(L^2) MLCT	(L^2)	(L ²)	(L ²)	(L^2) MLCT	(\mathbf{L}^2) NILUI	
Major Contribu	$Ru \rightarrow OPhTerpy$	Ru → OPhTerpy	Ru → OPhTerpy	$Ru \rightarrow OPhTerpy$	Ru → OPhTerpy	Ru → OPhTerpy	$Ru \rightarrow OPhTerpy$	Ru → OPhTerpy	Ru → OPhTerpy	Ru → OPhTerpy	$R_{\rm U} \rightarrow OPhTerpy$	Ru → OPhTerpy	
Coefficients	0.66	0.18	-0,14	0.66	0.55	-0.15	0.14	0.10	-0.32	0.30	-0.15	-0,16	
Orbital transition(s)	HOM0-1 \rightarrow LUM0+2	HOMO-1 → LUMO+3	HOMO → LUMO+2	HOMO → LUMO+3	HOM0-2 \rightarrow LUM0+2	HOMO-2 → LUMO+3	HOMO-1 → LUMO	HOMO-1 → LUMO+2	HOMO-1 → LUMO+3	HOMO-2 → LUMO+2	HOMO-2 →LUMO+3	HOMO-1 →LUMO+2	
f	0.0254	+cc0.0	01000	V.U.0.49			0.2585				20200	0,0000	
E/eV	61 C	c/.7	700	7.70			2.79					7.00	
Мпш	151	+0+ +	011	0 1 1			443				077	744	

Table E.3.4 Continued First 10 excitations of $[Ru(L^2)_2]^{2+}$

Assignment			MILUI	
Major Contributors	$Ru \rightarrow OPhTerpy(L^2)$	$Ru \rightarrow OPhTerpy(L^2)$	$Ru \rightarrow OPhTerpy(L^2)$	$\mathrm{Ru} \not \to \mathrm{OPhTerpy}(\mathrm{L}^2)$
Coefficients	0.47	0.21	0.24	-0.25
Orbital transition(s)	HOM0-2 \rightarrow LUM0+1	HOMO-2 → LUMO+9	HOMO-1 → LUMO	HOMO → LUMO+1
f		0.002	CC00'0	
E/eV		7 7	1 .14	
λnm		100	174	

Table E.3.4 Continued First 10 excitations of $[Ru(L^2)_2]^{2+}$

Assignment	MLCT	MLCT			MILUI		TO IN	MILUI		MLCT			MLCT		TO BY	MILUI
Major Contributors	$Ru \rightarrow OPhTerpy(L^2)$	$Ru \rightarrow Terpy$	Ru → Terpy	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow OPhTerpy(L^2)$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$OPhTerpy(L^2) \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow Terpy$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow OPhTerpy(L^2)$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	$Ru \rightarrow Terpy + OPhTerpy(L^2)$
Coefficients	0.68	0.68	0.30	0.22	0.12	0.55	0.67	0.12	-0.10	-0.12	0.67	-0.16	0.64	-0.14	69'0	0.10
Orbital transition(s)	HOMO-1 → LUMO	HOMO-1 → LUMO+1	HOMO-2 → LUMO+1	HOMO-1 →LUMO +2	HOMO-1 \rightarrow LUMO+3	HOMO → LUMO	HOMO → LUM0+2	HOMO \rightarrow LUMO+3	HOMO-3 → LUMO +3	HOMO → LUMO+2	HOMO \rightarrow LUMO+3	HOMO-2 → LUMO+1	HOMO-1 \rightarrow LUMO+2	HOMO → LUMO	HOMO-2 → LUMO+2	HOMO-2 \rightarrow LUMO+3
f	0.0139	0.0150		0000	7/ 67.0		0000	0.0700		0.0116			0.2599		0.0160	0010.0
E/eV	2.37	2.39		02 0	00.7		31 0	C1.7		2.79			2.81		600	70.7
λ nm	522	518		CON	100		160	1004		444			439		000	400

Table E.3.5 First 10 excitations of $[Ru(L^2)(Terpy)]^{2+}$

λ nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
540	250	0.0052	HOMO-1 \rightarrow LUMO+21	0.67	Ru → Terpy	TO IM
. + 0	00.0	c coo'o	HOMO-1 \rightarrow LUMO+32	-0.10	Ru → OPh	MILUI
434	2.85	0.0366	HOM0-2 → LUM0+3	0.68	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	MLCT
			HOM0-2 \rightarrow LUM0+1	0.29	Ru → Terpy	
201	216	00000	HOM0-1 \rightarrow LUM0+3	0.46	$Ru \twoheadrightarrow Terpy + OPhTerpy(L^2)$	
140	01.6	0,000	HOM0-1 → LUM0+8	0.24	$Ru \rightarrow Terpy + OPhTerpy(L^2)$	
			HOMO → LUMO	0.23	$Ru \rightarrow OPhTerpy(L^2)$	
LVC	22 0	0.0062	HOMO-1 \rightarrow LUMO+21	0.67	Ru → Terpy	TO IM
140	00.0	cc00.0	HOMO-1 → LUMO+32	-0.10	$Ru \rightarrow OPh$	

Table E.3.5 Continued First 10 excitations of $[Ru(L^2)(Terpy)]^{2+}$

Assignment		MLCT			MLCT					TOTA-			MLCT	LU LY	TOTA-	MLCT
Major Contributors	$Ru \rightarrow OPhTerpy(L^2)$	Ru → PhTerpy	$Ru \rightarrow OPhTerpy(L^2)$	$Ru \rightarrow OPhTerpy(L^2)$	Ru → PhTerpy	Ru → PhTerpy	Ru → PhTerpy	$Ru \rightarrow OPhTerpy(L^2)$ and $PhTerpy$	$Ru \rightarrow OPhTerpy(L^2)$	Ru → PhTerpy	$Ru \rightarrow OPhTerpy(L^2)$	Ru → PhTerpy	$Ru \rightarrow OPhTerpy(L^2)$ and $PhTerpy$	Ru \rightarrow OPhTerpy(L ²) and PhTerpy	$\mathrm{Ru} \mathrm{OPhTerpy}(\mathrm{L}^2)$ and $\mathrm{PhTerpy}$	$Ru \rightarrow OPhTerpy(L^2)$ and $PhTerpy$
Coefficients	0.61	0.23	-0.17	-0.23	0.60	-0.20	0.11	0.18	0.14	0.38	0.45	-0.20	0.68	0.18	0.66	0.67
Orbital transition(s)	HOMO-2 → LUMO	HOMO-2 \rightarrow LUMO+1	HOM0-1 \rightarrow LUMO	HOMO-2 → LUMO	HOMO-2 \rightarrow LUMO+1	HOMO-1 \rightarrow LUMO+1	HOMO-2 → LUMO+1	H0M0-2 → LUM0+2	HOMO-1 \rightarrow LUMO	H0M0-1 → LUM0+1	HOMO → LUMO	HOMO \rightarrow LUMO+1	HOMO → LUMO+2	HOMO-2 → LUMO+2	HOMO-1 → LUMO+2	HOMO \rightarrow LUMO+3
f		0.0139			0.0135					0,4202			0.0214	0.0050	00700	0.0178
E/eV		2.37			2.38				7¥ (40.7			2.73	75	C	2.77
Nnm		522			521				201	100			452	077	f	447

Table E.3.6 First 10 excitations of $[Ru(L^2)(PhTerpy)]^{2+}$

Nnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
~~~	01 0	00100	HOMO-2 $\rightarrow$ LUMO+3	0.21	Ru $\rightarrow$ OPhTerpy(L ² ) and PhTerpy	TO TO
4 4 4	4.13	7610'0	HOMO-1 $\rightarrow$ LUMO+3	0.64	$Ru \rightarrow OPhTerpy(L^2)$ and $PhTerpy$	MILCI
			HOMO-2 $\rightarrow$ LUMO+2	0.64	$Ru \rightarrow OPhTerpy(L^2)$ and $PhTerpy$	
111			HOMO-1 $\rightarrow$ LUMO+1	-0.11	Ru → PhTerpy	
- - -	7.00	<b>44</b> 67'0	HOMO-1 → LUMO+2	-0.17	Ru $\rightarrow$ OPhTerpy(L ² ) and PhTerpy	INTRO
			HOMO → LUMO	-0.10	$Ru \rightarrow OPhTerpy(L^2)$	
			HOMO-2 $\rightarrow$ LUMO+2	0.46	Ru $\rightarrow$ OPhTerpy(L ² ) and PhTerpy	
			HOMO-2 → LUMO+8	-0.21	Ru $\rightarrow$ OPhTerpy(L ² ) + Phosphazene	
			HOMO-1 → LUMO	0.10	$Ru \rightarrow OPhTerpy(L^2)$	
393	3.14	0.0027	HOMO-1 $\rightarrow$ LUMO+1	0.22	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO-1 $\rightarrow$ LUMO+3	-0,14	Ru $\rightarrow$ OPhTerpy(L ² ) and PhTerpy	
			HOMO → LUMO+10	-0.22	$Ru \rightarrow PhTerpy$	
			HOMO →LUMO+11	0.10	Ru → OPh + Phosphazene	
010	72 6	F100 0	HOMO-2 → LUMO+22	0.64	Ru → Ru-N*	TO TA
040	00.0	/100'0	HOMO-1 → LUMO+22	-0.20	$Ru \rightarrow Ru-N^*$	

# **Table E.3.6 Continued** First 10 excitations of $[Ru(L^2)(PhTerpy)]^{2+}$

Μnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
557		01100	HOMO $\rightarrow$ LUMO+1	0.29	$Ru \rightarrow Obbp(L^3)$	
100	77.7	0.0143	HOMO → LUMO+2	0.62	Ru → Terpy	TATECT
			HOM0-2 → LUMO	-0.33	$Ru \rightarrow Obbp(L^3)$	
514	2.41	0.0047	HOM0 → LUM0+1	0.54	$Ru \rightarrow Terpy$	MLCT
			HOMO → LUMO+2	-0.26	Ru → Terpy	
162	7 67	20000	HOMO-1 $\rightarrow$ LUMO+1	0.64	Ru → Terpy	
<b>C</b> 01	70.7	0,000,0	HOMO-1 $\rightarrow$ LUMO+2	-0.20	$Ru \rightarrow Terpy$	TATECT
			HOMO-2 → LUMO	0.13	$Ru \rightarrow Obbp(L^3)$	
458	2.70	0.0575	HOMO-2 → LUMO+1	0.57	Ru → Terpy	MLCT
			HOMO-2 → LUMO+2	-0.31	$Ru \rightarrow Terpy$	
			HOMO-2 → LUMO	-0.36	$Ru \rightarrow Obbp(L^3)$	
			HOMO-2 $\rightarrow$ LUMO+1	0.20	Ru → Terpy	
156	110	0 7513	HOMO-1 → LUMO	0.10	$Ru \rightarrow Obbp(L^3)$	
5	7.71	6107.0	HOMO-1 $\rightarrow$ LUMO+2	0.41	$Ru \rightarrow Terpy$	TOTTAT
			HOMO → LUMO+1	-0.20	Ru → Terpy	
			HOMO → LUMO+3	0.20	Ru → Terpy	

**Table E.3.7** First 10 excitations of  $[Ru(L^3)(Terpy)]^{2+}$ 

λ/nm	E/eV	£	Orbital transition(s)	Coefficients	Major Contributors	Assignment
428	2.89	0.0453	HOMO-1 → LUMO+3	0.67	$Ru \rightarrow Terpy$	MLCT
424	2.92	0.0010	HOMO-2 → LUMO+3	0.68	Ru → Terpy	MLCT
			HOM0-2 → LUM0	0.33	$Ru \rightarrow Obbp(L^3)$	
			HOMO-1 $\rightarrow$ LUMO+1	0.12	$Ru \rightarrow Terpy$	
			HOMO-1 → LUMO+2	0.29	Ru → Terpy	
397	3.11	0.0229	HOM0 → LUM0+1	0.15	Ru → Terpy	MLCT
			HOMO $\rightarrow$ LUMO+3	0.25	$Ru \rightarrow Terpy$	
			HOMO → LUMO+5	0.12	$Ru \rightarrow Terpy$	
			HOMO → LUMO+6	-0.26	Ru → Terpy	
377	3.28	0.0030	HOM0 → LUM0+4	0.69	Ru → Phosphazene	MLCT
			HOMO →LUMO+18	0.10	Ru → OPh	
			HOMO → LUMO+20	0.51	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
359	3.44	0.0024	HOMO → LUMO+21	-0.32	$Ru \rightarrow Obbp(L^3) + Phosphazene$	MLCT
			HOMO → LUMO+22	0.12	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
			HOMO → LUMO+26	-0.14	Ru 🌙 Ru	

**Table E.3.7 Continued** First 10 excitations of  $[Ru(L^3)(Terpy)]^{2+}$ 

	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
HC HC	HC	NNO → LUMO	0.35	$Ru \rightarrow Obbp(L^3)$	NI CT
NOH	NOH	10 → LUMO+1	0.58	Ru → Terpy	INTRA
NOH	HON	AO-2 → LUMO	0.11	$Ru \rightarrow Obbp(L^3)$	
MOH HOM	MOH	0-2 → LUMO+1	0.20	Ru → Terpy	
MOH HOM	HOM	0 → LUM0+2	0.64	Ru → Terpy	INTIN
MOH	MOH	0 → LUMO+3	-0.13	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
MOH	HOM	0-2 → LUMO	-0.13	$Ru \rightarrow Obbp(L^3)$	
HOM	HOM	0-1 → LUMO	-0.28	$Ru \rightarrow Obbp(L^3)$	
OMOH	HOMOH	·I → LUMO+I	0.11	Ru → Terpy	
0.00 <b>8</b> 9 HOM	MOH	0 → LUMO	0.11	$Ru \rightarrow Obbp(L^3)$	MLCT
HOMC	HOMC	) → LUMO+2	0.11	Ru → Terpy	
HOM	HOM	0 →LUMO+3	0.55	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
HOMC	HOMC	) → LUMO+4	-0.17	$Ru \rightarrow Obbp(L^3) + Phosphazene$	

**Table E.3.8** First 10 excitations of  $[Ru(L^3)(Terpy)]^+$ 

λ/nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 → LUMO	0.13	$Ru \rightarrow Obbp(L^3)$	
			HOM0-2 $\rightarrow$ LUM0+1	0.41	$Ru \rightarrow Terpy$	
			HOMO-1 → LUMO	-0.39	$Ru \rightarrow Obbp(L^3)$	
479	2.58	0.2035	HOMO-1 → LUMO+1	0.16	Ru → Terpy	MLCT
			HOMO-1 $\rightarrow$ LUMO+2	0.11	Ru → Terpy	
			HOM0 → LUM0+2	-0.15	$Ru \rightarrow Terpy$	
			HOMO → LUMO+3	-0.14	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
			HOMO-2 $\rightarrow$ LUMO+2	0.39	Ru → Terpy	
160			HOMO-2 → LUMO+3	-0.12	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
400	7.07	1770'0	HOMO-1 → LUMO	0.16	$Ru \rightarrow Obbp(L^3)$	MILUI
			HOMO-1 → LUMO+2	0.49	Ru → Terpy	
			HOMO-2 $\rightarrow$ LUMO+2	0.50	Ru → Terpy	
150		~~~~~~	HOMO-2 → LUMO+3	-0.12	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
<b>4</b> 0 <b>4</b>	60.7	cccn.n	HOMO-1 → LUMO	0.16	$Ru \rightarrow Obbp(L^3)$	MILCI
			HOMO-1 → LUMO+2	0.49	$Ru \rightarrow Terpy$	

**Table E.3.8 Continued** First 10 excitations of  $[Ru(L^3)(Terpy)]^+$ 

E/eV	£	Orbital transition(s)	Coefficients	Major Contributors	Assignment
		HOMO-3 → LUMO+3	0.12	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
		HOM0-2 → LUM0+1	0.28	Ru → Terpy	
		HOM0-1 → LUMO	0.22	$Ru \rightarrow Obbp(L^3)$	
		HOM0-1 $\rightarrow$ LUM0+3	0.46	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
-	c/cn.n	HOMO-1 → LUMO+4	-0.14	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	MILUI
		HOMO → LUMO+2	-0.10	Ru → Terpy	
		HOMO $\rightarrow$ LUMO+3	0.11	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
		HOMO → LUMO+6	-0.13	Ru → Terpy	
1		HOMO-1 $\rightarrow$ LUMO+3	-0.15	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
$\sim$	0.0015	HOMO $\rightarrow$ LUMO+3	0.26	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	MLCT
		HOMO → LUMO+4	0.60	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	

**Table E.3.8 Continued** First 10 excitations of  $[Ru(L^3)(Terpy)]^+$ 

Assignment								MLCT	
Major Contributors	Ru → Terpy	$Ru \rightarrow Obbp(L^3)$	$Ru \rightarrow Terpy$	$Ru \rightarrow Obbp(L^3) + Phosphazene$	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	$Ru \rightarrow Terpy$	$Ru \rightarrow Obbp(L^3)$	Ru → Terpy	$Ru \rightarrow Terpy$
Coefficients	-0.17	-0.18	0.20	0.40	0.25	0.27	0.45	0.50	-0.12
Orbital transition(s)	HOMO-2 → LUMO+1	HOMO-1 → LUMO	HOMO-1 →LUMO+2	HOMO-1 → LUMO+3	HOMO → LUM0+4	HOMO → LUM0+6	HOMO-3 → LUMO	HOMO- $3 \rightarrow LUMO+1$	HOMO $\rightarrow$ LUMO+1
f			0.000	67CN'N				0.0066	
E/eV				7.77				3.11	
λ/nm	5		C17	410				397	

**Table E.3.8 Continued** First 10 excitations of  $[Ru(L^3)(Terpy)]^+$ 

$MO \rightarrow LUMO 0.1$
10-2 → LUMO 0 10 → LUMO+1 0
IO-2 → LUMO 0-1 → LUMO+1 (
IO → LUMO+3
IO-2 → LUMO
0-2 → LUMO+1
0-1 → LUMO+1
IO → LUMO+3
IO-2 → LUMO
IO-2 → LUMO D-2 → LUMO+1
<ul> <li>10-2 → LUMO</li> <li>0-2 → LUMO+1</li> <li>0-1 → LUMO+1</li> </ul>
<ul> <li>10-2 → LUMO</li> <li>10-2 → LUMO+1</li> <li>0-1 → LUMO+1</li> <li>10 → LUMO+3</li> </ul>

**Table E.3.9** First 10 excitations of  $[Ru(L^3)(Terpy)]^0$ 

1 /	E LAV	<i>.</i> ,	Oubital turneition(a)	Coolicitante	Malou Contributous	A sector and
MIN	E/eV	J	Urdital transition(s)	Coefficients	Major Contributors	ASSIGNMENT
			HOM0-2 $\rightarrow$ LUMO	0,43	Ru → Terpy	
			HOMO-1 → LUMO	-0.10	$Ru \rightarrow Terpy$	
			HOMO-1 → LUMO+2	0.31	$Ru \rightarrow Terpy$	
483	2.56	0.0624	HOMO-1 → LUMO+4	-0.13	Ru → Phosphazene	MLCT
			HOM0 $\rightarrow$ LUM0+1	-0.12	$Ru \rightarrow Terpy$	
			HOM0 → LUM0+3	0.30	$Ru \rightarrow Obbp(L^3)$	
			HOMO → LUMO+6	-0.17	$Ru \rightarrow Terpy$	
			HOMO-2 $\rightarrow$ LUMO+2	0.11	Ru → Terpy	
		77110	HOMO-1 → LUMO+2	0,49	$Ru \rightarrow Terpy$	
4 2 4	76.7	0011.0	HOM0 → LUM0+3	-0.19	$Ru \rightarrow Obbp(L^3)$	MLCT
			HOM0 → LUM0+6	0.36	$Ru \rightarrow Terpy$	
110	30 0	00000	HOMO-3 $\rightarrow$ LUMO+2	-0.14	$Obbp(L^3) \rightarrow Terpy$	
410	C6.7	0770.0	HOMO-1 → LUMO+3	0.66	$Ru \rightarrow Obbp(L^3)$	MLCT
417	2.96	0.0024	HOMO-2 → LUMO+3	0.69	$Ru \rightarrow Obbp(L^3)$	MLCT
	00 0	20000	HOMO-3 → LUMO	0.68	$Obbp(L^3) \rightarrow Terpy$	
4 1 4	66.7	cc00.0	HOMO $\rightarrow$ LUMO+3	-0.14	$Ru \rightarrow Obbp(L^3)$	ILCT

**Table E.3.9 Continued** First 10 excitations of  $[Ru(L^3)(Terpy)]^0$ 

$564$ $2.18$ $0.0141$ $HOMO \Rightarrow LUMO+1$ $0.65$ $Ru \Rightarrow PhTepy$ $513$ $2.141$ $0.0132$ $HOMO \Rightarrow LUMO+2$ $-0.21$ $Ru \Rightarrow Obbp(L^3)$ $513$ $2.41$ $0.0032$ $HOMO \Rightarrow LUMO+2$ $0.34$ $Ru \Rightarrow Obbp(L^3)$ $513$ $2.41$ $0.0032$ $HOMO \Rightarrow LUMO+2$ $0.18$ $Ru \Rightarrow Obbp(L^3)$ $513$ $2.41$ $0.0032$ $HOMO \Rightarrow LUMO+3$ $0.57$ $Ru \Rightarrow PhTepy$ $486$ $2.55$ $0.0330$ $HOMO \Rightarrow LUMO+3$ $0.57$ $Ru \Rightarrow PhTepy$ $486$ $2.55$ $0.0330$ $HOMO + LUMO+3$ $0.53$ $Ru \Rightarrow PhTepy$ $486$ $2.56$ $0.0330$ $HOMO + 1 \Rightarrow LUMO+3$ $0.53$ $Ru \Rightarrow PhTepy$ $472$ $2.62$ $0.0062$ $HOMO - 1 \Rightarrow LUMO+3$ $0.62$ $Ru \Rightarrow PhTepy$ $472$ $2.62$ $0.0062$ $Ru \Rightarrow PhTepy$ $Ru \Rightarrow PhTepy$ $472$ $2.62$ $0.00062$ $Ru \Rightarrow PhTepy$ $Ru \Rightarrow PhTepy$ $472$ $2.62$ $0.00062$	λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
Observation         2.10         0.0141         HOMO $\ge$ LUMO $+$ -0.21         Ru $\Rightarrow$ Obbp(L ³ )           513         2.41         0.0032         HOMO $-2 \Rightarrow$ LUMO         0.34         Ru $\Rightarrow$ Obbp(L ³ )           513         2.41         0.0032         HOMO $-2$ LUMO $+2$ 0.18         Ru $\Rightarrow$ Obbp(L ³ )           513         2.41         0.0032         HOMO $-2$ LUMO $+2$ 0.18         Ru $\Rightarrow$ PhTepy           486         2.55         0.0330         HOMO $-1$ LUMO $+1$ 0.43         Ru $\Rightarrow$ PhTepy           486         2.55         0.0330         HOMO $-1$ $\Rightarrow$ LUMO $+1$ 0.43         Ru $\Rightarrow$ PhTepy           472         2.62         0.0330         HOMO $-1$ $\Rightarrow$ LUMO $+3$ 0.53         Ru $\Rightarrow$ PhTepy           472         2.62         0.0062         HOMO $-1$ $\Rightarrow$ LUMO $+3$ 0.53         Ru $\Rightarrow$ PhTepy           472         2.62         0.0062         HOMO $-1$ $\Rightarrow$ LUMO $+3$ 0.53         Ru $\Rightarrow$ PhTepy           472         2.62         0.0062         HOMO $-1$ $\Rightarrow$ LUMO $+3$ 0.10         Ru $\Rightarrow$ PhTepy           473         2.62         0.0062         HOMO $-1$ $\Rightarrow$ LUMO $+3$ 0.10         Ru $\Rightarrow$ PhTepy	172	0 0	17100	HOMO → LUMO+1	0.65	Ru → PhTerpy	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b>+</b> 00	61.9	1+10.0	HOMO → LUMO+2	-0.21	$Ru \rightarrow Obbp(L^3)$	MILUI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				H0M0-2 → LUM0	0.34	$Ru \rightarrow Obbp(L^3)$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	513	2.41	0.0032	HOMO → LUMO+2	0.18	$Ru \rightarrow Obbp(L^3)$	MLCT
$ \begin{array}{c cccc} 486 & 2.55 & 0.0330 & HOMO-1 \rightarrow LUMO+1 & -0.43 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.53 & Ru \rightarrow PhTerpy \\ \hline HOMO-1 \rightarrow LUMO+1 & 0.25 & Ru \rightarrow PhTerpy \\ \hline HOMO-1 \rightarrow LUMO+2 & 0.62 & Ru \rightarrow Obbp(L^3) \\ \hline HOMO-1 \rightarrow LUMO+3 & 0.10 & Ru \rightarrow PhTerpy \\ \hline HOMO-1 \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline \hline \hline HOMO \rightarrow LUMO+3 & 0.11 & Ru \rightarrow PhTerpy \\ \hline $				HOMO → LUMO+3	0.57	Ru → PhTerpy	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	4 4 0	0.520.0	HOM0-1 $\rightarrow$ LUM0+1	-0.43	Ru → PhTerpy	
$\begin{array}{c cccc} HOMO-1 \ensuremath{\rightarrow} LUMO+1 & 0.25 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO-1 \ensuremath{\rightarrow} LUMO+2 & 0.62 & \text{Ru} \ensuremath{\rightarrow} Obbp(L^3) \\ \hline HOMO-1 \ensuremath{\rightarrow} LUMO+3 & 0.10 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline \hline \hline HOMO \ensuremath{\rightarrow} LUMO+3 & 0.11 & \text{Ru} \ensuremath{\rightarrow} PhTerpy \\ \hline $	004	1 0 0		HOMO → LUMO+3	0.53	Ru  ightarrow PhTerpy	
472 2.62 0.0062 HOMO-1 $\rightarrow$ LUMO+2 0.62 Ru $\rightarrow$ Obbp(L ³ ) HOMO-1 $\rightarrow$ LUMO+3 0.10 Ru $\rightarrow$ PhTerpy HOMO $\rightarrow$ LUMO+3 0.11 Ru $\rightarrow$ PhTerpy				HOMO-1 $\rightarrow$ LUMO+1	0.25	Ru → PhTerpy	
$4.12  2.02  0.0002  HOMO-1 \rightarrow LUMO+3  0.10  Ru \rightarrow PhTerpy$ $HOMO \rightarrow LUMO+3  0.11  Ru \rightarrow PhTerpy$		5,5	69000	HOMO-1 $\rightarrow$ LUMO+2	0.62	$Ru \rightarrow Obbp(L^3)$	
HOMO $\rightarrow$ LUMO+3 0.11 Ru $\rightarrow$ PhTerpy	4	70.7	7000'0	HOMO-1 →LUMO+3	0.10	$R_{\rm U} \rightarrow PhTerpy$	MILCI
				HOMO → LUMO+3	0.11	Ru → PhTerpy	

**Table E.3.10** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^{2+}$ 

	E /oV	,	Oukital tuansition(s)	Coofficiants	Maine Contributors	A sector mont
	E/e V	٢	Orbital transition(s)	COEFFICIENTS	INTRIOU CONTUNIOUS	ASSIGNMENT
			HOMO-2 → LUMO	0.37	$Ru \rightarrow Obbp(L^3)$	
			HOMO-1 $\rightarrow$ LUMO+1	0.29	Ru → PhTerpy	
464	2.66	0.3935	HOMO-1 $\rightarrow$ LUMO+2	-0.23	$Ru \rightarrow Obbp(L^3)$	MLCT
			HOM0 → LUM0+2	-0.22	$Ru \rightarrow Obbp(L^3)$	
			HOMO → LUMO+3	0.32	Ru → PhTerpy	
			HOMO-2 $\rightarrow$ LUMO+1	0.19	Ru → PhTerpy	
458	2.70	0.0520	HOMO-2 → LUMO+2	0.64	$Ru \rightarrow Obbp(L^3)$	MLCT
			HOMO-2 → LUMO+3	0.10	Ru → PhTerpy	
		00000	HOMO-1 $\rightarrow$ LUMO+2	-0.10	Ru → PhTerpy	
442	7.90	0000.0	HOMO-1 → LUMO+3	0.67	Ru $\rightarrow \text{Obbp}(L^3)$	MILUI
			HOMO-2 → LUMO	0.37	$Ru \rightarrow Obbp(L^3)$	
			HOM0-1 →LUM0+1	-0.27	Ru → PhTerpy	
007			HOM0-1 →LUM0+2	0.10	$Ru \rightarrow Obbp(L^3)$	
400	60.C	6/ TN'N	HOM0 → LUM0+2	-0.17	$Ru \rightarrow Obbp(L^3)$	MILUI
			HOMO $\rightarrow$ LUMO+3	-0.25	Ru → PhTerpy	
			HOMO → LUMO+6	0.26	$Ru \rightarrow PhTerpy$	

<b>Table E.3.10 Continued</b> First 10 excitations of [Ru(L [*] )(PhTerpy)]	<b>Table E.3.10</b>	Continued	First 10	excitations	of [Ru(I	³ )(PhTerp	$(y)]^{2+}$
--------------------------------------------------------------------------------------	---------------------	-----------	----------	-------------	----------	-----------------------	-------------

mm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
75	3.30	0.0032	HOMO → LUM0+4	0.69	Ru → Phosphazene	MLCT
			HOMO→ LUMO+38	0.10	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
			HOMO→ LUM0+41	0.53	Ru → PhTerpy	
0	3,44	0.0021	HOMO→ LUMO+42	-0.28	$Ru \rightarrow Obbp(L^3)$	MLCT
			HOM0→ LUM0+43	0.12	$Ru \rightarrow Obbp(L^3)$	
			HOMO→ LUMO+47	-0.14	$Ru \rightarrow Obbp(L^3)$	

**Table E.3.10 Continued** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^{2+}$ 

Μnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
660	001	20100	HOMO → LUMO	0.61	Ru → PhTerpy	
000	1.90	C710'0	HOMO → LUMO+1	0.29	$Ru \rightarrow Obbp(L^3)$	MILUI
			HOMO → LUMO	-0.27	Ru → PhTerpy	
618	2.00	0.0064	HOMO $\rightarrow$ LUMO+1	0.60	$Ru \rightarrow Obbp(L^3)$	MLCT
			HOMO → LUMO+3	0.11	$Ru \rightarrow Obbp(L^3)$ + Phosphazene	
			HOMO-3 → LUMO	0.12	Ru → PhTerpy	
			HOM0-2 → LUM0	0.53	Ru → PhTerpy	
521	2.27	0.0013	HOMO-2 → LUMO+1	0.30	$R_{U} \rightarrow Obbp(L^{3})$	MLCT
			HOM0-1 → LUM0	0.13	Ru → PhTerpy	
			HOMO-1 → LUMO+1	-0.20	$R_{LI} \rightarrow Obbp(L^3)$	
			HOMO-2 → LUMO	0.11	Ru → PhTerpy	
212		0,000,0	HOMO-2 → LUMO+1	-0.31	$Ru \rightarrow Obbp(L^3)$	
616	7.40	6000'D	HOMO → LUMO+3	0.55	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	MILUI
			HOMO $\rightarrow$ LUMO+4	0.17	$Ru \rightarrow Obbp(L^3) + Phosphazene$	

**Table E.3.11** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^+$ 

B	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
-			HOMO-2 → LUMO	0.17	Ru → PhTerpy	
			HOM0-2 → LUM0+1	-0.29	$Ru \rightarrow Obbp(L^3)$	
			HOMO-2 $\rightarrow$ LUMO+2	0.15	Ru → PhTerpy	
	2.53	0.3260	HOMO-1 → LUMO	0.38	Ru → PhTerpy	MLCT
			HOMO-1 → LUMO+1	0.28	$Ru \rightarrow Obbp(L^3)$	
			HOM0 → LUM0+2	0.17	Ru → PhTerpy	
			HOMO → LUMO+3	-0.16	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
1	0.0	Veru u	HOM0-1 $\rightarrow$ LUM0+1	0.10	$Ru \rightarrow Obbp(L^3)$	
	70.7	0040.0	HOMO-1 $\rightarrow$ LUMO+2	0.66	Ru → PhTerpy	MILUI
T			HOMO-3 $\rightarrow$ LUMO+2	0.11	Ru → PhTerpy	
			HOMO-2 → LUMO	-0.11	Ru → PhTerpy	
	2.65	0.0162	HOM0-2 → LUM0+1	0.23	$Ru \rightarrow Obbp(L^3)$	MLCT
			HOM0-2 $\rightarrow$ LUM0+1	0.62	$R_{U} \rightarrow Obbp(L^{3})$	
			HOM0 → LUM0+2	0.11	Ru → PhTerpy	

**Table E.3.11 Continued** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^+$ 

λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-3 $\rightarrow$ LUMO+3	0,13	Ru $\rightarrow$ Obbp(L ³ ) + Phosphazene	
			HOM0-2 → LUM0	0.15	Ru → PhTerpy	
			HOMO-2 $\rightarrow$ LUMO+1	-0.25	$Ru \rightarrow Obbp(L^3)$	
			HOMO-2 → LUMO+2	0.16	Ru → PhTerpy	
			HOMO-2 $\rightarrow$ LUMO+3	0.41	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
450	2.75	0.0341	HOMO-2 → LUMO+4	-0.13	$Ru \rightarrow Obbp(L^3) + Phosphazene$	MLCT
			HOM0-1 → LUM0	-0.21	Ru → PhTerpy	
			HOMO-1 $\rightarrow$ LUMO+1	-0.13	$Ru \rightarrow Obbp(L^3)$	
			HOM0 → LUM0+2	-0.11	Ru → PhTerpy	
			HOM0 → LUMO+3	-0.14	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
			HOMO → LUMO+6	0.13	$Ru \rightarrow Obbp(L^3)$	
			HOMO-2 $\rightarrow$ LUMO+3	0.24	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
426	2.91	0.0063	HOM0 → LUM0+3	0.26	$Ru \rightarrow Obbp(L^3) + Phosphazene$	MLCT
			HOM0 → LUM0+4	0.56	$\mathtt{Ru} \not \to \mathtt{Obbp}(\mathtt{L}^3) + \mathtt{Phosphazene}$	

**Table E.3.11 Continued** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^+$ 

Assignment				MILCI		
Major Contributors	$Ru \rightarrow Obbp(L^3)$	Ru → PhTerpy	$Ru \rightarrow Obbp(L^3) + Phosphazene$	Ru → PhTerpy	$Ru \rightarrow Obbp(L^3) + Phosphazene$	$Ru \rightarrow Obbp(L^3)$
Coefficients	0.14	-0.13	0,41	0.11	-0.33	-0.24
Orbital transition(s)	HOM0-2 $\rightarrow$ LUM0+1	HOMO-2 $\rightarrow$ LUMO+2	HOMO-2 → LUMO+3	HOMO-1 → LUMO	HOMO → LUMO+4	HOMO → LUMO+6
r			00500	C6000		
E/eV			10 0	10 <b>.c</b>		
λ/nm			111	411		

**Table E.3.11 Continued** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^+$ 

λ/nm	E/eV	£	Orbital transition(s)	Coefficients	Major Contributors	Assignment
732	1.69	0.0112	HOMO → LUMO	0.67	Ru → PhTerpy	MLCT
C12	5	<b>1</b> 100 0	HOMO-1 → LUMO	-0.22	Ru → PhTerpy	TO TA
710	7.02	/ 100'0	HOMO → LUMO+1	0.66	$Ru \rightarrow PhTerpy$	MILCI
			HOMO-1 → LUMO	-0.10	Ru → PhTerpy	
506	2.44	0.0448	HOMO-I → LUMO+I	0.66	Ru → PhTerpy	MLCT
			HOMO → LUMO+5	-0.10	$Ru \rightarrow PhTerpy$	
			HOMO-1 → LUMO	0.47	Ru → PhTerpy	
			HOMO-I → LUMO+I	0.14	Ru → PhTerpy	
499	2.48	0.2429	HOMO → LUMO+1	0.16	Ru → PhTerpy	MLCT
			HOMO → LUMO+3	-0.36	$Ru \rightarrow Obbp(L^3)$	
			9+0MUJ ← 0MOH	0.17	Ru → PhTerpy	
			HOMO-2 $\rightarrow$ LUMO+2	0.33	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
100	250		HOMO-2 → LUMO+4	-0.13	$Ru \rightarrow Obbp(L^3) + Phosphazene$	TO IN
100	CC.7	1070.0	HOMO-1 → LUMO	0.25	Ru → PhTerpy	MILUI
			HOMO → LUMO+3	0.52	$Ru \rightarrow Obbp(L^3)$	

**Table E.3.12** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^0$
S		Orbital transition(s)	Coefficients	Major Contributors	Assignment
HC	HC	0M0-2 → LUM0+2	0.50	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
H H	Η	OMO → LUMO+3	-0.20	$Ru \rightarrow Obbp(L^3)$	
H	Η	OMO → LUMO+5	0.12	Ru → PhTerpy	MILUI
H	Ξ	0M0 → LUMO+6	-0.34	Ru → PhTerpy	
	ш	IOMO-3 → LUMO	0.68	$Obbp(L^3) \rightarrow PhTerpy$	EC II
E E	щ	IOM0 → LUM0+5	0.10	Ru → PhTerpy	ITCI
H	H	OMO-3 → LUMO+2	-0,16	$Obbp(L^3) \rightarrow Obbp(L^3) + Phosphazene$	
)H H(	)H(	0M0-2 → LUM0+3	0.66	$Ru \rightarrow Obbp(L^3)$	MILUI
	1	HOMO-3 → LUMO	-0.12	Obbp(L ³ ) → PhTerpy	
87 E	щ	IOM0 → LUM0+5	0.65	Ru → PhTerpy	MLCT
Ц	iЦi	IOM0 → LUM0+7	-0.10	Ru → PhTerpy	
H	H	OMO-4 → LUMO+2	0.10	$Obbp(L^3) \rightarrow Obbp(L^3) + Phosphazene$	
H	H	0M0-2 → LUM0+2	0.27	$Ru \rightarrow Obbp(L^3) + Phosphazene$	
84 H	Η	$0M0-2 \rightarrow LUM0+5$	0.41	Ru → PhTerpy	MLCT
щ	щ	HOMO-1 → LUMO	-0.11	Ru → PhTerpy	
H	Ξ	IOMO → LUMO+6	0.41	Ru → PhTerpy	

**Table E.3.12 Continued** First 10 excitations of  $[Ru(L^3)(PhTerpy)]^0$ 

λnm	E/eV	٦	Orbital transition(s)	Coefficients	Major Contributors	Assignment
596	2.07	0.0113	HOMO → LUMO	0.68	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO-2 → LUMO	-0.27	$Ru \rightarrow OTerpy(L^1)$	
514	2.40	0.0010	HOM0 → LUM0+1	0.20	Ru → bbp	MLCT
			HOMO → LUMO+2	0.60	$Ru \rightarrow OTerpy(L^1)$	
			HOM0-1 $\rightarrow$ LUM0+1	0.36	Ru → bbp	
482	2.56	0.0024	HOMO-1 $\rightarrow$ LUMO+2	-0.11	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO+3	0.57	Ru → bbp	
			HOMO-2 → LUMO	0.51	$Ru \rightarrow OTerpy(L^1)$	
			HOM0-1 → LUM0+1	-0.25	$Ru \rightarrow bbp$	
459	2.69	0.2552	HOMO-1 → LUMO+2	0.11	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO+2	0.21	$Ru \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+3	0.17	$Ru \rightarrow bbp$	
			HOMO-1 $\rightarrow$ LUMO+1	0.23	Ru → bbp	
454	2.72	0.0016	HOMO-1 → LUMO+2	0.64	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOM0-1 → LUM0+4	-0.12	$Ru \rightarrow Phosphazene$	

**Table E.3.13** First 10 excitations of  $[Ru(L^1)(bbp)]^{2+}$ 

$0-1 \rightarrow LUMO+3  0.67  Ru$ $0-2 \rightarrow LUMO+3  0.68  Ru$ $0-2 \rightarrow LUMO+3  0.68  Ru$ $10-2 \rightarrow LUMO  0.22  Ru \rightarrow$	HOMO-1 $\rightarrow$ LUMO+3 0.67 Ru HOMO-2 $\rightarrow$ LUMO+2 0.11 Ru $\rightarrow$ HOMO-2 $\rightarrow$ LUMO+3 0.68 Ru HOMO-2 $\rightarrow$ LUMO 0.22 Ru $\rightarrow$	HOMO-1 $\rightarrow$ LUMO+3 0.67 Ru $HOMO-2 \rightarrow$ LUMO+2 0.11 Ru $\rightarrow$ $HOMO-2 \rightarrow$ LUMO+3 0.68 Ru $HOMO-2 \rightarrow$ LUMO 0.22 Ru $\rightarrow$	HOMO-1 $\rightarrow$ LUMO+3 0.67 Ru 2.88 0.0010 HOMO-2 $\rightarrow$ LUMO+2 0.11 Ru $\rightarrow$ HOMO-2 $\rightarrow$ LUMO+3 0.68 Ru HOMO-2 $\rightarrow$ LUMO 0.22 Ru $\rightarrow$
$10-2 \rightarrow LUMO 0.22 R$	HOMO-2 $\rightarrow$ LUMO 0.22 R	HOMO-2 $\rightarrow$ LUMO 0.22 R	HOMO-2 $\rightarrow$ LUMO 0.22 R HOMO-2 $\rightarrow$ LUMO 0.22 R
0-1 → LUMO+1 0.37	HUMU-1 $\rightarrow$ LUMU+1 0.37	HUMU-1 J LUMU+1 0.3/	
0-1 → LUMO+1 0.37 0-1 → LUMO+2 -0.15 10 → LUMO+3 -0.28	HUMU-1 $\rightarrow$ LUMU+1 0.37 HOMO-1 $\rightarrow$ LUMO+2 -0.15 HOMO $\rightarrow$ LUMO+3 -0.28	$\begin{array}{llllllllllllllllllllllllllllllllllll$	3.13 0.0439 HOMO-1 $\rightarrow$ LUMO+2 -0.15 HOMO $\rightarrow$ LUMO+3 -0.28
<ul> <li>IO → LUMO+3 -0.2</li> <li>IO → LUMO+6 0.3</li> </ul>	HOMO $\rightarrow$ LUMO+3 -0.2 HOMO $\rightarrow$ LUMO+6 0.3	HOMO $\rightarrow$ LUMO+3 -0.2 HOMO $\rightarrow$ LUMO+6 0.3	HOMO $\rightarrow$ LUMO+3 -0.2 HOMO $\rightarrow$ LUMO+6 0.3
$10 \rightarrow LUM0+6$ $10 \rightarrow LUM0+4$ $10 \rightarrow LUM0+4$	HOMO $\rightarrow$ LUMO+6 HOMO $\rightarrow$ LUMO+6 HOMO $\rightarrow$ LUMO+4	HOMO $\rightarrow$ LUMO+6 HOMO $\rightarrow$ LUMO+4 HOMO $\rightarrow$ LUMO+4	HOMO $\rightarrow$ LUMO+6 HOMO $\rightarrow$ LUMO+4 HOMO $\rightarrow$ LUMO+4
$\frac{1}{10000000000000000000000000000000000$	$\frac{1}{10000} \neq LUMOH$	HOMO $\Rightarrow$ LUMO+6 HOMO $\Rightarrow$ LUMO+6 HOMO $\Rightarrow$ LUMO+6	HOMO $\rightarrow$ LUMO+6 HOMO $\rightarrow$ LUMO+6 3 37 0 0353 HOMO $\rightarrow$ LUMO+6
	$1 \leftarrow OWOH$ $1 \leftarrow OWOH$ $1 \leftarrow OWOH$ $1 \leftarrow OWOH$	$1 \leftarrow OMOH$	$1 \leftarrow 0MOH$
	MOH MOH MOH MOH	0.0439 HOM HON HON HON HON HON	3.13 0.0439 HOM HON HON HON HON

**Table E.3.13 Continued** First 10 excitations of  $[Ru(L^1)(bbp)]^{2+}$ 

	Assignment	MLCT		MLCT				MILUI			MLCT		MLCT
	Major Contributors	$Ru \rightarrow OTerpy(L^1)$	$Ru \rightarrow OTerpy(L^1)$	$Ru \rightarrow 0Terpy(L^1)$	Ru → bbp	$Ru \rightarrow OTerpy(L^1)$	$Ru \rightarrow OTerpy(L^1)$	Ru  ightarrow bbp	Ru  ightarrow bbp	$Ru \rightarrow OTerpy(L^1)$	$Ru \rightarrow OTerpy(L^1)$	$Ru \rightarrow OTerpy(L^1)$	$Ru \rightarrow OTerpy(L^1)$
2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 -	Coefficients	0.67	0.16	0.66	-0.13	0.10	0.12	0.65	-0.12	0.16	-0.15	0.64	0.68
	Orbital transition(s)	HOMO → LUMO	HOMO-2 → LUMO	HOMO → LUMO+1	HOMO → LUMO+2	HOMO-2 → LUMO	HOMO → LUMO+1	HOMO → LUMO+2	HOMO → LUMO+3	HOMO- $3 \rightarrow$ LUMO+1	HOMO-2 → LUMO	HOMO-1 → LUMO+1	HOMO-2 $\rightarrow$ LUMO+1
	f	0.0096		0.0059				0000			0.0020		0.0372
	E/eV	1.78		2.06			; ;	c1.7			2.47		2.53
	Μnm	696		599			201	100			501		490

**Table E.3.14** First 10 excitations of  $[Ru(L^1)(bbp)]^+$ 

J/nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
Si.			HOMO-3 $\rightarrow$ LUMO+2	-0.10	Ru → bbp	
			HOMO-2 → LUMO	0.46	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 $\rightarrow$ LUMO+1	0.16	$Ru \rightarrow OTerpy(L^1)$	
482	2.56	0.1358	HOMO-I → LUMO+2	-0.38	Ru → bbp	MLCT
			HOMO → LUMO+1	-0.10	$Ru \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+3	-0.12	Ru → bbp	
			9+OMU → LUMO+6	0.11	$Ru \rightarrow OTerpy(L^1)$	
478	2.59	0.0034	HOMO-2 $\rightarrow$ LUMO+2	0.68	Ru → bbp	MLCT
			HOMO-2 → LUMO	0.26	$Ru \rightarrow OTerpy(L^1)$	
027	2 63 6	0.0611	HOMO-1 → LUMO+2	0.26	Ru → bbp	NT OT
2	CO.7	1100'0	HOMO → LUMO+3	0.54	$Ru \rightarrow bbp$	INTERI
			HOMO → LUMO+6	0.10	$Ru \rightarrow OTerpy(L^1)$	

**Table E.3.14 Continued** First 10 excitations of  $[Ru(L^1)(bbp)]^+$ 

λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-3 → LUMO+3	0.17	Ru → bbp	
			HOMO-2 → LUMO	0.15	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 → LUMO+2	0.42	Ru → bbp	
427	2.90	0.0476	HOMO-1 $\rightarrow$ LUMO+3	0.21	$\mathbf{R}\mathbf{u}  ightarrow bbp$	MLCT
			HOMO → LUM0+2	-0,10	Ru → bbp	
			HOMO $\rightarrow$ LUMO+3	-0.31	Ru → bbp	
			HOMO → LUM0+6	0.20	$Ru \rightarrow OTerpy(L^1)$	
			HOM0-4 → LUM0	0.50	$Ru \rightarrow OTerpy(L^1)$	
417	2.97	0.0174	HOMO → LUMO	-0,10	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO+4	-0.45	Ru → Phosphazene	

**Table E.3.14 Continued** First 10 excitations of  $[Ru(L^1)(bbp)]^+$ 

Μnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
70	1.60	0.0098	HOMO → LUMO	0.67	$Ru \rightarrow OTerpy(L^1)$	MLCT
22	00 1		HOMO-2 → LUMO	-0.19	$Ru \rightarrow OTerpy(L^1)$	EO EV
C C	1.09	0,000.0	HOMO $\rightarrow$ LUMO+1	0.67	$Ru \rightarrow OTerpy(L^1)$	MILUI
			HOMO-2 $\rightarrow$ LUMO+1	-0.11	$Ru \rightarrow OTerpy(L^1)$	
520	2.38	0.0015	HOMO-1 → LUMO+1	0.23	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO+3	0.64	Ru → bbp	
00	00000	0.0405	HOMO-2 $\rightarrow$ LUMO+1	0.66	$Ru \rightarrow OTerpy(L^1)$	EC EV
070	00.7	c0+0.0	HOMO → LUMO+3	0.10	Ru  ightarrow bbp	MILUI
			HOMO-2 → LUMO	0.55	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 $\rightarrow$ LUMO+3	-0.12	Ru → bbp	
191	2.52	0.1528	HOMO $\rightarrow$ LUMO+1	0.15	$Ru \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO+4	0.14	Ru → bbp	
			HOMO → LUMO+6	-0.24	$Ru \rightarrow OTerpy(L^1)$	
			HOMO-1 $\rightarrow$ LUMO+3	0.11	Ru → bbp	
452	2.74	0.0215	HOMO → LUMO+2	0.62	Ru → Phosphazene	MLCT
			HOMO → LUMO+4	0.25	Ru → bbp	

**Table E.3.15** First 10 excitations of  $[Ru(L^1)(bbp)]^0$ 

1 E/eV					
	J	Orbital transition(s)	Coefficients	Major Contributors	Assignment
		HOMO-1 $\rightarrow$ LUMO+3	0.24	Ru → bbp	
2.74	0.0124	HOMO → LUMO+2	-0.28	Ru → Phosphazene	MLCT
		HOMO → LUMO+4	0.57	Ru → bbp	
3.01	0.0771	HOMO → LUMO+5	0.67	$Ru \rightarrow OTerpy(L^1)$	MLCT
3.02	0.0013	HOMO-4 $\rightarrow$ LUMO+1	0.69	$bbp \rightarrow OTerpy(L^1)$	LCT
		HOMO-1 $\rightarrow$ LUMO+3	-0.45	Ru → bbp	
3.06	0.1218	HOMO → LUMO+4	0.15	$Ru \rightarrow bbp$	MLCT
		9+0MO → LUMO+6	0.47	$Ru \rightarrow OTerpy(L^1)$	

**Table E.3.15 Continued** First 10 excitations of  $[Ru(L^1)(bbp)]^0$ 

λ/nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
005	с с	0.0108	HOMO → LUMO	0.62	$Ru \rightarrow OPhTerpy(L^2)$	TO TM
	C1.7	0010'0	HOM0 → LUM0+1	0.28	Ru → bbp	MILCI
023	, ,		HOMO → LUMO	-0.28	$Ru \rightarrow OPhTerpy(L^2)$	TOTA
<i>L</i>	<b>+</b> 1.7	6700.0	1+0MO → LUMO+1	0.62	Ru → bbp	MILCI
			HOMO-1 → LUMO	0.40	$Ru \rightarrow OPhTerpy(L^2)$	
497	2.48	0.0292	HOMO → LUMO+2	0.43	$Ru \rightarrow OPhTerpy(L^2) + bbp$	MLCT
			HOMO → LUMO+3	0.48	$Ru \not\rightarrow OPhTerpy(L^2) + bbp$	
			HOM0-2 $\rightarrow$ LUM0+1	-0.37	Ru → bbp	
490	2.52	0.0019	HOMO → LUMO+2	-0.33	$Ru \rightarrow OPhTerpy(L^2) + bbp$	MLCT
			HOMO → LUMO+3	0.48	$Ru \not \rightarrow OPhTerpy(L^2) + bbp$	
			HOM0-2 $\rightarrow$ LUM0+1	0.28	Ru → bbp	
765	29 C	0 1210	HOMO-1 → LUMO	0.43	$Ru \rightarrow OPhTerpy(L^2)$	TO IN
	7.00	61 <b>61</b> .0	HOMO → LUMO+2	-0.41	$Ru \rightarrow OPhTerpy(L^2) + bbp$	MINUT
			HOMO → LUMO+3	-0.10	$Ru \rightarrow OPhTerpy(L^2) + bbp$	
157	VL C	0.0245	HOMO-1 $\rightarrow$ LUMO+2	0.39	$Ru \rightarrow OPhTerpy(L^2) + bbp$	TOTM
104	1	C+CO.0	HOMO-1 $\rightarrow$ LUMO+3	0.55	$Ru \rightarrow OPhTerpy(L^2) + bbp$	MILCI

**Table E.3.16** First 10 excitations of  $[Ru(L^2)(bbp)]^{2+}$ 

,
Ru
Ru
Ru
OPhT

**Table E.3.16 Continued** First 10 excitations of  $[Ru(L^2)(bbp)]^{2+}$ 

λhm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
670	1.84	0.0121	HOMO → LUMO	0.68	Ru $\rightarrow$ OPhTerpy(L ² )	MLCT
			HOM0 → LUM0+1	-0.43	$Ru \rightarrow OPhTerpy(L^2)$	
588	2.10	0.0062	HOM0 → LUM0+2	0.51	$Ru \rightarrow bbp$	MLCT
			HOM0 → LUM0+3	-0.14	Ru  ightarrow bbp	
			HOM0-2 → LUM0	-0.10	$Ru \rightarrow OPhTerpy(L^2)$	
100		11000	HOMO-1 $\rightarrow$ LUMO+1	-0.42	Ru $\rightarrow$ OPhTerpy(L ² )	
064	7.40	1100'0	HOMO-1 → LUMO+2	0.53	$Ru \rightarrow bbp$	INTICI
			HOMO-1 → LUMO+3	-0.10	Ru  ightarrow bbp	
			HOMO-2 → LUMO+2	0.39	Ru → bbp	
100	25.0	13100	HOM0-1 → LUMO	0.49	Ru $\rightarrow$ OPhTerpy(L ² )	
100	CC.7	1647.0	HOM0 → LUM0+1	0.14	$Ru \rightarrow OPhTerpy(L^2)$	MILLI
			HOMO → LUMO+6	0.11	$Ru \rightarrow OPhTerpy(L^2)$	
102	22 0	0.0307	HOMO-I → LUMO+I	0.53	Ru $\rightarrow$ OPhTerpy(L ² )	TO TM
604	00.7	1600'0	HOMO-1 → LUMO+2	0.41	Ru → bbp	

**Table E.3.17** First 10 excitations of  $[Ru(L^2)(bbp)]^+$ 

$\lambda$ nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOM0-2 $\rightarrow$ LUM0+1	0.29	$Ru \rightarrow OPhTerpy(L^2)$	
			H0M0-2 → LUM0+2	0.33	Ru → bbp	
473	2.61	0.0864	HOMO-1 → LUMO	-0.21	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO $\rightarrow$ LUMO+1	-0.11	$Ru \rightarrow OPhTerpy(L^2)$	
			HOMO → LUMO+3	0.45	$\mathbf{R}\mathbf{u}  ightarrow \mathbf{b}\mathbf{b}\mathbf{p}$	
			HOMO-3 → LUMO+3	0.15	bbp → bbp	
			HOM0-2 → LUM0+1	-0.18	$Ru \rightarrow OPhTerpy(L^2)$	
			HOM0-2 $\rightarrow$ LUM0+2	0.37	$Ru \rightarrow bbp$	
			H0M0-2 → LUM0+3	0.29	Ru  ightarrow bbp	
674	7.00	0000.0	HOMO-1 → LUMO+3	-0.15	$Ru \rightarrow bbp$	MILUI
			HOMO → LUMO	-0.12	$Ru \rightarrow OPhTerpy(L^2)$	
			HOMO $\rightarrow$ LUMO+2	-0.29	Ru  ightarrow bbp	
			HOMO → LUMO+6	-0.19	$Ru \not \rightarrow OPhTerpy(L^2)$	

E/eV	f	Orbital transition(s)	Coefficients	<b>Major Contributors</b>	Assignment
		HOMO-3 → LUMO+1	0.11	$bbp \rightarrow OPhTerpy(L^2)$	
		HOMO-2 → LUMO+2	-0.10	Ru → bbp	
3.11	0.0912	HOM0-2 → LUM0+3	0.55	Ru → bbp	MLCT
		HOMO → LUMO+3	0.13	Ru  ightarrow bbp	
		HOMO → LUMO+6	0.31	$Ru \rightarrow OPhTerpy(L^2)$	
	0000	HOMO → LUMO+4	-0.35	Ru → Phosphazene	
3.12	66/0.0	HOMO → LUMO+5	0.57	$Ru \not \rightarrow OPhTerpy(L^2)$	MLCT
5	10000	HOMO-3 $\rightarrow$ LUMO+1	0.67	$bbp \rightarrow OPhTerpy(L^2)$	
17.0	Inco'n	HOMO-2 → LUMO+1	-0.11	$Ru \rightarrow OPhTerpy(L^2)$	ILCT

**Table E.3.17 Continued** First 10 excitations of  $[Ru(L^2)(bbp)]^+$ 

$\lambda$ nm	E/eV	£	Orbital transition(s)	Coefficients	Major Contributors	Assignment
743	1.66	0.0120	HOMO → LUMO	0.67	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
003	5	00000	HOM0-1 $\rightarrow$ LUM0+1	0.67	$Ru \rightarrow OPhTerpy(L^2)$	
600	<b>2</b> .41	0.0439	HOMO → LUMO+5	0.11	$Ru \rightarrow OPhTerpy(L^2)$	MILUI
			HOMO-2 → LUMO+3	0.13	Ru → bbp	
			HOMO-1 → LUMO	0.55	$Ru \rightarrow OPhTerpy(L^2)$	
497	2.49	0.2462	HOMO → LUMO+1	-0.19	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO → LUMO+4	0.14	Ru ≯ bbp	
			HOMO → LUM0+6	-0.23	$Ru \rightarrow OPhTerpy(L^2)$	
150	02.0	10000	HOMO-2 $\rightarrow$ LUMO+3	-0.27	Ru → bbp	
001	7.10	++00.0	HOMO → LUMO+4	0.63	Ru → bbp	MILCI
301		3510 0	HOMO → LUMO+2	0.67	Ru → Phosphazene	TO DA
004	4.04	c/ 10'0	HOMO → LUMO+5	-0.18	$Ru \rightarrow OPhTerpy(L^2)$	MILUI
			HOMO → LUMO+2	-0.19	Ru → Phosphazene	
418	2.96	0.1030	HOMO → LUMO+5	0.63	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO → LUM0+7	-0.14	$Ru \rightarrow OPhTerpy(L^2)$	

**Table E.3.18** First 10 excitations of  $[Ru(L^2)(bbp)]^0$ 

λnm	E/eV	f	Orbital transition(s)	Coefficients	<b>Major Contributors</b>	Assignment
			HOMO-2 → LUMO+3	-0.45	Ru → bbp	
407	3.03	0.1467	HOM0 → LUM0+4	0.16	$Ru \rightarrow bbp$	MLCT
			HOMO → LUMO+5	0.46	$Ru \not \rightarrow OPhTerpy(L^2)$	
200	0 1 0	LLC0 0	HOMO-3 → LUMO+3	0.14	bbp → bbp	TO IN
5	01.0	1170'0	HOMO-2 $\rightarrow$ LUMO+2	0.66	Ru → Phosphazene	
200	200	0.0750	HOMO-1 → LUMO+2	0.61	Ru → Phosphazene	TO IM
noc	07.0	6010.0	HOMO-1 $\rightarrow$ LUMO+5	-0.32	$Ru \not \rightarrow OPhTerpy(L^2)$	MLU
			HOMO-2 $\rightarrow$ LUMO+3	-0.20	Ru → bbp	
			HOMO-1 → LUMO	0.10	$Ru \rightarrow OPhTerpy(L^2)$	
370	3.34	0.0377	HOMO-1 → LUMO+2	0.28	Ru → Phosphazene	MLCT
			HOMO-I $\rightarrow$ LUMO+5	0.48	$Ru \rightarrow OPhTerpy(L^2)$	
			HOMO → LUMO+6	0.26	$Ru \not \rightarrow OPhTerpy(L^2)$	

**Table E.3.18 Continued** First 10 excitations of  $[Ru(L^2)(bbp)]^0$ 

ΜmΜ	E/eV	فعس	Orbital transition(s)	Coefficients	<b>Major Contributors</b>	Assignment
530	2.33	0.0169	HOMO → LUMO	69.0	Ru → Terpy	MLCT
480	2.57	0.0117	HOMO $\rightarrow$ LUMO+1	0.68	$Ru \rightarrow OPhbpp(L^4)$	MLCT
			HOM0-2 → LUMO	0.30	Ru → Terpy	
364	ro c	0 61 00	HOMO-1 → LUMO+1	0.53	$Ru \rightarrow OPhbpp(L^4)$	
C <b>C</b> +	1.04	6010'0	HOMO $\rightarrow$ LUMO+2	-0.21	Ru → Terpy	MILUI
			HOMO → LUMO+3	0.20	$Ru \rightarrow OPhbpp(L^4)$	
432	2.86	0.0011	HOMO-2 → LUMO+1	0.69	$Ru \rightarrow OPhbpp(L^4)$	MLCT
			HOM0-2 → LUMO	-0.35	Ru → Terpy	
			HOMO-1 → LUMO+1	0.14	Ru $\rightarrow$ OPhbpp(L ⁴ )	
416	2.97	0.0619	HOMO $\rightarrow$ LUMO+2	0.26	$Ru \rightarrow Terpy$	MLCT
			HOMO $\rightarrow$ LUMO+3	0.48	$Ru \rightarrow OPhbpp(L^4)$	
			HOMO → LUMO+6	-0.11	Ru → Terpy	
413	3.00	0.0447	HOMO-2 → LUMO+2	0.68	Ru → Terpy	MLCT
305	CF C	00000	HOMO-14 $\rightarrow$ LUMO+1	0.11	$OPhbpp(L^4) \rightarrow OPhbpp(L^4)$	LOIN
C60	c1.c	0.0200	HOMO-1 → LUMO+3	0.67	$Ru \rightarrow OPhbpp(L^4)$	MILUI

**Table E.3.19** First 10 excitations of  $[Ru(L^4)(Terpy)]^{2+}$ 

λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 → LUMO	0.21	Ru → Terpy	
			HOM0-1 $\rightarrow$ LUM0+1	-0.32	$Ru \rightarrow OPhbpp(L^4)$	
373	3.31	0.2169	HOMO → LUMO+2	-0.13	$Ru \rightarrow Terpy$	MLCT
			HOMO $\rightarrow$ LUMO+3	0.42	Ru → OPhbpp(L ⁴ )	
			9+0M0 → LUM0+6	0.28	$Ru \rightarrow Terpy$	
			HOMO-14 $\rightarrow$ LUMO	0.10	$OPhbpp(L^4) \rightarrow Terpy$	
339	3.65	0.0207	HOMO-13 $\rightarrow$ LUMO	0.23	$OPhbpp(L^4) \rightarrow Terpy$	MLCT
			HOMO → LUMO+5	0.65	$Ru \rightarrow Terpy$	
			HOMO-6 → LUMO	-0.16	$OPhbpp(L^4) \rightarrow Terpy$	
330	3.75	0.0014	HOMO-3 → LUMO	0.66	$Ru + OPhbpp(L^4) \rightarrow Terpy$	MLCT
			HOMO-1 → LUMO	0.13	Ru → Terpy	

**Table E.3.19 Continued** First 10 excitations of  $[Ru(L^4)(Terpy)]^{2+}$ 

Nnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
535	2.31	0.0155	HOMO → LUMO	0.69	Ru → PhTerpy	MLCT
480	2.58	0.0115	HOMO → LUMO+1	0.68	$Ru \rightarrow OPhbpp(L^4)$	MLCT
151	97 C	00200	HOMO-2 → LUMO	-0.46	Ru + PhTerpy → PhTerpy	
40 40	00.7	6/00/0	HOMO → LUMO+2	0.51	Ru → PhTerpy	MILLI
441	2.80	0,0060	HOMO-2 $\rightarrow$ LUMO+1	0.68	$Ru + PhTerpy \rightarrow OPhbpp(L^4)$	MLCT
			HOMO-2 → LUMO	0.29	Ru + PhTerpy → PhTerpy	
OFF	10 C	0 6005	HOMO-1 $\rightarrow$ LUMO+1	0.47	$Ru + OPhbpp(L^4) \rightarrow OPhbpp(L^4)$	
1	10.2	C060.0	HOMO → LUMO+2	0.36	Ru → PhTerpy	MILUI
			HOMO → LUMO+3	0.12	$Ru \rightarrow OPhbpp(L^4)$	
425	2.91	0.0368	H0M0-2 → LUM0+2	0.68	Ru + PhTerpy → PhTerpy	MLCT
			HOMO-2 → LUMO	-0.27	Ru + PhTerpy → PhTerpy	
			$HOMO-I \rightarrow LUMO+I$	0.25	$Ru + OPhbpp(L^4) \rightarrow OPhbpp(L^4)$	
419	2.95	0.0296	HOMO → LUMO+2	-0.26	$Ru \rightarrow PhTerpy$	MLCT
			HOMO → LUMO+3	0.50	$Ru \rightarrow OPhbpp(L^4)$	
			HOMO → LUMO+6	0.10	$Ru \rightarrow PhTerpy$	

**Table E.3.20** First 10 excitations of  $[Ru(L^4)(PhTerpy)]^{2+}$ 

λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
207	217	0.0202	HOMO-16 → LUMO+1	0.10	$OPhbpp(L^4) + PhTerpy \rightarrow OPhbpp(L^4)$	TO IM
160	J.14	6670'0	HOMO-1 → LUMO+3	0.67	$Ru + OPhbpp(L^4) \rightarrow PhTerpy$	
			HOMO-2 → LUMO	0.18	Ru + PhTerpy > PhTerpy	
			HOMO-1 $\rightarrow$ LUMO+1	-0.33	$Ru + OPhbpp(L^4) \rightarrow OPhbpp(L^4)$	
374	3.30	0.2139	HOM0 → LUM0+2	0.12	$Ru \rightarrow PhTerpy$	MLCT
			HOMO → LUMO+3	0.44	$Ru \rightarrow OPhbpp(L^4)$	
			HOMO → LUMO+6	-0.27	Ru → PhTerpy	
			HOM0-17 → LUM0	-0.18	$OPhbpp(L^4) + PhTerpy \rightarrow PhTerpy$	
CV2	361	0.0310	HOMO-16 → LUMO	-0.12	$OPhbpp(L^4) + PhTerpy \rightarrow PhTerpy$	TOIM
246	10.6	61 00'0	HOMO → LUMO+5	0.65	Ru → PhTerpy	MILUI
			HOMO → LUMO+8	-0.10	Ru → PhTerpy	

## **Table E.3.20 Continued** First 10 excitations of $[Ru(L^4)(PhTerpy)]^{2+}$

λ/nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
550	2.25	0.0129	HOM0 → LUMO	0.68	$Ru \rightarrow OTerpy(L^1)$	MLCT
364	07 0	0.0010	HOMO-2 → LUMO	-0.30	$Ru \rightarrow OTerpy(L^1)$	TO DA
<b>1</b> /2	7 00	6100.0	HOMO → LUMO+1	0.62	$Ru \rightarrow OTerpy(L^1)$	MILUI
150		0.0120	HOMO-2 → LUMO	0.11	$Ru \rightarrow OTerpy(L^1)$	TO TA
001	2.4	6C10.0	HOMO → LUMO+2	0.67	Ru  ightarrow bpp	MILUI
			HOMO-2 → LUMO	0.53	$Ru \rightarrow OTerpy(L^1)$	T`
307		00200	HOM0-1 $\rightarrow$ LUM0+2	0.25	Ru  ightarrow bpp	
C <b>7</b> 4	167	0007.0	HOMO → LUMO+1	0.27	$Ru \rightarrow OTerpy(L^1)$	MILUI
			HOMO → LUMO+7	-0.11	$Ru \rightarrow OTerpy(L^1)$	
423	2.92	0.0345	HOM0-2 $\rightarrow$ LUM0+1	0.68	$Ru \rightarrow OTerpy(L^1)$	MLCT
111	500	0100.0	HOMO-1 → LUMO+2	0.38	$Ru \rightarrow bpp$	TO IN
i t	10.0	6100.0	HOMO → LUMO+3	0.57	$Ru \rightarrow bpp$	MILAI
410	3.02	0.0016	HOMO-2 → LUMO+2	0.68	$Ru \rightarrow bpp$	MLCT
	, ,		HOMO-8 → LUMO+2	-0.12	OPh → bpp	TO DA
700	57 7	40000	HOM0-1 $\rightarrow$ LUM0+3	0.67	Ru  ightarrow bpp	MILUI

**Table E.3.21** First 10 excitations of  $[Ru(L^1)(bpp)]^{2+}$ 

Assignment			MLCT					MLCT		
<b>Major Contributors</b>	$Ru \rightarrow OTerpy(L^1)$	Ru  ightarrow bpp	Ru  ightarrow bpp	$Ru \rightarrow OTerpy(L^1)$	$R_{\rm U} \rightarrow OPh$	Ru → bpp	Ru  ightarrow bpp	$Ru \rightarrow OTerpy(L^1)$	$R_{\rm u} \rightarrow OPh$	Ru → OPh
Coefficients	0.12	-0.39	0.31	-0.29	0.23	0.15	-0.12	0.11	0.13	0.59
Orbital transition(s)	HOMO-2 → LUMO	HOMO-1 $\rightarrow$ LUMO+2	HOMO → LUMO+3	HOMO → LUMO+7	HOM0 → LUM0+17	HOMO-1 $\rightarrow$ LUMO+2	HOMO → LUMO+3	HOMO → LUMO+7	HOM0 → LUM0+16	HOMO → LUMO+17
f			0.0648					0.0103		
E/eV			3.41					3.41		
Μnm			363					363		

**Table E.3.21 Continued** First 10 excitations of  $[Ru(L^1)(bpp)]^{2+}$ 

Nnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
533	2.32	0.0154	HOMO → LUMO	0.69	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
161	19 0	0.0715	HOMO-1 → LUMO	0.47	$Ru + OPhTerpy(L^2) \rightarrow OPhTerpy(L^2)$	TO TM
101	10.7	c1/0'0	HOMO → LUMO+1	0,49	$Ru \rightarrow OPhTerpy(L^2)$	MILUI
463	2.67	0.0168	HOMO → LUMO+2	0.68	Ru → bpp	MLCT
			HOM0-2 $\rightarrow$ LUM0+2	-0.25	Ru → bpp	
431	2.87	0.4712	HOMO-1 → LUMO	-0.40	$Ru + OPhTerpy(L^2) \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO → LUMO+1	0.45	$Ru \rightarrow OPhTerpy(L^2)$	
431	2.87	0.0052	HOM0-2 → LUM0+1	0.69	$Ru \rightarrow OPhTerpy(L^2)$	MLCT
	00 0	00000	HOMO-3 → LUMO+2	0.15	$Ru + OPhTerpy(L^2) \rightarrow bpp$	TOTA
474	7.00	0.000	H0M0-1 → LUM0+2	0.66	$Ru + OPhTerpy(L^2) \rightarrow bpp$	MILUI
426	2.90	0.0313	HOM0-1 $\rightarrow$ LUM0+1	0.67	$Ru + OPhTerpy(L^2) \rightarrow OPhTerpy(L^2)$	MLCT
000	01.0	0110	HOMO-13 → LUMO+2	0.11	OPh → bpp	NT CT
000	¢1.c	0.0419	HOM0-2 → LUM0+3	0.68	Ru ≯ bpp	MILUI

**Table E.3.21** First 10 excitations of  $[Ru(L^2)(bpp)]^{2+}$ 

я	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 $\rightarrow$ LUMO+2	0.41	Ru → bpp	
			HOMO-1 → LUMO	-0.13	$Ru + OPhTerpy(L^2) \rightarrow OPhTerpy(L^2)$	
\$	3.39	0.0557	HOMO → LUMO+3	-0.35	$Ru \rightarrow bpp$	MLCT
			HOMO → LUMO+6	-0.29	$Ru \rightarrow OPhTerpy(L^2)$	
			HOMO → LUMO+17	-0.10	Ru → OPh	
	000	0000	HOMO → LUMO+17	0.66	$Ru \rightarrow OPh$	TO DA
+	vc.c	7100.0	HOM0 → LUM0+21	0.11	Ru → Ru	MILUI

**Table E.3.21 Continued** First 10 excitations of  $[Ru(L^2)(bpp)]^{2+}$ 

#### $OTerpy(L^1)$ and phosphazene in-plane ring def. v delocalised; OPh out-of-plane ring def. OTerpy(L¹) and phosphazene in-plane ring def. v. delocalised; out-of-plane H-wag OTerpy(L¹) in-plane ring def.; symm Ru-N stretch and in-plane H-wag Phosphazene in-plane ring def. and $OTerpy(L^1)$ out-of-plane H-wag $OTerpy(L^1)$ , OPh and phosphazene in-plane ring def. v. delocalised $OTerpy(L^1)$ and phosphazene out-of-plane ring def. v. delocalised Assignment from GaussView OPh and phosphazene out-of-plane ring def. v. delocalised OPh out-of-plane ring def. and out-of-plane H-wag OTerpy(L¹) in-plane ring def. and in-plane H-wag $OTerpy(L^1)$ in-plane ring def. and in-plane H-wag $OTerpy(L^1)$ in-plane ring def. and in-plane H-wag Phosphazene in-plane ring def. Phosphazene in-plane ring def. /**cm**⁻¹ 1018 1055 1078 1094 1048 VCalc 882 955 500 553 684 769 849 PF6 663 VrR À514 nm /cm⁻¹ 1018 1045 658 840 684 VrR 2488 nm /cm⁻¹ 1045 1060 1017 685 840 657 VFT-IR /cm⁻¹ 1050 1090 500 556 845 955 687 771 880

#### E.4 Assignment of vibrational modes

#### **Table E.4.1** Assignment of rR and IR for $[Ru(L^1)_2](PF_6)_2$

VFT-IR	VrR À488 nm	VrR À514 nm	VCalc	A sector mont from Concellion
/cm ⁻¹	/cm ⁻¹	/cm ⁻¹	/cm ⁻¹	Assignment it our Gauss view
	1097		1097	$OTerpy(L^1)$ in-plane ring def. and in-plane H-wag
	1166	1165	1164	$OTerpy(L^1)$ in-plane H-wag
1172			1177	OTerpy( $\mathbf{L}^{1}$ ) and OPh in-plane ring def. and in-plane H-wag
	1253	1254	1253	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
1265			1271	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
	1288	1289	1291	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
	1356	1355	1371	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
1406			1406	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
	1473	1473	1464	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
1488			1503	OTerpy( $L^1$ ) in-plane ring def., Ru-N wag and in-plane H-stretch
	1536	1534	1532	$OTerpy(L^1)$ in-plane ring def. and in-plane H-stretch
		1558	1575	$OTerpy(L^1)$ in-plane ring def. and in-plane H-stretch
	1564		1577	$OTerpy(L^1)$ in-plane ring def. and in-plane H-stretch
1590			1578	$OTerpy(L^1)$ in-plane ring def. and in-plane H-stretch
	1610	1609	1584	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch

**Table E.4.1 Continued** Assignment of rR and IR for  $[Ru(L^1)_2](PF_6)_2$ 

vft-ir / cm ⁻¹	VrR Å488 nm / cm ⁻¹	vrR À514 nm / cm ⁻¹	vCale / cm ⁻¹	Assignment from Gauss View
526			529	Phosphazene, Terpy $(L^1)$ , Terpy and OPh out-of- plane ring def. v. delocalised
557			551	Phosphazene, Terpy $(L^1)$ and OPh out-of-plane ring def. v. delocalised
	671	670	671	Phosphazene, Terpy $(L^1)$ and OPh in-plane ring def. v. delocalised
689			689	OPh out-of-plane ring def.
	725		730	Terpy(L ¹ ) out-of-plane ring def. and Ru-N(Terpy(L ¹ )) wag
772			770	OPh out-of-plane ring def. and out-of-plane H-wag
		802	808	Terpy in-pane ring def. and Ru-N(Terpy) wag
		837	835	OPh out-of-plane H-wag
850				PF6 ⁻
877		875	875	<b>P-O</b> stretch, Terpy( $L^1$ ) and OPh in-plane ring def.
		917	914	Terpy $(L^1)$ in-plane ring def. and C-O stretch
955			972	$Terpy(L^1)$ out-of-plane H-wag
	1017	1020	1020	Terpy $(L^1)$ and Terpy in-plane ring def.; out-of-plane H-wag and Ru-N symm. stretch
1025			1025	Terpy in-plane ring def. and Ru-N(Terpy) stretch
		1046	1041	Terpy in-plane ring def. and in-plane H-wag

## **Table E.4.2** Assignment of rR and IR for $[Ru(L^1)(Terpy)](PF_6)_2$

VFT-IR	VrR À488 nm	$v_{rR} \lambda_{514nm}$	VCalc	A action mont furmer
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ <b>cm</b> ⁻¹	Assignment from Gauss view
	1057		1058	OPh in-plane ring def. and in-plane H-wag
	1095		1096	Terpy( $L^1$ ) and Terpy in-plane ring def.; in-plane H-wag
		1124	1122	Terpy in-plane ring def. and in-plane H-wag
	1162		1162	Terpy(L ¹ ) and Terpy in-plane ring def.; in-plane H-wag
		1170	1168	Terpy $(L^1)$ in-plane ring def. and in-plane H-wag
1177			1173	OPh in-plane H-wag
	1258	1257	1256	Terpy(L ¹ ) and Terpy in-plane ring def.; in-plane H-stretch
1261			1261	Terpy in-plane ring def., in-plane H-stretch and Ru-N(Terpy) wag
	1285	1287	1284	Terpy in-plane ring def., in-plane H-stretch and Ru-N(Terpy) wag
	1329		1335	Terpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
	1351	1356	1357	Terpy in-plane ring def. and in-plane H-stretch
1404			1406	Terpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
	1473	1472	1463	Terpy in-plane ring def. and in-plane H-stretch
1487	1487		1505	Terpy(L ¹ ) in-plane ring def., in-plane H-stretch and Ru-N(Terpy(L ¹ )) wag
		1539	1534	Terpy( $L^1$ ) and Terpy in-plane ring def.; in-plane H-stretch

## Table E.4.2 Continued Assignment of rR and IR for $[Ru(L^1)(Terpy)](PF_6)_2$

A contrampant furren Connect Vienne		Terpy( $L^1$ ) and Terpy in-plane ring def.; in-plane H-stretch	Terpy(L ¹ ) in-plane ring def. and in-plane H-stretch	Terpy(L ¹ ) in-plane ring def. and in-plane H-stretch	
VCalc	/ cm ⁻¹	1535	1578	1581	
VrR À514 nm	/ cm ⁻¹			1609	
VrR 2488 nm	/ cm ⁻¹	1549		1608	
VFT-IR	/ cm ⁻¹		1590		

**Table E.4.2 Continued** Assignment of rR and IR for  $[Ru(L^1)(Terpy)](PF_6)_2$ 

ale Andiananat fuom Canad 75am	n-1 Assignment from Gauss view	2 Phosphazene, Terpy $(L^1)$ and PhTerpy out-of-plane ring def. v. delocalis	0 Phosphazene and Terpy( $L^1$ ) out-of-plane ring def. v. delocalised	2 Phosphazene and Terpy( $L^1$ ) in-plane ring def. v. delocalised	3 PhTerpy(Ph) out-of-plane ring def.	S OPh out-of-plane ring def. and out-of-plane H-wag	8 PhTerpy in-plane ring def. and Ru-N(PhTerpy) stretch	9 PhTerpy(Terpy) out-of-plane ring def. and P-O stretch	PF6 ⁻	3 Out-of-plane H(Terpy)-wag	3 Phosphazene in-plane ring def.	20 PhTerpy in-plane ring def. and sym Ru-N stretch	41 PhTerpy in-plane ring def. and Ru-N(PhTerpy) stretch	50 H(Terpy)-wag in-plane and Ru-N(Terpy( $L^1$ )) stretch	56 Terpy(L ¹ ) and PhTerpy in-plane ring def.; in-plane H-wag	59 Terpv(L ¹ ) and PhTerpv in-plane ring def.; in-plane H-wag
VCalc	/ cm ⁻	502	550	672	693	765	808	829		893	953	1020	1041	1050	1096	1159
VrR À514 nm	/ cm ⁻¹			663			804	832				1020	1045			
VrR À488 nm	/ cm ⁻¹			660	069			829				1017		1057	1094	
H	Ē	01	56		88	65			45	88	56					159

Table E.4.3 Assignment of rR and IR for  $[Ru(L^1)(PhTerpy)](PF_6)_2$ 

	00	8		
VFT-IR	VrR A488 nm	vrR À514 nm	VCalc	Assimment from GenesView
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	
	1163	1163	1163	Terpy( $L^1$ ) and PhTerpy in-plane ring def.; in-plane H-wag
1196			1184	PhTerpy(Ph) in-plane ring def. and in-plane H-wag
1258	1257	1257	1258	Terpy( $L^1$ ) and PhTerpy in-plane ring def.
		1283	1272	PhTerpy in-plane ring def. and in-plane H-stretch
	1288		1275	Terpy( $L^1$ ) in-plane ring def. and Ru-N(Terpy( $L^1$ )) wag
	1355	1354	1338	PhTerpy in-plane ring def. and in-plane H-stretch
1404			1407	Terpy( $L^{1}$ ) in-plane ring def. and in-plane H-stretch
	1474	1476	1474	C-C (PhTerpy) stretch and in-plane H-stretch
1486			1494	PhTerpy in-plane ring def., Ru-N(PhTerpy) wag and in-plane H-stretch
		1543	1534	Terpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
	1548		1559	PhTerpy(Ph) in-plane ring def.
1589			1582	Terpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
	1610	1608	1585	PhTerpy in-plane ring def. and in-plane H-stretch

**Table E.4.3 Continued** Assignment of rR and IR for  $[Ru(L^1)(PhTerpy)](PF_6)_2$ 

VFT-IR	VrR 2.488 nm	VrR À514 nm	VCalc	A solution of from CourseView
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment irom Gauss view
498			498	$OPhTerpy(L^2)$ out-of-plane ring def.
556			556	$OPhTerpy(L^2)$ in-plane ring def.
	658		665	$OPhTerpy(L^2)$ in-plane ring def. and P-O bond stretch
		662	668	$OPhTerpy(L^2)$ in-plane ring def. and P-O bond stretch
	685		685	$OPhTerpy(L^2)$ in-plane ring def. and P-O bond stretch
689			689	OPh out-of-plane ring def.
		754	756	$OPhTerpy(L^2)$ out-of-plane ring def. and out-of-plane ring wag
772			772	OPh out-of-plane ring def. and out-of-plane H-wag
		797	802	OPhTerpy( $L^2$ ) in-plane ring def. and sym. Ru-N stretching
	839	842	841	$OPhTerpy(L^2)$ out-of-plane ring def. and out-of-plane ring wag
846			$PF_6$	
883			879	Phosphazene in-plane ring def.
956			953	Phosphazene in-plane ring def.
	1017	1020	1022	OPhTerpy( $L^2$ ) in-plane ring def. and asym. Ru-N stretching
	1048	1047	1040	OPhTerpy( $L^2$ ) in-plane ring def. and in-plane H-wag

## **Table E.4.4** Assignment of rR and IR for $[Ru(L^2)_2](PF_6)_2$

Assignment from GaussView	$\mathrm{srpy}(\mathrm{L}^2)$ in-plane ring def. and in-plane H-wag	n-plane ring def. and in-plane H-wag	$\mathrm{srpy}(\mathbf{L}^2)$ in-plane ring def. and in-plane H-wag	$\mathrm{srpy}(\mathrm{L}^2)$ in-plane ring def. and in-plane H-wag	$\operatorname{srpy}(L^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{srpy}(\mathbf{L}^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{srpy}(\mathbf{L}^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{srpy}(L^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{srpy}(\mathbf{L}^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{srpy}(\mathbf{L}^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{srpy}(L^2)$ in-plane ring def. and Ru-N wag in-plane H-stretch	$\operatorname{srpy}(\mathbf{L}^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{srpy}(\mathbf{L}^2)$ in-plane ring def. and in-plane H-stretch	strov( $L^2$ ) in-plane ring def. and in-plane H-stretch
VCalc / c.m ⁻¹	1097 0	1160 O	1165 0	1179 0	1257 0	1270 0	1286 0	1340 0	1400 0	1487 0	1492 0	1542 0	1578 0	1594 O
VrR À514 nm / cm ⁻¹			1165		1257		1286	1353		1475		1546		1608
VrR À488 nm / cm ⁻¹	1097		1163		1257		1288	1355		1474		1548		1609
VFT-IR / cm ⁻¹		1159		1177		1264			1403		1488		1590	

## Table E.4.4 Continued Assignment of rR and IR for $[Ru(L^2)_2](PF_6)_2$

VFT-IR	VrR A488 nm	VrR À514 nm	VCalc	
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment from Gauss view
555			577	Phosphazene, OPh and OPhTerpy( $L^2$ ) out-of-plane ring def. v. delocalised
	672	671	668	Phosphazene, OPh and OPhTerpy( $L^2$ ) out-of-plane ring def. v. delocalised
688			688	OPh out-of-plane ring def.
	726		729	$OPhTerpy(L^2)$ out-of-plane ring def.
764			767	Out-of-plane H(OPh)-wag
		803	805	OPhTerpy(L ² ) in-plane ring def. and Ru-N(Terpy(L ² )) stretch
	835	838	835	OPhTerpy( $L^2$ )(Ph) and OPh in-plane ring def.; P-O stretch
841			$PF_6$	
880		878	875	Phosphazene and $OPhTerpy(L^2)(Ph)$ in-plane ring def.
		915	908	$OPhTerpy(L^2)$ out-of-plane ring def.
951			955	Phosphazene in-plane def.
	1018	1019	1014	$OPhTerpy(L^2)$ and Terpy in-plane ring def.; symm Ru-N stretching
	1050	1049	1043	OPhTerpy in-pane ring def and in-plane H-wag
	1098		1096	OPhTerpy( $L^2$ ) and Terpy in-plane ring def.; in-plane ring H-wag
		1124	1122	Terpy in-plane ring def., Ru-N(Terpy) wag and in-plane H-wag

**Table E.4.5** Assignment of rR and IR for  $[Ru(L^2)(Terpy)](PF_6)_2$ 

# Table E.4.5 Continued Assignment of rR and IR for $[Ru(L^2)(Terpy)](PF_6)_2$

## Table E.4.5 Continued Assignment of rR and IR for $[Ru(L^2)(Terpy)](PF_6)_2$

Assignment from GaussView	OPhTerpy( $L^2$ )(Ph) and (Terpy) in-plane ring def.; in-plane H-stretch OPhTerpy( $L^2$ )(Ph) in-plane ring def. and in-plane H-stretch	
VCalc / cm ⁻¹	1580 1594	
v _r R λ <del>5</del> 14 nm / cm ⁻¹	1608	
vrR J.488 mm / cm ⁻¹	1609	
VFT-IR / cm ⁻¹	1590	

VFT-IR	VrR À488 nm	VrR À514 nm	VCalc	
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment irom Gauss view
499			499	$OPhTerpy(L^2)$ out-of-plane ring def. v. delocalised
556			553	Phosphazene and OPhTerpy( $L^2$ ) in-plane ring def.; Ru-N(OPhTerpy( $L^2$ )) stretch v. delocalised
		662	668	Phosphazene and $OPhTerpy(L^2)$ in-plane ring def. v. delocalised
	671		678	PhTerpy in-plane def.
689			689	OPh out-of-plane ring def.
	726		729	OPh out-of-plane ring def. and Ru-N wag
732			732	OPhTerpy( $L^2$ ) out-of-plane ring def. and Ru-N wag
764			767	OPh out-of-plane H-wag
	835	834	836	$OPhTerpy(L^2)$ and $OPh$ in-plane ring def.; P-O stretch
837			$PF_6$	
880			875	OPhT erpy( $L^2$ ) and OPh in-plane ring def.; P-O stretch
955			956	Phosphazene in-plane ring def.
	1016	1018	1014	$OPhTerpy(L^2)$ and $PhTerpy$ in-plane ring def.; symm Ru-N stretch
1049		1046	1042	PhTerpy in-plane ring def. and Ru-N(PhTerpy) stretch

**Table E.4.6** Assignment of rR and IR for  $[Ru(L^2)(PhTerpy)](PF_6)_2$
	4	ſ		
VFT-IR	VrR A488 nm	VrR ^514 nm	VCalc	A ssignment from GaussView
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	
	1057		1060	$OPhTerpy(L^2) \ and \ PhTerpy \ in-plane \ ring \ deft; \ say \ Ru-N(OPhTerpy(L^2), \ PhTerpy)$
	1001		000T	stretch and in-plane H-wag
	1126		1115	$OPhTerpy(L^2)(Ph)$ in-plane ring def. and in-plane H-wag
	1162	1164	1165	$OPhTerpy(L^2)$ and $PhTerpy$ in-plane H-wag
1180			1178	$OPhTerpy(L^2)(Ph)$ in-plane ring def.; in-plane H-wag and C-O stretch
	1256	1253	1253	PhTerpy in-plane ring def. and in-plane H-stretch
1267			1268	PhTerpy in-plane ring def., in-plane H-stretch and Ru-N(PhTerpy)-wag
	1288	1288	1288	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch
	1329		1330	PhTerpy(Ph) in-plane ring def. and in-plane H-stretch
	1357	1355	1340	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch
1406			1400	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch
	1471	1473	1475	C-C(PhTerpy) stretch in-plane and in-plane H-stretch
1487			1492	C-O stretch C-C(PhTerpy) stretch in-plane and in-plane H-stretch
	1533	1534	1532	OPhTerpy PhTerpy in-plane H wag ring def.
	1548		1540	$OPhTerpy(L^2)(Ph)$ in-plane ring def. and in-plane H-stretch

## **Table E.4.6 Continued** Assignment of rR and IR for $[Ru(L^2)(PhTerpy)](PF_6)_2$

Assignment from GaussView	$OPhTerpy(L^2)(Ph)$ in-plane ring def. and in-plane H-stretch	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch	
VCalc / cm ⁻¹	1586	1594	
vrR À514 nm / cm ⁻¹		1610	
vrR À488 nm ∕ стт¹		1607	
<b>У</b> FT-IR / ст ⁻¹	1591		

## **Table E.4.6 Continued** Assignment of rR and IR for $[Ru(L^2)(PhTerpy)](PF_6)_2$

Accian mont from ConceViow		Phosphazene, $Obbp(L^3)$ , Terpy and $OPh$ out-of-plane ring def. v. delocalised	Phosphazene, $Obbp(L^3)$ and Terpy out-of-plane ring def. v. delocalised	Phosphazene, Obbp( $L^3$ ) and Terpy out-of-plane ring def. v. delocalised	Phosphazene and OPh out-of-plan ring def.	Phosphazene, Obbp( $L^3$ ) and Terpy out-of-plane ring def. v. delocalised	Benz and OPh out-of-plane H-wag	PF6	Obbp $(L^3)$ in-plane ring def. and C-O stretching	Obbp( $L^3$ ) in-plane ring def. and C-O stretching	Obbp(L ³ ) out-of-plane H-wag	Obbp(L ³ ) and Terpy in-plane ring def. and symm Ru-N(Obbp and Terpy) stretch	Obbp(L ³ ) and Terpy in-plane ring def. and symm Ru-N(Obbp and Terpy) stretch	Obbp( $L^3$ ) in-plane ring def. and Ru-N(Obbp) rock	OPh in-plane H-wag	Obbp( $\mathbf{L}^3$ ) and Terpy in-plane ring def.; in-plane H-stretch
VCalc	/ cm ⁻¹	557	672	677	691	736	767		919	923	956	1018	1022	1163	1171	1267
VrR À514 nm	/ cm ⁻¹			676						922		1018				
VrR À488 nm	/ cm ⁻¹		673			733			918				1020	1162		
VFT-IR	/ cm ⁻¹	556			698		767	848			956				1177	1267

**Table E.4.7** Assignment of rR and IR for  $[Ru(L^3)(Terpy)](PF_6)_2$ 

Assignment from GaussView	Terpy in-plane ring def. and in-plane H-stretch	Obbp( $L^3$ ) in-plane ring def. and in-plane H-stretch	Obbp(L ³ ) in-plane ring def. and in-plane H-stretch	Obbp(L ³ ) in-plane ring def. and in-plane H-stretch	OPh in-plane ring def. and in-plane H-stretch	$Obbp(L^3)$ in-plane ring def. and in-plane H-stretch	Obbp(L ³ ) in-plane ring def., in-plane H-stretch and Ru-N(Obbp(L ³ )) wag	Terpy in-plane ring def. and in-plane H-stretch	Terpy in-plane ring def. and in-plane H-stretch	Obbp(L ³ ) in-plane ring def. and in-plane H-stretch
v _{Calc} / cm ⁻¹	1286	1341	1363	1372	1450	1461	1500	1572	1579	1590
vrr À514 nm / cm ⁻¹		1331	1377			1460	1486	1545		1614
vrr A488 nm / cm ⁻¹	1287	1328		1380		1465	1486			
VFT-IR / cm ⁻¹				1380	1450		1488		1590	

**Table E.4.7 Continued** Assignment of rR and IR for  $[Ru(L^3)(Terpy)](PF_6)_2$ 

VFT-IR	VrR À488 nm	VrR 2514 nm	VCalc	Accimment from ConceViar
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment if our Gauss view
	658		646	PhTerpy in-plane ring def.
		666	675	Obbp( $\mathbf{L}^3$ ), phosphazene and OPh out-of-plane ring def. v. delocalised
688			686	OPh out-of-plane ring def.
762			758	$Obbp(L^3)$ and PhTerpy H-wag out-of-plane
	831		823	PhTerpy in-plane ring def. and Ru-N(PhTerpy) wag
		835	837	Obbp( $\mathbf{L}^3$ ) in-plane ring def. and Ru-N(Obbp( $\mathbf{L}^3$ )) wag
836				PF6 ⁻
	917	922	920	Obbp $(L^3)$ in-plane ring def. and H-wag out-of-plane
956			957	Obbp(L ³ ) H-wag out-of-plane
	1019	1020	1020	Obbp(L ³ ) and PhTerpy in-plane ring def.; sym Ru-N stretching
		1044	1042	PhTerpy in-plane ring def. and in-plane H-wag
		1091	1085	$Obbp(L^3)$ in-plane ring def. and in-plane H-wag
	1094		1096	PhTerpy in-plane ring def. and in-plane H-wag
1160	1162	1160	1155	Obbp(L ³ ) in-plane H-wag
1176			1172	OPh in-plane H-wag

**Table E.4.8** Assignment of rR and IR for  $[Ru(L^3)(PhTerpy)](PF_6)_2$ 

VFT-IR	VrR 2488 nm	VrR À514 nm	VCale	
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment irom Gauss view
	1249		1250	PhTerpy in-plane ring def. and in-plane H-stretch
		1254	1255	PhTerpy in-plane ring def. and in-plane H-stretch
1267			1267	PhTerpy in-plane ring def. and in-plane H-stretch
	1286	1286	1287	PhTerpy in-plane ring def. and in-plane H-stretch
	1355	1355	1362	$Obbp(L^3)$ in-plane ring def. and in-plane H-stretch
1455			1455	PhTerpy in-plane ring def. and in-plane H-stretch
	1471	1473	1474	PhTerpy in-plane ring def. and in-plane H-stretch
1487			1496	PhTerpy in-plane ring def.; in-plane H-stretch and Ru-N(Obbp $(L^3)$ ) wag
	1535	1534	1533	PhTerpy in-plane ring def. and in-plane H-stretch
1591			1591	$Obbp(L^3)$ in-plane ring def. and in-plane H-stretch
	1607	1609	1601	$Obbp(L^3)$ in-plane ring def. and in-plane H-stretch
1611			1604	$Obbp(L^3)$ in-plane ring def. and in-plane H-stretch

Table E.4.8 Continued Assignment of rR and IR for [Ru(L³)(PhTerpy)](PF₆)₂

FT-IR	VrR À488 nm	VrR À514 nm	VCalc	A selemment from CauseView
cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment it om Gauss view
	685		683	OPh out-of-plane ring def.
688		689	689	OPh and Phosphazene out-of-plane ring def.
772			772	OPh out-of-plane ring def.
	800	803	804	bbp out-of-plane ring def. and Ru-N(bbp) wag
845			$PF_6$	
	917	921	918	OTerpy( $L^1$ ) in-plane ring def. and C-O stretch
959			959	Bbp out-of-plane ring def. and out-of-plane H-wag
	1017		1016	Phosphazene in-plane ring def.
		1020	1019	Sym. Ru-N(bbp and OTerpy( $L^1$ )) stretching
		1049	1050	$OTerpy(L^1)$ in-plane ring def. and in-plane H-wag
	1156	1154	1155	Bbp in-plane H-wag
1159			1159	OPh in-plane H-wag
1176			1173	OPh and OTerpy(L ¹ ) in-plane H-wag
	1255		1256	$OTerpy(L^1)$ in-plane ring def. and in-plane H-stretch
1261		1261	1259	OTerpy( $L^1$ ) in-plane ring def. and in-plane H-stretch

**Table E.4.9** Assignment of rR and IR for  $[Ru(L^1)(bbp)](PF_6)_2$ 

<b>У</b> FТ-IR / ст	vrR À488 пт ∕ стт ⁻¹	VrR À514 nm / cm ⁻¹	VCalc / cm ⁻¹	Assignment from GaussView
	1279		1285	bbp in-plane ring def., in-plane H-stretch and Ru-N(bbp) wag
	1350	1351	1361	bbp in-plane ring def. and in-plane H-stretch
1403			1404	bbp in-plane ring def., in-plane H-stretch and Ru-N(bbp) wag
1460			1458	bbp in-plane ring def. and in-plane H-stretch
	1473	1474	1463	bbp in-plane ring def. and in-plane H-stretch
1487			1488	bbp in-plane ring def. and in-plane H-stretch
	1547	1544	1534	$OTerpy(L^1)$ in-plane ring def. and in-plane H-stretch
1591			1580	bbp in-plane ring def. and in-plane H-stretch
	1607	1608	1601	bbp in-plane ring def. and in-plane H-stretch

**Table E.4.9 Continued** Assignment of rR and IR for  $[Ru(L^1)(bbp)](PF_6)_2$ 

VFT-IR / cm ⁻¹	v _r r î.488 nm / cm ⁻¹	vrR	vcale / cm ⁻¹	Assignment from GaussView
557			557	OPhTerpy(L ² ), OPh, and Phosphazene out-of-plane ring def.; and Ru-N(OPhTerpy(L ² )) stretch v. delocalised
	656		664	bbp in-plane ring def. and Ru-N(bbp) stretch
	684		684	Phosphazene and OPh out-of-plane ring def.
		689	689	Phosphazene and OPh out-of-plane ring def.
747			740	bbp out-of-plane ring def., out of plane H-wag and Ru-N(bbp) wag
770			770	bbp and OPh out-of-plane ring def., out-of-plane H-wag
		803	804	bbp out-of-plane H-wag
	837		835	$OPhTerpy(L^2)$ out-of-plane ring def., out-of-plane H-wag and P-O stretch
844			$\mathrm{PF_6}^{-1}$	
		921	922	OPh out-of-plane ring def. and out-of-plane H-wag
952			950	bbp in-plane ring def. and Ru-N(bbp) stretch
	1016		1012	$OPhTerpy(L^2)$ and Phosphazene in-plane ring def.
		1020	1024	$OPhTerpy(L^2)$ in-plane ring def. and Ru-N(OPhTerpy(L ² )) stretch
	1044	1049	1041	$OPhTerpy(L^2)$ in-plane ring def. and Ru-N(OPhTerpy(L ² )) stretch

**Table E.4.10** Assignment of rR and IR for  $[Ru(L^2)(bbp)](PF_6)_2$ 

VFT-IR	VrR À488 nm	VrR A514 nm	VCalc	
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment from Gauss View
	1095		1097	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-wag
		1154	1155	bbp in-plane H-wag
	1158		1158	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-wag
1177			1175	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-wag
	1248		1234	bbp in-plane ring def. and in-plane H-stretch
1267		1261	1263	bbp in-plane ring def. and in-plane H-stretch
	1286		1286	bbp in-plane ring def., in-plane H-stretch and Ru-N(bbp) wag
		1351	1342	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch
	1355		1362	bbp in-plane ring def. and in-plane H-stretch
1460			1458	bbp in-plane ring def. and in-plane H-stretch
	1470	1474	1463	bbp in-plane ring def. and in-plane H-stretch
1488			1488	bbp in-plane ring def. and in-plane H-stretch
	1533		1534	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch
		1544	1542	$OPhTerpy(L^2)(Ph)$ in-plane ring def. and in-plane H-stretch
	1553		1567	$OPhTerpy(L^2)(Ph)$ and bbp in-plane ring def. and in-plane H-stretch

**Table E.4.10 Continued** Assignment of rR and IR for  $[Ru(L^2)(bbp)](PF_6)_2$ 

Assignment from GaussView	$OPhTerpy(L^2)(Ph)$ in-plane ring def. and in-plane H-stretch	bbp in-plane ring def. and in-plane H-stretch
VCale / cm ^{.1}	1594	1602
vrR À514 nm / cm ⁻¹		1608
v _r R À488 nm / cm ⁻¹		1607
VFT-IR / cm ⁻¹	1591	

# **Table E.4.10 Continued** Assignment of rR and IR for $[Ru(L^2)(bbp)](PF_6)_2$

VFT-IR	VrR À488 nm	VrR À514 nm	VCale	
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment from Gauss View
	674	676	674	OPhbpp $(L^4)$ in-plane ring def. and phosphazene out-of-plane ring def.
689			693	Phosphazene and OPh out-of-plane ring def.
	727		730	OPhbpp (L ⁴ ) out-of-plane ring def. and Ru-N(OPhbbp) wag
		732	737	OPhbpp $(L^4)$ in-plane ring def.
763			763	OPhbpp $(L^4)$ out-of-plane H-stretch
844			$PF_6$	
880			876	<b>OP</b> hbpp $(L^4)$ out-of-plane ring def.
952			953	Phosphazene in-plane ring def.
	1017	1017	1013	OPhbpp (L ⁴ ) and Terpy in-plane ring def. sym Ru-N(OPhbpp (L ⁴ ) and Terpy) stretch
1049			1044	Terpy in-plane ring def. and in-plane H-wag
	1058	1057	1053	OPhbpp (L ⁴ ) in-plane ring def. and Ru-N(OPhbpp (L ⁴ )) stretch
		1090	1098	OPhbpp $(L^4)$ and Terpy in-plane ring def. and in-plane H-wag
	1094		1099	OPhbpp $(L^4)$ and Terpy in-plane ring def. and in-plane H-wag
	1161	1159	1164	Terpy in-plane H-wag
1179	1180		1175	OPhbpp (L ⁴ ) in-plane H-wag

**Table E.4.11** Assignment of rR and IR for  $[Ru(L^4)(Terpy)](PF_6)_2$ 

VFT-IR / cm ⁻¹	v _{rR} J _{488 nm} / cm ⁻¹	vrR À514 nm / cm ⁻¹	v _{Calc} / cm ⁻¹	Assignment from GaussView
1267			1268	OPhbpp $(L^4)$ in-plane ring def. and in-plane H-stretch
	1270	1272	1269	OPhbpp $(L^4)$ in-plane ring def. and in-plane H-stretch
	1327	1328	1340	OPhbpp $(\mathbf{L}^4)$ in-plane ring def. and in-plane H-stretch
		1355	1361	Terpy in-plane ring def. and in-plane H-stretch
1415			1413	OPhbpp $(L^4)$ in-plane ring def. and in-plane H-stretch
	1468		1466	Terpy in-plane ring def. and in-plane H-stretch
1486	1489	1487	1482	OPhbpp $(\mathbf{L}^4)$ in-plane ring def. and in-plane H-stretch
		1548	1537	OPhbpp $(\mathbf{L}^4)$ in-plane ring def. and in-plane H-stretch
1590			1577	OPh in-plane ring def. and in-plane H-stretch
	1605		1578	Terpy in-plane ring def. and in-plane H-stretch
		1615	1578	Terpy in-plane ring def. and in-plane H-stretch
	1621		1599	OPhbpp (L ⁴ ) in-plane ring def. and in-plane H-stretch

**Table E.4.11 Continued** Assignment of rR and IR for  $[Ru(L^4)(Terpy)](PF_6)_2$ 

Assignment from GaussView	OPhbpp(L ⁴ ) in-plane ring def.	OPh out-of-plane ring def. out-of-plane H-wag	OPhbpp(L ⁴ ) in-plane ring def. out-of-plane H-wag	PhTerpy out-of-plane ring def. out-of-plane H-wag	OPhbpp(L ⁴ ) out-of-plane ring def. out-of-plane H-wag		Phosphazene in-plane ring def.	OPhbpp( $L^4$ ) and PhTerpy in-plane ring def.; asym Ru-N stretch	OPhbpp $(L^4)$ and PhTerpy in-plane ring def.	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-wag	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-wag	PhTerpy in-plane ring def. and in-plane H-wag	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-wag	OPh in-plane ring def. and in-plane H-wag	OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-wag
vCalc / cm ⁻¹	674	688	763	794	827	PF6	953	1000	1006	1051	1055	1097	1099	1162	1175
v _r R À514 nm / cm ⁻¹	663			<i>462</i>	832				1009	1049		1091		1162	
v _r R À488 nm / cm ⁻¹	660				830			1003			1058		1094	1162	
VFT-IR / cm ⁻¹		688	763			844	950							1160	1177

# **Table E.4.12** Assignment of rR and IR for $[Ru(L^4)(PhTerpy)](PF_6)_2$

$/ \mathrm{cm}^{-1}$ 125212531252PhTerpy in-plane ring def. and in-plane H-stretch126612881266OPhbpp(L^4) in-plane ring def. and in-plane H-stretch135513551341OPhbpp(L^4) in-plane ring def. in-plane H-stretch141513551341OPhbpp(L^4) in-plane ring def. and in-plane H-stretch1415147214721474141514721474PhTerpy in-plane ring def. and in-plane H-stretch148714721474PhTerpy in-plane ring def. and in-plane H-stretch1487147214721474156615351534PhTerpy in-plane ring def. and in-plane H-stretch156115351534PhTerpy in-plane ring def. and in-plane H-stretch158115351534PhTerpy in-plane ring def. and in-plane H-stretch15631535156OPhbpp(L^4) in-plane ring def. and in-plane H-stretch156115631566OPhbpp(L^4) in-plane ring def. and in-plane H-stretch15611566OPhbpp(L^4) in-plane ring def. and in-plane H-stretch157115691566OPhbpp(L^4) in-plane ring def. and in-plane H-stretch15811568Phtppp(L^4) in-plane ring def. and in-plane H-stretch15811568Phtppp(L^4) in-plane ring def. and in-plane H-stretch15811568OPhbpp(L^4) in-plane ring def. and in-plane H-stretch15811588Phtppp(L^4) in-plane ring def. a	VFT-IR	VrR À488 nm	VrR À514 nm	VCalc	A seion mont from Carroo Vian
125212531252PhTerpy in-plane ring def. and in-plane H-stretch12661267OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch128912881286OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch135513551341OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch14151412OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch141614721474PhTerpy in-plane ring def. and in-plane H-stretch148714721474PhTerpy in-plane ring def. and in-plane H-stretch153615351534PhTerpy in-plane ring def. and in-plane H-stretch153615351534PhTerpy in-plane ring def. and in-plane H-stretch153015351534PhTerpy in-plane ring def. and in-plane H-stretch156015631586OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch15801566OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch15601568PhTerpy in-plane ring def. and in-plane H-stretch15701568OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch15801586OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch16071608159815901598OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	ASSIGNMENT IFOM GAUSS VIEW
12661267OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch128912881286OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch135513551341OPhbpp(L ⁴ ) in-plane ring def. in-plane H-stretch141514120Phbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch148714721474PhTerpy in-plane ring def. and in-plane H-stretch148714721474PhTerpy in-plane ring def. and in-plane H-stretch158615351534PhTerpy in-plane ring def. and in-plane H-stretch153615351534PhTerpy in-plane ring def. and in-plane H-stretch156315351534PhTerpy in-plane ring def. and in-plane H-stretch1500156815781586160716081598OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch160716081598OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch		1252	1253	1252	PhTerpy in-plane ring def. and in-plane H-stretch
	1266			1267	$OPhlopp(L^4)$ in-plane ring def. and in-plane H-stretch
$ \begin{array}{lcl} 1355 & 1355 & 1341 & OPhbpp(L^4) \mbox{ and PhTerpy in-plane ring def.; in-plane H-stretch} \\ 1415 & 1472 & 1472 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1487 & 1472 & 1472 & 1474 & PhTerpy \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1536 & 1535 & 1534 & PhTerpy \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1536 & 1535 & 1534 & PhTerpy \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1536 & 1535 & 1534 & PhTerpy \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1563 & 1536 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1500 & 1568 & PhTerpy \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & OPhbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & OPhbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1500 & 1500 & 1500 & 1500 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & OPhbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1607 & 1608 & 1598 & 0Phbpp(L^4) \mbox{ in-plane ring def. and in-plane H-stretch} \\ 1600 & $		1289	1288	1286	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-stretch
14151412OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch147214721474PhTerpy in-plane ring def. and in-plane H-stretch14871482OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch153615351534PhTerpy in-plane ring def. and in-plane H-stretch153615351534PhTerpy in-plane ring def. and in-plane H-stretch156315631566OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch15901568PhTerpy in-plane ring def. and in-plane H-stretch160716081598OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch		1355	1355	1341	<code>OPhbpp(L⁴)</code> and <code>PhTerpy</code> in-plane ring def.; in-plane H-stretch
1472       1472       1474       PhTerpy in-plane ring def. and in-plane H-stretch         1487       1482       OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch         1536       1535       1534       PhTerpy in-plane ring def. and in-plane H-stretch         1563       1535       1536       OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch         1563       1566       OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch         1590       1568       PhTerpy in-plane ring def. and in-plane H-stretch         1607       1608       1598       OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch	1415			1412	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-stretch
<ul> <li>1487 1482 OPhbpp(L⁴) in-plane ring def. and in-plane H-stretch</li> <li>1536 1535 1534 PhTerpy in-plane ring def. and in-plane H-stretch</li> <li>1563 1566 OPhbpp(L⁴) in-plane ring def. and in-plane H-stretch</li> <li>1590 1586 PhTerpy in-plane ring def. and in-plane H-stretch</li> <li>1607 1608 1598 OPhbpp(L⁴) in-plane ring def. and in-plane H-stretch</li> </ul>		1472	1472	1474	PhTerpy in-plane ring def. and in-plane H-stretch
<ul> <li>1536 1535 1534 PhTerpy in-plane ring def. and in-plane H-stretch</li> <li>1563 1566 OPhbpp(L⁴) in-plane ring def. and in-plane H-stretch</li> <li>1590 1586 PhTerpy in-plane ring def. and in-plane H-stretch</li> <li>1607 1608 1598 OPhbpp(L⁴) in-plane ring def. and in-plane H-stretch</li> </ul>	1487			1482	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-stretch
15631566OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch15901586PhTerpy in-plane ring def. and in-plane H-stretch160716081598OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch		1536	1535	1534	PhTerpy in-plane ring def. and in-plane H-stretch
1590     1586     PhTerpy in-plane ring def. and in-plane H-stretch       1607     1608     1598     OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch		1563		1566	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-stretch
1607 1608 1598 OPhbpp(L ⁴ ) in-plane ring def. and in-plane H-stretch	1590			1586	PhTerpy in-plane ring def. and in-plane H-stretch
		1607	1608	1598	$OPhbpp(L^4)$ in-plane ring def. and in-plane H-stretch

Table E.4.12 Continued Assignment of rR and IR for [Ru(L⁴)(PhTerpy)](PF₆)₂

VFT-IR	VrR À488 nm	VrR À514 nm	VCalc	
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment from Gauss view
557			557	bpp in-plane ring def. and Ru-N(bpp) wag
	652	654	646	Terpy(L ¹ ) in-plane ring def.
069			690	OPh out-of-plane ring def.
773			772	OPh out-of-plane H-wag
	801	803	793	Terpy(L ¹ ) in-plane ring def.
849			PF ₆	
	920	918	923	bpp in-plane ring def. and Ru-N(bpp) stretch
	950	948	942	bpp out-of-plane ring def. and phosphazene in-plane ring def.
956			972	OPh in-plane ring def.
		1021	1022	Terpy(L ¹ ) and bpp in-plane ring def.; sym Ru-N(Terpy(L ¹ ) and bpp) stretch
	1037		1032	Terpy( $L^1$ ) in-plane ring def.
	1162	1162	1163	$Terpy(L^1)$ in-plane H-wag
1177			1182	Bpp in-plane ring def. and in-plane H-wag
1259	1262	1261	1259	Terpy( $L^1$ ) in-plane ring def.
	1283		1278	Terpy(L ¹ ) in-plane ring def. and Ru-N(Terpy(L ¹ ))

**Table E.4.13** Assignment of rR and IR for  $[Ru(L^1)(bpp)](PF_6)_2$ 

ľ	cm-1	vrR vši4 mm / cm ⁻¹	vCalc / cm ⁻¹	Assignment from GaussView
-	357	1355	1337	Terpy(L ¹ ) in-plane ring def., in-plane H-stretch and C-O stretch
1405			1406	Terpy $(L^1)$ in-plane ring def. and in-plane H-stretch
1	411		1414	Terpy( $L^1$ ) in-plane ring def. and in-plane H-stretch
1	478	1475	1462	Terpy $(L^1)$ in-plane ring def. and in-plane H-stretch
1485			1483	bpp in-plane ring def. and in-plane H-stretch
1	554	1551	1540	bpp in-plane ring def., in-plane H-stretch and Ru-N(bpp) wag
1591			1577	Terpy(L ¹ ) in-plane H-stretch
1	610	1607	1583	bpp in-plane ring def., in-plane H-stretch and Ru-N(bpp) wag

# **Table E.4.13 Continued** Assignment of rR and IR for $[Ru(L^1)(bpp)](PF_6)_2$

VFT-IR	VrR À488 nm	VrR A514 nm	VCalc	A selemment from Course View
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	
556			556	$OPhTerpy(\mathbb{L}^2)$ and phosphazene in-plane ring def. v. delocalised
		651	640	$OPhTerpy(\mathbb{L}^2)$ and phosphazene in-plane ring def. v. delocalised
	654		646	$\operatorname{OPhTerpy}(\mathbb{L}^2)$ and phosphazene in-plane ring def. v. delocalised
	685		685	$\operatorname{OPhTerpy}(\mathbb{L}^2)$ and phosphazene in-plane ring def. v. delocalised
688			688	OPh out-of-plane ring def.
		713	714	$OPhTerpy(\mathbb{L}^2)$ and phosphazene in-plane ring def. $v.$ delocalised
		750	752	$OPhTerpy(L^2)$ out-of-plane ring def. and out-of-plane H-wag
773			770	OPh out-of-plane ring def. and out-of-plane H-wag
		789	190	bpp out-of-plane ring def. and out-of-plane H-wag
		803	805	$OPhTerpy(L^2)$ in-plane ring def.
	837	839	845	$OPhTerpy(L^2)$ in-plane ring def. and P-O stretching
845			PF6.	
	918		913	bpp out-of-plane ring def. and out-of-plane H-wag
		921	923	bpp in-plane ring def. and in-plane H-wag
	950	949	954	$OPhTerpy(L^2)$ and phosphazene in-plane ring def.

**Table E.4.14** Assignment of rR and IR for  $[Ru(L^2)(bpp)](PF_6)_2$ 

VET ID	V-D À 400	V-D Acid	Vrale	
/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	/ cm ⁻¹	Assignment from GaussView
954			954	Phosphazene in-plane ring def.
		1025	1025	OPhTerpy $(L^2)$ in-plane ring def. and Ru-N asym. stretching
	1031		1031	OPhTerpy( $L^2$ ) and Phosphazene in-plane ring def.
		1045	1041	OPhTerpy $(L^2)$ in-plane ring def. and Ru-N asym. stretching
	1048		1050	bpp in-plane ring def. and in-plane H-wag
	1164		1165	OPhTerpy(L ² ) in-plane H-wag
		1168	1170	bpp in-plane H-wag
1178			1177	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-wag
	1219	1222	1225	OPhTerpy( $L^2$ ) in-plane ring def., in-plane H-stretch and C-O stretch
	1256	1256	1255	$OPhTerpy(L^2)$ in-plane ring def., in-plane H-stretch and Ru-N wag
1269			1273	OPhTerpy( $L^2$ ) in-plane ring def. and in-plane H-stretch
	1290	1288	1286	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch
	1358	1358	1343	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch
	1471		1454	bpp in-plane ring def. and in-plane H-stretch
		1475	1481	bpp in-plane ring def. and in-plane H-stretch

# **Table E.4.14 Continued** Assignment of rR and IR for $[Ru(L^2)(bpp)](PF_6)_2$

Assignment from GaussView	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch	$OPhTerpy(L^2)$ in-plane ring def. and in-plane H-stretch	$\operatorname{OPhTerpy}(L^2)$ in-plane ring def. and in-plane H-stretch	OPhTerpy( $L^2$ ) in-plane ring def. and in-plane H-stretch
VCale / cm ⁻¹	1492	1539	1580	1594
vrR Às14 nm / cm ⁻¹		1538		1610
v _r R À488 nm / cm ⁻¹		1539		1610
VFT-IR / cm ⁻¹	1487		1591	

**Table E.4.14 Continued** Assignment of rR and IR for  $[Ru(L^2)(bpp)](PF_6)_2$ 



Figure E.4.1 rR collected with  $\lambda_{ex} = 514$  nm. Titration of NEt₃ with [Ru(L³)(Terpy)](PF₆)₂.

### **F.1 Instrumentation**

#### F.1.1 Electrochemistry

Cyclic voltammetry was obtained using a glassy carbon working electrode, Pt counter electrode and Ag/AgCl reference electrode,  $v = 0.1 \text{ V s}^{-1}$  on a BAS 100B Electrochemical Workstation (Bioanalytical System Inc.), calibrated with ferrocene. [Fe(L¹)₂](PF₆)₂ and [Fe(L²)₂](PF₆)₂ were recorded in acetonitrile, 0.1 M tetrabutylammonium hexfluorophosphate (TBAPF₆) at 10⁻³ M; [Fe(L¹)₂](ClO₄)₂, [Fe(L²)₂](ClO₄)₂, [Fe(L³)₂](ClO₄)₂ and [Fe(L⁴)₂](ClO₄)₂ were recorded in acetonitrile, 0.1 M tetrabutylammonium perchlorate (TBAClO₄) at 10⁻³ M; [Fe(L³)₂](BF₄)₂ was recorded in acetonitrile, 0.1 M tetrabutylammonium tetrafluoroborate (TBABF₄) at 10⁻³ M.

#### F.1.2 UV-Visible spectroscopy

UV-Visible absorbance spectra were recorded on an Oceans Optics USB2000+UV-Vis spectrophotometer with a variable temperature cell holder  $\pm 0.05$ °C with a Quantum Northwest controller.

Small molecule complexes ( $[Fe(L^1)_2](ClO_4)_2$ ,  $[Fe(L^1)_2](PF_6)_2$ ,  $[Fe(L^2)_2](ClO_4)_2$ ,  $[Fe(L^2)_2](PF_6)_2$ ,  $[Fe(L^3)_2](ClO_4)_2$ ,  $[Fe(L^3)_2](BF4_4)_2$  and  $[Fe(L^4)_2](ClO_4)_2$ ) were in acetonitrile at 10⁻⁵ M for the room temperature measurements and benzonitrile at 10⁻⁵ M for the variable temperature measurements. The thermal expansion of the solutions was based on the density of the solvent as described in the literature.

The polymeric complexes  $([Fe(L^{1P})_2](ClO_4)_2, [Fe(L^{2P})_2](ClO_4)_2, [Fe(L^{3P})_2](ClO_4)_2$  and  $[Fe(L^{4P})_2](ClO_4)_2)$  were recorded in chloroform at 10⁻⁵ M for all temperatures. The thermal expansion of the solutions was based on the density of the solvent as described in the literature.

#### F.1.3 Vibrational spectroscopy

All ground state vibrational measurements were taken using KBr disks on a Nicolet 5700 FT-IR spectrometer. Resonance Raman spectra were recorded by Raphael Horvath and Keith Gordon at Otago University. Resonance Raman measurements were carried out based on a modified version of a system described previously.¹⁻³ Spectra were acquired of solid-state samples at 79 K, 298 K and 362 K with a number of excitation wavelengths. Temperature control was achieved by utilising a variable temperature cell (Specac, Woodstock, GA, USA) and a high stability temperature controller (Specac, Woodstock, GA, USA). Vacuum-purging of the cell was used to minimise condensation and frosting of the quartz window of the variable temperature cell. For excitation at 350.7 and 568.1 nm, a continuous-wave Innova I-302 krypton-ion laser (Coherent, Inc.) was used. For excitation at 457.9 and 514.5 nm an Innova Sabre DBW argon-ion laser (Coherent, Inc.). The beam was passed through either a Pellin-Broca prism (for 350.7, 457.9 and 514.5 nm) or a holographic laser bandpass filter (Kaiser Optical Systems, Inc.) and subsequently two irises in order to remove unwanted laser-lines. The beam-power was adjusted between 20 - 40 mW at the sample, depending on the wavelength used. The sample and collection lens were arranged in a 180° backscattering geometry where the collection lens also served to focus the excitation beam on the sample. The Raman photons were focussed on the entrance slit of an Acton Research SpectraPro500i spectrograph (Princeton Instruments, Inc.) with a 1200 grooves mm⁻¹ grating. The slit width was set to 50  $\mu$ m, giving a resolution of *ca*. 2 cm⁻¹. Radiation from Raleigh and Mie-scattering was attenuated using a notch filter (Kaiser Optical Systems, Inc.) for 568.1 nm and RazorEdge filters (Semrock, Inc.) for other wavelengths. The dispersed photons were detected using a Princeton Instruments liquid nitrogen cooled 1152-EUV charge-coupled detector controlled by a Princeton Instruments ST-130 controller. WinSpec/32 software (Roper Scientific, Inc.) was used to control the CCD, and spectra were analysed using GRAMS/32 (Galactic Industries Corp.) software. Wavelength calibration was achieved using a reference sample made from 1:1 Toluene: Acetonitrile and general alignment was done using a solid sample of carbamazepine.

#### F.1.4 Magnetic susceptibility

Magnetic susceptibility data was recorded by Dr. Boujemaa Moubaraki at Monash University. Measurements were made using a Quantum Design MPMS 5 SQUID magnetometer operating with an applied field of 1T. The samples were loaded into a gelatine capsule held in the centre of a drinking straw fixed to the end of the sample rod.

#### F.1.5 Mössbauer spectroscopy

Under argon iron-57 (95% I.E.) powder was obtained from Isoflex. Fe-57(ClO₄)₂·6H₂O was produced by dissolving iron power (200 mg, 3.5 mmol) in acetonitrile (4 mL) and perchloric acid (2.5 mL, 17.5 mmol) was added. The solution was filtered and diethyl ether was added. The solution was cooled for -4°C yielding pale green crystals. The crystals were filtered and washed with diethyl ether.

⁵⁷Fe Mössbauer spectra were recorded by Dr. Guy N. L. Jameson at the University of Otago. Approximately 20 mg of sample was placed in a nylon sample holder (12.8 mm diameter, 1.6 mm thickness) with Kapton windows. Mössbauer spectra were measured on a Mössbauer spectrometer from SEE Co. (Science Engineering & Education Co., MN) equipped with a closed cycle refrigerator system from Janis Research Co. and SHI (Sumitomo Heavy Industries Ltd.). Data were collected in constant acceleration mode in transmission geometry with an applied field of 47 mT perpendicular to the γ-rays. The zero velocity of the Mössbauer spectra refers to the centroid of the room temperature spectrum of a 25 μm metallic iron foil. Analysis of the spectra was conducted using the WMOSS program (SEE Co., formerly WEB Research Co., Edina, MN).

### **F.2** Computational

## F.2.1 Bond lengths

**Table F.2.1.1** Average bond length difference for the cationic DFT models.

	Average bo	nd length dif	ference (Å)
Level	$[Fe(L^1)_2]^{2+}$	$[Fe(L^2)_2]^{2+}$	$[Fe(L^3)_2]^{2+}$
B3LYP	0.021	0.021	0.021
OLYP	0.005	0.006	0.003

#### F.2.2 MAD values

**Table F.2.2.1** A comparison of MAD values for B3LYP and OLYP.

Tarral		MAD values	
Level	$[Fe(L^1)_2]^{2+}$	$[Fe(L^2)_2]^{2+}$	$[Fe(L^3)_2]^{2+}$
B3LYP	4.52	4.08	7.70
OLYP	4.27	4.17	5.36

### F.3 Electronic spectra assignment

On the basis that the OLYP/6-31G(d) provided the most accurate model of the cationic complex the electronic spectra were assigned by calculating each of the electronic transitions associated with the MLCT band. Shown in Tables F.3.1-4 are the first ten transitions with a non-zero oscillator strength.

**Table F.3.1** Summary of the first ten transitions calculated for the cationic complex $[Fe(L^1)_2]^{2+}$ Only transitions with nonzero oscillator strengths are shown.

		ç		- 5		
Mnm	E/eV	ſ	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			H0M0-2 → LUM0+3	0.14	$Fe \rightarrow OTerpy(L^1)$	
657	1.88	0.0014	HOMO-1 → LUMO	0.24	$Fe \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO	0.62	$Fe \rightarrow OTerpy(L^1)$	
			HOMO-2 → LUMO+2	0.26	Fe $\rightarrow$ OTerpy(L ¹ )	
653	1.89	0.0014	HOMO-1 → LUMO	0.59	$Fe \rightarrow OTerpy(L^1)$	MLCT
			HOMO → LUMO	-0.25	$Fe \rightarrow OTerpy(L^1)$	
			HOMO-1 $\rightarrow$ LUMO+1	-0.16	$Fe \rightarrow OTerpy(L^1)$	
643	1 03	90000	HOMO-1 → LUMO+2	-0.12	$Fe \rightarrow OTerpy(L^1)$	TO TA
<b>F</b>	1.74	0.0000	HOMO-1 → LUMO+3	-0.16	$Fe \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+1	0.64	$Fe \rightarrow OTerpy(L^1)$	

Table F.3.1 continued. Summary of the first ten transitions calculated for the cationic
complex $[Fe(L^1)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

<b>∕nm</b>	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOM0-2 → LUMO	-0.12	$Fe \rightarrow OTerpy(L^1)$	
0	101	0000	HOMO-1 $\rightarrow$ LUMO+1	-0,13	$Fe \rightarrow OTerpy(L^1)$	
0	16.1	1000'0	HOMO-1 $\rightarrow$ LUMO+3	0.12	$Fe \rightarrow OTerpy(L^1)$	
			HOMO → LUMO+2	0.65	$Fe \rightarrow OTerpy(L^1)$	
			HOMO-2 $\rightarrow$ LUMO+1	0.14	$Fe \rightarrow OTerpy(L^1)$	
c			HOMO-1 $\rightarrow$ LUMO+2	0.22	$Fe \rightarrow OTerpy(L^1)$	
ע	7.00	6/00'0	HOMO-1 → LUMO+3	0.55	$Fe \rightarrow OTerpy(L^1)$	MILUI
			HOMO-1 → LUMO+4	-0.29	$Fe \rightarrow OTerpy(L^1)$	
			HOM0-2 $\rightarrow$ LUM0+1	0.59	$Fe \rightarrow OTerpy(L^1)$	
			HOMO-2 $\rightarrow$ LUMO+2	0.19	Fe $\rightarrow$ OTerpy(L ¹ )	
4	2.01	0,0030	HOMO-2 →LUMO+3	0.10	$Fe \rightarrow OTerpy(L^1)$	MLCT
			HOMO-1 →LUMO	-0.22	$Fe \rightarrow OTerpy(L^1)$	
			HOM0-1 →LUM0+2	-0.12	$Fe \rightarrow OTerpy(L^1)$	

Table F.3.1 continued. Summary of the first ten transitions calculated for the cationic
complex $[Fe(L^1)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

$\lambda/\mathrm{nm}$	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOM0-2 →LUM0+1	-0.17	$Fe \rightarrow OTerpy(L^1)$	
000	30 0		HOMO-2 → LUMO+2	0.63	$Fe \rightarrow OTerpy(L^1)$	TO DA
700	CU.2	0,000,0	HOMO-2 → LUMO+3	0.18	$Fe \rightarrow OTerpy(L^1)$	MILUI
			HOMO-1 → LUMO	0.11	$Fe \rightarrow OTerpy(L^1)$	
			HOMO-1 $\rightarrow$ LUMO+1	0.13	Fe $\rightarrow$ OTerpy(L ¹ )	
223	, ,	00000	HOMO-1 $\rightarrow$ LUMO+2	0.22	Fe $\rightarrow$ OTerpy(L ¹ )	
110	2.14	4000'N	HOMO-1 →LUMO+3	0.57	$Fe \rightarrow OTerpy(L^1)$	MILUI
			HOMO → LUMO+1	0.20	$Fe \rightarrow OTerpy(L^1)$	
			HOMO-2 $\rightarrow$ LUMO+2	-0.19	$Fe \rightarrow OTerpy(L^1)$	MLCT
273	010		HOMO-2 →LUMO+3	0.62	Fe $\rightarrow$ OTerpy(L ¹ )	
/00	7.10	1670'0	HOMO-1 →LUMO+4	0.10	$Fe \rightarrow OTerpy(L^1)$	
			HOMO →LUMO	-0.12	Fe $\rightarrow$ OTerpy(L ¹ )	

<b>Table F.3.1 continued.</b> Summary of the first ten transitions calculated for the cationic
complex $[Fe(L^1)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

	£	Orbital transition(s)	Coefficients	<b>Major Contributors</b>	Assignment
		HOMO-2 → LUMO	0,40	Fe $\rightarrow$ OTerpy(L ¹ )	
		HOMO-1 $\rightarrow$ LUMO+1	0.39	Fe $\rightarrow$ OTerpy(L ¹ )	
549 2.25 0.16	629	HOMO-1 → LUMO+2	-0.20	Fe $\rightarrow$ OTerpy(L ¹ )	MLCT
		HOMO → LUMO+2	0.17	$Fe \rightarrow OTerpy(L^1)$	
		HOMO →LUMO+5	0.11	$Fe \rightarrow OTerpy(L^1)$	

Table F.3.2 Summary of the first ten transitions calculated for the cationic complex
$[Fe(L^2)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

λ/nm	E/eV	£	Orbital transition(s)	Coefficients	Major Contributors	Assignment
077	1 05	20000	HOMO-2 $\rightarrow$ LUMO+3	-0.10	$Fe \rightarrow OPhTerpy(L^2)$	
600	C0.1	0,0000	HOMO → LUMO	0.67	$Fe \rightarrow OPhTerpy(L^2)$	MILUI
640	1 00		HOMO-1 $\rightarrow$ LUMO+3	0.14	$Fe \rightarrow OPhTerpy(L^2)$	TO DA
000	1.00	0600.0	HOM0 → LUM0+1	0.67	$Fe \rightarrow OPhTerpy(L^2)$	MILUI
			HOMO-2 → LUMO	-0.25	$Fe \rightarrow OPhTerpy(L^2)$	
618	2.00	0.0106	HOMO-1 → LUMO+1	-0.20	$Fe \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO → LUMO+2	0.60	$Fe \rightarrow OPhTerpy(L^2)$	
112	5	20000	HOMO-1 $\rightarrow$ LUMO+2	0.69	$Fe \rightarrow OPhTerpy(L^2)$	TO DA
014	7.01	CZUU.U	HOMO-1 → LUMO+3	0.10	$Fe \rightarrow OPhTerpy(L^2)$	MILUI
200		00000	HOMO-2 $\rightarrow$ LUMO+2	0.60	Fe $\rightarrow$ OPhTerpy(L ² )	TO DA
040	7.07	0,0000	HOMO-2 → LUMO+3	-0.34	$Fe \rightarrow OPhTerpy(L^2)$	MILUI
			HOMO-2 → LUMO	-0.15	$Fe \rightarrow OPhTerpy(L^2)$	
200			HOM0-1 $\rightarrow$ LUM0+1	0.37	$Fe \rightarrow OPhTerpy(L^2)$	
000	7.10	1070'0	HOMO → LUMO+2	0.13	Fe $\rightarrow$ OPhTerpy(L ² )	
			HOMO → LUMO+3	0.52	$Fe \rightarrow OPhTerpy(L^2)$	

$\lambda/\mathrm{nm}$	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
5			HOMO-2 → LUMO	0.38	$Fe \rightarrow OPhTerpy(L^2)$	
			HOMO-2 →LUMO+2	0.10	Fe $\rightarrow$ OPhTerpy(L ² )	
			HOMO-2 → LUMO+3	0.17	$Fe \rightarrow OPhTerpy(L^2)$	
572	2.16	0.4578	HOMO-1 → LUMO+1	0.30	$Fe \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO-1 → LUMO+3	-0.13	$Fe \rightarrow OPhTerpy(L^2)$	
			HOMO → LUMO+2	0.26	Fe $\rightarrow$ OPhTerpy(L ² )	
			HOMO → LUMO+3	-0,19	$Fe \rightarrow OPhTerpy(L^2)$	
			HOMO-1 $\rightarrow$ LUMO+2	-0.10	Fe $\rightarrow$ OPhTerpy(L ² )	
571	2.16	0.0421	HOMO-1 $\rightarrow$ LUMO+3	0.64	$Fe \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO → LUMO+1	-0.10	$Fe \rightarrow OPhTerpy(L^2)$	
			HOMO-2 → LUMO	-0.13	Fe $\rightarrow$ OPhTerpy(L ² )	
570	2.17	0.0745	HOMO-2 → LUMO+2	0.29	$Fe \rightarrow OPhTerpy(L^2)$	MLCT
			HOMO-2 → LUMO+3	0.56	$Fe \rightarrow OPhTerpy(L^2)$	

**Table F.3.2 Continued** Summary of the first ten transitions calculated for the cationic complex  $[Fe(L^2)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

λ/nm	E/eV	ŕ	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 → LUMO	-0.10	Fe $\rightarrow$ Obbp(L ³ )	
022	1 50		HOMO → LUMO	0.48	$Fe \rightarrow Obbp(L^3)$	
611	<i>к</i> с.1	0.0042	HOMO → LUMO+1	-0.41	$Fe \rightarrow Obbp(L^3)$	MILUI
			HOM0 → LUM0+2	-0.23	$Fe \rightarrow Obbp(L^3)$	
			HOMO → LUMO+1	-0.37	Fe $\rightarrow$ Obbp(L ³ )	
770	1.61	0.0032	HOMO →LUMO+2	0.53	$Fe \rightarrow Obbp(L^3)$	MLCT
			HOMO → LUMO+3	-0.20	$Fe \rightarrow Obbp(L^3)$	
			HOMO → LUMO	0.14	Fe $\rightarrow$ Obbp(L ³ )	
757	1.64	0.0268	HOMO → LUMO+2	0.26	$Fe \rightarrow Obbp(L^3)$	MLCT
			HOMO → LUMO+3	09.0	$Fe \rightarrow Obbp(L^3)$	
			HOMO-2 → LUMO	0.51	Fe $\rightarrow$ Obbp(L ³ )	
612		96100	HOMO-2 $\rightarrow$ LUMO+1	0.11	$Fe \rightarrow Obbp(L^3)$	
C10	70.7	0.000	HOMO-2 → LUMO+2	0.31	$Fe \rightarrow Obbp(L^3)$	
			HOMO-2 $\rightarrow$ LUMO+3	0.28	$Fe \rightarrow Obbp(L^3)$	

**Table F.3.3** Summary of the first ten transitions calculated for the cationic complex  $[Fe(L^3)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

**Table F.3.3 Continued** Summary of the first ten transitions calculated for the cationic complex  $[Fe(L^3)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

	ors Assignment		) MLCT			-				
	Major Contribut	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$	$Fe \rightarrow Obbp(L^3)$
	Coefficients	-0.18	-0.37	0.53	-0.24	0.27	0.24	-0.24	0.32	-0.18
	Orbital transition(s)	HOMO-1 → LUMO	HOMO-1 $\rightarrow$ LUMO+1	HOMO-1 $\rightarrow$ LUMO+3	HOMO-2 → LUMO	HOMO-2 →LUMO+1	HOMO-2 → LUMO+2	HOMO-1 $\rightarrow$ LUMO+1	HOMO-1 $\rightarrow$ LUMO+2	HOM0-1 $\rightarrow$ LUM0+3
ų	J		0.0434				01210	0/01.0		
77.12	E/eV		2.03					7.20		
	∕/nm		609				510	040		

Orbital transition(s) Coeffi	Najor Contributors Assignme
HOMO $\rightarrow$ LUMO 0.68	$Fe \rightarrow OPhbpp(L^*)$ MLC'I
HOMO $\rightarrow$ LUMO+1 0.68	$Fe \rightarrow OPhbpp(L^4)$ MLC1
HOMO-2 → LUMO 0.14	$Fe \rightarrow OPhbpp(L^4)$
HOMO-2 → LUMO+1 0.17	$Fe \rightarrow OPhbpp(L^4)$
HOMO-1 → LUMO+1 -0.10	$Fe \rightarrow OPhbpp(L^4)$ MLCT
HOMO → LUMO+3 -0.3	$Fe \rightarrow OPhbpp(L^4)$
HOMO → LUMO+4 0.50	$Fe \rightarrow OPhbpp(L^4)$
HOM0-2 → LUM0+1 -0.1	$Fe \rightarrow OPhbpp(L^4)$
HOMO-1 → LUMO 0.2	$Fe \rightarrow OPhbpp(L^4)$
HOMO-1 →LUMO+1 -0.1	$Fe \rightarrow OPhbpp(L^4)$ MLCT
HOMO $\rightarrow$ LUMO+3 0.4'	$Fe \rightarrow OPhbpp(L^4)$
HOMO → LUMO+4 0.3	

**Table F.3.4** Summary of the first ten transitions calculated for the cationic complex $[Fe(L^4)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

Table F.3.4 continued Summary of the first ten transitions calculated for the cationic
complex $[Fe(L^4)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

λ/nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 → LUMO	-0.27	Fe → OPhbpp(L ⁴ )	
			HOMO-2 $\rightarrow$ LUMO+1	-0.31	Fe → OPhbpp(L ⁴ )	
613	( (	12100	HOMO-1 → LUMO	-0.30	Fe → OPhbpp(L ⁴ )	
710	74.7	0.74/1	HOM0-1 $\rightarrow$ LUM0+1	0.27	Fe $\rightarrow$ OPhbpp(L ⁴ )	MILUI
			HOMO → LUMO+3	-0.10	Fe $\rightarrow$ OPhbpp(L ⁴ )	
			HOMO → LUMO+4	0.24	Fe $\rightarrow$ OPhbpp(L ⁴ )	
2			HOMO-2 $\rightarrow$ LUMO+2	0.32	Fe → Fe	
			HOMO-2 → LUMO+4	-0.14	Fe $\rightarrow$ OPhbpp(L ⁴ )	
507	2.44	0.0031	HOMO-2 → LUMO+5	-0.11	Fe → Fe-N*	MLCT
			HOMO-1 → LUMO+2	0.14	Fe → Fe	
			HOMO-1 → LUMO+3	0.55	Fe $\rightarrow$ OPhbpp(L ⁴ )	

λnm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 → LUMO+3	0.30	Fe → OPhbpp(L ⁴ )	
			HOMO-2 → LUMO+4	0.38	Fe → OPhbpp(L ⁴ )	
103	37 0	0.0160	HOMO-1 → LUMO+2	-0.38	<b>Fe → Fe</b>	
100	64.7	0010.0	HOMO-1 $\rightarrow$ LUMO+3	0.20	$Fe \rightarrow OPhbpp(L^4)$	MILUI
			HOMO-1 → LUMO+4	-0.10	Fe → OPhbpp(L ⁴ )	
			HOMO-1 → LUMO+5	-0.18	Fe → Fe-N*	
			HOMO-2 $\rightarrow$ LUMO+2	0.35	Fe → Fe	
			HOMO-2 → LUMO+4	-0.19	$Fe \rightarrow OPhbpp(L^4)$	
			HOMO-2 → LUMO+5	-0.31	Fe → Fe-N*	
493	2.51	0.0050	HOMO-1 → LUMO+2	-0.22	<b>Fe → Fe</b>	MLCT
			HOMO-1 $\rightarrow$ LUMO+3	-0.23	$Fe \rightarrow OPhbpp(L^4)$	
			HOMO-1 → LUMO+4	0.28	$Fe \rightarrow OPhbpp(L^4)$	
			HOMO-1 → LUMO+5	-0.14	Fe → Fe-N*	

**Table F.3.4 continued** Summary of the first ten transitions calculated for the cationic complex  $[Fe(L^4)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

433
**Table F.3.4 continued** Summary of the first ten transitions calculated for the cationic complex  $[Fe(L^4)_2]^{2+}$ . Only transitions with nonzero oscillator strengths are shown.

λ/nm	E/eV	f	Orbital transition(s)	Coefficients	Major Contributors	Assignment
			HOMO-2 $\rightarrow$ LUMO+2	0.16	Fe → Fe	
			HOMO-2 $\rightarrow$ LUMO+3	-0.20	$Fe \rightarrow OPhbpp(L^4)$	
			HOMO-2 → LUMO+4	0.53	$Fe \rightarrow OPhbpp(L^4)$	
492	2.51	0.0092	HOMO-2 → LUMO+5	-0.11	Fe → Fe-N*	MLCT
			HOMO-1 → LUMO+2	0.20	Fe → Fe	
			HOMO-1 → LUMO+4	0.16	$Fe \rightarrow OPhbpp(L^4)$	
			HOMO-1 → LUMO+5	0.18	Fe → Fe-N*	
			HOMO-2 $\rightarrow$ LUMO+3	0.51	Fe → OPhbpp(L ⁴ )	
LOV	20	0,010,0	HOMO-1 → LUMO+2	0.14	Fe → Fe	
40/	4.04	<b>C</b> 010'0	HOMO-1 → LUMO+4	0.34	Fe $\rightarrow$ OPhbpp(L ⁴ )	MILC I
			HOMO-1 → LUMO+5	0.24	Fe → Fe-N*	

## **F.4 Iron titration of L³**

The equilibrium of  $Fe(BF_4)_2 \cdot 6H_2O$  and  $L^3$  was studied by following the peak absorbance of the MLCT band as  $Fe(BF_4)_2 \cdot 6H_2O$  was gradually added to an acetonitrile solution of  $L^3$  at  $20 \pm 0.05^{\circ}C$  (see spectra in Figure F.4.1).  $Fe(BF_4)_2 \cdot 6H_2O$  was used for this investigation as it is less hydroscopic than  $Fe(ClO_4)_2 \cdot 6H_2O$ , allowing for an accurate calculation of concentration.



**Figure F.4.1** Left: The spectra of  $L^3$  as  $Fe(BF_4)_2 \cdot 6H_2O$  was added. Right: A plot of peak absorbance vs. ratio of iron:ligand.

## F.5 Assignment of vibrational modes

On the basis that the OLYP/6-31G(d) provided the most accurate model of the cationic complex the assignments of the perchlorate complexes vibrational spectra were made based on the calculated spectra (Tables F.5.1-4).

.ale / cm ⁻¹ Assignment from GaussView	22 OTerpy(L ¹ ) in-plane deform	A OTerpy(L ¹ ) and CTP out of plane deform v. delocalise	66 OTerpy(L ¹ ) and CTP out of plane deform v. delocalise	02 OTerpy(L ¹ ) and CTP out of plane deform v. delocalise	¹⁰ CTP and OPh deform v delocalised	11 OTerpy out-of-plan distortion	⁷⁹ CTP out-of-plan deform and P-O stretch	ClO4 ⁻	015 OPh ring in-plane deform and H-stretch	86 CTP in-plane deform	60 OPh and OTerpy in-plane deform, H in-plane stretch	ClO4 ⁻	$(45  ext{OTerpy}(L^1)  ext{ in-plane ring deform and H-stretch})$
$v_{rR} \lambda_{568nm} / cm^{-1} v_{c}$	62	655 64	68	694 69	77	8	83		1020 10	10	1160 11		1243 12
$v_{rR} \lambda_{514 nm} / cm^{-1}$													
vft-ir / cm ⁻¹	622		689		771	840	879	955		1092	1159	1177	

**Table F.5.1** DFT assigned vibrational modes for  $[Fe(L^1)_2](ClO_4)$ .

Assignment from GaussView	OTerpy $(L^1)$ in-plane ring deform and H-stretch	OTerpy $(L^1)$ in-plane ring deform and H-stretch	OTerpy( $L^1$ ) and OPh in-plane ring deform and H-stretch	OTerpy( $L^1$ ) in-plane ring deform and H-stretch	OTerpy(L ¹ ) in-plane ring deform, H-stretch and Fe-N w _i	OTerpy( $L^1$ ) in-plane ring deform, H-stretch and Fe-N w _i	OTerpy( $L^1$ ) in-plane ring deform, H-stretch and Fe-N w _i	OTerpy( $L^1$ ) in-plane ring deform and H-stretch
$v_{Calc} / cm^{-1}$	1259	1285	1338	1468	1498	1545	1584	1588
$v_{rR} \lambda_{568nm} / cm^{-1}$	1261	1287	1358	1471	1488	1551		1608
$v_{rR} \lambda_{514 nm} / cm^{-1}$		1286	1357	1472	1488	1551		1609
v _{FT-IR} / cm ⁻¹	1262				1487		1591	

**Table F.5.1 Continued** DFT assigned vibrational modes for  $[Fe(L^1)_2](ClO_4)$ .

$v_{\rm FT-IR} / cm^{-1}$	$v_{rR} \lambda_{514 nm} / cm^{-1}$	$v_{rR}\lambda_{568nm}/cm^{-1}$	$v_{Calc} / cm^{-1}$	Assignment from GaussView
498			498	CTP and OPhTerpy( $L^2$ ) out-of-plane ring deform v. delocalised
624			624	$OPhTerpy(L^2)$ in-plane deform
		653	651	CTP and OPhTerpy( $L^2$ ) out-of-plane ring deform v. delocalised
689		687	689	$OPhTerpy(L^2)$ out-of-plane ring deform
770			771	CTP, OPhTerpy( $L^2$ ) and OPh in-plane ring deform v. delocalised
		842	842	$OPhTerpy(L^2)$ H-wag out-of-plane
881			885	P-O stretching, CTP and OPh out-of-plane distortion
949				CIO4 ⁻
	1018		1014	$OPhTerpy(L^2)$ ring breathing
		1021		CIO4 ⁻
		1047	1044	$OPhTerpy(L^2)$ ring breathing
1088			1082	CTP in-plane deform
		1094	1102	OPhTerpy( $L^2$ ) in-plane deform and Fe-N symm stretch
1160			1149	$OPhTerpy(L^2)$ in-plane deform and H-stretch
		1164	1164	$OPhTerpy(L^2)(Ph)$ in-plane deform and H-stretch
	1265		1265	OPhTerpy( $L^2$ ) in-plane ring deform, H and C-O stretch

**Table F.5.2** DFT assigned vibrational modes for  $[Fe(L^2)_2](ClO_4)$ .

<u>د</u> ک	unu	nue	uD	1.1.0	19915	sneu	viu	and	ла	mot	162 1		-0(1
	Assignment from GaussView	$OPhTerpy(L^2)$ in-plane ring deform, H stretch	OPhTerpy( $L^2$ ) in-plane ring deform, H and C-O stretch	OPhTerpy( $L^2$ ) in-plane ring deform, H and Fe-N stretch	OPh in-plane ring deform, H stretch	OPhTerpy( $L^2$ ) in-plane ring deform, H and Fe-N wag	OPhTerpy( $L^2$ ) in-plane ring deform, H stretch wag and Fe-N wag	OPhTerpy $(L^2)$ in-plane ring deform, H stretch wag and Fe-N wag	OPhTerpy( $L^2$ ) in-plane ring deform, H stretch wag and assym. Fe-N stretch	OPhTerpy( $L^2$ ) in-plane ring deform, H stretch wag and assym. Fe-N stretch	OPhTerpy( $L^2$ ) in-plane ring deform and H stretch	OPhTerpy( $L^2$ ) in-plane ring deform and H stretch	
	v _{Calc} / cm ⁻¹	1292	1268	1391	1472	1482	1483	1543	1568	1570	1595	1597	
	$v_{rR} \lambda_{568nm} / cm^{-1}$	1291	1268	1364	1472	1486		1543		1565		1611	
	$v_{rR} \lambda_{514 \text{ nm}} / \text{ cm}^{-1}$	1290		1363	1471	1485		1540	1561			1611	
	vft-ir / cm ⁻¹		1268				1488				1590		

**Table F.5.2 Continued** DFT assigned vibrational modes for  $[Fe(L^2)_2](ClO_4)$ .

vrR	$v_{rR} \lambda_{568nm} / cm^{-1}$	v _{Calc} / cm ⁻¹	Assignment from GaussView
576		575	$Obbp(L^3)$ , CTP and OPh out-of-plane ring deform v. delocalised
597		602	$Obbp(L^3)$ in-plane ring deform
	638	630	$Obbp(L^3)$ in-plane ring deform
	653	653	$Obbp(L^3)$ out-of-plane ring deform and CTP in-plane ring deform
	687	687	$Obbp(L^3)$ and CTP in-plane ring deform
	950	944	$Obbp(L^3)$ H-bend out-of-plane
	1003	1001	Fe-N assym stretch and in-plane $Obbp(L^3)$ ring deform
	1014	1015	Fe-N assym stretch and in-plane $Obbp(L^3)$ ring deform
	1029	1030	Fe-N sym stretch and in-plane $Obbp(L^3)$ ring deform
	1119	1112	$Obbp(L^3)$ H in-plane stretch
	1149	1149	$Obbp(L^3)$ H in-plane stretch

**Table F.5.3** DFT assigned vibrational modes for  $[Fe(L^3)_2](ClO_4)$  at 80 K.

Appendix F: Chapter 7 Supplementary

$v_{rR}\lambda_{514nm}/cm^{-1}$	v _r r à568nm / cm ⁻¹	$v_{Calc} / cm^{-1}$	Assignment from GaussView
1246		1255	$Obbp(L^3)$ in-plane ring breathing and $Obbp(L^3)$ H stretch in-plane
1276		1271	Obbp( $L^3$ ) in-plane deform and Obbp( $L^3$ ) H in-plane stretch
	1293	1296	$Obbp(L^3)$ in-plane ring deform and Fe-N wag
	1364	1366	Obbp $(L^3)$ in-plane ring deform Fe-N symm stretch
1393	1392	1385	$Obbp(L^3)$ in-plane ring deform
1450	1448	1451	$Obbp(L^3)$ in-plane ring deform
	1464	1469	Obbp( $L^3$ ) and OPh in-plane ring and Obbp( $L^3$ ) H in-plane stretch
	1491	1496	$Obbp(L^3)$ in-plane ring deform and Fe-N wag
1496		1496	$Obbp(L^3)$ in-plane ring deform and Fe-N wag
	1544	1534	Obbp( $L^3$ ) in-plane ring deform and Obbp( $L^3$ ) H in-plane stretch
1551		1567	Obbp( $L^3$ ) in-plane ring deform and Obbp( $L^3$ ) H in-plane stretch
1564		1561	Obbp( $L^3$ ) in-plane ring deform and Obbp( $L^3$ ) H in-plane stretch
	1616	1602	Obbp( $L^3$ ) in-plane ring deform and Obbp( $L^3$ ) H in-plane stretch
1629	1627	1606	$Obbp(L^3)$ in-plane ring deform and $Obbp(L^3)$ H in-plane stretch

Table F.5.3 1O₄) at 80 K.



**Figure F.5.1** Solid-state rR collected for  $[Fe(L^3)_2](BF_4)_2$ .  $\lambda_{ex}$  514 nm.

## **F.6 References**

1. Lundin, N. J.; Walsh, P. J.; Howell, S. L.; McGarvey, J. J.; Blackman, A. G.; Gordon,

K. C. Inorganic Chemistry 2005, 44, 3551-3560.

2. Howell, S. L.; Matthewson, B. J.; Polson, M. I. J.; Burrell, A. K.; Gordon, K. C. *Inorganic Chemistry* **2004**, *43*, 2876-2887.

3. Horvath, R.; Gordon, K. C. Coordination Chemistry Reviews 2011, 254, 2505-2518.

4. Alver, O.; Parlak, C.; Senyel, M. Journal of Molecular Structure 2009, 923, 120-126.

5. Tantirungrotechai, Y.; Phanasant, K.; Roddecha, S.; Surawatanawong, P.;

Sutthikhum, V.; Limtrakul, J. *Journal of Molecular Structure-Theochem* **2006**, *760*, 189-192.