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ABSTRACT 

The aluminium industry consumes large amounts of electrodes, especially anodes, to 

operate the smelters. These anodes must be baked at high temperatures in order to 

give them certain mechanical and electrical properties, after which they are cooled. 

Baking is done in large furnaces made up of pits inside which the anodes are placed in 

layers and surrounded by packing coke. The furnaces are of two types - open and 

closed. In a closed furnace, the pits are lined with refractory bricks inside which 

flues run vertically and large covers are used to close over parts of the furnace. 

This thesis presents a mathematical model of part of a forced cooling section of a 

closed furnace, where air is being sucked or blown through the flues by fans, so that 

the anodes cool more rapidly. Both one- and two-dimensional models are developed 

in order to calculate the transient temperature distribution in the anodes, packing coke 

and side flue wall. For the two-dimensional model, the transient temperature and 

pressure distributions of the air in the side wall flues and fire shafts are also 

calculated. After exploring an analytical method for the one-dimensional case, 

numerical techniques are used thereafter. 

Given initial block and air temperatures, the two-dimensional model allows 

calculation of the appropriate temperature and pressure distributions for various mass 

flows of air in the side wall flues and fire shafts. The results show that for a 

sufficiently high mass flow, the anodes can be cooled enough so that they can be 

safely removed from the pits after three fire cycles (the length of time the anodes are 

exposed to forced cooling). 
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NOMENCLATURE 

Alternative uses are separated by a semi-colon. Dimensions are in square brackets. 

A,B 

a, b,c,d,e,f 

Bi 

cm, m = 1 to 9 

E,e 

ea, ep, ew 

estTf 

F, f 

I\ 

Fo,Fo 

Foa, Fop, Fow 

G 

h 

hc,hr 

k 

ka, kp, kw 

kf 

defined functions 

constants 

lengths associated with a flue and a flue wall [m] 

Biot number [ - ] 

constants 

specific heat capacity at constant pressure of the 
block and the fluid or air [J/kg K] 

specific heat capacity at constant pressure of the anode, 
packing coke and flue wall [J/kg K] 

total and internal energy per unit mass of the block 
[J/kg] 

internal energy per unit mass of the anode, packing coke 
and flue wall [J/kg] 

estimated fluid temperature [K] 

defined functions 

Fourier [ - ] and 'hatted' Fourier number of the block 
[1/K] 

Fourier number of the anode, packing coke and flue 
wall [ - ] 

defined function 

enthalpy per unit mass of the block [J/kg]; heat transfer 
coefficient [W/m2K] 

heat transfer coefficient for convection and radiation 
[W/m2K] 

thermal conductivity of the block [W /mK]; real 
constant 

thermal conductivity of the anode, packing coke and 
flue wall [W /mK] 

thermal conductivity of the fluid [W /mK] 
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m 

max. 

mm. 

Nu 

p 

percentdiff 

pfl, pfs 

Pr 

Q 

Qw 

Re 

s 

T 

t 

Ta, Tp, Tw 

Tf 

V 

V 

w 

X 

x,y,z 

characteristic length [m] 

width of the block [m] 

depth of the block [m] 

mass flow of the fluid [kg/s] 

maximum 

minimum 

Nusselt number [ - ] 

pressure in the block; pressure of the fluid or air 

[N/m2] 

percentage difference between fluid temperatures 

pressure of the fluid in a flue and a fire shaft [N/m2] 

Prandtl number [ - ] 

rate of heat flow per unit area of the block [J/sm2 ] 

rate of heat flow per unit area at the flue wall [J/sm2J 

Reynolds number [ - ] 

surface of an elemental volume in the block [m2
] 

temperature of the block [K] 

time [s] 

temperature of the anode, packing coke and flue wall 
[K] 

fluid or air temperature [K] 

elemental volume in the block or a flue [m3] 

velocity of the fluid [mis] 

width of a 'large' flue [m] 

defined function 

spatial coordinates 
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Greek 
I\ cx,cx 

cxa, exp, aw 

~Q 

~Qa, ~Qp, ~Qw 

~Qf 

~t 

~ta, ~tp, ~tw 

~a,~xp,~xw 

~y 

µ 

p 

pa, pp, pw 

pf 

thermal diffusivity [m2/s] and 'hatted' thermal 

diffusivity of the block [m2 /sK] 

thermal diffusivity of the anode, packing coke and flue 
wall [m2/s] 

defined functions 

change in the pressure of the fluid; pressure difference 
across a fan [N/m2

] 

heat transferred from the block in time ~t [J] 

heat transferred from the anode, packing coke and flue 

wall in time ~t [J] 

heat gained by the fluid or air in time ~t [J] 

overall time step length [s] 

length of time step in the anode, packing coke and flue 
wall [s] 

distance between mesh points in the x-direction [m] 

distance between mesh points in the anode, packing 
coke and flue wall [m] 

distance between mesh points in they-direction [m] 

emissivity of the flue wall [ - ] ; roughness of the flue 
wall [m] 

defined functions 

defined functions 

real constant; defined function; friction factor [ - ] 

dynamic viscosity of the fluid [kg/ms] 

density of the block [kg/m3
] 

density of the anode, packing coke and flue wall [kg/m3
] 

density of the fluid [kg/m3] 
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Subscripts 

1, i = 1 to Nx 

J, j = 1 to Ny 

p 

q, q = 1 to Nxa 

r, r = 1 to Nxp 

s, s = 1 to Nxw 

w 

n 

Superscripts 

n 

Stefan-Boltzmann constant [ W/m2K4] 

integration variable 

defined function 

mesh points in the x-direction 

mesh points in the y-direction 

constant pressure [N/m2] 

mesh points in the x-direction in the anode 

mesh points in the x-direction in the packing coke 

mesh points in the x-direction in the flue wall 

flue wall 

natural number 

time steps, n = 1 to Nt 
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CHAPTERl INTRODUCTION 

1.1 Background 

The aluminium industry consumes large amounts of electrodes, especially 

anodes, to operate the smelters. These carbon anodes are made of petroleum 

coke held together by a pitch binder. They must be baked to a given 

temperature, approximately 1200 °C, following a given temperature profile 

(no more than 10 -15 °C/hour) in order to end up with the required mechanical 

and electrical properties. Baking is done in large furnaces made up of pits 

inside which the unbaked anodes are placed in layers and surrounded by 

packing coke. These furnaces are of two types, one of which is the 

Riedhammer (vertical ring, or closed) furnace, a schematic of which is shown 

in Figure 1.1. 

In the Riedhammer furnace, the pits are lined with refractory bricks inside 

which flues run vertically and large covers are used to close over parts of the 

furnace. A typical Riedhammer furnace consists of two or three fire trains 

grouped together on a rectangular shaped ring. As shown in Figure 1.1, each 

fire train comprises about fourteen sections, or sets of pits, and consists of 

three zones - preheat, fire and cooling zone. Hot combustion gases flow 

through the flues in the fire and preheat zones, whilst air flows through the 

flues in the cooling zone. 

The cooling zone is divided into two parts - natural and forced cooling. In the 

natural cooling part, the anodes are just left to cool. The forced cooling 

sections have big fans which either blow or suck air through the flues to 

increase the rate of cooling of the anodes (see Figure 1.1). There is one fan 

per section. The rate of cooling is not constrained and may be done as quickly 

as possible. The fans, fire ramps and exhaust manifold are moved in the fire 

direction by one section every 32 or 36 hours. This time period is called the 

fire cycle. 
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~ Fire direction 
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manifold 

blower cover 
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Forced Natural Fire Preheat 
cooling cooling 

Figure 1.1 

A schematic longitudinal view of a typical fire train arrangement in a 

Riedhammer furnace at NZ Aluminium Smelters Ltd 

(see Bourgeois et al., 1990). 

1.2 Previous work 

Mathematical modelling of ring furnaces started seriously in 1980 with 

Furman and Martirena (1980). Since then others have developed different 

aspects of ring furnace ( open and closed) mathematical modelling. The advent 

of computational fluid dynamics packages has enabled the development of 

more elaborate models. Due to the ring furnace's large dimensions and time 

constant (2½- 3 weeks), experimentation on a real furnace is not only 

impractical, but also risky, lengthy and costly. Hence the need for 

mathematical models in order to analyse and predict performance. 

Furman and Martirena ( 1980) used a three-dimensional finite difference 

model. The total duration of the baking cycle was simulated. Therefore the 

time period was long, 300 - 400 hours. In order to save computation time, 

most of the time steps used were correspondingly long. The first 10 hours 

were divided in steps of 0.1, 0.2, 0.5, 2.2, 3.0 and 4.0 hours, all further steps 

were 7 .0 hours long. To ensure the stability of the calculations with these long 

temporal steps, an implicit Crank-Nicholson scheme was used. The equations 

were solved using successive relaxation. 960 nodes were used - 4 in the y­

direction (x-direction in this thesis), 20 in the z-direction (y-direction in this 

thesis) and 12 in the x-direction (z-direction in this thesis). A 'sensitivity' 

analysis was performed. This involved introducing a significant variation of a 
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given property and observing the corresponding temperature calculations. It 

was found that the thermal conductivity of the packing coke and the vertical 

gradient of the gases' temperature along the flues were the parameters which 

decisively influenced the calculations. It was claimed, therefore, that these 

were the only parameters which needed to be known accurately. The 

temperature-dependent thermal properties of the anodes, packing coke, flue 

walls and gases were not adjusted as the temperature varied. 

The paper by de Fernandez et al. (1983) used the identical set of nodes as used 

in the paper of the previous paragraph, so it was a three-dimensional model. 

However, no mention was made of the solution method. Initially the 

temperature difference between the top and bottom layer of anodes in a pit was 

calculated. It was found that this difference was in much closer agreement 

with the experimental difference, when the thermal properties of the anodes, 

packing coke and flue walls were adjusted according to the temperature 

reached at the end of the last time step. The 'negative' image of the heating 

temperature distribution was used to try and model the cooling temperature 

distribution. It did not work and this was attributed to two factors, one of 

which was the occurrence of natural convection. It was suggested that a 

battery of fans be used on uncovered sections in order to overcome this natural 

convection. Clearly, fans were not being used at this particular smelter when 

this paper was written. 

The transient two-dimensional model presented by Bourgeois et al. (1990) 

neglected the heat transfer in the longitudinal direction, that is, from the fire 

shaft to head wall. This helped to simplify the model and keep CPU time 

down. It was claimed that experimental studies had shown that this 

longitudinal temperature variation was small compared with the flue wall to 

anode-centre and vertical variation. Unlike the models from the earlier papers, 

this one incorporated pressure measurements, namely the draught profile along 

a fire train. One of the limitations of the model was that it could not determine 

the temperatures in the forced cooling sections (they were considered 

disconnected from the main fire train). There was fairly good agreement 

between calculated and experimental results. 

Bui et al. (1992) divided a furnace section into four zones - fire shaft, 

under-lid, pit and under-pit. For gas flow distribution, it was stated that the 
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underlid zone was the most important; whereas for heat transfer to, and 

therefore presumably from, the anodes, the pit zone was the most important. 

A three-dimensional model of heat transfer and fluid flow for the under-lid 

zone of any section of the fire train was developed. For the purposes of 

validation, the under-lid zone of the first covered cooling section was 

simulated. The solution procedure was not discussed in detail, but the general 

purpose computational fluid dynamics PHOENICS code was used as a solver. 

A larger number of nodes was used, namely 23180. The calculated results 

followed reasonably well the trend of the measured ones. 

1.3 This work - an outline 

A heat transfer and pressure distribution model of part of a forced cooling 

section (from now on called section) of the Riedhammer furnace is presented 

in this thesis. The cover has been removed, the packing coke is still in place 

and a blowing or sucking fan (blower or sucker) is positioned over the fire 

shafts - see Figure 1.2. Each uncovered section is a separate entity 

disconnected from the main fire train. 

end flue 
wall 

I I 

y 

foundation 

Figure 1.2 

l 
head 
wall 

fire 
shaft 

I direction of 
air flow 

Schematic longitudinal view of a flue wall in a forced cooling section 
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The model presented here is used to determine the effect that different mass 

flows of air have on: 

(a) the block (anodes, packing coke and side flue wall) temperature, 

(b) the air temperature in the side wall flues, and 

( c) the air pressure in the side wall flues and the fire shafts. 

Heat is transferred from the anodes into the air in the side wall flues via the 

packing coke and the side flue wall. The transfer of heat is taken to be by 

conduction in the anodes and flue wall, and is assumed to be by conduction in 

the packing coke. The heat is then transferred into the air by convection and 

radiation from the surface of the flue wall. 

The section is three-dimensional. Simplified one-dimensional and two­

dimensional models are studied in Chapter 2. This is done by concentrating 

on the anodes, packing coke, side flue walls and side wall flues part of the 

section. Simplifications involved in developing the models are justified by a 

result from Bui et al. (1992) and dimensional considerations. 

In Chapter 3, the heat conduction equation is derived in the present context, to 

give a partial differential equation. The consequences of assuming constant 

thermal conductivities or otherwise is examined. Using the models from 

Chapter 2, boundary conditions are then added to the partial differential 

equations to give boundary value problems. 

The thermal properties of the anodes, packing coke and side flue walls are 

discussed and calculated in Chapter 4. 

The one-dimensional heat equation is solved analytically for three different 

sets of boundary conditions in Chapter 5. The last set are those of the model 

developed in Chapter 2. 

In Chapter 6, explicit numerical methods are used to solve the boundary value 

problem. Using these, the problem is solved for the case where the thermal 

conductivities are constant within the anodes, packing coke and side flue wall, 

to give the transient temperature distribution in the block. In this constant 
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thermal conductivities case, the thermal conductivities are the only thermal 

property that is not being adjusted as the temperature varies with time; 

whereas in the non-constant case all thermal properties are being adjusted as 

the temperature varies with time (it is assumed these properties are dependent 

on temperature). For the non-constant thermal conductivities case, the 

boundary value problem is set up, but not solved due to the introduction of 

non-linear terms. For this one-dimensional case, the air temperature in the 

side wall flues is assumed to be constant. 

The two-dimensional model is developed in Chapter 7. Only the constant 

thermal conductivities case is considered. This builds on the work done in the 

previous chapter on the one-dimensional model. Unlike the one-dimensional 

model, the temperature of the air in the side wall flues is changing with time 

and space as heat is transferred into it from the block. This is modelled using 

an implicit numerical method and combined with the two-dimensional heat 

equation for the block to give the transient one-dimensional temperature 

distribution of air along the flues and the transient temperature distribution in 

the block. As a check on the working, the heat given out by the block and the 

heat gained by the air in the flues is calculated. Because of the set-up of the 

model, these should be approximately equal if the calculations are done 

correctly. 

The transient one-dimensional pressure distribution in the side wall flues and 

fire shafts is calculated in Chapter 8. 
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CHAPTER 2 DEVELOPMENT OF THE MODELS 

2.1 Introduction 

Ideally the model should be three-dimensional and provide the temperature 

distribution that is calculated throughout the section, starting from the fire 

shafts, moving into the head wall, then the gallery, then the area between the 

foundation and the bottom of the anodes and finishing in the flues, flue walls, 

packing coke and anodes. However, this would be too complicated and time 

consuming, so the model is simplified by: 

(i) restricting it to the flues, flue walls, packing coke and anodes zone, 

which is the most important one for anode cooling (see Bui et al., 

1992); 

(ii) making it one- and two-dimensional. 

Most of the cooling of the anodes occurs through them transferring heat into 

nearby air. Therefore (ii) of the model simplification is done by finding which 

sides of the anodes have the most exposure to air. It is then assumed that the 

anodes transfer most of their heat from these sides. Heat transfer from the 

remaining sides is then ignored, enabling the development of a 

two-dimensional model. In order to understand and solve this two­

dimensional model, a one-dimensional model is developed first. 
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Figure 2.1 

Schematic plan view of a section with the packing coke removed 

from the top to expose the top row of anodes. 
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2.2 Calculation of cooling areas around the anodes 

The anodes are rectangular blocks. There are twenty anodes stacked in a pit -

five rows of four. For the purposes of modelling, these twenty anodes are 

treated as one big anode. This big anode has six sides, each of which is 

adjacent to air via packing coke and/or a flue wall: 

(a) one side is adjacent to the air which is above the anode; 

(b) one side is adjacent to the air which is flowing between the bottom 

surface of the anode and the foundation; 

(c) two sides are adjacent to the air flowing in the end wall flues; 

(d) two sides are adjacent to the air flowing in the inner/outer side wall 

flues. (As can be seen from Figure 2.1, if the pit is an inner one, then 

these two sides are adjacent to the inner side wall flues; whereas if the 

pit is an outer one, then one of these sides is adjacent to the inner side 

wall flues and the other side is adjacent to the outer side wall flues.) 

The areas of these different sides of the anode that are adjacent to air are now 

calculated. Since most of the anode cooling occurs through heat transfer into 

nearby air, the area between flues is ignored. A line of symmetry, an 

adiabatic boundary, is assumed to run through the centre of each flue, see 

Figure 2.3, so the appropriate areas are calculated on half flue measurements. 

Since the dimensions of each pit/flue wall are identical, the calculations are 

done for one pit/flue wall area (for measurements refer to Figures 2.1 - 2.3). 

(a) The area of the side that is adjacent to the air which is above the anode 

= (length of anode) x (width of anode) 

= (0.616 X 5) X 0.810 

= 2.5 m2 . 

(b) The area of the side that is adjacent to the air which is moving between 

the bottom surface of the anode and the foundation 

= area as in (i) 

= 2.5 m2
• 
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(c) The area of the two sides that are adjacent to the air flowing in the end 

wall flues 

= (length of one end wall flue + 2 x ½ width of one end wall 

flue) x (depth of anode) x (number of flues in one end wall) 

x (number of end walls) 

= (0.120 + 2 X 0.06) X (1.166 X 4) X (5) X (2) 

= 11.2 m2 

( d) The area of the two sides that are adjacent to the air flowing in the 

inner/outer side wall flues 

= (length of one inner/outer side wall flue + 2 x ½ width of one 

inner/outer wall flue) x (depth of anode) x (number of 

flues in one inner/outer side wall) x (number of 

inner/outer side walls) 

= (0.178 + 2 X 0.074) X (1.166 X 4) X (16) X (2) 

= 48.7 m2. 

Therefore total area of the sides not adjacent to the air in the 

inner/outer side wall flues 

= (a)+ (b) + (c) 

= 16.2 m2 

Pit 

Anode 

Figure 2.2 

Flue 
wall 

Schematic cross section of an anode in a pit 
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m DJ m 
end wall 

m 
0.120m lw 
0.065m [!J 

Figure 2.3 

Schematic plan view of a pit comer and flues 

Comparing this figure with that of (d), namely 48.7 m2 , it is clear that the 

greatest areas of the anode adjacent to the air are the two sides adjacent to the 

air flowing in the inner/outer side wall flues. It is therefore assumed that the 

anode transfers most of its heat into the air flowing in the inner/outer side wall 

flues. It is further assumed that there is no heat transfer into the air which is: 

( a) above the anode; 

(b) flowing between the bottom surface of the anode and the foundation; 

( c) flowing in the end wall flues. 

This last assumption allows modelling in two dimensions rather than three. 

This agrees with experimental studies mentioned in Bourgeois et al. (1990). 

The studies found that longitudinal (from fire shaft to head wall) temperature 

variation was small compared with the flue wall to anode-centre and vertical 

variation. 

The x-direction is taken to be across the pits, and the vertical as the 

y-direction. (The z-direction is taken to be along the pits - see Figure 1.2.) 

This is developed further in §2.3 and §2.4. 
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2.3 One-dimensional model 

It is assumed that lines of symmetry, which denote adiabatic boundaries, run 

through the centre line of each pit and flue, as shown in Figure 2.4. All pits 

are treated alike, that is, there is no difference between outer and inner pits 

[although it is realized that there is heat loss through the outer side flue walls 

on either side of the section - see Bui et al. (1992)]. 

From now on, inner/outer side flue walls are referred to as the flue walls and 

inner/outer side wall flues as flues. 

A representative slice of anode, packing coke, flue wall and flue is selected. 

This slice is adjacent to one flue, as shown in Figure 2.4. 

As in §2.2, it is assumed that the anode transfers heat into the air in the flue 

not only along a(= 0.178 m) but also along band c too (both= 0.074 m) see 

Figure 2.5. This poses a difficulty in regard to the thickness of the flue wall. 

For example, from the outer edge of the packing coke, d, to the flue wall at a, 

distance= 0.140 - 0.074 = 0.066 m. But what about the distance from d to the 

flue wall at b or c? 

lines of symmetry 

!-- Fl,re wall ---~; Rue 

I I 
I I 
I 

I 
I px 
I 
I 

anode 

Packing coke 

Figure 2.5 

m
om 

d a J.178m 
l 

C 

( )10.074m 

OTJJ 
I 
I 

Schematic plan view of the representative slice showing anode, 

packing coke, flue wall and flue. 
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In order to overcome this difficulty, each flue is thought of being stretched or 

elongated, as illustrated in Figure 2.6, so that the sixteen flues in a flue wall 

become one 'large' flue. This large flue, amongst other things, must have the 

same cross-sectional area as the sixteen individual flues (for measurements 

refer to Figures 2.3 and 2.5). 

Cross-sectional area of sixteen individual flues 

= ( cross-sectional area of one flue) x 16 

= (0.178 X 0.148) X 16 

0.421504 m2 

Cross-sectional area of 'large' flue 

(length of 'large' flue) x (width of 'large' flue) 

= (length of one individual flue x 16 + distance between two 

individual flues x 15 + distance e + distance f) x W, 

where W = the width of 'large' flue, 

= (0.178 X 16 + 0.060 X 15 + 0.030 + 0.030) X W 
2 = 3.808 xWm, 

and this has to equal 0.421504 m2
, 

⇒ W = 0.111 m. 

Therefore the thickness of the flue wall in the case of the 'large' flue is 

0.140 -
0

· 111 
= 0.085 m (rounded) see Figure 2.6. 

Jines of symmetry --- --: J : I 'Larae' flue 
I I ...-("' 0 

I I 1 ___ L I 

I X I I 

Figure 2.6 

Schematic plan view of 'large' flue and surroundings. 
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The block is defined to be the shaded area in Figure 2.6. 

Lx width of block 

= (width of anode)+ (width of packing coke)+ (width of 

flue wall) 

0.585 m. 

Note: In evaluating the Reynolds number and the heat transfer coefficient in 

Chapters 6, 7 and 8, the flue dimensions of Figure 2.5 are used, that is the 

'real' flue dimensions. 

2.4 Two-dimensional model 

The one-dimensional model developed in §2.3 is extended by introducing a 

vertical or y component as shown in Figure 2.7. 

axes for 
sucker 

axes for 
blower 

I line of symmetry 
I 
I 
I Air covering of packing coke 
I 

L X I 

I 
I 

packing I anode Ly 
I coke 
I 
I 

r X 'It 

Foundation 

Figure 2.7 

flue 
wall 

l 
flue 

I line of symmetry 

Direction of air flow 
for a sucker 

I I 
Direction of air flow 

1 for a blower 

I 
I 
I 
I 

Schematic cross section of the two-dimensional block and flue 

The same representative slice is taken as for the one-dimensional case, except 

that here the slice has a y component. In fact the slice extends vertically from 

the top surface of the anode to the bottom surface of the anode. 

LY depth of anode 

= 1.166 X 4 

= 4.664 m. 
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The x and y axes are positioned differently according to whether a blower 

( L ) or a sucker ( r' ) is used, 

Blower versus sucker 

In reality, in the case of a blower operating, the air has to pass through the fire 

shafts, the gallery and into the area between the bottom of the anode and the 

foundation prior to it flowing up through the flues. This is not the case if a 

sucker is operating, since the air has no 'history' like this prior to it flowing 

down the flues. The air here is drawn from the air above the top surface of the 

anode (see Figure 1.2). Hence for a blower, the inlet air temperature is 

determined at the top of the fire shafts, whereas for a sucker it is determined at 

the top of the flues. 

But given an inlet air temperature for a blower (air temperature at the top of 

the fire shafts, which is atmospheric temperature) the two-dimensional model 

for a blower is unable to determine what the air temperature will be when the 

air arrives at the bottom of the flues - the inlet air temperature for the model. 

It is assumed that the inlet air temperature for the model in the case of a 

blower is atmospheric temperature. Atmospheric temperature is assumed to 

be 20 °c. There is no such difficulty for a sucker, since the inlet air 

temperature in reality (atmospheric temperature) is the same as that for the 

two-dimensional model for a sucker. 

Therefore for the purpose of the two-dimensional model, it makes no 

difference to the temperature distribution as to whether a blower or a sucker is 

operating except that the block temperature distribution is reversed, since 

y = 0 for a blower corresponds to y = LY for a sucker and y = LY for a blower 

corresponds toy= 0 for a sucker (see Figure 2.7). 

16 



CHAPTER3 DERIVATION OF THE HEAT EQUATION IN 
THE BLOCK 

3.1 The heat equation 

The rate at which heat accumulates in an elemental volume (V) of block 

material is given by 1t fJf pE dV where p is the density, tis time and E is 
V 

the total energy (internal, kinetic and potential) per unit mass of the system. 

This must be balanced by the rate of heat leaving V. This is given by 

fJ - Q dS, where Q = dQ/dt is the rate of heat flow (conductive, convective 

aid radiative) per unit area at the surface (S) of V. 

First consider 1t fff pEdV. 
V 

Since V is closed (mass does not enter or leave V) and stationary then E = e, 

where e = internal energy per unit mass, and 

1t ff f pE dV = ff f a ot (pe) dV 
V V 

= fff ae 
p ot dV 

V 

since p is constant with respect to time - see Chapter 4. 

Introducing the enthalpy h = e + £, where p = pressure (Currie, 1993) and 
p 

using the fact that p and p are constant with respect to time gives: 

d fff p E dV = fff oh 
dt p ot dV 

V V 

fff ah aT 
(T = temperature) = p oT dt dV 

V 

fff oT 
= p cp dtdV 

V 
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. c1h h ·t· h . smce aT at constant pressure = cp = t e spec1 1c eat capacity at constant 

pressure. 

Now consider ff -Q dS. Since there is no convective or radiative effect, 
s 

by Fourier's Law (Rogers and Mayhew, 1992) 

Q = - k VT (k = thermal conductivity) 

Therefore ff -QdS=ff k VTdS 
s s 

= ff k VT,ndS 

s 

= fff V ·(kv'T) dV by Gauss' Divergence 
V 

Theorem. 

Therefore fff c1T ff f V •(kv'T) dV p cp dtdV = 
V V 

c1T V ,(kv'T) (3.1) ⇒ p cP dt = 

If k is constant, then Equation (3 .1) becomes 

i.e. I ~Tt = an2T I h k/ h 1 d'ff · · . 
0 

v . w ere a = pep= t erma 1 us1v1ty. 

If k is not constant and varies with temperature, then in the one-dimensional 

case Equation (3 .1) becomes 
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_ dk (aT)
2 
+ k a

2
T 

- dT ax ax2 

Therefore aT (aT)
2 

a
2 

T " dk at = tx ax + a ax2 where a = dT / pep . 

In the two-dimensional case Equation (3.1) becomes 

Therefore 

pep t~ = fx (k ~J) + fy (k ~~) 
_ ak aT + k a

2
T + ak aT + k a

2
T 

- ax ax ax2 ay ay ay2 

3.2 The boundary conditions 

Referring to (a) and (b) on p.11 of §2.2, 

(a) No heat transfer into the air which is above the anode 

⇒ 

⇒ 

{

y = 0, 
adiabatic boundary on y = L 

y, 

aT {y = O, 
- = 0 on 
ay y = Ly, 

sucker 

blower . 

sucker 

blower 

(b) No heat transfer into the air which is flowing between the bottom 

surface of the anode and the foundation 

⇒ 

⇒ 

adiabatic boundary on Y {
y=L' 

y=0, 

aT {y = Ly, sucker 
- = 0 on 
ay y = 0, blower. 
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Referring to the assumption made in §2.3, that is, it is assumed that an 

adiabatic boundary runs through the centre line of the pit 

e1T 
⇒ ax = 0 on x = 0. 

Suppose the block has some initial temperature, T 1, 

⇒ T = T 1 when t = 0. 

Clearly the temperature at x = Lx (on the flue wall) is decreasing with 

time because of the air flowing past and heat being transferred from 

here into the air. Let this decreasing temperature be T w(t), where 

w = wall and (t) denotes dependence on time 

3.3 Summary 

The boundary value problem for the heat conduction in the block is now 

specified, both for the one- and two-dimensional models. 

One dimension 

e1T dt (x, t) 

e1T dt (x, t) 

constantk } 

non-constant k 

with aT (0 t) 
dX ' = 0, t> 0, 

T(Lx, t) = T w(t), t> 0 and 

and T(x, 0) =Tl, 0 ::;; x ::;; LX. 

Two dimensions 

dT (a2T a2 T) 
dt(x, y, t) = a ax2 + ay2 constant k 

t~ (x, Y, t) = & [(~JJ + (~~J] 

o::;;x:s;Lx, t > 0 

o::;;x:s;Lx 

0::;; y::;; Ly 

t>O 

[a
2T a2 T] + a dX2 + ay2 non-constant k 
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with 
oT 
ax (0, y, t) = 0, 0 :=:; y :=:; Ly, t>0, 

T(Lx, y, t) = Tw(t), 0 :=:; y :=:; Ly, t > 0, 

T(x, y, 0) = Tl' 0 :=:; x :=:; LX, 0 :=:; y :=:; Ly, 

and 
aT aT oy (x, 0, t) = oy (x, Ly, t) = 0, 0 :=:; x :=:; LX, t > 0. 
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CHAPTER 4 THERMAL PROPERTIES OF THE BLOCK 

4.1 Introduction 

The thermal properties of interest are of course those that appear in the heat 
k 

a= - and 
pep 

equation, namely k, p and cP. Once these are found, 

11. dk / a = dT p cp can be calculated. 

This chapter is included since in the readings for this thesis, values or 

formulae for the values of k, p and cp were rarely given. The non-referenced 

values and formulae given here were obtained from Braithwaite (private 

communication, 1993). 

In order to simplify expressions and save computing time, linear 

approximations are used for formulae when approximations are deemed 

necessary. As most of the block temperatures in the section;:::: 400 K (127 °C), 

linear approximations seem reasonable. 

For the linear approximations, the equation p(T) = p(T 0) + (T - T 0)p[T 0, T 1] 

p(T )-p(T ) 
is used (Burden and Faires, 1989) where p[T0 , T 1] = 1 T 0 

4.2 Carbon Anode 

Thermal conductivity, ka (W /mK) 

From Log and Oye ( 1990), 

1- 0 

ka = ka0 + 0.274-0Zao (-fr - -{Tc;) - 2.8 x 10-\ka0)°-77 (T - T0 ) 

where T0 = room temperature 293 K say, and 

ka0 = thermal conductivity of anode at room temperature, in W/mK. 

ka0 is given by the equation, 

ka0 = -1.2105 + 0.1744 Le = 4.1959, 

0 

since Le ( crystallite height) = 31 A for anodes. 
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ka is approximated using the points (400, 4.91) and (970, 6.35) - see Figure 

4.1. 

>, -> - 6 
0 
:l 5 
"C -i:: ~ 4 0 E 0 - 3 

;: 
2 ('0 -E 1 ,_ 

Q) 
.c: 0 
I- 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
Ct) s::t- LO (0 I'-- CX) O') 

Temperature (K) 

Figure 4.1 

Thermal conductivity of the anode [from Log and Oye (1990)] 

ka = (2.53 X 10-3)T + 3.90 (4.1) 

d~~) = 0.137-vicao .Jt -2.8 x 10-3 (ka0)0•77 W/mK2 

is approximated using the points (400, 5.58 x 10-3) and (970, 5.63 x 10-4) -

see Figure 4.2. 

0.008 

~ 0.006 .... ·-
('0 > 
........ ~ 
~ ~ E 0.004 
... "C -.e r:: ;: -o- 0.002 
0 (,) 

0 
0 
(') 

0 0 
0 0 
"SI" LO 

0 
0 
(0 

0 
0 
I'--

Temperature (K) 

Figure 4.2 

0 
0 
co 

0 
0 
O') 

The rate of change with respect to temperature of the thermal 

conductivity of the anode 
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d~~) = (- 8.80 X 10-6)T + 9.10 X 10-3 (4.2) 

The equations for ka and d(ka)/dT are valid for temperatures :S: 973 K 

(700 °C), as most of the anode temperatures in the section are. If any anode 

temperature > 973 K, then Equations ( 4.1) and ( 4.2) are still used. 

Specific heat capacity, cap (J/kgK) 

c~ = (- 0.13374402 x 10-8)T4 + (0.64604614 x10-5)T3 

- (0.11572658 X 10-1)T2 + (0.95663719 X 101)T 

- 0.13731392 X 104 

This is approximated using the points (400, 9.81 x 102 ) and (970, 1.73 x 103) 

- see Figure 4.3. 

-~ 
C) 2000 ~ - 1800 -:, - 1600 .... 
ctl 1400 Cl) 

.s:: 1200 
(.) 1000 -(.) 800 
Cl) 

600 c.. 
Cl) 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
Cl) 

""'" 
LO co I'- co CJ) 

Temperature (K) 

Figure 4.3 

Specific heat capacity at constant pressure of the anode 

cap = (1.3l)T + 4.55 x 102 (4.3) 

Density. pa (kg/m3) 

The density of the anode is approximated by 1550. 
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4.3 Packing Coke 

Thermal conductivity. kp (W/mK) 

Using data supplied by Braithwaite (private communication, 1993), the 

average packing coke particle size is found to be 5.7 mm. This is then used in 

de Fernandez et al. (1983) to approximate kp using the points 

(473, 4.00 x 10-1) and (1073, 1.16) - see Figure 4.4. 

>, -> -0 
:::; 

"C -
C: ~ 
0 E 0 ._ 

- :ii= 
res -
E ,_ 
(1) 

.c: 
I-

6 

5 

4 
3 

2 

1 

0 
400 

---■- -----· 
900 

Temperature (K) 

Figure 4.4 

-· 
1400 

Thermal conductivity of the packing coke (interpolated from 

data supplied by Braithwaite, 1993) 

kp = (1.27 X 10-3)T - 1.99 X 10-l 

d~.f) = 1.27 x 10-3 W/mK2 

Specific heat capacity. cpp (J/kgK) 

4.08 X 107 

cpp = 933.0 + (0.916)T - T2 

(4.4) 

(4.5) 

This is approximated using the points (400, 1.04 x 103) and (1000, 1.81 x 103) 

- see Figure 4.5. 
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Figure 4.5 

Specific heat capacity at constant pressure of the packing coke 

cp = (l.28)T + 5.27 X 102 
p 

Density, pp (kg/m3) 

The density of the packing coke is approximated by 670. 

4.4 Flue Wall 

Thermal Conductivity, kw (W/mK). 

(4.6) 

This is approximated using the points (657, 1.35) and (1265, 1.77) - see Figure 

4.6. 

>, .... 
> - 6 u 
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Temperature (K) 

Figure 4.6 

Thermal conductivity of the flue wall (interpolated from data 

supplied by Braithwaite, 1993) 
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kw = (6.91 X 10-4)T + 8.96 X 10-l 

dt;) = 6.91 x 10-4 W/mK2 

Specific heat capacity, cwp (J/kgK) 

(4.7) 

(4.8) 

The specific heat capacity at constant pressure of the flue wall is approximated 

by 1250. 

Density, pw (kg/m3) 

The density of the flue wall is approximated by 2440. 
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CHAPTER 5 ONE-DIMENSIONAL ANALYTICAL SOLUTION 

5.1 Introduction 

k is assumed to be constant, so the boundary value problem is (from §3.3) 

oT o2T o s x sLx, t > 0 dt = a ax2' 

with 
oT 

t> 0, ax (0, t) = 0, (5.1) 

T(Lx, t) = T wCt), t> 0, 

T(x, 0) = T1, 0 s x s LX . 

Instead of trying to solve (5.1) straightaway, initially boundary value problems 

with simpler boundary conditions are solved analytically. Using the 

knowledge gained from solving these simpler problems, (5.1) is then solved. 

5.2 Solution with different boundary conditions 
(a) The ends of the block are maintained at constant temperature, T0, for 

all time, t > 0, and the block is initially at temperature T 1 for 

0 s x s LX. 

aT a2 T 
dt = a ax2' 

with T(0, t) = T(Lx, t) = To, 

T(x, 0) = T1, 

Let T(x, t) = 0(x, t) + \jf(x) 

Homogeneous boundary conditions are obtained for a differential 

equation involving 0, if \jf = TO. 

With this choice of \jf, the problem becomes 
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with 0(0, t) = 0(Lx, t) = 0, 

0(x, t) = T 1 - T 0, 

t> 0, 

(5.2) can be solved using separation of variables. 

Let 0(x, t) = X(x) G(t) 

Equation (5.2) becomes G'(t) X(x) = aX"(x)G(t) 

⇒ 
G'(t) X"(x) 
aG(t) = X(x) = - A say. 

⇒ X'(x) + A X(x) = 0 

with X(0) = X(Lx ) = 0 

and G'(t) + AaG(t) = 0 

Solving Equation (5.3), with A< 0, A= 0, A> 0 in tum: 

(i) 

(ii) 

If A = -k2 

then X = c 1 cosh kx + c2 sinh kx 

Now, X(0) = 0 ⇒ c1 = 0 

and X(L) = 0 ⇒ c2 = 0 

A = - k2 gives a trivial solution. 

If A = o 

Now, X(0) = 0 ⇒ c4 = 0 

and X(L) = 0 ⇒ c3 = 0 

A = 0 gives a trivial solution. 
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(iii) Take 'A, = k2 

then X = c
5
eikx + c

6
e-ikx 

or X = C7 cos ~ X + Cg sin -{i: X 

Now X(O) = 0 ⇒ c7 = 0 

and X(Lx) = 0 ⇒ Cg sin ~ Lx = 0 

⇒ ~Lx = nTC, nEN 

n2n2 
⇒ A = - 2-, n E N, 

LX 

which are the eigenvalues. 

which are the eigenfunctions; these are orthogonal on [O, LJ. 

Now, solving Equation (5.4) 

0 {B 
. (nnx) -n21t2at/L2 E sm - e , 

n L 
X 

The most general solution of this form is 

00 

(nnx) n
2 

2 /L
2 

0(x, t) = I, Bn sin L e - n at , 
n=l X 

where 
00 

0(x, 0) = T 1 -T0 = I, Bn sin ntx 
X n=l 

Using the orthogonality of the eigenfunctions gives 

2 rL, . (nnx) T 1 - To n 
Bn = L Ji (T 1 - T 0) sm L dx = [ 1 - (- 1) ] 

x o x nn 

T - T 
00 

1 (nnx) 2 ? 2 0(x,t) = 1 O L, - [1 - (- 1?] sin - e-n n-at/L, 
n n Lx 

n=l 

Now 0 is known, T is obtained as T = 0 + T0 . 
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(b) A boundary value problem is now solved that is almost the same as 

(5.1) except that here T(Lx, t) = T0 = a constant, whereas the boundary 

condition in (5.1) is T(Lx, t) = Tw(t) - varies (decreases) with time. 

aT a2T 
0 :s; x :s; LX, t>0 dt = a ax2' 

with 
aT 
ax (0, t) = 0, t>0, 

T(Lx, t) = T0 , t> 0, 

T(x, 0) = T1 , 0 :s; x :s; LX. 

As in (a), let T(x, t) = 0(x, t) + \jf(x), and \jf = T0 gives homogeneous 

boundary conditions, so the problem becomes 

ae a2e 
0 :s; x :s; LX , t>0 at = a at2 , 

with 
ae 
ax (0, t) = 0, t> 0, (5.5) 

0(Lx, t) = 0, t> 0, 

0(x, 0) = Tl - Ta, 0 :s; x :s; LX. 

Solving (5.5) using separation of variables gives 

where 
00 

0(x, 0) = T1 -T0 = L,Cn 
n=l 

[
(2n - l)nx] cos 

2Lx 

Using the orthogonality of the eigenfunctions gives 

C 2fLx(T T) [(2n-l)nx]d 4(T1 -To)(-l)n-l 
n = Lx Jo 1 - o cos 2Lx x = ; (2n - 1) 
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. 0( ) _:!_(T -T )~ (-lt-l [(2n-1)1txJ-(2n-1)2rc2at14Lx 2 

• • X, t - 1 O L..J --- COS ---- e 
7t n=l (2n -1) 2Lx 

Now 0 is known, T is obtained as T = 0 + T 0. 

(c) See (5.1). 

Let T(x, t) = 0(x, t) + \jf(t). 

Homogeneous boundary conditions are obtained for a differential 
equation involving 0 if \jJ = T wCt). With this choice of \jf, the 

problem becomes 

with 
ae 
ax (0, t) = 0, t > 0, 

0(Lx, t) = 0, t> 0, 

0(x, 0) = T1 -Tw(t), o:::;x:s;Lx 

From (b), 

~ [(in - l)nxJ 0(x, t) = Li Dn(t) cos lL 
n=l x 

h D (0) - :!_ (T 1 -Tw(O)) (- l)n-1 
were n - 7t (2n-1) 

Therefore Equation (5.6) becomes 

~ i.n (t) cos [(ln-l)nx] + ~T (t) 
Li dt n 2L dt w n=l x 

= ex f Dn(t)[(2n-1)1tl2 cos [(2n-l)nxl 
n=l 2Lx 2Lx 
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Using the orthogonality of the eigenfunctions gives 

~ D (t) Lx + fLx ~ T (t) cos [(2n - l)rcx] dx 
dt n 2 Jo dt w 2L 

X 

= - a D (t) [(2n - l)rc]2 Lx (5.7) 
n 2L 2 

X 

d 2L 
The above integral = dt Tw (t) x (- it-1 

(2n - l)rc 

Hence Equation (5.7) becomes 

d 
dt Dn (t) + 11. Dn (t) = f(t) 

where "l _ [(2n - l)rcJ 
I\, - a 2L 

X 

and f(t) = 1t Tw(t) 
4 

(- It. 
(2n - l)rc 

Therefore 

i.e. 

8 can now be determined and hence T = 8 + T w(t) can be calculated. 

The difficulty with this analytical solution is knowing T w(t). 

Numerical methods enable it to be calculated. 
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CHAPTER 6 ONE-DIMENSIONAL NUMERICAL SOLUTION 

6.1 Introduction 

This chapter finds the solution to the one-dimensional boundary value problem 

with constant thermal conductivities using explicit numerical methods. All the 

thermal properties, except for the thermal conductivities of the anode, packing 

coke and flue wall are adjusted according to the temperature reached at the end 

of the last time step. The non-constant thermal conductivities case is also 

examined, but not solved due to the introduction of non-linear terms. 

6.2 Constant thermal conductivities 

Recall from §3.3 that the boundary value problem is 

aT a2 T 
0 s x s LX, t>0 dt = a ax2' 

with 
aT 

t> 0, ax (0, t) = 0, (6.1) 

T(Lx, t) = Tw(t), t> 0, 

T(x, 0) = T1, 0 s x s LX. 

aT a2 T dt and ax2 are approximated by using Taylor series expansions. 

aT 2 
T(x, t + ~t) = T(x, t) + ~t dt + O(~t) 

aT = T(x, t + ~t) - T(x, t) + O(~t) 
at ~t 

aT (~x)2 a2T 3 
T(x + ~x, t) = T(x, t) + ~x ax + 2! ax2 + O(~x) + ... 

oT (~x)2 a2T 3 
T(x - ~x, t) = T(x, t) - ~x ~ + -

2
- 1- --2 - O(~x) + ... 

ax . ax 
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a2 T T(x + Lix, t) + T(x - Lix, t) - 2T(x, t) + O(Lix)2 
ax2 = (Lix)2 

So 

is approximated by 

T(x, t + Lit) - T(x, t) = a [T(x + Lix, t) + T(x - Lix, t) - 2T(x, t)] (
6

_
2

) 

Lit (Lix/ 

where the error of the left hand side is of order Lit, and the error of the right 

hand side is of order (Lix)2. 

Tf is defined as the block temperature in Kelvin at mesh point i, i E z+, at 

time step n, n E z+. i runs from 1 to Nx where i = 1 is the mesh point on 

x = 0 and i = Nx is the mesh point on x = Lx. 

Lix is the distance between mesh points in metres. n runs from 1 to the end 

of the time period, where n = 1 corresponds to t = 0 and n = Nt corresponds 

to the end of the time period. Lit is the length between time steps in seconds. 

Rewriting Equation (6.2) using the subscript/superscript notation gives: 

T~+I _ T~ 
I I = 

Lit 
a~ [T::_1 + Tf_1 - 2Tf] 

I (Lix)2 

i.e. (6.3) 

a!1Lit 
where Fof = - 1

-
2 

= the Fourier number of the block at mesh point i at time 
(Lix) 

step n and it is dimensionless; af = the thermal diffusivity of the block at 

mesh point i at time step n, in m2 /s. 

35 



If Fof > ½, then the higher the value of T7 , the lower will be the resulting 

value of Tt1
. It can be shown that this may lead to difficulties in regard to 

the Law of Conservation of Energy (Rogers and Mayhew, 1992). 

If i = Nx, then the value of Ti+I = TNx+l in Equation (6.3) is not known. On 

the flue wall, the rate of heat flow per unit area (J/sm2) at time step n = Qw 
dQwn n aT~x . ' 

say= dt = - kNx dX, by Founer s Law. 

But by conservation of heat flow at the flue wall, the rate of heat per unit area 

flowing out through the wall by conduction = the rate of heat per unit area 

flowing into the fluid or air by convection and radiation. 

i.e. (6.4) 

where hn = the heat transfer coefficient at the flue wall at time step n, 

in W/m2K, 

Tfn = the fluid or air temperature at time step n, in K, 

(Tfn is assumed to be constant for all n, so Tf11 is denoted as Tf) 

and k~x = the thermal conductivity of the block at mesh point Nx at time 

step n, in W /mK. 

aTn hn 
_fu - =-- (TNn x - Tf) ax - kn 

Nx 
(6.5) 

Now imagine that the side of the flue wall is increased by Llx to Lx + LlX, 

which corresponds to the mesh point Nx + 1. Suppose that the temperature 

here varies in such a way that the temperature at i = Nx is always what it 

should be under the conditions of the actual problem. 

Using a Taylor series expansion gives 
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i3T~x T~x+l - T~x-1 2 ~x, = ~~~~ + O(Lix) ... 
0 2Lix 

hn 
= - n (T~x -Tf) from Equation (6.5) 

kNx 

T~x+l = 

where the error of this approximation is (Lix)2. 

Substituting this into Equation (6.3) gives at i = Nx, 

where Bf = ~hn = the Biot number of the block at time step n and it is 
kNx 

dimensionless. 

As before, in order to satisfy the Law of Conservation of Energy, it is required 

that 

⇒ 
Fon < __ 1 __ 

Nx - 2(1 + Bin) 

At i = 1, the value of Ti-I= T1_1 = T0 in Equation (6.3) is not known. A 

Taylor series expansion gives 

aTn 
The adiabatic boundary condition is a~ = 0 
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Tn Tn 
2 - 0 = 0 where the error of the left hand side is of order (.6x)2. 
2.6x 

Tn _ Tn 
2 - 0 · 

Substituting this into Equation (6.3) gives at i = 1, 

h F n < 1 w ere o1 _ 2. 

Determining Fof 

a~ .6t 
Fo!l - - 1 

-

I - (.6x)2 

(a) Obtaining af 

ki is constant within each of the anode, packing coke and flue wall, 

and equals ka, kp or kw depending on whether the calculations are 

occurring in the anode, packing coke or flue wall. ki is calculated 

using the temperature midway between the initial and assumed final 

average temperature of the block. Suppose this final average block 

temperature is Tf. 

For example, suppose the initial block temperature is 873 K and Tf is 

373 K. 

So ki is calculated using 373 + 873 - 373 = 623 K. 
2 

ka = (2.53 x 10-3) 623 + 3.90, see Equation (4.1) 

kp = (1.27 x 10-3) 623- 1.99 x 10-1, see Equation (4.4) 

kw = (6.91 x 10-4) 623 + 8.96 x 10-1 , see Equation (4.7) 
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Pi = pa, pp or pw and ( cp) f = ( cap)f, ( cpp)f or ( cw P)f 

depending on whether the calculations are occurring in the 

anode, packing coke or flue wall. 

For example, suppose the initial and assumed final block temperatures 

are as before, and the temperature at mesh point i which is in the 

packing coke at time step n is 685 K. 

Then kp = (1.27 X 10-3 )623 - 1.99 X 10-l 

= 5.92x 10-1 W/mK 

pp = 670 kg/m3 

and (cpp)f = (1.28)685 + 5.27 x 102
, see Equation (4.6) 

= 1.40 X 103 J/kgK 

Therefore 
5.92 X 10-l 

= ------- m2 /s 
(670)(1.40 X 103 ) 

(apf is the thermal diffusivity of the packing coke at mesh point i at 

time step n.) 

(b) Obtaining Lix 

Depending on whether the calculations are occurring in the anode, 

packing coke or flue wall, Lixa, Lixp or Lixw are used respectively. To 

obtain Lixa, the number of spatial steps in the anode, Nxa, are 

specified and then the width of the anode is divided by Nxa-1. 

That is, 
A width of the anode 
DXa = N 1 xa-

Similarly for Lixp and Lixw. 

( c) Obtaining Lit 

See later 
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Determining Bin 

(a) Obtaining kw 

See (a) on p. 38. 

(b) Obtaining hn 

hn has two components - radiation and convection, that is 

hn = hrn + hen, 

where ~ = the heat transfer coefficient for radiation at time step n 

and hen = the heat transfer coefficient for convection at time step n 

(both in W/m2 K). 

hen is a function of Tfl , and Tfl is assumed it to be constant for all n. 

Therefore hen is denoted as he. 

where 

and 

where 

and 

~ = £ cr (T~x - Tf) ( ( T~x)2 
- (Tt)2) 

£ = wall surface emissivity and is dimensionless 

= 0.97 [Braithwaite (private communication, 1993)] 

cr = Stefan-Boltzmann constant 

= 5.67 X 10-8 W/m2 K4 . 

he = 
(kf)Nu 

f, 

kf = thermal conductivity of the fluid or air, in W/mK, 

Nu = the Nusselt number (dimensionless) 

R = the characteristic length 

4 x area 
= . m. penmeter 

See Figure 2.3 for the dimensions of a flue. 

Note: Since the air in the flue is being blown or sucked past the end of the 

block, it is assumed that forced convection is occurring rather than natural or 

free convection. Buoyancy forces, which are associated with natural 

convection, are ignored here. 
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where 

and 

Nu = 0.023 Re0·8 Pr0.4. 

Re = Reynolds number (dimensionless) 

Pr = Prandtl number (dimensionless) 

(6.6) 

This equation for Nu assumes that: 

(i) the flow is turbulent, i.e. Re > 4000 (this is checked in the program); 

(ii) the flow is fully developed, i.e. the ratio of channel length to f is 

greater than 20, which it is since 

length of flue _ S,_ _ 4.664 :=:: 

f - f - 4 X 0.026344 
29; 

0.652 

(iii) the physical properties are constant, which they are. 

or 

Re = (pf)vf (v = the velocity of the air, mis, pf= the density 
µ 

mt Re= 
µ(area) 

4m 

of the fluid or air, kg/m3 , and µ = the 

dynamic viscosity of the air, kg/ms) 

(m = the mass flow, kg/s) 

=----- (6.7) 
µ(perimeter) 

Note: There are 5 fire shafts in a section and the centre one is blocked 

off. So if the total mass flow through all 4 fire shafts is x kg/s, then 

the mass flow through one flue is x/96 kg/s, since there are 96 flues in 

a section, and x/4 kg/s per fire shaft. 

ri1 = (pf)L 
.6.p 

where L = the connected load of the drive motor of a fan 

(1500 W for a blower, 3000 W for a sucker), 
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~p = the total pressure difference across a fan 

(200 N/m2 for a blower or sucker), 

and pf "'" 0.75 kg/m3 - see §8.2, Figure 8.1. 

Therefore 

m "'" {5.6 kg/s for a blower 

11.3 kg/s for a sucker 

= cfpµ 
Pr kf ' 

where cf P = the specific heat capacity at constant pressure of the 

fluid or air, in J/kgK. 

cfp, µ and kf all vary according to the temperature of the air, so he= hc(Tf) 

Values for kf, Pr and cfp were obtained from Perry et al. (1984). Then 

(kf) Pr 
µ = f 

cp 
(6.8) 

can be determined. 

Linear approximations are used for kf and cf P and a quadratic approximation 

for Pr. See Figures 6.1 - 6.3 respectively. 

For the quadratic approximation, the equation 
p(T) = p(T0 ) + (T-T0)p[T0, T iJ + (T-T0)(T-T 1) p[T0, T 1, T2] is used 

(Burden and Faires, 1989) where 
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Figure 6.1 

Thermal conductivity of air [interpolated from data from Perry et al. (1984)] 

kf = (5.65 X 10-5) Tf + 1.02 X 10-2 

using the points (350, 3.00 x 10-2) and (1000, 6.67 x 10-2). 
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Figure 6.2 

Specific heat of air at 1 atmosphere [interpolated from data 

from Perry et al. (1984)] 

cfp = (1.38 X 10-1
) Tf + 9.92 X 102 

using the points (400, 1.047 x 103) and (1000, 1.130 x 103). 
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Figure 6.3 

Prandtl number of air at 1 bar [interpolated from data from 

Perry et al. (1984)] 

Pr = (1.89 X 10-7) Tf2 - (2.20 X 10-4) Tf + 7.54 X 10-l (6.11) 

using the points (300, 7.05 x 10-1), (600, 6.90 x 10-1) and (900, 7.09 x 10-1). 

Determining Lit 

(a) Obtaining Lita (the length of the time step in the anode) 

i.e. 

Foa1:1 < 1. 1-2 

( aaf )(Lita) 1 ----'---- < -
(Lixa)2 - 2 

(Lixa)2 

Lita::::; --
2aa!1 

1 

(Foaf is the Fourier number of the anode 

at mesh point i at time step n) 

(aa7 is the thermal diffusivity of the 

anode at mesh point i at time step n) 

The upper bound on Lita is obtained by calculating the maximum value 

that aaf can take. 

n max. aai = 
ka 

(pa)(min.(c'lJ )~) 
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Suppose the minimum block temperature equals the assumed final 

average block temperature which equals Tf (see the discussion earlier 

in this section). 

min. (caP)f = (l.31)Tf + 4.55 x 102, see Equation (4.3) 

(b) Obtaining Lltp (the length of the time step in the packing coke). 

(Llxp)2 
Similarly Lltp ~ -~- and the upper bound on Lltp is obtained by 

2apf 

calculating the maximum value that apf can take. 

max. ap~ = kp 
1 

(pp)(min.(cpp)1i) 

and min. (cpP)f = (l.28)Tf + 5.27 x 102, see Equation (4.6). 

( c) Obtaining Lltw (the length of the time step in the flue wall) 

i.e. 

Fowf ~ min. (-2
1 

, 
1 

·n ) (Fowf is the Fourier number of 
2(1+B1) 

the flue wall at mesh point i at 

1 =----
2(1 + Bin) ' 

(awf )(Lltw) 1 
-~---<----

(Llxw)2 - 2(1 +Bin) 

(Llxw)2 
LltW ~ ------

2awf (1 +Bin) 

time step n) 

since Bin > 0 for all n. 

(awf is the thermal diffusivity 

of the flue wall at mesh point i at 

time step n) 

The upper bound on Lltw is obtained by calculating the maximum 

values that aw!1 and Bin can take. 
I 
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n max. awi = aw = kw 
see §4.4. 

S. B·n (Lixw)hn . 1 ·n . b mce 1 = kw , the maximum va ue of B1 1s o tained by 

calculating the maximum value of hn . 

max. hn = max. hr1 + max. hen 

max. hrn = ecr[ max. T~x - Tf] [ (max. T~)2 - (Tf)2] 

= ecr[initial T Nx -Tf] [ (initial T Nxf- (Tf)2
] 

= ecr[Tix - Tf] [ (Tix)2 - (Tf)2
] 

max.hen 

= hrl 

(max.kf)(max.Nu) 
= 

f_ 

= (kf)(Nu) since Tf is assumed to be constant 
f_ 

= he 

( d) Obtaining the overall Lit 

The upper bound on the overall Lit = minimum (max. Lita, max. Litp, 

max. Litw). 

Temperature on the anode/packing coke boundary 

The temperature on the anode/packing boundary needs to satisfy the equations 

for temperature distribution in both the anode and packing coke. 

Ta~ and Foa ~ are defined as the anode temperature (in Kelvin) and Fourier 

number respectively at mesh point q, q E z+, at time step n, n E z+. q runs 

from 1 to Nxa, where q = 1 is the mesh point on x = 0, and q = Nxa is the 

mesh point on the anode/packing coke boundary. 

Similarly, Tp~ and Fop~ are defined as the packing coke temperature (in 

Kelvin) and Fourier number respectively at mesh point r, r E z+, at time step 

n, n E z+. r runs from 1 to Nxp, where r = 1 is the mesh point on the 
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anode/packing coke boundary, and r = Nxp is the mesh point on the packing 

coke/flue wall boundary. 

At q = Nxa. 

From Equation (6.3) 

TaN:~ = FoaNxa[TaNxa+l + TaNxa-1 + ( \ - 2JTaNxa] (6.12) 
FoaNxa 

Ta~xa+l is an imaginary mesh point outside the anode, which coincides with 

Tp~ only if Lixa = Lixp. 

At r = 1. 

From Equation (6.3) 

Tpg is an imaginary point outside the packing coke, which coincides 

with Ta ~xa-l only if Lixa = Lixp. 

By Fourier's Law, on the anode/packing coke boundary 

(6.13) 

Q(t) = dQ/dt = _ k VT = _ k aaT ~ _ k (!(x + Lix, t) - T(x - Lix, t)J, 
x l 2Lix 

Q (t) = the rate of heat flow per unit area, in J/sm2. 

i.e. _ ka r-a~xa+l -Ta~xa-lJ = _ kp r-P~ -Tpg J 
l 2Lixa l 2Lixp 

(6.14) 

Equations (6.12)- (6.14) involve three unknowns: Ta~xa+l' Tpg and Ta~.tia 

= Tp;i+1• These equations are solved for Tpt1
, the temperature at time step 

n + 1 on the anode/packing coke boundary, using the fact that TaNxa = Tpf. 
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Fopr {2T n 2[ ka Llxp ]T n Tpn
1
+I = -- P2 + --- aNxa-1 

1 1 kp Llxa 

+ [ka Llxp( \ - 2J + (~ - 2J]Tpr} (6.15) 
kp Llxa FoaNxa Fop1 

where 
Fopr ka Llxp 

11 = 1 + n -- . 
FoaNxa kp Llxa 

In order to satisfy the Law of Conservation of Energy it is required that the 

coefficients of Tp2 , Ta~xa-I and Tp7 ~ 0. 

Since ka, kp, aa~xa and ap1 > 0 for all possible temperatures of interest and 

Foa~xa :s; ½, Fop1 :s; ½ (the restrictions determined earlier), then the 

coefficients~ 0. 

Temperature on the packing coke/flue wall boundary 

This case is similar to the anode/packing coke boundary one. Therefore 

where 

T n+l _ Fowr { 2T n 2[ kp LlXW]T n W1 - -- W2 + --- PNx -1 
1 2 kw L1Xp P 

+ [ :~ :;( Fo;N,v - 2) + (Fo~f - 2 J]Twf} 

12 = l + Fowr kp LlXW 
FopNxp kw LlXp 

(6.16) 

Tw~ and Fow~ are the flue wall temperature (in Kelvin) and Fourier number 

respectively at mesh points, s E z+, at time step n, n E z+. s runs from 1 to 

Nxw where s = 1 is the mesh point on the packing coke/flue wall boundary 

and s = Nxw is the mesh point on x = Lx. 
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As in the previous case, the coefficients of Tw~, Tp~xp-I and Twf ~ 0, so the 

Law of Conservation of Energy is satisfied. 

Summary 

The numerical solution of (6.1) requires the solution of 

I Taj+
1 

= Foa~ [ 2Ta~ + (F:af - 2 }•f], 

2 = Foa~ [ Ta~+l + Ta~-1 

q = 2 to Nxa-1, 

3 TaN;a = Tpt1 , see Equation (6.15), 

4 Tp~+l = Fop~ [ Tp;+l + Tp;_l 

r = 2 to Nxp-1, 

+ (-l _ 2JTp~] 
Fop~ 

5 Tp~:~ = Twr1 , see Equation (6.16), 

6 T n+ 1 F n [T n T n Ws = OW s Ws+l + Ws-1 + (-
1 

_ 2JTw~] Fown s 

s = 2 to Nxw-1, 

provided Foan ::; 1 
1 to Nxa, q 2 ' q = 

Fopn ::; 1 
1 to Nxp, 2 ' r = p 

Fown < .!_ s = 1 toNxw-1, s - 2' 

F n < 1 n > 1. OWNxw - Bin)' 2(1 + 
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6.3 Non-constant thermal conductivities 

Here the boundary value problem is (see §3.3) 

with 
oT 

t > 0, ax (0, t) = 0, 
(6.17) 

T(Lx, t) = T w(t), t> 0, 

T(x, 0) = T1, 0::; x::; LX. 

(
aTJ

2 
aT a

2 
T aT ox has to be approximated as well as at and ox2 . As in §6.2, ox is 

approximated by using a Taylor series expansion. 

oT (Lix.)2 o 2 T 
T(x + Lix, t) = T(x, t) + Lix ~ +-2 , - 2- + O(Lix)3 + ... ox . ox 

aT (Lix)2 a2 T 
T(x - Lix, t) = T(x, t) - Lix ox + 2! ox2 - O(Lix)3 + ... 

(
oT)

2 
= [T(x + Lix, t) - T(x - Lix, t)] 

2 

ax 2Lix 

Th. . . -" (aT)2 h f d CA )2 IS approx1matlon 10r OX as error O Or er LlX . 

aT a2 T 
If at and ox2 are approximated as in §6.2, then the partial differential 

equation 

oT " (aTJ
2 o2 T . . d at = a OX + a dX2 IS approximate 
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by 
T(x, t + Lit) - T(x, t) 

Lit 
= & [T(x + Lix, t) - T(x - Lix, t)] 

2 

2Lix 

[
T(x + Lix, t) + T(x - Lix, t) - 2T(x, t)] 

+a 2 , 
(Lix) 

where the error of the left hand side is of order Lit, and the error of the right 

hand side is of order (Lix)2. 

Therefore, in subscript/superscript notation, 

where 
A &~ Llt 
Fo~ = 1 = the 'hatted' Fourier number of the block at 

I 4(LlX)2 

mesh point i at time step n, in 1/K, 

and &f = the 'hatted' thermal diffusivity of the block at mesh 

point i at time step n, in rri2/sK, 

As in §6.2, Fof ::; ½. 

n - 2Lixhn ( n ) n 
and TNx+l = n TNx -Tf + TNx-1 

kNx 

Substituting for T~x+l in Equation (6.18) gives at i = Nx: 

+ Fo,\', [ 2Bi "Tf + 2Tri,_ 1 + ( F:ri, - 2( I+ Bi") JT~,] 

(6.19) 
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where 

As in §6.2, 

The boundary condition at i = 1 gives T ~ = Ti, as before. Substituting this 

into Equation ( 6.18) gives at i = 1: 

Tj+ 1 
= Foj [TJ-T)j2 +Fof[T)+T)+(F:f - 2}r] 

= Fof [2T) +(F:f - 2 }r] 
F n < 1 with o1 _ 2 . 

Equations (6.18) and (6.19) involve non-linear terms. Because of this, it was 

decided to leave the non-constant thermal conductivities case at this point. 

6.4 Results 

As input, the program requires an initial block temperature (Ta~, q = 1 to Nxa, 

Tp;, r = 1 to Nxp, Tw;, s = 1 to Nxw), an air temperature (Tf), the number of 

mesh points in the anode (Nxa), packing coke (Nxp) and flue wall (Nxw), the 

mass flow (rh) and finally the length of the time period. The mass flow is the 

total mass flow through all 4 fire shafts. The program's output is the transient 

temperature distribution of the block. 

The initial block temperature is assumed to be equal at all mesh points and is 

chosen as 600 °c. Tf is chosen to be 20 °c, Nxa = 15, Nxp = 4, Nxw = 4 and 

the length of the time period = 96 hours. The length of the overall time step 

(.6.t) is chosen to be 20 seconds. The number of mesh points coupled with the 

small .6.t is sufficient for convergence, that is, more mesh points and a smaller 

.6.t do not alter the temperatures significantly. Mesh point 1 corresponds to x 

= 0 and mesh point 21 to x = Lx . .6.xa, .6.xp and .6.xw are approximately the 

same - 0.028 to 0.032 m. 
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As shown in § 1. 1, Figure 1. 1, the fire trains being used at the New Zealand 

Aluminium Smelters Ltd have 3 forced cooling sections. Assuming a fire 

cycle time of 32 hours, the fans are moved in the fire direction by one section 

every 32 hours. Therefore each section undergoes 3 x 32 = 96 hours of forced 

cooling. 

Figures 6.4 - 6.6 show the temperature profile of the block at 32, 64 and 96 

hours for various mass flows. 

The arrows in the figures indicate the mesh points on the anode/packing coke 

and packing coke/flue wall boundaries. 
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Figure 6. 7 shows the temperature profile of the block at 96 hours for different 

thermal conductivities, but a constant mass flow (5 kg/s). Firstly the thermal 

conductivities of the three materials (ka, kp and kw) are calculated as 

discussed in §6.2. Then ka is divided by 2, whilst kp and kw are left unaltered. 

Then kp is divided by 2, whilst ka and kw are left unaltered. Finally kw is 

divided by 2, whilst ka and kp are left unaltered. 
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Temperature profile of the block at 96 hours with m= 5 kg/s 

6.5 Discussion of results 

Figures 6.4 - 6.6 show that when the mass flows increase, the block cools more 

quickly. They also show that as time goes on and the temperature difference 

between the block and the air decreases, then the rate of cooling of the block 

also decreases. These results confirm that the set-up of the model and the 

calculations are correct. 

For this particular set of initial temperatures, it takes a mass flow of 15 kg/sin 

order for the anodes to reach approximately 200 °Cat 96 hours (3 fire cycles) -

see Figure 6.6. This is similar to the mass flows used experimentally. At 

about this temperature, the anodes can be safely removed from the pits and 

stacked on the floor. 

55 



As expected, altering the thermal conductivities effects the cooling rate of the 

anodes, see Figure 6.7. The greatest effect on anode cooling occurs when kp is 

altered. Altering ka produces the least effect, whilst altering kw produces an 

intermediate effect. This result agrees with that of Furman and Martirena 

(1980). It was found that kp was one of the two parameters which decisively 

influenced the calculations, see § 1.2. 
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CHAPTER 7 TWO-DIMENSIONAL NUMERICAL SOLUTION 

7.1 Introduction 

Only the constant thermal conductivities case is examined. The main 

difference, besides the increase in dimension, between this chapter and the 

previous one, is that here the fluid or air temperature in the flue is not constant. 

As mentioned in §1.3, the air temperature (and pressure) is changing as heat is 

transferred from the block out into the air in the flue. 

7.2 Air Flow in the Flue 

An elemental volume (V) of air in the 'large' flue is considered, as shown in 

Figure 7.1. 

y 

air flow I __ ...,., 

I 
➔ d I 

I 
I 
I 
I 
I 
I 
I - -, 

\ 

\ 
\ 

\ 
\ 

\ 

Figure 7.1 

X 

Elemental volume of air in the flue 

V = d W /:iy m3, where d = 0.238 m and W = 0.111 m (see Figure 2.6). 

Mass of the air in V = pf x d x W x /:iy kg (pf = density of air or fluid in 
kg/m3

) 

Energy of the air in V = mass x specific heat capacity x temperature 

= ((pf)dW l:iy) X cfp X Tf J 
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By the conservation of mass: 

The change in the mass of the air in V over time L~.t = the mass of the air 

entering V during time .M - the mass of the air leaving V during time Lit. 

i.e. ( (pf)dW Liy )r+ti.t - ( (pf)dW Liy )t = ( (pf)vdW)y Lit - ( (pf)vdW)y+ti.y Lit 

(v = the velocity of the air in m/s) 

⇒ 
(pf)t+D.t - (pf)t + ((pf)v)y+li.y - ((pf)v)Y = 0 

Lit Liy 

⇒ 
a(pf) a 
- + -((pf)v) = 0 at ay (7.1) 

Similarly by the conservation of energy: 

The change in the energy of the air in V over time Lit = the energy or heat 

gained by the air in V from the block during time Lit + the energy of the air 

entering V during time Lit - the energy of the air leaving V during time Lit. 

i.e. 

⇒ 

⇒ 

⇒ 

But 

( (pf)dW Liy (cfp)Tf)t+ti.t - ( (pf)dW Liy (cfp)Tf)t 

= (Qw)d Liy Lit + ((pf)vdW(cfp)Tf)YLit -

( (pf)vdW(cfp)Tf)y+ti.y Lit 

a a a a 
pf at ( cf P Tf) + cf P Tf at (pf)+ (pf)v ay ( cf P Tf) + cf P Tf ay ( (pf)v) 

1 . 
=wCQw) 

cfPTf gt (pf) + cfPTf :y ((pf)v) = cfPTf (tt (pf) + :y ((pf)v)) = 0, 

see Equation (7.1). 

a a 1 . 
Therefore pf at ( cf P Tf) + (pf)v ay ( cf P Tf) = W ( Qw) 
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and since (pf)v = ii 

then (7.2) 

f(Tfd(cfp)aTf + cf aTfJ+ m (Tfd(cfp)aTf + cf aTfJ= _!_(Qw) 
p dTf dt p dt dW dTf ay p ay w 

i.e. f 
aTf m aTf 1 · 

p at + dW dy = WF ( Qw) 

d(cfp) 
where F = Tf dTf + cfp. 

Th . aTf . I d . h h I . . f h . . e transient term, dt , 1s neg ecte smce t e t erma mertia o t e air 1s very 

small compared to the thermal inertia of the block, see Thibault et al. (1985). 

Therefore 
dTf d(Qw) 
ay = mF (7.3) 

From Equation (6.4), Qw = Qw(t) = h(t)[T(Lx, t) - Tf(t)] 

But for this two dimensional case, 
Qw = Qw(y, t) = h(y, t) [T(Lx, y, t) - Tf(y, t)] 

A . . aTf . T I . . . pprox1matmg ay usmg a ay or senes expansion gives 

aTf = Tf(y + £ly, t) -Tf(y- £ly, t) + O(£l )2 
ay 2 £ly Y 

Equation (7.3) becomes: 
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Tf(y + t:,.y, t) -Tf(y - 1::,.y, t) d h(y, t)[T(Lx, y, t) - Tf(y, t)] 
= 

2 t:,.y mF(y, t) 

where the error of the left hand side is of order (t:,.y)2. 

Therefore 

Tf(y + 1::,.y, t) 
2 t:,.y d h(y, t)[T(Lx, y, t) - Tf(y, t)] (

7
_
4

) 
= . F( ) + Tf(y - 1::,.y, t) 

m y, t 

Tf J is defined as the air temperature (in Kelvin) in the flue at mesh point j at 

time step n, and hj as the heat transfer coefficient (in W/mK2) at the flue wall 

at mesh point j at time step n, j and n E .z+. j runs from 1 to Ny, where j = 1 

is the mesh point in the flue corresponding to y = 0 in the block, and j = Ny 

is the mesh point in the flue corresponding to y = LY in the block. 

1::,.y is the distance between mesh points (in metres) in the y direction and F1} is 

the value of F at mesh point j in the flue at time step n. Tfj is defined as the 

block temperature (in Kelvin) at mesh point (i, j), where i and n are defined 

as in §6.2. j runs from 1 to Ny, and j = 1 corresponds to y = 0 in the block, 

and j = Ny corresponds toy= LY in the block. 

Rewriting Equation (7.4) using the subscript/superscript notation gives: 

= 2 1::,.y d hf (T~x,j - Tff) + Tf~ 
ri1 pl: J-1 

J 

or Tf ~ = G~ 1 + Tf ~2, 
J J- J-

where Gf_1 = 
m pl: 1 J-

Tff-1) 

and 

(7.5) 

It is assumed that the inlet air temperature at time step n, Tf f , remains 

constant for all n. For the next mesh point, Tf ~ , Equation (7 .5) cannot be 
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used, since Tf f_2 = Tf g is an imaginary mesh point outside the flue. In this 

case, it is necessary to find a Taylor series approximation such that the mesh 

points are inside the flue. The 3 - 4 - 1 approximation outlined as follows is 

such an approximation. 

aTf (/1y)2 a2 Tf 3 
Tf(y - /1y, t) = Tf(y, t) - /1y a + - 2 - --2 - O(/1y) + ... (7.6) 

Y ay 

aTf c211y)2 a2 Tf 3 
Tf(y - 2/1y, t) = Tf(y, t) - 2 /1y a + 2 - 2- - O(/1y) + ... (7.7) 

Y ay 

4 x (7.6) minus (7.7) gives: 

aTf 3 
4Tf(y- /1y, t) - Tf(y- 2/1y, t) = 3Tf(y, t) - 2/1y ay + O(/1y) + ... 

⇒ 
3Tf(y, t) - 4Tf(y - /1y, t) + Tf(y - 2/1y, t) 2 

+ O(/1y) ... 
2/1y 

Switching to subscript/superscript notation gives: 

aTf 3Tff - 4 Tff _1 + Tff_2 

ay = 211y 

where the error of the right hand side is of order (11y)2. 

So in this case Equation (7.3) becomes: 

3Tf1:1 -
J 4Tff_1 + Tf1:1 2 J-

d h1:1(T~ · - Tff) J X,J 
= 

2/1y rh p1:1 
J 

or 

3Tff+1 4Tff + Tf1:1 1 d hf+1(T~x,j+l - Tff+1) J- = 
2/1y . pn 

m j+l 

i.e. Tf n_ 1 on 3 Tf n 1 Tf n 
J = - 4 j+l + 4 j+l + 4 j-1 (7.8) 

and for j = 2, Equation (7 .8) becomes 

Tf ~ = - ¼ G~ + ¾ Tf ~ + ¼ Tf 7 (7.9) 
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But in Equation (7.5), the G j~l are calculated at the previous spatial step. For 

example, for Tf ~, G~ is calculated and for Tf~Y' G~y-l is calculated. 

But in Equation (7.9), the GT(= G~) is calculated at the next spatial step, since 

for Tf ~ , G~ is calculated. Also, note that G~ is used twice, once for 

calculating Tf 2 in Equation (7 .5) and again for calculating Tf ~ in Equation 

(7.9). 

So in order to be consistent, instead of calculating G ~ for Tf ~ in Equation 

(7.9), G 7 is calculated. 

Therefore 

Summary 

1 

2 

3 

where 

and 

Tf n = constant 1 

Tf ~ = - ¼ G~ + ¾ Tf ~ + ¼ Tf ~ 

2 11y d h1:1(T~ · -Tf1:1) G~ = J X,J J 
J m Fl: 

J 

d(cfp)i 
dTf = 0.138, see Equation (6.10). 

The calculation of Tf at the next time step 

(7.10) 

(7.11) 

(7.12) 

Relaxation is used and this is outlined as follows. Given the air temperatures 

along the flue at say time step n, that is given Tf J' j = 1 to Ny, the air 

temperatures along the flue at the next time step are estimated using Equations 

(7.11) and (7.12). Call these estimates estTf1J- It is not necessary to estimate 

Tf f since Tf 7 = constant for all n = atmospheric temperature = 20 °C ( see 

§2.4). 
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So estTf~ = - ¼ G f + ¾ Tf ~ + ¼ Tf f 
and estTfj = G }-I + Tfr-2 , j = 3 to Ny. 

Next the percentage differences between Tf f and est Tf j relative to Tf J are 

calculated for j = 2 to Ny. 

i.e. percentdiff1 
jTff - estTff I = ~---~ X 100, j = 2 to Ny. 

Tfl:1 
J 

If the maximum percentage difference for all j 2:: 0.1, then the above process is 

repeated, replacing the Tq with est Tff ,j = 2 to Ny. New estTf f and hence 

a new maximum percentage difference is calculated. This process keeps 

repeating itself until the maximum percentage difference < 0.1. When this 

inequality is satisfied, then Tf j+ 1 = estTf J , j = 2 to Ny. 

Once the Tfy+1 are calculated, then this enables the calculations in the block to 

be done for time step n + 1. After these temperature calculations in the block 

are completed, then the calculation of the T~ at the next time step begins again 

and so on. 

7 .3 The heat equation in the block 

Recall from §3.3 that the boundary value problem is 

OT ( 0
2
T 0

2
T J 

0 S XS Lx, 

at(x, y, t) = a ax2 + ay2 ' 0sysLy, 
t>0 

with 
aT 
-(0, y, t) = 0, ax 0sysLy, t > 0, 

T(Lx, y, t) = T wCt), osy sLy, t > 0, 
(7.13) 

T(x, y, 0) = T1, 0sxsL, osysLy, 

aT aT 
0 S XS Lx, t>0. - (x, 0, t) = ay (x, Ly, t) = 0, 

ay 

Discretising (7.13) as in Chapter 6, gives in subscript/superscript notation: 

63 



(7.14) 

i = 1 to Nx, j = 1 to Ny, n > 1, 

a,:1.~t 
where T~. and Fo~. = ~

2 
are the temperature and the Fourier number of the 

1,J 1,J (~y) 

block respectively at mesh point (i, j) at time step n, 

with 
dT1n· __ ,_J 

dx 
0, j = 1 to Ny, n > 1, 

dT~x,j - hf( n n) • = -- TN · - Tf · J = 1 to Ny, n > 1, dx kn x,J J ' Nx,j 

1 T· · = T 1,J 1' i = 1 to Nx, j = 1 to Ny, 

dT:11 __ 1,_ 

dy 
0, i = 1 to Nx, n > 1. 

Using Figure 7.2 as a guide and Equation (7.14), Ttr1 is now determined for 

all i and j, with the partial derivatives of the boundary conditions approximated 

as was done in §6.2. 
lines of symmetry 

/ clT "" dY=O 

axes for a sucker 

y, 
I 

I 
I 

adiabatic: 
I 

clT : 
dX =0 I 

I 

I 

:Y 

adiabatic 
X 

T(x, y, t) 

Block 

axes for a blower .....,_ ____ ~ 
, x adiabatic 
I 

Figure 7.2 

' ' ~ue 

' 

Tf(y, t) 
' ' : ¥x= -~(T-Tf) 

Schematic cross-section of the block and flue showing axes 

and boundary conditions 
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i=l,j=l 

aTf · oT!\ 
The boundary conditions __ ,J = 0 and - 1

-' = 0 give T 3, 1 ax oy 
= Tf, 2 respectively, therefore 

provided Fof,1 :::; 
1 

i = 2 to Nx-1, j = 1 
oT:11 1, n n 

The boundary condition dy = 0 gives Ti,O = Ti,z• 

Hence 

provided 

Tn+l 
i,l 

Fo:11 :::; 
I, 

Foti{(~:)' (Tf+1,1 + T:'-1,1) + 2Tt2 
+ [F~f.i - 2( (!)' + I) ]Tf1} (7.16) 

1 

i = Nx,j = 1 

oT:11 
-

1
-' = 0 gives TNx,O = TNx,z and as in §6.2 ay 

-h1:1 ( ) ~ TNx,j - Tff , j = 1 to Ny, 
Nx,j 

gives TNx+l,l 
- 2(Lix)hf ( n n) n 

T Nx,l - Tf1 + T Nx-1,1 
kNx,l 
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[ 
1 + ---

F0Nx,1 
(7.17) 

provided 

(&)h~ 
where Bif = -----"- = the Biot number at mesh point j = 1 at time step n. 

kN~,1 

i = 1, j = 2 to Ny-1 

aTf,i . n n ax = 0 gives To,j = T2,j. 

provided Fo1n· :::; ,J 

[ 
1 + ---

Fo1,j 

1 

i = 2 to Nx-1,j = 2 to Ny-1 

provided 

[ 
1 + --­

Fo!1, 
1,J 
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i = Nx, j = 2 to Ny-1 

This is very similar to the case i = Nx, j = 1 studied earlier. Using this earlier 

case as a guide gives: 

[ 
1 + ----

Fo~x,j 

provided 
1 

fu~JS-2-~-!-~_)_2_+_(_!_~_)_2_B_i_f_+_1~). 

i = 1, j = Ny 

oTn. oTn 
a~·1 = 0 and oyNy = 0 give T3,Ny = T~,Ny and TtNy+l = Tf,Ny-1 

respectively. 

Tn+l F n 
l,Ny = 01,Ny 

11y n n 
{ 

2 

2(11x) T 2,Ny + 2Tr,Ny-l 

provided 
1 

Fol,Ny S ------

{ (!:Y + 1) 

i = 2 to Nx-1, j = Ny 

oTrNy . Tn n oy = 0 gives i,Ny+l = Ti,Ny-1. 

[ 
1 

+ n 
Foi,Ny 
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provided 
1 

i = Nx, j = Ny 

This is very similar to the case i = Nx, j = 1 studied earlier. Using this earlier 

case as a guide gives: 

[ (( )2 ( )2 1 b..y b..y •ll + n - 2 - + - B1Ny + 
FoNx,Ny b..X b..x 

(7.23) 

provided 

Determining b..y 

b..y is obtained by specifying the number of spatial steps required in they 

direction, Ny, and then the depth of the block is divided by Ny-1. 

~ b..y = Ny-1 m 

Determining Fo~j 

A very similar method to that discussed in §6.2 is used. 

As in §6.2, the ki (thermal conductivies) are calculated using the temperature 

midway between the initial and assumed final average temperature of the block. 

Suppose this final average block temperature is Tf} , for any j between 2 and 

Ny, since all the T~1
, j -:f::. 1, are chosen to be equal. Recall from §2.4, that Tf ~ = 

atmospheric temperature = 20 °C for all n. 

Determining BiJ 

Similar to the method in §6.2, but here h = h(y, t), so 
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Lix h~ 
Bi~ = J = 

J kn 
Nx,j 

Lixw h~ 
kw 

where h~ = (hr~ + he~ ) W/m2K 
J J J 

hr~ = the heat transfer coefficient for radiation of the flue wall at 
J 

mesh point j at time step n, and 

he~ = the heat transfer coefficient for convection of the flue wall at 
J 

mesh point j at time step n. 

(kff )(Nuf) 
and he~ = 

J .e. 

kff = the thermal conductivity of the fluid or air at mesh point j in the 

flue at time step n, in W /mK, 

Nuj = the Nusselt number at mesh point j in the flue at time step n 

and is dimensionless, 

.e. = the characteristic length in m, see §6.2. 

Determining Lit 

A similar method to that used in §6.2 is followed. 

(a) Obtaining Lita 

i.e. 

(Liy )2 

Lita ~ -2-aa_p_. (-'-(--'.0.'-'-y-)_2 _+_1_J . 
,J Lixa 
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(Foaf,j is the Fourier number of the 
anode at mesh point (i, j) at time step 
n) 

( aaf,j is the thermal diffusivity of the 

anode at mesh point (i, j) at time step 

n) 



The upper bound on Lita is obtained by calculating the maximum value that 

aa.0
1
. can take. 

I, 

max. aa!l. = ka , see §6.2 for this calculation. As in §6.2, the 
1
'
1 (pa)(min.(cap )r,} 

minimum block temperature is taken to be the assumed final average block 

temperature which equals TfJ for any j between 2 and Ny (see the discussion 

earlier in this section). 

(b) Obtaining Litp 

Similarly 

( c) Obtaining Litw 

F n < . owi,j _ mm. 
1 1 

2(c;J + 1)' 2((:J +(~)'Bij +1] 
1 

= 

( 
2 2 J ' 

2 (:w) + (Li;w) Bif+l 

since Bi J > 0, '7 j and n. 

i.e. 

Litw :s; 

(( )2 ( )2 J n Liy Liy ·n 
2awi • -- + -- B1- +1 

,J Lixw Lixw J 

The upper bound on Litw that satisfies the above inequality is obtained 

by calculating the maximum value that aw!!. and Bi0

1
. can take. See 

1,J 

§6.2 for the calculation of max. aw!1
1 
.. 

I, 

Since 
Lixw h

1
1: 

Bi~ = 
1 kw 
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the maximum value of Bi J is obtained by calculating the maximum 

value of hf. 

max. hf = max. hr'] + max. hcJ 

max. hr~ = £cr[max. T~xw,j - min. Tff] [(max. T~xw)2
- (min. TfT)2

] 

= £cr[initial T Nxw,j - min Tf j] [(initial T Nxw)2 
- (min. Tf J )2] 

= £CT [T~xw,j - min. Tf7] [(Tkxw)2 
- (min. Tf j )2] 

Assume that min. Tf j , the minimum fluid temperature at mesh point j 

at time step n, is 293 K (atmospheric temperature) for all n. 

n _ (max. kf1 )(max. Nuf) 
max. hcj - _f, 

max. kfj = (5.65 x 10-5) max. Tff + 1.02 x 10-2
, 

see Equation (6.9). 

Assume that max. TfJ , the maximum fluid temperature at mesh point j 

at time step n, is 773 K for all n. 

max. NuJ = 0.023 (max. Ref )°-8 (max. Prf )°-4, 

4 ri1 
max. Ref = 

(min. µ J )(perimeter) 

(min. kf~)(min. Prf ) 
min. µJ = · · 

max. (cfP )J 

see Equation (6.6) 

see Equation (6.7) 

see Equation (6.8) 

max. Pr~= (1.89 x 10-7) (773)2-(2.20 x 10-4) 773 + 7.54 x 10-1
, 

J 

see Equation (6.11) 

min. kff = (5.65 X 10-5) 293 + 1.02 X 10-2 

min. Prj = (1.89 x 10-7)(293)2- (2.20 x 10-4) 293 + 7.54 x 10-1 

max. (cfp)j = (1.38 x 10-1)773 +9.92 x 102, see Equation (6.10). 
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(d) Obtaining the overall ~t. 

The upper bound on the overall ~t = minimum (max. ~ta, max. ~tp, 

max. ~tw). 

Temperature on the anode/packing coke boundary 

Ta~,j and Foa ~,j are defined as the carbon anode temperature (in Kelvin) and 

Fourier number respectively at mesh point ( q, j) at time step n, q is defined as 

in §6.2. j runs from 1 to Ny-

Similarly Tp~j and Fop~j are defined as the packing coke temperature (in 

Kelvin) and Fourier number respectively at mesh point (r, j), at time step n. r 

is defined as in §6.2. 

At q = Nxa. 

From Equation (7 .16) 

Tn+l 
Nxa,l 

n [ 1 + 2TaNxa,2 + n -
FoaNxa,l 

(7.24) 

and from Equation (7 .19), for j = 2 to Ny - 1, 

Ta~xa,j 

n [ 1 + TaNxa,j-1 + n -
FoaNxa,j 

2( (!J + I) ]T•~x..i} 
(7.25) 

and from Equation (7.22) 

Ta~-:;,Ny = Foa~x,,Ny{ (::.r (Ta~xa+l,Ny + Ta~x,-1,Ny) 
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n [ 1 + 2TaNxa,Ny-l + --n--
FoaNxa,Ny 

(7.26) 

Ta~xa+l,j, j = 1 to Ny, is an imaginary mesh point outside the anode, which 

coincides with Tptj only if Llxa = Llxp. 

At r = 1. 

From Equation (7 .16) 

(7.27) 

and from Equation (7.19), for j = 2 to Ny- 1, 

+ [-
1 

_ 2((~J

2 

+ 1J]rpr.} Fopn . Llxp ,J 
l,J 

(7.28) 

and from Equation (7.22) 

+ [ ln - 2((~J

2 

+ 1J]Tpf,Ny} (7.29) 
Fopl,Ny Llxp 

Tpg,j, j = 1 to Ny, is an imaginary mesh point outside the packing coke which 

coincides with Ta~xa-l ,j only if Llxa = Llxp. 
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As was done in §6.2 , a heat balance is done on the anode/packing coke 

boundary using Fourier's Law to give: 

- ka xa+ ,J xa- ,J = - k ,J ,J · = 1 to N (7.30) 
(

TanN 1 . - TanN 1 . ] (TP2n. - Tpno.] 
2L1xa p 2L1xp ' J y' 

j = 1. 
Equations (7.24), (7.27) and (7.30) involve three unknowns: Ta~xa+l,l , Tp8, 1 
and Ta~:;, 1 = Tpf~1. These equations are solved for Tpt/, using the fact that 

Ta~xa, 1 = Tpr, 1 and Ta~xa,2 = Tpf,2 . 

Tpn+l = Fopf.1{2( ~ )\ n + 2 [( ~ r kaL\xp ]Ta" 1,1 A L1 P2,1 L1 k L1 Nxa-1,1 1 xp xp p xa 

[ ka L\xa ] n + 2 --- + 1 Tp1 2 
kp L1xp ' 

[ ka L\xa( I 
+ kp L1xp FoaNxa,l - {U:J + 1JJ 

+ [ Fo~P,1 - 2l U:J + 1J J ]TPP,1} (7.31) 

where A1 = 1 + 
Fopf,1 ka L1xa 

FoaNxa,l kp L1xp 

In order to satisfy the Law of Conservation of Energy it is required that the 

coefficients of Tp~, 1, Ta~xa-l,l' Tpf,2 and Tp?, 1 2:: 0. 

ka and kp > 0. 

aa~xa,l and ap1,1 > 0 and hence Foa~xa,l and Fop1,1 > 0. 

n 1 n 
FoaNxa 1 ~ ( 2 J and Fop11 

, 2 ( L1y) + 1 , 
L1xa 

the restrictions determined earlier. 
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Therefore the coefficients :2:: 0. 

j = 2 to Ny- 1 

Similarly 

Tpn-!-1 
l,J 

[
ka .6.xa ] n [ka .6.xa ] n + --- + 1 Tplj+l + --- + 1 Tpl j-1 
kp .6.xp ' kp .6.xp ' 

[ 
ka .6.xa ( 1 2(( .6. Y )

2 
1]] 

+ kp .6.xp Foa Nxa,j - .6.xa + 

[ 
1 

+ n 
Fop1,j 

(7.32) 

where A2 
Fopf,j ka .6.xa = 1 + --~ ---

FoaNxa,j kp .6.xp 

j =Ny 

Similarly 

Tpn+l _ l,Ny - Fopf,Ny {2(_EL_J
2 
T n + 2[(_EL_J

2 
ka .6.xp]Tan 

A A P2,Ny A k A Nxa-1,Ny 
3 D.Xp D.Xp p D.Xa 

[
ka .6.xa ] n + 2 --- + 1 TplNy-1 
kp .6.xp ' 

+ [ ka .6.xa ( 1 _ 2]((EL)2 
+ 1]] 

kp .6.xp Foa Nxa,Ny .6.xa 

+ [ ln - 2((E'LJ
2 

+ 1J]lTpf,Ny} (7.33) 
Fopl,Ny .6.xp 

+ 
Fopf_Ny ka .6.xa 

where A3 = 1 ---"-'-'-'-'- k 
Foa~xa,Ny P .6.xp 
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Temperature on the packing coke/flue wall boundary 

This case is similar to the anode/packing coke boundary one. 

Twns. and Fow~
1
. are defined as the flue wall temperature (in Kelvin) and ,J , 

Fourier number respectively at mesh point (s, j), at time step n. sis defined as 

in §6.2. 

j = 1 

Twn+l _ Fowf.1 { 2( Liy )
2 

Twn + 2[( Liy )
2 

kp LixwJT n 
1,1 - 0 A 2,1 A k A PNxp-1,1 

1 D.XW D.XW W D.Xp 

[ 
kp Lixp ] n + 2 --- + 1 Tw1 2 kw Lixw ' 

kp Lixp 1 
2 

Liy l 
[ [( )

2 ]] + [ kw Llxw FopN,p,I - Llxp + 

[ 
1 

+ n 
Fow1,1 

(7.34) 

where 0 1 
Fowf,1 kp Lixp 

1 + 
FopNxp,l kw Lixw 

j = 2 to Ny- 1 

where 

Twn+l _ Fowf,j {2( Liy )
2

T n 2[( Liy )
2 

kp Lixw]T n 1,1· - ---=- -- W2 · + -- ---- PNx -1 · 
0 2 Lixw ,J Lixw kw Lixp P ,J 

+ [ kp Lixp + 1]Twr ·+1 + [ kp Lixp + 1]Twr •-1 
kw Lixw ,J kw Lixw ,J 

I kp Lixp [ 1 
+ l kw Lixw FopNxp,j - {(::J + 1]] 

2(U;J + 1)J]Twf,j} (7.35) [ 
1 + ---­

Fow!1. 1,J 

Fowf j kp Lixp = 1 + ----=--- ---
Fopn kw Axw Nxp,j D. 
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j = Ny 

T n+l = Fowf,Ny {2( L'.iy )2 Twn + 2 [( L'.iy )2 kp L'.ixwJT n WNy 0 A.. 2,Ny A.. k A PNxp-1,Ny 
3 L.J.A W L.J.A W W LlXp 

where 

[ 
kp L'.ixp ] n + 2 --- + 1 TwlNy-1 
kw L'.ixw ' 

+ ----
( 

1 

Fowf,Ny 

Fowf,Ny kp L'.ixp 
03=1 + ----

Fop~xp,Ny kw L'.ixw 

(7.36) 

For the same reasons as before, the coefficients of the various mesh points in 

Equations (7 .34) - (7 .36) ~ 0, so the Law of Conservation of Energy is 

satisfied. 

Summfil:):'. 

The numerical solution of (7 .13) requires the solution of: 

(1) Tan+l Foaf 1 { 2( /1y )' Ta~ 1 +2Taf 2 1,1 ' L'.ixa ' ' 

+[-1 -2((~)'+1J}ari}, Foan L'.ixa ' 1,1 

(2) Tan+l q,1 = Foal,, {(::J (ra~+I,I + Ta;_,,,) + 2Tal,2 

+ [ 1, - 2( ( ~ )' + I J ]ra;,1} , q = 2 
Foaq,l L'.ixa 

to Nxa-1, 

(3) T n+l Tpf,t1 , see Equation (7.31), aNxa I = , 
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(4) Tpn+l r,1 = Fop~1{( /:J.y J

2

(TP~+11 + Tp~-11) + 2Tp~2 , 1:J.xp , , , 

+ [ 
1 

n - 2((~J

2 

+ 1J]TP~,I}, r = 2 to Nxp- 1, 
Fopr,l /:J.xp 

(5) Twrf1 , see Equation (7.34), , 

(6) Tw~j
1 = Fow~,1 { ( :w r ( Tw~ + 1,1 + Tw~-1,1) + 2Tw~.2 

+ [ 
1 

n - 2((~)
2 

+ 1J]Tw~,1}, s = 2 to Nxw - 1, 
Fow5,1 /:J.xw 

(7) Tw~:~.1 = Fow~xw,I { ( ... ':w r [ Bif Tff + Tw~xw-1,1] 

+ 2TwNxw,2 + [ ~ - 2(( /:J.y )
2 

FowNxw,l /:J.xw 

+ (:JBi( + 1J]T~xw,1}, 

(8) Ta(,r1 = Foa~;{2(::.)' Tat; + Taf,j+I + Ta~j-l 

(10) T n+I 
aNxa,j 

+ [-l -2((~)
2 

+ 1J]Tar ·}, J = 2 to Ny - 1, Foan • /:J.xa ,J 
1,J 

[ 
1 

+ n 
Foaq,j 

- 2( (::J + 1J] Ta~,i }• q = 2 toNxa-1, 
j = 2 to Ny- 1, 

= Tpr,j1 , see Equation (7 .32), 
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+ [ 
1 

n. - 2((~J

2 

+ 1J]TP~,j}, r = 2 to Nxp- 1, 
Fopr,J ~xp 

j = 2 to Ny- 1, 

(12) T n+l - Twn+l E . (7 35) PNxp,j - 1,j , see quat10n . , 

(14) T n+l 
WNxw,j 

[ 
1 

+ n 
Fows,j 

-2((~)2 + ,)]Tw~+ s = 2toNxw-1, 
j = 2 to Ny 1, 

n n [ 1 + TwNxw,j+l + TwNxw,j-1 + n 
FowNxw,j 

j = 2 to Ny-1, 

(15) Ta/,l:/y = Foa/,Ny{ 2(:.J TatNy + 2Taf.Ny-l 

+ [ In - 2((~)

2 

+ 1)]TaP,Ny} , 
Foal,Ny ~xa 
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(16) 

(17) 

(18) 

Tan+l q,Ny = Foa~,Ny{ (:ar (Ta~+I,Ny + Ta:-1,Ny) 

T n+l 
aNxa,Ny 

n [ 1 + 2Taq,Ny-1 + n 
Foaq,Ny 

-2((::J + 1)]Ta~,Ny}, 

q = 2 to Nxa - 1, 

= Tpf,Uy , see Equation (7.33), 

Tpn+l r,Ny = Fop;,Ny{( :p J (Tp;+l,Ny + Tp;_I,Ny) 

n [ 1 + 2TPr,Ny + 1 
F0Pr,Ny 

-{U:J + 1J]Tp;,Ny}, 
r = 2 to Nxp - 1 , 

(19) TpNt~,Ny = Twf,t~, see Equation (7.36), 

(20) 

(21) 

Twn+l 
s,Ny = Fow~Ny{ c,;w )'{T:'i-1,Ny + Tw~-1,Ny) 

T n+l 
WNxw,Ny 

n [ 1 + 2Tw s,Ny-1 + n 
Fows,Ny 

-2((:J + 1)]Tw~,N+ 

s=2 to Nxw-1, 

n [ 1 + 2TwNxw,Ny-l + --0--

FowNxw,Ny 

- 2((-1:!,.y )
2 

+ (-1:!,.y )
2 

BiN + 
l:!,.xw l:!,.xw Y 

I) ]Tw~xw,Ny} , 

provided Foa~.j :s; 
1 

q = 1 to Nxa, 
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Fop~,j 
1 :s: 

2[(:J f + 

r = 1 to Nxp 

Fow~,j 
1 :s: 

{(d;J f + 
s = 1 to Nxw- 1 

Fow~xw,j :S: 

7 .4 Heat balance at the flue wall 

Since there is no heat flow across the boundaries x = 0 y = 0 and y = L 
' Y' 

then all the heat flow from the block occurs along the boundary x = Lx , i.e. the 

flue wall. The heat transferred from the block across this boundary should 

equal the heat gained by the air in the flue, i.e. LiQ + LiQf = 0, where 

LiQf = the heat gained by the fluid or air in time Lit and 

LiQ = the heat transferred from the block in time Lit. 

/ 

axes for a sucker 
/ 

/ 

Figure 7.3 

plane of symmetry 

/ 
/ 

/ 

✓ 

/ 
/ 

/ 

/ 
/ 

/ 

✓ 

Schematic three-dimensional view of the block showing axes 

Calculation of LiQf 

Consider the block, where the z direction is as shown in Figure 7.3. Let Q(t) be 

the heat in the block at time t. Then 
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see §3.1, 

= 1t ( J~' f ~y J; pe dz dy dx) 

where dV = dx dy dz and d is as shown in Figure 7.3, 

dQ rL, rLY a 
dt = d Jo Jo at (pe) dy dx (pe is independent of z) 

= d f ~' f ~y (P cp i~) dy dx see §3.1, 

= d f ~' f ~y V ·(kVT) dy dx see §3.1, 

= d iL, iLY [j_(k aT) + j_(k aT)] dy dx 
0 0 ax ax ay ay 

dQ iL · - = d y -Qw dy 
dt o 

(7.37) 

. aT aT 
smce ax = 0 on x = 0, ay = 0 on y = 0, LY and the rate of heat flow per 

aT 
unit area of the flue wall = Qw = k ax on x = Lx , see §6.2. 

Now consider the air. Recall Equation (7.2) that is, 

⇒ 
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( 
d( cf 0) oTf oTfJ m a 1 . 

⇒ pf Tf dTf dt + cfp dt) + dW oy (cfPTf) = W (Qw) 

⇒ 
oTf m a 1 . 
dt + dWF(pf) oy (cfPTf) = WF(pf) (Qw) 

d(cfp) 
where F = Tf dTf + cf P. 

(7.38) 

As discussed in §7.2, the transient term o~f is neglected. Therefore Equation 

(7.38) becomes 

. d . 
m dy (cfPTf) = d(Qw). 

Integrating with respect to y gives: 

= - dd~ from Equation (7 .37) 

Calculation of LiQ 

Consider an elemental volume V of block, as illustrated in Figure 7.4, centred 

at mesh point (i + ½, j + i), i = 1 to Nx - 1, j = 1 to Ny - 1. 

Ny-I Nx-1 [ ] 

Then LiQ = ~ ~ Vi+½,j+½ (pe)~:½,j+½ - (pe)~+½,j+½ 
J=l 1=! 

where V. ½. ½ = Lix Liy d m3 for all i andj, see Figure 7.4, 
l+ 2,J+ 2 

and e = internal energy per unit mass in J/kg - see §3.1. 
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, , , 

, , 

plane of symmetry 

, , 

Aue wall 

Figure 7.4 

Schematic three-dimensional view of the block showing elemental 

volume V centred at mesh point (i + ½, j + ½) 

p = pa, pp or pw and e = ea, ep or ew depending on whether the 

calculations are occurring in the anode, packing coke or flue wall. ea, ep and 

ew are the internal energies per unit mass of the anode, packing coke and flue 

wall respectively. 

oh oe 
Recall from §3.1, that cpCT, p) = oT = oT at constant pressure. 

Therefore e(T, p) = J: cpC-t, p)d"'C + f(p) where f(p) is some function of 

pressure. 

If cp(O, p) is assumed to be zero, then e(O, p) = f(p). Then assuming that 

e(O, p) = 0, gives 

e(T, p) = s: cp("'C, p)d"'C. 

Now consider cap = (1.3l)"'C + 4.55 x 102 , see Equation (4.3) 

Therefore ea = s: [(l.3l)"'C + 4.55 x 102 ]d"'C 

= (1] 1
)T2 + (4.55 x 102 )T J/lcg 

84 



Similarly ep = (1J8
)T2 + (5.27 x 102 )T J/kg 

ew = 1250 T J/kg and 

.6.Q = .6.Qa + .6.Qp + .6.Qw 

where .6.Qa = the heat transferred from the anode in time Lit in J, 

.6.Qp = the heat transferred from the packing coke in time Lit in J, 

and .6.Qw = the heat transferred from the flue in time Lit in J. 

Consider .6.Qa 

Ny-I Nx-1 ( J 
.6.Qa = (Lixa)(Liy)d(pa) L, L, ean++l ·+! - ean 1 . 1 

j=l i=l q 2 ,J 2 q+2,J+2 

ean+I1 . 1 and ean 1 . 1 can not be easily calculated. They are approximated 
q+2,J+2 q+2,J+2 

using the average of ean+I and ean calculated at mesh points (q, j), (q + 1, j), 

(q, j + 1) and (q + 1, j + 1) - see Figure 7.5. 

V 

(q,j+l).~------,f, ,.- (q+l,j+l) 

, , 

, , , 
,'J I 

•,(>(+2, i 2l 
, , 

~ ,_' ___________ _ 
(q+l,j) 

2 ,'( .j) ~+i 2 , 2 
, 

't:,J_ 
,' 2 

Figure 7.5 

A more detailed view of V in the anode showing mesh points 

assuming that a blower is operating 
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ean+I 
1 . 1 q+-J+-
2' 2 

ean 1 . 1 "'" 0.25 [(ea~j
1 

- ea~,j) + (ea~!Lj - ea~+I,j) q+-J+-
2' 2 

( n+l n ) ( n+l n )] + eaq,j+I - eaq,j+I + eaq+I,j+I - eaq+l,j+l 

Therefore LiQa "'" (Lixa)(Liy)d(pa)(0.25){ ( eatt1 - eat1) + ( eaNtt1 - eaNxa,l) 

+ 2 
[

Nq~=a2-l((eaqn+,11 n ) ( n+l n )) L.J - eaq,l + eaq,Ny - eaq,Ny 

Similarly for LiQp and LiQw. 

7.5 Results 

The program requires similar input to the one for the one-dimensional case, but 

here the air temperature required to be entered is the initial air temperature (for 

the one-dimensional case, the air temperature was assumed to be constant). As 

discussed before (see §7.3), the TfJ are chosen to be equal for allj = 2 to Ny, 

with Tf? = atmospheric temperature = 20 ° C for all n. Also the number of 

mesh points in they direction (Ny) has to be entered. The program's output is 

the transient temperature distribution of the block and of the air in the flue. 

The initial block temperatures (Ta~,j' Tp;,j, Twl) are chosen to be 600 °C. The 

initial air temperatures (Tf} , j = 2 to Ny) are chosen to be 100 °c. Nxa = 15, 

Nxp = 4, Nxw = 4 and Ny= 160. Mesh point (1, 1) corresponds to x = 0, 

y = 0; mesh point (1, 160) corresponds to x = 0, y =LY; mesh point (21, 1) 

corresponds to x = Lx , y = 0 and mesh point (21, 160) corresponds to 

x = Lx, y =LY. The total number of mesh points is 3360. The computer used 

for the calculations could not handle too many more than this number of mesh 
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points. Lixa, Lixp, Lixw and Liy are approximately the same - 0.028 to 0.032 m. 

The length of the overall time step (Lit) is 20 seconds, as in the one-dimensional 

case. 

Either a blowing or sucking fan is operating, since as has been discussed before 

(see §2.4), it makes no difference to the temperature profile calculated by this 

model, as to whether a blower or a sucker is used. 

Figures 7.6 and 7.7 show the temperature profile of the block in the x direction 

at y = 0 and y = LY respectively at 32 hours for various mass flows. Figure 7 .8 

shows the corresponding temperature profile of the air in the flue at 32 hours for 

the same mass flows. Similarly for Figures 7 .9 - 7 .11, except that time is at 64 

hours, and for Figures 7 .12 - 7 .14 except that time is at 96 hours. 

The arrows in the figures indicate the mesh points on the anode/packing coke 

and packing coke/flue wall boundaries. 

Heat balance at the flue wall 

The percentage difference between L\Q and L\Qf relative to L\Q is calculated at 

. L\Q- L\Qf 
the end of each time step. Percentage difference = ---- x 100. 

L\Q 

The percentage difference between total L\Q and total L\Qf relative to total L\Q is 

also calculated at the end of each time step. Total L\Q (in J) is the total heat 

transferred from the block from n = 1 up to the present time. Similarly total 

L\Qf (in J) is the total heat transferred into the fluid or air from n = 1 up to the 

present time. 

. total L\Q - total L\Qf 
Total percentage difference = ------- x 100. In all cases, even at 

total L\Q 
96 hours, both the percentage difference and total percentage difference< 0.5%. 

7.6 Discussion of results 

The temperature profile of the block and of the air in the flue 

The results here are very similar to those of the one-dimensional model. As the 

mass flows increase, the block cools more quickly, and as time goes on and the 

temperature difference between the block and the air decreases, then so does the 
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rate of cooling of the block. As before, these results confirm that the set-up of 

the model and the calculations are correct. For this particular set of initial 

temperatures, it takes a mass flow of 15 kg/sin order for the anodes to reach 

approximately 200 ° C at 96 hours. This mass flow compares well with the 

experimental ones (5.6 kg/s for a blower, 11.3 kg/s for a sucker - see §6.2). 

As expected, the temperature of the block in the y direction increases as y goes 

from Oto LY - compare Figures 7.6 and 7.7, Figures 7.9 and 7.10, and Figures 

7 .12 and 7 .13. This is because the air temperature in the flue is also increasing 

as y goes from O to LY (see Figures 7 .8, 7 .11 and 7 .14 ). However this vertical 

( or y) temperature variation of the block is quite small, even for the smallest 

mass flow of 5 kg/s. This is because the air temperature does not increase 

greatly above the inlet air temperature (20 °C), even as the air flows along the 

flue and gains heat from the block. See Figures 7 .8, 7 .11 and 7 .14. This is even 

more so as time goes on and less heat is being transferred from the block, due to 

the block cooling that has already occurred. This is due to the fact that the air is 

being sucked or blown through the flue at a rate that enables a rapid 

replacement ( especially with larger mass flows) of the air in the flue. Hence, a 

particular quantity of air is not remaining in the flue long enough for it to gain 

much heat, and therefore increase in temperature. 

The transient variation of the air temperature is quite small and as time goes on, 

becomes smaller. See Figures 7.8, 7.11 and 7.14. This is consistent with the 

assumption made in §7.2, that the transient or t~ term in the partial differential 

equation for the air temperature can be ignored (since the thermal inertia of the 

air is so much less than that of the block). 

Heat balance at the flue wall 

The small discrepancy, especially between the cumulative heat given out by the 

block and the cumulative heat transferred into the fluid, indicates that the 

calculations in the block and air are correctly related and quite accurate. 
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Figure 7.7 

Temperature profile of the block (y = LY) at 32 hours 
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Figure 7.8 
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Temperature profile of the air in the flue at 32 hours 
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Figure 7.9 
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Figure 7.10 
Temperature profile of the block (y = LY) at 64 hours 
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Figure 7.11 

Temperature profile of the air in the flue at 64 hours 
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Figure 7.13 
Temperature profile of the block (y = Ly) at 96 hours 

92 

-■-5kg/s 

-o-- lOkg/s 

15 kg/s 



50 

45 

8 40 
~ 
::, 

a 35 
ai 
0. 

~ 30 ..... 

25 

20 
21 41 

llllllll 
!UllllllU 

mDlllllllll 
nunnmli 

nwmuui 
lllllllllJUi 

mmmmi 
DDIIIIWW lllfil/10111!1!!11 I 

nnmnmllll jjjiOIIIIOillil!Oliill I 

61 81 101 121 141 161 

Mesh points in the y-direction 

Figure 7.14 

Temperature profile of the air in the flue at 96 hours 
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CHAPTER 8 THE AIR PRESSURE IN A SECTION 

8.1 Introduction 

The pressure in the flues and fire shafts is investigated. It is assumed that the 

spaces between the bottom of the anode/flue walls and the foundation, and in 

the gallery are so large, that the air flowing through them does not experience 

any change in pressure. 

8.2 Calculation of the pressure 

From McK.ibbin (private communication, 1993) 

L\p = - "A L\y (pf)v2 
2£ 

where L\p = the change in pressure of the air in N/m2 

and "A = the friction factor (dimensionless). 

. . 2 
Since (pf)v = ar~a , then v2 

= ( m ) 
pf x area 

. L\p -"A x perimeter x ril 2 
So Equat10n (8.1) becomes - = 3 L\y 8 x (area) x pf 

(8.1) 

(8.2) 

If L\p is approximated by ~ and ~ is approximated by using a forward 
L\y oy oy 

difference formula, then 

L\p - Q£ - p(y+L\y, t)-p(y, t) 
L\y - c)y - L\y 

n n 
= Pj+l -pj 

L\y 
in subscript/superscript notation. 

j and n are defined as before, j = 1 to Ny, j, n E z+ and the error of the left 

hand side is of order L\y. 
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£ 
A = A(Re, f ) is the friction factor. 

Re = Re(y, t) is the Reynolds number. 

£ is the roughness of the bricks used in the flue and fire shaft walls and is 

estimated as 1.65 x 10-3 m. 

pf= pf(Tf) and using values obtained from Haywood (1968), a linear 

approximation for pf is obtained, using the points (373, 9.46 x 10-1) and 

(973, 3.63 x 10-1) - see Figure 8.1. 

-E 1 .3 • 
E \ E 1 . 1 --O') 

.la:: 0.9 

·"· -
>, 0.7 '· .... ,. 
(J'J 0.5 r:: ---■---Q) 

·-■ Cl 0.3 • 
250 450 650 850 1050 1250 

Temperature (K) 

Figure 8.1 

Density of air at 1 atmosphere [interpolated from data from 

Haywood (1968)] 

pf = (- 9.72 x 10-4) Tf + 1.31 kg/m3 

So Equation (8.2) becomes 

n 
Pj+l 

- Ai x fl.y x perimeter x m 2 
= _...,. __________ + p~ 

8 X (area)3 X pf j J 

A 1J is given by the Churchill equation, 
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1 

Aj s[( R!J + (Aj +Bff½ r 

B~ (37530]

16 

1 Re~ 
J 

0.27 x 1.65 x 10-3 x perimeter] 
4x area }

16 

The mass flow, perimeter and area are different depending on whether the 

calculations are occurring in the fire shaft or flue. See §6.2 for the discussion 

on mass flows, and Figures 2.1 and 2.3 respectively for fire shaft and flue 

dimensions. 

Blower 

In this case, the inlet pressure at time step n is at the top of the fire shaft - see 

Figure 8.2. If pfs1 is defined to be the air pressure in the fire shaft at mesh 

point j U = I to Ny) at time step n, then pfs1 is the inlet pressure at time step 

n. Since the pressure difference across a blower is 200 N/m2 then 

pfs~ = (atmospheric pressure+ 200) N/m2 

= (101325 + 200) N/m2 

= 101525 N/m2 (or Pa) 
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air flow 

• j =Ny 

Schematic longitudinal view of a flue wall showing air flow direction for 

a blower and the layout of mesh points 

The pressure at the bottom of the fire shaft at time step n, pfs ~Y' is used as the 

inlet pressure for the flue, since it is being assumed that there are no pressure 

changes occurring in the gallery or in the area between the foundation and the 

bottom of the anode/flue walls. That is, pfl~ = pfs~Y' where pfl~ is the air 

pressure in the flue at mesh point 1 at time step n. 

The temperature of the air along the fire shaft U = 1 to Ny) is assumed to be 

the same as the inlet air temperature for the flue, Tf 1 (20 °C for all n, see 

§2.4). The density of air and the friction factor are functions of temperature. 
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Sucker 

This case is the reverse of the previous one. The inlet air pressure at time step 
n is at the top of the flue - see Figure 8.3. pflj is defined to be the air 

pressure in the flue at mesh point j (j = 1 to Ny) at time step n. pflf = 

atmospheric pressure= 101325 N/m2
. 

end flue 
wall 

j = I 

I . 

j j 

U .. 
j = Ny foundation 

Figure 8.3 
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j=Ny 

fire 
shaft 

head 
wall 

r 
direction of 
airflow 

j = 1 

Schematic longitudinal view of a flue wall showing air flow 

direction for a sucker and the layout of mesh points. 

The pressure at the bottom of the flue, pfl ~Y' is used as the inlet pressure for 

the fire shaft, since it is being assumed that there are no pressure changes 

occurring in the area between the foundation and the bottom of the anode/flue 

walls or in the gallery. That is, pfs1 = pfl~y· 

In this case the temperature of the air along the fire shaft (j = 1 to Ny) is 

assumed to be the same as the outlet air temperature for the flue, T~y· This 

outlet air temperature varies with time, so the air temperature along the fire 

98 



shaft also varies with time. This contrasts with the blower case, where the air 

temperature along the fire shaft remains constant with respect to time. 

8.3 Results 

The program has exactly the same input as the one that outputs the two­

dimensional temperature distribution of the block and the temperature 

distribution of the air in the flue - see §7.5. The output for here is the one­

dimensional transient pressure distribution in the fire shaft and flue. 

Figures 8.4 and 8.5 show the pressure distribution at 32 and 96 hours 

respectively for various mass flows when a blower is operating. Similarly 

Figures 8.6 and 8.7 show the pressure distribution at 32 and 96 hours 

respectively for various mass flows when a sucker is operating. The arrows in 

the figures indicate where the flue ends and the fire shaft begins. The flue 

mesh points are to the left of the arrow and the fire shaft mesh points are to the 

right of the arrow. The blower and sucker are positioned as shown. 
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Air pressure profile for a sucker at 96 hours 

Figures 8.8, 8.9 and 8.10 compare the pressure distribution for a blower versus 

a sucker at 96 hours, for mass flows of 5, 10 and 15 kg/s respectively. 
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8.4 Discussion of results 

As expected, the air pressure decreases as the distance from the blower 

increases or as the distance from the sucker decreases. These results confirm 

that the set-up of the model and the calculations are correct. For both sucker 

and blower, the larger the mass flows are, then the larger the pressure drop 

along the flue and fire shaft. For rh= 5 kg/s there is no pressure drop for all 

cases. The pressure difference along the flue is larger than that along the fire 

shaft for both sucker and blower. 

The spatial and transient air temperature changes in the flue are small, see §7.5 

- Figures 7 .8, 7 .11 and 7 .14, and in particular the changes in Tf ~Y are small for 

all n. Since in the case of a sucker, the air temperature along the fire shaft is 

assumed to be Tf ~Y' then the air temperature in the fire shaft does not change 

much with time. (Recall that for a blower, the air temperature along the fire 

shaft is assumed to be 20 °C for all time.) Hence it would be expected that the 

spatial and transient pressure changes would be small for a given mass flow 

for both a sucker and a blower, since in this model the pressure is a function of 

temperature as well as mass flow. This is the case - compare Figures 8.4, 8.5 

and Figures 8.6, 8.7. 

Note the symmetry between the pressure distribution for a blower versus a 

sucker in Figures 8.8, 8.9 and 8.10. This is due to the fact that for the two­

dimensional model, the air temperature distribution in the flue for a blower is 

the reverse of that for a sucker. Also the assumed air temperatures in the fire 

shaft for a blower and a sucker are approximately equal, especially as n gets 

bigger (that is, as time goes on). 
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CHAPTER9 SUMMARY AND CONCLUSION 

9.1 Introduction 

This thesis has been concerned with the mathematical modelling of the cooling 

of carbon anodes used in the aluminium industry. The effects of different 

mass flows of air on the block temperature, the air temperature in the flues and 

the air pressure in the flues and fire shafts have been studied. The three­

dimensional problem was modelled by simplifying it to one and two 

dimensions. These simplifications were made by using the fact that the flues, 

flue walls and anodes zone of a section is the most important one for anode 

cooling, and by assuming that the only heat transfer from the block is into the 

air in the flues. All other boundaries were assumed to be adiabatic. These 

assumptions were justified by dimensional considerations. The problem, 

therefore, was to solve the heat equation with the appropriate boundary 

conditions. 

The one-dimension heat equation was solved analytically, but determining the 

exact form of the boundary condition on the flue wall was a problem. 

Numerical methods were then used to successfully calculate the one- and two­

dimensional temperature distributions in the block and the one-dimensional 

temperature distribution of the air in the flue. The thermal conductivities 

within the anode, packing coke and flue wall were assumed to be constant for 

all time. All other thermal properties, which were assumed to be dependent on 

temperature, varied over time as the temperature distribution changed. Having 

non-constant thermal conductivities results in non-linear terms in the 

equations. This would have proved difficult, even in the one-dimensional 

case, when solving for the temperatures of the mesh points on the 

anode/packing coke, packing coke/flue wall and flue wall/flue boundaries. 

9.2 One-dimensional model 

A forward difference (explicit) method was used to calculate the transient 

temperature distribution in the block. The air temperature in the flue was 

assumed to be constant. Heat balances were done at the anode/packing coke, 

packing coke/flue wall and flue wall/flue boundaries in order to calculate the 

temperatures at the mesh points on these boundaries. It was found that as the 

mass flows increased, the rate of cooling of the block increased. The results 
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also showed that as time went on and the temperature difference between the 

block and the air decreased, then the rate of cooling of the block also 

decreased. These results confirmed that the set-up of the model and the 

calculations were correct. For the particular chosen initial block and air 

temperatures (600 ° C and 20 °C respectively), a mass flow that was similar to 

the experimental ones was required, in order to cool the anodes so that they 

could be safely removed from the pits after 96 hours (3 fire cycles). 

9.3 Two-dimensional model 

This case was very similar to the one-dimensional case, except that here the air 

temperature in the flues was not constant, but changing with time and space as 

heat was transferred into the air from the block. The air temperature along the 

flue was calculated using relaxation - an implicit numerical method. The two­

dimensional heat equation for the block was solved using a forward difference 

method similar to that used for the one-dimensional case. The results were 

similar to those obtained in the one-dimensional case. 

As a check on the working, the heat transferred from the block was equated 

with the heat transferred into the air in the flue. A small discrepancy ( < 0.5%) 

was found, even cumulatively after 96 hours, which showed that the 

calculations in the block and air were correctly related and quite accurate. 

9.4 Air pressure 

The transient one-dimensional air pressure distributions in the flue and fire 

shaft were calculated using a forward difference method. The spaces in the 

gallery and between the bottom of the anode/flue walls and the foundation 

were assumed to be sufficiently large, so that air flowing through them did not 

change in pressure. This enabled the pressure distribution in the flue to be 

linked with that in the fire shaft. The temperature in the fire shaft was 

assumed to be atmospheric temperature in the case of a blower, and the flue 

outlet air temperature in the case of a sucker. 

The results gave pressure distributions that were appropriate for a blower and a 

sucker. For both a sucker and a blower, the pressure drop along the flue and 

fire shaft increased as the mass flows increased. Also the larger pressure drop 

occurred in the flues for both sucker and blower. 
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9.5 Conclusion 

The models presented in this thesis enable the transient one- and two­

dimensional temperature distributions in the anodes, packing coke and flue 

wall part of a forced cooling section to be calculated for various mass flows of 

air in the flues. The transient one-dimensional air temperature distribution in 

the flues, and the transient one-dimensional air pressure distribution in the 

flues and fire shafts are also calculated for various mass flows. It would have 

been good to have some experimental temperature data to compare with the 

results obtained from the models. However for the chosen initial temperatures, 

the mass flow used by the models to cool the anodes to the appropriate 

temperature, is very close to the experimental mass flows. The next step in 

improving the models would be to solve the heat equation with non-constant 

thermal conductivities, that is, allowing the thermal conductivities of the 

anode, packing coke and flue wall to vary with temperature, as was done for 

the other thermal properties. Other improvements might include having 

boundary conditions at the bottom and top of the pits that allow for the fact 

that heat is also lost from the block across these boundaries. 
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