Copyright is owned by the Author of the thesis. Permission 1s given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.



Mathematical Model of the Forced Cooling of Anodes

used in the Aluminium Industry

A thesis presented in partial fulfilment of
the requirements for the degree of
Master of Science
in Mathematics

at Massey University

Christopher Charles Palliser
May 1994



ABSTRACT

The aluminium industry consumes large amounts of electrodes, especially anodes, to
operate the smelters. These anodes must be baked at high temperatures in order to
give them certain mechanical and electrical properties, after which they are cooled.
Baking is done in large furnaces made up of pits inside which the anodes are placed in
layers and surrounded by packing coke. The furnaces are of two types - open and
closed. In aclosed furnace, the pits are lined with refractory bricks inside which

flues run vertically and large covers are used to close over parts of the furnace.

This thesis presents a mathematical model of part of a forced cooling section of a
closed furnace, where air is being sucked or blown through the flues by fans, so that
the anodes cool more rapidly. Both one- and two-dimensional models are developed
in order to calculate the transient temperature distribution in the anodes, packing coke
and side flue wall. For the two-dimensional model, the transient temperature and
pressure distributions of the air in the side wall flues and fire shafts are also
calculated. After exploring an analytical method for the one-dimensional case,

numerical techniques are used thereafter.

Given initial biock and air temperatures, the two-dimensional model allows
calculation of the appropriate temperature and pressure distributions for various mass
flows of air in the side wall flues and fire shafts. The results show that for a
sufficiently high mass flow, the anodes can be cocled enough so that they can be
safely removed from the pits after three fire cycles (the length of time the anodes are

exposed to forced cooling).
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CHAPTER 1 INTRODUCTION

1.1

Background

The aluminium industry consumes large amounts of electrodes, especially
anodes, to operate the smelters. These carbon anodes are made of petroleum
coke held together by a pitch binder. They must be baked to a given
temperature, approximately 1200 °C, following a given temperature profile
(no more than 10 -15 °C/hour) in order to end up with the required mechanical
and electrical properties. Baking is done in large furnaces made up of pits
inside which the unbaked anodes are placed in layers and surrounded by
packing coke. These furnaces are of two types, one of which 1s the
Riedhammer (vertical ring, or closed) furnace, a schematic of which is shown

in Figure 1.1.

In the Riedhammer furnace, the pits are lined with refractory bricks inside
which flues run vertically and large covers are used to close over parts of the
furmace. A typical Riedhammer furnace consists of two or three fire trains
grouped together on a rectangular shaped ring. As shown in Figure 1.1, each
fire train comprises about fourteen sections, or sets of pits, and consists of
three zones - preheat, fire and cocling zone. Hot combustion gases flow
through the flues in the fire and preheat zones, whilst air flows through the

flues in the cooling zone.

The cooling zone is divided into two parts - natural and forced cooling. In the
natural cooling part, the anodes are just left to cool. The forced cooling
sections have big fans which either blow or suck air through the flues to
increase the rate of cooling of the anodes (see Figure 1.1). There is one fan
per section. The rate of cooling is not constrained and may be done as quickly
as possible. The fans, fire ramps and exhaust manifold are moved in the fire
direction by one section every 32 or 36 hours. This time period is called the

fire cycle.
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A schematic longitudinal view of a typical fire train arrangement in a
Riedhamumer furnace at NZ Aluminium Smeliers Ltd

(see Bourgeois ¢f al., 1990).

Previous work

Mathematical modeiling of ring furnaces started seriously in 1980 with
Furman and Martirena (1980). Since then others have developed different
aspects of ring furnace {open and closed) mathematical modelling. The advent
of computational fluid dynamics packages has enabled the development of
more elaborate models. Due to the ring furnace’s large dimensions and time

constant (2 -;- - 3 weeks), experimentation on a real furnace is not only

impractical, but also risky, lengthy and costly. Hence the need for

mathematical models in order to analyse and predict performance.

Furman and Martirena (1980} used a three-dimensional finite difference
model. The total duration of the baking cycle was simulated. Therefore the
time period was long, 300 - 400 hours. In order to save computation time,
most of the time steps used were correspondingly long. The first 10 hours
were divided in steps of 0.1, 0.2, 0.5, 2.2, 3.0 and 4.0 hours, all further steps
were 7.0 hours long. To ensure the stability of the calculations with these long
teroporal steps, an implicit Crank-Nicholson scheme was used. The equations
were solved using successive relaxation. 960 nodes were used - 4 in the y-
direction (x-direction in this thesis), 20 in the z-direction (y-direction in this
thesis) and 12 in the x-direction (z-direction in this thesis). A ‘sensitivity’

analysis was performed. This involved introducing a significant variation of a



given property and observing the corresponding temperature calculations. It
was found that the thermal conductivity of the packing coke and the vertical
gradient of the gases’ temperature aiong the flues were the parameters which
decisively influenced the calculations. It was claimed, therefore, that these
were the only parameters which needed to be known accurately. The
temperature-dependent thermal properties of the anodes, packing coke, flue

walls and gases were not adjusted as the temperature varied.

The paper by de Fernédndez et al. (1983) used the identical set of nodes as used
in the paper of the previcus paragraph, so it was a three-dimensional model.
However, no mention was made of the solution method. Initially the
temperature difference between the top and bottom layer of ancdes in a pit was
calculated. It was found that this difference was in much closer agreement
with the experimental difference, when the thermal properties of the anodes,
packing coke and flue walls were adjusted according to the temperature
reached at the end of the last time step. The ‘negative’ image of the heating
temperature distribution was used to try and model the cooling temperature
distribution. It did not work and this was attributed to two factors, one of
which was the occurrence of natural convection. It was suggested that a
battery of fans be used on uncovered sections in order to overcome this natural
convection. Clearly, fans were not being used at this particular smelter when

this paper was written.

The transient two-dimensional model presented by Bourgeois et al. (1990)
neglected the heat transfer in the longitudinal direction, that is, from the fire
shaft to head wall. This helped to simplify the model and keep CPU time
down. It was claimed that experimental studies had shown that this
longitudinal temperature variation was small compared with the flue wall to
anode-centre and vertical variation. Unlike the models from the earlier papers,
this one incorporated pressure measurements, namely the draught profile along
a fire train. One of the limitations of the model was that it could not determine
the temperatures in the forced cooling sections (they were considered
disconnected from the main fire train). There was fairly good agreement

between calculated and experimental results.

Bui et al. {1992) divided a furnace section into four zones - fire shaft,
under-lid, pit and under-pit. For gas flow distribution, it was stated that the



1.3

underlid zone was the most important; whereas for heat transfer to, and
therefore presumably from, the anodes, the pit zone was the most important.
A three-dimensional model of heat transfer and fluid flow for the under-lid
zone of any section of the fire train was developed. For the purposes of
validation, the under-lid zone of the first covered cooling section was
simulated. The solution procedure was not discussed in detail, but the general
purpose computational fluid dynamics PHOENICS code was used as a solver.
A larger number of nodes was used, namely 23180. The calculated results
followed reasonably well the trend of the measured ones.

This work - an outline

A heat transfer and pressure distribution model of part of a forced cocling
section (from now on called section) of the Riedhammer farnace is presented
in this thesis. The cover has been removed, the packing coke is still in place
and a blowing or sucking fan (blower or sucker) is positioned over the fire
shafts - see Figure 1.2. Each uncovered section is a separate entity

disconnected from the main fire train.

-

Blower or

c\::acﬁlﬂue side wall flees ?ﬂlﬂue sucker fan

} / (/’4/ XQ( | Vi

fire
shaft

head
wai]

direction of
air flow

............ eailery

foundation

Figure 1.2

Schematic longitudinal view of a flue wall in a forced cooling section



The model presented here is used to determine the effect that different mass

flows of air have on:

(a) the block {anodes, packing coke and side flue wall) temperature,
(b} the air temperature in the side wall flues, and
{c) the air pressure in the side wall flues and the fire shafts.

Heat is transferred from the anodes into the air in the side wall flues via the
packing coke and the side flue wall. The transfer of heat is taken to be by
conduction in the anodes and flue wall, and is assumed to be by conduction in
the packing coke. The heat is then transferred into the air by convection and

radiation from the surface of the flue wall.

The section is three-dimensional. Simplified one-dimensional and two-
dimensional models are studied in Chapter 2. This 1s done by conceatrating
on the anodes, packing coke, side flue walls and side wall flues part of the
section. Simplifications involved in developing the models are justified by a

result from Bui ef al. (1992) and dimensional considerations.

In Chapter 3, the heat conduction equation is derived in the present context, to
give a partial differential equation. The consequences of assuming constant
thermal conductivities or otherwise 1s examined. Using the models from
Chapter 2, boundary conditions are then added to the partial differential

equations to give boundary value problems.

The thermal properties of the anodes, packing coke and side flue walls are

discussed and calculated in Chapter 4.

The one-dimensional heat equation is solved analytically for three different
sets of boundary conditions in Chapter 5. The last set are those of the model
developed in Chapter 2.

In Chapter 6, explicit numerical methods are used to solve the boundary value
problem. Using these, the problem is solved for the case where the thermal
conductivities are constant within the anodes, packing coke and side flue wall,

to give the transient temperature distribution in the block. In this constant



thermal conductivities case, the thermal conductivities are the only thermal
property that is not being adjusted as the temperature varies with time;
whereas in the non-constant case all thermal properties are being adjusted as
the temperature varies with fime (it is assumed these properties are dependent
on temperature}. For the non-constant thermal conductivities case, the
boundary vatue problem is set up, but not selved due to the introduction of
non-linear terms. For this one-dimensional case, the air temperature in the

side wall flues is assumed to be constant.

The two-dimensional model is developed in Chapter 7. Only the constant
thermal conductivities case is considered. This builds on the work done in the
previous chapter on the one-dimensional model. Unlike the one-dimensional
model, the temperature of the air in the side wall flues is changing with time
and space as heat is transferred into it from the block. This is modelled using
an implicit numerical method and combined with the two-dimensional heat
equation for the block to give the transient one-dimensional temperature
distribution of air along the flues and the transient temperature distribution in
the biock. As a check on the working, the heat given out by the block and the
heat gained by the air in the flues is calculated. Because of the set-up of the
model], these should be approximately equal if the calculations are done

correctly.

The transient one-dimensional pressure distribution in the side wall flues and

fire shafts is calculated in Chapter 8.



CHAPTER 2 DEVELOPMENT OF THE MODELS

2.1

Introduction

Ideally the model should be three-dimensional and provide the temperature
distribution that is calculated throughout the section, starting from the fire
shafts, moving into the head wall, then the gallery, then the area between the
foundation and the bottom of the anodes and finishing in the flues, flue walls,
packing coke and anodes. However, this would be too complicated and time

consuming, so the model is simplified by:

@ restricting it to the flues, flue walls, packing coke and anodes zone,
which is the most important one for anode cooling (see Bui ef al.,
1992);

(1) making it one- and two-dimensional.

Most of the cooling of the ancdes occurs through them transferring heat into
nearby air. Therefore (ii) of the model simplification is done by finding which
sides of the anodes have the most exposure to air, It is then assumed that the
anodes transfer most of their heat {rom these sides. Heat transfer from the
remaining sides is then ignored, enabling the development of a
two-dimensional model. In order to understand and solve this two-

dimensional model, a one-dimensional model is developed first.
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Figure 2.1

Schematic plan view of a section with the packing coke removed

from the top fo expose the top row of anodes.

(The flues are assumed to be rectangular, whereas in fact the corners of each

flue are rounded.)
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2.2

Calculation of cooling areas around the anodes

The anodes are rectangular blocks. There are twenty anodes stacked in a pit -
five rows of four. For the purpeses of modelling, these twenty anodes are
treated as one big anode. This big anode has six sides, each of which is

adjacent to air via packing coke and/or a flue wall:

{a) one side is adjacent to the air which is above the anode;

®) one side is adjacent to the air which is flowing between the bottom

surface of the anode and the foundation;
{c) two sides are adjacent to the air flowing in the end wall flues;

(d) two sides are adjacent to the air flowing in the inner/outer side wall
flues. {As can be seen from Figure 2.1, if the pit is an inner one, then
these two sides are adjacent to the inner side wall flues; whereas if the
pit is an outer one, then one of these sides is adjacent to the inner side

wall flues and the other side is adjacent to the outer side wall flues.)

The areas of these different sides of the anode that are adjacent to air are now
calculated. Since most of the anode cooling occurs through heat transfer into
nearby air, the area between flues is ignored. A line of symmetry, an
adiabatic boundary, is assumed to run through the centre of each flue, see
Figure 2.3, so the appropriate areas are calculated on half flue measurements.
Since the dimensions of each pit/flue wall are identical, the calculations are

done for one pit/flue wall area (for measurements refer to Figures 2.1 - 2.3).

(a) The area of the side that is adjacent to the air which is above the anode
= (length of anode) x (width of anode)

(0.616 x35) x0.810

= 25m?.

[¢e)] The area of the side that is adjacent to the air which is moving between
the bottom surface of the anode and the foundation
= area as in (1)
= 2.5m%.



(c) The area of the two sides that are adjacent to the air flowing in the end

wall flues

= (length of one end wall flue + 2 X %Width of one end wall

fiue) x (depth of anode) x (number of flues in one end wall)
X {number of end walls)

{0.120 + 2 X 0.06) X (1.166 x 4} x (5) x (2)

11.2 m?

i

(d) The area of the two sides that are adjacent to the air flowing in the
inner/fouter side wall flues

= (length of one inner/outer side wall flue + 2 X %width of one

inner/outer wall flue) X (depth of anode) X (number of
flues in one inner/outer side wall} X (number of

inner/outer side walls)
(0,178 + 2 x0.074) X (1.166 x 4y x (16} x (2)

48.7 m>.

it

Therefore total area of the sides not adjacent to the air in the
inner/outer side wall flues

= (a)+(b) +(c)

= 162 m?

Flue

Flue
wall

Anode ]

Figure 2.2

Schematic cross section of an anode in a pit

10
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Schematic plan view of a pit corner and flues

Comparing this figure with that of (d), namely 48.7 m?, it is clear that the
greatest areas of the anode adjacent to the air are the two sides adjacent to the
air flowing in the inner/outer side wall flues. It is therefore assumed that the
anode transfers most of its heat into the air flowing in the inner/outer side wall
flues. It is further assumed that there is no heat transfer into the air which is:

(a} above the anode;
{b) flowing between the bottom surface of the anode and the foundation;

{c) flowing in the end wall flues.

This last assumption allows modelling in two dimensions rather than three.

This agrees with experimental studies mentioned in Bourgeois er al. (1990).
The studies found that longitudinal (from fire shaft to head wall) temperature
variation was small compared with the flue wall to anode-centre and vertical

variation.

The x-direction is taken to be across the pits, and the vertical as the
y-direction. (The z-direction is taken to be along the pits - see Figure 1.2.)
This is developed further in §2.3 and §2.4.

11
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2.3

One-dimensional model

It is assumed that lines of symmetry, which denote adiabatic boundaries, run
through the centre line of each pit and flue, as shown in Figure 2.4, All pits
are treated alike, that is, there is no difference between outer and inner pits
[although it is realized that there is heat loss through the outer side flue walls

on either side of the section - see Bui ef al. (1992)}].

From now on, inner/outer side fiue walls are referred to as the flue walls and
inner/outer side wall flues as flues.
A representative slice of anode, packing coke, flue wall and flue is selected.

This slice is adjacent to one flue, as shown in Figure 2.4.

Asin §2.2, it is assumed that the anode transfers heat into the air in the flue
not only along a (= 0.178 m) but also along b and ¢ too (both = 0.074 m) see
Figure 2.5. This poses a difficulty in regard to the thickness of the flue wall.
For example, from the outer edge of the packing coke, d, to the flue wall at a,
distance = 0.140 - 0.074 = 0.066 m. But what about the distance from d to the

flue wall at b or ¢?

lines of symmetry___________

Flue wail

]
anode d a } 0.178 m
{

S e B

ra c H
/ W 0074 m
Packing coke |
|
L
[
|
1
Figure 2.5

Schematic plan view of the representative slice showing anode,

packing coke, flue wall and flue.
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In order to overcome this difficulty, each flue is thought of being streiched or
clongated, as illustrated in Figure 2.6, so that the sixteen flues in a flue wall
become one ‘large’ flue. This large flue, amongst other things, must have the
same cross-sectional area as the sixteen individual flues (for measurements
refer to Figures 2.3 and 2.5).

Cross-sectional area of sixteen individual flues
= (cross-sectional area of one flue) X 16
= (0.178 x0.148) x 16
= 0.421504 m?

Cross-sectional area of ‘large’ flue
= (length of ‘large’ flue) X (width of ‘large’ flue}
= (length of one individual flue x 16 + distance between two
individual flues X 15 + distance e + distance f) X W,
where W = the width of ‘large’ flue,
(0.178 x 16 + 0.060x 15 + 0.030 + 0.030) x W
= 3.808 X W m?,

fl

and this has to equal .421504 m?,
= W =0111m
Therefore the thickness of the flue wall in the case of the ‘large’ flue is

0.111

0.140 - — = 0.085 m (rounded) see Figure 2.6.

lines of symmetry

'Large' flue
L~

\

o Flug ’
—> X Anode wall 10-238 "
|
I B
£—re—>
/ 0.085 |
Packing coke m (0455

. - =3

Figure 2.6

Schematic plan view of ‘large’ flue and surroundings.
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The block is defined to be the shaded area in Figure 2.6.

L, = width of block
= (width of anode) + (width of packing coke) + {width of
flue wall)

= 0.585 m.

Note: In evaluating the Reynolds number and the beat transfer coefficient in
Chapters 6, 7 and 8, the flue dimensions of Figure 2.5 are used, that is the

‘real’ flue dimensions.

Two-dimensional model
The one-dimensional model developed in §2.3 is extended by introducing a

vertical or y component as shown in Figure 2.7.

line of symmetry line of symmetry

Air covering of packing coke

4

axes for
sucker

[

|

(

i

|

i

i

|

: Direction of air flow
packing{ flue :

|

i

i

i

|

{

|

{

]

for a sucker
L
anode ¥ |coke wall | flue

Diirection of air fAow
for a blower

et
—

axes for
blower

it s & - —— — — —— g

Y
Ead

| Foundation

Figure 2.7

Schematic cross section of the two-dimensional block and flue

The same representative slice is taken as for the one-dimensional case, except
that here the slice has a y component. In fact the slice extends vertically from

the top surface of the anode to the bottom surface of the anode.

L

y = depth of anode

1.166 x 4
4.664 m.

I
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The x and y axes are positioned differently according to whether a blower

y —X

£ L .
L., [orasucker | is used.

Blower versus sucker

In reality, in the case of a blower operating, the air has to pass through the fire
shafts, the gallery and into the area between the bottom of the anode and the
foundation prior to it {flowing up through the flues. This is not the case if a
sucker is operating, since the air has no ‘history’ like this prior to it flowing
down the flues. The air here is drawn from the air above the top surface of the
anode (see Figure 1.2). Hence for a blower, the inlet air temperature is
determined at the top of the fire shafts, whereas for a sucker it is determined at

the top of the flues.

But given an inlet air temperature for a blower (air temperature at the top of
the fire shafts, which is atmospheric temperature) the two-dimensional model
for a blower is unable to determine what the air temperature will be when the
air arrives at the bottom of the flues - the inlet air temperature for the model.
It is assumed that the inlet air temperature for the model in the case of a
blower is atmospheric temperature. Atmospheric temperature is assumed to
be 20 °C. There is no such difficulty for a sucker, since the inlet air
temperature in reality (atmospheric temperature) is the same as that for the

two-dimensional model for a sucker.

Therefore for the purpose of the two-dimensional model, it makes no
difference to the .temperature distribution as to whether a blower or a sucker is
operating except that the block temperature distribution is reversed, since

y = 0 for a blower corresponds to y = Ly for a sucker and y = L, for a blower
corresponds to y = 0 for a sucker (see Figure 2.7).

16



CHAPTER 3 DERIVATION OF THE HEAT EQUATION IN

3.1

THE BLOCK

The heat equation
The rate at which heat accumulates in an elemental volume (V) of block
material is given by % _[_U pE dV where p is the density, tis time and E is

v
the total energy (internal, kinetic and potential) per unit mass of the system.

This must be balanced by the rate of heat leaving V. This is given by
ﬂ - Q dS, where Q = dQ/dt is the rate of heat flow (conductive, convective

a%d radiative) per unit area at the surface (§) of V.

First consider % _[H pE dVv.
v

Since V is closed (mass does not enter or leave V) and stationary then E =e,
where e = internal energy per unit mass, and

it

& I pmav = I & porav
v v

de
= Jl] »Fav
\
since p 1s constant with respect to time - see Chapter 4.

Introducing the enthalpy h= e + P where p = pressure (Currie, 1993) and
P

using the fact that p and p are constant with respect to time gives:

Il o Sav

= HI Sl% %’f dV (T = temperature)

£ peey

” P < at dV

17



. ch . .
since 7 at constant pressure = ¢, = the specific heat capacity at constant

pressure.

Now consider ” ~Q dS. Since there is no convective or radiative effect,

S
by Fourier’s Law (Rogers and Mayhew, 1992}

Q = -k VT (k= thermal conductivity)

Therefore [ ~Qas =[] xvras
S = fj k VT.ndS
= jsj j V-(kVT) dV by Gauss’ Divergence
’ Theorem.
Therefore I ee, %—fdv = [[[ v-&vTyav
' = pe, % = VV-(kVT) (3.1)

If k 1s constant, then Equation (3.1) becomes

aT 2
pcp-a—t-—kVT

ie. %—P{ = aV*T| where o = kipe,= thermal diffusivity.

If k is not constant and varies with temperature, then in the one-dimensional

case Equation (3.1) becomes

ar_ 3

“ Bt ax( x]
g ar T
Tox ox TN a

18



_ dk @TY | T
= ar [8}{] TES2
Theref T o (4 0T | whered = 95/
erefore 3 = (axj + 0 ) where 0. = g/ pey
In the two-dimensional case Equation (3.1) becomes
O _ 29Ty 3 aT
PCy 3 = x( Bx] ay( ay)
_kar T okaT | T
T dxox ox2  dyoy dy?
Therefore ) = &[ 8_T)Z+ a—TZ}H){BZ—T + ﬂ}
t (Bx (ay) % Oy?
3.2  The boundary conditions
Referring to (a) and (b) on p.11 of §2.2,
(a) No heat transfer into the air which is above the anode
’ ‘ y=0, sucker
= adiabatic boundary on {y _ Ly | blower
aT y =0, sucker
= dy - 0 on y=L,, blower .

(b) No heat transfer into the air which is flowing between the bottom

surface of the anode and the foundation

y = Ly, sucker

= adiabatic boundary on {
y=0, blower

aT y= Ly, sucker
0 on
y=0, blower.

19



3.3

Referring to the assumption made in §2.3, that is, it is assumed that an

adiabatic boundary runs through the centre line of the pit

Suppose the block has some initial temperature, Ty,
= T=T, whent=0.

Clearly the temperature at X = L, (on the flue wall) is decreasing with
time because of the air flowing past and heat being transferred from
here into the air. Let this decreasing temperature be T (t), where

w = wall and (t) denotes dependence on time

Then T =T, onx=L.

Summary
The boundary value problem for the heat conduction in the block is now

specified, both for the one- and two-dimensional models.

One dimension

2
aa'f x, 1) = Otgq;, constant k
2 0<x< Lx’ t >0
a 0T 9T
Bt (x t) = O [Bx + Otvé—;, non-constant k
with %XT— (0,t)y = 0, t>0,

TE, 1 = T, t>0 and

and T, 0 =T, O0<sx<L,.
Two dimensions
2 2 h
%%1 x,y,) = o @—T %y ) constant k
) 0<x< Lx
AT aT
at(xy 0 = d [( X} (3-}7)] > 0<y<L,
t>0
2 z
+c [8 T J°T ] non-constant k
8 ay v

20



with

and

T
g—x(O, y,t) = 0,

T(L,. v, ) = T, (1),
T(x,y,0) = T,

oT
g—;l:(x, 0,1) = 3-37 (x, Ly, ) = 0,

21
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CHAPTER 4 THERMAL PROPERTIES OF THE BLOCK

4.1

4.2

Introduction

The thermal properties of interest are of course those that appear in the heat

equation, namely k, p and Cpr Once these are found, o = k and

A pcp

o = % /p ¢, can be calculated.

This chapter is included since in the readings for this thesis, values or
formulae for the values of k, p and ¢ p were rarely given. The non-referenced
values and formulae given here were obtained from Braithwaite (private

communication, 1993),

In order to simplify expressions and save computing time, linear
approximations are used for formulae when approximations are deemed
necessary. As most of the block temperatures in the section = 400 K (127 °C),

linear approximations seem reasonable.

For the linear approximations, the equation p(T) = p(Ty) + (T — T)p[T,, T, ]

T,)=-p(T
is used (Burden and Faires, 1989) where p{Ty, T,] = i '1? ’1;‘( o :
1740

Carbon Anode
Thermal conductivity, ka (W/mK)
From Log and Oye (1990),

ka=ka, + 0.274kay (VT — +T) — 2.8 x 107 (kag)* 77 (T — Ty)

where Ty = room temperature 293 K say, and

kay = thermal conductivity of anode at room temperature, in W/mK.

kay 1s given by the equation,

kag = -1.2105+0.1744 L, = 4.1959,

since L. (crystallite height) = 31 Afor anodes.

22



ka is approximated using the points (400, 4.91) and (970, 6.35) - see Figure

4.1.

conductivity
(W/mK)

Thermal

S = N W s 01O

5004
600+
700+
900+

Temperature (K)

Figure 4.1

Thermal conductivity of the anode [from Log and Oye (1990)]

ka=(2.53 x 1079T + 3.90

dika)
dT

(4.1}

0.137/kay %: ~ 2.8 x 107 (kap)®7 W/mK>

is approximated using the points (400, 5.58 x 10_3) and (970, 5.63 X 10_4) -
see Figure 4.2.

Differentiated

conductivity
(W/mKK)

0.008 1

0.006 +

0.004 4

0.002 1

300

§004

4004
500
60041
7004
900+

Temperature (K)

Figure 4.2

The rate of change with respect to temperature of the thermal

conductivity of the anode
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d(ka)
dT

= (-8.80 x 1079T +9.10 x 1073 (4.2)

The equations for ka and d(ka)/dT are valid for temperatures < 973 K
(700 °C), as most of the anode temperatures in the section are. If any anode
temperature > 973 K, then Equations (4.1) and (4.2) are still used.

Specific heat capacity. ca, (J/keK)

ca, = (~0.13374402 % 107)T* + (0.64604614 x10°)T>
- (0.11572658 x 107)T? +(0.95663719 x 10)T
- 0.13731392 % 10*

This is approximated using the points (400, 9.81 X 102) and (970, 1.73 x 10%)

- see Figure 4.3.

2000 1
1800 +
1600 4
1400 |
1200 1
1000 +

800 +

600

(J/kgK)

Specific heat

Temperature (K)

Figure 4.3
Specific heat capacity at constant pressure of the anode

ca, = (131)T +4.55% 10% (4.3)

Density. pa (kg/m>)

The density of the anode is approximated by 1550.
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4.3

Packing Coke
Thermal conductivity, kp (W/mK)
Using data supplied by Braithwaite (private communication, 1993), the

average packing coke particle size is found to be 5.7 mimn. This is then used in

de Fernandez et al. (1983) to approximate kp using the points
(473, 4.00 x 1071) and (1073, 1.16) - see Figure 4.4.

=

B

: 2]

tc 01

o ¢ 4 1

0 E 3

© 5 2 .

£ I

E; T -.---—""'".————-__-—..-———.-—.-

|-E 0 ? |
400 900 1400

Temperature (K)

Figore 4.4
Thermal conductivity of the packing coke (interpolated from
data supplied by Braithwaite, 1993)

kp = (127X 107)T - 1.99 x 107! (4.4)
D) _ 127x107 WimK? 4.5)

Specific heat capacity, cgp (MkeK)
4.08 x 107
cp, = 933.0+ (0.916)T — #_%i;__ .

This is approximated using the points (400, 1.04 x 103) and (1000, 1.81 x 103)

- see Figure 4.5.
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4.4

2000
1800

(J/kgK)

. 1800

T 1400

< 1200

© 1000

X 800

2 600 Frb—t——b—i !

) © o o o o © o ©o <o O
Lo o T o o T o T v B s T o B o N e
[ B ~ N o TR <+ EE S« - N = N & O e A

Temperature (K}

Figure 4.5
Specific heat capacity at constant pressure of the packing coke

cp, = (128)T +5.27 x 10° (4.6)

Density, pp( kgfm3)

The density of the packing coke is approximated by 670,

Flue Wall

Thermal Conductivity, kw (W/mK).

This is approximated using the points (657, 1.35) and (1265, 1.77) - see Figure
4.6.

=

E

= 6+

3

3 5%t

ST 4T

¢Z 3l

EE 2T =

E il "

§ 0 ! ; ; !
600 800 1000 1200 1400

Temperature (K}

Figure 4.6
Thermal conductivity of the flue wall (interpolated from data
supplied by Braithwaite, 1993)
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kw = (6.91 X 107HT +8.96 x 107! (4.7

d(kw)

S0 = 6.91x 1074 WmK?2 (4.8)

Specific heat capacity., cw, (IkegK)

The specific heat capacity at constant pressure of the flue wall is approximated
by 1250.

Density, pw gkgfm3)
The density of the flue wall is approximated by 244Q,

27



CHAPTER 5 ONE-DIMENSIONAL ANALYTICAL SOLUTION

51

5.2

Introduction
k is assumed to be constant, so the boundary value problem is (from §3.3)

2 ™y
%’{=a%—£, 0<x<L, >0
X
) JT
with  —-(0,1) = 0, t>0, c (5.1

T(L,,t) = T, t>0,

T(x,0) = T, 0<x<L.. J

X

Instead of trying to solve (5.1} straightaway, initially boundary value problems
with simpler boundary conditions are sclved analytically. Using the
knowledge gained from solving these simpler problems, (5.1) is then solved.

Solution with different boundary conditions
(a) The ends of the block are maintained at constant temperature, TO, for

all time, t >0, and the block is initially at temperature T for

OSXSLX.
oT 32T o<

with T(0,) = TL,, 0 = Ty, t>0,
T(x,0) = T), 0<x<L,.

Let  T(x,t) = 0(x, t) + y(x)

Homogeneous boundary conditions are obtained for a differential
equation involving 6, if v = T

With this choice of vy, the problem becomes

28



with

36 %0

E:O{,a?, OSXSLx,t>O
8(0,1) = B(L,, ) = Q, t>0,
8(x, ) = T; =T, 0<x<L,

(5.2) can be solved using separation of variables.

Let 6(x,t) = X(x) G(t)

Solving Equation (5.3), with A <0, A=0, A > 0 in tarn:

(1

(id)

Equation (5.2) becomes G'(t) X(x) = oX"(x)G(t)

G | X0 _
aGr) XX

— A say.

= X+ AXE =0

with X(0) = X(L,) = 0

and G'(@© + AaGH) =0

If A= —k?

then X = c¢;coshkx + ¢,sinhkx
Now, X(0) =0 =1¢ =0

and X(L,)=0=1¢ =0

A = —k? gives a trivial solution.

If A=0

then X = ¢X + ¢y

Now, X{(0) =0 = ¢, =0
and X{L,)=0=c¢=20

A = O gives a trivial solution.

29

(5.2)

(5.3)

(5.4)



(iii) Take A = k®

then X = cseik" + cﬁe"kx

or X=c7cosﬁx+cssinﬁx
Now X(0) =0=1¢ =20
and  X(QL) =0 = cgsinVAL, =0
= \/ILX =qan, ne N
2.2

=>?\.=n2 , ne N,
LX

which are the eigenvalues.

. nmx
Xe{Ansm T ‘D€ N}

X

which are the eigenfunctions; these are orthogonal on [0, L. ].

Now, solving Equation (5.4)

_ —hait
G = cge

Ge {Bn sin (E]:E—)-{*] eI, e N}

X

The most general solution of this form is

> . {nmx a2 2
B(x, t) = Z Bn SImt (L—] e " at/L,
n=I|

X

— . nmX
where 0x,0) = T; -Ty = 2 B, sin nL_
X

n=]

Using the orthogonality of the eigenfunctions gives

2 k. . [(nmx T, -T
B, = I J (T;-Tg sin ("]:*]dx =017

0 X nrm
2,
n=1

T - T,
e

=N P

nex a2 2
e(x’t) = ] n-im 051:‘(1_,1

[1- (1) sin(mﬂ— e

X

Now 8 is known, T is obtainedas T=0+ TO.
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(b)

A boundary value problem is now solved that is almost the same as
(5.1) except that here T(L,, t) =T, = a constant, whereas the boundary

condition in (5.1) is T(L,, t) = T, (t) - varies (decreases) with time.

T 9T
E—Otaxz, 0<xsL, t>0
: aT
with 3-;(0, t) = 0, t>0,
TL,0 =T,  t>0,
T(x,0) = T, 0<x<L,.

Asin (a), let T(x, t) = B(x, t) + Y(x), and Yy = T, gives homogeneous

boundary conditions, so the problem becomes

B 3% )
pra 06*8“;2“, USXSLX, t>0
. 0o
with a—X(O, =0, t>0, > (5.5)
BL,.t) = 0, t>0,
0(x,0) = T, - T,, 0<x<L.,. J

Solving (5.5) using separation of variables gives

e(X,t) ECH cos {MJ e—(zﬂ—l)zftzata%[}‘
n=1 2Lx

where 0(x,0) = T, - T, = ch cos {(Zn—l)ﬂ:x}
n=1

2L,

Using the orthogonality of the eigenfunctions gives

2 (L. (2n — Dmx 4 (T, —Tp) ne
C, = i:jo (T; =Ty COS[:T:[dX:; (2;17_1()} ™!

X
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: A
~oBx, 8 —E(Tl To)z (2n—1) 2L

n=I *

o (-t cos [(2n - Dnx :'e—(zn—l)*nzatMLf

Now €isknown, T isobtainedas T = 8+ T,
(c) See (5.1).
Let Ti(x,t) = 0(x, t) + y{t).
Homogeneous boundary conditions are obtained for a differential

equation involving 6 if w =T (t). With this choice of v, the

problem becomes

0 d 3% 0
3 * aTw(t) =a¥, 0<x<L,,t>0 (5.6)
, a0
with X 0,1) =0, >0,
B(L,,ty =0, >0,
6(x,0) = T;-T, O, 0<x<L,
From (b),
d (2n - D)mx
8(x,t) = ZI D (1) cos |:—“—2—“[;“~—“:|
n=

4 (T; —T,(0) n-
where D, (0) = — %211—_1) -+t

Therefore Equation (5.6) becomes

o d @n-Dmx|  d
D = Da(0) cos [—2Lx }L dtTw(t)

n=I1

2
X (2n—Dx (2n - Dymx
= {xnz:i Dn(t)|:—ZLX } coS [_—ZLK ]
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Using the orthogonality of the eigenfunctions gives

d Ly L ‘Cl_ (Zn-D7x
dtD (t) + o @ T, () c |:-——~—2Lx }dx

2
- D, [Q‘;;ﬂ} = (5.7

The above integral = d T, (1) —2— 2Ly (— 1)1
e on—1n

Hence Equation (5.7) becomes

d

D, (0 + AD () = £(1)
(Zn—-Din
where A= [T;“T
and f(t) = T H — 4 (- "
W ( 1)

Therefore  Dy(®) - D, (0) = e™[ M f(nydr

ie. D, () = D, (0) + ™[ e fryar

© can now be determined and hence T =6 + T_(t) can be calculated.

The difficulty with this analytical sclution is knowing T, (t).

Numerical methods enable it to be calculated.
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CHAPTER 6 ONE-DIMENSIONAL NUMERICAL SOLUTION

6.1

6.2

Introduction

This chapter finds the solution to the one-dimensional boundary value problem
with constant thermal conductivities using explicit numerical methods. All the
thermal properties, except for the thermal conductivities of the anode, packing
coke and flue wall are adjusted according to the temperature reached at the end
of the last time step. The non-constant thermal conductivities case is also

examined, but not solved due to the introduction of non-linear terrs.

Constant thermal conductivities
Recall from §3.3 that the boundary value problem is

2
%—E—‘za%}, Osx=<L, t>0
X
: oT
Wlth B_X(O’ t) = O, t>0, > (61)

TL, 0 = T 8, t>0,

T, 0) = Ty, 0<x<L.. J
T %7 . . . .
5t and 8—2 are approximated by using Taylor series expansions.
X
aT

T(x, t+ A = T(x, 1) + AL 5+ oA ..

dT  T(x, t+At) T, t)

P m + O{AL) ...
T+ A% = T(et) + Ax 0L 4 GRT T o3,
(X X, ) - (Xw )+ xax 2[ a){z + ( X)

AT  (Ax)® 3%T
T(x, ) - AX 5 + 57 B - 0O(Ax)? + ...

Ti(x — Ax, t)
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2 _ —
0 g _ T(x + Ax, ) + T(x ZAX, t) —2T(x, £ +O(Ax)2
ax (Ax)
S T 9T
© a = ¢ ox?

is approximated by

T(x, t + Aty -~ T(x, 1) T{x + Ax, ) + T(x — Ax, 1} — 2T(x, t)

=Q 5 (6.2)
At (Ax)*

where the error of the left hand side is of order At, and the error of the right

hand side is of order (ﬁx)z.

T'f is defined as the block temperature in Kelvin at mesh pointi, ie Z*, at
time stepn, n € Z*. iruns from 1 to Nx where i = 1 is the mesh point on
x = 0 andi=Nx is the mesh pointonx = L.,.

Ax 1s the distance between mesh points in metres. n runs from 1 to the end

of the time period, where n =1 corresponds o t = 0 and n = Nt corresponds
to the end of the time period. At is the length between time steps in seconds.

Rewriting Equation (6.2) using the subscript/superscript notation gives:

1
L [’r::.l T - 2T;*]

At ‘ (Ax)?
e ™ = Fol [T;’+1+ T, + (};})—; - 2]1';‘] (6.3)
1
. OFAt , N
where Fo;' = ) = the Fourier number of the block at mesh point i at time
X

step n and it is dimensionless; of = the thermal diffusivity of the block at

mesh point i at time step n, in m? /s.
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If Foi" > 15, then the higher the value of Tri1 , the lower will be the resulting

value of T?*I. It can be shown that this may lead to difficulties in regard to

the Law of Conservation of Energy (Rogers and Mayhew, 1992).

If i=Nx, then the value of T, | = Ty,,, in Equation (6.3) is not known. On

the flue wall, the rate of heat flow per unit area (J/sm?) at time step n = Qw"

n T
say = d%:v = - kyy —-a—l;-’i , by Fourier’s Law.

But by conservation of heat flow at the flue wall, the rate of heat per unit area
flowing out through the wall by conduction = the rate of heat per unit area

flowing into the fluid or air by convection and radiation.

1 — kB “—aT&x = h"{T%. —Tf 4
1.e. Nx gx — (Nx ) (6.4)

where h" = the heat transfer coefficient at the flue wall at time step n,
in W/m’K,

Tf" = the fluid or air temperature at time step n, in K,

(Tf" is assumed to be constant for all n, so Tf" is denoted as Tf)

and kg, = the thermal conductivity of the block at mesh point Nx at time

step 1, in W/mK.

TR, _ -
ox anx

(TRy — Tf) (6.5)

Now imagine that the side of the flue wall is increased by Ax to L, + Ax,

which corresponds to the mesh point Nx + 1. Suppose that the temperature
here varies in such a way that the temperature at i = Nx is always what it
should be under the conditions of the actual problem.

Using a Taylor series expansion gives
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agg = Tt =Tt a2 .
X 2Ax
"
= — (Tgx - Tf) from Equation (6.5)
kNx
- 2Axh"
Tglxﬂ = i (TII:IX - Tf) + Tgx—l

where the error of this approximation is (Ax)>.

Substituting this info Equation {6.3) gives at 1=Nx,

T = Fofy, | 2Bi™Tf + 2T ey + In ~2(1+Bi") [Ty | »
Fony

Axh"

n
Nx

where Bf = = the Biot number of the block at time step n and it 1s

dimensionless.

As before, in order to satisfy the Law of Conservation of Energy, it is required

that

- _2(1+B") 2 0
Nx

1

= Fo! < ——>
Nx = 2(1 +Bi"

At i=1, the value of T, ; =T, ; = T, in Equation (6.3) is not known. A

Taylor series expansion gives

T  T-T¢
b= 22 0+ OAx)? ..

Ax

Iyl

The adiabatic boundary condition is —3-- = 0
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T2 -Tg
2Ax

0 where the error of the left hand side is of order (Ax)g.

t

T

T5 -
Substituting this into Equation (6.3} givesat 1=1,

|
1 _. n
T = Fo {2’1‘3 +[_Fo¥ —2JTI} ,

T =

where Fo? <

Determining Fo!'

5 ol At
(Ax)
(a)  Obtaining o
oo K
l pi(cp)?

k. is constant within each of the anode, packing coke and flue wall,
and equals ka, kp or kw depending on whether the calculations are
occurring in the ancde, packing coke or flue wall. k; is calculated
using the temperature midway between the initial and assumed final
average temperature of the block. Suppose this final average block

temperature is TT.

For example, suppose the initial block temperature is 873 K and Tf is
373 K.

So k; is calculated using 373 + 873 — 373 = 623 K.

2
ka = (2.53 % 107) 623 + 3.90, see Equation (4.1)
kp = (1.27 x 107) 623 — 1.99 x 107, see Equation (4.4)

kw = (6.91x 107623 +896x 107!,  see Equation (4.7)
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(b)

(¢

p; = pa,pp or pw and (cp)ﬂ1 = (cap)?, (Cpp)ril or {cwp)‘i1
depending on whether the calculations are occurring in the

anode, packing coke or flue wall.

For example, suppose the initial and assumed final block temperatures
are as before, and the temperature at mesh point i which is in the

packing coke at time step n is 685 K.

Then kp = (1.27x107)623 - 1.99 x 107
= 5.92x 107" W/mK
pp = 670 kg/m?
and  (cp,)f = (1.28)685 +5.27 x 10%, see Equation (4.6)

1.40 % 10° J/kgK

i

Therefore
—1
n 592 x 10 o2

Ny =
P (670)(1.40 X 10%)

(ap? is the thermal diffusivity of the packing coke at mesh point i at

time step n.)

Obtaining Ax

Depending on whether the calculations are occurring in the anode,
packing coke or flue wall, Axa, Axp or Axw are used respectively. To
obtain Axa, the number of spatial steps in the anode, Nxa, are

specified and then the width of the anode is divided by Nxa-1.

width of the anode
Nxa-1

That is, Axa =

Similarly for Axp and Axw.

Obtaining At

See later
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Determining Bi"

gin - Axh®_ (Axw)h®
P, Tk
X

{a) Obtaining kw
See {(a) on p. 38.

(b) Obtaining h®
h" has two components - radiation and convection, that is
h" = hr” + hc®,

where hr" = the heat transfer coefficient for radiation at time step n
and hc" = the heat transfer coefficient for convection at time step n
(both in W/m? K).

he is a function of T, and T" is assumed it to be constant for all n.

Therefore he is denoted as he.

2 2
b= e o (Tir\llx - Tf) ((Tgx) - (Tf) )
where € = wall surface emissivity and is dimensionless
= (.97 [Braithwaite (private communication, 1993)]
and o = Stefan-Boltzmann constant
= 5.67 x 1078 W/m?K*.
kYN
he = (kf)Nu
{
where kf = thermal conductivity of the fluid or air, in W/mK,

Nu = the Nusselt number (dimensionless)

and ¢ = the characteristic length

4 X area

= — In
perimeter

See Figure 2.3 for the dimensions of a flue.

Note: Since the air in the flue is being blown or sucked past the end of the
block, it is assumed that forced convection is occurring rather than natural or
free convection. Buoyancy forces, which are associated with natural

convection, are ignored here.
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where

and

Nu = 0.023 Re®¥po4, (6.6)

il

Re
Fr

Reynolds number (dimensionless)

Prandt]l number (dimensionless)

i

This equation for Nu assumes that:

)
(i1}

Gid)

the flow is turbulent, i.e. Re > 4000 (this is checked in the program);

the flow is fully developed, i.e. the ratio of channel length to £ is

greater than 20, which it is since

length of flue - L, _ 4.664 ~ 29;
£ ¢ 4 x 0.026344
0.652

the physical properties are constant, which they are.

4 .
Re = @I— (v = the velocity of the air, m/s, pf = the density

o8
of the fluid or air, kgfm3 , and L = the

dynamic viscosity of the air, kg/ms)

or Re = _me {(mh = the mass flow, kg/s)
U{area)
=AM 6.7)
u{perimeter)

Note: There are 5 fire shafts in a section and the centre one is biocked
off. So if the total mass flow through all 4 fire shafts is x kg/s, then
the mass flow through one flue is x/96 kg/s, since there are 96 flues in

a section, and x/4 kg/s per fire shaft.

5w PO
Ap

where L = the connected load of the drive motor of a fan
(1500 W for a blower, 3000 W for a sucker),
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Ap = the total pressure difference across a fan
(200 N/m? for a blower or sucker),

and  pf = 0.75 kg/m’ - see §8.2, Figure 8.1,
Therefore
{5.6 kg/s for a blower
© 3 kg/s for a sucker
cf
Pr = _D_.p'

where cfp = the specific heat capacity at constant pressure of the

fluid or air, in J/kgK.

cfp W and kf all vary according to the temperature of the air, so hc = he(Tf)

Values for kf, Pr and cfp were obtained from Perry ef al. (1984). Then

_ (kD Pr

n= S (6.8)

can be determined.

Linear approximations are used for kf and cfp and a quadratic approximation

for Pr. See Figures 6.1 - 6.3 respectively.

For the quadratic approximation, the equation
p(T) = p(Tg) + (T — Tep[Tg, Ty1 + (T =TT~ T1) plTp, Ty, T,] is used

(Burden and Faires, 1989) where

P[le Tg] - P[Tos Tl]
p[To, Tl': Tz] - TZ_ TO
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conductivity
2
o
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L
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(W/mK)
e
2
-\'

Thermal

0.02 ! } : } 1
300 500 700 900 1160

Temperature (K}

Figure 6.1

Thermal conductivity of air {interpolated from data from Perry ef al. (1984)]
kf = (5.65x 107 Tf + 1.02x 1072 (6.9)

using the points (350, 3.00 x 107%) and (1000, 6.67 X 107%).

%

g 1sog .

S 1160 T /
1140 4

‘5 Wi [l e W
S 1120 ¢
< 1100 +
PN, P )

£ 1080 1 p—x
S 1060t

1—E—1—E—1 ! . . }
0%' 1040 1 T 1 ] 1

300 500 700 900 1100 1300

Temperature (K)

Figure 6.2
Specific heat of air at 1 atmosphere [interpolated from data
from Perry et al. (1984)]

of, = (138x 107D TE + 9.92x 102 (6.10)

using the points (400, 1.047 x 103) and (1000, 1.130 x 103).
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number
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Temperature (K}

Figure 6.3
Prandtl number of air at 1 bar [interpolated from data from
Perry ef al. (1984)]

Pr = (1.89x 107 T2 —~ (220 x 107H Tf + 7.54 x 107" (6.11)

using the points (300, 7.05 x 1071, (600, 6.90 x 1071) and (900, 7.09 x 107).

Determining At

{a) Obtaining Ata (the length of the time step in the anode)

(Foa;’ is the Fourier number of the anode

at mesh point i at time step n)

™=

Foa‘il <

(cal)(Ata) . com s
W < 5 (oa; is the thermal diffusivity of the
xa

anode at mesh point i at time step n)

A < B35
2oeal

The upper bound on Ata is obtained by calculating the maximum value

that cral can take.

ka
(pa)(min.(ca, )5y

max. o) =
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Suppose the minimum block temperature equals the assumed final
average block temperature which equals Tf (see the discussion earlier

in this section).

min. (cay)] = (L3DTf + 4.55x 10%, see Equation (4.3)

(b) Obtaining Atp (the length of the time step in the packing coke).

(Axp)*
20p;

i

Similarly Atp < and the upper bound on Atp is obtained by

calculating the maximum value that ap? can take.

kp
{pp)(min.(cp,)})

max. op; =

and min, (cpp)'i" = (1.28)Tf + 5.27x 102, see Equation (4.6).

(c) Obtaining Atw (the length of the time step in the flue wall)

Pow? < min. %, ;n (Fow? is the Fourier number of
2(1+Bi")
the flue wall at mesh point i at
tirne step n)
= ; , since Bi® >0 for ali n.
2(1 + BiY
ow? Y Atw
ie (o NAW) < L (cew! is the thermal diffusivity

(Axw)®> T 2(1 +Bi®) -
of the flue wall at mesh point i at

time step n)

(Axw)*
2ow? (1 +Bi")

Atw £

The upper bound on Atw is obtained by calculating the maximum
values that ow]' and Bi® can take.
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kw

max. ow) = ow = ————, see §4.4.
(PW)(CWP)
A h"
Since Bit = ( i? , the maximum value of Bi" is obtained by

calculating the maximum vatue of h” .
max. h® = max. hr" + max. hc¢"

max. hr" = eo[max. Ty, - Tf] [(max. Tl'lh()2 ~ (TH?]

1

eoinitial Ty, — Tf] [ (initial Ty)* - (TH7]

eof Ty, - Tf] [(T},0" - (T6)7]
= hr!

(max.kf)(max.Nu)
£
(kf)(Nu)

= I since TT is assumed to be constant

max.hc" =

= hc

(d) Obtaining the overall At
The upper bound on the overall At = minimum (max. Ata, max. Atp,
max. Atw).

Temperature on the anode/packing coke boundary
The temperature on the anode/packing boundary needs to satisfy the equations

for temperature distribution in both the anode and packing coke.

Tag and Foatf_l1 are defined as the anode temperature (in Kelvin) and Fourier
number respectively at mesh point ¢, q € Z*, attimestepn, ne Z". g runs
from 1 to Nxa, where ¢ =1 isthe mesh pointon x =0, and g=Nxa is the

mesh point on the anode/packing coke boundary.

Similarly, TpI; and Fop‘; are defined as the packing coke temperature (in
Kelvin) and Fourier number respectively at mesh pointr, r € Z7, at time step

n,ne Z. rrunsfrom | to Nxp, where r=1 is the mesh point on the
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anode/packing coke boundary, and r = Nxp is the mesh point on the packing

coke/flue wall boundary.

At q = Nxa.

From Equation (6.3)

1

08 Nxa

Taﬁié = Foagxa[TagxaH + Ta%xa—l +[ - 2JT3F\Ixa] (6-12)

Tag,,., is an imaginary mesh point outside the anode, which coincides with

Tp5 onlyif Axa= Axp.

Atr =1
From Equation (6.3}

Tpj*! = Fop] [TPSJerSJ{FI T - 2}TP?} (6.13)

oy

Tpp is an imaginary peint outside the packing coke, which coincides
with Ta ., ; only if Axa= Axp.

By Fourier’s Law, on the anode/packing coke boundary

Q) = dQ/dt = —kVT = - ka ~—k

(x+Ax, ) -T(x—Ax, 1)
2Ax ]

Q (1) = the rate of heat flow per unit area, in Y/sm?.
e, - ko [ =Ty | (TR ~TRg (6.14)
2Axa 2Ax%p
n+l

Equations (6.12) - (6.14) involve three unknowns: Ta gxaﬁ’ Tpg and Tay,.,

n+1

= Tp“*l These equations are solved for Tpy™ ', the temperature at time step

n + 1 on the anode/packing coke boundary, using the fact that Taana = ij1 .
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Fop} ka Ax
Tplil+l _ -—-»—rp—l{szg + 2|:k—PE;{§;| a&xa“l

ppader 1 o[- 2 iphl 6.19)
kp Axal Foap,, Fop

Fopj ka Axp
Foal,, kp Axa

where TI =1+

In order to satisfy the Law of Conservation of Energy it is required that the
coefficients of Tp; , Tay,, ; and Tp] 20.

Since ka, kp, aaana and OthI1 > 0 for all possible temperatures of interest and

1 1 . ) )
Foay,, < > Fop] < A (the restrictions determined earlier), then the

coefficients = Q.

Temperature on the packing coke/flue wall boundary

This case is similar to the anode/packing coke boundary one. Therefore

n
ot - ol {2ng . z[ggﬁ]rpgxp_l
2 W AXp

+£éﬁv—v 1n -2+ 1n-2Twi‘
kw  Axp { Fopny Fow;

(6.16)

Fow] kp Axw
Fopry, kw Axp

where 1“2 =]+

Tw; and Fowg are the flue wall temperature (in Kelvin) and Fourier number
respectively at mesh point s, s € Z*, attime stepn, n € Z"*. srtuns from 1 to

Nxw where s = 1 is the mesh point on the packing coke/flue wall boundary
and s = Nxw is the mesh pointon x=L..
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As in the previous case, the coefficients of Twy, Tpffb{p_l and Twy 20, so the

Law of Conservation of Energy is satisfied.

Summary
The numerical solution of (6.1) requires the solution of

1 Tal*! = Foa] [2Taj + ln - 2 |Ta; |,
Foay

1
a+l _ 1 n n _ R
2 Ta~ = Foa, [Tanrl + Tag; + {Foag QJTaqi|,

q =2 toNxa-I1,

3 Tafyl = Tp}' , see Equation (6.15),

1
4 Tp?” Fop;l |:Tp?+1 + Tp?_l + (Fopn — 2]Tp?:|

£

r = 2 to Nxp-1,

5 Tpg;i) = TW;I+I , see Equation (6.16),

6 Twi*! = Fow", |:Tw§+1 + Twg, + ( ! ~ - 2JTWE1[
Fow,

s = 2 toNxw—1,

1

Fow R

7 Twil = Fowy [ZBi“Tf + 2Twh g + (

- 21+ Bi“)JTwﬁxw}

provided Foag < % , q = 1 toNxa,
Fop}, < %, r = 1 to Nxp,
Fow| < %, s = 1 toNxw -1,
Fowl < —-——1-—--, n>1.



6.3 Non-constant thermal conductivities

Here the boundary value problem is (see §3.3)

T _  (TY FT
5t = 0((3;') + O ?, 0=sx<L,, t>0
. dT
with = 0,6 =0, t>0, > (6.17)
T@L,, 0 = T,(0, t>0,
Tx,0) = Ty, O<x<L..
ATV . T : aT .
(B_X) has to be approximated as well as ot and —5. Asin §6.2, Sx 18
approximated by using a Taylor series expansion.
A 22
T(x + Ax, 1) = T(x,t)+Axg—z SEO0TOTT x4
A 2 42
TE - Ax, t) = T(x, t)—Ax%% + G ) — O(AX) + ...
+ AX, ) = T(x — Ax, t 2
Gron - Tx-S0F 0(Ax)? + )
2Ax
2
- X) +O(A%)? .
oTY |:T(X+AX, - T(x - Ax, t)
(ax) 2Ax
. L. T2 2
This approximation for (a_x) has error of order {(Ax)“.
aT . 2°T , , o .
If S5t and F%) are approximated as in §6.2, then the partial differential
X
gquation

2

T _ . TP PT
St_a(ax] +aax2
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T(x, t+AD)-T(x, 1) 5 [T(x +AX, ) = T(x - Ax, t):l 2
At 2AX

\ o [T(x + Ax, t) + T(x —2&};, t) - 2T(x, t)} |
(Ax)

where the error of the left hand side is of order At, and the error of the right

hand side is of order (ﬂx)2 .
Therefore, in subscript/superscript notation,

A 2
T} = Fof [T?ﬂ - in—l] +F0?[T?+l +T} +[F—;’_2JTF} (6.18)

i

An
. At
where ﬁo? = —4 5 = the ‘hatted’ Fourier number of the block at
4(Ax)
mesh point i at time step n, in 1/K,
and &} = the ‘hatted’ thermal diffusivity of the block at mesh

point i at time step n, in mzisK,

Asin §6.2, Fo! < .

II:Ix - Tf) + T&x—l
Substituting for Ty, in Equation (6.18) givesat i = Nx:

T = Foll, [-2BE (T2 - TH)]?

n

+Fog, {ZBi“Tf+2T&X_, +[F01N - 2(1+Bi“)JTRIX}
X

(6.19)
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6.4

Ax h"
where Bi" = xn .
kNx

1
Asin §6.2, Fol < -——
N7 o(14BiM

The boundary condition ati= 1 gives T 7 = T§, as before. Substituting this

into Equation (6.18) gives ati = 1:

2
! = fol [13 - T3] +Fo?{T;+T5‘+(Lﬂ - 2)T?]
Foy
n I n
= F‘OE1 |:2T2 'f‘[F—Oll,l - 2)'1‘1}
with Fo] < :—12"

Equations (6.18) and (6.19) involve non-linear terms. Because of this, it was
decided to leave the non-constant thermal conductivities case at this point.

Results

As input, the program requires an initial block temperature (Tatll, q=1to Nxa,
Tprl, r=1to Nxp, Twé, s =1 to Nxw), an air temperature (Tf), the number of
mesh points in the anode (Nxa), packing coke (Nxp) and flue wall (Nxw), the
mass flow (m}and finally the length of the time period. The mass flow is the
total mass flow through all 4 fire shafts. The program’s output is the transient

temperature distribution of the block.

The initial block temperature is assumed to be equal at all mesh points and is
chosen as 600 °C. Tfis chosen to be 20 OC, Nxa= 15, Nxp =4, Nxw =4 and
the length of the time period = 96 hours. The length of the overall time step
(At) is chosen to be 20 seconds. The number of mesh points coupled with the
small At is sufficient for convergence, that 1s, more mesh points and a smaller
At do not alter the temperatures significantly. Mesh point 1 corresponds to X
= 0 and mesh point 21 to x =L,,. Axa, Axp and Axw are approximately the
same - 0.028 to 0.032 m.
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As shown in §1.1, Figure 1.1, the fire trains being used at the New Zealand
Aluminium Smelters Ltd have 3 forced cooling sections. Assuming a fire
cycle time of 32 hours, the fans are moved in the fire direction by one section
every 32 hours. Therefore each section undergoes 3 X 32 = 96 hours of forced

cooling.

Figures 6.4 - 6.6 show the temperature profile of the block at 32 , 64 and 96

hours for various mass flows.

The arrows in the figures indicate the mesh points on the anode/packing coke
and packing coke/flue wall boundaries.

) —M— 15 kg/fs
o]

S —D— Skag/s
k=

qé' * 10 kg/s
@ —>— 15kg/s

1 & 1 15 21
Mesh poinis

Figure 6.4
Temperature profile of the block at 32 hours (1 fire cycle)
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Figure 6.6
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Temperature profile of the block at 96 hours (3 fire cycles)




6.5

Figure 6.7 shows the temperature profile of the block at 96 hours for different
thermal conductivities, but a constant mass flow (5 kg/s). Firsily the thermal
conductivities of the three materials (ka, kp and kw) are calculated as
discussed in §6.2. Then ka is divided by 2, whilst kp and kw are left unaltered.
Then kp is divided by 2, whilst ka and kw are left unaltered. Finally kw is
divided by 2, whilst ka and kp are left unaltered.

— R ka. kp, kw

[47]
h
o

— 2 ka/Z, kp. kw

8

¢ ka, kp /2, kw

Temperature (C)

—— ka. kp. kw/2

1 & 11 16 21
Mesh points

Figure 6.7
Temperature profile of the block at 96 hours with m= 5 kg/s

Discussion of results

Figures 6.4 - 6.6 show that when the mass flows increase, the block cools more
quickly. They also show that as tirne goes on and the temperature difference
between the block and the air decreases, then the rate of cooling of the block
atso decreases. These results confirm that the set-up of the model and the

calculations are correct.

For this particular set of initial temperatures, it takes a mass flow of 15 kg/s in
order for the anodes to reach approximately 200 °C at 96 hours (3 fire cycles) -
see Figure 6.6. This is similar to the mass flows used experimentally. At
about this temperature, the anodes can be safely removed from the pits and

stacked on the floor.
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As expected, altering the thermal conductivities effects the cooling rate of the
anodes, see Figure 6.7. The greatest effect on anode cooling occurs when kp is
altered. Altering ka produces the least effect, whilst altering kw produces an
intermediate effect. This result agrees with that of Furman and Martirena
(1980). Ii was found that kp was one of the two parameters which decisively

influenced the calculations, see §1.2.
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CHAPTER 7 TWO-DIMENSIONAL NUMERICAL SOLUTION

7.1 Introduction
Only the constant thermal conductivities case is examined. The main
difference, besides the increase in dimension, between this chapter and the
previous one, is that here the fluid or air temperature in the flue is not constant.
As mentioned in §1.3, the air temperature (and pressure) is changing as heat is

transferred from the block out into the air in the flue.

7.2  Air Flow in the Flue
An elemental volume (V) of air in the ‘large’ flue is considered, as shown in

Figure 7.1.
y y+ay

{
i
|
I

air flow ]
I

- d : y
1
I
] X
]
!
[
— LA
\
-
W \\
\
N\
\

Figure 7.1

Elemental volume of air in the flue
V = dW Ay m®, where d = 0.238 m and W = 0.111 m (see Figure 2.6).

Mass of the airin V = pf X dx W x Ay kg (pf = density of air or fluid in
kgfm3)

Energy of the air in V = mass X specific heat capacity X temperature

((pfYAWAY) X of, X Tf
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By the conservation of mass:
The change in the mass of the air in V over time At = the mass of the air

entering V during time At — the mass of the air leaving V during time At.

ie. ((PDAWAY), 5 ~ ((PHAWAY) = ((pDHVAW), At ~ ((PHvAW), 5y, At
(v = the velocity of the air in m/s)

(pf)ﬁ,m - (pﬂ[ + ((pf)v)yd}‘ﬁy _((pf)v)y
At Ay

=0

3
- e, %((pf)v) = 0 (7.1)

Similarly by the conservation of energy:

The change in the energy of the air in V over time At = the energy or heat
gained by the air in V from the block during time At + the energy of the air
entering V during time At — the energy of the air leaving V during time At.

ie.  ((PDHAW Ay (cETE),,  — ((PDAW Ay (cE)TE),
= (Ow)d Ay At + ((pf)vdW(cfp)Tf)yAt -
((PDVAW(CEITE), o, At
_ (0DEE)TE0 s (PDEETE),  ((POVCE)TE) sy — ((POVEE)TE),

At Ay
= 3 (@w)

= %((pﬂ(cfp) Tf) + f—y((pﬂv(cfp)Tf) = 7 (Qw)

9 d d d
= plgp (T + ot TE 5 (D (phv 50 (£, TH) +ef T 3o ((0Dv)

= 7 (Ow)

But cf Tf %(pf) + of T % ((pty) = cprf(% (o) + %((pf}v)) = 0,

see Eguation (7.1).

Therefore pf %(cprf) + {pfHv %(Cfp'ff) = "’IW" (Qw)
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: __m_
and since (pHHv = aw

then pf %(Cprf} + E% %(cprf} = % (Qw) (7.2)

:pf[Tf m + cf, T] + W[Tf 3y + Cfpg = 7 (Qw)

and since cfp = cfp(Tf)

f[de(cfp)@+ an]+ m[de(cfp)an an) 1

fo——1= g5 (C
arr o T ) T wl M gy F e, T W

) oTf h dTf L.
ie. pr + 5% Iy = WE (QW)

d(cf )
— T
where F = Tf aTi + cfp.

. Tf . . o .
The transient term, aa—t , is neglected since the thermal inertia of the air is very

small compared to the thermal inertia of the block, see Thibault ef al (1985).

aTf _ d(Qw)
Therefore 3 © mE (7.3}

From Equation (6.4), Qw = Qw(t) =h(®)[T(L,.t) — T£(1)]

But for this two dimensional case,
QW = QW(}’a t) = h(y'! t) [T(Lp Y, t) - Tf(y’ t)]

. dTE . S
Approximating Gy Using a Taylor series expansion gives

Ti(y + Ay, 1) — TH(y —
OTf | Thy+4y. 0 -Tiy -A%.0 o0

y 2 Ay

Equation (7.3} becomes:
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Tf(y + Ay, 1) - Tf(y—Ay,t) _ dhy, O(TL,, y, 1 - Tiy, ]
2 Ay mF(y, t)

where the error of the left hand side is of order (Ay)2 .

Therefore

2 Ay d h(Y: t)[T(Lx L Y, t) - Tf(Y? t)]
mE(y, t)

Ty + Ay, §} = +Tf(y — Ay, t) (7.4}

Tf ‘} is defined as the air temperature (in Kelvin) in the flue at mesh point j at

time step n,' and h;-’ as the heat transfer coefficient (in Wz"sz) at the flue wall
at mesh point j at time stepn, jandne Z*. jruns from 1 to Ny, where j=1
is the mesh point in the flue corresponding to y = 0 in the block, and J] = Ny
is the mesh point in the flue corresponding to y = Ly in the block.

Ay is the distance between mesh points (in metres) in the y direction and Frj‘ is
the value of F at mesh point j in the flue at time step n. Tirfj is defined as the
block temperature (in Kelvin) at mesh point (i, j), where 1 and n are defined
asin §6.2. jruns from 1 to Ny, and j = 1 corresponds to y =0 in the block,

and j= Ny corresponds to y = Ly in the block.

Rewriting Equation (7.4) using the subscript/superscript notation gives:

n n n
e 2 Ay d hf(Thyj - Tfj) + e
or Tfrj‘ = Gj“_] +Tf;‘_2, (7.5)
2 Ay d h;l_l Tgx,j—l g Tf?_l
where G;ll = ( ~ )
in Fj—l
d{cf );_1_1
n _ n B/ n
and Fj—l = 'I‘fj_1 Ta + (cfp)j_1 _

It is assumed that the inlet air temperature at time step n, Tf 7, remains

constant for all n. For the next mesh point, Tf 5, Equation (7.5) cannot be
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used, since Tf jn_z = Tf 3 is an imaginary mesh point outside the flue. In this
case, it is necessary to find a Taylor series approximation such that the mesh
points are inside the flue. The 3 - 4 - 1 approximation outlined as follows is

such an approximation.

_ aTf | (Ay)® PTf
Tiy - Ay, = Ti{y. 0} - Ay 3y T2 3y?

Ty — 2Ay, t)y = Ti{y, t)— 2 Ay %T}—:f + ( ZY) -a—é% - O(Ay)3+ N

O(AY) + ... (7.6)

4 % (7.6) minus (7.7) gives:

ATE(y — Ay, ) — TE(y — 24y, ) = 3Tf(y, t) — 24y aa%f oay)? + ...

- ?“ _ 3Ty, 1) — 4Ty - Ay, 1) + Tf(y - 24y, 1) . O(Ay)2
y 2Ay

Switching to subscript/superscript notation gives:

JTf  3TEY — 4TEY, + T),
oy ~ 24y

where the error of the right hand side is of order (Ay)2 )

So in this case Equation (7.3) becomes:

n n
3TEY - 4TEY, + TfL, d hj( Rxj = Tf}‘)

2Ay t E]
or
3L, — ATEY + TL,  d bl (Thejn — T
2Ay m
Pe. TY = -3 G +3 Tfl,+ yTIC, (7.8)

and for j = 2, Equation (7.8) becomes

TfD = — Tf® (7.9)



But in Equation (7.5), the G jn_l are calculated at the previous spatial step. For
example, for TfY, G} is calculated and for Tf {fly, G;y_l is calculated.

But in Equation (7.9), the Gj“(: Gg ) is calculated at the next spatial step, since
for T g , g‘ is calculated. Also, note that G;‘ 1s used twice, once for

calculating Tf Z in Equation (7.5) and again for calculating Tf J in Equation

(7.9}.

So in order to be consistent, instead of calculating G5 for Tf; in Equation
(7.9), G is calculated.

Therefore Tf? =—L—11Grll +f’—LTf'31 +%Tf'}
Suminary
1 Tf] = constant (7.10)
2 Tft = Lgn o4 3 ppr o dope (7.11)
2 5 T4V 4 ‘s T gty .
3 T8 =GP+ TE, ,j=3toNy. (7.12)

here o 2 Ay d h;‘(T;K,j—Tf}’)

J m F?
dlcf )
no_ n 32 e
and Fj = Tfj arr t (cfp)j .

d(cf )"
—%gf_)l = 0.138, sec Equation (6.10).

The calculation of Tf at the next time step

Relaxation is used and this is outlined as follows. Given the air temperatures
along the flue at say time step n, that is given Tf ;‘ j=1 to Ny, the air
temperatures along the flue at the next time step are estimated using Equations
{7.11)and (7.12). Call these estimates estTf ; It is not necessary to estimate
Tf] since Tf] = constant for all n = atmospheric temperature = 20 °C (see

§2.4).



7.3

1

1 3
U+ 3 TEY 4 g TE]

161 +%
“1+T

So estTf) = —

and estTf? G i=3 toNy.

-2

Next the percentage differences between Tf j“ and est Tf 3‘ relative to Tf? are

calculated for =2 to Ny.

Tf? — estTf!
ie.  percentdiff] = x 100, j=2 to Ny.

n
Tf!

If the maximuin percentage difference for all j = 0.1, then the above process is
repeated, replacing the Tf rj‘ with est Tfjﬂ, j=2 toNy. New estTf j“ and hence
a new maximum percentage difference is calculated. This process keeps
repeating itself until the maximum percentage difference < 0.1. When this

inequality is satisfied, then Tf J?"H = estTf ‘} , i=2 toNy.

Once the Tf;]+I are calculated, then this enables the calculations in the block to
be done for time step n + 1. After these temperature calculations in the block
are completed, then the calculation of the Tf; at the next time step begins again

and so on.

The heat equation in the block
Recall from §3.3 that the boundary value problem is

oT ’T  °T O x=hy,

a—{x, y, t)= 0{—2+ ~a~—~], OSySLy,

¢ ox y t>0

. aT

with —(0, y, t)=0, 0<y<L,, t>0,
ax( 4 ) Y=ty

> (7.13)

T(L,. v, =T, 0<y<L,, t>0,
T(x, v.0) = Ty, 0<x<L, 0sy<L,,
IT (x, 0, 1) = T (x, Ly, =0, 0<x<L,, t>0.
oy dy

Discretising (7.13) as in Chapter 6, gives in subscript/superscript notation:
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2
A
T = Fol. {(_y) ( i T Tin~1,j) + Thi + Tij

L W\ Ax
2
+ 1n -2 (ﬂ) + 1[[T; (7.14)
Foj ; Ax ’

i=1ltwoNx, j=1toNy,n>1,

a; At
where T?j and Foi“j = -Ezl-? are the temperature and the Fourier number of the
, ) y

block respectively at mesh point (i, j} at time step n,

L Ol .
with a—x = 0, _]:1 to Ny, n=> 1,
3The; - h?
M) = (TR — T]), j=110 Ny, n>1,
ox Nx. |

Tj; =Ty, i=11oNx j=1 toNy,

oT{, BTEN),

= 0,i=1to Nx, n>1L
dy dy

Using Figure 7.2 as a guide and Equation (7.14), Tinjl is now determined for

all 1 and j, with the partial derivatives of the boundary conditions approximated

as was done in §6.2.
lines of symimnetry

/ aF .
1 -EEJ- =0 1
L} ]
axes for 2 sucker i’_\& i
3 v _Flue
¥ ‘.V/FI
E T, 3 0 .
adizbatic | :
‘3—: =0 E Block Tfi(y’ o
; 9T —h
| ! aix = —E(T—Tf)
axes for a blower T—»— '
Pox adiabatic
T
& =0
Figure 7.2

Schematic cross-section of the block and flue showing axes

and boundary conditions
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i=1, j=1

The boundary conditions

aTh. aT?
W (1) S -
P 0 and Y 0 give Ty, = Ty, and T},

= T} , respectively, therefore

T} = FO?,I{Q[

Foy, <

provided

2
ijp‘ n " 1 (Ay] n
T2 4+ 2T0, | —— — 22X +1|IT 7.15
Ax) P b2 T Rol, Ax L (7:19)

i=2 toNx—1.j=1

The boundary condition 3y

aT?,

>

— H n _ 70
= 0 gives Ty =T},

2
Hence ™= Foﬂl{(%) (Tin+1.1 + T?—l,l) + 2Ti,
2
Pl 2 (ﬁ) + 1Tt @16)
Foyy Ax
provided Fop, < N 12
2 (l] + 1
AX
i=Nx.j=1
JT?!
Wl‘l = 0 gives TRy o =Ty and asin §6.2
aTgx i —hj
g j n n S
% - n _(Tquj - Tfj) ’ ‘]"1 10 N}’,
Nx,j
. — 2(Ax)nT
gives TRysn = —kni] (Tﬁx,l - Tf?) + TRx-11
Nx,1
Ay 2
TRI:{I = FO;X,I{z('&) [Bi? Tf? + T{]\'x—],l] + 2T§lx,2
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2 2
) (ﬂ) + (9‘1) Bil + 1|[T r (7.17)
Pof{h{,l Ax Ax ’

1

provided Fonei < PRI
2 [—3’) + {—y) Bil + 1
AX Ax
a_ (Ax)h] : L :
where Bij = ——= = the Biot number at mesh point j = 1 at time step n.
Nx, [

i=1,]=2 toNy-}

oT} .
5" =0gives Tg; = T3 ;.

2
A
Ti:f'l = FORJ{z(ﬁJ T;J + T?,j-i—l + T?,j—l

2
+[ L _ 2((ﬂ] + 1J]T§‘j } (7.18)
FOLJ- Ax ’

provided Foj; =

i=2 to Nx=1.1=2 toNv=1

2
A
1 ¥
T]nj = FOEJ{(E’;) (T?-‘rl,j + T?—l,j) -+ TE}""I + T;’tj_l

1 gz .
s { [(,_\.J \ j” .19

provided Fol. <«



i=Nx. i=2 toNy-1

This is very similar to the case i = Nx, j=1 studied earlier. Using this earlier

case as a guide gives:

2
A
i Yy .
T}L’;,j = Foﬁx’j{g(aj [Bl? Tf;-1 + Tgx_l,j] + Tﬁx,jﬂ + TR, j-1

2 2
b=t 2 (ﬂ] + [E‘Zj Bi' + L |[Th ;¢ (7.20)
Fong, Ax Ax '

1
provided Foly, : <

Nx, 2 2 '
- 2 [5}1) + (ﬁj Bi' + 1
AX Ax ]

i=1 i=N
oT] )
1 —_— —ltﬂ,_ — 0‘. ] ]
“(——:};‘l ={ and oy * =0 give Tg,Ny = T.IEI,Ny and T?,Nyﬂ = T?.Ny-—l
respectively.

2
A
o, = Fol {2(:&%) T ny + 2T yon

provided Fol ny

i=2 to Nx-], j=Ny

aTENy — O : Tn — Tn
Jy TV BIVES dinyst T Nyt

4y




provided Folny < A 12
2((1] + ZJ
AX
i=Nx, j=Ny

This is very similar to the case 1 = Nx, j = 1 studied earlier. Using this earlier

case as a guide gives:

2
| A .
T%;.Ny = FOR‘x,Ny{2[A—i) [Bigy Tf;y + T&x—l,Ny] + 2T§x,l\ly—l

2 2
+ nl —~ 2[[ﬂ) + (ﬂ) Bigy, + IJ TR, Ny
FONX,NY Ax Ax

(7.23)
) n i
provided Foyeny = Y Y :
2 [—y) 4 (“_y] Bifl, + 1
AX Ax

Determining Ay
Ay is obtained by specifying the number of spatial steps required in the y

direction, Ny, and then the depth of the block 1s divided by Ny-1.

L
- Y
Ay = Ny-1 m

Determining Fo! ;
A very similar method to that discussed in §6.2 is used.

As in §6.2, the k; (thermal conductivies) are calculated using the temperature

midway between the initial and assumed final average temperature of the block.
Suppose this final average block temperature is Tfj1 , for any j between 2 and

Ny, since all the Tfj], j# 1, are chosen to be equal. Recall from §2.4, that Tf | =

atmospheric temperature = 20 °C for all n.

Determining Bi'j1

Similar to the method in §6.2, but here h = h{y, t), so
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Ax h? Axw h‘}

o
BIJ’ - kw

k?lx,j
where h? = (hr? + he'} ) W/m’K

hrﬁl = the heat transfer coefficient for radiation of the flue wall at
mesh point j at time step 1, and

hc’j1 = the heat transfer coefficient for convection of the flue wall at

mesh point j at time step n.
hrl = &6 (TR - Tf}‘)((T;m)z - (Tf}l)z)

_ (D)
£

ki

and hc‘j1

kf?l = the thermal conductivity of the fluid or air at mesh point j in the

flue at time step n, in W/mK,

Nu? = the Nusselt number at mesh point j in the flue at time step n
and is dimensionless,
£ = the characteristic length in m, see §6.2.

Determining At
A similar method to that used in §6.2 is followed.

{a) Obtaining Ata

Foa™. < 1 (Foa?‘j is the Fourier number of the
W 5 Ay 2 . anode at mesh point (1, }) at time step
— | +
(Axa) n)
) oa;;(Ata) < 1 (ocainj is the thermal diffusivity of the
ie. : < )
(Ay) ) ( Ay )2 L anode at mesh point (i, j) at time step
Axa n)
2
A
Ata < (4y)



The upper bound on Ata is obtained by calculating the maximum value that

aai"j can take.

max. ay, = ka , see §6.2 for this calculation. Asin §6.2, the

M (pa)(min.(ca, ] )

minimum block temperature is taken to be the assumed final average block

temperature which equals Tf} for any j between 2 and Ny (see the discussion

earlier in this section).

(b} Obtaining Atp

Similarly Atp < 2
2(xpij{[g%] + IJ

{c) Obtaining Atw

Fow!. < min.

2 ’ 2 2
2(Ay)+1 z(mAy)+(Ay)Bi¥‘+1
Axw AXW Axw ]

= : 5 , since Bi? >0, ¥V jand n.

) (i )ema)

of [ 2] + i’

Axw AXw .
ow!. {(Atw
ie. 12(2 ) < 5 ! 5
(4y) of [ ) +{ 2V Bi? 41
Axw Axw 1

2 2
200", (ﬁy—J + (ﬂJ Bi? +1
S Axw Axw

The upper bound on Atw that satisfies the above inequality is obtained
by calculating the maximum value that Otw{‘j and BiE1 can take. See

§6.2 for the calculation of max. ow; t

_ _ Axw b
Since Bi! = —=
J kw
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the maximum value of Bi? is obtained by calculating the maximum

value of hj?‘.
max. hjf‘ = max. hr‘j’ + max. hc‘;
max. hrr; = go[max. T%, . . — min. TfE1 7 [(max. T% . )*— (min. Tfj“)z]

Nxw,j Nxw,j

)% - (min. Tf i G

eolinitial Ty, - min Tf 7] ((initial T

Nxw,j Nxw.j

- )
= £0 [Twa,j

~ min. Tf 7] [(’r;m,‘j)2 ~ (min. Tf? )l
Assume that min. Tf ? , the minimum fluid temperature at mesh point ;
at time step n, is 293 K (atmospheric temperature) for all n.

n ]

) ¢

max. kf} = (5.65 % 107°) max. TE] +1.02% 1072,
see Equation (6.9).

Assume that max. Tf‘}| , the maximum fluid temperature at mesh point j

at time step n, is 773 K for all n.

max. Nu’j1 = 0.023 {max. Re;‘)c"8 {max. Prj?‘)OA,

see Equation (6.6)

max. Re! = — 4m _ ) see Equation (6.7)
b (min. ;.Lrj? Yperimeter)
min. kf*)(min. Pr?
min. ut = ( X _— ), see Equation {6.8)
. max. (cf )}

max. Pr = (1.89 x 107) (773" - (2.20 X 107%) 773 +7.54 % 1071,
see Equation (6.11)

min. kff = (5.65 x 1073293 + 1.02 x 1072
min. Prf = (1.89 x 1077)(293)% — (2.20 x 1074 293 +7.54 x 107

max. (Cfp);] =(1.38 x 10‘1)7?'3 +9.92 % 102, see Equation (6.10).
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(d) Obtaining the overall At.
The upper bound on the overall At = minimum (max. Afa, max. Atp,

max. Atw).

Temperature on the anode/packing coke boundary

Tag i and Foa g j are defined as the carbon anode temperature (in Kelvin) and

Fourier number respectively at mesh point (g, j) at time step n, q is defined as

in §6.2. j runs from 1 fo Ny.

Similarly Tp‘:,j and Fop?,j are defined as the packing coke temperature (in

Kelvin) and Fourier number respectively at mesh point (r, j), attime step n. r
is defined as in §6.2.

At q = Nxa.
From Equation (7.16)

2
1 Ay
TnN;a,l = Foa&xa,l{(m) (Taﬁxaa—l,l + Taglxa—l,l)

+2Tal o o e 7 (£]2+ 1|Tad
Nxa,2 Foaﬁxa,l Axa Nxa,l

{7.24)

and from Equation (7.19), forj =2 to Ny-—1,

2
Ay
n o n n n
TaNxa,' = I:"Oal\!xa,‘ TaNxa+l,' + TaNxa—I,' + TaNxa,'H
] ) Axa 1 ] ]

1 Ay Y
+ Taly iy + | —— AV 4 1(Tak,,
Nxa,j-1 ':Foaﬁm'j [[Axa] ]:| Nxa'j}

(7.25)

and from Equation (7.22)}

2
n+i _ n A}’ n n
Tanany = FoaNxa,Ny{(_—Axa) (TaNxa+1,Ny+ TaNxa—l,Ny)
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1

Foa;xa,Ny
Ay 2

-2 (—) + 1| [Tafyany (7.26)
Axa ’

TagXa 41 j=1 to Ny, is an imaginary mesh point outside the anode, which

n
+ 2TaNxa,Ny_l +[

coincides with Tpy ; only if Axa = Axp.

At r = 1.
From Equation (7.16)

2
A
Tpiy' = FOPF,I{(E);J (Tp3,; + Tpb,) + 2Tp,
2
+ ln - 2 (ﬂ) + 1 Tp?,l (7.27)
Fopr Axp

and from Equation (7.19), forj=2 tc Ny -1,

2
A
Tpi; = Fopij{[zéj (TPS,J' +TP3,j)+TP'f,j+1 + TPl

U P ﬂg+1T“- (7.28)
Fopy ; Axp B1. '

and from Equation (7.22)

2
A
n+l _ n y n n n
Tpiny = FOpl,Ny{(E{E) (sz,Ny + TpO,Ny) + 2Ty ny-1

2
1 Ay n
+ - 2| —— +1|{T 7.2%
[Fop{‘,Ny {[ Apr ]:[ Piny ( (7.29)

Tpg,j, j=1 to Ny, is an imaginary mesh point outside the packing coke which

coincides with Tairilx.%l,j only if Axa = Axp.
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As was done in §6.2 , a heat balance is done on the anode/packing coke
boundary using Fourier’s Law to give:

Tafgaseti — Tahmaoy Tp2; — Tpo,
~ ka Nxa+1.J2A Nxa-1j | _ _ kp B i ] , j=1to Ny, (7.30)
wa 2&){[}

j=1

Equations (7.24), (7.27) and (7.30) involve three unknowns: '1“211‘;%_1,1 , 'I"p(r)1 t
and Ta%{la'l = Tp‘fj’ll. These equations are solved for Tp 'ffll, using the fact that
Ta;xa,l = Tp?,l and Ta&xa,?.z Tp?,Z :

2 2
Fop; A a A
ol = okliy 2y Tpd, + 2 || == Xa 2xp Taa 1.1
’ A Axp ' Axp /] kp Axa ’

2
. A (7.31)
Fopy; Axp ’

Fopy) ka Axa

where Ay = 1 + .
1 Foag, 1 kp Axp

In order to satisfy the Law of Conservation of Energy it is required that the
1 n 1 n el
coefficients of sz,l’ TaNxa_l‘l, Tp1 2 and TpLI =0,

ka and kp > 0.

oay,,; and ap); >0 and hence Foal, ., and Fop} > 0.

n 1 1

n
< & > and Fopj; < . 3 are
2 (—-) +1 2 (*_&J + 1
Axa Axp

the restrictions determined earlier.

74



Therefore the coefficients = 0.

j=2 to Ny-1
Similarly

Fop? 2 2
Tp{i}q = pl,j 2 AY Tpgj + 2 ﬂ E Axp Ta;lxa—l j
’ A, Axp : Axp j kp Axa .

[ ka A
+ —}I?—EE + IJTpﬂj+1 + {E-@{E + ]L]Tp?‘j_1
| kp Axp kp Axp

llasal 1, [—AYJ2+ 1
| kp Axp| Foagy, ; Axa

2
T 2(ﬂ} + 1| |[Tply b (7.32)
\Fopu Axp

Fopy ka Axa
Foaf,; Kp Axp

where A, = 1+

j=Ny
Similarly

2 2
Fopy A Ay Y ka A
1 LN Yy Y a AX n
Tp?,ily = A : {2[ P] Tp;,Ny + 2|:( AXp k_p&_xz TaNxa—I,Ny

+1<_a_/_\xa 1 s (Ay]z_'_l
kp Axp | Foayyany Axa

2
1 A
+ For? - z[[__Axyp] T 1]} Tpiny ¢ (7.33)
\ i,Ny

Fopiny, ka Axa

Foaﬁxa,Ny kp Axp

where Ay=1+
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Temperature on the packing coke/flue wall boundary

This case is similar to the anode/packing coke boundary one.

Tw; j and Fow, ; are defined as the flue wall temperature (in Kelvin) and

Fourier number respectively at mesh point (8, j), at time step n. s is defined as
in §6.2.

j=1
Fow; 2 ’
\ W Axw /) kw Axp
+ 2[kp Axp + I}T W12
kw Axw
2
+[§1ﬂxp( g [
kw Axw L FopRip 1 Axp
2
N 2[_’—*1_] Lot b (734
Fowy, Axw ’
Fow]
whete @ = 1+ nl,l kp Axp _
FOPpr,l kw Axw
j=2 to Ny-1
Fow! Ay V¥ kp Axw
TWHH: ]J -+2(——}I—')'—B_Tn—'
2] Axw /) kw Axp PNxp-L.;
[EA P, 1] 1+1 + [EP" Axp + 1:'Twln'—l
kw Axw J kw Axw J
apl 1Ay
kw Axw | Foppyy, ; Axp
1 Ay Y
+ - 2[(__5_’_) + 1J Twijr  (7.35)
Fow], Axw
Fow{
where G, = L &

Foply,; kw Axw =
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Fow? Ay Y Ay Y kp A
a+l _ I,Ny Y n Y KPP AXW n
Ty = 0, {z(ﬁxw] TWony + 2 (Axw) kw Axp TPNcp-1Ny

kp Axp :I n
+ 2| — =T+ T e
[kw Axw LNy-1

2
e P | Eo T I
kw Axw | Fopyp Ny Axp
1 Ay Y
+|—- 2(—uj + 1||[Twiy, ¢ (7.36)
FOWI,Ny Axw ’

where O;=1+

For the same reasons as before, the coefficients of the various mesh points in
Equations {7.34) ~ (7.36) 2 0, so the Law of Conservation of Energy is
satisfied.

Summary
The numerical solution of (7.13) requires the solution of:

2

A

(1) TaM! = Foa{ll{Z[—y) Tay, +2Taj,
’ ’ Axa ' ’
2
- *2(3) +1|[Tal,
Foap Axa ’

Av \2

(2) Tagjl = FO&EJ{[K};) (Tagﬂ,l + Tag_m} + 2Tag,

! ay Y .
+ — = 2||—| + [||[Tag ¢, q=2 to Nxa-1,
Foag Axa

(3)  Tafa, = Tplt' . see Equation (7.31),

I
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2
A
@ Tppy = FOP?J{[A—YJ (TP?H,I + TP?—],I) + 2Tp;,
xp

2
+ ln - 2 Ly + 1[{Tpf t.r =2 to Nxp—1,
Fopr‘1 AXp :

(5) TPy = Twii . see Equation (7.34),

2
©  Tw = Fow;"l{(—é%] (Wi, + Twly;) + 2Twl,

2
+[ L _ 2(( 4y ) + IJ:|TW?,1},S = 2to Nxw -1,

Axw

2

2
I Ay
+ 2Twl o + | ———— 2( )
N2 [Fowﬁxw’l ( Axw
Ay V.
(2o + )
2
@  Taf! = Foa"d2(-2Y | Tal. + Ta'.,, + Tal.
i - Li Axa 2,j I,j+] Lj~1
2
[ L. 2((—‘51) + zJ Tal;l, j =2 toNy-1,
Foay Axa
5
©  Tam¥ Poag‘j{(%) (Tal,,; + Tal )+ Tal,, + Tal |
1 Ay
+ - —2(———) + 1 Tag,j , q = 2toNxa-I,
Foaq,j Axa
j=2to Ny-1,

(10) Tafis; = Tpll' . see Equation (7.32),
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2
A
11y Tpri' = FOP?,J‘{(EEI;) (Tp?+l,j + Tp?—l,j) + Tpljn + TPrji

r,j
2
+ ln —2[£)+1 Tp?'j , r = 2toNxp-1,
Fop, ; Axp

] =2t Ny-iI,

(12)  Tplyy; = Tw} . see Equation (7.35),

SHA Axw

2
[ A ) o
oW, . XW

5.
j =2 to Ny—-1,

2
(13 Tw! = Fow“-{( Ay ) (TWiayj + Twiy;) + Twije + Twlj

1l

A 2
n+l A Y :n n n
(14) TWwa,j = FOWNXW’J‘{z[_AXWJ [BIJ Tfj + TwNXW—I,j]

1
+ Twﬁxw,jﬂ + ngxw,j—l + = . n__
FOWNXW,j
2 2
Ay ] ( Ay ) n n
N = iy i AR T R R e
{(Axw Axw ) Nxw.j

j =21t Ny-1,

2
Al
1 Y
(15)  Tajy, = PoaiNy{z(—Axa] Tasny + 2Ta) Ny

2
+ L, [ﬂ] + 1 |{Tainy ¢
Foaj' n Axa ’

¥
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2
A
n+l n y n n
(16)  Tal¥l, = Foaq,Ny{(&xaj (Tageing + Tag-iny)

1 Ay
+2Ta" oy + —-——2[—~——]+1 Tal ,
aNy-1 [FOﬂS,Ny [ Axa H a.Ny

q=2 to Nxa-1,

(17)  Tafian, = Tpiky . sce Equation (7.33),

2
A
n+l 1 Y n n
(18} Tprny = FOPr,Ny{*A“;F;] (TPr+1,Ny + TPr—l,Ny)

2
1 Ay
+ 2Tpl ., + - =1 + 1|[Tp?
Pry ]:FOPL,N)' Hﬂxp] ]jl PNy

r=2to Nxp-1,

(19) Tp{\'{;;‘NY = Twi{}(ﬁ,, see Equation (7.36),

A 2
+1 _ n Y n n
(20) TWS’NY = FOWS,N)' {( AXW] ( 3+1,Ny + TWS"“I,Ny)

1 Ay Y n
+ 2Twlo s + -2/ = +1|Tw ,
Ys.Ny-L lFOW;’,NY [[Aij H S’NY}

s=2 to Nxw-1,

Ay

(21) Twri‘li-;lv,Ny = FOWRIXW,N)’ {2(_"_

P
Aij ([Bify Ty + Tohyuiny]

!

I
FOWNXW,Ny

AY V(&Y Voun "
— 2[(—"'—"Aij + (Axw) BIN), + 1 TWNXW,NY .

) g = 1 to Nxa,

n
+ QTWNXW,Ny—I + l:

provided Foag, <



r =1 to Nxp

s =1ty Nxw-1

], j=1to Ny, n>1.

74 Heat balance at the flue wall
Since there is no heat flow across the boundaries x =0, y=0 and y= L,

then ali the heat flow from the block occurs along the boundary x =1, ie. the
flue wall. The heat transferred from the block across this boundary should
equal the heat gained by the air in the flue, i.e. AQ + AQf = 0, where

AQf = the heat gained by the fluid or air in time At and
AQ the heat transferred from the block in time At.

plane of symmetry

’
axes for a sucker y

Figure 7.3
Schematic three-dimensional view of the block showing axes

Calculation of AQf
Consider the block, where the z direction is as shown in Figure 7.3. Let Q(t) be

the heat in the block at time t. Then
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% %(Iy pe dV) see §3.1,
g“t (_[OL‘ j;’ j; pe dz dy dxj

where  dV = dxdydz and d is as shown in Figure 7.3,

% = I IO — (pe)dydx {pe is independent of z)
L, (L, JT
=d [ (p cp-g{]dy dx see §3.1,
L, (L,
=d jo jo V-(kVT) dy dx see §3.1,
o 365 365] e
dy
L, af dT oT
- djo jo a}{\k—(;;;}dx dy + dj jo ay[ ay] dy dx
_Lx
= d L’[ka—T dy + dJ’ ka—T dx
0 aX_Q ay
aQ L, .
= djo ~_Qw dy (7.37)
ince 2L = 0 -0, -0 = 0,1, and the rate of heat flow per
smce ax on x = ,ay— ony =4, yan & rate ot nea oW D
unit area of the flue wall = Qw = mkg%f on x =L, see §6.2.

Now consider the air. Recall Equation (7.2} that is,
pfat (cf T + dW 8 (cf Tf) = W(Qw)

d(ct) oT ho d |
= pf(Tf"a’—tp— + Cfp _E_f) + 'amW —a"g(cprﬂ = *W—"(QW)
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d(cf ) 9Tf oT m 0 1.
= pf(Tf—D—de =+ cf, »gff) + Wg(cprf) = 57 (Qw)

oTf m d 1

= 3t awreD 9y BT = wipn (QW) (7.38)

d(ef )

where F = Tf?ﬁ?‘ +Cfp.

As discussed in §7.2, the transient term aaltf is neglected. Therefore Equation

Integrating with respect to y gives:

I

i (e, T0)yory — (CE,TH|yo ) = d jol‘ Qw dy

= - % from Equation (7.37)

Therefore AQf ~ -1 [(cprf)’FLy — (e£,TH],o0 )At

= =t ((cf, Ty, - (cf,Tf),) At T.

Calculation of AQ

Consider an elemental volume V of block, as illustrated in Figure 7.4, centred

atmeshpoint(i+%,j+%—), 1=1to Nx-1, j=1 toNy-1.

Ny—1 Nx~1

_ n+l _ 1
Then AQ = E E Vi+%,j+%[(pe)i+%,j+% (pe)i+12,j+y2]

_ 3 - . y
where Vi+%,j+% =Ax Ayd m” foralliand], see Figure 7.4,

and e = internal energy per unit mass in J/kg - see §3.1.
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plane of symmetry

Flue wall

Figure 7.4
Schematic three-dimensional view of the block showing elemental

volume V centred at mesh point (i + %,j + %)

p = pa, pp orpw and e = ea, ep orew depending on whether the
calculations are occurring in the anode, packing coke or flue wall. ea, ep and
ew are the internal energies per unit mass of the anode, packing coke and flue

wall respectively.

Recall from §3.1, that cp(T, p) = g% = g—% at constant pressure.

T
Therefore e(T,p} = jg cp('c, p)dt + f{p) where f(p) is some function of

Dressure.

If cp(O, p) 1s assumed to be zero, then e(0, p) = f{p). Then assuming that
e(0, p} =0, gives

T
e(T,p) = | ¢, p)t.

Now consider ca, = (1311 + 4.55% 102 , see Equation (4.3)

T

Therefore e = | [(131)t + 4.55 % 10%]dt

= léi)’l‘z + (4.55 x 103)T Jikg
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Similarly ~ ep = (%)Tz +(5.27 % 10%)T kg
and ew = 1250T J/kg

AQ = AQa + AQp + AQw

where AQa = the heat transferred from the anode in time At in J,
AQp = the heat transferred from the packing coke in time At in J,
and AQw = the heat transferred from the flue in time At in J.

Consider AQa

Ny—1 Nx-1 "
AQa = (Axa)(Ay)d(pa) >, > |ea”™) | - ea" | |
=1 =l Gty Gt

ea“”l ; and ea® ; | can not be easily calculated. They are approximated
Q'*"z‘».i""g q+5,j+5

n+l

using the average of ea”™* and ea” calculated at mesh points (g, j), (g + 1, j),

{q,j+ 1)and (gq+1,j+ 1) - see Figure 7.5.

WV
@i+, fgrl. j+1)
ay ,’_’ ____________ 1
7 b D
f“"ﬁﬁ*%félﬂ—‘)
2 S0
RN
. 2
Figure 7.5

A more detailed view of V in the anode showing mesh points

assuming that a blower is operating
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7.5

n+l n . n+l n+l
ea —ea | ; = 025 [(eaq,j - eaqj) + (eaqﬂ,j - eaqHJ)

n+l n n+l 1
+ (eaq,j+1 - eaq,j+l) * (eaq+l,j+l - e'&q+1,j+l)]

Therefore AQa =~ (Axa)(Ay)d(pa)(0. 25){(6&11 — eafy ) + (eafa, — eafia.)

n+l n n+i n
+ (eal,Ny - eal,Ny) + (eaNxa Ny — eaNxa,Ny)

Xa—
+ 2{ z ((eaIhLl — eag) + (eagﬁy — eay Ny))

Ny-1

n+l n n++1 n
+ ((ea — eal’j) + (eaNxa,j - eaNxa,j))j|
i=2

+ 4rim§ I(os:a'”rl ~ ea J)}

=2 qg=2

Similarly for AQp and AQw.

Results

The program requires similar input to the one for the one-dimensional case, but
here the air temperature required to be entered is the initial air temperature (for
the one-dimensional case, the air temperature was assumed to be constant). As
discussed before (see §7.3), the TfjI are chosen to be equal for all j = 2 to Ny,
with Tf] = atmospheric temperature = 20 © C for all n. Also the number of
mesh points in the y direction (Ny) has to be entered. The program’s output is

the transient temperature distribution of the block and of the air in the flue.

The initial biock temperatures (Taq e Tpr 7 Tw ;) &re chosen to be 600 °C. The
initial air temperatures (TfJ ,j=2toNy) are chosen to be 100 °C. Nxa= 15,
Nxp =4, Nxw =4 and Ny = 160. Mesh point (1, 1) corresponds to x =0,

y = 0; mesh point (1, 160) corresponds to x =0, y = Ly ; mesh point (21, 1)
corresponds 0 X =L, ¥ = 0 and mesh point (21, 160) corresponds to
x=L,,y= Ly . The total number of mesh points is 3360. The computer used

for the calculations could not handle too many more than this number of mesh
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7.6

points. Axa, Axp, Axw and Ay are approximately the same - 0.028 t0 0.032 m.
The length of the overall time step (At} is 20 seconds, as in the one-dimensional

case.

Either a blowing or sucking fan is operating, since as has been discussed before
(see §2.4), it makes no difference to the temperature profile calculated by this

model, as to whether a blower or a sucker is used.

Figures 7.6 and 7.7 show the temperature profile of the block in the x direction
aty=0andy= Ly respectively at 32 hours for various mass flows. Figure 7.8
shows the corresponding temperature profile of the air in the flue at 32 hours for
the same mass flows. Similarly for Figures 7.9 - 7.11, except that time is at 64

hours, and for Figures 7.12 - 7.14 except that time is at 96 hours.

The arrows in the figures indicate the mesh points on the anode/packing coke

and packing coke/flue wall boundaries.

Heat balance at the flue wall
The percentage difference between AQ and AQf relative to AQ is calculated at

4Q-AQf, 1o

the end of each time step. Percentage difference =

The percentage difference between total AQ and total AQf relative to total AQ is
also calculated at the end of each time step. Total AQ (in J) is the total heat
transferred from the block from n = 1 up to the present time. Similarly total

AQf (in I} is the total heat transferred into the fluid or air from n =1 up to the

present time.

Total percentage difference = total AQ - total AQT % 100. In all cases, even at

total AQ
96 hours, both the percentage difference and total percentage difference < 0.5%.

Discussion of results
The temperature profile of the block and of the air in the flue

The results here are very similar to those of the one-dimensional model. As the
mass flows increase, the block cools more quickly, and as time goes on and the
temperature difference between the block and the air decreases, then so does the

87



rate of cooling of the block. As before, these results confirm that the set-up of
the model and the calculations are correct. For this particular set of initial
temperatures, it takes a mass flow of 15 kg/s in order for the anodes to reach
approximately 200 © C at 96 hours. This mass flow compares well with the
experimental ones (5.6 kg/s for a blower, 11.3 kg/s for a sucker - see §6.2).

As expected, the temperature of the block in the y direction increases as y goes
from O to Ly - compare Figures 7.6 and 7.7, Figures 7.9 and 7.10, and Figures
7.12 and 7.13. This is because the air temperature in the flue is also increasing
as y goes from 0 to Ly {see Figures 7.8,7.11 and 7.14). However this vertical
{or y) temperature variation of the block is quite small, even for the smallest
mass flow of 5 kg/s. This is because the air temperature does not increase
greatly above the inlet air temperature (20 °C), even as the air flows along the
flue and gains heat from the block. See Figures 7.8, 7.11 and 7.14. This is even
more s¢ as time goes on and less heat is being transferred from the block, due to
the block cooling that has already occurred. This is due to the fact that the air is
being sucked or blown through the flue at a rate that enables a rapid
replacement {especially with larger mass flows) of the air in the flue. Hence, a
particular quantity of air is not remaining in the flue long enough for it to gain

much heat, and therefore increase in temperature.

The transient variation of the air temperature is quite small and as time goes on,
becomes smaller. See Figures 7.8, 7.11 and 7.14. This is consistent with the

assumption made in §7.2, that the transient or %;f term in the partial differential
equation for the air temperature can be ignored (since the thermal inertia of the

air is so much less than that of the block).

Heat balance at the flue wall

The small discrepancy, especially between the cumulative heat given out by the
block and the cumulative heat transferred into the fluid, indicates that the

calculations in the block and air are correctly related and quite accurate.
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Figure 7.6

Temperature profile of the block (y = 0) at 32 hours (1 fire cycle)
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Figure 7.7
Temperature profile of the block (y = L, ) at 32 hours
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Figure 7.8
Temperature profile of the air in the flue at 32 hours
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Figure 7.9
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Temperature profile of the block (y = 0) at 64 hours (2 fire cycles)
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Figure 7.11
Temperature profile of the air in the flue at 64 hours
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Figure 7.12

Temperature profile of the block (y = 0) at 96 hours (3 fire cycles}
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Figure 7.13
Temperature profile of the block (y = L) at 96 hours
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Figure 7.14
Temperature profile of the air in the flue at 96 hours
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CHAPTER 8 THE AIR PRESSURE IN A SECTION

8.1

8.2

Introduction

The pressure in the flues and fire shafts is investigated. It is assumed that the
spaces between the bottom of the anode/flue walls and the foundation, and in

the gallery are so large, that the air flowing through them does not experience

any change in pressure.

Calculation of the pressure
From McKibbin (private communication, 1993}

L Ay (eDv?
- (8.1)

where Ap = the change in pressure of the air in N/m?

and A = the friction factor {dirnensionless).

. . 5
Since v = 2 then v? = (I
(PDY = rea (pf X area)

A —A X peri X 1h 2
So Equation (8.1) becomes 2P i perimet;r o - (8.2)
Ay 8 X (area)y” x pf

A
If A_E is approximated by %5 and %‘5 1s approximated by using a forward
y

difference formula, then

Ap _dp _ p(y+Ay, H) —p(y, B
Ay 9 Ay

n [}
= El“ﬂ—pi— in subscript/superscript notation.
Y

j and n are defined as before, j=1 to Ny, j,ne Z* and the error of the left

hand side is of order Ay.
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A= %(Re,%) is the friction factor.

Re = Re(y, t) is the Reynolds number.

£ is the roughness of the bricks used in the flue and fire shaft walls and is
estimated as 1.65 x 107 m.

pf = pf(Tf) and using values obtained from Haywood (1968), a linear
approximation for pf is obtained, using the points (373, 9.46 x 107') and
(973, 3.63 x 107}y - see Figure 8.1.

1.3 um=

N

091 N
0.7+ ~

g.54 ~—

(kg/mmm)

Density

\'
0.3 ; : P
250 450 650 850 1050 1250

Temperature (K}

Figure 8.1
Density of air at 1 atmosphere [interpolated from data from
Haywood (1968}]

pf = (~9.72 x 107%) Tf + 1.31 kg/m®

So Equation (8.2) becomes

n : 2 2
~ A X Ay X perimeter X i 0

+pj

pn =
i 8 X (area)” x pfjn

7\,? is given by the Churchill equation,
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Re! i
0.9 16
AY = 12457 ml| =L | + 027 8
Rej
0.9 6
. 4 ’
27x1.
— 10,457 tn Ln o 0.27x1.65%10™ X perimeter |
j 4% area

16
37530
B} - |22
Rej

The mass flow, perimeter and area are different depending on whether the
calculations are occurring in the fire shaft or flue. See §6.2 for the discussion
on mass flows, and Figures 2.1 and 2.3 respectively for fire shaft and flue

dimensions.

Blower

In this case, the inlet pressure at time step n 1s at the top of the fire shaft - see
Figure 8.2, If pfs? is defined to be the air pressure in the fire shaft at mesh
point j (j=1to Ny) at time step n, then pfs] is the inlet pressure at time step

n. Since the pressure difference across a blower is 200 N/m? then

pfs] = (atmospheric pressure + 200) N/m?

= (101325 + 200) N/m?

i

101525 N/m? (or Pa)
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Y
end flue . in Blower
wall j=Ny side wall flue f'-r'lall ue
A Z//é/ \// | /s
* & | oL
L]
............. L=l
fire
shaft
head
wall
direction of
air flow
............. sallery
T - i iy
=1
i=1 foundaiion
Figure 8.2

Schematic Iongitudinal view of a flue wall showing air flow direction for

a blower and the layout of mesh points

The pressure at the bottom of the fire shaft at time step n, pfs ﬁy, is used as the
inlet pressure for the flue, since it is being assumed that there are no pressure
changes occurring in the gallery or in the area between the foundation and the
bottom of the anode/flue walls. That is, pfl] = pfsgy, where pfl] is the air

pressure in the flue at mesh point 1 at time step n.

The temperature of the air along the fire shaft (j = 1 to Ny) is assumed to be
the same as the inlet air temperature for the flue, Tf] (20 °C for all n, see

§2.4). The density of air and the friction factor are functions of temperature.
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Sucker
This case is the reverse of the previous one. The inlet air pressure at time step
nis at the top of the flue - see Figure 8.3. pfl] is defined to be the air

pressure in the flue at mesh point j (j = 1 to Ny) at time step n. pﬂ? =

atmospheric pressure = 101325 N/m?,

-

end flue Sucker

i=1 side wall flue end flue
wall wail
/7 ((, 4 \é/ ol Lz
! ~ | 1] .
............. - =Ny
fire
shaft
head
wall
direction of
air flow
............. gallery
|—: i - - L o« j=1
=Ny foundation
Figure 8.3

Schematic longitudinal view of a flue wall showing air flow

direction for a sucker and the layout of mesh points.

The pressure at the bottom of the flue, pfl ;y’ is used as the inlet pressure for
the fire shaft, since it is being assumed that there are no pressure changes
occurring in the area between the foundation and the bottom of the anode/flue

walls or in the gallery. That is, pfs] = pﬂﬁy.

In this case the temperature of the air along the fire shaft (j =1 to Ny) is
assumed to be the same as the outlet air temperature for the flue, Tfﬁly. This

outlet air temperature varies with time, so the air temperature along the fire
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8.3

shaft also varies with time. This contrasts with the blower case, where the air

temperature along the fire shaft remains constant with respect to time.

Results

The program has exactly the same input as the one that outputs the two-
dimensional temperature distribution of the block and the temperature
distribution of the air in the flue - see §7.5. The output for here is the one-

dimensional transient pressure distribution in the fire shaft and flue.

Figures 8.4 and 8.5 show the pressure distribution at 32 and 96 hours
respectively for various mass flows when a blower is operating. Similarly
Figures 8.6 and 8.7 show the pressure distribution at 32 and 96 hours
respectively for various mass flows when a sucker is operating. The arrows in
the figures indicate where the flue ends and the fire shaft begins. The flue
mesh points are to the left of the arrow and the fire shaft mesh points are to the

right of the arrow. The blower and sucker are positioned as shown.

101525

101524 1 '
£
E _ —x— 5kgfs
=
© 101523 SOmmmrETL) —— 10%g/s
=
5 I —r— 15 kg/s
o

101522 + ’—m—mﬂ"

101521 t i ; : : ; i

1 51 101 151 20 251 301 3517
Mesh points
Figure 8.4

Air pressure profile for a blower at 32 hours (1 fire cycle)
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101524 + B4R 11 1300 DD a8 G
—n— 5kg/s
101523 ST —— 10kg/s
—*— 15 kg/s
101522 +
101521 f : ; ; ¥ : {
1 51 1M 151] 201 251 301 351
Mesh poinis
Figure 8.5
Air pressure profile for a blower at 96 hours (3 fire cycles)
101325 Sucker
101324
— " — 5kg/s
101323 ORI Sucker | —C—— 10 kg/s
—+— 15kg/fs
101322 +
101321 i ; : ; Saeker
i 5] 101 151 201 251 301 351
Mesh points
Figure 8.6

Air pressure profile for a sucker at 32 hours
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101325 d Sucker
101324 +
‘g E
g —E— 5 kg/fs
‘é’ 101323 + O EETEEES cker | =3 10 kgfs
=
g —+— 15Kg/s
a.
101322 1
101321 ; : : : Suekar
1 51 107 1561 201 251 301 351
Mesh poinis
Figure 8.7

Alr pressure profile for a sucker at 96 hours

Figures 8.8, 8.9 and 8.10 compare the pressure distribution for a blower versus

a sucker at 96 hours, for mass flows of 5, 10 and 15 kg/s respectively.

v
101520 ¥ Blower
101490
£ 101460 T
E
e
Z 101430 +
g
2 101400 +
2
a.
101370 +
101340 +
i AL L M B P 5. PP M e 0 R L 0 X L LSl L S W L e Tk S LN [ P4 = §
101310 I ; : : } + } 1
1 51 101 151 201 251 301 351
Mash points
Figure 8.8

Air pressure profile for a blower versus a sucker at 96 hours

for m=5kg/s
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Figure 8.9
Air pressure profile for a blower versus a sucker at 96 hours
for h=10 kg/s
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Figure 8.10
Alr pressure profile for a blower versus a sucker at 96 hours for
m =15 kg/s
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8.4

Discussion of results

As expected, the air pressure decreases as the distance from the blower
increases or as the distance from the sucker decreases. These results confirm
that the set-up of the model and the calculations are correct. For both sucker
and blower, the larger the mass flows are, then the larger the pressure drop
along the flue and fire shaft. For m= 5 kg/s there is no pressure drop for all
cases. The pressure difference along the flue is larger than that along the fire

shaft for both sucker and blower.

The spatial and transient air temperature changes in the flue are small, see §7.5
- Figures 7.8, 7.11 and 7.14, and in particular the changes in Tf ;y are small for
all n. Since in the case of a sucker, the air temperature along the fire shaft is
assumed to be Tf gy, then the air temperature in the fire shaft does not change
much with time. (Recall that for a blower, the air temperature along the fire
shaft is assumed to be 20 °C for all time.) Hence it would be expected that the
spatial and transient pressure changes would be small for a given mass {flow
for both a sucker and a blower, since in this model the pressure is a function of
temperature as well as mass flow. This is the case - compare Figures 8.4, 8.5
and Figures 8.6, 8.7.

Note the symmetry between the pressure distribution for a blower versus a
sucker in Figures 8.8, 8.9 and 8.10. This is due to the fact that for the two-
dimensional model, the air temperature distribution in the flue for a blower is
the reverse of that for a sucker. Also the assumed air temperatures in the fire
shaft for a blower and a sucker are approximately equal, especially as n gets

bigger (that 1s, as time goes on).
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CHAPTER 9 SUMMARY AND CONCLUSION

9.1

9.2

Introduction

This thesis has been concerned with the mathematical modelling of the cooling
of carbon anodes used in the aluminium industry. The effects of different
mass flows of air on the block temperature, the air temperature in the flues and
the air pressure in the flues and fire shafts have been studied. The three-
dimensional problem was modelled by simplifying it to one and two
dimensions. These simplifications were made by using the fact that the flues,
flue walls and anodes zone of a section is the most important one for anode
cooling, and by assuming that the only heat transfer from the block is into the
air in the flues. All other boundaries were assumed to be adiabatic. These
assumptions were justified by dimensional considerations. The problem,
therefore, was to solve the heat equation with the appropriate boundary

conditions.

The one-dimension heat equation was solved analytically, but determining the
exact form of the boundary condition on the flue wall was a problem.
Numerical methods were then used to successfully calculate the one- and two-
dimensional temperature distributions in the block and the one-dimensional
temperature distribution of the air in the flue. The thermal conductivities
within the anode, packing coke and flue wall were assumed to be constant for
all time. All other thermal properties, which were assumed to be dependent on
temperature, varied over time as the temperature distribution changed. Having
non-constant thermal conductivities results in non-linear terms in the
equations. This would have proved difficult, even in the one-dimensional
case, when solving for the temperatures of the mesh points on the
anode/packing coke, packing coke/flue wall and flue wall/flue boundaries.

One-dimensional model

A forward difference (explicit) method was used to calculate the transient
temperature distribution in the block. The air temperature in the flue was
assumed to be constant. Heat balances were done at the anode/packing coke,
packing coke/flue wall and flue wall/flue boundaries in order to calculate the
temperatures at the mesh points on these boundaries. It was found that as the

mass flows increased, the rate of cooling of the block increased. The results
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9.3

94

also showed that as time went on and the temperature difference between the
block and the air decreased, then the rate of cooling of the block also
decreased. These results confirmed that the set-up of the model and the
calculations were correct, For the particular chosen initial block and air
temperatures (600 © C and 20 °C respectively), a mass flow that was similar to
the experimental ones was required, in order to cool the anodes so that they
could be safely removed from the pits after $6 hours (3 fire cycles).

Two-dimensional model

This case was very similar to the one-dimensicnal case, except that here the air
temperature in the flues was not constant, but changing with time and space as
heat was transferred into the air from the block. The air temperature along the
flue was calculated using relaxation - an implicit numerical method. The two-
dimensional heat equation for the block was solved using a forward difference
method similar to that used for the one-dimensional case. The results were

similar t¢ those obtained in the one-dimensional case.

As a check on the working, the heat transferred from the block was equated
with the heat transferred into the air in the flue. A small discrepancy (< 0.5%)
was found, even cumulatively after 96 hours, which showed that the

calculations in the block and air were correctly related and quite accurate.

Alr pressure

The transient one-dimensional air pressure distributions in the flue and fire
shaft were calculated using a forward difference method. The spaces in the
gallery and between the bottom of the ancde/flue walls and the foundaticn
were assumed to be sufficiently large, so that air flowing through them did not
change in pressure. This enabled the pressure distribution in the flue to be
linked with that in the {ire shaft. The temperature in the fire shaft was
assumed to be atmospheric temperature in the case of a blower, and the flue

outlet air temperature in the case of a sucker.

The results gave pressure distributions that were appropriate for a blower and a
sucker. For both a sucker and a blower, the pressure drop along the flue and
fire shaft increased as the mass flows increased. Also the larger pressure drop

occurred in the flues for both sucker and blower.,
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9.5

Conclusion

The models presented in this thesis enable the transient one- and two-
dimensional temperature distributions in the ancdes, packing coke and flue
wall part of a forced cooling section to be calculated for various mass flows of
air in the flues. The transient cne-dimensional air temperature distribution in
the flues, and the transient one-dimensional air pressure distribution in the
flues and fire shafts are also calculated for various mass flows. It would have
been good to have some experimental temperature data to compare with the
results obtained from the models. However for the chosen initial temperatures,
the mass flow used by the models to cool the anodes to the appropriate
temperature, is very close to the experimental mass flows. The next step in
improving the models would be to solve the heat equation with non-constant
thermal conductivities, that is, allowing the thermal conductivities of the
anode, packing coke and flue wall to vary with temperature, as was done for
the other thermal properties. Other improvements might include having
boundary conditions at the bottom and top of the pits that allow for the fact

that heat is alsc lost from the block across these boundaries.
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