Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

MASSEY UNIVERSITY

LOGO PROGRAMMING:
INSTRUCTIONAL METHODS AND
PROBLEM SOLVING

by

WING KEE AU

A THESIS
PRESENTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN

EDUCATION

FACULTY OF EDUCATION
MASSEY UNIVERSITY
PALMERSTON NORTH

NEW ZEALAND

DECEMBER, 1992

© WING KEE AU, 1992

i
Abstract

This study was conducted to examine the effects of the learning of
programming on the problem solving abilities of primary school children. Two
programming languages were used: LOGO and BASIC. The aim of the study was
threefold. First, the study compared the two programming languages in the
development of problem solving skills. Second, this study compared the
effectiveness of two different instructional methods in the teaching of LOGO
programming: process-oriented and content-oriented approaches. The third aim of
this study was to examine the social interactions among the learners who engaged in
LOGO and BASIC programming.

The sample for the study comprised 73 subjects drawn from a primary school
in Palmerston North, New Zealand. Subjects were screened initially on their
background knowledge in programming to ensure that they did not possess any
substantial knowledge in programming before participating in the study. The
subjects were then randomly assigned to four groups: LOGO process-oriented,
LOGO content-oriented, BASIC, and control. These groups of subjects were then
pre-tested on a number of problem solving measures: Rule-naming task, Tower of
Hanoi, Torrance Test of Creative Thinking, Object Assembly, Block Design, Picture
Assembly, and PAT Mathematics. The intervention phase in the form of learning
programming of either LOGO or BASIC then took place for the three experimental
groups. During the intervention, observations on the social interactions of teachers
and students in the learning environment were also made. At the end of the 20
week intervention, subjects were then post-tested on their problem solving skills.

The findings revealed that students who learned LOGO programming were
able to demonstrate transfer of problem solving skills to a near-transfer context but
not to a far-transfer context when compared to students who learned BASIC. Also,
students who learned LOGO programming using a process-oriented approach
demonstrated better transfer of problem solving skills to a near-transfer context with
complicated problems than did students who learned LOGO programming using a
content-oriented approach. Classroom observation during the intervention phase also

showed that there were more substantive verbal and non-verbal interactions among

iii
students who learned LOGO compared with students who learned BASIC. Also,
students in the process-oriented group were involved in more classroom interactions
than students in the content-oriented group.

The main conclusion from this study is that LOGO programming could be
used to facilitate the development of problem solving skills among students. In
particular, the process-oriented approach, which focuses on the processes of problem
solving, could be used to assist students further in the development and transfer of
problem solving skills. As well, LOGO programming could also facilitate more
social interactions among the students, especially if the instructional method provides

such an emphasis.

This dissertation is dedicated to

my parents and my wife, Ching Hung,

whose understanding and support provided me with

the encouragement and determination to complete this work.

iv

Acknowledgments

This thesis has been accomplished through the assistance of a number of
mentors, colleagues, and friends. They cannot be held accountable for its
deficiencies, but if merit resides in its pages much is undoubtedly due to them.

Thanks must go to my chief supervisor, Dr Kenneth Ryba, who provided me
with excellent professional supervision and inspiration throughout the duration of this
research. I am especially grateful to Professor Ray Adams, who has continued to
supervise my thesis even after his retirement, for his wise counsel and critical
appraisal of this dissertation. Special thanks must go to Associate Professor Don
McAlpine, whose support during Dr Ryba’s sabbatical leave has been invaluable.
Over the years, these three mentors have provided me with excellent models of
critical and logical analysis, as well as meticulous scholarship, examples which I
have striven vainly to emulate. I am particularly indebted to Associate Professor
Lomna Chan of University of Newcastle, Australia, who has given me much
appreciated advice and guidance regarding statistical analyses. Professor David
Battersby of Charles Sturt University, Australia, has offered valuable critical and
constructive comments in the final editing of this thesis. Thanks must also be
offered to Dr. Kerry Chamberlain of Massey University, who assisted in the initial
stages of this investigation.

In addition, a number of colleagues in Australia, Canada, Hong Kong, New
Zealand and the United States responded with information and encouragement
regarding this study. I extend my gratitude for their efforts, interests and support to
the following: Dr Patricia Babbs, Dr John Borkowski, Dr John Burton, Dr James
Chapman, Dr Douglas Clements, Dr Geoff Cumming, Dr Diane Cuneo, Ms Teresa
Doyle, Dr Catherine Emihovich, Dr Greta Fein, Dr Joan Gallini, Dr Henry Gorman
Jr, Dr Mark Grabe, Dr Kay Irwin, Dr Judith Kull, Dr Kwok Wing Lai, Dr David
Lancy, Dr John Leung, Dr Marcia Linn, Dr Allan McAllister, Dr Anne McDougall,
Dr Annemarie Palincsar, Professor Seymour Papert, Dr Robert Seidman, Mr Chris
Watson, Dr Peter Williamson, Dr Sylvia Weir, Ms Sandra Wills, and Dr Susan

Zelman.

vi

I am extremely grateful to the principal, Mr. Richard Bullock, and the staff
of the Hokowhitu Primary School for their assistance and support during the course
of this investigation. My sincere thanks must also go to the students who
participated in this research, and to their parents who provided so much support
during this study.

This research would not have been possible without support and funding from
a number of organizations, and appreciation must be extended to them. Firstly,
IBM (NZ) Corporation supplied all the computing equipment and software for this
study as well as funding for the employment of the necessary personnel. Special
thanks must go to Ms Pamela Yates, the Education and Marketing Manager of IBM
(NZ), and the technical staff who were always there to overcome various crises
during this study. Secondly, the Education Department of Massey University
provided the funds for the purchase of necessary testing instruments. Thirdly,
Brightway Ltd donated some of the testing equipment for this study.

I am indebted to Bill Anderson, Ron Henderson, and Jane Horton, who
helped to teach the children in this study, and provided constructive suggestions
about the design of the teaching modules used in this investigation. A number of
graduate students at Massey University helped to conduct the testing of students with
much cheerful competency. I am beholden to: Teresa Ball, Karolle Galtema, Ron
Henderson, Bev Hong, and Lois Wilkinson.

Appreciation is also due to Associate Professor Phil Moore, who has allowed
me time to complete writing this thesis at the University of Newcastle in Australia,
as well as for his support and friendship.

Finally, to my parents and my wife are due my acknowledgment and
gratitude for the emotional support, encouragement, and understanding through the

inevitable stresses associated with this doctoral investigation.

Table of Contents

vii

Chapter Page
I INTRODUCTION AND OVERVIEW 1
II REVIEW OF COMPUTER APPLICATIONS IN EDUCATION 8
III LOGO: CHARACTERISTICS, THEORETICAL FOUNDATION
BND CEAINIS .. o - me - 5F « G« B s ENE S e B e s s E e e d s E 25
Iv REVIEW OF RESEARCH ON LOGO PROGRAMMING 42
\Y% PROBLEM SOLVING AND COMPUTER PROGRAMMING:
INSTRUCTIONAL IMPLICATIONS o ... 83
VI RESEARCH DESIGN AND METHODOLOGY 110
VIL, RBESTIEES' cuc - - o -« 57 SWE < S0 « ¢ S « BB < ¢+« o o« o o 0o 143
WAL DISCUSSION 2 o . - . 2 S 30 -2 - -3 - - - -[Home oo oo 208
BIBLIOGRAPHY o i i 236
APPENDICES
1. Summary of LOGOresearch 269
2. Examples of teaching modules 291
)l Rule Naming Test - instructions for administration 346
4. Rule Naming Test - scoring sheet 349
5. Tower of Hanoi - instructions for administration 851

Tower of Hanoi - scoring sheet 354
Tower of Hanoi - calculation of solving sub-problems 356
Questionnaire to all subjects in the main study 358
Schedule for observation of teachers 361
Schedule for observation of individual students 363
Schedule for observation of groups 365

A typical LOGO lessonot ittt 367

Table

5

5.2

6.1

6.2

70

7.2

7.3

7.4

7.5

e

7.7

7.8

=3

7.10

7.11

7.12

ix

LIST OF TABLES

Page

List of learning Strate@ies v v vt i e e e e e 84
Comparison between process-oriented and

content-oriented approachesttt 108
Schematic representation of the experimental design 111
Processes and exemplars of the process-oriented approach 135
Age and sex distribution of subjects L L., 144
Listening Comprehension and Reading Comprehension Score

Distribution of Subjects e 144
ANOVA Summary Data for Mathematics Achievement:

Pre- Vensus Post- Test COompacison = v . @ s5iwa o +45 o 146
Means and Standard Deviations for Mathematics Achievement:

Pre- Versus Post- Test Comparison 146
ANOVA Summary Data for Raven’s Standard Progressive Matrices:

Pre- Versus Post- Test Comparison 148
Means and Standard Deviations for Raven’s Standard

Progressive Matrices: Pre- Versus Post- Test Comprehension 148
ANOVA Summary Data for WISC-R Picture Arrangement:

Pre- Versus Post- Test Comparison 150
Means and Standard Deviations for WISC-R Picture Arrangement:

Pre- Versus Post- Test Comparison 150
ANOVA Summary Data for WISC-R Block Design:

Pre- Versus Post- Test Comparisono 151
Means and Standard Deviations for WISC-R Block Design:

Pre- Versus Post- Test Comparison 151
ANOVA Summary Data for WISC-R Object Assembly:

Pre- Versus Post- Test Comparison 152

Means and Standard Deviations for WISC-R Object Assembly:
Pre- Versus Post- Test Comparison 152

743

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

el

7.23

7.24

7.25

726

7.27

ANOVA Summary Data for Rule Naming Task - Number of errors:
Pre- Versus Post- Test Comparisono, 154

Means and Standard Deviations for Rule Naming Task -
Number of errors: Pre- Versus Post- Test Comparison 154

ANOVA Summary Data for Rule Naming Task -
Number of Trials to Criterion:
Pre- Versus Post- Test Comparisonc.. ... 155

Means and Standard Deviations for Rule Naming Task -
Number of Trials to Criterion:
Pre- Versus Post- Test Comparisonveuveeenn.n. 155

ANOVA Summary Data for Torrance Test of Creative Thinking -
Fluency: Pre- Versus Post- Test Comparison 157

Means and Standard Deviations for Torrance Test Creative Thinking -
Fluency: Pre- Versus Post- Test Comparison L5

ANOVA Summary Data for Torrance Test of Creative Thinking -
Flexibility: Pre- Versus Post- Test Comparison 158

Means and Standard Deviations for Torrance Test of Creative Thinking -
Flexibility: Pre- Versus Post- Test Comparison 158

ANOVA Summary Data for Torrance Test of Creative Thinking -
Originality: Pre- Versus Post- Test Comparison 159

Means and Standard Deviations for Torrance Test of Creative Thinking -
Originality: Pre- Versus Post- Test Comparison 159

ANOVA Summary Data for Torrance Test of Creative Thinking -
Elaboration: Pre- Versus Post- Test Comparison 160

Means and Standard Deviations for Torrance Test of Creative Thinking -
Elaboration: Pre- Versus Post- Test Comparison 160

ANOVA Summary Data for Torrance Test of Creative Thinking -
Total: Pre- Versus Post- Test Comparison 161

Means and Standard Deviations for Torrance Test of Creative Thinking -
Total: Pre- Versus Post- Test Comparison 161

ANOVA Summary Data for Tower of Hanoi - Three-disk Problem -
Number of Moves: Pre- Versus Post- Test Comparison 164

7.28

7.29

7.30

7.81

7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41

7.42

7.43

X1

Means and Standard Deviations for Tower of Hanoi - Three-disk Problem -
Number of Moves: Pre- Versus Post- Test Comparison 165

ANOVA Summary Data for Tower of Hanoi - Three-disk Problem -
Two-disk Sub-problem: Pre- Versus Post- Test Comparison 167

Means and Standard Deviations for Tower of Hanoi - Three-disk Problem -
Two-disk Sub-problem: Pre- Versus Post- Test Comparison 168

ANOVA Summary Data for Tower of Hanoi - Four-disk Problem -
Number of Moves: Pre- Versus Post- Test Comparison 572

Means and Standard Deviations for Tower of Hanoi - Four-disk Problem -
Number of Moves: Pre- Versus Post- Test Comparison 173

ANOVA Summary Data for Tower of Hanoi - Four-disk Problem -
Two-disk Sub-problem: Pre- Versus Post- Test Comparison 175

Means and Standard Deviations for Tower of Hanoi - Four-disk Problem -
Two-disk Sub-problem: Pre- Versus Post- Test Comparison 176

ANOVA Summary Data for Tower of Hanoi - Four-disk Problem -
Three-disk Sub-problem: Pre- Versus Post- Test Comparison 178

Means and Standard Deviations for Tower of Hanoi - Four-disk Problem -
Three-disk Sub-problem: Pre- Versus Post- Test Comparison 179

ANOVA Summary Data for Tower of Hanoi - Five-disk Problem -
Number of Moves: Pre- Versus Post- Test Comparison 183

Means and Standard Deviations for Tower of Hanoi - Five-disk Problem -
Number of Moves: Pre- Versus Post- Test Comparison 184

ANOVA Summary Data for Tower of Hanoi - Five-disk Problem -
Two-disk Sub-problem: Pre- Versus Post- Test Comparison 186

Means and Standard Deviations for Tower of Hanoi - Five-disk Problem -
Two-disk Sub-problem: Pre- Versus Post- Test Comparison 187

ANOVA Summary Data for Tower of Hanoi - Five-disk Problem -
Three-disk Sub-problem: Pre- Versus Post- Test Comparison 189

Means and Standard Deviations for Tower of Hanoi - Five-disk Problem -
Three-disk Sub-problem: Pre- Versus Post- Test Comparison 190

ANOVA Summary Data for Tower of Hanoi - Five-disk Problem -
Four-disk Sub-problem: Pre- Versus Post- Test Comparison 1952

7.44

7.45

7.46

7.47

7.48

7.49

7.50

el

152

xii

Means and Standard Deviations for Tower of Hanoi - Five-disk Problem -

Four-disk Sub-problem: Pre- Versus Post- Test Comparison 193
Interaction of teachers with students 196
Student group interactionl 199
ANOVA Summary Data for Substantive Verbal Interactions 203
Means and Standard Deviations for

Substantive Verbal Interactions 204
ANOVA Summary Data for Substantive Non-Verbal Interactions 205
Means and Standard Deviations for

Substantive Non-Verbal Interactions 205
ANOVA Summary Data for Non-Substantive Interactions 206

Means and Standard Deviations for
Non-Substantive Interactions v o v v v v v it e e e 206

Xiii

LIST OF FIGURES

Figure Page
3.1 LOGO Turtle Graphics ottt et it P9
4.1 Chain of Cognitive Accomplishment 77
5.1 A Guide to Self-management in Solving a Problem 97
7.1 Tower of Hanoi: Three disk problem - Number of moves 166
7.2 Tower of Hanoi: Three disk problem - Two-disk sub-problem 169
7.3 Tower of Hanoi: Four disk problem - Number of moves 174
7.4 Tower of Hanoi: Four disk problem - Two-disk sub-problem 177
7.5 Tower of Hanoi: Four disk problem - Three-disk sub-problem 180
7.6 Tower of Hanoi: Five disk problem - Number of moves 185
7.7 Tower of Hanoi: Five disk problem - Two-disk sub-problem 188
7.8 Tower of Hanoi: Five disk problem - Three-disk sub-problem 191
7.9 Tower of Hanoi: Five disk problem - Four-disk sub-problem 194

7.10 Student Group Interactiont nnn.. 200

CHAPTER ONE

INTRODUCTION AND OVERVIEW

Modern society is undergoing many profound technological changes. Among
these changes are the invention and rapid development of micro-computers and
associated technologies. The world of computers has expanded markedly since the
invention of the microchip. Computers are now used for such diverse tasks as
banking, guiding rockets, controlling assembly line robots and even home computer
games.

While computers have been used with such diversity and versatility, it is only
recently that decreasing production costs and increasing capabilities have meant that
computers have become economically feasible in schools and widely available for
education.

With the increasing dependence of society on computer technology, the need
to prepare students for life in an information-based society has made literacy in
computer technology a necessity. The workforce is changing owing to the
introduction of computer technologies and schools are being urged to educate for this
change.

Furthermore, it has been suggested that computers will play an increasingly
important role in human learning (eg Taylor, 1980; Papert, 1980; D’Ignazio, 1991;
Thomburg, 1991). This prediction has, to a certain extent, been supported by the
ever increasing number of computers used in most educational institutions ranging
from primary to tertiary and in all disciplines. However, many important questions
need to be answered concerning the application of computers in education before
educational administrators can decide how microcomputers should best be integrated
into the school system. One of the central questions is "What effects do computers

have on the learner and the leamning process?”

Over the last ten to fifteen years, a great deal of attention has been directed
at the application of computers in education and their effects on students and the
learning process. In many countries, notably the United States of America, Canada,
the United Kingdom, New Zealand, and Australia, governments have developed
comprehensive policies and support programmes for introducing and integrating
computers into the school curriculum. For instance, in New Zealand, the
Department of Education set up various support agencies such as the Computer
Courseware Development Unit and later the Computer Education Development Unit
to assist schools to integrate computers into the school curriculum although more
recent reforms in the late 1980’s have prompted the demise of this unit. Most pre-
service teacher training courses in New Zealand have included educational
computing as a core component.

Whether the introduction and integration of computers into the schools have
substantially modified education practices in any fundamental sense is open to
question. What is not in doubt is that the vastly increased use of computers for both
formal and informal education has begun to provide access to a new and hitherto
unavailable mass of experience and data which could enrich educational thought and
practice. During the 1980’s, one of the important research issues in education has
been the examination of the relationship between the use of computer and the
development of problem solving skills.

It has been asserted that one of the primary missions of educational
institutions is to impart knowledge and to teach cognitive skills (eg Dewey, 1933;
Kozmetsky, 1980; Chipman & Segal, 1985; Rowe, 1988a; Yates & Moursand,
1988). While one of the most important cognitive skills is the ability to solve
problems, particularly in mathematics, reading and other substantive domains
(cf Frederiksen, 1984), perhaps more important, is the development of some general
problem solving skills such as planning, analysis, monitoring and evaluation, that
can be applied in more than one context.

The importance of the development of problem solving skills in modemn
education is reflected in the increasing emphasis on the incorporation of elements of
problem solving in the school curricula in many countries (Kuhn, 1990). For

example, the National Council of Teachers of Mathematics in the United States

argues that problem solving must be the focus of school mathematics in the 1980’s
(Dolan & Williamson, 1983). In Australia, the curriculum documents of various
disciplines such as mathematics, history, and science, have been extensively
rewritten during the 1980’s so that their aims and objectives would reflect the
importance of problem solving in the teaching of these disciplines in schools (eg
New South Wales Department of Education, 1986). Apart from the incorporation of
a problem solving approach into various subject areas, there are also many
independent courses on problem solving offered at the primary, secondary, and
tertiary levels in countries such as Australia, Britain, Canada, New Zealand etc.,
which are dedicated to the teaching of general problem solving skills, independent of
the traditional discipline demarcation (cf de Bono, 1985; Chance, 1986; Fisher,
1987).

This concern over the development of problem solving skills in education has
also been having a significant influence in educational computing. Traditionally,
computers have been used in schools either as an object of instruction, or as an
instructional tool based upon the use of programmed instruction and mastery
learning. The former type of usage emphasizes the learning of the operations and
structures of computers, and embraces different types of school courses such as
computer awareness and computer literacy. The latter type of usage, often labelled
as computer assisted instruction (CAI), has its focus on the teaching of various
curricular content with the computers acting as an instructional tool. However,
recently, there has been a significant shift in emphasis within the applications of
computers in education. Increasingly, educators have been advocating the need for
students to use computers as a tool in their learning, with applications such as word
processing, database management, spreadsheet, music, adventure games,
telecommunication, graphics packages, and multimedia. In particular, educators
have been concerned with how computers could be used to assist the development of
problem solving skills of students by focusing on the processes of learning and
thinking themselves.

One major impetus for this shift has come from the work of Professor
Seymour Papert and his colleagues at the Artificial Intelligence Laboratory of the

Massachusetts Institute of Technology. They have focussed on the use of the

computer programming language LOGO. In his seminal work, "Mindstorms:
children, computers, and powerful ideas", Papert (1980) has strongly criticized the
traditional applications of computers in education, particularly computer assisted
instruction. He argues that this usage, in effect, allows the computer to control the
learners, and as a result, stifies the learners’ ability to develop their thinking.
Instead, Papert suggests that computers should be used in the construction of a
learning environment within which children would be able to develop a sense of
control over their learning, and at the same time, develop some general problem
solving skills. He contends that the use of the LOGO language could be used to
create such an environment.

Such arguments, together with other developments of microcomputer
technologies which have made computers much more versatile and user friendly,
have prompted many educators to re-examine the role of computers in education
with the common concemn of using computers to assist students to develop their
intellectual capabilities. For example, in 1987, the then Minister of Education of
New Zealand, the Hon Russell Marshall (1987) commented,

The role of the computer as an empowering tool for learners in all

disciplines, at all levels of the education system, as an extender of the

physical and intellectual capabilities of the user, as a 'machine to think with’,

seems to be coming to the fore. (p. 63)

This reflects on the current debates within educational computing which focus
on the use of computers in the facilitation of development of general problem
solving skills among students (cf Au, Horton, & Ryba, 1987; Au, 1992b).
Recently, a number of researchers have found that some computer applications can
be used to enhance students’ general problem solving skills (cf King, 1989).
Against this, other studies have found contradicting results (cf Roblyer, Castine &
King, 1988). Consequently, there has been an increasing call for more research to
be conducted to examine the development of problem solving skills when students
learn how to use computers (eg Yates & Moursand, 1988), and in particular,
computer programming (eg Au, Horton & Ryba, 1987; Brady, O’Donoghue &
Bajpai, 1989).

Behind this debate lies two related arguments. First, problem solving is
essential to the construction of computer programs (Grogono & Nelson, 1982);
second, the semantics of problem solving can be learnt in conjunction with the
syntax of a programming language (Dyck & Mayer, 1989). Based on these two
arguments, it has been suggested that it is possible that a learner’s skills in problem
solving might be improved through the learmning of computer programming.

These assertions, together with the fact that microcomputers have been
implemented in New Zealand schools at an increasing pace during the last decade,
have emphasised the need for methodical investigations into the different ways and
effects of using computers in New Zealand classrooms. However, much remains to
be answered concerning the integration of microcomputers into the existing school
curriculum or the possible cognitive effects that certain computer applications might
have on the learner.

Among the various related issues yet to be addressed is the role of teachers
and the possible changes in the nature of their work in a computer environment.
This issue is directly related to the implementation of the type of learning
environment that might be conducive to the development of problem solving skills of
the leamers. Inquiries into this area would allow educational practice to be in a
position to respond to whatever opportunities are presented by the new technology
(Conabere & Anderson, 1985).

The most prominent manifestation of this issue is in the debate concerning
the use of LOGO. On one hand, it has been suggested (very much in accord with
Piagetian educational philosophy), that because children learn best by free
exploration, they should be allowed to explore their own learning without undue
intervention from teachers while learning to program with LOGO. On the other
hand, it has been advanced by many theorists, such as the metacognitive
psychologists (eg Flavell, 1976; Brown, 1982), that some form of support structures
in teacher intervention and explicit instructions in problem solving need be in place
so that children’s cognitive development would be optimized. This has led some
computing educators calling for a more structured learning environment for the

learners. So far, this debate has not been resolved.

Purpose of the study

The present study represents an attempt to address some of these concerns.
The purpose of this study is threefold: first, to examine some of the effects that the
learning of programming might have on the development of the problem solving
skills of learners; second, to evaluate the effects of different instructional methods
within a programming environment; and third, to examine the kinds of social
interactions within a programming-learning environment.

Two programming languages were chosen for this study: LOGO and
BASIC. Both languages were purportedly easy to learn even by relatively young
children, and are widely used in both primary and secondary schools. LOGO was
chosen because it has been suggested by many researchers that it could be used to
facilitate the development of problem solving skills among students (cf Papert, 1980;
Clements & Gullo, 1984). BASIC was chosen because its availability with most
microcomputers in schools and that it was widely used in both
primary and secondary schools.

Two different instructional methods in relation to the teaching of computer
programming were examined in this study: a process-oriented approach and a
content-oriented approach. Traditionally, programming has been taught with a
content-oriented approach with the emphasis on the syntaxes of a programming
language only (Au, Horton & Ryba, 1987). Recent research in metacognition
suggests that a learner’s problem solving ability might be enhanced when adopting a
more process-oriented approach which provides instructions on the executive
processes used in solving problems (cf Campione, Brown & Ferrara, 1983; Baker &
Brown, 1984). The use of both approaches in the present study provided
opportunity for comparison.

It is the case that current research into the effects of leamning of programming
seems to focus predominantly on the end product of cognitive development. It has
been argued that as a result, what happened during the learning of programming has
not been properly investigated. This argument has led to the criticism that current
research is overly "technocentric” (Salomon & Gardner, 1986; Papert, 1987). It is
also the case that much current research on the social context of learning

programming is mainly of an anecdotal nature. Consequently, this study also

7

attempted to examine systematically the different kinds of social interactions within a
programming-leamning environment. In particular, two different types of interactions
were observed: (i) the interactions of individual students with the teacher; and (ii)
interactions among students.

It was anticipated that ~ examining (1) the processes of learning and
interaction, and (ii) the potential changes in the problem solving skills of the
learners, would allow the present project to obtain more conclusive results by
triangulating the data acquired.

The report of this study is presented in the following way. Chapter 1
provides an introduction and overview. Chapter Two reviews the use of computers
in education. Chapter Three explains the LOGO programming language, its
characteristics and theoretical foundation, and examines some of the claims made
about the language. Chapter Four considers research with LOGO and its
implications. Chapter Five examines the relationship between problem solving,
metacognition and LOGO programming. Chapter Six describes the data collection
and analysis procedures used in this study in some detail. Chapter Seven reports on
the findings resulting from data analysis. Chapter Eight evaluates the results of the
study, makes an assessment of the general relevance of the work accomplished and,

as well, ventures into the realm of conjecture and prediction.

CHAPTER TWO

REVIEW OF
COMPUTER APPLICATIONS IN EDUCATION

This chapter reviews the general applications of computers in
education. The first section outlines the traditional ways that
computers have been used in schools, and includes a discussion of the
advantages and limitations of using computers as instructional tools.
This is followed by a review of the more recent applications of
computers in educational settings, and how computers should be used
as learning tools for students. The last section of the chapter then
considers how computer programming might be used to accomplish
best results, in particular, as an extension of the learner’s
intelligence, or as a device to aid the thinking process.

Overview

The history of computers is relatively short but even so their impact on
society has been enormous. Nowadays, almost every facet of life has been
influenced by this technology. For instance, twenty years ago, no one could have
predicted that computers would have become so common place in the world of
education. Most secondary schools and many primary schools in New Zealand and
other parts of the world are now using computers in their teaching and
administration.

Nonetheless, there has been some resistance - fuelled by, for instance, the
conservative nature of educational institutions, the fears of teachers, the lack of
funds, and the lack of success of past educational innovations such as programmed
instruction, television etc. (Miles & Huberman, 1984; Saloman & Gardner, 1986;
Thornburg, 1991).

To obtain a better understanding of the impact of computer technology on
education, it is useful to review briefly the history of the use of computers in

education, especially in schools.

Historical Review

From the earliest times when computers were commercially available, there
were educational applications of computers. The earliest documented use of
computers in education refers to the use of mainframe computers in the late 1950’s
(Oliver, 1986). In those early days, a large number of mainframe computers were
to be found in some engineering and research departments of universities and
tertiary institutions and they were used mainly for research and development
programmes. By the mid-1960’s, most colleges and universities and many larger
schools used computer systems for administrative purposes (Bramble, Mason &

Berg, 1985).

Learning about computers

During those years, one of the initial applications was to use educational
computing as an object of instruction. Many courses were conducted so that

learners could learn about the computers.

One aspect stressed the explanation of computer structures and related
electronic circuits, or in other words, the machine-level operation of the computer.
In essence, the major aim was to promote learning about computer hardware.

Another aspect emphasised software. This became popular after an important
development in 1963 at Dartmouth College in the USA when a high-level computing
language for "teaching" a computer to do specific tasks was invented (Dennis &
Kanksy, 1984). The language was called BASIC (for Beginners All-purpose
Symbolic Instruction Code). The word beginners in the name of this language was
significant, since one of its alleged merits was the ease with which it could be
learned. This feature has caused BASIC to become overwhelmingly the most
common language used at the pre-tertiary level in the teaching of programming.
Since then, BASIC has become the resident language of most microcomputers as it
was deemed to be particularly suited for beginners. Consequently, BASIC
programming has often become part of the computer literacy programs offered in
schools.

Many other programming languages have been taught since then. They

include FORTRAN, PASCAL, and PROLOG. These languages were initially taught

10

at the tertiary level as they were only available on the mainframe computers.
However, since the rapid development of microcomputer technology in the 1970’s
and in particular, the 1980’s, they have often been part of the computer literacy and

computer studies courses at the secondary as well as the tertiary levels.

Learning from the computers
During the 1960’s, one particular group of educators tried to integrate

computers into the existing school curriculum in addition to the computer awareness
courses. Their major aim was to program computers so that leamers could learn

from the computers, in the same way that leamers learn from teachers.

When computers were first introduced into the educational setting for general
teaching and leaming purposes, programs were based mainly on behavioural
theories. In particular, they were often modelled on "programmed instruction”

- (Taylor, 1980; Coburn, Kelman, Roberts, Snyder, Watt & Weiner, 1982; Maddison,
1983). This usage of computers has often been labelled Computer Assisted
Instruction (CAI), or Computer Assisted Learning (CAL), probably because the
ancillary tasks performed were similar to those that could be performed by (ideally)
competent teaching assistants.

The focus of this strand of educational computing was on the teaching of
various kinds of curriculum content with computers acting as tutors to the leamers
(Taylor, 1980). With this type of usage, the program design often entailed a
rigorous logical analysis of the subject matter, combined with a careful study of
possible leamning strategies. The results were then implemented through structured
systems of programmed instruction that 1) provided immediate feedback to the
learners, ii) branched to the appropriate next lesson, and iii) kept meticulous records
of student progress.

Back in the late 1950’s and 1960’s, significant potential was seen in CAI .
As a result, many projects, for instance, PLATO and TICCIT, were undertaken at a
number of tertiary institutions using mainframe computers to examine how
computers might be used to en_hance instruction (cf Bramble, Mason, & Berg, 1985;

Oliver, 1986).

11

A number of benefits similar to those claimed for programmed instruction,

were often ascribed to good CAI software. For example:

I,

One-to-one interaction - computers could provide individual attention to the

learners in a way not possible in traditional classrooms. It was often argued
that one-to-one instruction provided by CAI, would result in (i) superior
learning compared with the conventional classroom where students shared the
teacher, and (ii) better interactive learning (compared with normally higher
teacher-student ratios) (Telfer & Probert, 1986; Lockard, Abrams & Many,
1990).

Immediate feedback - as a result of one-to-one interaction, the computer was
able to provide immediate feedback to the learner and at a rate more frequent
and desirable than was possible in a traditional classroom. Moreover,
feedback could be tailored to reinforce learning. However, it should be
noted that some researchers had suggested that immediate feedback might not
be desirable for achieving optimal retention of learning (Rankin & Trapper,
1978).

Small logical units - as in programmed instruction, tasks could be broken

down into small units hence providing opportunities for the learners to
assimilate the sequences of a complex task in a hierarchical, logical step-by-
step manner (Soulier, 1988).

Individual rate of learning - students were able to work at their own speed

and difficulty levels. Often the rate of learning could be either controlled by
the learners or adjusted by computer program based on the responses of the
learners (Hofmeister, 1984; Mandell & Mandell, 1989).

Overlearning - the computer could be programmed to drill students in facts

and lessons could be repeated until mastery learning was attained. Even after
mastery, learning could be repeated so that overlearning which could lead to
better retention over time, could be accomplished (Ryba, 1980). The
unlimited patience of the computers was ideally suited for this purpose
(Kinzer, Sherwood & Bransford, 1986) - particularly for students with
learning difficulties (Au & Bruce, 1990).

12

6. Freeing up teachers’ time - while the computers were doing most of the time-

consuming tasks required of teachers, the teachers would then be able to
devote their attention and time to other aspects of their teaching duties
presumably to the benefit of the students.

7. Comprehensive student records - CAI could provide the means for keeping
progressive records of student progress. A full profile might be kept of the
student’s strengths and weaknesses, allowing for individual remediation (or
extension) programmes to be devised. The computer might also record the
time taken by students to answer each question and/or complete each
segment, thus helping to identify the areas that hinder student progress. Such
an accurate picture of the progress of pupils through various instructional
materials could help educators to formulate new curricula or remedial

programmes (Hofmeister, 1984; Bitter & Camuse, 1988).

However, owing to the then limitations of mainframe computers such as their
enormous cost, small memory and slow processing speed, the exposure of CAI
within schools was rather limited. Indeed, after having examined closely the early
effects of CAI by reviewing over 20 studies in computer-based methods, Jamison,
Suppes and Wells (1974) indicated that cost-effectiveness ratios made CAI less
advantageous than traditional instruction. They also concluded from the review that
no widely applicable statement could be made about CAI’s effectiveness since effects
on learning seemed to vary with student level and instructional mode. Similarly, in
a study of factors that prevented more pervasive utilization of CAI, Anastasio and
Morgan (1972) found that the lack of evidence of CAI effectiveness to be among the
most critical. Additional years of research efforts since then however have failed to
resolve the dilemma (Avner, Moore & Smith, 1980).

With the advent of microcomputers in the late 1970’s, and their decreasing
cost since then, most schools were able to purchase computers. CAI was thus "re-
discovered" by teachers in both primary and secondary schools.

Moreover, the further and continual development of the microcomputer, its
memory capacity, versatility and processing ability, as well as further advancement

of peripheral hardware such as the graphic tablet, the mouse, the voice synthesizer,

13

the touch sensitive screen, highly realistic graphics, and interfacing with video tapes
and disks, served to overcome some of the shortcomings that were apparent when
CAI was confined to mainframe use. Such developments have helped CAI to
become powerful systems of instruction with the result that interest in CAI has been
reawakened (Tobias, 1985).

CATI thus became increasingly popular in schools. It has been estimated that
90 percent of the schools in the U.S.A. now use computers in instruction and the
use of CAI predominates (Niemiec & Walberg, 1987).

Some of the most common forms of CAI include: drill and practice, tutorial,
simulation and dialogue (Coburn es al, 1982; Niemiec & Walberg, 1987). Drill and
practice perhaps represents the most primitive form of CAI. Put simply, this is
where the computer is used to take learners through a series of exercises. The
learners can practise by responding to questions posed by the computer with the
computer then analysing the answers and providing appropriate feedback to the
learners. Drill and practice have developed over time into other modes such as
tutorial, simulation and dialogue (Probert, 1985; Vockell & Schwartz, 1988).
Tutorial software uses explanations, descriptions, illustrations and problems for
concept development. Questioning and prompts are used widely in much the same
way as a tutor would use them to help students gain an understanding of the subject
material. Simulation CAI software is used to simulate real or imaginary situations,
usually inviting students to make decisions based on information given. Many of the
simulation software also incorporate games format to enhance motivation. Dialogue
software are designed in such a way that it can be used to conduct the dialogue
between the computer and the user. Many of the commonly available software
consist of a mixture of these modes of computer assisted instruction.

In these modes, the computers have been employed as instructional systems,
intended to facilitate the attainment of curriculum goals - a process not too different
in principle from traditional classroom teaching. However, when properly deployed,
it is far more flexible than any book- or material-based programmed instruction.
For one thing, the material can be presented interactively and dynamic graphics and
other sophisticated teaching aids such as video tapes and video discs can be

integrated with the computers. For another, within CAI, student performance

14

histories can be collected, stored, and subsequently used for evaluating the materials
and as a basis for routing a student through the materials. Moreover, CAI can be
designed to move the student at a variety of speeds and be interrupted more or less
at the student’s convenience.

Although huge resources were invested in the development of instructional
software, research findings in the effectiveness of CAI in the classroom have been
inconclusive (c.f. Kulik, Kulik & Bangert-Downes, 1985; Kulik & Kulik, 1987;
Roblyer, Castine & King, 1988). Given the relative high cost of implementation,
CAI failed to make significant impact within the educational scene (Coburn e al,
1982; Maddison, 1983). Numerous criticisms have been levelled at the CAI
approach and its limitations, such as, the lack of high quality software, the high cost
of producing suitable software, and most important of all, because the machine
controls the learner, optimal learning does not take place.

As a result of these criticisms and with the rapid development of
microcomputer technology over the past decade, there has been a significant shift
within educational computing - a shift in focus from learning from the computers to
learning with the computers. This reflects a wider and deeper pedagogical concern -
"The focus of attention has shifted from teaching to learning" (Renwick, 1985:3).

It has long been a matter of contention over whether students learn better
when they are taught with traditional methods that emphasise teaching or whether
they learn better when they are free to pursue and control their own learning. The
shift in the role of computers in education is a response to that debate. It is also a
response to another debate over whether focus should be placed on the process of
learning as well as on the content. It has often been argued that by placing the
emphasis on the process of learning, it would be easier for transfer of learning to
occur in other contexts (Papert, 1980; Nolan & Ryba, 1984).

Both issues are important in the context of the present study and will be
discussed in later sections. However, in order to have a better understanding of why
such a shift has occurred, it is important to examine and to evaluate some of
criticisms levelled at computer assisted instruction and hence its educational value
either as an adjunct to teaching or as a stand-alone system of instruction. There

have been four main criticisms, they are: CAI duhumanizes the educative process,

15

poor quality of CAI software, high cost of implementing CAI in schools, and

unsound educational values. Discussion of these criticisms follows:

1. CAI dehumanizes the educative process - CAI, as a form of individualised

instruction, isolates students from human interaction. The presumption here
is that students will communicate with computers only but not with the
teacher or the other students thus eventually making the classroom and the
teacher redundant.

This view seems to stem from a lack of understanding of the
applications of computers in education rather than empirical evidence and
practical considerations. Research evidence to date does not suggest that
CAI, and indeed the use of computers in education in general would alienate
the students from social and human interaction (cf Hawkins, 1983). Given
the benefits of CAI such as individual attention, unlimited patience and
detailed records of students’ progress, the classroom teacher would then be
able to devote more time to the personal human considerations and hence
(theoretically) would facilitate learning (Liao, 1992).

Moreover, the extent of social interaction when using CAI depends
very much on what and how CAI programs are used in the classroom. First,
the fact that the screens of the computers tend to make student work more
public, tends to support the argument that CAI would promote more social
interaction rather than reduce it. Second, as in any traditional classrooms,
student/student and student/teacher interaction depends very much upon the
extent in which teachers encourage and provide scope for it. Third, some
CAI programs lend themselves to social interaction. For example, the use of
some programs such as adventure games requires extensive cooperation and
collaboration among students. With the wide range of CAI software
available to date, teachers could have more control over the materials used in
the classroom. It is unlikely, therefore, that CAI would dehumanize the

educative process.

16

Poor quality CAI software - the design of commercial software often lacks

the integration of appropriate educational theories, sound instructional
sequences, and good curriculum design. Software is usually written by
people with programming expertise only and although sound in a
programming sense, often do not meet the criteria of good instructional
design.

This is largely due to the oversimplification of the very costly and
demanding processes involved in producing high quality software. One
outcome is that software may not be user-friendly or well documented, and
often leads to teacher and student confusion. The educational values of such
programs have been questioned and doubted.

However, an increasing number of high quality CAI software has
appeared on the market - for a number of reasons: first, educators have
started to acquire programming expertise, hence enabling them to produce
good educational software; second, initiatives from government agencies have
aided coordination and production of good quality software; third,
cooperation has occurred increasingly between tertiary institutions and private
sectors (Au & Cook, 1989). It could perhaps also be a‘dded that whatever,
the pedagogical weakness of computer software, not all human teachers a-r‘er

always pedagogically impeccable.

High cost of implementing CAI in schools - apart from the expensive initial

capital outlay in setting up computers in the schools for teaching and learning
purposes, the cost of developing and purchasing educationally worthwhile
CAI programs is also considerable. ‘

Ideally, effective CAI programs should be produced by a team of
people consisting of at least educators, curriculum developers, instructional
designers, and programmers. Given the amount of time required, the cost of
producing effective CAI software may be prohibitive. The facts that
commercial publishers seek profit margins and that the market is fickle (and
pirating often occurred) make the production of high quality educational

a . . .,
software\rﬁsky business proposition.

17

The problem of cost is further complicated by machine
incompatibility. Software produced for one particular type of computer often
cannot be transported to another type of computer. Such differences between
brands mean that either a program is restricted to a small market, or it must
be translated into a version suited to another machine - not a minor task
given that many programs nowadays rely heavily on machine specific
routines which are peculiar to the brand.

This lack of compatibility among computers also prevents ideas from
being shared among different teams of experts working for different software
publishers and/or computer firms. Hence ideas can become isolated, and
dissociate from the network of educational professionals (Horton, 1986).

Some of these cost problems have now been partially overcome by,
for example: 1) availability of government funds to purchase both hardware
and software (eg in Australia, Canada, and USA etc.); ii) commercial
software publishers making available educational packages at greatly reduced
prices, or in the form of labpacks and site licences; and iii) hardware
producers selling computers to schools at prices much lower than those in the
retail market. It is also the case that prices of hardware have dropped
steadily as development research costs have been recovered, and economies

of scale have occurred.

Unsound educational values - there are two aspects to this criticism, 1) that

knowledge is not always reducible to facts that may be programmed into
computers; ii) that CAI software controls the learners.
1) It has often been argued that teachers are able to draw upon the
cumulative experiences of their careers, both as students and teachers, they
thus can apply ’lessons’ learned in the past to similar situations more recently
encountered. Any programs that specify the course of the lesson in advance
by definition prevents advantage being taken of situation specific past
experience.

Moreover, there is a possibility that the authors of CAI programs will

not take into account other desirable outcomes of learning such as attitudinal

18

change in evaluating responses. For example, five educational objectives
have been postulated in the affective domain. They are: receiving;
responding; valuing; organization of values; and characterization by a value
or a value complex (cf Clements, 1981; Lawton & Gerschner, 1982).
Receiving and responding are built into the CAI system but the last three
objectives are more likely to be absent from most CAI packages. Computers
cannot mediate values other than those provided by the software, i.e. those
that the author has conveyed. Because the value complex of one student will
likely be dissimilar to that of another, thus it follows that the software is
liable to fail in any attempt to provide education with an affective component.

A similar argument can be mounted with respect to the cognitive
domain. Bloom (1956) postulated six desirable cognitive outcomes. They
are, in increasing order of complexity: knowledge; communication;
application; analysis; synthesis; and evaluation. The critics hold that CAI
cannot meet all of these objectives. The easier learning behaviours (the first
three objectives) may be programmable but the really important outcomes of
learning could be under-emphasized or even ignored.

Within the cognitive domain, it has often been argued that CAI
software is pedagogically restrictive (Coburn es al, 1982) in that it tends to:
channel students into a narrow range of possible responses that: (i) keep them
from exploring the complexities of concepts; (i) trivialize important
concepts; (iii) sometimes reinforce incorrect leéming; and (iv)\%mnecessarily
boring - all because of the difficulty in anticipating all the possible responses
from different users.

With the recent development of Intelligent Computer Assisted
Instruction (ICAI) (or alternatively labelled Intelligent Tutoring System
(ITS)), some of these concerns have been addressed. ICAI utilizes concepts
and principles of artificial intelligence and knowledge engineering in the
construction of CAI software (cf Clancey, 1988; Self, 1988). No longer are
students required to respond to pre-programmed answers. Rather, ICAI, by
incorporating expert performance and sets of inference rules, can (i) present.

materials and use instructional strategies according to student responses; (ii)

19

draw inferences on subject matter; (iii) deduce a learmner’s approximation of
knowledge; and (iv) reduce the difference between the system and student
performance. These features allow ICAI to provide more effective

educational experience for students (Burns & Capps, 1988).

ii) CAI programs control the learmers - when using CAI programs,
learners always work within a pre-defined environment set up by the authors
of the software. Accordingly, the learners are controlled by the computer
rather than controlling it.

Protagonists of computer education, Luehrmann and Papert share with
the philosophical position of Dewey and Piaget, that it is important for
students to learn to control the learning environment, and hence, they would
add, computers. They also consider that optimal learning takes place when
leamners are able to explore freely and discover actively their own learning
(cf Luehrmann, 1981; Papert, 1980).

Papert’s work, although centred on computer programming,
emphasizes strongly the importance of student control over computers. In
Papert’s vision of a computer based learning system, a child should program
the computer instead of being programmed by it (Papert, 1980). He
advocates that by doing so, students will both acquire a sense of mastery over
a piece of powerful modern technology and be able to reflect intelligently on
their own processes of learning (Papert, 1980).

Research by Chapman & Ryba (1983) adds another dimension to the
issue of learner control over the computer. They suggest that it is rather
internal feelings of control (in contrast to external control) which promote
cognitive benefits. Enhanced skills in problem solving and affective benefits
such as self-management of behaviour and learning result from active learner
participation. The importance of promoting the internal locus of control
among students is further underlined by attribution theory (Weiner, 1974,
1979).

The significance of such research (Papert, 1980, Luehrmann, 1981;

Chapman & Ryba, 1983; Bork, 1987) is that it provides a rationalization for

20

the current trend away from environments where students are controlled by
computer, as exemplified in most of the traditional CAI software, to a
situation where students can control and hence achieve a sense of mastery
over the computer. They thus came to feel they have control over their
learning environment.

Some of the more recent CAI software seem to have addressed this
issue of control, especially those that have incorporated the principles of
artificial intelligence (Smyrk, 1991) and multimedia (Gray & Bell, 1991;
Sherwood, 1991). These software on one hand, tend to be highly interactive
with the leamners as a result of advanced microcomputer technology such as
interactive videodisc, compact disc read only memory (CD-ROM), compact
disc interactive (CDI), scanner, speech synthesizer, local area network and
far network, hypertext etc. (Howard, Busch, & Watson, 1992); on the other
hand, they also tend to place more control in the hands of the leamners by (i)
making the software more user friendly; (ii) allowing the users greater degree
of freedom in choosing their own paths of learning; and (iii) providing more
meaningful feedback as the abilities of the software to analyse and evaluate

students’ responses increase.

Learning with computers

Accompanying the advent and rapid development of microcomputer
technology has been the production of highly user-friendly software that tends to
place more emphasis on learner control the learning environment. Some software
have been specifically developed to achieve this purpose, others are of a more
general nature, e.g. word processor, database management programs, spreadsheet,
graphics programs, telecommunication programs, and adventure games etc..

When equipped with such capabilities, the computer then becomes a tool for
students to learn with (Taylor, 1980) in contrast with leaming about computers and
learning from computers. In this new role, the computer is no longer restricted to
specific subject matter, rather, it becomes a tool for students to explore and facilitate
their own learning in an environment controlled by the students (Papert, 1980;

Wills, 1984; Nolan & Ryba, 1984).

21

Four important issues lend support to the arguments that it is advantageous to
use computer as a learning tool. First, the learners can exercise more control over
their learning environment. Second, the application of new general purpose software
is not restricted to a particular subject and hence should facilitate the integration of
computers across the entire curriculum irrespectiveVsubject areas. Third, computers
can enhance leamer access to information and learning. Fourth, computers can be
used as objects by students to learn to think with, and even develop higher order

thinking skills. These four issues will now be considered in more detail.

1. Control of the learning environment. Central to the notion of using the

computer as a learning tool is the control of the learners over their leamning
environment. With the development of features of microcomputers such as
their memory capacity, versatility and processing capabilities, it is now
possible to employ microcomputers to create highly interactive learning
environments which place the learners in control. This has been enhanced
further by the incorporation of peripheral interactive hardware such as: the
mouses, voice synthesizers, tough sensitive screens, CD-ROM drives, video
players, scanners, and highly realistic graphics. These collectively permit a
more personal and more friendly environment to be created for learners. As
well, the development of word processors, database programs, spreadsheet,
graphics programs, telecommunication packages and multimedia tools have
also helped.

Such software, when used together with the microcomputer and its
advanced peripherals, allows learners versatility in exploring their learning

environment.

2. . Integration of computers in the existing school curriculum.

When microcomputers were first introduced into the schools, they
tended to be used mainly in subject areas such as mathematics and science.
However, with the availability of user-friendly software, microcomputers are
now being used in many other subjects. For instance, a word processor can

be used in the teaching of language by providing students with a valuable tool

22

to assist with the process of writing, hence avoiding the chores of writing and
re-writing drafts with pencil and paper (Broadley & Au, 1988). Most word
processors allow the learners more control in the editing of their writing by
providing facilities such as pull-down menus, function keys editing etc.
Some word processing packages such as Fredwriter and Quill can also assist
the teachers when designing prompted writing programmes for their students
(Wharton, 1986; Dailhou, 1986). Most recent word processing packages
even provide facilities such as spelling checkers, thesaurus, style checkers,
and graphic capabilities. When using the word processor of a computer as a
tool, students will have more time to devote to their thinking. Students in
industrial arts, architectural design etc can similarly use software packages to
assist them in experimenting with their ideas of perspective, relative
proportion, third dimension etc.. Database programs can also be used in
many subject areas eg history, geography, and social studies, to permit
students to store, organize and retrieve information (Hunter, 1985). The
essence of these programs is that they save an enormous amount of time that

would otherwise be devoted to re-drafting, re-writing, re-designing et<.

Enhancement of learner access to information and learning

When such application software is combined with telecommunication
packages, microcomputers can provide a very powerful learmning environment
for the students. Such a learning system transcends the confines of the
traditional classroom and allowsinformation access and communication on a
much broader scale - regional, national, and even international (Leonard,
1991; Williams, 1991). Students can now access electronic databases and
bulletin boards virtually anywhere in the world (Chandler, Gesthuizen, &
Clement, 1992). Moreover, they can communicate with stﬁdents of other
schools via electronic mail. For example, students at the Turramurra High
School in Sydney Australia have been exchanging cultural information with
Eskimo students in the Arctic region of North America (Frederick, 1986). In
New Zealand, students at the Maru Maru school have been exchanging

information with their counterparts at Captain John Palliser School in

23

Calgary, Canada within subject areas such as computer studies, geography,
social studies and English composition (Ryba & Maclerell, 1986).

When used in special education setting, microcomputers provide
students with disabilities with much better access to leaming (Au, & Bruce
1990; Williams, 1987; Wood, 1986). For instance, the use of voice
synthesizers, photonic wands, braille, and modems etc. allow even severely
physically handicapped students to participate in learning that was not

possible otherwise.

4. Development of higher order thinking skills. Apart from providing students

with the kind of versatile learning tools illustrated above, microcomputers as
learning tools are considered to have the potential to be used to assist
students to develop higher order thinking skills (cf Hunter, 1985; Ryba &
Anderson, 1990; Au, 1992b).

For instance, database management programs, besides helping students
to organize their information whatever the subject, can also engage students
in learning how to test hypotheses (using the information available in the
database), plan the construction of a database, evaluate the organization of
database etc. Similarly, spreadsheet programs can also involve students in
the development of models, and testing of hypotheses. Because such
activities are integral to thinking, it should follow that students will become
more intellectually skilful and even gain more knowledge about their own

cognitive processes (Hunter, 1985).

The notion of developing higher order thinking skills reinforces the idea that
computers could be used as a learning tool, not just for learning, but also to learn ro
think. with the computer - much in the same way that some people think "through"
their pens, their typewriters or their tape recorders. There have been indications
that through leaming programming (Clements & Gullo, 1984), or adventure games
(Ryba & Anderson, 1987; Lai & Mace, 1989; Thormburg, 1991) etc., metacognitive
skills and general problem solving skills might be enhanced (Baker & Brown, 1984).

Such skills, it has been argued (Campione, Brown & Ferrara, 1983; Palincsar &

24

Brown, 1984; Paris & Winograd, 1990b), might then assist the transfer of problem
solving skills from one domain to another.

Whether the educative potential of the microcomputer is more likely to be
realized through using it as a leaming tool rather than as an instructional tool is an

empirical question waiting to be answered.

Summary

This chapter has provided a brief history of educational computing and has
discussed the various major ways of how computers might be used in education. As
well, the main merits and shortcomings of using the computer as an instructional
tool have been critically examined. The different applications of the computer as a
leaming tool and its importance have also been highlighted.

Attention now turns to one specific way in which the computer might prove
helpful in developing higher cognitive skills. The next chapter focuses on the use of

the computer, specifically, the LOGO language, as a tool for thinking.

25
CHAPTER THREE

LOGO: CHARACTERISTICS, THEORETICAL
FOUNDATION AND CLAIMS

This chapter examines the LOGO programming language. The first
section provides a general overview of the language. This is followed
by a review of the characteristics of the language and the theoretical
Sfoundation associated with it. The last section of the chapter
considers some major claims made about the benefits of learning
LOGO programming.

Overview

The LOGO computer language was first developed at the Bolt, Beranek and
Newman Corporation by Papert, Feurzeig, Bobrow, Solomon and others (Feurzeig
& Lukas, 1972), and was modelled upon research in artificial intelligence and the
computer language LISP (Rééd, 1982). Implementations of LOGO were further
developed by Seymour Papert, Feurzeig and associates in the Artificial Intelligence
Laboratory at the Massachﬁsetts_ Institute of Technology (MIT) over a twelve-year
perjod beginning in the late 1960’s (Feurzeig, Papert, Bloom, Grant, & Solomon,
196\9), and by Howe and his colleagues at the University of Edinburgh (Adams,
1985).

LOGO programming has been one of the most popular ways of using
microcomputers as a learning tool. Its popularity can be partly attributed to the
graphic features of the language and the ease with which it can be learned, even by
very young children. It can also be partly attributed to the claim that learning to
program with LOGO can enhance intellectual functioning. For instance, one of the
founders of LOGO, Seymour Papert (1980), claims that within a LOGO
environment, learners can reflect upon their own thinking and take conscious control
of the learning process by articulating and analysing their own behaviour.

In contrast to other popular programming languages used in educational
settings such as BASIC and PASCAL, LOGO is a high-level educational computing
language developed for research in artificial intelligence (Abelson, 1982a). Initially

however, LOGO was designed as a tool for use by school-aged children to extend

26

their own learning (Papert, 1980; Lawler, 1982). The aim was that LOGO would
(i) provide a natural and friendly environment accessible to children of all ages and
abilities for an experimental approach to mathematical ideas and processes, and (ii) a
context for the use of the general heuristic of analysis, planning and review
(Feurzeig et al, 1969; Finlayson, 1983; Noss, 1987b).

LOGO?’s earlier focus was on its use in teaching mathematics (Feurzeig &
Lukas, 1972), and thus involved mathematical concepts and skills (Clements,
1987b). It has been argued that the way a program is constructed in LOGO
illuminates the mathematical processes used by the programmer and that the
programming activity itself provides a powerful aid to "decentration” which enables
learners to reflect on their own thinking processes (Finlayson, 1984, 1985). It was
suggested that in LOGO programming, students learn mathematics by utilizing
concepts that aid them in understanding and directing the movements of a robot (in
the form of a mechanical turtle) (Feurzeig & Lukas, 1972; Papert, 1980; Battista &
Clements, 1986). They are said to develop problem solving skills because they are
learning to be mathematicians rather than learning about mathematics (Papert, 1972).
Papert (1980) remarks that,

The computer-based Mathland I propose extends the kind of natural,

Piagetian learning that accounts for children’s learning a first language to

learning mathematics... No particular computer activities are set aside as

"learning mathematics”. (p. 48)

Papert further asserts that LOGO provides a bridge between the abstract
world of mathematics and the concrete world of reality. Hughes and Macleod
(1986), observed that by writing instructions to control the turtle, children were
required to use mathematics in a context where they could see the purpose of what
they were doing.

Early work on LOGO at the MIT and the University of Edinburgh produced
reports that students who had learnt mathematics through LOGO showed
improvements in performance (eg Lawler, 1980; Watt, 1979; Howe, Ross, Johnston,
Plane & Inglis, 1981). Other studies with secondary school children (Hoyles &

N oss, 1985) and primary (Maxwell, 1984; Hillel, 1985), tend to confirm improved

mathematical communication among students and between students and teachers

27

when LOGO is used. In one of the most extensive studies on LOGO to date, it was
observed that students were able to see mathematics not as an immutable activity
whose rules are "engraved in stone", but as a dynamic actvity with many view
points (Carmichael, Burnett, Higginson, Moore & Pollard, 1985).

Since the publication of Papert’s seminal work, "Mindstorms: Children,
computers, and powerful ideas" (Papert, 1980), and the increasing availability of the
full version of LOGO compatible with various makes of microcomputers, LOGO has
been popular among the educational community, most notably in the United States
(Billstein, 1983; Bull & Tipps, 1983-84; Becker, 1986, 1987; Khayrallah &
Meiraker, 1987). It is now regarded as one of the most popular computer ianguages
taught in schools at present, especially at the primary and the junior high levels
(Hassett, 1984; Campbell, Fein, Scholnick, Schwartz & Frank, 1986; Maddux,
1985; O’Shea & Self, 1983). There are many reasons for this and they will be dealt
in more detail later in this chapter.

There have been numerous claims and counter-claims about the social,
affective, cognitive and metacognitive results result of learning to program with
LOGO, ranging from the concrete and practical through to the abstract and
theoretical (Au,‘Horton & Ryba, 1987; Au & Leung, 1988). These claims will be
exzimined in detail in the later sections of this chapter. That examination, however,
depends on an understanding of the background to these claims and the attendant
debates. Accordingly, the characteristics and the theoretical foundation of the
LOGO language, and some of the claims about the language will now receive

attention.

LOGO - its characteristics and theoretical foundation
Early experimentation with LOGO made use of a mechanical turtle that held
a felt pen which drew on a large sheet of paper as the turtle moved. Children
learned to program the turtle to draw shapes by firstly pacing out the steps, then by
commanding the turtle accordingly. In an attempt to help children further master
and examine their own thinking through the use of such concrete objects, a computer
language was created. In that cdmputer language, the turtle is represented on the

screen of the computer by a cybernetic turtle (either as a little triangle or an image

28

of a turtle). Children, in controlling the turtle were able to move it about the
screen, using elementary commands such as FORWARD 50, RIGHT 90 etc., to
draw various geometric patterns. As simple as the activity might initially seem, the
LOGO language incorporates concepts of increasing complexity. For example, sets
of elementary commands can be repeated any number of times to make increasingly
complex patterns. As well, students can "teach" the turtle new words that are in
effect computer programs (Figure 3.1), and variables can be substituted for fixed
values, therefore providing the full features of a computing language. All these
features make the language intellectually challenging for children to use (Au, 1986;
Au, 1988a; Harper, 1989).

There are a number of features in the LOGO language which make the
language particularly suited to be taught in schools (Harvey, 1982a; Au & Horton,
1987). Because these features may offer some support for the claims made by
Papert that LOGO provides a basis for learning the processes of problem solving
that in turn serve as bases for the learners to explore their own intellectual

structures, they will be discussed below.

Characteristics of the 1.O GO language

I LOGO has been described as a "friendly" language. It is friendly in that it
"communicates" with the child in words that are non-threatening and easy to
understand. For instance, when an error is made, instead of "syntax error"
typical of other computer languages, LOGO will say, "I DON’'T KNOW
HOW TO TRIANGLE", or "NOT ENOUGH INPUTS TO FORWARD".
The child in feeling that he/she has not made a mistake, will attempt to ’talk’
to the computer and ’debug’ the program. Russell (1983), and Weir, Russell
and Valente (1982) argue, reasonably enough, that this non-punitive feeling
can enhance the child’s sense of control over the computer, and in turn
develop a stronger sense of confidence and mastery over their learning

environment.

Figure 3.1.

Logo Turtle Graphics

29

TO SQUARE
REPEAT 4 [FORWARD 50 RIGHT 90]
END

TO STAR
REPEAT 8 [SQUARE RIGHT 45]

2 %

NS

The STAR pattern is created by asking the turtle
to REPEAT 8 times the comands to draw a
SQUARE and turn RIGHT 45 degrees.

30

LOGO is a structured, procedural, extensible and recursive language. It is
both structured and procedural in that LOGO programs, unlike programs of
other languages such as BASIC and FORTRAN, consist of discrete
procedures or blocks of procedures that the turtle responds to in a logical
sequence. It is extensible in that once LOGO procedures are defined, they
can be used as building blocks for more complicated LOGO procedures and
programs (cf Figure 3.1, once the procedure SQUARE has been defined, it
can be used as a building block for other procedures such as STAR). This
approach can have a positive influence on children’s problem solving
behaviour in that it encourages children to be logical in their thinking, and it
enables them to break down larger problems into smaller components and
then use these part solutions as building of alternative structures - all
important for the process of problem solving (cf Clements, 1985c).
Moreover, LOGO is recursive, in that a procedure can be included in its own
definition. This facility enables brief and elegant programs captivating the
central structure of a problem to be used in complex structures, thus offering

a very powerful problem solving tool (McDougall, 1983, 1988).

LOGO is interactive. LOGO allows commands to be typed and executed
immediately, in contrast to some computer languages that require an
intermediate phase of compilation. This feature is especially valuable in
educational settings as even very young students can obtain immediate
feedback and correct errors in the program as they occur. It also avoids the
necessity of acquiring an extensive knowledge of programming before hand

(Harvey, 1982a, 1982b; Carmichael er al, 1985).

The data structures of LOGO are lists. Lists consist of an ordered sequence
of elements that may be numbers, words or other lists, and they are not typed
like other programming languages. As a result, lists provide the means to
create complex data structures and are much more flexible when dealing with
variables in programming as contrast to other programming languages. As

well, this flexibility renders LOGO suitable for a variety of usages that are

31

not necessarily algebraic or mathematical, and apply to other areas such as

language and artificial intelligence (McDougall & Adams, 1982, 1983).

5. The availability of turtle graphics. This feature is unique to the LOGO
language. "Turtle graphics microworld" provides an introduction to
computer programming for younger children that is concrete, accessible and
highly motivating. Some of the later versions of LOGO incorporate the
facility of sprites, a facility that enables leamners to create colourful, animated
graphics displays, which in turn allows them to explore and develop ideas
implicit in the interaction of time, distance, speed and velocity (Torgerson,
1985). More recently, an extension of the LOGO language, *LOGO
(pronounced as STARLOGO), has become available on parallel computers.
This version of LOGO allows users to simulate "artificial life" and real life

- by programming thousands of turtles as well as thousands of "patches" that

make up the turtle environment (Resnick, 1990).

Theoretical foundation of the LOGO language

The characteristics of the LOGO language as discussed above arose from the
theoretical foundation upon which the language was developed, and is well
documented by Papert in his seminal work "Mindstorms: Children, Computers, and
Powerful Ideas" (Papert, 1980). Basically, the foundation has very close
associations with artificial intelligence and the Piagetian model of learning.

Many researchers see LOGO as being consistent with ideas employed in
artificial intelligence (Bornet & Brady, 1974; Groen, 1984; Papert, 1980; Adams,
1985). For instance, Bornet and Brady (1974) suggest that (i) LOGO encourages the
notion of a process as a representation of a solution to a problem, and (ii) the
primitive commands of LOGO are simple to understand, being defined purely in
terms of actions in the problem and not alterations to the state of the machine.
Groen maintains that what a learner learns is not a programming language but a way
of establishing correspondence between a concrete world and one of abstract

representation (Groen, 1984). He argues that the strength of LOGO does not lie in

8

the generalization of programming skills, but instead in the ways of coordinating
different representations of microworlds.

The notion of a microworld is central to the theoretical foundation of LOGO
(Adams, 1986). Various definitions of a microworld exist however most of them
are either unclear or have serious limitations. Goldenberg (1982), for instance,
depicts a microworld as a well-defined, limited and interesting learning environment
in which leamners can acquire important ideas. Lawler (1982) pronounces that
microworlds are essentially "task domains" or "problem spaces" with practical
streamlined experiences designed for the learners. Piedmont (1983) describes a
microworld as a computerized environment through which students can refine their
thinking skills. Papert (1980) describes a microworld as:

A subset of reality or a constructed reality whose structure matches that of a

given cognitive mechanism so as to provide an environment where the latter

can operate effectively. The concept leads to the project of inventing
microworlds so structured as to allow a human learner to exercise powerful

ideas or intellectual skills. (p. 204)

Although a specific definition of a computer microworld has yet to be agreed
upon, there seems to be general agreement that a microworld should contain at least
the following elements: (1) a dynamic and structured leamning environment for
exploration through which concepts can be explored; (2) a linkage to other
microworlds whereby extension of learning can occur; and (3) a student project (cf
Thompson & Chen Wang, 1988).

A typical example of a microworld within LOGO is turtle graphics. Within
the turtle graphics microworld, learners can explore concepts of spatial relations
within limited domain consisting of: a number of commands, the cybemetic turtle
and the computer’s screen. Conceptually, however, this microworld provides a link
to a larger microworld that involves the organization and definition of paths through
space (Campbell, Fein, & Scholnick, 1986).

The aim of LOGO, according to Solomon (1978), is to build in the computer
a "culture" that provides a microworld for learners to (i) explore and (ii) enhance,
through the writing and debugging of programming projects, the development of

problem solving skills. This view is shared by Minsky and Papert (1972) who

33

suggest that through the active exploration of the microworlds provided by LOGO
and the building of various computational models of processes, children will learn
how to learn.

The notions of active exploration of, and construction of knowledge from the
environment are strongly emphasized in the Piagetian model of learning, and there is
a close link between the underlying assumption of the LOGO language and the
Piagetian model of equilibration (Larivée, Parent, Dupré, & Michaud, 1988). This
is not altogether surprising given the fact that Papert, one of the founders of LOGO,
worked with Piaget in Geneva for some five years.

One central axiom of Piagetian thought is that a child learns through
experience, developing a framework for dealing with the environment in relatively
predictable stages. These stages are roughly and arguably linked to chronological
age (Rousseau & Smith, 1981). Within each stage, a child must learn to assimilate
and accommodate new information from the environment in order to modify his/her
existing schema of knowledge and hence attain equilibrium. According to Piaget
(1976), children can learn best if they are allowed to explore their environment by
"acting" or "operating" on it.

The desirability of children exploring their own learning actively and freely is
clearly underlined in Papert’s exposition of LOGQ’s theoretical foundation.
According to Papert (1980), in a LOGO environment, activities of children
constitute the cornerstone for the construction of their intellectual structures as a
result of the exchanges between the learners and the environment. Leamers are able
to set themselves goals and organize activities in order to attain the goals. The
computer responds to the actions of the learner who, from then on, has to respond to
the responses of the computer. The continual interaction and exchange between the
computer and the learner - likely to be in the form of cognitive imbalance - would
thus inform learners about their own cognitive processes, hence facilitating the
attainment of cognitive equilibrium. Seen from this constructivist and interactionist
perspective, programming thus becomes an ideal environment for learning (Larivée
er al, 1988).

With the development, characteristics, and the theoretical foundation of

LOGO examined, attention now turns to a review of three of the key claims: social,

34

affective and cognitive, which Papert makes about LOGO. It should be pointed out
though, that much of argument supporting LOGO’s value is conjectural and even

theoretical in tone.

Claims about LOGO
Social Claims

Integral to Papert’s theorising is the claim that children will interact with and
support each other when using LOGO as a leamning tool to develop thinking skills.
Papert argues that LOGO can be used as a powerful leamning tool because it
provides a supportive social context for the leamers to discuss and reflect on their
leamning (Papert, 1980). He remarks that although working at the computer is
essentially a private occupation, it increases children’s desire for interaction. Where
the environment provides the opportunity, children will want to get together with
others engaged in similar activities because they have a lot to talk about. Further,
"what they have to say to each other is not limited to talking about their products:
LOGO is designed to make it easy to tell about the process of making them" (Papert,
1980:180).

The claim that the use of LOGO in school contexts can provide a supportive
leaming environment has been studied by many researchers (Hawkins, 1983;
Gorman, 1982; Jewson & Pea, 1982; Chiang, Thorpe, & Lubke, 1984; Clements &
Nastasi, 1988; Hawkins, Homolsky, & Heide, 1984; Michayluk & Saklofske, 1985;
Mitterer & Rose-Krasnor, 1986; Nastasi, Clements & Battista, 1990). They all
observed that children seemed to collaborate and teach each other more when they
were working with microcomputers than they did in other classroom work. For
example, Hawkins (1983) noted that while children were working with LOGO, there
were at least three types of peer engagement with computers - sustained
collaboration on a joint project; seeking help or advice for a problem; and "pit-
stopping"”, where children travelling around the classroom dropped in at a computer
"for remarks". She argues that in all these forms, children provided support for
each other in accomplishing their work.

The results of the research by Jewson and Pea (1982) indicate that children

talk more to one another about works they are experiencing in the computer

35

situation, as opposed to other conventional work assignments in class. Similar

observations have been made by Chiang er al (1984), Gorman (1982), and Hawkins

et al (1984). Such studies seem to support the thesis that within a classroom where

LOGO is used, there is much more interaction than in a traditional learning situation

- interaction both with teachers and peers. It follows that there should be more

opportunity for the learners to reflect on and discuss their thinking and leamning.

Recent studies by Mitterer and Rose-Krasnor (1986), Guntermann and Tovar (1987),

and Clements and Nastasi (1988) tested the hypothesis that the use of LOGO in class

facilitated peer-peer and learner-teacher interaction for social and cooperative
problem solving and metacognitive processing.

A number of reasons have been advanced by Hawkins er al (1984) to explain
this increased collaboration, viz.:

1. Features of the technology - The computer monitor is eye catching and makes
the work of the learner public. As a result, anyone could easily see and
become involved in what others were doing.

2. Features of the expertise available - As computers and LOGO were both
relatively new to the classrooms and teachers (not necessarily confident
experts themselves or even the only expert in the classroom), tended to
encourage the children to help each other.

3. Features of the status of the work - As programming work was relatively new
and has not been properly defined in the traditional curriculum, teachers were
unsure about its assessment. Consequently the usual constraints on the
appropriateness of collaboration did not apply, and group projects were just
as acceptable as individual projects.

While it is obvious that such conditions are not necessarily confined to the
use of LOGQO, it is interesting to speculate, whether the use of LOGO actually
provides a context in which children of various groups (eg ethnic, socioeconomic
etc.) are able to overcome various cultural and socioeconomic barriers, to get
together, discuss and reflect on their learning, and as a result, to develop "powerful
ideas" as postulated by Papert (1980).

The importance for the learner to reflect on the learning process is central to

the notion of the LOGO learning and bears significant consequence to the possibility

36

of transfer of learning to other contexts. They will be further examined in a later

section of this chapter.

Affective Claims

The feeling of leamners that they are in control of their own learning
environment is said to contribute to learning (cf attribution theory) (Weiner, 1974,
1979). Papert (1980) contends that microcomputers using LOGO can provide a
learning environment in which children of even preschool age are in control.

Various studies have been conducted to examine the possible affective
changes within the learners when learning to program with LOGO. For example,
Weir (1981), Russell (1983), Homer and Maddux (1985) and McDougall (1988),
noticed significant changes in the affective component of children after they had
learned to program with LOGO. Weir (1981) and McDougall (1988) both observed
that the way in which LOGO placed initiative and control in the hands of the users
allowed them to have direct effect on their environment. They attributed to this
cause the stronger sense of confidence and control they exhibited over it.

Observations of a similar kind were made by Russell (1983) who worked
with handicapped children. She noted that handicapped children using LOGO chose
their own problems and solved them, communicated their ideas in a mode that was
comfortable to them, and most important of all, approached and solved problems
confidently. These observations led her to conclude that LOGO empowered children
to be in control of their own learning and provided these children an environment of
"manageable complexity” (Russell, 1983:39).

The study by Horner and Maddux (1985), although not finding that learning
with LOGO would produce more internal locus of control, did find that LOGO was
effective in making both learning-disabled and non-learning-disabled children feel

responsible for their success with LOGO activities.

Cognitive Claims

Given a socially supportive environment and positive affective responses,
Papert (1980) postulates that children in a LOGO context would then be able to

explore freely and reflect on their own thinking. Children who learn to program

37

with LOGO would accordingly gain more insight into the different problem solving
processes involved.

Papert made three noteworthy claims:

U LOGO could provide opportunities for children to think about their own
thinking. Papert (1980) contends that in explicitly teaching the computer to
do something, learners learn more about their own thinking. This claim
appears to be derived from artificial intelligence theory where constructing
programs that model the complexities of human cognition is regarded as a
way of understanding that behaviour (Pea & Kurland, 1984a). For example,
it has been maintained by Papert (1980) that by deliberately learning to
imitate the mechanical thinking of a computer, the learner becomes able to
articulate what mechanical thinking is. Moreover, working with LOGO can
provide a very concrete, down-to-earth model of a particular style of thinking
which in turn facilitates the understanding that there is such a thing as a
"style of thinking". The learner may accordingly have greater confidence
about his/her ability to choose a cognitive style that suits solving a problem

(Papert, 1980:27).

P Leamning to program with LOGO could help shift the boundary between the
concrete and abstract ’thinking stages’ as postulated by Piaget, since abstract
knowledge can in a sense be "concretized". Papert contends that LOGO
provides a concrete model for the children to think about and learn about
learning. It follows that knowledge that was hitherto accessible only through
abstract processes can now be approached concretely. As a result, children
would understand abstract concepts more readily and rapidly. For example,
concepts of angles and spatial relationships (which have been known to be
difficult for younger children), can now be studied in a concrete manner as
learners command the turtle on the screen in order to construct geometrical
shapes. This position is supported by other theorists, eg, Lawler (1981) and
Solomon (1982).

38

8. Some general problem solving skills can be learned when programming with
LOGO and these skills might be transferred to other contexts. Papert (1980)
argues that through programming, learners can learn about problem solving
as they articulate assumptions and precisely specify steps in the problem
solving approach. Generalizable cognitive benefits such as skills in planning

and analysis should theoretically follow.

Various theorists have also argued for the possible cognitive benefits resulting
from leamning to program. For instance, Feurzeig, Horwitz and Nickerson (1981)
postulate an extensive set of cognitive outcomes that may emerge from learning to
program. They include: rigorous thinking, precise expression, enhanced self-
consciousness about the process of problem solving etc. These two theorists argue
that the teaching of the set of concepts related to programming can be used to
provide a foundation for the teaching of mathematics, and indeed for the notions and
art of logical and rigorous thinking in general.

Linn (1985), and Dalbey and Linn (1985), in examining the cognitive
consequences of programming instruction, identify a chain of cognitive
accomplishments from learning programming that consists of (1) learn the language
features; (2) learn to design programs to solve problems; and (3) learn problem
solving skills applicable to other formal systems. They argue that with appropriate
instruction and computer access, "many students can solve computer programming
problems and some may gain generalizable problem-solving skills from introductory
programming courses” (p. 29). However, they suggest that such outcomes will not
occur unless serious efforts are made to improve the curriculum and the preparation
of teachers for programming classes.

More modestly, Harvey (1982a) points out that because LOGO is procedural,
interactive, recursive, extensible, and user-friendly, it is designed to make explicit
many of the fundamental ideas of computer programming such as procedural
thinking and debugging.

Papert (1980) suggests that in order for these cognitive benefits to occur, the
emphasis, when learning programming, should be on the processes of problem

solving as well as on the content of problem solving. That is, if the achievement of

89

abstract thinking and efficient problem solving were the end, then the emphasis on
the processes of problem solving in the form of programming would be considered
as the means to that end.

The argument that the emphasis should be placed on the processes of problem
solving has been gaining support from various researchers eg, Wills (1984), Clarke
and Chambers (1984a), Burton and Magliaro (1986), Au and Leung (1988), and
Nolan and Ryba (1986).

Concerned with the fact that most of the current LOGO textbooks and
manuals put their emphases on the content rather than the process of programming,
Wills (1984) proposes that an emphasis on the various problem solving processes
when learning LOGO programming may produce an entirely new dimension to the
nature and quality of learning experience. That in turn may lead to an improvement
in problem solving skills outside a LOGO environment. Not surprisingly, Wills
(1984) advocates that LOGO programming should be used as a tool for exploring
and developing problem solving strategies.

A similar concern was also reflected in the work of Chambers and Clarke at
Deakin University in Australia (Chambers, 1984a, 1984b; Clarke & Chambers,
1984a, 1984b) when they designed their LOGO Activities Program for children.
This program has its focus upon the development of a number of learning skills such
as coding, experimentation, predicting, analysing and planning, using models, and
debugging. They argue that all these skills can be useful for solving problems both
within the classroom and in everyday life. To them, the important emphasis should
be on the knowledge of how to tackle problems in a general way rather than to solve
particular problems. In other words, the problem solving processes should be
attended to as well as the content of programming. However, Chambers (1984b)
remarks that further research is required to study the development of general
planning and implementation process, as well as the growing awareness by the
learner of the nature and the use of these processes.

Concern about the importance of the process of learning as well as its content
is also evident in the work of Nolan and Ryba (1986). Similar to the propositions
and models suggested by Wills (1984) and, Clarke and Chambers (1984b), Nolan
and Ryba (1986) developed a model to assess learning with LOGO. In this model,

40

the emphasis is placed upon the systematic development and evaluation of the
different cognitive processes (eg coding, creativity, predicting, experimenting,
analysis and planning, and debugging), the processes used when a student learns to
program at different LOGO levels, from the more concrete (eg basic Turtle
commands) to the more abstract levels (eg list processing and interactive
programming). This model reflects a move to place more emphasis upon the
process of learning in contrast with the content of learning which has commanded so
much attention in the traditional curriculum and teaching orientations.

Other recent studies suggest that learners’ problem solving skills might be
improved when they are taught to reflect on the various problem solving processes
(eg planning and debugging) and therefore on how they themselves think while
solving problems (cf Gorman & Bourne, 1983; Clements & Gullo, 1984; Horton &
Ryba, 1986; Au & Leung, 1988; Nastasi, Clements & Battista, 1990; Swan, 1991).

Summary

In summary then, it has been postulated by Papert and other researchers that
LOGO programming can bring about certain cognitive benefits because of the
supportive social environment and the positive affective changes in the learners.
Within the LOGO environment as Papert conceived it, learners not only learn how
to solve problems in programming but also learn a wide variety of skills such as
general problem solving, metacognitive knowledge about problem solving behaviour,
planning skills, and rigorous mathematical thinking (see Feurzeig, Horwitz, &
Nickerson, 1981). These can then be used in contexts other than programming.

In my vision, the child programs the computer and, in doing so, both

acquires a sense of mastery over a piece of the most modern and powerful

technology and establishes an intimate contact with some of the deepest ideas

 from science, from mathematics, and from the art of intellectual model

building. (Papert, 1980, p. 5)

If he is correct, what Papert has suggested has very promising implications
for education. For decades, educators have attempted but with little success to find

a medium for teaching generalizable problem solving skills such as planning,

41

analysis, monitoring, and evaluation through the teaching of Latin, logic, writing
system and mathematics (cf Ginther & Williamson, 1985; Pea & Kurland, 1987).

However, despite these various claims by Papert and support by some
researchers, there remains much scepticism about the educational value of LOGO (cf
Mitterer & Rose-Krasnor, 1986; Pea & Kurland, 1987), and ways in which LOGO
can be integrated into the existing curriculum, especially given its emphasis on the
learning processes per se (Watt, 1982; Horton, 1986).

At the practical level, given the emphasis on the content of the subject matter
in the traditional approach in school teaching, this "new" approach in the teaching of
LOGO is often seen as incompatible. Moreover, according to Papert (1980), the
role of the teacher in a LOGO environment places a strong emphasis in terms of
facilitating learning rather than the traditional conveying and teaching of subject
content. This often is in conflict with the ways that most teachers were trained to
teach. Higginson (1982) remarks that "LOGO is child-centred and, at least on the
surface, unstructured and nonhierarchical” (p. 329), and as a result, many teachers
would feel the pressure to have formal, hierarchical and content-centred curricula.

Further, although Papert’s arguments might appear convincing, they are not
yet fully articulated nor yet fully supported either by theoretical argument or
empirical data (cf Pea & Kurland, 1987; Mitterer & Rose-Krasnor, 1986). For
instance, Pea and Kurland (1984b, 1984d) point out the difficulty involved in
transfer across knowledge domains and argue that the functioning of abstract
thinking are extricably linked to specific problems in assessment as well as the level
of expertise attained in programming. Thus they label Papert’s ideas as
"technoromanticism". Tetenbaum and Mulkeen (1984) have even called for a
moratorium on work with LOGO. Confidence in the viability of Papert’s claims has
yet to be based upon solid empirical evidence (Au & Leung, 1988).

Accordingly, the next chapter will focus on research in LOGO programming

with a view to putting some of the argument to empirical test.

42
CHAPTER FOUR

REVIEW OF RESEARCH ON
LOGO PROGRAMMING

This chapter reviews the research in programming with the computer
language LOGO, in particular, the relationship between LOGO
programming and the cognitive development of the learners. The first
section provides a general overview about research on LOGO
programming. This is then followed by a review of the major types of
LOGO research according to the outcome variables studied. A
critical examination of the various issues pertaining to LOGO
research, especially those of a cognitive nature, together with
discussions of the major concerns and outcomes of these research will
then be presented.

Overview

Research on programming with LOGO is still in its early stages of
development. Most of the initial research or "evidence”, although indicating
potential benefits for leamers, is in the form of intuitive thinking or anecdotal in
nature rather than based upon empirical research (cf Watt, 1982; Ginther &
Williamson, 1985; Homer & Maddux, 1985; Irwin, 1985; Burton & Magliaro,
1986; Khayrallah & Meiraker, 1987; Krasnor & Mitterer, 1984; Maddux &
Johnson, 1988). Much of these earlier research consist mainly of reports of teachers
or researchers randomly observing individual or groups of students interacting with
computers without systematic investigation or testing (eg Blitman, Jamile, & Yee,
1984; Chiang, Thorp, & Lubka, 1984; James, 1986; Michayluk, 1986). Typically,
the anecdotes resemble the following, "At times, I could almost ’see’ the children
‘think’ and that’s a thrill” (Blitman, Jamile, & Yee, 1984, p. 19).

‘ Many of the pioneering studies conducted at the Artificial Intelligence
Laboratory of Massachusetts Institute of Technology (MIT) by Seymour Papert and
his colleagues exemplifies this approach. Virtually all of their research depends on
descriptive data and small subject numbers (eg Papert 1972, 1984; Papert, Watt,
disessa & Weir, 1979). For instance, in a report published in 1972, Papert (1972)

43

presents anecdotes about children getting "close to mathematics" by making
spontaneous small discoveries while manipulating the LOGO turtle. Likewise, in
"Mindstorms", Papert relates various "stories" about children who previously feared
mathematics but later came to love learning mathematics using LOGO. More
recently, Papert (1984) reports about an extensive experiment he conducted in the
Lamplighter School in Texas. However, apparently he in reporting, confines

attention to one first grader, who, against all odds, was able to explain the theory of

directions and navigation. In the same report, he also described a_young girl who
used LOGO in language learning thus attesting herself as a person capable of
commandeering adult knowledge.

The results of this type of research, although useful as pilot studies of large
scale projects, in the provision of rich descriptive data, and are at times
"illuminating"”, are insufficient at the moment to provide convincing evidence.

A number of reasons were suggested for the lack of empirical testing with
much of the early research (cf Gorman and Bourne, 1983; Maddux & Johnson,
1988). First, so many of the pioneers in LOGO claimed to have seen such dramatic
changes in students in case-study work that they regarded formal testing as
unnecessary. Second, until recently, LOGO was available only on relatively
expensive machines, which effectively prohibited research on more than a few
subjects. Third, researchers were often ethically constrained from running a true
experimental design.

Other earlier projects conducted in the late 1970’s and the early 1980’s (eg
the Brookline LOGO Project, the Edinburgh LOGO Project, the Computers in
Schools Project and the Lamplighter School LOGO Project etc.) seem to suggest
some positive evidence of the potential beneficial effects as advocated by Papert
(Watt, 1982). Consequently, much enthusiasm was generated for many educators to
adopt LOGO in their classrooms, making LOGO one of the most popular
programming languages taught in schools. As well, a lot more research on the
various claims about the potential benefits of LOGO was carried out during mid and
late 1980’s.

More recent empirical studies although still limited in number and their scope

to address the many broad claims that have been made about LOGO programming

44

(Kurland, Pea, Clement, & Mawby, 1986), seem to highlight the unresolved debate
about potential cognitive gains within a LOGO environment, and in particular, the
possible transfer of these gains from the LOGO context to others. Papert’s claims,
especially those of a cognitive nature, have been supported by some researchers but
not by others. For example, studies by Gorman and Bourne (1983), Reiber (1983),
Clements and Gullo (1984), Clements (1986a), Clements (1987b), Horton (1986),
Hughes, Macleod and Patts (1985), Au and Leung (1988), Lehrer, Guckenberg, and
Lee (1988), Clements (1990), Ortiz and MacGregor (1991), and Swan (1991) all
found some positive results. However, counter findings are equally available. du
Boulay and Howe (1982), Pea (1983), Pea and Kurland (1984b), Carver and Klahr
(1986), Chambers (1986), Cuneo (1986a), Lehrer and Smith (1986), Mitterer and
Rose-Krasnor (1986), Howell, Scott and Diamond (1987), and Mendelsohn (1984,
1985, 1987) have discerned little, if any, transfer of learning from the LOGO
situation to similar non-LOGO tasks.

Such conflicting results are perhaps not surprising given the small number of
subjects involved in some of the studies, and the types of research methods and
analyses used. As well, a wide range of instruments was used in the assessment of
the various outcome variables such as mathematical achievement, logical reasoning,
and problem solving skills (Au, Horton & Ryba, 1987). Of particular importance to
LOGO research is the issue of the type and/or amount of programming training
provided, or the type of LOGO learning environment created for the subjects during
the course of research (Leron, 1985; Papert, 1987; Rowe 1991).

The following sections will examine research with the LOGO language in

more detail. They will be discussed according to the outcome variables studied.

Outcome variables
Overall, in the last twenty years or so since the initial development of
LOGO, research on the effects of LOGO programming can be grouped into five
clusters according to the outcome variables examined in these studies (see Appendix
1). These clusters are: (i) mathematical learning; (ii) affective changes; (iii) social
interaction; (iv) cognitive changes and their transfer to other contexts; and

(v) metacognitive skills. These studies were often conducted in response to the

45

many claims made about LOGO programming (cf Chapter 3). Although research
which examined the relationship between LOGO programming and mathematical
learning could arguably be classified under the development of general cognitive
abilities and problem solving, they will be discussed in a separate section because (i)
LOGO was initially designed to facilitate the learning of mathematics; and (ii) a
number of studies were conducted to examine specifically the relationship between
LOGO programming and mathematical development.

The following sections will examine each of these five clusters of research.

LOGO progsramming and mathematical learning

Akin to one of the original notions that LOGO could be used to facilitate the
development of mathematical learning among students, a number of studies have
been conducted to examine the relationship between LOGO programming and
mathematics learning. These studies, inter alia, examined mathematics related
variables such as attitudes towards mathematics (Evans, 1984; Horner &

Maddux, 1985; Ortiz & MacGregor, 1991), learning and development of
mathematical concepts (Milner, 1973; Howe, O’Shea & Plane, 1980; Reiber, 1983;
Finlayson, 1984; Horner & Maddux, 1985; Hughes, Macleod & Patts, 1985; Noss,
1987a; McDougall, 1988; Tumer & Land, 1988; Lehrer, Guckenberg, & Lee, 1988;
Schaefer & Sprigle, 1988; Campbell, Fein & Schwartz, 1991; Ortiz & MacGregor,
1991), mathematical attainment (Finlayson, 1983; Battista & Clements, 1986),
learning of mathematical strategies and their transfer from LOGO to normal school
mathematics (Finlayson, 1985; Lehrer & Smith, 1986; Thompson & Chen Wang,
1988).

The results of these studies, although inconclusive, suggest that LOGO
programming could facilitate mathematical learning. The more decisive results came
from the first two categories of studies which examined the relationship between
LOGO programming with (i) students’ attitude towards mathematical leamning; and
(ii) the learning and development of mathematical concepts.

Evans (1984), for example, found that LOGO programming had a positive
influence on students’ attitudes towards learning mathematics after they have spent

45 hours in a year learning mathematics through LOGO. The study by Ortiz and

46

MacGregor (1991) with 89 sixth grade students found that students had more
positive attitudes towards mathematics, especially the computer related concepts after
they had spent some 10 hours learning mathematics using LOGO.

When researching the relationship of LOGO programming with the
development of mathematical concepts, Milner (1973) found that LOGO
programming was able to facilitate the understanding of number sequences and
variables after 15 weeks of intervention. Howe, O’Shea and Plane (1979) also
demonstrated that LOGO learning could improve their subjects’ understanding of
certain algebraic topics. Furthermore, the teachers involved in this study indicated
that the LOGO students could argue sensibly about mathematical issues and explain
their own mathematical difficulties more clearly than the control group. Moreover,
it was found that students who programmed LOGO procedures with variables
demonstrated greater long term retention of their understanding of the concept of
variables than students who worked with textbook (Ortiz & MacGregor, 1991).
Similarly, Reiber (1983), Hughes, Macleod and Patts (1985), Noss (1987a), Turner
and Land (1988), Lehrer, Guckenberg, and Lee (1988), Schaefer and Sprigle (1988),
McDougall (1988) and Campbell, Fein and Schwartz (1991) all found that LOGO
programming could be used as a tool to promote the learning of mathematical
concepts.

A number of factors could have contributed to these results. First,
computers and the LOGO language were relatively novel to most students in the last
twenty years, hence students were attracted to them. Second, LOGO, compared to
traditional teaching of mathematics in the classrooms, could provide an interesting
alternative learning environment where leamners could learn various mathematical
concepts by constructing geometrical patterns on the computer screen. Third, many
mathematical concepts, eg angles, shapes, coordinate systems, and distance, could
be represented in a more "concrete” manner with the LOGO language, i.e. LOGO
graphics might have provided a visual mental model for the learners, hence
facilitating understanding and retention. Fourth, researchers and teachers often
cooperated to develop more interesting ways and curricula to teach mathematics in

these research projects.

47

The more tentative and less convincing results came from the other two
rategories of research on LOGO programming and mathematics learning, i.e.,
nathematics attainment, and learning of mathematical strategies and their transfer
from LOGO to normal school mathematics.

In the area of mathematical attainment, Finlayson (1983:10) observed that her
subjects had learned to "think mathematically through LOGO experience” and that a
great deal of enthusiasm was generated. However, the researcher also noted that
these subjects could appear to be competent at turtle graphics without
comprehending the underlying mathematics. Clements (1986¢) found that students’
mathematical achievement did not show any significant improvement after 22 weeks
of learning of LOGO programming. Similarly, Battista and Clements (1986) found
that there was no significant difference among the experimental and control groups
on a mathematics achievement test after nearly one year of LOGO programming.
As a result, Battista and Clements advanced that either the coverage of standard
mathematics in LOGO programming was too slight to lead to significant gains in
mathematics achievement, or, the students did not see the connection between the
concepts they encountered on the computer and classroom mathematics tasks,
therefore, fransfer to standard mathematics achievement was minimal.
Consequently, these researchers suggested that attempts should be made to make
explicit connections between students’ work with LOGO and their classroom
mathematics work.

Different types of problems were noted in some of the studies which
investigated the transfer of mathematical strategies to normal classroom settings.
Although Finlayson (1985), and Thompson and Chen Wang (1988) found some
evidence of transfer of mathematical strategies and concepts to normal classroom
setting, both studies had serious flaws in their designs. In the study by Finlayson
(1985), although it was found that the experimental group performed better than the
control group in the transfer and abstraction of mathematical strategies, a pre-test
was not administered, hence there were difficulties in ascertaining whether there was
any prior difference between the two groups. Also, it was hard to establish the
equivalence of mathematical experience between the experimental group and the

control which used a number of computer packages. Thompson and Chen Wang

48

(1988) found in their study that LOGO programming was able to facilitate the
transfer of mathematical concepts. However, there are a number of major flaws in
this study such as non random assignment of subjects, and that the experimental
group spent more time on mathematics learning than the control group. Therefore,
the results of these two studies must be viewed with caution.

The study by Lehrer and Smith (1988) exercised much tighter control in the
examination of instructional variables. Forty-seven third graders were provided with
nine weeks of LOGO instructions. Two different groups were used: one with
teacher mediated instruction and the other with more traditional instructions. It was
found that students who were better instructed were able to use their knowledge in
LOGO to solve mathematical problems when reminded how such knowledge could
apply to the problems. This study provides reasonable evidence that explicit
instructions in the use of mathematical knowledge and skills can facilitate the
transfer of mathematical strategies from LOGO to normal classroom mathematics.
However, it is also clear that the subjects in this study had not internalized the
knowledge sufficiently as they needed reminding in the application of these
knowledge in other contexts.

In summary, studies on the relationship between LOGO programming and
mathematical learning yielded some evidence that the learning of mathematics might
be assisted by LOGO programming, especially in the fostering of positive changes
among learners’ attitude towards mathematics, and improving the understanding of
some mathematical concepts. Researchers such as Schaefer and Sprigle (1986), and
Noss (1987) suggest though, that in order for better development to occur, it is
necessary to examine the use of instructional methods and careful teacher
intervention strategies.

Results with studies on the transfer of learning of mathematics and strategies
to normal classroom settings were less convincing. Seemingly, one of the major
problems was that students failed to see the connection between what they learned
and applications in other contexts. Consequently, some researchers suggested that
instructions should make these connections explicit to the learners. Therefore, in
researching the effects of LOGO programming on the transfer of mathematical

strategies to normal classroom settings and mathematical attainment, it is important

49

to consider the use of carefully orchestrated teacher intervention strategies so that
learners can (i) become aware of the connections; and (ii) practise and internalize the
strategies sufficiently so as to enable transfer. The issue of instructional strategies
will be further discussed in a later section of this chapter when LOGO treatment is

considered.

LOGO programming and affective changes

Attribution theorists have argued that it would be important for leamers to
feel that they are in control of their leaming environment (cf Weiner, 1974, 1979).
In particular, it has been suggested better leamning could be fostered by (i) the lack
of external factors to which students might attribute success or failure, and (ii)
learners being able to explore their learning without penalties for making mistakes
(eg Ryba & Anderson, 1990). Papert (1980) contends that LOGO could provide
such a leamming environment.

The second major category of LOGO research revolves around the
examination of the relationship between LOGO programming and the affective
changes of leamers. The variables examined in these research included: motivation
(Weir, 1981; Zelman, 1985; Nastasi, Clements & Battista, 1990); locus of control
(Horner & Maddux, 1985; Olsen, 1985; Burns & Hagerman, 1989); and attitudes
towards computing and the learners themselves (Irwin, 1985; Schibeci, 1990).

The results of these studies offered reasonably robust evidence in establishing
the effect of LOGO programming on the affective development of the students.
Weir (1981), for instance, observed that LOGO programming could provide a high
degree of motivation for severely handicapped children although it was unclear as to
what role the teachers played in the process of teaching and leaming.

Zelman (1985), concluded from her study that "exposure to LOGO through purely
an inductive teaching method was inappropriate to motivational orientations of the
students" (p. 17). She suggested that future research should examine the
combination of computer program design and teaching of instructional and feedback
practices. More recent work by Nastasi, Clements and Battista (1990) found that
LOGO could foster more intrinsic motivation and the development of self-reward

systems for the learners. This study also confirmed that carefully orchestrated social

50

and social-cognitive interactions (for example, encouragement of learner-directed
work and cooperative learning) are important for students to develop such motivation
and self-award systems.

Locus of control was another important variable studied within this category
of research. Homer and Maddux (1985) studied 74 subjects and found that LOGO
programming could be effective in making leaming disabled and non leamning
disabled students feel responsible for their success with LOGO activities. The
female subjects in a study by Olsen (1985) also developed increased feelings of
responsibility and personal control. Similarly, Burns and Hagerman (1989) found
that their subjects, after learning LOGO programming over a 42 month period,
showed significant increase in internal locus of control.

Irwin (1985) used two languages, LOGO and BASIC with a group of 140
high school subjects in New Zealand. This study showed that the LOGO group
continued to exhibit high interest while there was a decline of interest in the BASIC
group. As well, the LOGO group tended to spend significantly more time "on task"
compared to the BASIC group. On the other hand, Schibeci (1990) used LOGO
with adult learners (both pre- and in-service teachers) in Australia. The subjects
demonstrated a marked improvement in their attitude towards computers and as well
as their confidence in solving programming problems with LOGO.

In summary, studies which examined the relationship between LOGO
programming and affective changes of the learners offered reasonable support that
LOGO programming could have a facilitative effect on motivation, internalization of
locus of control and attitude of learners towards computers and problem solving. Of
particular relevance to the present study was the fact that two different types of
LOGO learning environments were employed in research in this category, that is,
the use of self-discovery learning environment (eg Evans, 1984; Olsen, 1985;
Lehrer, Harckham, Archer & Prazek 1986) and more structured leamning
environment (eg Nastasi, Clements & Battista, 1990). It would appear on the
surface that both types of learning environments were able to facilitate positive
affective changes among the learners. However, studies by Zelman (1985), and
Nastasi, Clements and Battista (1990) clearly suggest that a purely self-discovery

learning environment was not sufficient to develop intrinsic motivation and self-

51

reward system for the learners, rather, carefully designed teacher intervention would
be needed. The issue of learning environment will be discussed further in a later

section of this chapter.

LOGO programming and social interaction

The investigation of social interactions within educational environments has
been considered important. Apart from being one of the fundamental goals of
education, it has also been argued that social interaction is an essential component
that facilitates cognitive growth (cf Vygotsky, 1978; Emihovich & Miller, 1986;
Salomon, 1988; Nastasi, Clements & Battista, 1990). According to Vygotsky
(1978), higher order mental capabilities progress from external to internal processes,
and that the mechanisms underlying the internalization of higher mental functions is
social interaction. Emihovich and Miller (1986) contends that the transformation
process from externalization to internalization occurs as children engage in
meaningful mediated verbal interactions with adults and/or peers during LOGO
learning.

The third major category of LOGO research focused on the relationship
between LOGO programming and social interaction. A number of variables were
examined: peer interactions (Hawkins, Homolsky & Heide, 1984; Carmichael,
Burnett, Higginson, Moore, & Pollard, 1985; Bums & Coon, 1990); interaction and
problem solving (Clements & Nastasi, 1988; King, 1989; Nastasi, Clements &
Battista, 1990); effects of group size (Guntermann & Tovar, 1987); interactions of
parents and children (Williamson & Silvern, 1986); behaviours of learners (Mitterer
& Rose-Krasnor, 1986); and gender differences (Webb, 1985; Guntermann &
Tovar, 1987; Hoyles & Sutherland, 1989).

One of the earliest studies on peer interaction within a LOGO environment
was conducted by Hawkins, Homolsky and Heide (1984) who studied 100 subjects
over a two year period. Various data were collected through interviews,
videotaping, and collection of ethnographic materials. This study reported more
collaboration among the subjects compared to other classroom tasks, and that the
computer provided an engaging problem solving context in which task related talk

occurred, although very little systematic results were presented, and it was also

52

unclear how the data were analyzed. Mitterer and Rose-Krasnor (1986) provided
further insight into peer collaboration. In their study, it was found that there was a
higher level of social interaction among the computer training groups (both LOGO
and BASIC), although the interactions were not the same across groups. It was
observed that the LOGO group had higher incidence of interactions with the tutor,
while the BASIC group was characterized by relatively more peer only contacts.
However, this study did not provide sufficient descriptions as to how the
instructional conditions might have been different for the LOGO and BASIC groups.

In one of the more comprehensive LOGO studies, involving some four
hundred students in 18 different schools, Carmichael, Burnett, Higginson, Moore,
and Pollard (1985) reported that social interaction did not only facilitate socializing
process, but was also a critical component in the furthering of cognitive development
and of creative expression. The researchers concluded that a good leaming
environment must incorporate strategies that would facilitate some social interaction
among the learners.

While these studies have highlighted the dynamics of social interactions
within a LOGO environment and the importance of a facilitative environment for
cognitive development, they really have not been able to study the interaction in
depth necessary to understand the types of social interaction that might assist the
development of thinking skills among their subjects. Rather more systematic
methods need be developed to investigate the types of social interaction among
learners in a LOGO environment, and how these interactions might facilitate the
development of thinking skills.

A more recent study by Burns and Coon (1990) provides further information
on this aspect. This research investigated the type of verbal interactions among their
subjects while leaming LOGO programming and a control programming language
(Delta Drawing). Data for three different types of verbalizations were collected:
process-oriented, product-oriented and additional. It was found that peer
collaboration using LOGO focused more on the process relative to the product of
problem solving when compared to a control programming language. However,

given the design of the study, it could not be established whether the types of

53

verbalizations were the results of the different languages or teacher intervention
within each different environment.

Results of the study by Clements and Nastasi (1988) offered further support
for the hypothesis that LOGO programming could facilitate peer interaction in the
aid of social problem solving. The LOGO group in their study was more able to
decide on the nature of the problem, decide on solution processes, and monitor
cognitive processes, when compared to a similar CAI group. The behaviours that
were observed included conflict resolution, rule determination, and self-directed
work, which were behaviours expected to occur in problem solving situations. This
work was extended by the study of Nastasi, Clements and Battista (1990) which
found that a mediated LOGO environment could assist cognitive development by
fostering more resolution of cognitive conflict which resulted in better problem
solving performance. These two studies highlighted the importance of the need for a
carefully constructed LOGO environment with social interaction elements which
would in turn facilitate problem solving behaviour.

The need to incorporate facilitative social interactions in a LOGO
environment is further supported by Williamson and Silvern (1986), and King
(1989). For instance, Williamson and Silvern (1986) found that children performed
better on generalization tasks when they worked with parents who provided them
with more directions. King (1989) observed that successful LOGO learners asked
more task related questions, spent more time on strategies and reached higher levels
of strategy elaboration than did unsuccessful LOGO learners.

The issue of sex differences in peer interactions was explored by Webb
(1985), and Guntermann and Tovar (1987) with conflicting results. Webb (1985)
found that there was no significant differences found in both the learning outcomes
and interaction behaviour either as groups or as individuals. The researcher
concluded that sex might not be operating as a status characteristic when students
learned computer programming. On the other hand, Guntermann and Tovar (1987)
observed significant differences among male, female and mixed groups. It was
found that (i) males were more likely to displayed solidarity than female or mixed
groups; (i) females were much more likely to express agreement with their peers;

(ii1) there were also more asking of information in the male group than female

54

groups, and (iv) males expressed more antagonism than females or mixed groups.
These results are interesting as often programming has been perceived as belonging
to the mathematics or science domains, and girls tend to perform differently from
boys. Results from the study by Webb (1985) suggest that LOGO programming
might have a mediatory effect on the interaction between males and females whereas
findings by Guntermann and Tovar (1987) indicate otherwise. A plausible
explanation for this discrepancy could be the ways in which subjects were
encouraged to interact with each other. However, this is unclear from the reports of
either studies.

A three year longitudinal study of secondary school students by Hoyles and
Sutherland (1989) using a case study approach highlighted a number of sex
differences in social interactions within a LOGO environment. It was noted that
boys found it difficult to share interactions with their partners and tended to
dominate interactions in mixed pair. They also tended to be more competitive and
worked on their own. In contrast, girls were more likely to share ideas with their
partners and that they preferred to choose loosely defined goals. Moreover, this
study observed that teacher intervention was crucial in facilitating social interaction
among the students.

In summary, the studies on the relationship between LOGO programming and
social interactions have offered some evidence that LOGO programming could
influence social interactions among learners. Some of these studies have stressed the
importance of social interaction in the aid of cognitive development. However, none
of these studies have managed to illustrate whether the increased interaction was the
result of the LOGO programming language alone, or the result of some instructional
variables working in conjunction with the LOGO language. Future studies,
therefore, must attempt systematically to identify the effects of individual
instructional variables engendered in a LOGO environment on the type of social
interactions ensued, and how these social interactions might in turn affect the
problem solving performance of the subjects. Moreover, one of the major criticisms
of many contemporary research on LOGO stems from the fact that many studies
only focused on the end products of learning, that is, how LOGO have affected

product variables such as mathematical learning and cognitive changes (cf Papert,

55

1987; Rowe, 1991). It was suggested by many researchers that it is important to
examine the changes in process variables such as social interaction and learning

strategies.

LLOGO programming and cognitive changes

While a number of studies have been conducted to examine the relationship
between LOGO programming and variables such as mathematics learning, affective
changes, and social interaction, the vast majority of LOGO research in the last
twenty years, in particular, the 1980’s, focused on LOGO programming and
cognitive changes. Most of these studies were conducted in response to claims made
by Papert and others that LOGO programming could facilitate learners’ general
cognitive development and assist the transfer of learning from a LOGO environment
to other contexts (cf Chapter 3).

Some of these studies attempted to investigate the correlation between various
factors related to the learning of programming. These studies included the
examination of the relationship between: programming and understanding of the
concept of recursion (Kurland & Pea, 1983); mastery of programming and
operational thinking (Mendelsohn, 1984, 1985, 1987); LOGO programming and top-
down processing, field independence, holistic tendency, and academic achievement
(Bradley, 1985); competence with the syntax and semantics of the LOGO language
(Campbell, Fein, Scholnick, Schwartz & Frank, 1986); analogical reasoning and
writing subprocedures and use of variables (Clement, Kurland, Mawby, & Pea,
1986); mastery of programming concepts (Cohen, 1987); cognitive development and
understanding of LOGO commands (Fay & Mayer, 1987); extended workstations
and learning of programming (Heller, 1991).

However, the majority of studies within this category were of a causal
nature, i.e., how the learning of LOGO programming could effect certain cognitive
outcomes. Three major types of research could be discerned from studies within
this cluster depending on the outcome variables studied. These three types are: (i)
global changes in the cognitive development; (ii) improvement of logical reasoning
abilities; and (iii) development of problem solving skills and their transfer to other

contexts. Whilst the three different types of research are inevitably closely linked,

56

their different emphases warrant separate discussion. The following sections will

review these studies in more details.

LOGO programming and global cognitive development
Part of the underlying theoretical basis for LOGO learning is Piagetian. It

has been suggested that LOGO programming can (i) provide an environment within
which learners can build their own intellectual structures; and (ii) allow children to
master ideas formerly thought too abstract for their developmental level. One of the
often cited argument by Papert is that "computer can concretize (and personalize) the
formal [abstract]" (Papert, 1980:21), i.e., LOGO programming would facilitate the
shift of the boundary separating concrete and formal operational thinking. In this
way, it has been proposed that LOGO may allow a child to advance their normal
developmental operative level faster than children not having access to LOGO (cf
Howell, Scott & Diamond, 1987). In response to these claims, a number of studies
have been conducted to examine the relationship between LOGO programming and
the global changes in leamers’ cognitive development measured by Piagetian tasks
such as classification and seriation.

One of the earliest and most cited work in this area was conducted by
Clements and Gullo (1984). This study compared the effects of LOGO and CAI on
the following variables: cognitive style (eg reflectivity/impulsivity, creativity);
cognitive skills (eg classification and serialization); and spatial orientation
(describing directions). A pre-post test design was used. Eighteen subjects (6 year
olds) were randomly assigned to one of the two treatment conditions, LOGO
programming or computer-assisted instruction that consisted of 12 week at a rate of
two 40-minute training sessions per week. The CAI group used a selection of
software that provided instruction and/or practice in the skills and abilities of the
school system’s mathematics, language arts, and reading curriculum. A carefully
designed LOGO curriculum was used and both groups received some form of
teacher questioning (eg, "Why was that wrong, What will you do to fix it?") which
the researchers suggested would help to the children to make their thinking and

mastery of concepts explicit.

577

A number of significant differences were found between the two groups in
the area of general cognitive development as a result of the different treatment. The
LOGO group was found to perform better in creative thinking (fluency and
originality), error and latency, describing directions. However, no differences were
found between the groups in the two areas of general cognitive development
(classification and seriation, and other specific aspects of cognitive development as
measured by McCarthy Screening Test). According to the researchers, the modest
results for this study could be explained by the experiments being of too short a
duration in order to permit an exact evaluation of the effects of LOGO on cognitive
development. In spite of this, the researchers attributed the positive results
concerning cognitive style and spatial orientation to the nature of programming
(planning, analysis and debugging). Although the results of this study appear to be
promising, they must be viewed with caution as the number of subjects in each
group was only nine. Also, the design of the study made it difficult to determine
whether the positive results were due to LOGO programming alone or was it a
combination of the LOGO programming and teacher intervention.

An investigation with similar design was conducted by Clements (1986c). In
this study, a larger number of subjects were used (72 instead of 18, half of the
subjects being third graders and the other half being first graders) with a longer
training period (22 weeks instead of 12). These subjects were divided into three
sub-groups - LOGO, CAI, and control. The treatments and dependent measures
used were also similar to the study by Clements and Gullo (1984). However, a less
structured approach was used with less adult-children interaction and more
independent work by children on their own projects.

The results of this study indicate that the LOGO-group differed from the
others in their cognitive performance. One of the major differences from the
previous study was that in the classification test, the LOGO subjects showed a
significant gain in the post-test and their score was significantly higher than that of
the CAI-group. As far as the control-group is concerned, their higher performance
level at the time of the pre-test prevented any comparison with the other groups.
For the seriation test, only the Ist-year LOGO-group showed a significant gain in

the post-test. Significant results were obtained as well in the Torrance Test of

58

Creative Thinking (TTCT) and the spatial orientation test. Clements (1986c)
suggests that these results indicate the important contribution of LOGO to the
development of operative competence in children when LOGO intervenes at a given
point. This conclusion, however, could be premature, given that all subjects except
those of the LOGO-group reached top performance in the pre-test of the seriation
test. Similar to the study by Clements and Gullo (1984), the LOGO group in this
study outperformed the other groups in creativity.

The results of studies by Horton (1986), Cathcart (1990), and Clements
(1991) shed further light on the hypothesis that LOGO programming could facilitate
creativity. In these three studies, it was found that the LOGO groups performed
significantly better than the control groups on figural creativity and divergent
thinking.

These four studies, inter alia, offer encouraging evidence in establishing the
effects of LOGO programming in areas as such creativity and describing directions,
but only some rather tentative evidence in the facilitative effects on the global
cognitive development of learners in areas such as classification and seriation. In
particular, results on classification, seriation, and reflectivity from the study by
Clements and Gullo (1984) were in conflict with those by Clements (1986¢c). Both
studies suffered from the problem of having fairly small number of subjects (in the
case of the study by Clements, there were only 12 subjects in each cell with the
group x grade analysis). Therefore, the claim that LOGO programming can
accelerate the global cognitive development of children must be viewed with caution.

Studies by Lehrer, Harchham, Archer, and Pruzek (1986), Howell, Scott and
Diamond (1987), and Tumer and Land (1988) lend further support to such
circumspection. These studies evaluated the effects of LOGO programming on the
general cognitive development of subjects. A variety of dependent measures were
used. including Piagetian conservation tasks, Euclidean shapes drawing, Social
Sciences Piagetian Inventory, and the McCarthy Scales of Children’s Abilities. The
subjects consisted of children ranging from pre-school to secondary school. The
results of these three studies indicate that LOGO programming did not have any
significant effects on the general cognitive development of the learners within the

confines of these studies.

59

In summary, the studies reviewed in this section have shown that LOGO
programming might be facilitative in certain areas such as cognitive style and spatial
orientation. However, LOGO programming might not be able to alter significantly
the general cognitive development of young children as postulated by Papert and
others, even with reasonably long period of learning as in the study by Howell er al
(1987), or by carefully orchestrated teacher intervention, as in the studies by
Clements and Gullo (1984), and Howell er al (1987). Perhaps the training periods
of these studies were not quite long enough to produce the results that many LOGO
enthusiasts have hypothesized; or the instruments used to measure the various
cognitive and metacognitive changes were not sensitive enough to gauge the
appropriate changes. On the other hand, it is quite plausible that learning resulting
from LOGO programming might be too specific to be transferred to a more general
context assessed by Piagetian conservations tasks and the other dependent measures
used. The results of these studies tend to lend support to Piagetian theory which
would predict that normal developmental factors would dictate the movement of

children from one stage to another.

LOGO programming and logical reasoning

Logical reasoning, often considered as a form of mathematical skills as well
as an important component in problem solving and critical thinking, was the focus of
a number of studies (eg Seidman, 1981; Gorman & Bourne, 1983; Reiber, 1983;
Degelman, Free, Scarlato, Blackburn & Golden, 1986; Many, Lockard & Abrams,
1988; Grandgenett & Thompson, 1991). These studies were often premised upon
the argument that the style of thinking that one learned from solving any of the four
binary rules (conjunctive, disjunctive, conditional, and biconditional) could be
attributed to computer programming (Kolata, 1982).

One of the earliest studies which investigated the relationship between LOGO
programming and logical reasoning was conducted by Seidman (1981) among 41
fifth graders who were randomly assigned to experimental and control groups. The
results of this study indicated that there was no significant difference between the
LOGO group and the control group, after 30 hours of programming over a period of

15 weeks, on the conditional reasoning principles used in this investigation.

60

However, when students’ misinterpretation of logical conditional statement in a
biconditional manner was taken into consideration, it was found that the LOGO
group performed better than the control on one of the logical reasoning principles.
These results clearly highlight two issues: (i) there were problems younger children
might have in understanding conditional statements in programming; and (ii) LOGO
experience could provide "incorrect” leaming on one principle of logical leaming -
inversion (the misinterpretation of normal logical conditional statements in a
biconditional manner (cf Seidman, 1989-90)). Therefore future studies need to
attempt to overcome these problems by the provision of appropriate curricular and
pedagogical conditions.

The results of three exploratory studies with fairly small sample sizes shed
further light on the hypothesis that LOGO programming could improve the logical
reasoning of learners.

The study by Gorman and Bourne (1983) indicated that differential amounts
of LOGO experience might have different effects on the logical reasoning among a
group of 15 third-grade students. In this study, the group of children who received
one-hour of LOGO instructions over one school year made significantly fewer errors
with a rule learning task than the half-hour group. They also outperformed the half-
hour group in the number of trials to criterion. This study also established that a
conditional rule learning task was appropriate in the measurement of logical
reasoning for late primary school subjects (children who are on the transition from
concrete operational to formal operational). As well, it was clear from this study
that the rule-learning task was more suitably scored by the more sensitive measures
of number of errors to criterion and number of trials to criterion, rather than by just
success-failure.

The study by Degelman, Free, Scarlato, Blackburn and Golden (1986), on
the other hand, found that affirmatively defined concepts were suitable for the
measurement of logical reasoning for preschoolers whereas conjunctively defined
concepts were too difficult. Results of this study revealed that LOGO programming
was facilitative in the development of logical reasoning among very young children

when measured by affirmatively defined concepts.

61

Similarly, the study by Reiber (1983) found a statistically higher performance
for the LOGO group than the control group in logical reasoning. However, these
findings must be viewed with caution as doubtful procedures were used in the
analysis of the combinatory tests (Larivée er al, 1988).

When a much larger sample (113 subjects in LOGO group, 58 in control
group) was employed in the study by Many, Lockard, and Abrams (1988) with
junior high school students, it was revealed that the LOGO group scored
significantly better than the control group although further analysis suggested that the
male students in the LOGO group achieved significantly higher scores than their
male counterparts in control group and that the benefits appeared to accrue primarily
to males. However, this study was conducted without pre-tests, hence it was
difficult to (i) describe the magnitude of LOGO’s effects on reasoning skills; and (ii)
ascertain whether there were any differences between the two groups prior to the
intervention. Similar inconclusive results were obtained by Grandgenett and
Thompson (1991). The 144 subjects in this study were undergraduate students who
enrolled in an introductory educational computing class. This study indicated that
guided programming instruction facilitated the reasoning performance of college
freshmen but hindering that of college juniors.

The studies reviewed in this section offered modest support that LOGO
programming might assist the development of logical reasoning among learners
ranging from kindergarten to high school. However, given the number of flaws in
these studies, their results must be viewed with caution. Future studies need to
exercise tighter control on a number of research design elements: (i) the use of
larger number of subjects to enable statistically valid comparison; (ii) the
establishment of whether there is any difference in the subjects’ logical reasoning
prior to intervention by pre-testing of subjects on their reasoning abilities; and (iii)
most important of all, to examine more closely the possible effects of instructional
variables such as teacher mediation, and peer interaction, which might influence the
development of logical reasoning skills. The examination of the role of the teachers
and the approach adopted in the teaching of LOGO which will in turn allow the

evaluation whether the gains were facilitated by LOGO programming alone or with

62

the assistance of some form of teacher intervention. The issues of LOGO instruction

and teacher mediation will be further discussed in a later section of this chapter.

LOGO programming and problem solving

Problem solving is often considered an important aim in modern education.
It has been argued that computer programming can be a powerful means of
enhancing problem solving skills as computer programming requires the use of a
number of problem solving skills such as planning, analysis, and evaluation (eg
Kurland, Pea, Clement & Mawby, 1986; Lawler, du Boulay, Hughes, & Macleod,
1986; Chambers, 1986). Given the popularity of LOGO in both primary and
secondary schools, the emphasis on problem solving in recent curricular reforms (cf
Chapter 1), and some extravagant claims made about LOGO (cf Chapter 3),
considerable attention has been given especially to the use of LOGO as a means to
create learning environments for the development of problem solving skills (cf
Chapter 3; Yates & Moursund, 1988). Also, expectations have been such that the
learning of programming will cultivate problem solving skills for transfer to other
situations (eg Pea, 1983; Gallini, 1985). Consequently, there has been a large
number of LOGO studies which focused on using LOGO programming to enhance
the transfer of problem solving to other contexts.

However, results of this research to date have been rather inconclusive.
Some studies have found that LOGO programming could facilitate the development
and transfer of problem solving skills (eg Carmichael es al, 1985; Horton, 1986;
Lehrer et al, 1986; Gallini, 1987; Lehrer & Randle, 1987; Mathinos, 1990; Au &
Leung, 1991; Swan, 1991) while others have found results to the contrary (eg Pea,
1983; Chambers, 1986; Cuneo, 1986a; Kurland et al, 1986; Lehrer & Smith, 1986;
Mitterer & Rose-Krasnor, 1986; Dalton & Goodrum, 1991).

The study by Carmichael et al, for instance, found that their subjects were
able to develop problem solving skills while learming to program with LOGO and
that these skills were able to transfer to other contexts. Horton’s (1986) study
revealed that junior high school students were able to improve on a number of
problem solving skills such as prediction, exploration, creativity, planning and

analysis. Similar skills were found to increase more durably among subjects in a

63

study by Lehrer and Randle (1987). The study by Au and Leung (1991) with upper
primary students suggests that skills learned while programming with LOGO can
transfer to tasks that resemble LOGO programming but not to dissimilar tasks.
Similarly, a number of studies found that students were able to improve their
problem solving skills after learning to program with LOGO (eg Gallini, 1987;
Swan, 1991).

On the other hand, quite a number of investigations did not find any increase
in problem solving abilities after the learning of LOGO programming. For example,
studies by Pea (1983) and Pea and Kurland (1984) failed to find any significant
improvement in the planning skills of their subjects after one year of LOGO
programming. The subjects in the study by Carver and Klahr (1986) did not
develop effective debugging strategies. Study by Chambers (1986) found that
LOGO programming did not enhance her subjects’ performance in problem solving
skills such as experimenting, predicting, coding, planning and analysis.

In examining these studies, a number of factors were found to have
contributed to the conflicting results, including: measurement of outcome variables,
research design, and the nature of LOGO instruction, in particular, those elements
that might have affected the transfer of problem solving skills learned in a LOGO

context to another. The following sections will discuss these factors in turn.

Measurements of outcome variables

When analyzing the vastly different results of these studies, it is apparent that
a wide variety of measures were employed to determine how LOGO programming
might have affected the development of problem solving skills. Consequently, such
variation of instruments led to the apparently conflicting results. The multitudes of
measures used in gauging the changes of problem solving skills could be traced to
the theoretical bases upon which these studies were formulated.

One of the most striking problems with research involving LOGO
programming and problem solving is the general lack of theoretical basis for the
studies (cf Burton & Magliaro, 1986; Khayrallah & Meiraker, 1987; Clements,
1990). This problem has resulted in the lack of any anchor points to relate the

findings with the literature, and difficulty in the selection of dependent measures,

particularly in the determination of transfer of problem solving skills to other
contexts.

Some studies did not identify the types of problem solving skills that were
supposed to be observed during the learning of LOGO programming. Instead, these
studies relied solely on teachers’ anecdotes or students’ self-reports on the
development and transfer of problem solving skills without using any systematic
measurements. For example, in a well publicized large scale study conducted on
LOGO programming and problem solving in Canada, the researchers could only
draw upon the following anecdotal comments in relation to the development of
problem solving skills and their transfer to other context: "students themselves
expressed a wide range of problem solving... that they felt they learned from
working with computers or LOGO, or "teachers commented quite frequently that
they perceive that such transfers did occur” (Carmichael et al, 1985:279-280).

Some studies, on the other hand, attempted to use a large number of
dependent measures of problem solving in the hope of "catching" problem solving
skill development and transfer. For instance, in the study by Clements and Gullo
(1984), 18 dependent measures such as cognitive style, metacognition, cognitive
development, and directionality were used. Although the use of these measures
were well grounded in theories of cognition and problem solving, it is rather
debatable whether such a large number of skills could be expected to develop within
a relatively short duration of LOGO programming.

Some other studies even arbitrarily used dependent measures without
examining closely the relationship between LOGO programming and the dependent
measures. Often dependent measures were used without appropriate rationale which
often gave rise to conflicting results. This has resulted in what Burton and Magliaro
(1986) have termed as a "kitchen sink" approach. For example, a study by
Soloway, Lockhead, and Clement (1982) investigated programming effects on
problem solving without any reference to the problem solving literature. Khayrallah
and Meiraker (1987) suggest that this lack of proper theoretical underpinnings has
resulted in an approach that focus on testing what works and does not work, rather
than attempting to specify the underlying processes that might determine success or

failure.

65

Against this background, a number of researchers have alerted to the
development of "technocentric thinking" among some researchers and educators.
Papert (1987), for instance, cautions that this approach represents a tendency in
thinking of LOGO as an agent that acts directly on thinking and learning. Rowe
(1991) argues that computers are far more than just a treatment, that they have
become inextricably intertwined not only with the way students might go about
cognitive tasks, but with the whole context of learning and teaching. In relation to
the selection of dependent variables, researchers need to examine critically the types
of problem solving skills that learners might develop while learning to program with
the LOGO language. Once the type of skills have been identified, then care needs
be exercised in the justification of the choice of dependent measures on both
theoretical and practical bases. At a theoretical level, it is important to consider the
issue of transfer of learning to other domains. Moreover, many researchers have
argued for the importance of measuring the success of LOGO learning via task and
strategy oriented variables rather than the traditional product oriented measurements
(King, 1989; Burns & Coon, 1990; Swan, 1991). As this issue is central to this
thesis, it will be considered in more details in the next chapter. At a practical level,
it 1s important to deliberate the extent to which problem solving skills might be
developed within the time limits of most studies. Given the generally short duration
of many LOGO studies, it is useful to focus on instructional conditions that would
foster the development and transfer of a smaller number of problem solving skills

among the learners in a more intensive manner.

Research design

The second concern relates to the design of this type of research: researchers
must not neglect the most important components of learning situations, viz, people
and cultures - in the facilitation of learning. That when researching LOGO
programming and problem solving, attention needs be given to the examination and
evaluation of the programming culture (viz. learning environment) as well as the use
of psychometric instruments to measure any potential cognitive gains (Papert, 1980,
1987; Leron, 1985; McDougall, 1988; Mehan, 1989; Rowe, 1991). For instance,

the dynamics of learning with LOGO in either small groups or individually, and the

66

qualitative changes among the leamers might not be measured by traditional
psychometric instruments.

In the overview of this chapter, it has been stated that some of the earliest
LOGO research relied heavily on anecdotal evidence without being able to provide
convincing evidence. Some of the studies on LOGO and problem solving conducted
in the early 1980’s attempted to overcome this problem by employing the more
traditional experimental design. A typical study of this kind would pretest the
subjects, introduce the subjects to LOGO programming, then posttest them to find if
there were any gains in problem solving skills.

For example, a series of studies conducted at the Bank Street of College of
Education in New York focused on the transfer of problem solving skills to other
non computing contexts such as the planning of classroom chore scheduling tasks
(Pea, 1983; Pea & Kurland, 1984b). However, on a large number of measures such
as efficiency of planning, the quality of revisions, and the types of decisions made
during the planning process, no statistically significant differences were found
between the programming and non-programming groups. The authors concluded
from these series of studies that programming experience did not appear to transfer
to other domains which shared analogous formal properties. Studies of similar
design since have yielded conflicting results (eg Clements & Gullo, 1984;
Chambers, 1986; Horton, 1986).

The use of this type of research design has raised serious concerns among
many LOGO researchers and there has been debate conducted regarding the
suitability of such design (cf Leron, 1985; Becker, 1987; Pea, 1987; Papert, 1987;
Walker, 1987; McDougall, 1988; Rowe, 1991). It has been argued by some
researchers that the traditional experimental design was not sufficiently sophisticated
to measure potential cognitive gains of the leamners. Rather, it is important to
examine the process of leaming including the dynamics of leamning as well as the
product measured via psychometric instruments (Leron, 1985; Papert, 1987;
McDougall, 1988; Rowe, 1991).

More recent studies in the late 1980’s have taken such concern into
consideration and often attention has been given to the study of interactions among

the learmers that might have affected any cognitive outcomes of such studies. Some

67

studies have begun to examine more closely the type of interactions that might have
contributed to the changes in problem solving skills of the learners and what the
learners might have gained during the processes of leamming to program with LOGO.
For example, Clements and Nastasi (1988) studied 24 first graders and found that
the LOGO group exhibited a significantly higher percentage of social behaviours that
have cognitive underpinning. The study by Nastasi, Clements and Battista (1990)
found that their LOGO group evinced more cognitively oriented conflict, attempts at
and successful resolution of conflicts, and rule making.

As well, there has been an increasing awareness of the need to control the
instructional conditions that might facilitate cognitive growth. Recent studies
(Lehrer, Guckenberg, & Lee, 1988; Au & Leung, 1991; Heller, 1991; Ortiz &
MacGregor, 1991; Swan, 1991) have all employed research designs that enabled
these studies to examine the effects of various instructional conditional on the

development of problem skills among their subjects.

LOGO instructions

The inconclusive results of early LOGO studies on problem solving, and
other areas, have prompted many researchers to examine more closely the types of
LOGO instructions provided for learners during the learmning of LOGO
programming. In particular, it has been advanced that the use of more explicit
instructions in problem solving might be facilitative in the development of problem
solving skills and the transfer of these skills to other contexts (Leron, 1985; Au,
Horton & Ryba, 1987).

Recent LOGO studies since the mid-1980’s that incorporated explicit
instructions in problem solving (eg Lehrer & Smith, 1986; Miller & Emihovich,
1986; Au & Leung, 1991; Ortiz & MacGregor, 1991; Swan, 1991) and
metacognitive training (eg Clements, 1987b; Clements, 1990) have clearly
highlighted the potential benefits of such exploitation of instructional conditions in
the improvement and transfer of problem solving skills of learners. As the issue of
LOGO instruction is central to the present investigation, it will be discussed in more

detail in a later section of this chapter. The following section will examine those

68

studies that investigated the relationship between LOGO programming and

metacognition.

LOGO programming and metacognitive skills

Within the field of educational computing, there has been an increasing
attention on the development of higher order thinking skills (eg Anderson & Ryba,
1990; Au & Bruce, 1990; Lai, 1990), as well as the link between computer science
and metacognitive functioning (Haller, Child & Walberg, 1988; Salomon, Perkins &
Globerson, 1991). Papert advocated in his seminal work Mindstorms that LOGO
could be used to teach leamers to think about thinking (Papert, 1980). Some
researchers have also argued that the characteristics of the LOGO language could
assist learners to develop metacognitive skills (cf Larivée ef al, 1988). As a result,
a number of studies have focused on the relationship between LOGO programming
and metacognition since the middle of 1980’s. A main aim of these studies was to
establish whether the experience of LOGO programming could enhance the
development of metacognitive skills, and how such experience might facilitate the
improvement of problem solving. The results of these studies have been rather
encouraging.

One of the earliest study in this area by Clements and Gullo (1984) used
Markman’s test to evaluate their subjects’ monitoring and evaluation of their own
cognitive processes. It was found that the LOGO group outperformed the control in
both tasks of the test. A follow up study by Clements (1986) using Sternberg’s
theory of metacomponents observed that subjects of the LOGO group had significant
improvement in their metacomponents of problem solving, and comprehension.
Based on a similar theoretical model, some more recent studies by Clements and his
colleagues (Clements, 1987b, 1990; Clements and Nastasi, 1988) observed that
students, after learning to program with LOGO, improved significantly on their
abilities to (i) apply metacognitive skills in problem solving; and (ii) solve the
problems.

When comparing LOGO with another software environment (using computer

assisted instruction software) and a control group with 39 first grade students,

69
Lehrer and Randle (1987) found that the LOGO environment, when compared to

other conditions, was most facilitative in the development of metacognition measured
by problem representation, comprehension monitoring and integration of old and
new information, as well as more durable problem solving efficiency.

While these studies have demonstrated that LOGO experience might be
facilitative in the development of metacognition, it was unclear whether the
improvement in metacognition was due to the medium (the LOGO language) or
instructional conditions.

The study by Lehrer, Guckenberg and Lee (1988) addressed this issue by
contrasting a number of instructional conditions (focus on programming strategies or
geometric concepts) while teaching LOGO programming to their 45 subjects who
were divided into three groups. The results of this study suggest that differences in
instruction constituted the most significant factor in the development of
metacognition. In this instance, the instructional method which required subjects to
compare and integrate explicitly old and new information yielded the most
significant results.

In examining these studies on LOGO programming and metacognition, it is
apparent that the metacognition of the subjects improved after learning to program
with LOGO. Also, the performance in problem solving was also enhanced. Future
studies would benefit though by clearly outlining the effects of instructions and how
instructions might increase the opportunities for the development of metacognition.
As well, efforts will need to be made to establish how the improvement in

metacognition would benefit the development of problem solving skills.

In summary, having reviewed a representative sample of LOGO studies
according to their outcome variables, a number of concerns emerged. The first and
most important of these is the type of LOGO treatment offered to the subjects. It
has become quite clear that the type of LOGO treatment played a significant role in
determining the outcomes of research in LOGO. Other concems include the
selection of sample and the type of research methods and analyses used. The

following sections will examine these concerns in more details.

70
LOGO treatment

It has been suggested by many educational computing researchers that the
issue of treatment is a crucial concern in programming language and problem
solving research (cf Thomas, 1986; Palumbo, 1990; Seidman, 1989-90; Grandgenett
& Thompson, 1991; Au, 1992a). Based on this premise, it is reasonable to expect
that the type of LOGO instruction and length of treatment would play a vital role in
determining the outcomes of programming instructions. The issue of LOGO
treatment, in particular, the type of LOGO instruction, has been at the centre of
debate in LOGO research, especially during the 1980’s when researchers started to
examine how various instructional variables might influence the outcomes of
programming instructions.

However, in reviewing the various studies on LOGO programming, it is
apparent that there is a lack of clarity in the meaning of "LOGO programming" and
the level of mastery attained by the subjects. Some of the reports on LOGO
research either provided little or no description of the type of "LOGO treatment" for
the subjects (eg Bradley, 1985; Lehrer, Harchham, Archer & Pruzek, 1986; Gallini,
1987; Schibeci, 1990). In these reports, it was often accounted that subjects learned
LOGO programming, or were exposed to some LOGO experience, for a certain
period of time, without specifying what that experience was, and how it might have
affected the outcome variables. Of the reports that delineated the kinds of LOGO
experience provided for the subjects, often either one of the following pedagogical
approaches was used. Some researchers adopted the use of a self-discovery leaming
environment, devoid of any teacher intervention, while others considered carefully
constructed teacher mediation as important in the learning of LOGO. Appendix 1
presents a summary of a sample of studies reviewed according to the pedagogical
approaches used in these studies. About two thirds of the studies either used the
former approach or did not describe the pedagogical approach in their studies, while

the remainder used the latter.

LOGO instructions
The types of instructions used in LOGO research reflect a much wider

concern in pedagogy. Some educators have supported a self-discovery model in

71

learning. This model is often based on the Piagetian model of knowledge
acquisition, which suggests that knowledge can best be acquired through self-
discovery learning (Piaget, 1976). In other words, learners learn best by being
placed in an environment where they can interact and participate in their own self-
directed manner. A number of LOGO researchers, notably Seymour Papert and his
colleagues at the Massachusetts Institute of Technology, have adopted this model in
their creation of a LOGO learning environment. Following this model, the
experience provided for the learners was of a spontaneous and undirected manner.

This approach has also been adopted by a number of researchers in their
studies (see Appendix 1). However, this type of research often failed to produce the
anticipated cognitive effects espoused by Papert and others (cf Palumbo, 1990).
Therefore, at the conclusion of some of these studies, many researchers (e.g Pea &
Kurland, 1987; Schaefer & Sprigle, 1988; Thompson & Chen Wang, 1988)
suggested that it would be important to consider conscious and careful intervention
strategies.

Other LOGO researchers have adopted a more structured approach in
programming instruction with carefully designed mediation. They believe that
LOGO programming alone cannot achieve what Papert has claimed. Rather, if the
learners were to develop some form of cognitive and problem solving skills, then
some type of deliberate intervention must be implemented. This approach is clearly
exemplified in some of the earlier research conducted at the University of Edinburgh
(eg Howe, O’Shea & Plane, 1980; Finlayson, 1983, 1985). Recently, there has
been an increasing number of research that employed a more structured pedagogical
approach in LOGO instructions, eg, those conducted at the University of Ohio
(Clements & Gullo, 1984; Clements, 1986c; Clements & Nastasi, 1988; Clements,
1990; Nastasi, Clements & Battista, 1990), and many others (Lehrer, Guckenberg,
& Lee, 1988; Au & Leung, 1991; Heller, 1991; Ortiz & MacGregor, 1991; Swan,
1991).

One of the important factors that clearly underpins the different types of
intervention strategies in LOGO instructions is the roles that teachers play in a
LOGO environment (eg Lehrer & Smith, 1986; Krendl & Lieberman, 1988). There

has been a continuing debate about the role of teachers in LOGO instruction but

72

until recently, little empirical research has been conducted to offer teachers
guidelines on the best ways to use LOGO in the classrooms (Khayrallah & van den
Meiraker, 1987).

This debate has been further complicated by Papert’s own work. In his book
Mindstorms, Papert (1980) advocates "learning without curriculum”, and yet he also
argues that the teacher should act as an anthropologist and support the students as
they build their own intellectual structures. Often, one of the central issues in the
consideration of "LOGO instruction" is to resolve Papert’s seemingly conflicting
notion over the teacher’s role in a discovery leaming environment in order for
children to make the cognitive gains through the use of LOGO as outlined in
Mindstorms.

In the deliberation of the type of LOGO instructions provided for the
subjects, researchers were often confronted by questions such as "What kind of
teacher support should be offered so that on one hand, it does not violate Papert’s
’learning without curriculum’, but on the other hand, must be such that the learner is
’supported as they build their own intellectual structures’?"

“Is a pure discovery leamning pedagogy the approach Papert intends to be
adopted by teachers when using LOGO?" One gets the impression that it has never
been Papert’s intention for the teacher to adopt such an approach. In defining the
role of the teacher as an anthropologist, Papert intends for educators to understand
and work with materials which are relevant for facilitating cognitive development of
the learners. Such facilitation can only take place through meaningful intervention,
where the child is guided towards situations in which self-discovery can take place
and is assisted to articulate problems, develop ideas, and perhaps, the most
important of all, to reflect on their own thinking (Papert, 1980). What Papert fails
to do though, is to prescribe specifically forms in which this intervention should
occur.

It was perhaps because of this lack of clarity and direction of how LOGO
should be used that has resulted in many researchers adopting a narrow
interpretation of Papert’s discovery-learning approach which is devoid of any teacher

intervention.

73

Pea (1983), Pea & Kurland (1984c), Feurzeig (1986) and many other
researchers, as a result of their findings, doubt the attainment of the LOGO ideal
through a pure discovery-learning pedagogy. Instead, they indicate a need for
educators to provide instructional guidance, so as to help learners develop advanced
thinking skills, and to make them aware of the broad range of problem domains to
which might be applied. For instance, Pea (1983) states that,

It is my hunch that wherever we see children using LOGO in the ways in its

designers hoped; and learning new thinking and problem solving skills, it is

because someone has provided guidance, support and ideas for how the
language could be used. They will have pointed the ways through examples,

rules, and help in writing programs and discussing powerful ideas. (p. 7)

Pea (1983) argues that to call such assistance "learning without curriculum”,
as defined by Papert, would be a gross misinterpretation of what constitutes
curriculum. Instead, Pea & Kurland (1984c) make recommendations which point
the educator in the direction of creating a LOGO culture in which deliberate effort is
made to bring the thinking process up for conscious scrutiny and to bridge
programming skills with other domain interests.

Similarly, Feurzeig (1986), while examining the concept of a LOGO
microworld, advances the view that

without the aid of a teacher, many children do not learn in a LOGO

microworld. They are not able to set their own goals, to find effective

methods of thinking about problems, or to acquire the skills of

exploration, conjecture and inference ...Skilled teachers overcome

these deficits by providing the guidance and support that make

microworld experiences productive for their students. (p. 45)

As well, Leron (1985) joins other educators in endorsing the need for
educator intervention. He proposes a quasi-Piagetian approach to the use of LOGO
which "represents a deliberate action to trade off some of the freedom inherent in
Piagetian learning for a deeper understanding of the ideas behind the programming

activity” (Leron, 1985:28). For instance, Leron (1985) suggests the use of a study

74

guide which has two major intended benefits. Firstly, that of working toward child
independence from the teacher; and secondly, to provide the teacher with suitable
material so as to aid the implementation of the LOGO philosophy as enunciated by
Papert.

Research by Clements and Gullo (1984), Clements (1986c), Gorman and
Boume (1983), Lehrer and Randle (1987), Miller and Emihovich (1986), Au,
Horton and Ryba (1987), Cohen (1990), and Au and Leung (1991) lend further
support to the importance of teacher intervention. For instance, Gorman & Boume
raised the question "How might curricula be designed...?" (1983:167) to assist
students to improve in combinatorial reasoning. Clements and his colleagues even
suggest some specific questions which the teacher could use to encourage children to
reflect on their own thinking (Clements & Gullo, 1984; Clements, 1986¢). Au,
Horton and Ryba (1987) have proposed a LOGO environment checklist against
which teachers could use to check the type of programming environment they
provide for their students by focusing on the development of problem solving skills.

Other researchers (Clarke & Chambers, 1984b; Nolan & Ryba, 1986) have
also argued for the importance of making explicit to the learners the type of problem
solving processes which will facilitate cognitive gains and the transfer of learning.
For instance, Nolan and Ryba have identified six thinking skills that could be
developed via the leaming of LOGO in a hierarchy of nine levels of increasing
difficulty. These researchers advanced that it is important to foster the development
of these thinking skills at each one of these nine levels. In other words, what the
learners acquire is not only the programming language per se, but also the various
problem solving skills required in computer programming.

This view is also shared by Lehrer and Randle (1987), and Miller and
Emihovich (1986), who suggest the use of mediated leaming by using teacher
scaffolding techniques, similar to those advocated by metacognitive theorists.
Researchers such as Clements (1986¢), Clements and Gullo (1984), and Au and
Leung (1991) have called for the incorporation of metacognitive training in LOGO

programming in order to facilitate the transfer of learning to other knowledge

domains.

75

In the previous discussion, the importance of a meaningful and deliberate
teacher intervention in a LOGO environment has been highlighted. If teacher
intervention is to be a crucial element in determining whether children can make
cognitive gains from the use of LOGO, what then is required by researchers and
educators is specific guidelines and material on how LOGO could be used by them
to develop thinking processes and powerful ideas in children (eg Clarke &
Chambers, 1984b; Nolan & Ryba, 1986). Such points of consideration must relate
specifically to how the teacher fulfils the role of an "anthropologist” as described by
Papert (1980) and, in turn, draws the relevant materials from the environment in
order to support children’s intellectual development. As well, such consideration
must be underlined by sound theories of problem solving. As this issue is central to
the present study, it will be addressed in more details in the next chapter where

various problem solving theories and training strategies will be discussed.

Lensth of treatment

Another related factor that could explain the discrepancies of results with
LOGO research is the length of exposure to the LOGO language, in other words, the
duration of "LOGO treatment". In examining the various studies related to LOGO
programming, it is apparent that there has been a large variation in the length of
LOGO treatment for the subjects.

Some studies provided rather short "LOGO treatment" for the subjects. In a
study by Cuneo (1986a), only three to six 30 minute sessions were provided for the
subjects. A study by Campbell, Fein, Scholnick, Schwartz and Frank (1986) gave
their subjects a total of 50 - 60 minutes of LOGO instructions. Similarly, many
studies only provided a fairly limited amount of LOGO training to their subjects, eg
Lee and Lehrer (1988) - 1.5 hours each week for eight weeks; Williamson and
Silvern (1986) - one hour each day for 10 days; Miller and Emihovich (1986) - three
weeks of training; Degelman, Free, Scarlato, Blackburmn and Golden (1986) - less
than seven hours of programming; Ortiz and MacGregor (1991) - less than nine
hours of learning in total.

On the other hand, there were other studies which provided much more

extensive LOGO training for their subjects. For instance, in a study of severely

76

handicapped children (Weir, 1981), subjects learned to program LOGO over a
period of two years. When working with average classroom students, Noss (1987a)
provided LOGO instruction for his subjects 75 minutes per week over one full
school year.

Arguably, this extensive variation in the duration of LOGO treatment had
contributed to the discrepancies in the results of these research. While it is difficult
to suggest what constitutes sufficient or optimal LOGO training for the students, it is
reasonable to contend that the length of LOGO treatment is directly related to the
level of mastery of LOGO programming, which might in turn influence the measures
of the outcome variables such as problem solving skills development and transfer.

Researchers such as Pea and Kurland (1987), Linn (1985), Dalbey and Linn
(1985), Leron (1985), Khayrallah & Meiraker (1987), Mayer and Fay (1987), and
Palumbo (1990) have repeatedly called for the examination of the relationship
between the level of mastery of programming and the cognitive consequences of
programming learning including the transfer of learning to other knowledge
domains. Linn (1985), Leron (1985), and Palumbo (1990) have outlined a chain of
cognitive accomplishment through the learning of programming as identified in
Figure 4.1 overleaf.

Linn and Dalbey (1985) describe an ideal chain of cognitive accomplishment
which consists of three major components. They assert that learners of
programming need to attain the third level of accomplishment before they are
capable of using the general problem solving skills acquired through programming in
other domains. This chain roughly parallels the three different levels of
programming attainment (syntactical, semantic, and expert) espoused by Leron
(1985) who claims that subjects in LOGO research normally only reach the second
level. As a result, these learners are not in a position to apply whatever problem
solving skills that they might have acquired in a programming context to others.

A similar chain has also been advocated by Palumbo (1990) when he
attempted to integrate programming instructions and information processing theories.
This chain comprises three components, viz, declarative knowledge, procedural
knowledge, and metacognitive knowledge. Palumbo argues that students of

programming need to reach the third level before they are capable of applying

Figure 4.1

Chain of cognitive accomplishment

Level of Linn Leron Palumbo
accomplishment
Level 1 Learning of the Syntactical | | Declarative
knowledge
language features

v Y v ¥
Level 2 Design skills for Semantic Procedural
combining language knowledge
features into a
program that solves
problems
v Y Y
Level 3 Mastering Expert Metacognitive
generlizable knowledge
problem
solving
skills

78

appropriate and effective problem solving strategies to solve a variety of problems in
different contexts.

These researchers, inzer alia, have argued that there are stages that a student
must go through, and that the level of programming abilities a student has mastered
would be a predictor of the kinds of concepts and skills that the student will transfer
beyond programming. In particular, Pea and Kurland (1984a) and Dalbey and Linn
(1985) have argued that cognitive gains are related to the mastery of programming.
In other words, leaming will only be transferred to other knowledge domains if
certain level of mastery has been attained. Therefore, it would be unreasonable to
expect transfer to take place after only a short duration of learning with LOGO.

While it is quite debatable whether a learmer might not encounter
metacognitive experience or develop metacognitive knowledge while working at the
first and the second levels, it is clear that from these models that the higher the level
reached by the leamners, the more probable that transfer of learning would occur. In
order to increase the likelihood of transfer of learning, it would be advisable to
increase the incidence of metacognitive experience even during the early stages of
learning of LOGO. Also, the direct teaching of metacognitive knowledge may be
another way facilitate transfer of learning. The issue of training in problem solving

and metacognition will be further discussed in the next chapter.

Selection of sample

In reviewing a substantial number of research in LOGO, there emerged a
number of concerns related to the selection of sample. These concerns are: (i) small
number of subjects used in some studies; (ii) the non-random selection of subjects;
and (iii) the appropriateness of selection of subjects.

Apart from many anecdotal studies which often observed only a very small
number of students, some studies, owing to their nature, tended to use small number
of subjects. For instance, studies which investigated students of physical handicap,
could obviously obtain a limited number of subjects (eg Weir, 1981). There are a
number of studies which used fairly small numbers of subjects in typical
experimental studies. For example, Gorman and Bourne (1983) had 15 subjects in

their study divided into two groups (one with 10 and the other with five students).

79

Similarly, Evans (1984) used 15 subjects (eight in the experimental group and seven
in the control); McAllister (1983) studied eight subjects; Zelman (1985) observed
only four subjects; Miller and Emihovich (1986) worked with 14 subjects (seven in
experimental group and seven in control). The use of small number of subjects in
such studies clearly warrant caution in interpreting their results.

A second concern is the non-random selection of subjects in some of these
studies. Owing to possible ethical and logistical constraints, some studies did not
select their subjects randomly. For instance, Noss (1987a) worked with students
from five different classrooms without allocating the students randomly into
experimental and control groups. On the other hand, Schaefer and Sprigle (1988)
were only able to study 20 children enroled in a university laboratory school, hardly
a random sample. The non-random selection of subjects and allocation to groups,
and the lack of statistical control to compensate, clearly reflects a concern in the use
of experimental studies.

A third concern relates to the selection of samples of the appropriate age
range for optimal training and benefit. Current studies on LOGO have selected
samples ranging from pre-school to adults. A question that needs be addressed is:
what age group of subjects are likely to benefit from programming instruction in
LOGO?

Some researchers have argued that students at the concrete operational stage
of cognitive development are unlikely to improve significantly in higher order
thinking skills, and hence unlikely to benefit from problem solving skills instruction
through the learning of programming (cf Piaget, 1977; Palumbo, 1990). However,
such argument apparently runs contrary to what Papert has advocated in Mindstorms
- that LOGO can concretize the abstract - implying that children’s transition from
the concrete operational stage to formal operational thinking could be expedited by
the learning of LOGO programming.

One of the reasons that has been advanced was that younger children have
not had sufficient exposure to a variety of problem solving domains, therefore, it
would be unlikely for transfer of learning to occur. If that is the case, then future

research with LOGO need to address such issue by providing students with more

80

exposure in different problem solving situations in order to increase the likelihood of

transfer of problem solving skills.

Research methods and analyses
The last major issue that emerged from a review of the literature relates to
the research design and analyses used in a number of LOGO studies. Three major
concerns can be identified in this section: (i) use of control group; (ii) use of
traditional experimental design; and (iii) equivalence of training. The use of
traditional experimental design has been discussed in an earlier section of this
chapter and hence will not be repeated here. The following section will examine the

other two concemns.

Use of control group

A number of studies, for instance, did not employ control groups in their
investigation. For instance, Carmichael e al observed more than 400 students in 18
different classrooms and concluded that LOGO could be a powerful medium for
developing problem solving skills. However, there was really no basis for making
such a comparison. More serious concerns could be found in studies that employed
more traditional experimental design. In the study by Mayer and Fay (1987), a
conclusion was reached that LOGO programming could modestly influence
children’s thinking in areas of similar to those involved in programming.
Nonetheless, without the use of a control group, this study could not ascertain
whether the observations were the results of LOGO’s influence only. Similar
problems could be found in a number of studies, for example, Finlayson (1983),

Schaefer and Sprigle (1988), and Schibeci (1990).

Equivalence Of Training

Another major problem inherent with many of the studies reviewed relates to
the equivalence of training provided for the various groups of subjects. Quite often,
researchers would provide "LOGO training" for the experimental groups and "other
methods" such as CAI or "normal mathematic classes" for the controls. This type

of design often posed difficulty in determining the equivalence of the various kinds

81

of training for the subjects. A number of questions would arise from such
considerations, for instance, "why would certain type of CAI learning influence the
logical reasoning of the subjects?”, "Is LOGO programming superior to other types
of programming in the facilitation of cognitive gains and transfer of learning?",
"Does mediated learning in the teaching of LOGO better than the traditional method
of instruction in LOGO?". Therefore, careful consideration must be given to the use
of comparison groups in future studies.

It is in light of these consideration that the present study will attempt to
exercise tighter control in the provision of equivalence of training. To begin with,
two LOGO groups will be used - a process-oriented group and a content-oriented
group. In this way, the possible differences in the two methods of instruction will
be able to be examined. Also, a BASIC group will be used which will enable this

study to compare the effects of two different programming languages.

Summary

This chapter has reviewed a number of LOGO studies and has highlighted
some of the major concerns of LOGO research. One of the main concerns is that
the teaching and learning of LOGO has been interpreted differently by different
investigators. In some studies, a purely self-discovery approach has been adopted
whereas on the other hand, a number of studies has used various forms of teacher
intervention. Although studies that utilized teacher intervention seemed to yield
more consistent results in assisting learners in their cognitive development, the
effectiveness of instructional approaches used in the teaching of LOGO still
remained unclear. In particular, much work remain to be done in identifying
instructional approaches that may assist the transfer of problem solving skills to
other domains.

The second major concern lies in the measurement of problem solving skills
and their transfer to other domains. Few studies have given consideration of the
need to identify the type of transfer that may take place after learning LOGO
programming, and how such transfer could be measured.

The third major concern relates to the social interactions of learners while

learning to program with LOGO. Few studies have attempted to measure nor

82

control the type of social interactions that might have influenced the problem solving
skills of learners.

In order to address these three major issues, it is important to turn to the
literature in problem solving and metacognition for further guidance in the
development of problem solving skills in relation to the leaming of LOGO. It is in
light of these considerations that this thesis now turns to an examination of the
literature in problem solving and metacognition, as well as their relationship with

LOGO programming.

83
CHAPTER FIVE

PROBLEM SOLVING AND COMPUTER
PROGRAMMING: INSTRUCTIONAL
IMPLICATIONS

This chapter examines the research on problem solving and its
implications on the training of problem solving skills. The first
section provides an overview of problem solving and an outline of the
various historical approaches in the study of problem solving. The
second section analyses contemporary models and issues in the
training of problem solving skills, in particular, in the context of
learning of programming and LOGO. In the last section of this
chapter the research questions for the present study are tendered.

Overview

Problem solving, it has been suggested, is closely related to the notion of
intelligence (cf Resnick & Glaser, 1976; Rowe, 1985). For instance, Resnick and
Glaser (1976) argues that a major aspect of intelligence is the ability to solve
problems, and that the analysis of problem solving behaviour constitutes a means of
specifying many of the psychological processes that intelligence comprises. Wagner
and Sternberg (1984) have proposed three alternative conceptions of intelligence:
psychometric, Piagetian, and information processing. Their analyses demonstrate
that problem solving plays a central part in the development and measurement of
intelligence irrespective of the perspectives adopted. Indeed, Sternberg (1982a)
observes that problem solving and intelligence are so closely interrelated that it is
often difficult to make a distinction between these two concepts.

Moreover, there are also close relationships between problem solving,
intelligence, learning, thinking, and cognitive strategies. Their close relationship
could be established from a review of the literature on training of problem solving
(eg Frederiksen, 1984), learning abilities (eg Derry & Murphy, 1986), intellectual
skills (eg Wagner & Sternberg, 1984), thinking skills (Nickerson, 1988-89), and
cognitive strategies (eg McCormick, Miller & Pressley, 1989). At a conceptual

level, it could be argued that problem solving pervades all areas of learning and

84

i:ognitive activities, eg reading, writing, and thinking (Frederiksen, 1984). For
.instance, Gagné (1966) points out that the ability to formulate situationally relevant
_Jleaming strategies is a form of strategic problem solving capability. At a practical
level in terms of skills to be trained, there is a vast degree of overlap. Nisbet and
“Shucksmith (1986:28), based on the work of Feuerstein, Rand, Hoffman, Hoffman
.and Miller (1979), and Butterfield and Belmont (1977), listed a number of learning
strategies (cf Table 5.1). These strategies bear a high degree of similarity to the
skills often used in the training of problem solving including skills such as problem
representation, planning, analysis, predicting, monitoring and evaluating (eg Simon,
1980; Baker & Brown, 1984; Mayer, 1984; Baron, 1985). It should be noted
. though that there is some confusion in the literature about the distinction between
strategy and skills. For instance, strategies are generally considered as composite
methods comprising many skills, however, planning and monitoring are commonly

+ referred to as metacognitive skills.

Table 5.1

A list of common learning strategies

a. Asking questions defining hypotheses, establishing aims and
parameters of a task, discovering audience,
relating task to previous work, etc.

b. Planning deciding on tactics and timetables, reduction
of task or problem into components: what
physical or mental skills are necessary?

C. Monitoring continuous attempt to match efforts, answers
and discoveries to initial questions or
purposes.

d. Checking preliminary assessment of performance and
results.

e. Revising may be simple re-drafting or re-calculation or

may involve setting or revised goals.

f. Self-testing final self-assessment both of results and
performance on task.

85

Therefore, when discussing problem solving and the training of relevant skills
in this chapter, apart from examining those literature that focus directly on problem
solving, it is necessary to draw upon the relevant literature on training of learning

abilities, intellectual skills, thinking skills and cognitive strategies.

The study of problem solving

The basis for problem solving behaviour - problem situations - have often
been characterized in a number of ways. Johnson (1955), for instance, has
_suggested that a problem situation exists when an individual’s first goal-directed
response is unrewarding. Kohler (1927) has maintained that a problem situation
exists when an individual must take a detour to reach a goal. Vinacke (1952) has
taken a similar position, claiming that a problem situation exists when there is an
“obstacle"” to overcome. Woodworth and Schlosberg (1954) have argued that a
problem situation exists when an individual has a goal, but without a clear or well-
learned route to the goal. Still, other definitions have been proposed by Humphrey
(1951), Maltzman (1955), Ray (1955), Underwood (1952), and van de Geer (1957).
The characteristics most frequently mentioned are the integration and re-organization
of past experience in the discovery of correct responses. This is similar to the views
of Newell, Shaw and Simon (1960), who consider a genuine problem solving
process involves the repeated use of available information to initiate exploration,
which discloses, in turn, more information until a way to attain the solution is finally
discovered. A related view of Miller et al (1960) states that solving a problem is a
matter of turning up a lot of likely hypotheses until either one satisfies the test or the
stop-rule is applied. Resnick and Glaser (1976) suggest that the term "problem"
refers to a situation in which an individual is called to perform a new task although
processes or knowledge available can be used for solution.

While it seems difficult to reach consensus on a definition of problem solving
from this plethora of descriptions, one can discern some general characteristics of
problem solving. First, problem solving is goal-directed. Therefore, one of the
very first steps in solving a problem is to identify the goal to be reached. Second, it
involves the search for a possible solution in order to reach the goal state, or, the

search of a problem space which consists of physical states or knowledge states

86
(Newell & Simon, 1972; Anderson, 1980). In the process of searching for a

solution, different problem solving skills or heuristics such as functional analysis,
means-end analysis, search, and planning can be employed (cf Newell, Shaw &
Simon, 1980; Klahr & Robinson, 1981).

In the study of problem solving behaviours and how problem solving skills
might be improved, three distinct traditions could be identified: (i) Gestalt; (ii)
behavioural; and (iii) information processing models.
6)) Gestalt psychologists (eg Duncker, 1945; Kohler, 1927; Wertheimer, 1959),
the earliest group of psychologists who studied problem solving using an
experimental approach in the 1930’s and the 1940’s, conceptualized problem solving
as a process of cognitive organization. In their view, problems were analysed as
situations for which cognitive representations have gaps or inconsistencies, and
problem solving was the process to organize the situation to provide a good
structure, including satisfactory achievement of the problem goal (Greeno, 1978b).
Problem solving, hence, within the Gestalt tradition, focuses on the restructuring of
a problem so that it becomes soluble (Resnick & Glaser, 1976). Emphasis in the
Gestalt analyses is on the insightful nature of the process, and the way in which
solution follows almost immediately upon recognition of a new form of the problem.
One of the classic experiment within this tradition was the study by Kohler (1927)
who observed how a chimpanzee was able to get hold of the bananas outside a cage
after achieving some insightful discovery. However, Gestalt psychologists have
failed to provide a detail analysis of how insight might occur during problem
solving, and consequently, suggestion as to how learmners might improve their
problem solving skills.
(i) In the analyses by behavioural and associationist psychologists (eg Maltzman,
1955), a problem occurs when a) the response needed to achieve some goal is less
strong than other responses; or b) several responses are required and it is unlikely
that they all will be performed. Behavioural analyses emphasized the need for
problem solvers to perform a variety of responses and to raise the probabilities of
unusual responses, since by definition, successful problem solving depends on giving
responses that are relatively improbable. One of the major shortcomings with such

analysis is that the underlying processes associated with problem solving were never

87

made explicit. As a result, little progress was made regarding the training of
problem solving skills.
(iii) - Studies by cognitive psychologists based on an information processing
perspective since the 1970’s (e.g Newell & Simon, 1972), perhaps represent the
most currént systematic attempt in the study of problem solving behaviours to date.
The information processing approach often draws upon parallels between the
cognitive processes of the mind and the operation of a digital computer. Using a
metaphor similar to the structure and processing of a computer, information
processing psychologists postulate that the mind receives information and data from
the environment, processes the information in a central processor, then stores it in
memory and/or provides the necessary output when requi}ed. The focus of this
approach is on the measurement of how information (input) can be processed to
_provide output (Rowe, 1988b).

: Contemporary information processing models have diverged into two classes
(cf Siegler, 1983) - those that focus on the information processing system per se,
examining issues such as storage and memory (eg Atkinson & Shiffrin, 1968); and
those that focus on the interaction between information prpcessing and the task
environment (eg Newell & Simon, 1972). A high percentage of contemporary work
on problem solving and its training since the 1970’s has been influenced by theories
in the latter category, in particular, that by Newell and Simon.

In contrast to behaviourist and gestalt approaches, the major advantage of
adopting information-processing theory in studying prol_)lem solving behaviours, is
that performance in problem solving is analysed in detail, and theoretical
interpretations include specific assumptions about the component cognitive processes
involved in the performance. Information processing psychologists have taken up
the detailed analysis of problem solving that was begun by Gestalt psychologists, and
this is being done in much more rigorous and systematic ways than were
characteristic of Gestalt theory (cf Baron, 1985; Sternberg, 1982b; Pressley, 1986).
But the analyses have been relatively specialized, concerned with the details of
performance in individual tasks and often by individual subjects (Scandura, 1977;
Symons, Snyder, Cariglia-Bull, & Pressley, 1989). Information-processing theorists

have provided strong concepts for use in analysing specific tasks but there have been

88

concerns in the development of a coherent body of theory made up of general
psychological principles that explain performance in broad classes of problems and
strategies in the development of general problem solving skills.

These concerns have led to the emergence of a body of literature over the last
ten years which examines the role of metacognition - often referred to as thinking
.ébout thinking and self-regulation - in the acquisition and development of general
problem solving skills (Flavell, 1979; Baker & Brown, 1984). A number of
researchers have concluded that metacognition plays an important role in oral
communication of information, oral comprehension, reading comprehension, writing,
language acquisition, attention, memory, problem-solving social cognition, and
various types of self-control and self-instruction (eg Flavell, 1979; Reeve & Brown,
1985; Borko, Livingston, & Shavelson, 1990; Paris & Winograd, 1990b; Derry,
-1990; Chan, 1991). A more detailed discussion of metacognition and its role in

-problem solving will be presented later in this chapter.

- Training of problem solving skills

I' In the search for ways to enhance problem solving skills, a number of
training models and theories have been advanced. Among these models and
theories, three distinct perspectives of training can be discerned (Derry & Murphy,
1986). These perspectives highlight a number of issues concerning the training of
problem solving skills: (i) domain-specific versus domain-general problem solving
strategies; (ii) transfer of learning from one context to another; and (iii) the
provision of direct instruction in problem solving training. These issues will be

discussed further in the context of these three perspectives.

Perspectives on training

The first category represents an attempt to increase the impact of
conventional instruction through greater and better efforts to improve students’
problem solving and learning abilities by focussing on particular skills that are
domain-specific. For instance, Gagné and Briggs (1974) suggest that five types of
skills can be trained. These skills include: discrimination, concrete concepts,

defined concepts, rules, and higher order rules. Based on this perspective, learners

89

‘need to acquire these skills through prolonged practice in order for improvement in
problem solving to occur.

The major shortcoming of this approach is that the main purpose of
instruction focuses on the achievement of "terminal objective" (Gagné & Briggs,
1974) instead of on the de\-/elopment of generalizable problem solving skills that can
be applied to contexts other than that within which the skills were developed.
Moreover, the training within this category does not provide direct instruction as to
how specific cognitive process are involved in problem solving. Consequently,
although students might attain mastery of problem solving skills within a specific
domain through continual practice, any possibility of generalizing these skills to
other contexts is incidental and required prolonged practice.

This concern over the transfer of problem solving skills from one context to

- another has prompted a shift in emphasis from the lower order task performance
components as suggested in the training approaches in the first category, to the
metacognitive level, that is, the level of executive skills involved in problem solving
in general (Wagner & Sternberg, 1984). This change in emphasis is reflected in the
training approaches based upon the second perspective, based on Sternberg’s
process-oriented training; and the third perspectives, based on the training of
metacognitive skills.

The second perspective of training owes much to the work of Sternberg and
his colleagues (Sternberg, 1982b, 1983; Wagner & Sternberg, 1984) although early
cognitive research on problem solving have suggested t_raining approaches that are
comparable to some aspects of this approach (cf Polya, 1957; Newell, Shaw &
Simon, 1960).

The major impact of this approach comes from a process oriented training
approach which attempts to improve the general processing capabilities of the
learners that are applicable across domains (Sternberg, 1982b, 1983, 1984, 1985b;
Wagner & Sternberg, 1984). This is in direct contrast to the approaches used in the
first category (eg'Gagné and Briggs, 1974) which focus only on domain-specific
strategies. Research by Sternberg and his associates subdivide the training into three
components: (i) microcomponents (eg recall strategies, perception speed etc),

(i1) macrocomponents (eg note taking and outlining skills), and (iii) metacomponents

90

Eﬁ"(éxecuﬁve control skills such as planning, monitoring, and evaluating one’s
¢ mformanon processing that enable a person to solve a problem by mobilizing and
rgamzmg relevant micro- and macro- components) (Sternberg, 1983).
There are a number of programmes that teach general problem solving skills

based on the second approach. Some programmes teach general problem solving
skills for pa ticular educasion settings, for example, the Strategy Intervention Model
(SIM) at the University of Kansas (Deshler, Schumaker & Lenz, 1984); or teaching
: these skills via solving specific problems, eg the Training A ithmetic Problem

:.' Solving Skills (TAPS) programme at Florida State University (Derry, Hawkes &
Tsai, 1987). Another group of programmes aims to teach general problem solving
'._skills that are applicable in many different contexts. Among other more noted
-programmes are the Cognitive Research Trust (CoRT) program (de Bono, 1973,
1985) and the Productive Thinking Program (Covington, 1985).

"~ The most important component of training based upon this approach is the

: 'devclopment of the metacomponents in problem solving. Sternberg argues that it is
the metacomponents, being higher order cognitive skills, which are most important
to problem solving and most relevant to the measurement of intelligence. Moreover,
the main value of metacomponents is that they can be operationalized and directly
observed and measured. For instance, a study of planning behaviour in problem
solving by Sternberg indicates that good problem solver tend to spend more time on
higher order planning rather than lower order planning (Sternberg, 1981). The
importance of the training of the metacomponents is also reflected in the study by
Kendall, Borkowski, and Cavanaugh (1980). This study found that subjects who
were trained in the use of maintenance and generalization of interrogative strategies
were able to transfer these strategies to other problems of a similar nature.

More recent research has lent further support to the benefits of focussing on

the metacomponents in problem solving. Dansereau and his associates (1978, 1985)
have taught their subjects to use domain-general planning heuristic models
successfully in their problem solving. Studies by Baron (1981), Bransford (1984),
and Hayes (1981), inter alia, have all emphasized plans that include steps similar to

the following: (a) analysis and goal identification, (b) planning a strategy, (c)

il

carrying out the strategy, (d) checking results of the strategy, and (e¢) modifying the
strategy.

Indeed, support for focussing on the metacomponents could also be obtained
from some early cognitive research on problem solving. Polya (1957), for instance,
suggested a model which consisted of four main steps: understanding a problem,
planning, hypothesis testing, and evaluation. Newell, Shaw, and Simon (1980)
proposed a General Problem Solving Program, which apart from suggesting the
separation of problem content from problem solving technique as a way of
increasing the generality of the problem solving skills, suggested the use of generate
and test, means-end analysis, planning, identification of recursive nature of problem
solving activity and the principle of sub-goal reduction as training strategies to
enhance problem solving. Simon (1960) argues that these strategies are true general
problem solving mechanisms which should be the core of any instructional
programmes that attempt to teach general problem solving skills.

It is the metacomponents in the second training approach that are most
closely associated with the third perspective of training approaches - the training of
metacognitive strategies. As this approach bears important consideration to the
training approaches adopted in this study, it is appropriate to review it in more

detail.

Metacognition
The third training perspective is based upon the notion of metacognition.

Broadly speaking, metacognition is identified as that body of knowledge and
understanding that reflects on cognition itself (cognition about cognition), including
knowledge such as a person’s knowledge of cognitive processes and states such as
memory, attention, perception, knowledge, and inference (Wellman, 1985). In other
words, metacognition is that mental activity for which other mental activities become
the object of concern and reflection (Yussen, 1985), or the knowledge and regulation
of cognition (Armbruster & Brown, 1984).

Numerous theorists have attempted to provide detailed descriptions and

delineations of metacognition, as well as how metacognitive training could be

92

]

o nducted in order to improve problem solving skills. Flavell, one of the leading

E‘?MF 23

archers in this field, describes
metacognition as one’s knowledge concerning one’s own cognitive processes
and products or anything related to them, eg, the learning-relevant properties
‘of information or data... Metacognition refers, among other things, to the
active monitoring and consequent regulation and o'rchestration of these
processes in relation to the cognitive objects on which they bear, usually in
the service of some concrete goal or objective.
(Flavell, 1976:232)

_ Furthermore, Flavell makes a distinction between metacognitive knowledge

:_I_‘{‘and metacognitive experience. He considers metacognitive knowledge as consisting

=I¥"vprimarily of knowledge or beliefs about what factors or variables act and interact in

1what ways to affect the course and outcome of cognitive and cognitive enterprises
whereas metacognitive experience are considered as conscious experiences of a
,cogmtlve and affective nature that is pertinent to one’s intellectual life (Flavell,
19‘79) .

Flavell argues further that it is important to provide training in actions, goals,
metacognitive experience and metacognitive knowledge. Based on this model of
Flavell, a number of problem solving training strategies could be used: (i) help
leamners to build a library of problem solving heuristics (actions); (_ii) train learners
to recognize the goals of the problems (goals); (iii) enhance the frequency and
quality of experience that lead to insights about problem solving (metacognitive
experience); and (iv) help learners to build a store of information about the utility of
problem solving heuristics, including when and how to use them (metacognitive
knowledge).

A second major line of research in metacognition comes from Brown and her
colleagues (eg Brown, 1978; Campione, Brown & Ferrara, 1983). These
researchers, while agreeing with Flavell’s definition of metacognition, make a
further distinction between metacognitive knowledge and executive control. This
distinction is the result of two diverse lines of research within metacognition

(Brown, Campione & Day, 1981). The first is concerned with people’s knowledge

93

‘of their own cognitive resources. The second line of research focus on clusters of
activities consisting of the self-regulatory mechanisms used by n active learner
during n ongoing attempt to solve problems. These mechanisms include: checking
the outcome of any attempt to solve problem, planning one’s next move, monitoring
the effectiveness of any attempted action, and testing, revising, and evaluating one’s
str tegies for learning (Brown, 1978, 1982).

In light of the above clusters of activities, these researchers (eg Campione et
al, 1983) consider it necessary to make a distinction between metacognition nd
executive control. The former refers to the knowledge about cognition and the latter
to denote the overseeing, management functions. Moreover, they argue that
executive control appears more central to notions of intelligence. The premise of
their argument is that inducing executive control seems to lead to increased transfer
or to more intelligent behaviour. For instance, their research with retarded children
demonstrate that inducing executive control does facilitate both immediate response
to training and transfer‘whereas enhancing knowledge about memory does not
appear to do so, at least not to the same extent (cf Brown, 1978, 1980).

Various reviews of the literature have consistently pointed out that poor
problem solvers lack these executive control strategies (cf Brown, 1980). There is
emergin g evidence to suggest that metacognitive training, in the form of teaching
general problem-solving principles, has been particularly successful in the
intellectual performance of children with leaming problems (Brown & Campione,
1982; Campione & Brown, 1978; Belmont & Butterfield, 1977; Palincsar & Brown,
1984; Palincsar, 1986; Paris, Newman, & McVey, 1983; Reeve & Brown, 198S;
Ellis, Lenz, & Sabornie, 1987a; Chan, Cole & Morris, 1990; Paris & Winograd,
1990a; Chan, 1991). Belmont and Butterfield (1977) reviewed a total of 114 studies
on cognitive instruction and found that none of them provided metacognitive training
and that none of them reported generalization of training. On the other hand, six of
the seven studies reviewed by Belmont, Butterfield and Ferretti (1982) that produced
generalized cognition by young and mentally retarded children have instructed some
aspect of superordinate processing. Doyle (1983), after reviewing a number of
studies on training of various forms of problem solving, concluded that direct

instruction in higher level regulatory processes would likely to assist in the

94

[%

Jmprovement of problem solving. Similar conclusion was reached by Chan (1991)
~wh0 proceeded to suggest a number of conditions under which generalization of
trammg might occur, including informed training, direct executive control training,
and explicit generalization training. These reviews provide support for the
proposmon that the explicit instruction of superordinate self-management skills and
é generahzatlon training can assist the development and transfer of problem solving
slulls
' .~ One of the key features of metacognition appears to relate to consciousness
(cf the notion of Flavell on metacognitive experience & the notion of Brown et al on
executive control). The application of metacognitive strategies to solve a problem

represents a conscious effort to, (i) identify problem solving strategies irrespective of

""""the contents of the problem and solution, and (ii) to apply these strategies across

dlfferent knowledge domains. The implication is that in order to improve problem

éjf"“’nﬂ F’

solvmg skills, it is beneficial to provide learners with explicit instructions in both

problem solving and metacognitive strategies, and how they could be applied to

?
[.=
Y
!Ju
o
B
b
2y
=

Metacognition also seems to be closely related to the Piagetian notion of

equilibration. Piaget (1977) postulates that each organism is an open, active,
self-regulating system. The fact that, in healthy children and adolescents in our
civilization, this continual mental transformation tends toward order and not toward
-~ chaos would indicate - according to this hypothesis - the influence of self-regulating
processes such as those involved in a principle of equilibrium. According to Piaget
equilibration is a process of increased reflection, a turning inwards or an
interiorization of action that changes coordinated external actions into systems of
interior, reversible operations (Furth, 1969). The notions of introspection and self-
regulation are central to the study of metacognition and that of intelligence.
Furthermore, it has been argued that equilibration as the inner regulating factor
which in development leads to an increasing dissociation of the general forms of
swructured behaviour from particular content (Furth, 1969; Wadsworth, 1989). In
particular, it is important to the transferral of problem solving strategies from a
knowledge-specific domain to more general domains. This argument underpins one

of the basic premises in metacognition which suggests the need to develop executive

85

‘control strategies that are common to all forms of problem solving irrespective of
the content knowledge of a particular problem.

Some major conclusions that could be drawn from the literature on
metacognition are that successful problem solving training would need to include: (i)
training and practice of domain-specific problem solving skills; (ii) increasing the
metacognitive experience of learners during the process of problem solving; (iii)
instruction in the orchestration, overseeing, and monitoring of these skills; and (iv)
information concerning the significance and outcome of these activities and their
range of utility (cf Flavell, 1979; Baker & Brown, 1984; Haller, Child & Walberg,
1988; Chan, 1991).

In summary, the review of the literature on the training of problem solving,
learning abilities, intellectual skills, thinking skills and cognitive strategies have
clearly pointed to the benefits of the provision of instruction of self-management
skills for leamners in order to assist them in developing problem solving skills, in
particular, in applying these problem solving skills across different knowledge
domains. The next secﬁon will discuss issues in the training of problem solving in

relation to computer programming, in particular, the use of the LOGO language.

LOGO programming and problem solving

The major part of cognitive theories is based on an information processing
model of intelligence which in turn owes much to the concepts in artificial
intelligence and computer programming. When one talks about metacognitive
strategies to solve problems, it is necessary to refer to an analysis of the step-by-step
break-down of the whole process. As well, it is also necessary to look at the output,
the input and the other resources available to solve the problem, for instance,
availability of memory, focus of attention. The advantage to talk about
metacognitive strategies (executive control) in terms of computer programs is that
terms like memory and strategy can be defined in precisely stated instructions for a
computer. Furthermore, the requirement that the programs must work, that is, must
be able to solve the problem, provides a guarantee that no steps have been left

unspecified.

96

In general, learning programming is quite similar to the metacognitive steps
for problem-solving as proposed by Belmont er al (1982) in their self-management
model in solving a problem, which are:
Decide on a goal;
Make a plan to reach the goal;
Try the plan;
Ask whether the plan worked;

Ask whether the plan was actually followed;

S

Ask what was wrong with the plan and then return to step 2.

When applying the model in a programming context, this model could be
modified as a plan can be evaluated at two different points. First, the leamer can
evaluate the plan without using the computer; second, once the leamer has
ascertained the plan would work, this plan can then be tested with the computer
(Figure 5.1).

In essence, computer programming provides an excellent medium for
problem solving training to take place. On one hand, it is highly interactive, on the
other hand, the inherent activities of computer programming facilitates the
occurrence of such metacognitive training.

The structured and interactive nature of the LOGO language lends itself
particularly suitable to put this self-management model into practice (cf Chapter 3).
A number of steps can be involved in the practice - first, breaking down the problem
into different sub-problems; second, further subdividing these sub-problems into
manageable sub-problems; third, devising a plan for each sub-problem and joining
these plans together to form an overall solution for the problem; fourth, carrying out
the checking whether the plan worked; and fifth, making necessary corrections.

The use of LOGO to develop problem solving skills has been discussed in
detail in the previous chapter. It was noted that one of the major issues involved the
transfer of learming of problem solving skills to another context. Therefore, when
using LOGO to develop the problem solving skills of the learners, one must also

consider the issue of transfer of problem solving skills.

A guide to self-management in solving a problem

Figure 5.1.

oW

—— P Make a plan

What was
wrong with
the plan

BEGIN

h 4

Decide on a goal

v

Check the plan

v
Yes

h 4

Test the plan with

the computer

v
No @
i Yes

£

98

Transfer of problem solving skills

A major issue in problem solving research has been that of the transfer of
problem solving skills from one context to another. One of the central tenets in the
training of problem solving rests on an assumption of transfer. Indeed, this issue is
a crucial feature of research in computer programming and problem solving as one
of the most persuasive arguments in favour of teaching of programming concemns its
potential promotion of generalizable problem solving skills. However, to date,
research in LOGO programming and problem solving have yielded mixed results (cf
Chapter Four).

How can training with LOGO programming facilitate the transfer of problem
solving skills? A corollary to this question is: why did some of the LOGO training
did not result in transfer of problem solving skills? Two important issues need be
examined - (i) the type of transfer desired; and (ii) conditions under which transfer

may take place.

Types of transfer

Research in problem solving have consistently highlighted the distinct
differences between expert and novice problem solvers (cf Rohwer & Thomas,
1989). Expert problem solvers are those that possess the factual and declarative
knowledge, as well as effective strategic knowledge required to solve a problem. It
has been suggested that in order for novices to acquire these knowledge, extensive
practice is needed (Norman, 1978; Simon, 1980). In the case of computer
programming - often thousands of hours of practice are required (Pea & Kurland,
1984d; Dalbey & Linn, 1985). Even then, research has pointed out it is difficult
for experts to transfer these skills across domains (c.f Frederiksen, 1984; Paris &
Winograd, 1990b).

. Transfer of problem solving skills could be viewed along a number of
continua (Salomon & Perkins, 1987; Lehrer, 1989; Palumbo, 1990). One of the
most commonly referenced continuum is that of near and distant transfer. Broadly
speaking, near transfer refers to the transfer of skills to a new domain that is of
similar logical structure but different surface form while distant transfer refers to the

transfer of skills to a new domain that is of dissimilar logical structure (Gick &

99
Holyoak, 1980; Hayes & Simon, 1977; Pea & Kurland, 1984c; Burton & Magliaro,

1986). In essence, the distinction between near and distant transfer rests on the
similarity between the task environment involved in the training domain and the task
environment of the problem solving domain to which the skills is to be transferred.
Ultimately, whether transfer of skills occur or not depends on the problem solver’s
ability to recognized the connections between "problem isomorphs" - problems of
identical logical structure but different surface form - and to apply problem solving
skills learned in the training domain to the new problem solving domain (Pea &
Kurland, 1987).

In general, it is reasonable to expect that near transfer is more likely to occur
than distant transfer as the initial environment and the environment to be transferred
to have many similarities in terms of function of commands and the rationale of the
concepts (Palumbo, 1990).

Research on LOGO programming and transfer of problem solving skills has
often failed to identify what type of transfer these studies were attempting to
measure. More often than not, researchers chose certain problem solving measures
in their studies without examining how the logical structures of these problems
correspond with LOGO programming. Therefore, it is important that future studies
should differentiate between near and distant transfer by identifying and using the
appropriate problem solving measures.

A related, but also crucial question is, what kind of mechanisms can facilitate
transfer of problem solving skills? More specifically, how do computer educators
provide a programming environment that can optimize the transfer of problem

solving skills?

Conditions for transfer

Recently, Salomon and Perkins (1987) have identified two mechanisms with
which transfer can occur - low road and high road transfers. Low road transfer
depends on practice of skills to near automaticity in one context and these skills
become activated spontaneously in another context. On the other hand, high road
transfer involves mindful abstraction from one context and application to another.

While low road transfer in general requires prolonged practice in order to reach

100

automaticity, high road transfer involves conscious efforts to transfer through
reflection and monitoring, not necessarily with prolonged practice (Belmont ez al,
1982; Brown er al, 1983). In this context, concepts underpinning high road transfer
are similar to those involved in metacognitive training where deliberate effort is
required to apply skills in one domain to another.

Using their model to analyse the research findings about programming and
problem solving, Salomon and Perkins (1987) concluded that transfer of problem
solving skills was more likely to occur when high road transfer was "forced" by
instruction that directly and vigorously helps students to thinking about programming
at an abstract level, in terms of general problem solving strategies.

Two questions arise from this conclusion: how and when should high road
transfer be "forced" upon the learners in the learning of programming? Some
answers to these two questions could be obtained by examining the social
interactions within the learning environment and the type of instructions offered to

the leamners.

Social interaction

It has been suggested that the development of cognitive and metacognitive
abilities is very much a social phenomenon (Turnure, 1987; Stone, 1989;
Wadsworth, 1989) and that cognitive development is facilitated by peer interaction
(Nastasi, Clements & Battista, 1990). For instance, according to Piaget, knowledge
has a social origin in that knowledge derives meaning from social discourse, and that
learners are able to "decentralize” through constant interchange with the environment
(Piaget, 1963). Based on this premise, it can be deduced that cognitive growth, and
indeed, the development of both problem solving and metacognitive skills may have
origins in such interaction with the environment (Clements & Nastasi, 1988).

Vygotsky (1978) also argues that all higher psychological functions (eg
perception, voluntary attention) have social origins. Specifically, he claims that
adults and more capable peers mediate a child’s experience. Many of the successful
training studies have been influenced by the Vygotskian notion of guided learning

within a learner’s zone of proximal development, described as

101

the distance between the actual developmental level as determined by
independent problem solving and the level of potential development as
determined through problem solving under adult guidance or in collaboration

with more capable peers. (Vygotsky, 1978:86)

In other words, it is the distance between what a child can do working alone
and what the child can achieve with assistance (Day, Cordon & Kerwin, 1989).

Vygotsky further noted that the actual developmental level of a child
characterized his/her mental development retrospectively, while the zone of proximal
development characterized mental development prospectively. He also argued that
an essential feature of learning was the creation of the zone of proximal
development,

that is, learning awakens a variety of internal developmental processes that

are able to operate only when the child is interacting with people in his

environment and in cooperation with his peers. Once these processes are

internalized, they become part of the child’s independent developmental

achievement. (Vygotsky, 1978:90)

An important implication from Vygotsky’s argument is that within a
programming learning environment, there needs to be an increase of interaction
between teachers and learners, as well as between leamers. Further support for this
argument can be obtained from the works of Piaget which suggest that interaction
with others can serve to provoke cognitive disequilibrium which leads to learners
questioning their own thinking. Similarly, metacognitive psychologists have also
advanced that children internalize and develop their individual competencies through
collaborative social and linguistic interactions with more knowledgeable and
experienced persons with whom they come in contact, such as parents, teachers and
peers (cf Flavell, 1979; Palincsar & Brown, 1984; Chan, 1991). This implication
further underlines Papert’s (1980) notion of teachers fulfilling the role of
anthropologists by making provisions for an environment to support children’s

intellectual development.

102

Recent research on LOGO programming has also noted the importance of
social interactions within a LOGO environment (cf Chapter 4). For instance, the
work by McDougall (1988) with children leamning recursion through LOGO, clearly
highlights the importance of peer teaching and learning in achieving the
"prospective” cognitive development of the learners. Similarly, research by
Clements and his associates (eg Nastasi & Clements, 1988; Nastasi, Clements &
Battista, 1990) has clearly demonstrated the effects of social interaction on the
learning of their subjects.

A corollary to this proposition is that if the intended outcome of such
learning experience is the improvement of problem solving skills, then the focus of
such interaction should be on the skills and processes involved with problem solving,
similar to those in metacomponent or metacognitive training (cf Au, Horton & Ryba,
1987). For instance, leamners could be encouraged to reflect on their problem
solving experience and skills, and then share the experience with each other.
Teachers and more capable peers could be encouraged to assist the less capable
learners initially, but gradually transfer the control of tasks to the less able learners
(Day, Cordon, & Kerwin, 1989).

Therefore, in order to facilitate the development of problem solving skills
within a LOGO programming environment, it is important that (i) there be an
increase in social interactions between teachers and learners as well as among
learners themselves; and (i) the focus of these interactions be on the problem

solving processes.

Teacher Intervention

The role of a teacher in LOGO programming environment, apart from
fostering the social interactions as discussed above, will also need to take into
consideration of the provision of metacognitive training that is facilitative of the
development of problem solving skills.

Researchers (cf Wood, Bruner & Ross, 1976; Paris & Winograd, 1990a)
have suggested that a teacher provide a scaffold which consists essentially of the
teacher controlling those elements of the task that are initially beyond the capacity of

learners thus permitting them to concentrate upon and complete only those elements

103

that are within their range of competence. The metaphor is suggested by the fact
that a scaffold is a support system that is temporary and adjustable. The initial
scaffold may include the expression of the knowledge and cognitive strategies
involved in problem solving. In the programming context, this knowledge may
include: how to decompose a complex problem into smaller ones, how to plan a
solution, how to monitor and evaluate programming solutions, and how to analyse
and interpret error messages. In essence, this knowledge consists of both procedural
and conditional knowledge involved in solving programming problems. However,

as the learner demonstrates increasing competence, control needs be ceded to the
leamner.

In conducting metacognitive instruction, one aspires to teach students to plan,
implement, and evaluate strategic approaches to learning and problem solving.
Students, therefore, assume control of their own learning. Research evaluating
metacognitive strategy instruction suggests that this empowerment of students can be
achieved when teachers provide explicit instruction regarding efficient strategies and
gradually relinquish control for the application of these strategies to learners who are
informed regarding the purpose and consequences of their activity (cf Paris &
Winograd, 1990a; Chan, 1991).

Although there is emerging evidence in reading comprehension that
scaffolded instructions have resulted in significant gains on comprehension
assessment (eg Palincsar, 1986; Paris & Winograd, 1990a), their applications and
usefulness in a programming environment have yet to be explored.

In the teaching of programming in schools, traditionally, a content-oriented
approach has been adopted, that is, the focus has been on the content of the
language (the use of syntax of the language) rather than a process-oriented approach
(with emphasis on the processes and skills involved in constructing the solution). If
one of the assumptions in teaching programming is that of the facilitation of transfer
of problem solving skills, then there is clear need to evaluate the use of a process-

oriented approach in achieving such an aim.

104

A process-oriented approach

It is in light of the above discussion this study developed a process-oriented
approach in teaching LOGO programming with the focus on the development of
problem solving skills of the learners (Au, Horton & Ryba, 1987). This approach
takes into consideration the notions of scaffolded instructions (e.g Wood, Bruner &
Ross, 1976), self-management skills (eg Belmont e al, 1982), and social interaction
in facilitating the development of general problem solving skills (eg Vygotsky,
1978).

In particular, this approach has taken into account previous research in
LOGO programming where there was confusion of the role of a teacher. In this
instance, teacher intervention is not simply a matter of what one knows about LOGO
or the type of activities that are provided. Rather, it has to do with the ways in
which teachers talk with students, the types of questions they ask, and the sort of
discussions that take place between students and their teachers. Such points of
consideration relate very closely to how the teachers fulfil the role of anthropologist
as described by Papert (1980), and how they make provisions for an environment to
support children’s intellectual development.

Leron (1985) has suggested that teachers need specific guidance and teaching
materials to help promote students’ independence from the teacher and to provide
suitable material so as to aid the implementation of the LOGO philosophy as
enunciated by Papert. Pea, Kurland and Hawkins (1987) have also made
recommendations which point the educator in the direction of creating a LOGO
culture that is socially interactive and rich in opportunities to build bridges from
LOGO to thinking about other domains of school and life.

Based on these considerations, a process-oriented approach consists of three
important elements: (i) a series of LOGO worksheets which consist of activities for
the leamners; (ii) questioning techniques used by teachers; and (iii) provision of a
socially reflective and interactive environment. The following sections will elaborate

on each of these three elements.

105
LOGO Worksheets

The worksheets provide a sequence of activities of increasing difficulty for

the leamners (cf Chambers, 1986; Watt & Watt, 1986; Nolan & Ryba, 1986). The

general outline consists of: (i) elementary Turtle commands, eg Forward, Left etc.;
(ii) the concept of angles and turning; (iii) the Repeat command; (iv) the concept of
procedures and editing commands; (v) subprocedures and superprocedures; (vi)
management of the workspace and saving, etc.; (vii) the concept of variables; (viii)
the conditional commands; and (ix) the concept of recursion.

Some of the activities are taken from Apple LOGO (Abelson, 1982b), Apple
LOGO in the Classroom (Minnesota Educational Computing Consortium, 1983),
Leamning with LOGO (Watt, 1983b), Turtle Power Activity Book (Sharp, 1984a),
Turtle Power Thinker’s Guide (Sharp, 1984b), LOGO in the Classroom (Torgerson,
Kriley & Stone, 1984), and Assessing Learning with LOGO (Nolan & Ryba, 1986).
These activities form the basis for the development of a series of worksheets used by
students in the present study. Within these activities, students are asked to exercise
their thinking skills and to reflect upon their thinking. For instance, they are asked
to experiment with a variety of commands. They are also asked to predict command
outcomes, and if their predictions are incorrect they are asked to not only explain
what is wrong with their plans, but to re-plan their programs. As students progress
into more advanced activities and their own personal projects, they are encouraged
to follow a general problem solving model based on the work of Belmont,
Butterfield and Ferretti (1982) (cf Figure 5.1). This model encourages the students
not only to reflect upon their own thinking in a systematic manner, but also to
develop self-management and general problem solving skills such as planning,
predicting, analysis, evaluation etc.

n. Think of a plan (analysis and planning);

2. . Ask yourself if the plan would work by following every single step in the
plan (analysis and prediction);

3. Try the plan out with the computer (experimenting and monitoring);

4. If the plan does not work, ask yourself what went wrong. Make sure you

can find the mistakes (analysis and evaluation);

106
5. Change your plan and then try it out again (repeat the same process al over
again).

Within this approach, students are also taught the skills such as breaking
down a complex problem into increasingly smaller problems until the smaller
problems are at a level simple enough for students to solve. For instance, in the
more advanced activity sheets and their personal projects, students are reminded
every now and again that "When you try to solve a complicated problem, it is useful
to break down this problem into smaller subproblems and then solve these simpler
subproblems one by one". Structure diagrams are used as tools to help students
break down these complicated problems until the subproblems are manageable. The
structured nature of the LOGO language provides an excellent medium for teaching

these skills.

Teacher Questioning

Teacher questioning is used to complement the worksheets. Instead of
providing answers to the students, teachers always try to encourage them to think
about their own thinking by asking them questions which were embedded in a
natural a dialogue as possible. For instance, when a student has problems, a
teacher would ask questions such as, "Why did you do that?" "Is that what you want
to do?" "Where do you think you have gone wrong?" "What do you think you
should do?" "Have you planned that?" "How are you going to fix it?" etc. The
teachers always avoid giving answers to the students except when it is apparent that
they cannot proceed any further. Instead, the teachers impel the students to reflect
on their own thinking, hence helping them to develop and practise a set of general
problem solving skills. For instance, these types of questions and suggestions are
classified under the sorts of processes that students are being encouraged to use:
Prediction: Draw what you guess will happen.
Experimentation: Play around with different numbers for the REPEAT command.
Planning: Make a plan first, then try it out on the computer.
Analysis and Evaluation: What was wrong with your plan, and how are you going

to change it?

107

Moreover, within a process-oriented approach, teachers help students foster
their abstract thinking. Initially, when students are trying to predict the movements
of the Turtle or to plan a certain drawing, they are encouraged to walk out the
movements of the Turtle either individually or in a group, or to draw the Turtle’s
path on a piece of paper. Later on, they are urged to think it through in their own
minds rather than act it out physically. In addition to the exercises offered in the
worksheets, at the end of each learning lesson, students are presented with

challenges from the teacher in order to facilitate and promote abstract thinking.

Socially Interactive and Reflective Environment

The role of the teacher also includes providing for a socially interactive and
reflective environment. In a process-oriented approach, teachers encourage students
to discuss with others the reasons and the ways by which they obtain certain
solutions. These discussions are carried out eithér in small groups or by the class as
a whole. The major focus of these discussions is on the processes by which they
arrive at their solutions rather than on the product alone. As well, at the beginning
or the end of each session, the teacher provides some interesting problems for the
whole class. Then students explain to the class how they come up with their
solutions. They also share with the others different ways that could be used to
obtain the same solution.

Moreover, students are required to do their own experimenting, predicting,
planning, evaluation etc, off the computer so that they would have time to think
through their steps rather than being too preoccupied with the use of the computer.
Hence this environment of learning, besides being socially interactive, is also
reflective; students are encouraged to reflect upon and monitor their own leaming.
This socially interactive and reflective environment forms an integral part of the
process-oriented approach in teaching LOGO.

In summary, a process-oriented approach, apart from teaching students the
syntaxes of a programming language, also attempts to provide appropriate training
for the students in order to facilitate the development of their problem solving skills.
One of the main aims of this study is to examine if there is any difference in the

development of problem solving skills among students who learn LOGO using

108

process-oriented and content-oriented approaches. Table 5.2 provides a comparison
between a process-oriented approach and a traditional content-oriented approach in
the teaching of programming. The differences between the two approaches have

been polarised to make these differences clearer.

Table 5.2

Comparison between process-oriented and content-oriented approaches

Process-oriented approach | Content-oriented approach |
Explicit teaching of problem solving Explicit teaching of the programming
processes and programming language | language

Students praised for using appropriate | Students praised for arriving at correct
problem solving skills solutions

Self-referential thinking taught and Spontaneous development of self-
encouraged referential thinking

Group interactions encouraged Individual work encouraged

Social skills directly taught Social skills assumed

Teacher questioning focuses on Teacher questioning focus on

problem solving processes programming syntax

Worksheets emphasize problem Worksheets emphasize learning of
solving skills and self-referential programming syntax

thinking

Students encouraged to share and Spontaneous sharing and discussing
discuss problem solving processes problem solving processes
Self-discovery highly encouraged More structured activities

Explicit teaching of applications of Spontaneous recognition of application
problem solving skills to other of problem solving skills to other
contexts contexts

Research questions of this study
It has been highlighted in Chapter Four that one of the major concerns with

existing LOGO research is the lack of attention to the instructional methods used. It

109

has also been raised in this chapter that consideration needs be given to the
relationship between instructional methods and the development of problem solving
skills. Therefore, when examining LOGO programming and problem solving, it is
important to exercise tighter control on the types of instructional methods used.

While the comparison of two different instructional approaches would provide
information on the teaching of LOGO programming and the development of problem
solving skills, some researchers have argued that BASIC - another popular computer
language used in schools - could be used in a similar way to develop problem
solving skills (Dalbey & Linn 1986; Mayer, Dyck & Vilberg, 1989; Norris,

Jackson, & Poirot, 1992). Therefore, it was decided to include the comparison of a
third group of students learning BASIC using a content-oriented approach which has
been the typical approach used in the teaching of BASIC in schools.

In examining the literature of problem solving and transfer in this chapter and
the measurement of development of problem solving skills in Chapter Four, it has
become apparent that one of the major issues in the study of problem solving related
to the measurement of problem solving skills. This literature suggests that it is
important to identify the type of problem solving measures used, in particular,
whether the measures used are of near or distant nature to the problem solving skills
used in LOGO programming. Thus it was decided to incorporate measures both of
a distant- and near- transfer nature in this study in order to gauge the development
of problem solving skills of the subjects.

In light of the above discussion, this study seeks to examine if there is any
difference in:

(1) problem solving skills of learners with the two programming languages -

LOGO & BASIC,;

(i) problem solving skills of learners with the two instructional methods -
process-oriented and content-oriented approaches; and

(i11) the interaction among students in the various programming groups.

110
CHAPTER SIX

RESEARCH DESIGN AND METHODOLOGY

This chapter focuses on the design and methodology of the
present study. A rationale is established for using an experimental
approach as well as an observational approach to data collection. A
detailed account of the evolution of the research through a pilot study
is then given. The development of the measuring instruments,
teaching modules and teaching strategies for the three different
programming groups are reported. The final section of this chapter
tenders the hypotheses of this study and describes procedures used in
the analyses of the data.

Overview of research desig}l

On the basis of Trow’s well established research principle, namely, that ’the
research problem under investigation properly dictates the method of investigation’
(Trow, 1957), it was decided that two different data collection methods would best
answer the research questions in this study.

First, in order to evaluate any changes in the problem solving skills of the
subjects as a result of learning programming, a traditional experimental design with
pre- and post-tests was considered suitable to answer the first two questions of this
study (see Chapter Five, p. 109). Therefore, evaluations of the problem solving
skills of the subjects were made before and after the intervention phase. The
independent variables in this study were the instructional conditions and
programming languages. The dependent variables measured by the experimental
design were problem solving skills assessed by a number of instruments including (i)
the Mathematics sub-test of the Progressive Achievement Test; (ii) three sub-tests of
the Wechsler Intelligence Scale for Children Revised - Picture Arrangement, Block
Design, and Object Assembly; (iii) the Raven’s Standard Progressive Matrices; (iv)
Rule Naming Test; (v) the Torrance Test of Creative Thinking; and (vi) the Tower
of Hanoi.

Four subject groups were used in both the pilot and the main studies - three

experimental groups and a control group. Subjects were randomly allocated to one

111

of the groups with different instructional conditions. Further elaboration on these
instructional conditions will be provided in a later section of this chapter. A

schematic representation of the experimental design is provided in Table 6.1.

Table 6.1

Schematic representation of the experimental design

Subject Group " Instructional Condition I

Using a process-oriented instructional condition
with emphasis being placed upon the skills and
processes of problem solving as well as the
syntaxes of the LOGO programming language

LOGO process-oriented

with emphasis being placed upon the content

LOGO content-oriented ‘ Using a content-oriented instructional condition
(syntaxes) of the LOGO programming language

BASIC | Using a content-oriented instructional condition
with emphasis being placed upon the content
(syntaxes) of the BASIC programming language

Control No treatment

Along with the experimental measures, a decision was made to collect
information on the processes of teaching and leaming during the intervention phase.
Hence systematic observations were made during the intervention phase of this study
in relation to the teaching strategies, individual students and group interactions
among the students. These measurements and observations will be described in

detail in later sections of this chapter.

Pilot Phase
The results of ongoing research and systematic observation provided a logical

basis upon which to design the teaching programmes ultimately used in this
Note On Ecological validity

The decision 1o collect observational data was made in order to strengthen the ecological validity of this study. Some researchers have
3f8‘{€d that a pre-post experimental design is not sufficiently sophisticated to evaluate the effectiveness of LOGO learning that occurs during
fhe Intervention phase (cf Papert, 1987). For this reason, the approach adopted in this study has been to obtain further information on the
mlervem.ion methods through observations and analysis of students and teachers interactions in the LOGO environment. It is argued that
observational data will provide the researcher with a deeper understanding of the teaching and learning processes within each intervention

method which could not be gauged by a simple pre-post experimental design.

112

investigation. Following are some of the developments made in preparation for trial

evaluation of the teaching programmes:

1. From observations in previous research, it was considered important for the
students to work with worksheets and computers individually so that they
would be able to proceed at their own pace.

2 Activities contained in the worksheets were designed in sequence that
progressed from the simple to the complex (cf Chapter 3 and 5). As well,
the activities were designed to be challenging for subjects of the appropriate
age group and appropriate to the various instructional conditions of this
study.

3. In conjunction with the worksheets, teachers were trained to reflect the
appropriate instructional conditions used in the design of this study.

4, Printers were interfaced with the microcomputers so that students could
obtain hard copies of their work in the form of graphics and programs. The
students could then take their work home and analyse their work if needed.
As well, the hardcopy could then be given to the students as a personal copy
of their work while a duplicate printout was retained for file records.

5 Careful consultations were made with the principal and the teachers of the
school so as to ensure their full cooperation. As well, arrangements were
made with parent volunteers to transport the children involved with the pilot
study from the school to the university where the teaching phase of the pilot

study took place.

After completion of the implementation of the modifications described in the
previous section, a pilot study was undertaken prior to the major study.

The purpose of the pilot phase was to test out some of the innovative
elements (eg the use of various instructional conditions including the construction of
the worksheets and the questioning techniques of the teachers) and implementation
procedures of the project. It was decided to carry out a small scale study identical
in format to the main study, but which involved only eight subjects, that was

equivalent to one-tenth of the number required for the major project. The pilot

113

phase took place over a period of four months, from September to December in

1985. A brief account of the pilot study and its evaluation is presented here.

ubjects

Eight students randomly selected from 45 students in the standard four
classes of the Hokowhitu School, Palmerston North, participated in the pilot phase.
As the major study would involve standard three and standard four children in this
school in the following year (1986), only the students in standard four classes were
included in the pilot, to leave current standard three students free to participate next
year. Permission for their participation in the study was obtained from the school,
the regional Education Board, and the children’s parents. A record was kept on
each child. The record included the child’s name and identification, sex, age,
birthday, classroom, address, parents’ occupation, group assignment and results of
all dependent measures. The age of the children ranged from 9 to 10 years.

Eight subjects were randomly assigned such that two subjects were placed in
each of the four instructional groups as discussed in the overview of this chapter.
Each pair consisted of one boy and one girl.

(1 Process-oriented LOGO pair. Subjects were taught to program in LOGO

using a process-oriented approach, with the emphasis on the processes of
programming as well the contents.

() Content-oriented L OGO pair. Subjects were taught to program in LOGO

using the traditional way of instruction, with the emphasis on the content of
programming only.
(3) BASIC pair. Subjects were taught to program in BASIC using the traditional
way of instruction, with the emphasis on the content of programming only.
(4) Control pair. This was a "no-treatment" group. However, subjects were
given the opportunity to leamm how to program in LOGO upon the conclusion

of the post-test.

114

Procedure

All the eight subjects were pre- and post-tested with a number of academic
achievement and problem solving measures which will be described in the latter part
of this chapter. After the pre-testing had concluded, the subjects in the experimental
groups were then taught how to program. A brief description of the teaching

approaches used with each pairs of students is given below.

1. Process-oriented LOGO pair

The first pair was taught to program in LOGO using a process-oriented
approach (cf Chapter Five). In essence, this group was taught using a guided-
discovery approach with plenty of opportunitiés for the leamners to explore and
reflect upon their processes of problem solving. The teacher acted as a facilitator
rather than as an instructor. For instance, instead of providing answers to the
students’ questions, the teacher would ask questions in an attempt to assist the
students to clarify their problems and reflect on their own thinking. The teacher
also provided a socially interactive and reflective environment for the learners by
encouraging the students to discuss their work and problems. As well, in the
worksheets provided, the students were encouraged to plan their work carefully, and
if their solutions were not correct, to evaluate their work carefully in order to find
the right solutions.

2. Contented-oriented LOGO pair

The second pair was taught to program in LOGO using a conventional form
of instruction. This approach primarily stresses the learning of program operations
and syntax through a series of instructional modules which systematically introduced
students to the various LOGO concepts (cf Chapter Five). However, the emphasis
here was on the content of programming. By contrast with the process-oriented
pair, there was relatively less freedom to explore and develop own ideas. Children
were free, however, to work independently at the tasks contained in the worksheets.
The lessons for this pair were adapted from several popular LOGO books and
manuals (eg McDougall, Adams & Adams, 1982; Ross, 1983).

515

3. BASIC pair
The third pair was taught to program in BASIC, the language that was most

commonly available for microcomputers. The approach adopted for this group was
similar to that in the LOGO content-oriented pair. Emphasis was on the teaching of
the syntaxes and various operations in BASIC. Most of the commercially available
BASIC programming books (eg Zaks, 1983; Boren, 1984; Grauer, Gordon &
Schemel, 1984) tend to follow this instructional approach. The lessons for this
group were adapted from several popular BASIC books and teaching manuals.

4. Control pair

The fourth pair served as the "no-treatment” group to account for factors

such as maturation and other experience during the pilot phase.

During the programming phase, each child was given two programming
sessions each week for six weeks learning to program at the Microcomputer
Leamning Centre of the Education Department of Massey University. In each session
which lasted one hour, students spent about half of their time at a computer
individually and half of their time off the computer, in segments of about 15 minutes
alternately. While off the computer, they spent their time working through the
worksheets either individually or in small groups.

Three graduates from the Massey University course "Computers in
Education" served as the programming instructors. All of them were familiar with
the programming languages that they taught. In addition, the researcher was present
at each session to monitor their teaching. Regular meetings were held between the
researcher and individual teachers so as to ensure that they had adhered to the
teaching strategies appropriate to each instructional condition.

The programming phase concluded in late December, 1985 with all the
students having had 12 programming sessions as noted above. At the end of the
programming phase, all the subjects, including those in the non-programming group,
were post-tested with the battery of tests used during the pre-test. The following is
a description of the measurement instruments used.

These measurements included: three sub-tests of the Progressive Achievement

Tests (PAT) - Mathematics, Listening Comprehension, and Reading Comprehension;

116

three sub-tests of the Wechsler Intelligence Scale for Children Revised (WISC-R) -
Picture Arrangement, Block Design, and Object Assembly; Raven’s Standard
Progressive Matrices; Rule Naming Test; Torrance Test of Creative Thinking; and
Tower of Hanoi.

The following is a description of the specific tests used in this study:

1. The Progressive Achievement Tests. These tests were published by the New

Zealand Council for Educational Research to assess the academic
performance of students in New Zealand schools. Three sub-tests were
chosen in this study - Mathematics, Listening Comprehension and Reading
Comprehension. The PAT Listening Comprehension and Reading
Comprehension sub-tests were used in the prc;,-test only to screen the subjects
and establish academic achievement levels. The Mathematics sub-test was
used to gauge any improvement of general mathematical problem solving
ability of the subjects.

The administration of these three sub-tests followed strictly the
procedures stipulated by the Teacher’s Manuals (Elley & Reid, 1969, 1971;
Reid & Hughes, 1974) of these tests. Alternate forms of these three tests

were used for each of these tests.

& The Wechsler Intelligence Scale for Children Revised (Wechsler, 1974).

Three sub-tests were chosen among this battery of tests. These sub-tests
were: Picture Arrangement, Block Design, and Object Assembly. Following

is a description of these three sub-tests.

(1) Picture Arrangement. This sub-test consists of eleven different cut-up

pictures, or picture sequences to be assembled, graded in order of difficulty.
The first four are given to children below the age of eight or to older
suspected mentally retarded children. The remaining eight are qualitatively
different in that they consisted of picture sequences, which when placed side
by side in the proper order tell a logical story of actions or consequences.

Time credits are given for speed of arrangement and there are time limits.

117

This sub-test, according to the publisher, measures non-verbal
intelligence factors such as planning involving sequential and causal events
and synthesis into intelligible wholes. Therefore, this sub-test was used in
the present study to gauge the ability of the subjects to plan sequentially as
well as their ability to synthesize components into logical wholes. These are
the abilities that are supposed to have developed after leaming how to

program, especially with the LOGO language.

(i) Block Design. This sub-test consists of ten two-dimensional designs to

be reproduced with multicoloured blocks within time limits. These blocks
have red on two sides, white on two sides, and red/white on two sides. The
first two designs are copied from the examiner’s block construction rather
than a picture, and given only to children below the age of 8 or to older
suspected mentally retarded children. The remaining eight designs are
reproduced from a pictorial pattern shown to the child. The first seven
patterns use four blocks, the last three call for nine blocks. All designs are
symmetrical and thus involve some degree of pattern repetition, either top-
down or right-left.

This sub-test, according to the publisher, measures non-verbal
intelligence factors such as analysis, synthesis, and reproduction of abstract
designs. As well, it also measures logic and reasoning applied to space
relationships. This sub-test was used in the present research to gauge the
non-verbal problem solving ability of the subjects, in particular, their ability
of developing a purposeful use of three essential planning and analysis
components, including identifying the components, envisaging each as a

separate entity and putting them to make up the whole (synthesis).

(111) Object Assembly. This sub-test consists of four cut-up picture

puzzles of a girl, a horse, a car, and a face to be assembled within time
limits. Time credits are given for speed.
According to the publisher, this sub-test measures the ability of the

subject to anticipate spatial part-whole relationship and flexibility in working

118

toward a goal. One important difference between Block Design and Object
Assembly should be noted. Whereas the blocks must be assembled to match
a pattern, the objects must be assembled with no clues beyond naming the
"Girl" and the "Horse", and no leads at all for the "Face and the "Car".

Thus the subject must look for the key to each object, figuring out in advance
what he/she is constructing, and then solve the puzzle systematically. Hence
this sub-test was used to gauge the ability of the subjects to identify a
problem and its components, and then formulate the solution accordingly. It
was also used to measure the ability of the subjects to synthesize parts of a
solution together. The skills to analyse and synthesize are important skills to

be developed in programming.

Raven’s Standard Proeressive Matrices (SPM). This sub-test contains five

sections each of twelve items printed in a booklet for use with a separate
answer sheet. Each of the sixty items is a design or "matrix" from which a
part has been removed. A subject is required to examine the design and
decide from a number of pieces given below it, which is the right one to
complete it. In each of the five sets the first problem is as nearly as possible
self-evident. The problems that follow the first one become progressively
more difficult. The order of the items provides the standard training in the
method of working. The five sets provide five opportunities for grasping the
method and five progressive assessments of a person’s capacity for
intellectual activity (Raven, Court & Raven, 1984).

This test was designed by Raven as a test of a person’s capacity at the
time of the test to apprehend meaningless figures presented for his/her
observation, see the relations between them, conceive the nature of the figure
completing each system of relations presented, and by so doing, develop a
systematic method of reasoning (Raven, 1956). Hence this test has generally
been used to measure the general non-verbal problem solving ability of a
person such as visual analysis and checking. A study by Horton & Ryba
(1986) observed an apparent increase in a person’s scores with the Raven’s

Standard Progressive Matrices after learning to program with the LOGO

119
language, suggesting that a person’s ability measured by this test might

increase after learning how to program.

Torrance Test of Creative Thinking. This is a test designed by

Torrance and his colleagues (Torrance, 1966, 1972, 1974) to assess the
creative thinking potential of the subjects. This test consists of two forms,
the verbal and the figural. Only the figural test was used in this project as
one of the major objectives of this study was to assess the non-verbal
problem solving skills of the subjects. The Figural test includes three
activities with an overall administration time of 30 minutes, 10 minutes for
each activity. Four components of divergent thinking can be discerned in
this test: originality, flexibility, fluency and elaboration. The first task,
Picture Construction, is designed to stimulate originality and elaboration.
The two succeeding tasks, Incomplete figures and Repeated Figures,
increasingly elicit greater variability in fluency, flexibility, originality, and
elaboration. There is not enough time to complete all of the possible units
and make them highly elaborate or original. Thus, response tendencies and
preferences emerge as a result of time pressure.

In the first activity, Picture Construction, subjects are required to
think of a picture in which the given shape made of coloured paper with an
adhesive backing (in Form A, a tear drop or pear shape; in Form B, a jelly
bean shape) is an integral part. An effort is made to elicit an original
response by asking subjects to try to think of something that no one else in
the group will produce. Elaboration is encouraged by the instructions to add
ideas that will make the picture tell as complete and as interesting a story as
possible. Thus the product is evaluated only for originality and elaboration.

The Incomplete Figures Activity consists of ten incomplete figures.
Subjects are asked to complete each figure. Each completed figure is scored
for flexibility, fluency, originality, and elaboration.

The Repeated Figures Activity is similar to the Incomplete Figures
Activity. The stimulus material in Form A is 30 parallel lines and in Form B

it is 40 circles. The common element tested is the ability to make multiple

120

associations to a single stimulus. In this activity, a deliberate attempt is
made to stimulate all four types of divergent thinking and to set up a conflict
among the response tendencies represented by them. Fluency is stimulated
by the instructions, "see how many objects or pictures you can make";
flexibility, by "make as many different pictures and objects as you can";
originality, by "try to think of many ideas as you can into each one and make
them tell as complete and interesting a story as you can." The time is not
adequate to permit emphasis on all four kinds of thinking. Thus, individual
response tendencies come into play.

The instrument was used as part of the battery of tests in this study to
measure any changes in the creativity of the learners. Creativity is
considered by many problem researchers as part of problem solving (cf
Frederiksen, 1984). A study by Clements & Gullo (1984) observed a
significant increase in learners’ creativity after having learnt to program with
LOGO. The study by Clements & Gullo suggests that a person’s divergent
thinking might improve after learning to program with LOGO. Similarly, a
study by Horton (1986) also indicated that a person’s creativity might
improve after having learned to program with LOGO. Therefore, it was
considered important to examine the possible development of a person’s

creative thinking in this study.

Rule Naming Test. This test was initially designed by Bourne (1970) and

since has been used in numerous research projects, among which was the
Lamplighter Project which investigated the relationship between computer
programming and logical thinking (Gorman & Bourne, 1983). This project
used the rule naming test to assess the possible gains in logical thinking of
subjects after the learning of computer programming.

For the rule naming test, a stimulus universe of four trinary variables
was created. Cards of the 81 combinations of colour (red, yellow, or blue),
shape (circle, square, or triangle), size (small, medium, or large), and
number (one, two or three) were made. Forty cards of each of four

problems were arranged such that every run of 4 cards contained one

121

exemplar of each truth-table category and every run of 10 cards contained
two exemplars of each truth-table category. Otherwise, the cards were
ordered randomly. Four rule naming tests were used, all based on the
conditional (if...then) rule, but different in relevant attributes - blue and
square, circle and yellow, red and triangle, and square and one. The first
one was used as a non-scoring trial run so that all the subjects could become
familiar with the procedures of completing the test.

The subjects were tested individually. The rule naming test was
presented as a game in which the objective was to determine the rule between
the attributes named (see Appendix 3, instructions for administration). The
subjects were told that they would see cards that varied in colour, size, shape
and number. They then saw 11 sample cards that they described completely.
Next, they viewed the test cards, one at a time, indicated whether each card
obeyed or broke the unidentified rule, and received feedback on their answers
in relation to whether the answers were correct. Prior to each problem, the
subjects were told what the relevant attributes were and that they would be
given "hints" during the game. The hints were merely reminders of the two
relevant attributes and were to the students at the beginning of each problem
and after cards 20, 40, 60, and 80. On each of the four problems, the
students worked to a criterion of 12 consecutive correct judgments or until
they had seen 100 cards. Answers to each individual problem were recorded
on separate scoring sheets (see Appendix 4).

The rationale for choosing a rule naming test in the present study was
fivefold: First, Bourne (1970) showed (i) that there was a style of thinking
that one learns from solving any of the four binary rules (conjunctive,
disjunctive, conditional, and biconditional), (ii) this cognitive style transfers
positively to learning all of the other rules, and (iii) this style involves a
process of categorization like that of sorting by truth tables. Such a mode of
thinking, was attributed to computer programming (Kolata, 1982). Second,
the LOGO language is especially rich in exemplars of independent attributes
such as turtle steps, turtle angles, coordinates, turtle heading, number of

repeats etc. Third, the rule naming test can be scored by the more sensitive

122

measures of number of errors to criterion and number of trials to criterion,
rather than by just success-failure. Fourth, Bourne & O’Banion (1971) found
a developmental trend in difficulty of problem solution such that the
conjunctive rule was easiest and the biconditional most difficult. Fifth, the
rule naming test appears to correspond with one of Sternberg’s
metacomponents, i.e. selection and combination of attributes relevant to task
completion (cf Clements, 1985a, 1985b). The conditional rule was selected
for the present study because it is moderately difficult for 8 - 10 year old

children.

Tower of Hanoi. The Tower of Hanoi is structured as a set of nested

sub-problems having the property of recursion. There are three pegs and on
one peg are arranged a number of disks of increasing size from top to
bottom. The task is to reconstruct the Tower on either the second or the
third peg in the minimum number of moves under the constraint of two rules:
(1) a larger disk cannot be placed on top of a smaller one, and (2) only one
disk can be moved at a time. For each set of disks there is a minimum
number of moves according to the formula 2" -1 with n equal to the number
of disks. The problem is recursive in that a problem of n disks can be
decomposed into sub-problems of the n-1 form.

This puzzle was chosen because of the structural similarities between
this puzzle and the LOGO language and the similar forms of problem solving
that this puzzle and LOGO programming facilitate. One method that has
proved successful in studying individual differences in approaching
programming has been to present subjects with two tasks, an "indicator’ task
and a programming “target” task (Coombs, Gibson & Alty, 1981). For a
task to be a good indicator of its target, it must be well-understood,
performance on it must be easily studied, and there must be similarities
between the two tasks which make performance on the indicator task a basis
for generating hypotheses about strategies and performance on the target task.

The Tower of Hanoi was chosen because it fulfilled these three

requirements for an indicator task for LOGO programming:

123

(1) Itis a well-known task that has been extensively studied in the
literature on problem-solving (Anzai & Simon, 1979; Klahr &
Robinson, 1981; Luger, 1976; Luger & Steen, 1981; Neilsson, 1971;
Piaget, 1976; Simon, 1976, 1979).

(2) The puzzle is representative of a class of transformation problems
which involve reaching a goal through a sequence of moves. As such
and because it is a physical puzzle, it involves a series of observable
steps so the decision-making process of the child is accessible for
analysis.

3) It has structural features in common with the LOGO language and

facilitates a similar approach to problem solving.

In summary then, there is a number of similarities between the two
tasks which provide a basis for the relationship of indicator task to target
task. There are structural characteristics in common and fundamental
similarities in the way in which the problems posed in the two tasks can be
broken down into sub-problems and these elements built into a solution.
Therefore, the Tower of Hanoi was considered appropriate to measure the
transfer of problem solving skills from a LOGO programming context to a
near-transfer context.

Four problems were administered to subjects individually: 2-disk
problem, which was used as a non-scoring trial; 3-disk problem; 4-disk
problem; and 5-disk problem. The rules of this puzzle were explained to the
subjects and they were urged to regard this test as a game (see Appendix 5,
instructions for administration). Scoring sheets (Appendix 6) were used so
that each move by the subject could be recorded for later analysis.

To quantify the subjects’ performance on the Tower of Hanoi, two
scoring systems were used. The first one was the total number of moves a
subject required to solve each problem. The second one was according to the
recursive, sub-problem nature of the Tower of Hanoi. The second scoring
system was used to measure the percentage of sub-problems solved correctly.

To solve a three disk problem, a subject must solve a series of 2-disk sub-

124

problems. The second scoring system measured the percentage of 2-disk
sub-problems solved correctly. Similarly, a four-disk problem consisted of a
series of 2-disk and 3-disk sub-problems, the second scoring system then
measured the percentage of 2-disk and 3-disk sub-problems correctly; a five-
disk problem consisted of a series of 2-disk, 3-disk and 4-disk sub-problems,
the second scoring system then measured the percentage of 2-disk, 3-disk and
4-disk sub-problems correctly. Appendix 7 provides an example of the
calculation of the 2-disk and 3-disk sub-problem scores of a four-disk

problem of the Tower of Hanoi.

Evaluation of pilot phase

Given the small number of subjects in each group, it was not meaningful to
perform any statistical test on the pre- and post-test scores. However, the trial
evaluation served as a basis for obtaining observational and anecdotal data on
practical aspects of this project. The following sections provide an evaluation of this
pilot phase.

During this period, much information was obtained in relation to the
procedures of implementation. For instance, it was observed that given proper
instructions, children did not have mzpy problems leamning how to operate a
computer physically by themselves. The subjects were given full control of the
operations of the computer, such as switching on and off the computers, and using
floppy discs to store and retrieve their own work. As well, the subjects in the pilot
study demonstrated much enthusiasm in learning how to program with a computer.
This was reflected in that absenteeism was minimal and only occurred when the
subjects were sick. Moreover, the children involved in the pilot study did not seem
to have too much difficulty in learning the programming languages.

During the pilot study, the researcher was able to observe the social
interaction of the subjects while they were learning how to program. Although a
small number of subjects were used in the pilot study, it was observed that there
were substantially more interactions among the subjects, especially among those in

the two LOGO pairs, as compared to those in a traditional classroom.

125

As well, the pilot study provided opportunities for the researcher to examine
the different procedures involved with the administration of the various problem
solving measurements to the subjects both in groups and individually. These
observations served as a basis for the standardization of the administering of the
problem solving instruments to the subjects in the main study.

In this particular study, there were three innovative aspects that needed to be
examined and developed in the pilot phase before proceeding to the major study.
These aspects were:

(A) The teaching modules for the three different programming groups;
(B) The role of the teachers for the three different programming groups;
(C) Some of the instruments for measuring problem solving skills. Observations

related to these three aspects will now be discussed.

A. The Teaching Modules

In general, it was found that the subjects did not have much difficulty with
the understanding of the modules, showing that the ways that the modules were
designed were suitable to the reading and comprehension levels of the subjects who
had an average reading level of approximately standard three to standard four.

Based on the comments of the teachers and the students, a number of changes
were made to the teaching modules for the three teaching groups.

Modifications were made in relation to the content of each module to enable
the children to finish each module within one hour. This was considered desirable
for administrative purposes and to maintain pupil self-confidence.

Additional exercises were included at the end of each module so as to
provide (i) extra practices for the students; and (ii) continuity from session to
session.

Other alterations were made to the structure of the teaching modules so that
they could reflect the differences between the process-oriented and content-oriented
approaches (Au, Horton & Ryba, 1987). For instance, more questions that could
help children to reflect on their thinking were added to the modules for the process-
oriented group. As well, systematic introduction to the various problems solving

skills and a model of problem solving (Belmont, Butterfield & Ferretti, 1982; cf

126

Figure 5.1) were incorporated into these modules. Further modifications were made
to the content-oriented modules so that a clearer distinction was made between the
process-oriented and content-oriented approaches. These distinctions were further
enhanced with the input of the teachers who were responsible for teaching the three
different groups. These input included the type of questions asked of the students,
how teachers might respond to the questions of the students, the structure and
content of the worksheets, and the organization of group work among the students.
The role of the teachers including the types of questions they used will now be

discussed.

B. The Role of the Teachers

The role of the teachers was considered vital in the distinction between the
process-oriented and content-oriented approaches. Two components could be
discerned: (i) teacher questioning, and (ii) provision of appropriate learning
environments.

Teacher questioning was considered as an important element in the process-
oriented approach to promote self-referential thinking. It was used to complement
the sets of structured activities in the teaching modules. Teachers, instead of
providing answers to the students, always tried to encourage them to think about
their own thinking by asking them questions which were embedded in as natural a
dialogue as possible. For instance, when a student had problems, the teacher would
ask questions such as "explain how it can draw?", "why did you do that?", "is that
what you want to do?", "where do you think you have gone wrong?", "check it
carefully.", "what do you think you should do?", "have you planned that?", "how
are you going to fix it?", "follow your plan right through." etc. The teacher always
avoided giving answers to the students except when they were really stuck. Instead,
the teacher always impelled the students to reflect on their own thinking, hence
helping the leaners to develop and practise a set of general problem-solving skills.

As the students became better able to perform these skills, the teachers then
increased their demands until the students became increasingly able to control their
cognitive processing, shifting from conscious other-regulation to conscious self-

regulation. The change to self-monitoring constitutes a major step in the students’

127

learning and enhances the transferability of those problem-solving skills to other
contexts (Papert, 1980; Campione, Brown & Ferrara, 1983). It has been
demonstrated that metacognitive training, which teaches these general problem-
solving skills, can produce durable and generalizable improvement in performance in
other domains (cf Baker & Brown, 1984).

Moreover, students were assisted to foster their abstract thinking. Initially,
when the students were trying to predict the movements of the turtle or to plan a
certain drawing, they were encouraged to "walk-out" the movements of the turtle
either individually or in a group. This activity forms part of Papert’s exposition of
concretizing the formal (Papert, 1980). Later on, they were urged to think through
in their own mind rather than acting it out physically. Besides the exercises offered
in the worksheets, at the end of each learning session, students were presented with
challenges from the teacher with the view to improve their abstract thinking.

Apart from the use of structured worksheets and meaningful questioning, the
role of the teacher also included that of the provision of a socially interactive and
reflective environment (cf Vygotsky, 1978). In a process-oriented approach,
teachers would encourage a student to confer with other students the reasons and the
ways by which they obtained certain solutions. These discussions were carried out
either in small groups or in the class as a whole. The major focus of these
discussions though, would be on the processes by which they arrived at their
solutions rather than just on the products alone. As well, at the beginning or the
end of each session, the teacher would provide some interesting problems for the
whole class. And then the students would explain to the class how they came up
with their solutions. They would also be able to share with the others how different
ways could be used to obtain the same solution. Moreover, students were required
to do their predicting, planning and evaluation etc. off the computer so that they
would have time to think through their own prediction, planning etc. rather than
being too preoccupied with the use of the computer. Hence this environment of
learning, besides being socially interactive, was also reflective in the sense that
students were encouraged to reflect upon and monitor their own thinking. This
socially interactive and reflective environment formed an integral part of a successful

process-oriented approach in the teaching of LOGO.

128

For the students in the content-oriented groups, a more traditional approach
of instruction was used. The emphasis was on the contents of programming. The
teachers would go through the syntaxes of the language carefully with the students,
and the ways of writing programs were also explained clearly to the students. And
when the students had problems, answers were provided by the teachers directly,
for instance, "place a space between forward and 40", "you have forgotten to turn
the turtle by 30 degrees first before moving forward". This was in direct contrast to
the approach adopted in the process-oriented group where the students were actively
encouraged to think about their own thinking.

In order to ensure that the teachers adopt the approaches appropriate to each
group, the researcher and the individual teachers had meetings before and after each
session. The researcher was present at every session to observe the teaching and
learning processes. Hence the researcher was able to inform individual teacher
whether the correct approach was adopted such as the types of questions asked and

the ways that discussions were conducted.

C. Problem Solving Measures

Apart from examining the various teaching aspects of this project, the pilot
phase also provided opportunities to experiment with the administration of the
various academic ability and problem solving measures used in this study. Research
assistants were given extensive training as to how these measures should be
administered. For instance, research assistants who administrated the WISC-R were
trained and approved by registered psychologists. For the other tests, they were
given rigorous training until proficiency was attained.

Little modifications were made to the measuring instruments as they were
mostly published tests. Two modifications were made to the Tower of Hanoi test.
First, the pegs were numbered so that the subjects would have a clearer idea of
which peg they were moving the disks to. Second, a more detailed chart for
recording the movements of the disks was drawn up so as to facilitate the recording

the movements of the disks (Appendix 6).

129

In summary then, the following modifications or developments were made as

a result of experiences and information obtained in the pilot study:

1. Three sets of learning modules were developed ready to be used in the major
study.
9 One of the measuring instruments, viz, the Tower of Hanoi was modified so

as to enhance its administration.

3. The observational instrument for recording social interaction was also
developed during the pilot phase. Various categories for coding the
interactions in the classroom were established.

4. The teachers and research assistants in this project were given ample
practices during the pilot study regarding the teaching and administration of
the various tests. When the major study began in early 1986, they were all
well prepared.

5. A good working relationship was established with the principal and the
school teachers. This was important for the smooth conduct of the main
study.

6. A good reputation of the computer programming courses was established
among the parents. This was important for obtaining parents’ approval for

the children to participate in the main study.

THE MAJOR STUDY

Some nine months prior to the major study, negotiations started with IBM
(NZ) Ltd regarding the loan of necessary computer equipment and software for the
major study. After a number of meetings with the Education and Marketing
Manager and other personnel, IBM (NZ) Ltd agreed to loan six IBM JX computers,
two IBM Pro Printers and the required software packages, viz LOGO and BASIC
for the study. As well, the company also agreed to fund the employment of
research assistants to conduct pre- and post-testing.

The major study took place between February and November of 1986. It
was virtually identical to the pilot study which was undertaken in the previous year

with the exception of modifications noted above. The only major difference was

130

that systematic observations were carried out by the researcher during the major
study in three different areas. These are: (i) teaching behaviours of the teachers; (ii)
the interactions of individual students with their teachers and their individual group;
and (iii) the interaction of individual groups. The methods of observation will be

described in detail in the procedure section.

Subjects
All the standard three and standard four students studying at the Hokowhitu

Primary School in 1986 were initially involved in this study. There were 96
children altogether. Permission for their participation in this project was obtained
from the school, the regional Education Board, their parents, and the individual
students. Of these 96 students, 84 of them agreed to take part. Those who did not
agree to take part indicated that it was due to their heavy schedule of extracurricular
activities such as sports, dancing and piano lessons etc. Two screening methods
were used to determine the suitability of these subjects to take part in this research.
These methods were (i) a questionnaire; and (ii) results of the PAT sub-tests.

A questionnaire (Appendix 8) was administered to all the subjects. The
information elicited in this questionnaire included: age, sex, birthday, address,
parents’ occupation, and computer experience. Interviews were also held between
the researcher and individual potential subjects to cross-check with their answers to
the questionnaires.

The three sub-tests of the PAT were then administered to the subjects to
determine their academic achievement levels, and hence their suitability to
participate. These sub-tests were: (i) Mathematics; (ii) Listening Comprehension;
and (iii) Reading Comprehension.

As a result of these two screening procedures, two students were excluded
from this study. The first one was excluded based on the information that he had
had extensive experience with computers and programming. For instance, he was
conversant with three different programming languages, including LOGO, BASIC
and PASCAL. Many of the other students had had some experience with computers
although the main involvement was with computer games. It was deemed to have

no significant influence on the purposes of this study. The other student was not

131

selected because he scored O in all the three PAT sub-tests, demonstrating great
difficulty in listening and comprehension of instructions. He was also considered to
be a problem child by the principal and his teachers as he had had many serious
behavioural problems in school.

Of the 82 students left, 80 were then selected randomly to participate in the
major study (N = 80). These 80 subjects came from a variety of background.
Their parents’ occupations ranged from unskilled labourers to professionals. They
also came from different ethnic groups, including three major ethnic groups of the
general New Zealand population: European, Maori, and Chinese. On their academic
achievement, the PAT scores represented students who had attained very high as
well as relatively low levels in Mathematics, Listening Comprehension and Reading
Comprehension. The age of these students ranged from 8 to 10 years old. Only
one of them reached the age of 11. No attempt was made to control for sex, age, or
IQ factors. Tables 7.1, 7.2, and 7.4 in Chapter Seven provide the age and sex

distribution of subjects across groups, and summaries of their PAT scores.

Procedure

The 80 subjects selected for participation in the investigation were then
administered the rest of the tests during March, 1986. These tests included: three
sub-tests of the WISC-R, Raven's Standard Progressive Matrices, Torrance Test of
Creative Thinking, Rule Naming Test, and the Tower of Hanoi. Detailed
descriptions of these tests have been made in the pilot phase of this chapter. All of
these tests were administered individually except the Raven’s Standard Progressive
Matrices and Torrance Test of Creative Thinking which were administered to small
groups of 20.

These subjects were then randomly assigned to the various groups:

1. Process-oriented LOGO Group. 20 children were taught to program in
LOGO using a process-oriented approach, with the emphasis on the processes
as well as the contents of programming.

2. Content-oriented LOGO Group. 20 children were taught to program in

LOGO using the traditional way of instruction, with the emphasis on the

contents of programming only.

132

3. BASIC Group. 20 children were taught to program in BASIC using the
traditional way of instruction, with the emphasis on the contents of
programming only.

4. Control Group. 20 children were assigned to the "no-treatment" group.

However, these children were given opportunities to learn how to program

upon the conclusion of data collection.

In an attempt to assess whether this randomization process had created four
groups of essentially similar children in relation to their listening comprehension,
reading comprehension and mathematics achievement, one-way analysis of variance
tests were performed to ensure that no statistically significance existed between the
various groups for each of these measures (cf Chapter Seven on the results).

From April to September in 1986, all the children in the programming
groups were then taught to program using either the LOGO (IBM LOGO) or BASIC
(BASICA) languages. A special room was allocated by the school authority to be
used as the computer room which housed six IBM JX microcomputers on loan from
the IBM (NZ) Ltd. Each computer station was equipped with the appropriate
software. As well, each subject was provided with floppy disk to store their work.
Two printers were also available to the students to print out their work when
required.

For management purposes, such as limited number of computers, small size
of the computer room, extra space in the computer room for off-computer activities
and so forth, each group was further subdivided into subgroups of 10. Hence there
were six sub-groups. Four of these groups received their instructions after school
hours while the other two had their programming lessons during school hours as
arranged with the principal and their teachers.

Each child had one hour of programming learning each week for 20 weeks
during the research period apart from the school holidays. During each session,
students spent about half of their time at a computer individually and half of their
time off the computer, in segments of about 15 minutes alternately. While they

were off the computer, they spent their time working through the worksheets either

133

individually or in small groups. Students in all groups were also given take home
exercises so that continuity of learning was maintained in between two sessions.

The teachers normally started off the lesson by introducing the key concepts
of each lesson with appropriate examples to the students. Students then proceeded
to work at their own pace. At the end of each session, appropriate summaries (eg
the programming concepts & syntaxes, problem solving skills etc) were provided to
each group. Charts were put up on the wall to facilitate the learning of the students.
For instance, for the LOGO groups, charts of the angles were posted on the wall.
They were also given individual charts to help them to understand the turning of
angles. For the process-oriented group, a poster that explained the different problem
solving steps was made available to them.

Three teacher assistants who had completed a Massey University
undergraduate course on "Computers in Education” served as the programming
instructors. All of them were familiar with the programming languages that they
taught. Also, apart from having substantial experience in the teaching of
programming, they were extensively trained during the pilot phase of this study. In
addition, the researcher was present at each session to observe that they were
teaching according to the prescribed methods. Regular meetings were held between
the researcher and individual teachers so as to ensure that they had adhered to the
appropriate strategies of teaching.

Apart from observing the teachers and their teaching strategies, the
researcher was present during all the learning sessions to observe each individual
student in turn as well as the group interactions in each group. Systematic schedules
were designed, based on the observations during the pilot phase, to facilitate the
observation. The following is an account of the various ways in which observation
took place.

There were three types of observations conducted within the classroom in this
project. They were observations relating to the following targets:

1. Teachers;
2. Individual students;

3. Group.

Note: Training of teachers

The training included: (i) discussion with the teaching assistants of the various strategies entailed in each of the two
approaches used in this project, viz., the process-oriented and the content-oriented approaches; (ii) demonstration and
modelling of strategies by the researcher (ii) the trying out of these strategies with the students in the pilot study; and (iii)
the observation of each others’ teaching and subsequent reflection on the strategies used.

134

The observations that had been done in a computing classroom to date had all
been of an anecdotal nature. It is hoped that through the quantification of these
observational data, a more systematic and valid basis can be established towards the

identification of teacher and student behaviour within a computing environment.

1. Observation of Teachers. The major concerns of observing the teachers l;zy in
the distinction between the process-oriented and the content-oriented approaches.
Therefore, responses from teachers were classified according to their relationship to
the process-oriented and content-oriented approaches. Any other responses that fell
outside these two categories were classified as others.

A. The process-oriented category included responses of the teachers which were

used by the teachers to encourage the students to think about the various
problem solving processes. There were four major problem solving
processes involved (cf Chambers, 1986; Nolan & Ryba, 1986). The
following is a list of the processes and the exemplars of responses involved

(Table 6.2):

Table 6.2

Processes and exemplars of responses of the process-oriented approach

135

a. Prediction Pl Guess
P2 Predict
F3 Estimate
‘=====‘I
b. Experimentation il Try
- E2 Play
E3 Test
R ——— —
c. Planning PILi Plan
P12 Think it through
- PL3=I Think it ahead
d. Analysis Al Find out... (Check, Where do you think
you have gone wrong?)
A2 Fix
A3 What does... do?
A4 To see if...
A5 Why...?
A6 What do you do... ?
A7 Which one... ?
A8 How did you... ?
A9 Is that what you want?

These categories were coded as Al, E2, PL3 etc.

B. The Content-oriented category included responses of the teachers which were

used to inform the students about the syntaxes of the programming language but

which did not include the encouragement of students to think about the various

problem solving processes. It was coded as C.

C. The Other category included responses of the teachers which fell outside the two

previous categories. It was coded as O.

136

The classification of the various categories were based on Episodes.

Episodes are designated as segments of classroom time that are completely devoid of
any change throughout their nature duration (Adams, 1965). Based on this way of
categorizing, if a student raised his/her hand to ask a question, this was considered
as the beginning of an episode. However, if during this questioning time, the major
concern shifted from one process to another, then another episode was considered as
involved, and so on for a third, and other episodes. If possible, the names of the
subjects involved in each episodes was also recorded to see if the teacher tended to
interact more with some particular students. The observations were recorded in the

schedule for observation of teachers (Appendix 9).

2. Observation of individual students. The observation of individual students
was based on two main categories:

A. Substantive;

B. Non-substantive.

Substantive interactions occurred when a student interacted with one or more
other students relating to the learning of computer programming, while non-
substantive interactions referred to the type of interactions that did not involve the
learning of programming.

There was a further sub-division within the substantive category, they were
the verbal and non-verbal sub-categories. Verbal substantive interaction referred to
the interactions between a student and one or more other students when the major
contents of the interaction related to their learning contents. Non-verbal substantive
interaction was said to occur when a student observed the other students’ work or
the interaction between the teacher and other students relating to the learning of
programming.

A set of codes was developed:

SV - substantive verbal interaction;
SN - substantive non-verbal interaction;

NS - non-substantive interaction.

137

If possible, the names of the other subjects involved in the interactions were

also recorded. These observations were recorded on the schedule of individual

students (Appendix 10).

3. Observation of Groups. The observation of groups only focussed on two types

of interactions:
A. verbal;
B. change of physical location.

Hence interaction was said to occur if a student had verbal interaction with
one or more other students or if a student changed his/her physical location from
his/her initial working location in order to observe others’ work or interactions.

The duration of these interactions was also recorded along a time line as
shown on the schedule for observation of groups (Appendix 11). It could be easily
visualised that there might be none or more than one group interaction going on at

the same time. A set of codes was hence used to identify the types of group

interactions:

0- no group interaction;

1- one group was involved in interaction;

2 - two groups were involved in group interaction;

3- 1 large group (i.e. more than half of the class, or more than two groups

irrespective of size).

The procedures of observing. There was a total of 50 minutes within each
session for individual work. Observations were carried out on three targets, namely,
the teacher, individual student, and group. So each type of observation lasted a total
of about 16 minutes with 2 minutes allowed for the switching of observing. These
16 minute intervals were further subdivided into 8 minutes each. The order of these
observations was arranged on a random basis. First, the teacher was observed 8
minutes, then the individual student, finally , the overall group was observed. This
cycle was repeated twice during each learning session. Observations were carried

out during all the learning sessions for all the groups in an unobtrusive manner.

138

In one particular session, only two students could be observed. Given that
there were 10 students in each group and that there were 20 sessions altogether for
one group, it was decided to observe each student three times throughout the
research project. The order of observing these students was established on a random
basis.

Feedback was given to each of the three teachers on an individual basis after
each session so as to reinforce or correct their behaviour in relation to either the
process-oriented or the content-oriented approaches. This procedure was important
in the context of this study as "the strategy of teaching" was one of the independent
variables.

The observation of the individual students and the groups as a whole, though
peripheral to the objectives of this project, helped to capture the dynamics of the
interactions in a computing environment and hence provided a better understanding
of the social context of a programming environment. It has been pointed out by
many studies that students tended to interact much more than in a traditional
classroom setting (cf Hawkins, 1983; Russell, 1983). However, data obtained from
previous studies, i.e. prior to the conduct of the present study, often tended to be of
an anecdotal nature. By quantifying the interactions of the students, more concrete
evidence could be established which might help to point to possible future research
in this area.

The teaching phase of this project was concluded in the middle of October.
In all, each subject had 20 sessions of programming. They were given 12 teaching
modules during this period. After the completion of these teaching modules, they
then proceeded to do their personal projects based on the learning they had achieved.
They were provided with worksheets to record their personal projects. In particular,
the process-oriented group was given worksheets that impelled them to follow
through the various steps of problem solving.

Post-testing was then conducted in a similar way as the pre-testing. It took
three weeks for the post-tests to be completed. Students in the control group were
then offered the opportunity to learn programming until the end of the academic
year.

Note: Reliabilitv of Observation

The observations of the teachers, individual students and groups were conducted by the researcher in consultation with one
of his thesis supervisors. The observations were informally verified by this supervisor as an independent observer on a
number of occasions.

139

Research hypotheses and data analyses

It was stated earlier in this chapter that the major purpose of this study is
threefold: first, to evaluate any changes in the problem solving skills of learners as a
result of learning different programming languages (LOGO and BASIC); second, to
evaluate any changes in the problem solving skills of learners as a result of two
different instructional methods (process-oriented and content-oriented); and, third, to
examine systematically the different kinds of interactions within a programming-
learning environment, in particular, two different types of interactions - those of
individual students with teachers, and those among students.

Research reviewed in the preceding chapters suggest that LOGO may
facilitate the development of problem solving skills especially when proper
considerations have been given to the appropriate instructional conditions and social
interactions within a LOGO learning environment. Recent works on problem
solving and metacognition highlight the possibility of increasing transfer by
focussing on the explicit teaching of problem solving and cognitive monitoring skills.
However, the literature on problem solving also suggest that it is difficult to achieve
far transfer than near transfer. Therefore, in this study, a number of problem
solving measures, including those of near and far transfer nature were used to gauge
the development of problem solving skills of the learners.

Accordingly this study was designed to test the two following clusters of

research hypotheses.

Mathematics achievement and problem solving skills

The first cluster of hypotheses relates to the changes in mathematics
achievement and various problem solving measures including those of near and far
transfer nature. The following overall hypotheses were tested.

(A) . It was predicted that the learning of LOGO programming would facilitate the
transfer of problem solving skills to a non-programming context that was of
near-transfer nature (Tower of Hanoi) but not those of a far-transfer nature
(mathematics achievement, Raven’s Standard Progressive Matrices, WISC-R
Picture Arrangement, WISC-R Block Design, WISC-R Object Assembly,

Rule Naming Task, Torrance Test of Creative Thinking); and

140

(B) It was predicted that the degree of transfer from the LOGO environment to
non-programming problem solving context of a near transfer nature (Tower
of Hanoi) would be greater for children taught with the process-oriented

approach compared with those taught with the content-oriented approach.

Testing of the hypotheses in the first cluster presented in this study was
carried out by means of a 4 x 2 repeated measures analysis of variance design on the
data collected during the pre- and post- testing periods. These data included
measures of the subjects’ mathematics achievement and problem solving skills.

In the event of significant overall group x testing occasion interaction, four a
priori contrasts were planned for the comparison among groups:

(1) contrast between the two LOGO groups (LOGO process-oriented and content-
oriented) and the two other groups (BASIC and control);

(i1) contrast between the LOGO process-oriented group and the LOGO content-
oriented group;

(ii1) contrast between the BASIC and control group; and

(iv) contrast between the LOGO-content oriented group and the BASIC group.

The .05 significance level (¢ = .05) was employed in testing these
hypotheses. It was planned to examine the treatment main effect only in the case of
a non-significant group x testing occasion interaction.

Accordingly, the following specific hypotheses were set up:

Hypothesis One

It was predicted that there would not be significant group x testing occasion

interaction among the groups in their mathematics achievement.

Hyvpothesis Two

It was predicted that there would not be significant group x testing occasion
interaction among the groups in the scores measured by Raven’s Standard

Progressive Matrices.

141

Hypothesis Three
It was predicted that there would not be significant group x testing occasion

interaction among the groups in the scores measured by WISC-R Picture

Arrangement.

Hypothesis Four
It was predicted that there would not be significant group x testing occasion

interaction among the groups in the scores measured by WISC-R Block Design.

Hvpothesis Five

It was predicted that there would not be significant group x testing occasion

interaction among the groups in the scores measured by WISC-R Object Assembly.

Hypothesis Six

It was predicted that there not would be significant group x testing occasion

interaction among the groups in the scores measured by Rule Naming Task.

Hyvpothesis Seven

It was predicted that there would not be significant group x testing occasion
interaction among the groups in the scores measured by Torrance Test of Creative

Thinking.

Hyvpothesis Eight

It was predicted that there would be significant group x testing occasion

interaction among the groups in the scores measured by Tower of Hanoi.

Classroom interactions

The second cluster of hypotheses relates to the interactions of the teachers
and students during the process of learning. Three types of observations were
carried out. The first observation was used to monitor the instructional methods

used by teachers of the three programming group so only descriptive statistics of the

142

incidences of process-oriented, content-oriented, and other interactions between
teachers and students will be presented.

The literature reviewed in Chapter 4 suggested that LOGO would facilitate
social interactions among the learners. Moreover, the process-oriented instruction
approach was used to encourage more interactions among the learmners. Thus it is
reasonable to expect that there would be more interactions among subjects in the
process-oriented group than in the content-oriented group. In light of these
considerations, the following hypotheses were tested in relation to the second and the

third observation.

Hypothesis Nine

It was predicted that there would be more group interaction in the LPO group
than the LCO group, and that there would be more group interaction in the LCO

group than the BASIC group.

Hypothesis Ten

It was predicted that there would be more substantive verbal and non-verbal
interactions among subjects in the LPO group than those in the LCO group, and that
there would be more substantive verbal and non-verbal interactions among subjects

in the LCO group than those in the BASIC group.

The outcomes of this study and the results of these data analyses will now be

presented in the following chapter.

143
CHAPTER SEVEN

RESULTS

This chapter presents the results of the study. First, sample
characteristics regarding sex, age, reading comprehension, listening
comprehension for the various subgroups are presented. This is then
Jfollowed by the results related to the problem solving skills of the
subjects. The final section of the chapter presents the data related to
the classroom interactions of the teachers and the students.

Sample Characteristics

Sample characteristics for the subjects are reported in Table 7.1 and Table 7.2.
Table 7.1 displays the age and sex distribution for subjects in all the four groups -
the LOGO process-oriented (LPO), the LOGO content-oriented (LCO), the BASIC
and the control groups. The reason for the unequal number of subjects in each
group was due to the fact that of the original 80 subjects, seven left the school in the
middle of the study. Therefore, the number of subjects at the completion of the
study for the four 'groups were 17, 20, 17, and 19 respectively (Total N = 73).
Theré‘ were no significant age differences among the groups (Total group mean =
9.79, S.D. = .60). The age range of the subjects was from 8.42 to 10.92, fairly
characteristic of the groups attending standard three and four classes in New Zealand
schools. The original sex distribution of subjects across the sub-groups was
reasonably homogenous. However, of the seven subjects who left the school, six of
them were females (three from the LOGO process-oriented group, two from the
BASIC group, and one from the control group), the male subject was from the
BASIC group.

Sample characteristics were also considered with regard to the students’ listening
comprehending and reading comprehension abilities, measured by the Progressive
Achievement Tests before the intervention. Table 7.2 displays the scores of the
subjects in these two tests prior to the intervention. One way analyses of variance
of these scores revealed that there were no significant differences among the groups
- listening comprehension (F(3,69) = .52, p < .69), and reading comprehension
(F(3,69) = .41, p < .79).

144
Table 7.1

Age and Sex Distribution of Subjects

Age Number
Sgoup Mean S.D_:__ Males Females | Total
Logo Process-Oriented 9.81 .69 12 5 17
Logo Content-Oriented 9.77 .64 11) 20
Basic 9.84 .59 12 o) I
Control 9.74 .59 12 f/ 13
Total 9.79 .60 47 26 73
Table 7.2

Listening Comprehension and Reading Comprehension Score

Distribution of Subjects

Listening Comprehension | Reading Comprehension
Group

Mean S.D. Mean S.D.
Logo Process-Oriented 27.76 8.43 21.35 9.89
Logo Content-Oriented 28.50 7.48 e 10.79
Basic 26.59 6.83 20.71 9.17
Control 2011 6.12 18.11 9.24
Total 28.04 7.15 20.36 g 71

In sum, these results indicate that the groups were similar in composition with

regard to age, reading comprehension and listening comprehension.

145

Analyses of mathematics achievement and problem solving measures

Hypotheses relating to mathematics achievement and the various problem solving
measures were tested by performing a repeated measures analysis of variance using
the SPSS package on VAX computer (SPSS Inc., 1988). In particular, a 4 (group) x
2 (testing occasion) two-way analysis of variance (ANOVA) was performed on all
the problem solving dependent variables: Mathematics Achievement, the three
subtests of the WISC-R, Torrance Test of Creative Thinking, Rule Naming Task,
and Tower of Hanoi. It was also decided that in the event of significant overall
group x testing occasion interaction, four a priori contrasts among the groups would
be conducted (c.f. Chapter Six). The following sections will present the results of

these analyses.

Mathematics Achievement

This section summarizes the results of the mathematics achievement. The results
themselves are contained in Tables 7.3 and Tables 7.4 on page 146.

The results of the two-way analysis of variance with repeated measures indicate
no significant interaction effects among groups with regard to pre- and post- test
scores on the Mathematics Achievement Test of the Progressive Achievement Test.
There was also no significant group main effect on this measure. However, the
testing occasion main effect was significant, F(1,69), p < .000 (Table 7.3). In
examining the means of the groups and the total mean, it could be determined that
all groups improved on their Mathematics Achievement (Table 7.4), the mean
improvement being 4.86.

These findings lead to acceptance of null hypothesis one which states that there
would not be significant group x testing occasion interaction among the groups in
their mathematics achievement.

As predicted, these data indicate that there are no differences in mathematics
achievement between the performance of subjects who learned LOGO programming
using either the process-oriented approach or the content-oriented approach and those

who either learned BASIC or were in the control group.

Table 7.3
ANOVA Summary Data for Mathematics Achievement

Pre- Versus Post- Test Comparison

146

Source of variance D.F. S.S. M.S.. F-ratio p
Between subjects
Instructional Condition (A) 3 164.71 54.90 33 .80
Error 69 11352.45 | 164.53
Within subjects
Testing Occasion (B) 1 858.92 | 858.92 69.15 .00*
AXB 3 13.21 4.40 35 .786
Error 69 857.11 12.42
* Significant Effects
Table 7.4
Means and Standard Deviations for Mathematics Achievement
Pre- Versus Post- Test Comparison
Pre-Test Post-Test

Choup Mean S.D. Mean S.D.
LOGO Process-Oriented 3—0_.1-8 6.23 34.71 9.83
LOGO Content-Oriented 31.60 10.34 37.00 9.64
BASIC 31.00 10.68 36.47 D2l
Control 29.63 7.73 33.68 8.33
Total 30.62 9.38 35.48 9.17

147

Raven’s Standard Progressive Matrices

This section reports the results of the Raven’s Standard Progressive Matrices.
The results themselves are contained in Tables 7.5 and Tables 7.6 on page 148.

The results of the two-way analysis of variance with repeated measures indicate
no significant interaction effects among groups with regard to pre- and post-test
scores on the Raven’s Standard Progressive Matrices. There was also no significant
group main effect on this measure. However, the testing occasion main effect was
significant, F(1,69) = 37.85, p < .000 (Table 7.5). In examining the means of the
groups and the total mean, it could be seen that all groups improved on the Raven’s
Standard Progressive Matrices scores with the mean improvement being 3.80 (Table
rE(6)

These results suggest acceptance of null hypothesis two which states that there
would not be significant group x testing occasion interaction among the groups in the
scores measured by Raven’s Standard Progressive Matrices. In other words,
subjects who learned LOGO programming using either approaches did not perform
better in Raven’s Standard Progressive Matrices when compared to subjects in the

BASIC or control groups.

ANOVA Summary Data for Raven’s Standard Progressive Matrices

Pre- Versus Post- Test Comparison

Table 7.5

148

Source of variance D.F. S.S. M.S. F-ratio p
Between subjects
Instructional Condition (A) 8 307.05 102.35 .83 .482
Error 69 |[8519.25 123.48
Within subjects
Testing Occasion (B) 1 506.22 58520 37.85 .000°
AXB 3 34.28 11.43 .82 .485
Error 69 957.37 13.87

* Significant Effects

Table 7.6

Means and Standard Deviations for Raven’s Standard Progressive Matrices

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
Group Mean S.D. Mean S.D.
LOGO Process-Oriented ;8.65 7.86 41.59 5.89
LOGO Content-Oriented 39.20 9.81 42.30 9 74
BASIC 35.65 8.93 40.06 9.52
Control 34.79 8.01 39.84 5.87
Total 37.10 8.60 40.90 7.90

149

WISC-R

This section reviews the results of the WISC-R. The results themselves are
contained in Tables 7.7, 7.8, 7.9, 7.10, 7.11 and 7.12 on pages 150, 151 and 152
respectively.

The results of the two-way analysis of variance with repeated measures indicate
no significant interaction effects among groups with regard to pre- and post-test
scores on the three sub-tests of WISC-R, namely, Picture Arrangement, Block
Design and Object Assembly. There was also no significant group main effects on
these three measures. However, the testing occasion main effects were significant.
For Picture Arrangement, it was F(1,69) = 32.48, p < .000 (Table 7.7). For
Block Design, it was F(1,69) = 35.39, p < .000 (Table 7.9). For Picture
Arrangement, it was F(1,69) = 41.92, p < .00 (Table 7.11). In examining the
means of the groups and total means for each of the three measures, it could be seen
that all groups improved on the three sub-tests (Tables 7.8, 7.10, & 7.12). The
improvement of each of the measures were - Picture Arrangement, 4.86; Block
Design, 4.69; and Object Assembly, 2.93 respectively.

Findings with the three sub-tests of WISC-R lead to acceptance of null
hypotheses three, four and five which state that the pre- versus post-test comparisons
would not be different across the four groups in this study. These results confirm
that subjects who learned LOGO programming using either the process-oriented or
the content-oriented approach would not perform any better in the three WISC-R

sub-tests when compared to the BASIC or the control group.

Table 7.7
ANOVA Summary Data for WISC-R Picture Arrangement

Pre- Versus Post- Test Comparison

150

Source of variance D.F. S.S. M.S. F-ratio p
Between subjects
_Instructional Condition (A) 8 377.04 125.95 1.96 .128
Error 69 |[4436.79 64.30
Within subjects
Testing Occasion (B) 1 858.64 858.64 32.48 .000°
AXB 3 43.30 14.43 H5 .653
Error 69 |1824.02 26.44
* Significant Effects
Table 7.8
Means and Standard Deviations for WISC-R Picture Arrangement
Pre- Versus Post- Test Comparison
Pre-Test Post-Test
Grolp Mean S.D. Mean S.D.
LOGO Process-Oriented 27.71 i 7.36 b 31.24 6.01
LOGO Content-Oriented 29.20 6.10 33.25 5.53 'I
BASIC 28.00 8.55 8.7 3.49 II
Control 24.16 9.81 30.26 4.90 I
Total 27.26 8.12 22.12 5: 19

151

Table 7.9
ANOVA Summary Data for WISC-R Block Design

Pre- Versus Post- Test Comparison

Source of variance D.E. S.S. M.S. F-ratio p

Between subjects

Instructional Condition (A) 3 258.18 86.06 .26 .850

Error 69 [22414.33 324.85

Within subjects

Testing Occasion (B) 1 791.83 791.83 35.39 .000°
AXB 3 22.02 7.34 33 .805
Error 69 1543.66 22.37

* Significant Effects

Table 7.10
Means and Standard Deviations for WISC-R Block Design

Pre- Versus Post- Test Comparison

Pre-Test - Post-Test
Gy Mean S.D. Mean S.D.
LOGO Process-Oriented g 34.39 11.44 39.18 12.57
LOGO Content-Oriented 34.35 13.88 39595 12,99
BASIC 34.41 14.81 38.06 14.25
Control 30.68 12.47 36.53 12.73
Total 33.47 13.05 38.16 12.88

Table 7.11

ANOVA Summary Data for WISC-R Object Assembly

Pre- Versus Post- Test Comparison

152

Source of variance D.F. S.S. M.S. F-ratio p
Between subjects
Instructional Condition (A) 3 244 .48 81.49 2.34 .08
Error 69 |2598.47 34.76
Within subjects
Testing Occasion (B) 1 315.80 315.80 41.92 .00°
AXB 3 21.51 7.17 .95 .42
Error 69 519.82 7.53
* Significant Effects
Table 7.12
Means and Standard Deviations for WISC-R Object Assembly
Pre- Versus Post- Test Comparison
Pre-Test Post-Test

Group Mean S.D. Mean S.D.
LOGO Process-Oriented 2=1._35 5.15 1 25.59 4.12
LOGO Content-Oriented 22.95 8,62 2590 4.24
BASIC 23.41 4.94 25.71 5.00
Control 20.21 5.16 22.53 4.49
Total 2594 4.80 24.90 4.60

153

Rule Naming Task

This section reviews the results of the Rule Naming Task. The results

themselves are contained in Tables 7.13, 7.14, 7.15 and 7.16 on pages 154, and 155
respectively.

Before comparing the groups’ performance with the Rule Naming Task, the
scores for both measures, number of trials and number of errors, were first
correlated and no significant correlation was found. Hence a 4 x 2 two-way analysis
of variance was conducted with each of the measures separately.

The results of the two-way analysis of variance with repeated measures indicate
no significant interaction effects among groups with regard to pre- and post-test
scores on both measures with the Rule Naming Task, viz., number of trials and
number of errors. There was also no significant group main effect on these two
measures. However, the testing occasion main effects for both measures were both
significant; for the number of errors, it was F(1,69) = 29.11, p < .00 (Table
7.13); for the number of trials, it was F(1,69) = 24.16, p < .000 (Table 7.15). In
examining the mean of the number of errors, it could be seen that all groups
improved on the number of errors for the Rule Naming Task, the mean being 6.70
(Table 7.14), that is, there was a decrease in the mean number of errors made by
the subjects during completion of the tasks. The total number of trials by all groups
also improved by 12.06 (Table 7.16), i.e., the subjects required less number of trials
to complete the tasks.

The above findings lead to acceptance of null hypothesis six which states that
there would not be significant group x testing occasion interaction among the groups
in the scores measured by Rule Naming Task. In other words, subjects who leamed
LOGO using either the process-oriented approach or the content-oriented approach
did not perform any better in relation to the total number of trials to criterion, or the
number of errors when compared to subjects in the BASIC or control groups.

These results confirmed the prediction that subjects who learned of LOGO,
irrespective of instructional methods, would not perform any better than subjects
who learned BASIC or were in the control group, either in the total number of trials

criterion, or in the total number of errors when solving these tasks.

Table 7.13
ANOVA Summary Data for Rule Naming Task - Number of Errors

Pre- Versus Post- Test Comparison

154

Source of variance D.F. Sud. M.S. F-ratio p
Between subjects
Instructional Condition (A) 3 486.78 162.26 .87 46
Error 69 |12864.97 186.45
Within subjects
Testing Occasion (B) 1 1661.64 1661.64 29.11 .00°
AXB 3 32.09 10.70 .19 .905
Error 69 | 3938.60 57.08

* Significant Effects

Table 7.14

Means and Standard Deviations for Rule Naming Task - Number of Errors

Pre- Versus Post Comparison

Pre-Test Post-Test
Croup Mean S.D Mean S.D.
LOGO Process-Oriented 22.18 12_.-5—_;3__ 14.64 8.57
LOGO Content-Oriented 20.15 11.08 14.75 10.14
BASIC 26.18 11.96 18.47 12.53
Control 23.16 11.34 16.74 9.73
Total 22.81 11.67 16.11 10.22

Table 7.15

155

ANOVA Summary Data for Rule Naming Task - Number of Trials to Criterion

Pre- Versus Post- Test Comparison

Source of variance D.F. S.S. M.S. F-ratio p -E
Between subjects
Instructional Condition (A) 3 1458.00 486.00 .64 595
Error 69 [52809.24 765.35
Within subjects
Testing Occasion (B) 1 5246.86 5246.86 24.16 .000*
AXB 3 34.15 11.38 .05 .984
Error 69 [14986.74 217.20

* Significant Effects

Table 7.16

Méans and Standard Deviations for Rule Naming Task - Number of Trials to Criterion

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
Group Mean S.D. Mean S.B
LOGO Process-Oriented 75.53 20.31 63.24 21.15
LOGO Content-Oriented 72.50 28,19 59.05 27.06
BASIC 79.94 21:55 68.77 25.59
Control 77.11 16.04 65.95 20.24
Total 76.14 W21 64.08 28 58

156

Torrance Test of Creative Thinking

This section relates the results of the Torrance Test of Creative Thinking. The
results themselves are contained in Tables 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, 7.23,
7.25 and 7.26 on pages 157, 158, 159, 160 and 161 respectively.

The results of the two-way analysis of variance with repeated measures indicate
no significant interaction effects among groups with regard to pre- and post-test
scores on the total score as well as the four component scores of the Torrance Test
of Creative Thinking which were Fluency, Flexibility, Originality, and Elaboration.
There were also no significant main effects on the total and the four component
scores. However the testing occasion main effects were significant:

Fluency - F(1,69) = 19.89, p < .000 (Table 7.17);
Flexibility - F(1,69) = 9.77, p < .003 (Table 7.19);
Originality - F(1,69) = 27.27, p < .000 (Table 7.21);
Elaboration - F(1,69) = 11.04, p < .001 (Table 7.23); and
Total score - F(1,69) = 35.79, p < .000 (Table 7.25).

In examining the means of the total and the four component scores, it could be
seen that all groups improved with the mean improvement being;:
Fluency - 3.60 (Table 7.18);

Flexibility - 1.93 (Table 7.20);
Originality - 9.25 (Table 7.22);
Elaboration - 12.93 (Table 7.24); and
Total score - 27.68 (Table 7.26).

These results lead to acceptance of null hypothesis seven that there would not be
significant group x testing occasion interaction among the groups in the scores
measured by Torrance Test of Creative Thinking. In other words, the performance
of subjects in the Torrance Test of Creative Thinking did not differ irrespective of
which groups they were in.

The above findings confirm the prediction that subjects who learned LOGO
programming did not perform any better than subjects in the other two groups.
However, it is interesting to note that the gain scores in both fluency and elaboration
for all three programming groups were significantly better than those of the control
group (cf Table 7.18 & Table 7.22).

Table 7.17

157

ANOVA Summary Data for Torrance Test of Creative Thinking - Fluency

Pre- Versus Post- Test Comparison

Source of variance D.F. S.S. M.S. F-ratio P
Between subjects
Instructional Condition (A) 3 177.64 59.21 1.36 .264
Error 69 [3013.53 43.67
Within subjects
Testing Occasion (B) 1 480.37 480.37 19.89 .000°
AXB 3 130.89. 43.63 1.81 .154
Error 69 |1666.85 24.16

* Significant Effects

Table 7.18

Means and Standard Deviations for Torrance Test of Creative Thinking - Fluency

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
Giatp Mean S.D. Mean SEDs
ﬁProcess-Crientedﬁ 18.65] 6.57 23.18 6.65
LOGO Content-Oriented 17.75 6.09 22.70 5.47
BASIC 17.82 5.19 22.47 6.38
Control 22.63 5.97 23.05 4.01
Total 19.25 6.20 22.85 5.55

158

Table 7.19
ANOVA Summary Data for Torrance Test of Creative Thinking - Flexibility

Pre- Versus Post- Test Comparison

Source of variance DR S.S. M.S. F-ratio o)

Between subjects

Instructional Condition (A) 3 69.68 23.23 .66 577

Error 69 [2412.10 34.96

Within subjects

Testing Occasion (B) 1 135.87 135.87 9.77 .003"
AXB 3 6.37 2.12 15 .928
Error 69 959.96 13.91

* Significant Effects

Table 7.20
Means and Standard Deviations for Torrance Test of Creative Thinking - Flexibility

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
Group Mean 8., Mean S.D.
LOGO Process-Oriented 15.591 5.30
LOGO Content-Oriented 14.85 5.40 |' 16.85 4.92
BASIC 14.53 4.20 ’ 17.12 4.31
Control 16.63 5.25 18.37 4.88
Total 15.41 5.04 17.34 4.74

Table 7.21

159

ANOVA Summary Data for Torrance Test of Creative Thinking - Originality

Pre- Versus Post- Test Comparison

Source of variance D.F. S.S. M.S. F-ratio P
Between subjects
Instructional Condition (A) 3 636.72 212.24 1.02 251
Error 69 14419.23 208.97
Within subjects
Testing Occasion (B) 1 |3268.22 3268.22 27.27 .000°
AXB 3 622.12 207.37 1.73 .169
Error 69 |[8270.13 119.86

* Significant Effects

Table 7.22

Means and Standard Deviations for Torrance Test of Creative Thinking - Originality

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
_— Mean S.D. Mean S.D.
LOGO Process-Oriented 23.06 6.46 34.41 17.48
LOGO Content-Oriented 25.80 10.23 28.90 10.29
BASIC 24.18 8.78 38.35 17.23
Control 27.90 10.90 37.21 16.68
Total 25.33 9.33 34.58 15.67

160

Table 7.23
ANOVA Summary Data for Torrance Test of Creative Thinking - Elaboration

Pre- Versus Post- Test Comparison

Source of variance Dk S.S. M.S. F-ratio p

I Between subjects

Instructional Condition (A) 3 3715.08 1238.36 .83 .482

Error 69 102949.59 1492.02

Within subjects

Testing Occasion (B) I 6244.30 6244.30 11.04 .001°
AXB 3 1039.51 346.50 .61 .609
Error 69 39023.82 565.56

* Significant Effects

Table 7.24

Means and Standard Deviations for Torrance Test of Creative Thinking -

Elaboration
Pre- Versus Post- Test Comparison
Pre-Test Post-Test
Group Mean S.D. Mean S.D.
—— TR IR, Em—
LOGO Process-Oriented 79.24 31.12 96.06 36.32
LOGO Content-Oriented 75.30 30.60 90.05 29.67
BASIC 69.00 27.85 85.82 34.29
Control 72.26 32.22 76.32 | 34.11
Total 73.96 30.13 86.89 33.62

Table 7.25

161

ANOVA Summary Data for Torrance Test of Creative Thinking - Total

Pre- Versus Post- Test Comparison

Source of variance D.F. S.S. M.S. F-ratio p
Between subjects
Instructional Condition (A) 3 1607.11 535.70 .22 .883
Error 69 169368.81 2454.62
Within subjects
Testing Occasion (B) 1 28819.44 |28819.44 35.79 .000°
AXB 3 2785.50 928.50 1.15 334
Error 69 55559.38 805.21

* Significant Effects

Table 7.26

Means and Standard Deviations for Torrance Test of Creative Thinking - Total -

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
Gty Mean S.D. Mean S.D.
I=L_SGO Process-Oriented 136.53 8922 170.65 N 45.75__ |
LOGO Content-Oriented 133.70 37.68 158.50 35.64
BASIC 125.53 31.90 163.77 49.91
Control 139.42 37.79 154.95 43.39
Total 133.95 36.41 161.63 43.12

162

Tower of Hanoi

This section reports the results of the Tower of Hanoi task. Four separate
Tower of Hanoi problems were administered to the subjects both before and after the
intervention phase of this study including the two-, three-, four-, and five-disk
problems. However, the two-disk problem was used as a practice for the subjects
and was not scored. Scoring for each of the other three problems was based on the
total number of moves and the percentage of solving each of the sub-problems. The
results of the Tower of Hanoi will be presented according to each of the three-disk,

four-disk, and five-disk problems.

Three-disk problem

The following sections review the results of the three-disk problem and the two-
disk sub-problem of the Tower of Hanoi. The results themselves are contained in
Tables 7.27, 7.28, 7.29, and 7.30, on pages 164, 165, 167 and 168 respectively.
The graphs comparing the pre versus post results are presented in Figures 7.1 and
7.2 on pages 166 and 169 respectively.

Before comparing the groups’ performance on the three-disk problem, the scores
for the number of moves and the percentage of solving two-disk sub-problems were
first correlated and no significant correlation was found. Therefore, it was decided

to conduct a 4 x 2 two way ANOVA with each of the measures.

Number of moves. The results of the two-way analysis of variance with

repeated measures indicate significant interaction effects among groups with regard
to pre- and post-test scores on the number of moves of the three-disk problem,
F(3,69) = 3.87, p < .013) (Table 7.27). Therefore, four a priori contrasts among
the four groups were conducted, the first three being orthogonal. The first contrast
examined the two LOGO groups and the other two groups; the second contrast
examined the LOGO process-oriented group (LPO) and the LOGO content-oriented
group (LCO); the third contrast examined the BASIC group and the control group;
and the fourth contrast examined the LOGO content-oriented group and the BASIC
group. These planned comparisons revealed that the significant interaction was

located in the interaction of the LPO and LCO versus BASIC and control groups,

163
F(1,69) = 10.60, p < .002 (Table 7.27). Examination of the graph in Figure 7.1

and the data in Table 7.28 reveals the significantly better performance of both the

LPO and LCO groups in the post-test as contrast to the BASIC and control groups.

Two-disk sub-problem. Similar results were obtained with the two-disk sub-

problem. Two-way analysis of variance with repeated measures indicate significant
interaction effects among groups with regard to pre- and post-test scores, F(3,69) =
3.3, p < .025 (Table 7.29). Planned comparison revealed that the significant
interaction was located in the interaction of the LPO and LCO versus BASIC and
control groups, F(1,69) = 9.34, p < .003 (Table 7.29). Examination of the graph
in Figure 7.2 and Table 7.30 reveals the significantly better performance of both the

LPO and LCO groups in the post-test as contrast to the BASIC and control groups.

In summary, the findings with the three-disk problem of Tower of Hanoi
supports hypothesis eight that there would be significant group x testing occasion
interaction among the gfoups in the scores measured by Tower of Hanoi.

The planned comparisons indicate that subjects who learned to program with the
LOQO language, irrespective of instructional methods, were better able to solve the
three-disk Tower of Hanoi problem when compared to subjects in the other two

groups.

164

Table 7.27
ANOVA Summary Data for Tower of Hanoi - three-disk problem
Number of moves

Pre- Versus Post-Test Comparison

—

Source of variance D.F. S.S. M.S. F-ratio p

Between subjects

Instructional Condition (A) 3 18.48 6.16 .97 411

Error 69 437.19 6.34

Within subjects

Testing Occasion (B) 1 24.16 | 24.16 6.11 .016
AXB 3 45.93 | 15.31 3.87 .013°
Error 69 | 272.73 3455

a priori contrasts

LPO & LCO vs BASIC & 1 41.88 | 41.88 10.60 .002°
Control

BASIC vs Control 1 252 2.52 .64 .427
LPO vs LCO 1 1.53 1.53 39 .536
LCO vs BASIC 1 10.10 10.10 3.29 .078

* Significant Effects

Pre- Versus Post- Test Comparison

Table 7.28

Means and Standard Deviations for Tower of Hanoi - three-disk problem

Number of moves

165

Pre-Test Post-Test
Groqp Meén S.D. Mean S.D.
.L_OéO Process-Oriented L) B3N 7.12 .49
LOGO Content-Oriented 8.65 2.93 7.05 .22
BASIC 7.71 1.26 7.59 1.12
Control 8.26 1.88 8.90 3.78
Total 8.48 2.30 7.67 2.12

Number of Moves

166
Figure 7.1
Tower of Hanoi

Three disk problem - Number of moves

9.5 7

9 —

8.5 —

- Process-oriented
+ Content-oriented
‘4 Basic

= Control

7.5 —

7
Pre-test Post-test

Testing Occasion

Table 7.29

ANOVA Summary Data for Tower of Hanoi - Three-disk problem

Pre- Versus Post-Test Comparison

Two-disk sub-problem

167

Source of variance B2 SO M.S. F-ratio P
Between subjects
Instructional Condition (A) 3 .19 .06 .80 .449
Error 69 5.52 .08

-;i-thin subjects
Testing Occasion (B) 1 .40 .40 9.55 .003"
AXB 3 42 .14 3.30 .025°
Error 69 2.92 .04
a priori contrasts
LPO & LCO vs BASIC & 1 .40 .40 9.34 .003"
Control
BASIC vs Control 1 .00 .00 .00 1.000
LPO ws LCO 1 .02 .02 .56 .455
LCO vs BASIC 1 .14 .14 3.14 .085

* Significant Effects

Table 7.30

168

Means and Standard Deviations for Tower of Hanoi - Three-disk problem

Pre- Versus Post- Test Comparison

Two-disk sub-problem

Pre-Test Post-Test
Group Mean 8.Br Mean §.D.
.} e mm_——

LOGO Process-Oriented 712 33 S 12
LOGO Content-Oriented .80 25 .98 11
BASIC .85 .24 .85 .24
Control .79 .30 19 .30
Total .79 .28 .90 22

Figure 7.2

Three disk problem - two-disk sub-problems

.
0.95 -
w
2
9' 0.9 -
: .
- - Process-oriented
[=F]
. + Content-oriented
[=]
:o.as 3 “+ Basic
o
o = Control
o0
[~
Ry
=
=%
[*]
i 0.84
[-}]
[~
0.75 —
L
0.7
Pre-test Post-test

Testing Occasion

169

170

Four-disk problem

The following sections report the results of the four-disk problem, the two-disk
and three-disk sub-problems of the Tower of Hanoi. The results themselves are
contained in Tables 7.31, 7.32, 7.33, 7.34, 7.35, and 7.36, on pages 172, 173, 175,
176, 178 and 179 respectively. The graphs comparing the pre versus post results
are presented in Figures 7.3, 7.4 and 7.5 on pages 174, 177 and 180 respectively.

The intercorrelations among the scores of the number of moves, two-, and three-
disk sub-problems were computed, and no significant correlation was found. Thus a

separate 4 x 2 two-way ANOVA was conducted for each of the measures.

Number of moves. Two-way analysis of variance with repeated measures
indicate interaction effects among groups with regard to pre- and post-test scores on
the number of moves of the four-disk problem approached significance, F(3,69) =
2.63, p < .057. Thus the four a priori contrasts were conducted. Planned
comparisons revealed that the significant interaction was located in two areas. The
first area was the interaction between the LPO and LCO versus BASIC and control
groups, F(1,69) = 7.47, p < .008; the second area was the interaction between the
LCO versus the BASIC groups, F(1,35) = 4.76, p < .036 (Table 7.31).
Examination of the graph in Figure 7.3 and the data in Table 7.32 reveals the
significantly better performance of both LPO and LCO groups in the post-test results

as contrast to the BASIC and control groups.

Two-disk sub-problem. In the examination of the two-disk sub-problem with

two-way analysis of variance, it was found that the both interaction effect with
regard to pre- and post-test scores were significant, F(3,69) = 3.34, p < .024
(Table 7.33). Planned comparison reveals that the interaction was located in the
interaction of the LPO and LCO versus BASIC and control groups, F(1,69) = 7.71,
p < .007 (Table 7.33). Examination of the graph in Figure 7.4 and Table 7.34
shows that both LPO and LCO performed significantly better than the BASIC and

control groups.

171

Three-disk sub-problem. Similar results were obtained in the analysis of the
three-disk sub-problem. The interaction effect with regard to pre- and post-test
scores were significant, F(3,69) = 3.32, p < .025 (Table 7.35). Planned
comparison uncovers that the interaction was also located in the interaction of the
LPO and LCO versus BASIC and control groups, F(1,69) = 9.40, p < .003 (Table
7.35). The graph in Figure 7.5 and the data in Table 7.36 show that both LPO and
LCO outperformed the BASIC and control groups in the post-test scores.

To sum up, the results with the four-disk problem of Hanoi support hypothesis
eight which states that there would be significant group x testing occasion interaction
among the groups in the scores measured by Tower of Hanoi. Planned comparison
also revealed the interactions effects were due to the significantly better performance
of both the LPO and LCO groups in the post-test when compared to the BASIC and

control groups.

172

Table 7.31
ANOVA Summary Data for Tower of Hanoi - Four-disk problem
Number of moves

Pre- Versus Post-Test Comparison

Source of variance D.F. Sedn M.S. F-ratio P

Between subjects

Instructional Condition (A) 3 112.96 37.65 .79 .503

Error 69 |3286.55 | 47.63

Within subjects

Testing Occasion (B) 1 164.59 | 164.59 11.90 .001°
AXB 8 109.06 36.35 2.63 .057
Error 69 | 954.29 13.83

a priori contrasts

LPO & LCO vs BASIC & 1 103.34 | 103.34 7.47 .008"
Control

BASIC vs Control 1 3.59 3.59 .26 .612
LPO vs LCO 1 2.12 2.12 15 .697
LCO vs BASIC 1 79.13 1 79.13 4.76 .036°

* Significant Effects

173

Table 7.32
Means and Standard Deviations for Tower of Hanoi - Four-disk problem
Number of moves

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
Senp Mean S.D. Mean StD:
_LOGO Process-Oriented 23.41 5.68 {{ 19.94 6.23 il
LOGO Content-Oriented 23.05 4.84 18.90 3.31
BASIC 21,38 GLE) 21.85 6.82
Control 23.68 5.73 = 22.79 6.08
Total 22.90 5.35 20.73 5.78

Number of Moves

Figure 7.3

Four disk problem - number of moves

24

- Process-oriented
<+ Content-oriented
4 Basic

-+ Control

|
18
Pre-test Post-test

Testing Occasion

174

LS

Table 7.33
ANOVA Summary Data for Tower of Hanoi - Four-disk problem
Two-disk sub-problem

Pre- Versus Post-Test Comparison

Source of variance D.F. 8.8l M.S. F-ratio p

Between subjects

Instructional Condition (A) 3 57 17 300 .035

Error 69 8.87 .06

Within subjects

Testing Occasion (B) 1 .42 .42 19.83 .000°
AXB ‘ 3 .21 .07 - 3.34 .024°
Error 69 1.45 402 B

a priori contrasts

LPO & LCO vs BASIC & 1 .16 .16 k| .007°
Control

BASIC vs Control 1 .01 .01 24 .623
LPO vs LCO 1 .04 .04 2.08 .154

LCO vs BASIC 1 .02 .02 .74 .394

" Significant Effects

Table 7.34

Means and Standard Deviations for Tower of Hanoi - Four-disk problem

Two-disk sub-problem

Pre- Versus Post- Test Comparison

176

Pre-Test Post-Test
Group Mean S.D. Mean S.D.
LOGO Pro_cess-Oriented 57 .14 .79 .20
LOGO Content-Oriented .64 22 .76 .14
BASIC .63 23 .68 25
Control .54 .16 .56 21
Total 159 L .70 e

177
Figure 7.4

Four disk problem - two-disk sub-problem

0.8

0.75 —

w

~

E 0.7 4

< + Process-oriented
[«8]

= + Content-oriented
o

:n.ss— ‘4 Basic

o

o] -*- Control

&0 |

=~}

o

=

[«8]

[S]

i 0.6

D

[

0.55 —

0s
Pre-test Post-test

Testing Occasion

Pre- Versus Post-Test Comparison

Table 7.35
ANOVA Summary Data for Tower of Hanoi - Four-disk problem

Three-disk sub-problem

178

Source of variance D-F! S.S. M.S. F-ratio p
Between subjects
Instructional Condition (A) 3 .44 1§ 95 422
Error 69 10.71 .16

e
Within subjects
Testing Occasion (B) 1 .87 .87 11.54 .001°
AXB 8 75 i 8.82 .025°
Error 69 5.17 B or
a priori contrasts
LPO & LCO vs BASIC & 1 | 71 9.40 .003"
Control
BASIC vs Control 1 .00 .00 .04 .839
LPO vs LCO 1 .04 .04 .51 .478
LCO vs BASIC | 29 .29 2.77 .105

* Significant Effects

Pre- Versus Post- Test Comparison

Table 7.36

Means and Standard Deviations for Tower of Hanoi - Four-disk Problem

Three-disk Sub-problem

179

Pre-Test Post-Test
Gy Mean $.1D. Mean S
:OGO Pr:)cess-Oriented .24 .36 .58 87
LOGO Content-Oriented .25 .38 .50 .23
BASIC .27 .36 e} .40
Control 29 .30 182 .30
Total .26 35 .42 .34

Percentage of correct moves

Figure 7.5

Four disk problem - three-disk sub-problem

- Process-oriented
+ Content-oriented
+ Basic

~ Control

0:23 =

Pre-test Post-test

Testing Occasion

180

181

Five-disk problem

The following sections report the results of the five-disk problem, the two-disk,
three-disk and four disk sub-problems of the Tower of Hanoi. The results
themselves are contained in Tables 7.37, 7.38, 7.39, 7.40, 7.41, 7.42, 7.43, and
7.44 on pages 183, 184, 186, 187, 189, 190, 192 and 193 respectively. The graphs
comparing the pre versus post results are presented in Figures 7.6, 7.7, 7.8 and 7.9
on pages 185, 188, 191 and 194 respectively.

Before comparing the performance of the four groups on the five-disk problem
of the Tower of Hanoi, intercorrelations among the scores of the number of moves,
two-, three-, and four-disk sub-problems were computed, it was found that there was
no significant correlation. Hence a 4 x 2 ANOVA was conducted for each of the

measures.

Number of moves. The results of the two-way analysis of variance with

repeated measures indicate significant interaction effects among groups with regard
to pre- and post-test scores on the number of moves of the five-disk problem,
F(3,69) = 2.89, p < .041 (Table 7.37). Planned comparisons reveal that the
significant interactions were located in two areas. The first one was with the
intefgction of the LPO and LCO versus BASIC and control groups, F(1,69) = 4.16,
p < .045 (Table 7.37); the second one was located in the interaction of the LPO
versus LCO groups, F(1,69) = 4.47, p < .038 (Table 7.37). Examination of the
data in Table 7.38 and the graph in Figure 7.6 shows t};at it was the LPO group
which significantly outperformed the other three groups in the post-test scores.
Similar pattefns of results were obtained with the two-disk, three-disk, and four-

disk sub-problems.

Two-disk sub-problem. Two-way analysis of variance with repeated measures

indicate significant interaction effect among groups with regard to pre- and post-test
scores, F(3,69) = 7.77, p < .000 (Table 7.39). Planned comparison revealed that
the significant interaction was located in two areas. The first area was in the
contrast with the LPO and LCO groups versus with the BASIC and control groups,
F(1,69) = 8.90, p < .004 (Table 7.39); the second area was in the interaction with

182

contrast with the LPO versus LCO groups. Examination of the data in Table 7.40
and the graph in Figure 7.7 revealed that it was the LPO group which significantly

outperformed all the other three groups in the post-test scores.

Three-disk sub-problem. Results of the two-way analysis of variance with

repeated measures indicate significant interaction effect among groups with regard to
pre- and post-test scores, F(3,69) = 11.55, p < .000 (Table 7.41). Moreover,
planned comparison revealed that the interaction effect was located in two areas.

The first area was located in the interaction of the LPO and LCO versus BASIC and
control groups, F(1,69) = 17.57, p < .000 (Table 7.41); the second area was in the
contrast between the LPO and LCO groups, F(1,69) = 15.36, p < .000 (Table
7.41). Examination of the data in Table 7.42 and the graph in Figure 7.8 revealed
that it was the LPO group which performed significantly better than the other three

groups.

Four-disk sub-problem. Results of the two-way analysis of variance indicate a

significant interaction effect with regard to pre- and post-test scores in the
percentage of correctly solving four-disk sub-problem, F(3,69) = 4.93, p < .004
(Table 7.43). Planned comparison using the four a priori contrasts revealed that the
interaction effect was located in the contrast between the LPO and the LCO groups,
F(1,69) = 10.27, p < .002 (Table 7.43). Examination of the graph in Figure 7.9
and the data in Table 7.44 reveals that there were differential effects of the LPO
training condition. Subjects in the LPO group clearly outperformed subjects in the
other three groups in the post-test scores on the percentage of correctly solving four-
disk sub-problems.

Results from the four measures of the five-disk problem of Tower of Hanoi
supports hypothesis eight which states that there would be significant interaction
among the groups in the scores measured by Tower of Hanoi. Planned comparisons
also revealed that the subjects who received process-oriented instructions in LOGO
programming were able to perform significantly better than subjects in the other
three groups. In other words, subjects who learned LOGO programming with a

process-oriented approach were better able solve the more complicated five-disk

183

problem of Tower of Hanoi when compared to subjects with the other three groups.
In particular, the general performance of the subjects in the LCO group was not any

better than subjects in the BASIC and control groups.

Table 787
ANOVA Summary Data for Tower of Hanoi - Five-disk Problem
Number of Moves

Pre- Versus Post-Test Comparison

Source of variance D.F. 5.8 M.S. F-ratio p

Between subjects

Instructional Condition (A) 3 929.48 309.83 .64 .590

Error 69 33276.63 482.27

Within subjects

Testing Occasion (B) : 1 324429 |3244.29 15.15 .000°
A XB 3 185923 | 619.74 | 2.89 041
Errd 69 14773.73 | 214.11

a priori contrasts

LPO & LCO vs BASIC & 1 891.76 | 891.76 4.16 .045°
Control

BASIC vs Control 1 10.45 10.45 .05 .826
LPO vs LCO 1 957.02 | 957.02 4.47 .038°
LCO vs BASIC 1 27.58 27.58 .10 758

* Significant Effects

184

Table 7.38
Means and Standard Deviations for Tower of Hanoi - Five-disk Problem
Number of Moves

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
§Eeup Mean S.D. Mean S.D.
LOGO Process-Oriented 64.29 20.02 42.41 10.23 o
LOGO Content-Oriented 60.85 2223 53.40 19%.25
BASIC 63.18 21.80 58.18 19.59
Control 59.58 19125 56.11 15.77
Total 61.86 20.52 52.66 16.88

185

Figure 7.6

Five disk problem - number of moves

i
L
+
i)
w q
L ss- * Process-oriented
(=]
=) -+ Content-oriented
G
S -4-Basic
S
o -*-Control
g
50 -
e
45 —
40
Pre-test Post-l1ast

Testing Occasion

Table 7.39
ANOVA Summary Data for Tower of Hanoi - Five-disk Problem

Two-disk Sub-problem

Pre- Versus Post-Test Comparison

186

Source of variance IDIE. S St M.S. F-ratio P
Between subjects
Instructional Condition (A) 3 .17 .06 .99 .402
Error 69 4.01 .06

" Within subjects
Testing Occasion (B) 1 .45 .45 19.40 .000°
AXB 3 .54 .18 7.77 .000°
Error 69 1.60 .02
a priori contrasts
LPO & LCO vs BASIC & 1 21 .21 8.90 .004°
Control
BASIC vs Control 1 .03 .03 L3S0 258
LPO vs LCO 1 B0 .30 13.09 .001°
LCO vs BASIC 1 .00 .00 .02 .882

* Significant Effects

Pre- Versus Post- Test Comparison

Table 7.40

Means and Standard Deviations for Tower of Hanoi - Five-disk Problem

Two-disk Sub-problem

187

Pre-Test Post-Test
Group Mean S.D. Mean S.D.
:OGO Process-Oriented .45 .24 17 17
LOGO Content-Oriented .52 23 58 .19
BASIC .48 .18 .55 .22
Control .54 0s .53 18
Total .50 21 .61 .21

Percentage of correct moves

0.8 4

0.7 -

2
o
1

0.5 4

Figure 7.7

Five disk problem - two-disk sub-problem

* Process-oriented
+ Content-oriented
+ Basic

= Control

0.4

Pre-test Post-test

Testing Occasion

188

Pre- Versus Post-Test Comparison

Table 7.41
ANOVA Summary Data for Tower of Hanoi - Five-disk Problem

Three-disk Sub-problem

189

Source of variance D.F. S.S. M.S. F-ratio P
Between subjects

Instructional Condition (A) 3 2l .07 .83 .680
Error 69 5.8% L0

Wit;1in subjects N
Testing Occasion (B) 1 134 37 13.18 .001°
AXB 3 .98 33 11.55 .000°
Error 69 1.95 .03

a priori contrasts

LPO & LCO vs BASIC & 1 .50 .50 1RSI .000°
Control

BASIC vs Control 1 .05 .05 1.71 195
LPO vs LCO 1 .43 43 15.36 .000°
LCO vs BASIC 1 .01 .01 18 .670

" Significant Effects

Table 7.42

Means and Standard Deviations for Tower of Hanoi - Five-disk Problem

Pre- Versus Post- Test Comparison

Three-disk Sub-problem

190

Pre-Test Post-Test
Giolp Mean S.D. Mean S.D.
LOGO Pro-;ess—Oriented 14) .52 .25
LOGO Content-Oriented)5 28 22 18
BASIC w2 02 .25 2
Control .28 .21 .21 .
Total 25 .24 32 .26

Figure 7.8

Five disk problem - three-disk sub-problem

0.6 -

- Process-oriented

<+ Content-oriented

« Basic

= Control

Percentage of correct moves

o
Pre-test Post-test

Testing Occasion

191

Pre- Versus Post-Test Comparison

Table 7.43
ANOVA Summary Data for Tower of Hanoi - Five-disk Problem

Four-disk Sub-problem

192

Source of variance DIE: Sk M.S. F-ratio P
Between subjects

Instructional Condition (A) 3 .29 .10 1.39 54
Error 69 4.89 .07

Within subjects D

Testing Occasion (B) 1 Al 11 3.51 .065
AXB 3 .45 15 4.93 .004°
Error 69 2.09 .03

a priori contrasts

LPO & LCO vs BASIC & 1 .08 .08 2.69 .105
Control

BASIC vs Control 1 .06 .06 1.84 .180
LPO vs LCO 1 31 31 10.27 .002°
LCO vs BASIC 1 .03 .03 .84 .365

* Significant Effects

193

Table 7.44
Means and Standard Deviations for Tower of Hanoi - Five-disk Problem
Four-disk Sub-problem

Pre- Versus Post- Test Comparison

Pre-Test Post-Test
Hlugep Mean S Mean S.D.
LOGO Process-Oriented .06 .24 D2 Sl
LOGO Content-Oriented .10 .26 .08 .18
BASIC .06 JET 12 .28 I
Control .08 .19 .03 .12
Total .08 22 12 .25

Figure 7.9

Five disk problem - four-disk sub-problem

0.3 =

0.25 —

(7p]

2

O 0.2 4

E .

= - Process-oriented
oy .

= + Content-oriented
3

« 0157 ‘& Basic

[}

® -- Control

o

©

-—

=

@

8 0.1 4

D

o

o
Pre-test Post-test

Testing Occasion

194

195

Conclusion

In summary then, subjects in this study who learned LOGO programming,
irrespective of instructional methods, did not perform any better than subjects in the
BASIC and control groups in mathematics achievement and problem solving
measures that were of a far-transfer nature, namely, Raven’s Standard Progressive
Matrices, the three sub-tests of the WISC-R, the Rule Naming Task, and the
Torrance Test of Creative Thinking. However, subjects in both LOGO groups
consistently outperformed subjects in the other two groups in the three-disk, four-
disk problems of the Tower of Hanoi, but not in the five-disk problem. Therefore,
the findings with mathematics achievement and various problem solving measures
partially supports the overall hypothesis A which states that the learning of LOGO
programming would facilitate problem solving in a non-programming context that
was of near transfer nature (Tower of Hanoi) but not those of a far transfer nature
(mathematics achievement, Raven’s Standard Progressive Matrices, WISC-R Picture
Arrangement, WISC-R Block Design, WISC-R Object Assembly, Rule Naming
Task, Torrance Test of Creative Thinking).

The above findings also partially support the overall hypothesis B which states
that the degree of transfer from the LOGO environment to non-programming
problem solving context of a near transfer nature (Tower of Hanoi) would be greater
in children taught with the process-oriented approach compared with those taught
with the content-oriented approach. This is evident from the fact that subjects in the
LOGO process-oriented group consistently outperformed the subjects in the LOGO
content-oriented group in the more complicated five-disk problem of the Tower of
Hanoi and its associated sub-problems but not in the simpler three-disk and four-disk

problems of the Tower of Hanoi.

196

Classroom Interactions

Three major types of classroom interactions were observed: interactions of
teachers with students, interactions of groups, and interactions of individual students
with other students and teachers. The following sections will report the results of

‘these three types of interactions.

Interactions of teachers with students

The major purpose of this observation related to the monitoring of the ways
teachers taught in the three different groups, viz, LOGO process-oriented group
(LPO), LOGO content-oriented group (LCO), and the BASIC group. Three major
categories were used in the observation, that is, process-oriented, content-oriented,
and other (which included episodes in relation to general administration and
reinforcement of student learning). Table 7.45 displays the results of the
observation. It could be determined from the data that the majority of the episodes
in the LPO group focussed on the process-oriented interactions (61 %), whereas the
majority of episodes of the other two groups related to content-oriented interactions
(62% for the LCO group and 74 % for the BASIC group). These results provide
further evidence to support the differences in the instructional methods used with the

three groups in this study.

Table 7.45
Interaction of teachers with students
LPO LCO BASIC
Episode
Number | Percentage | Number | Percentage | Number | Percentage

Process- 551 61 60 6 15 2
oriented
Content- 107 12 632 62 500 74
oriented

Other 246 27 332 32 162 24

Total 904 100 1024 100 677 100

199

In the process-oriented group, the focus of teacher-student interactions was on
the processes involved in learning the language and the steps in solving the related
programming problems. When students encountered problems, the teachers tried to
encourage them to think and to find out their own answers. The following examples
illustrate some of the process-oriented interactions between teachers and students:

"What happened? What about the turtle? What does show turtle do?

"Make these predictions and then when your turn comes, see if your

prediction is correct.’

"Check it carefully. Where do you think you have gone wrong?’

"How are you going to fix it? Whar was wrong?’

"What’s missing from that one? You think about it.’

"Have you followed your plan through?’

"What do you do to get rid of those stuff?’

‘Student: "I can’t predict!!!”; Teacher: "Imagine you are a turtle..."’

"What do you want to do?’

"What do you have to do? You try it...’

It was through exchanges like these that students were encouraged to think, to
experiment with different ideas, to plan their work systematically, to analyse their
work and to monitor their own progress while learning to program.

On the other hand, in both the LOGO content-oriented and BASIC groups, the
focus of the teacher-student interactions was on the content such as syntax of the
languages and steps of solving programming problems. The following are typical
examples of the content-oriented episodes:

"You need to leave a space berween FD and the number.’

"You have to press ENTER afier each command.’

"To hide the turtle, you type HIDETURTLE.’

"You ryped too many 0’s.’

"Move the turtle to the borrom of the screen. You can move it back or turn

around. Then count the number of steps.’

‘Ger out of the Editor by pressing ESC.’

‘Load your file back from the disk.’

198
*Put in the PRINT command.’

"Type CLS to clear the screen.’
"Put a quotation mark first, then type the next line.’
"These are string variables. Put a string after it.’

"You did not use the line numbers. Type this in first.’

In the content-oriented episodes, teachers always tried to provide students with
direct answers to their questions instead of asking students to find out the answers
themselves through critical thinking and self-exploration.

As expected in any classroom situation, a fair amount of interaction (between
24% to 32%) in all three groups related to the other category such administration
and reinforcement of student learning. Some of the typical interactions are as
follows:

"You can take these modules home.’

"Work through last week’s module.’

"Use blue pen to put down what actually happened.’

’Start where you finished last time.’

’Read through the module.’

"’Answer those questions that you can answer’

’Have you finished last week’s module?’

"Yes, keep trying.’

"That’s how you do it!’

"Yes, that’s right.’

"You know what you are doing. 1 won’t say a word.’

"That’s good’

It could be determined from these data that (i) there were more interactions
between the teachers and the students in both the LPO group (904 episodes) and the
LCO (1024) group as contrast to the BASIC group (677 episodes); and (ii) there
were substantially more process-oriented interactions between the teachers and the

students in the LPO group during student learning.

Student Group Interactions

199

The major purpose of this observation was to find out the extent to which group

interaction among students occurred. Four major categories of observation were

used:
Zero -
One -
Two -
Three -

no group interaction;

one group was involved in interaction;

two groups were involved in group interaction;

1 large group (i.e. more than half of the class, or more than two groups

irrespective of size).

The results of these observations are displayed in Table 7.46. It should be noted

that the numbers contained in this table refer to the number of episodes that occurred

rather than the actual duration of interaction.

Table 7.46
Student group interaction
LPO LCO BASIC
Episode
Number | Percentage | Number | Percentage | Number | Percentage
e

Zero 23 1.09 6 .33 il 7.16

One 259 12.32 410 22.42 444 34.93

Two 658 31.30 837 45.76 522 41.07
Three 1162 55.28 576 31.49 214 16.84
Total 2102 100.00 1829 100.00 1271 100.00

Similar to the observations made with teacher-student interactions, it could be

determined from the data on group interactions that the two LOGO groups students

were involved in a more dynamic learning environment when compared to students

in the BASIC group. Several kinds of evidence could be found under this category

of observation.

200

igure 7.10

10n

Student Group Interact

EIBASIC

-

e

vz

1

1,100 —

1,000 —

g g §
sapos|da Jo JaqunN

-1

Two

One

Zero

Types of interaction

201

First, there were more episodes of interactions among students in both the
LOGO groups. In particular, the LPO group had 2102 episodes of interactions, the
LCO group had 1829, and the BASIC group had 1271.

Second, 7% of episodes of the BASIC group were involved with no student
group interactions as compared to only 1.09% with the LPO group and .33% with
the LCO group.

Third, substantially more episodes of the two LOGO groups were involved with
two or more groups of students interacting with each other. In particular, it was
86% for the LPO group and 77% for the LCO group compared with 53% with the
BASIC group.

Fourth, 42% of the episodes for the BASIC group was involved with either no
group interaction or only 1 group of students interacting as compared to 13.41% for
the LPO group and 22.75% for the LCO group.

Although it was not possible to record all the group interactions, some of the
examples below illustrate several kinds of group interactions that occurred. Quite
often, the students were seen cooperating with each other when solving problems.
For instance:

1. "Let’s work on drawing this robot together”

"Good idea. Why don’t you draw the arms and the legs and I’ll draw the rest".
2. "What have I done wrong in drawing this star?"

"Look, the angle is wrong".

3. "How are we going to get this roof into its proper place?”

"Let’s try turning 30 degrees before drawing the roof”.

Students were also seen engaging in resolving their conflict while attempting to
arrive at a solution. Sometimes they were successful, but at times they were not.
Following are typical of these episodes:

1. "I think we should turn 60 degrees to draw this triangle”

"No, I think it should be 120 degrees"

"Why don’t you act as the rurtle and I’ll give you the commands to act out to see

who is right”

"Alright".

202
2. "The width of the screen is 300"

"You are wrong. It is 310"
"Far off! You are both wrong. It is 320"
"How did you ger 320?"
"Let me show you".
3. "How many degrees do you think we should turn to draw this star using the
repeat command?"
"100 degrees”
"No, I think it should be 120"
"Well, why don’t you use yours and I'll use mine".
There were also other group interactions that did not relate to the students’
learning tasks. For example:
1. "What did you watch on tele last night?"
"Those cartoons were quite interesting".
2. "What are you going to do this weekend?"

"We are going to Wanganui".

In summary, it could be determined from the observations made on the group
interactions of the three programming groups that the two LOGO groups were
involved in more group interactions when compared to the BASIC group. As well,
it could be judged that the LPO students were involved in more group interactions
when compared to the LCO group. Therefore, hypothesis nine could be upheld that
there would be more group interaction in the LPO group than the LCO group, and
that there would be more group interaction in the LCO group than the BASIC
group.

The records of some of the detailed group interactions illustrate that during the
process of learning to program, students may be involved in shared problem solving,

and resolution of conflict.

203

Individual student interactions

The major purpose of this observation was to find out how students interact with
other students and the teachers. Three categories of observation were used with the
following coding variable names:

) substantive verbal interactions (SV);
(ii) substantive non-verbal interactions (SN); and
(1i1) non-substantive interactions (NS).

Before comparing the groups’ various types of interactions, the frequencies of
the three different types of interactions were first correlated and no significant
correlation was found. Hence three separate analyses of variance were conducted
with each type of interactions. The results will now be presented according to these

three categories of observations.

Substantive verbal interactions

The one-way analysis of variance indicate that there was significant difference
among the groups in relation to the occurrence of substantive verbal interactions,
F(2,51)=11.92, p < .000 (Table 7.47). It can be determined from Table 7.48 that
it was in the LPO group where substantive verbal interactions occurred most. Also,
the occurrence of substantive verbal interactions was higher in the LCO group than

in the BASIC group.

Table 7.47
ANOVA Summary Data for Substantive Verbal Interactions
Source of variance TR, LS. M.S.. F-ratio p
Between Groups 2 481.91 | 240.96 11.92 .000°
Within Groups 51 1030.68 20.21
Total 53 1512 59

" Significant Effects

204

Table 7.48
Means and Standard Deviations for Substantive Verbal Interactions
Number of Episodes
Group Subjects Mean SD.
LOGO Process-Orientez 17 14.12 5.12
LOGO Content-Oriented 20 10.40 S48
BASIC 17 6.59 2.62
Total 54 1089 5.34

In addition to some of the examples cited in the last section, following are some
typical examples of the substantial verbal interaction:

"Think, turtle think!!!"

"Something is wrong with your program. You should have FORWARD 50

instead”

"We got it!! Let’s see it again”

"I know. If there is something wrong, I should go back to my plan and look at it

carefully".

Substantive non-verbal interactions

Similarly, the one-way analysis of variance indicate that there was significant
difference among the groups in relation to the occurrence of substantive non-verbal
interactions, F(2,51)= 7.33, p < .002 (Table 7.49). From Table 7.50, it can be
determined that the LPO group had the highest incidence of substantive non-verbal
interactions. Also, the mean number of substantive non-verbal interactions was

higher in the LCO group than in the BASIC group.

205
Table 7.49

ANOVA Summary Data for Substantive Non-Verbal Interactions

Source of variance D.F. <= M.S.. F-ratio ‘ p
—_— —— ———

Between Groups 2 43.63 21.82 7.33 .002°
Within Groups 51 151.87 2.98
Total 58 | 195.50

* Significant Effects

Table 7.50

Means and Standard Deviations for Substantive Non-Verbal Interactions

Number of Episodes
Group Subjects Mean SD.
=LTOGO Process-Oriented 17 2.65 1.94
LOGO Content-Oriented 20 2.25 2.00
BASIC 17 39 1.01
;fotal 54 1.83 .92

There were two major types of substantive non-verbal interactions. First, a
student would watch what happened on a classmate’s computer screen. Second, a

student would listen/watch what other classmates and/or the teacher were doing.

Non-substantive interactions

The one-way analysis of variance indicates that there was no significant
difference among the groups in relation to the occurrence of non-substantive
interactions, F(2,51)= .21, p < .810 (Table 7.51). The means and standard

deviations of the occurrence of non-substantive behaviour for the three groups are

206

displayed in Table 7.52. It can be determined from Table 7.52 that the LPO group
had the least number of non-substantive interactions but the difference with the other

groups was not significant.

Table 7.51
ANOVA Summary Data for Non-Substantive Interactions
Source of variance D.F. S8 M.S.. F-ratio p
L ==“==l‘—‘—_—
Between Groups 2 5.79 2.89 21 .810
Within Groups 51 696.36 13.65
Total 53 70215
Table 7.52
Means and Standard Deviations for Non-Substantive Interactions
} 1l
Number of Episodes
Group Subjects Mean SD.
| p— —
LOGO Process-Oriented 17 2l 2.69
LOGO Content-Oriented 20 3.45 4.16
BASIC 17 3.35 3.97
Total 54 3.19 3.64

Typical non-substantive interactions involved students talking about something

that were unrelated to the learning of programming. The examples cited in group

interaction (watching tele, and going away during the weekend) were quite typical of

these episodes.

To sum up, the results on classroom interaction support hypothesis ten which

states that there would be more substantive verbal and non-verbal interactions among

207

subjects in the LPO group than those in the LCO group, and that there would be
more substantive verbal and non-verbal interactions among subjects in the LCO

group than those in the BASIC group.

Summary

This chapter has tendered the results of the present study in relation to problem
solving skills and classroom interactions among the subjects. It was found that
subjects who learned LOGO programming were able to transfer their problem
solving skills to a near-transfer context when compared to the BASIC and the control
groups. Also, students who received their LOGO learning with a process-oriented
approach were able to transfer their problem solving skills better than those who
learned LOGO with a content-oriented approach. Moreover, it was found that
subjects in both LOGO group exhibited more substantive interactions than their
counterparts in the BASIC group. The next chapter will discuss the findings of this

study.

208
CHAPTER EIGHT

DISCUSSION

This chapter discusses the results of the present research. It focuses
initially on the relationship between the development of problem-
solving skills and learning to program with the computer languages
LOGO and BASIC when different instructional approaches are used.
This is followed by a discussion of the effects of different instructional
methods on interactions within the programming environment.
Suggestions for teaching and learning strategies with the LOGO
language are then discussed. Finally, the limitations of the study and
recommendations for future research are considered.

Overview

The present study investigated the effects of computer programming on
children’s general problem-solving skills and classroom interactions. It also
examined whether the method of instruction and the type of languages used would
affect the transfer of such skills to other non-programming domains, including those
of a near-transfer and far-transfer nature. Further, the investigation incorporated
some aspects of metacognitive training into the process-ofiented"approach to teaching
LOGO programming in order to test for transfer of problem-solving skills. The
present research also included observation of classroom interactions between teachers
and students so that more information could be obtained on the relationship between
programming, instructional methods and social interaction.

The results of the study provide some evidence of related gains from learning
LOGO, irrespective of instructional methods used. Students from both LOGO
groups showed transfer of problem-solving skills to a near-transfer context to a
greater extent than did students in the BASIC and control groups. Similar evidence
was not forthcoming for the far-transfer context. These findings provide some
support for the use of LOGO as a vehicle to develop problem-solving skills.

The consistently higher scores from the LOGO process-oriented (LPO) group
when compared to those from the LOGO content-oriented (LCO) group in the more

complicated Tower of Hanoi task seem to suggest that instructional method may

209

have a significant part to play in the transfer of problem-solving skills. The LPO
group results gave evidence of application to another context the skills that the
students were previously taught.

The observational data of the study also suggest that LOGO could facilitate
social interaction among students and that these in turn may affect the acquisition
and transfer of problem-solving skills. Moreover, the higher incidence of both
substantive verbal and non-verbal behaviours of the LPO group when compared to
those of the LCO group indicated that instructional method may facilitate social-
cognitive interactions among students.

The remainder of the chapter will discuss these results in more detail and

comment on their significance.

Programming and problem solving

In general terms, the results on problem solving, including mathematics
achievement, indicated that the post-test performances of subjects in all four groups
were usually higher than pre-training performances. Without looking in detail into
group differences and the types of problem-solving measures, this result may signify
a practice effect. However, group comparisons showed the results of the two
LOGO groups to be statistically significantly different from the BASIC and control
groups on some measures of the Tower of Hanoi. As well, the LOGO process-
oriented (LPO) group also significantly outscored the LOGO content-oriented (LCO)
group on some sub-problem measures of the more complicated Tower of Hanoi
problems. Accordingly, the following sections will examine the results separately

according to the types of problem-solving measures used.

LOGO programming and mathematics achievement
The lack of statistically significant differences in the PAT Mathematics

Achievement scores indicates that the learning of LOGO programming produced no
effect on the general mathematics achievement of the learners (see Tables 7.3 &
7.4). These results are in accord with findings of previous studies. For instance,

Clements (1986¢) found that LOGO programming did not affect the mathematics

210

achievement of the subjects who received 22 weeks of learning in LOGO. In the
study of Battista and Clements (1986), students showed no gains in their
mathematics achievement after learning LOGO programming for a year. The
absence of evidence of the transfer of mathematical learning from a LOGO
environment was also shown in a study by Finlayson (1983) who found that although
students appeared to be competent with turtle graphics they failed to comprehend
fully the underlying mathematical concepts. These researchers suggested that one of
the major problems was that students failed to see the connection between what they
learned and applications in other contexts. An attempt was made in this study to
provide more explicit links between LOGO programming and the applications of
mathematical concepts through the use of a process-oriented approach. Students
were asked to reflect on the applications of mathematical concepts in contexts other
than LOGO programming (eg, spatial distance in travelling around the school,
turning of angles etc.). Nonetheless, it was quite clear that students who learned
LOGO programming using either a process-oriented approach or a content-oriented
approach did not perform in mathematical achievement any differently from their
counterparts. Transfer of specific mathematical strategies or concepts from LOGO
to normal classroom mathematics was not measured in this study so comparison
cannot be made with studies that did (eg, Lehrer & Smith, 1988; Thomson & Chen
Wang, 1988; Turmner & Land, 1988; Ortiz & MacGregor, 1991).

The main point that must be considered in studies that examine LOGO
programming and mathematics achievement 1s that the éoverage of standard
mathematics in LOGO programming is perhaps too slight to cause significant gains
in mathematics achievement. Typical mathematics achievement tests include a wide
range of mathematical concepts and computational skills. Short intervention studies
like the present one do not lend themselves to the more extensive coverage of
mathematical contents that are contained in the standard mathematics achievement
tests. Similar arguments have been advanced by Irwin (1985) who suggested that
there was little similarity in the content of the mathematics syllabus and the type of
problem solving that occurred in LOGO programming session. As well, the short
duration of the present study did not allow students sufficient opportunities to

practise and to internalize the mathematical strategies that they might have acquired

211

through the learning of LOGO programming. Future studies may need to focus on
the learning and transfer of more specific mathematical concepts and strategies if any
gains are to be found. On the other hand, if the students are expected to show
significant improvement in mathematics achievement, then a more elaborate
curriculum in mathematics through LOGO programming may need be developed.
More careful "mappings" between the students’ work in LOGO and classroom
mathematics may need be made and brought to a level of explicit awareness for the
students (Clements, 1987b). In other words, specially designed LOGO microworlds
that focus on a large number of mathematical concepts and strategies may be
required to be established which may enable students to learn and practise a wider
range of mathematical skills (eg, Niess, 1992) but whether the result would warrant

the effort is problematical.

LOGO programming and problem solving

The prime focus of this study was the examination of the effects of LOGO
programming on transfer of general problem-solving skills to non-programming
contexts. A number of problem-solving measures were used to assess the problem-
solving skills of the students both before and after the intervention. These measures,
inter alia, were used to gauge skills in: planning, analysis, synthesis, spatial
relationships, logical reasoning and creative thinking. Unlike most of the previous
studies, the present research made a distinction between problem-solving tasks that
were of a far-transfer nature and those that were of a near-transfer nature. This
distinction was made based on the literature on problem solving that showed that it
might be difficult to achieve far-transfer but relatively easier to achieve near-transfer
(cf Ellis, 1965; Ginther & Williamson, 1985; Alexander & Judy, 1988; Palumbo,
1990). The next sections will examine the results according to the two different

types of problem-solving measures.

Far-transfer problem-solving measures

The following measures were used to assess far-transfer of problem-solving
skills: Raven’s Standard Progressive Matrices; the three sub-tests of the WISC-R,

viz. Picture Arrangement, Block Design, and Object Assembly; the Rule Naming

212

Task; and the Torrance Test of Creative Thinking. Although all these measures
were of a figural nature, which to some extent, resembled the largely graphic
domain in which students of the LOGO groups were working, results from both
LPO and LCO groups did not show any statistically significant differences when
compared to those from the other two groups (see Tables 7.5 to 7.26). These
results lead to the partial acceptance of the overall hypothesis A that the learning of
LOGO programming would not facilitate the transfer of problem-solving skills to
another domain that is of a far-transfer nature.

These non-significant findings are consistent with a number of LOGO studies
which employed problem-solving measures that were of a far-transfer nature. For
example, in studies by Pea (1983), and Pea and Kurland (1984b) which used
classroom planning tasks as problem-solving transfer measures, the researchers did
not find any transfer of planning skills even after one year’s learning of LOGO.
Chambers (1986) found that her subjects’ performance in problem-solving skills such
as planning and analysis showed no improvement after learning to program with
LOGO. Similar results are to be found in a number of other studies reviewed in
Chapter Four (eg, Horner & Maddux, 1985; Carver & Klahr, 1986; Mitterer &
Rose-Krasnor, 1986).

The findings of these previous studies, together with those of the present one,
highlight the difficulty in either effecting or demonstrating transfer of problem-
solving skills from a LOGO environment to another context that is of a far-transfer
nature. Deliberate attempts were made in the present research to teach problem-
solving skills through the use of a process-oriented approach, and the application of
these skills in other contexts. For example, students in the LPO group were taught
specific skills such as breaking down problems into simpler sub-problems, planning
their solutions carefully, and monitoring these solutions both at and away from the
computer. They were also required to apply these skills in simulated real life
problem situations such as planning a trip to the capital or buying a bottle of milk
from a corner dairy. Nevertheless, students in the LPO group did not show any
greater improvement than did the students in the other groups.

However, it is interesting to note that although there were no significant

interaction effects with the four measures of creativity as assessed by the Torrance

213

Test of Creativity (flexibility, fluency, originality and elaboration), the gain scores
of all the three programming groups were consistently higher than the control group
in areas of fluency and elaboration. Previous studies on LOGO programming and
creativity have shown some positive relationships. For instance, the study by
Clements and Gullo (1984) found that their subjects improved in fluency. Similarly,
Clements (1986¢) and Horton (1986) also found their subjects improved on
elaboration.

These results and the non-statistically significant tendency observed in the
present study give rise to several observations. First, the tendency towards more
comprehensive and elaborate drawing may have been a reflection of more systematic
procedural thinking developed by the subjects during programming. This is
certainly the case with LOGO programming as the language tends to encourage
students to solve their problems by writing various procedures. The gains with
students in the BASIC group remains speculative although perhaps being beginners,
these students tended to write rather short programs to solve their problems one at a
time. Also, a number of BASIC programming exercises used in the present study
involved graphics. Second, creativity in a figural domain may have resulted from an
increase in overall organizational adaptability, or from experience verbalising
information or representations that are held in an encoding that is not isomorphic
with language (Clements, 1987b). Because such verbalisation implies considerable
processing, children in the programming groups may have encoded information in
long term memory with a relatively extensive array of verbal, as well as visual
association or symbols which could later be accessed. These might then serve as
links in associative chains which lead to new re-organizations of memory, and thus
to greater fluency and elaboration.

The non-significant interactions from the far-transfer problem-solving
measures in this study are consistent with the literature on problem solving and
strategy training in general. A number of theorists (eg, Gick & Holyoak, 1980;
Hayes & Simon, 1977; Pea & Kurland, 1984d) note that it is very difficult for
people to apply problem-solving strategies learned in one context to new problem
forms and that the expectation of spontaneous transfer across diverse knowledge

domains must be viewed cautiously. Studies on the transfer of problem-solving

214

skills have demonstrated that the lack of domain-specific knowledge would often
hamper the successful transfer of general problem-solving skills to another context
(see review of Alexander and Judy, 1988). More recent studies on problem solving
have attempted to incorporate various forms of strategy training to enhance transfer
but again, their results have highlighted the importance of domain-specific
knowledge in solving problems within a particular context (cf Kuhn, 1990; Okagaki
& Sternberg, 1990; Lawson, 1991; Stevenson, 1991).

Further, some LOGO researchers have asserted that failure to find far-
transfer may be due to the low level of students’ programming expertise (Leron,
1985; Dalbey & Linn, 1985; Kurland, Pea, Clement, & Mawby, 1986; Khayrallah
& Meiraker, 1987; Palumbo, 1990; Dalton & Goodrum, 1991). Chapter Four
indicated how some researchers have theorised about a chain of cognitive
accomplishment related to the development and potential transfer of problem-solving
skills to another context (see Figure 4.1). The short duration of the intervention
used in the present study might have been insufficient for students to attain sufficient
mastery of the LOGO language, not to mention the necessary acquisition of

problem-solving skills which may be essential for transfer to take place.

Near-transfer problem-solving measures

The results with the near-transfer problem-solving measures used in this
study - the number of moves to complete a Tower of Hanoi (TOH) problem and the
correct percentage of solving the corresponding sub-problems - highlight two fairly
distinct aspects that warrant attention. First, both LOGO groups outperformed the
BASIC and control groups in the relatively less complicated Tower of Hanoi
problems. These include: the three-disk problem and its two-disk sub-problem, and .
the four-disk problem and its two-disk and three-disk sub-problems. Second, scores
from the LPO group were significantly higher than those of the other three groups
(including the LCO group) in the five-disk problem and the related sub-problems
(see Tables 7.37 to 7.44; Figures 7.6 to 7.9). The following sections will examine

these two aspects of the near-transfer results.

215

LOGO programming and near-transfer. The significant interaction effects

with the three-disk and four-disk problem scores in this study (see Tables 7.27 to
7.36; Figures 7.1 to 7.5) partially support the overall hypothesis A which stated that
the learmning of LOGO programming would facilitate the transfer of problem-solving
skills to a non-programming context that was of near-transfer nature. The planned
comparisons indicate that both LOGO groups outperformed the two other groups in
these measures.

These findings are consistent with a number of findings from LOGO studies
that employed problem-solving measures that were of a near-transfer nature. For
instance, McAllister (1985) used Tower of Hanoi in his study. Although he made
no comparison of pre versus post treatment gains, he found that the scores of Tower
of Hanoi correlated positively with measures such as program writing, program
creating, and program reading. This led McAllister to suggest that skills acquired
while learning LOGO programming might positively transfer to other non-
programming environments bearing similar properties. Horton (1986) found that
when her subjects were using commands which were very similar to LOGO
commands, they were able to transfer their problem-solving skills learned in a
LOGO context to non-programming contexts. Similar types of direction-describing
tasks were used in a study by Gallini (1987) who found that the LOGO subjects
were able to achieve significantly higher scores than those in the control group.
Comparable results were obtained in studies that employed measures that bore
resemblance to tasks carried out in a LOGO environment (eg, Clements & Gullo,
1984; Mayer & Fay, 1987). Moreover, Au and Leung (1991) obtained very similar
results in a study of students who used English as their second language. In that
study, the Tower of Hanoi was also employed as one of the problem-solving
measures. The students who learned LOGO using either the process-oriented
approach or the content-oriented approach outperformed those in the control group.
As in the present study, the subjects only showed improvement in the simpler
problems of the Tower of Hanoi.

The findings of these previous studies, together with those of the present
research, suggest that LOGO may be facilitative in the transfer of problem-solving

skills to another context that is of a near-transfer nature. The facilitative effects

216

might be due to the characteristics of the LOGO language. As reviewed in Chapter
Three of this thesis, some of these inherent characteristics include: learners are
encouraged to break down complex problems into simpler ones, solve the simpler
problems by writing the appropriate procedures, and then combine these simpler
procedures to solve the more complicated problems. The structure of the Tower of
Hanoi task consists of a number of sub-problems that are identical in form.
Solutions can be constructed by firstly devising a solution for one of the sub-
problems and then progressively achieving the total solution by repeatedly using the
"simple" solution (McDougall, 1988). The skills required to solve the TOH
resemble very much skills acquired while learning to program with the LOGO
language. The hierarchical sub-problem structure, and the fact that the recursive
nature of the moves toward the program goal, make the TOH isomorphic to LOGO
programming (Luger, 1976; McAllister, 1985). In other words, the TOH is a
problem which has the same structure as programming in LOGO, but presented in a
different form. It is perhaps because of this structure of the TOH that students in
both LOGO groups were able to score significantly higher than those in the other
two groups. Although the students in the LOGO groups may not necessarily have
understood the concept of recursion in the programming sense, the fact that they
have used skills such as breaking down complex problems in LOGO programming
may have helped their subsequent performance.

This aspect of the results is consistent with findings obtained from research
on problem solving. For example, a study by Luger and Bauer (1978) assessed the
relationship between human problem-solving behaviour and the structural properties
of certain problems. They found that transfer effects are easier to demonstrate when
the two problems are isomorphic in structures. Similar isomorphic transfer was also
found in other studies (eg, Simon & Hayes, 1976; Gallini, 1987; Clements, 1987b;
Clements & Gullo, 1984). The results of the present study are consistent with the
view that generalization of problem-solving capability is more likely when structures
In contexts are isomorphic.

One of the research questions addressed in this study was whether LOGO
provides a better medium to develop problem-solving skills than does the language

BASIC. The results of the study showed that subjects in the LCO group scored

217

significantly higher than the subjects in the BASIC group although both groups were
taught with a content-oriented approach (see Tables 7.27 to 7.36; Figures 7.3 to
7.5). The planned comparisons with some of the measures of the three-disk and
four-disk problems of the Tower of Hanoi revealed that the contrasts were either
significant or approaching significance. This could perhaps be due to the difference
in the nature of the two languages. In this study, subjects in the BASIC group
reported comparatively more difficulties in mastering the syntaxes and commands of
the BASIC language than did those in the LOGO groups. These subjects’ difficulty
with the BASIC language lead to two observations in relation to their performance
with the problem-solving measures. First, the subjects in the BASIC group might
have spent more time in trying to master the language rather than mastering the
procedural and conditional knowledge that are essential in problem solving. Second,
as Chapter Four reported, some researchers (cf Linn, 1985; Leron, 1985; Palumbo,
1990) have argued that the development of problem-solving skills progresses along a
chain of cognitive accomplishment, through which learners move from learning the
syntactical and declarative aspects of the language through to more generalizable
problem-solving skills. With the BASIC language, perhaps the learners were not
able to proceed beyond the simple syntactical and declarative knowledge of the
commands, therefore preventing them from acquiring let alone transferring, the
more generalizable problem-solving skills. LOGO, on the other hand, has a less
complicated command structure and therefore may promote more rapid movement

along the chain of cognitive accomplishment.

Instructional methods and near-transfer. The second aspect where there were

differential results with the more complicated five-disk TOH problems between
students in the LPO group and those in the LCO group suggests that there may be a
relationship between the process-oriented instructional method used in this study and
transfer of problem solving. When examining the total number of moves to
complete a five-disk problem as well as the correct percentages in solving the related
two-disk, three-disk and four-disk sub-problems, the planned comparison
demonstrated that the interaction effects lay in the higher scores of the LPO group

‘when compared to those of the other three groups (see Tables 7.37 to 7.44, Figures

218

7.6 to 7.9). These findings indicate that students who learned LOGO programming
with explicit problem-solving instructions were better able to transfer their problem-
solving skills to another context than were students in the other three groups.

These results are similar to a number of previous LOGO studies. For
example, Au and Leung (1991) found that in their study, students who learned
LOGO programming with instruction in problem solving, scored significantly higher
in near-transfer problem-solving measures than did subjects who received LOGO
instructions without any direct instruction in problem solving. Dalton and Goodrum
(1991) also found that when LOGO programming instructions were augmented by
problem-solving instructions, their students performed better when compared with
others who had just learned programming. Similarly, studies that consistently
demonstrate transfer of problem-solving skills to other domains tend to be those
where problem-solving skills were taught explicitly. The results in the present study
and others suggest that there may be some relationship between instructional
methods used in the teaching of programming and the acquisition and transfer of

problem-solving skills.

Instructional methods and transfer of problem-solving skills

One of the research questions raised in this study was whether instructional
methods might have some effect on the transfer of problems-solving skills. The
significant interaction effects among the groups with the five-disk problem and its
sub-problem measures indicated that the LOGO group taught with a process-oriented
approach achieved significantly higher scores than did the LOGO group taught with
a content-oriented approach (see Tables 7.37 to 7.44). Moreover, these results
suggest that the students in the LPO group might be able to transfer to another
domain the problem-solving skills they had been taught explicitly both more
consistently and to more complicated problems. Informal observation and
conversation with the subjects in this group confirmed that, while attempting to solve
the problems, they did try to use the skills that they were taught, such as breaking
down a complex problem into simpler sub-problems. This was particularly evident
with the Tower of Hanoi exercise where the structures of the problem lend

themselves to such endeavours.

219

On the basis of these results, the present study suggests that an instructional
approach that emphasizes problem-solving skills in the learning of programming may
have a facilitative effect on the transfer of problem-solving skills to the specific non-
programming context tested. These findings lend support to the second overall
hypothesis B in that the degree of transfer from the LOGO environment to non-
programming context of a near-transfer nature would be greater for children taught
with the process-oriented approach compared with those taught with the content-
oriented approach.

From the results of the TOH, it was obvious that the gains obtained from the
traditional content-oriented approach of programming instruction were only restricted
to the simpler TOH problems. Once the students in the LCO group encountered the
more complicated TOH problems, their performance was no different from those in
the BASIC and control groups (see Tables 7.37 to 7.44). These results and others
(eg, Pea, 1983; Pea & Kurland 1984b; Mitterer & Rose-Krasnor, 1986; Clements;
1990; Au & Leung, 1991; Dalton & Goodrum, 1991) support the conclusion that a
pedagogy of programming devoid of problem-solving instructions would not help
realizing Seymour Papert’s vision of a LOGO microworld in which young children’s
cognitive development may be accelerated.

A close analysis of the instructional methods used in studies that did observe
transfer of problem-solving skills reveals that the instructional methods employed
were very much process-oriented (eg, Clements, 1986¢; Clements & Gullo, 1984;
Horton, 1986; Lehrer & Smith, 1986; Dalton & Goodrum, 1991; Swan, 1991).
They usually encouraged students to adopt procedural techniques such as identifying
problems, breaking down complex problems, planning, self-monitoring and checking
during the development of LOGO programs. Furthermore, the instructors, rather
than just providing learners with informational assistance, also tended to use
questioning techniques similar to those proposed by Au, Horton and Ryba (1987).
The reasoning was that by explicitly teaching the students these problem-solving
skills, and allowing them the opportunities to reflect on and to practise these skills,
there is more likelihood that transfer would take place.

The issue of transfer has been examined by researchers for decades (cf Ellis,

1965; Mayer & Fay, 1987). For instance, Ellis (1965) provides a set of

220
requirements for the teaching for transfer which includes the need to teach students
some general principles and the application of these principles in a variety of
contexts. More recently, Salomon & Perkins (1987) propose a theory for the
mechanisms of transfer involving low-road transfer and high-road transfer (cf
Chapter Five). They suggest that high-road transfer involves deliberate mindful
abstraction from one context to another, and requires genuine understanding of the
abstraction and self-conscious efforts to apply the abstraction in new situations. The
LPO group’s results with the TOH problems seem to suggest evidence of high-road
transfer. In other words, the students who leammed LOGO with a process-oriented
approach seemed to be able to make a conscious effort to apply the abstraction in
new situation.

Theoretically speaking, the process-oriented pedagogy incorporates some
aspects of metacognitive training. Metacognition involves the monitoring and
control of one’s cognitive processes such as memory, comprehension and attention
etc. Metacognitive psychologists, especially those who take a developmental
perspective, have often been interested in training general basic skills which are
considered to be needed for successful problem solving (eg, Anderson, 1980;
Bransford & Stein, 1984; Brown & Deloache, 1978; Newell & Simon, 1972;
Sternberg, 1984; Chan, 1991). Extensive reviews of the cognitive literature on
children’s reading and problem solving (eg, Brown, Bransford, Ferrara &
Campione, 1983; Belmont, Butterfield & Ferretti, 1982) have shown that the
transfer of problem-solving skills is more likely to occur when students are given the
appropriate instructions. Examples of successful intervention (eg, Brown, Campione
& Barclay, 1979; Palincsar & Brown, 1984; Ellis, Lenz & Sabornie, 1987a, 1987b;
Paris & Winograd, 1990a) often stress that explicit instruction of superordinate self-
management skills and generalization can assist the development and transfer of
problem-solving skills. Such findings invariably lend further support in the explicit
instruction of problem-solving skills when teaching LOGO.

The empirical nature of this study on the problem-solving behaviours of the
students focussed attention on the more objective and measurable aspects of
problem-solving behaviours. The shortcomings of such an approach have been

highlighted by a number of researchers (cf Chapter Four) in that many theoretically

221

possible changes in problem-solving behaviours could not be gauged by a pre versus
post design using traditional problem-solving measures. In light of such criticisms,
the present research sought to observe informally the problem-solving behaviours of
the students while they were actually solving their programming problems.

Informal observations suggest that LOGO, when taught with a process-
oriented approach, can be of particular value to some students who are low academic
achievers. A few students who were considered by their own teachers to be of low
ability, achieved considerably both in terms of confidence and solving LOGO
programming problems. Two illustrations follow.

1. One day prior to the beginning of a programming session, one of the
teachers in the school approached the researcher. She was undertaking a computer-
related course at the local Teachers College and to complete her LOGO assignment,
wanted access to the computers in the school (normally reserved for the purposes of
the present research). While the request was being made, it was overheard by one
of the students in the LPO group who was about to begin his learning session. The
student then volunteered to teach "his teacher" how to use the computers for LOGO.
Once in the computer room, he showed his teacher how to switch on the computer
and how to draw various geometric shapes (including his own initials) using LOGO.
The teacher had previously considered the student to be rather reserved and of low
academic ability (his Reading and Listening Comprehension scores were 16 and 36
respectively). That he was able to introduce her to the use of LOGO quite
systematically came as a considerable surprise.

2. This example is more general. In the LPO groups, students were
observed to apply systematically the problem-solving skills that they were taught in
solving LOGO programming problems. Quite often, students (especially those with
low ability) walked around the classroom or drew on pieces of paper in order to
determine the distances and angles they needed to complete certain geometrical
drawings. Instead of just trying out commands on the computer screen, they
planned and checked their work carefully before going to work with the computers.
Once they had verified with the computers that their solutions were correct, their

delight was self-evident.

222

Similar examples could be cited to illustrate such achievement not measured
by the problem-solving tasks used in this study. These examples, when considered
in conjunction with the results of the testing on problem solving, suggest that
instructional methods may play a significant part in the teaching and learning of
LOGO programming.

In summarizing the findings for the problem-solving measures, several
conclusions can be drawn. First, the learning of LOGO or BASIC programming
(under the conditions of the present study) produced no effect on the general
mathematics achievement of the learners. Second, the learning of LOGO or BASIC
showed no effect on the transfer of problem-solving skills to a far-transfer context.
Third, the learning of LOGO programming produced some effects on the transfer of
problem-solving skills to a near-transfer context. Fourth, the incorporation of
explicit problem-solving instructions appear to enhance the transfer of problem-
solving skills. Fifth, it would appear that some gains of problem-solving skills

might not have been measured by the tests used in this study.

LOGO Programming and Social interaction

One of the initial fears that computers might "dehumanize" students, isolating
them from normal interactions with teachers and peers, as well as leaving them
deficient in important social experiences, was not corroborated by the study. The
subjects were seen to be constantly and spontaneously involved in interactions with
each other, irrespective of the instructional methods used.

In general, motivation among all three programming groups was high
although this could be because of a Hawthorne effect. This was reflected in the
minimal amount of absenteeism and disciplinary problems among the students
throughout the intervention and was noteworthy considering that the programming
classes were held after school. Informal observation also showed that there was a
very low level of off-task behaviour among the students and that the disciplinary
problems expected in a normal classroom were almost non-existent. Students
usually came to the programming sessions with much visible enthusiasm and with

lots of questions about computers and programming. Informal conversation with the

223

students further indicated that they did enjoy learning about programming and they
all thought that they did learn something worthwhile. Conversations with the
principal, the teachers and the parents also conveyed similar impressions.

Such informal observations are similar to results in other LOGO studies
which examined affective changes of learners. Studies by Weir (1981), Irwin
(1985), Nastasi, Clements and Battista (1990) all found that LOGO could provide a
high level of motivation for the learners.

The apparent high levels of motivation might have assisted students to focus
on their programming work and fostered more social interactions with the teachers
and other students. Although the interactions of the students in all three
programming groups cannot be compared in any systematic manner to interactions in
a normal classroom, informal observation during the learning sessions conveyed the
impression that there were substantially more interactions among the students than
tends to be the case in normal classrooms. A number of reasons, apart from the
high level of motivation, could be advanced in explanation. First, the existence of
the computer screens tended to make students’ work more public, hence leading to
more opportunities for students to look at each other’s work and to discuss it.
During the present research, students were often seen crowding around another
student’s computer because an interesting figure was drawn on the screen. Second,
the students were working with materials which were quite novel to them, therefore,
they may have been more likely to share their ideas with the other students. Third,
as Papert (1980) has postulated, LOGO provides the students with something of
interest to talk about.

More central to the purposes of the present study though, were the
observations of interactions among teachers and students during the programming
sessions. There were three main forms of observation: (i) interactions between
teachers and students; (ii) interactions of individual students with others; and (iii)
interactions of groups. The following sections will examine the observation results
in more details.

Quite expectedly, because of the different instructional methods used, there
was a substantially higher percentage of process-oriented interaction between

teachers and students in the LPO group than there was in the other groups (61% for

224

the LPO group, 6% for the LCO group and 2% for the BASIC group) (see Table
7.45). This percentage of process-oriented interactions may partly explain the
reasons that students in the LPO group were able to transfer their problem-solving
skills to other contexts better and more consistently. Moreover, there were also
more episodes of interactions between teachers and students in both LOGO groups
than in the BASIC group (LPO: 904 episodes; LCO: 1024; BASIC: 677) (see Table
7.45).

There were also more group interactions observed among students in both
LOGO groups (see Table 7.46). Both LOGO groups had more episodes of group
interaction involving two or more groups at the same time. These results, when
considered in conjunction with the previous findings, suggest that there is a
relationship between LOGO learning and social interaction. The higher incidence of
interaction with the teachers and fellow students appears to suggest that LOGO
encourages students to discuss their work and share their problem-solving
experiences.

Moreover, it was also observed that the LPO group had a higher incidence of
interaction involving two or more groups of students at the same time. These results
suggest that instructional methods might play a significant role in determining the
extent of student social interaction. In particular, the process-oriented approach used
in the present study explicitly encouraged students to discuss their learning and
related problems with each other.

The observation on individual student interactions shed further light on the
interactions of students in a programming environment. From the observation data,
it could be seen that there were significantly more episodes of both substantial verbal
and non-verbal interactions for students in both LOGO groups (see Tables 7.47 to
7.50). These results indicate that students who learn LOGO were more likely to
interact with their peers, either discussing their programming work and problem
solving with other students in the group, or observing what others were doing.

Moreover, the statistically significant results of both substantive verbal and
non-verbal interactions also suggest students in the LPO group were more likely than
their counterparts in the LCO group to interact with their fellow students. This is

not really surprising given that the process-oriented approach, by definition, was to

225

encourage discussion of problem solving among the learners. The implication
though, is that when students were engaged more in discussion of their problem-
solving strategies, they were likely to improve their problem-solving skills (eg,
Nastasi, Clements & Battista, 1990; Vygotsky, 1978).

Although the results of this study do not provide a basis for comparison with
those of Clements and Nastasi (1988) and Nastasi, Clements and Battista (1990),
occurrence of social-cognitive interaction similar to those observed in these two
studies was noted during the research. For instance, students were quite often
observed to be sitting in front of their plans discussing how a certain geometric
figure could be achieved using LOGO commands. At times, they were also
observed to be engaged in a conflict situation where they were in debate as to which
commands would be more suitable to solve a certain problem, ultimately either
arriving at some form of consensus or going separately to test their solutions with
the computers.

These results are consistent with previous studies. For example, Mitterer and
Rose-Krasnor (1986) reported that interaction levels were high among both the
LOGO and BASIC groups in their study. The LOGO group in particular had a
higher incidence of interactions with the tutors. Burns and Coon (1990) also found
that peer collaboration using LOGO focussed more on the process relative to the
product of problem solving in their LOGO experimental group than in their control
programming group.

The results of the present study, together with others, suggest that LOGO
could be used to provide a learning environment which facilitates social interaction -
interaction that tends to be more related to the learning tasks and to the solving of
problems. Also, the appropriate use of instructional methods could further influence
the social-cognitive interactions of the learners.

In summary, the results of the observational aspects of this study, when
considered in conjunction with the problem-solving aspects, indicate some
circumstances under which LOGO could be used to provide a more dynamic
learning environment for the learners, particularly when compared to BASIC. This
may in turn result in better development of problem-solving skills. The results of

the present study also indicate that the suitable use of a socially interactive and

226

reflective environment could assist the acquisition and transfer of problem-solving
skills. In this case, the LPO group exhibited a higher incidence of social

interactions. Also, it could be inferred from the results that students in this group
were able to transfer problem-solving skills to another context better than students

who leammed LOGO using a content-oriented approach.

Implications for the teaching and learning of LOGO

Two of the major concerns about the teaching and learning of LOGO that
have emerged from the literature are "What is meant by learning to program in
LOGO?" and "How can learner cognitive gains be maximised through learning to
program in LOGO?" From the results of this study and others, what clearly appears
to be a crucial factor in whether cognitive gains are made or not, is the way in
which LOGO is being taught and learned. LOGO studies in the last few years have
clearly indicated that if learners are to achieve the kind of cognitive gains postulated
by Papert (1980) in his book Mindstorms, then there is a need to examine more
closely the learning environment created for the learners. In particular, careful
consideration must be given to the role of the teacher and to the instructional
strategies used. Also, contemporary research in problem solving and metacognition
has suggested the importance of the provision of explicit instructions in problem
solving and in self-management skills if learners are to acquire and transfer problem-
solving skills. The following discussion will attempt to provide some practical
suggestions as to how programming lessons could be designed to assist the
acquisition and transfer of problem-solving skills. These suggestions are based on
the outcomes of this study and other LOGO studies. To begin, two major points
need be considered here.

First, what do children learn about LOGO? Proponents of LOGO have often
failed to articulate what it means to teach and to learn LOGO programming.
Frequently, LOGO programming was treated as a "black box", "an unanalysed
activity whose effects are presumed to irradiate those who are exposed to it" (Pea &
Kurland, 1984a:9). Thus it will be necessary to identify what it means to learn to
program in LOGO in the first instance. Educators and researchers alike will then

have a much better idea of what learning outcomes they might reasonably expect.

227

The results of the present study and other LOGO research since the middle of
1980’s have clearly suggested the need for a closer examination of the types of skills
supposedly learned by students. If a major objective of learning LOGO is to assist
students to develop problem-solving skills, then there is a clear need to identify the
types of problems-solving skills that may be acquired through leaming LOGO.

More importantly, recent research in LOGO programming, problem solving
and metacognition has provided strong arguments that to achieve cognitive gains,
these skills need be taught to the students in a more explicit manner. Accordingly,
programming activities should be designed to encourage the mindful application of
problem-solving strategies such as planning, analysis, and monitoring, derived from
sound cognitive theory (cf Salomon & Perkins, 1987).

Also, programming lessons should quickly develop an elementary mastery of
language syntax and move quickly to procedure application and problem solving.
The sequencing of these lessons should be of such a manner that students are
introduced to aspects of LOGO programming language, ranging from simple to the
complex, similar to those proposed by a number of LOGO researchers (eg,
Chambers, 1986; Nolan & Ryba, 1986; Watt & Watt, 1986). Moreover, it is also
important that these programming lessons consist of activities within which students
are asked to exercise their thinking skills and reflect on their problem solving (cf
Au, Horton & Ryba, 1987).

How should LOGO be taught? The debate on how LOGO should be taught
has been an ongoing one (see Chapter Three and Four). Papert (1980), for
example, has called for LOGO teachers to take on the role as "anthropologists” but
did not really articulate how this could be achieved. However, the results from the
present study and those since the middle of 1980’s, have provided strong arguments
that it is important for a "LOGO environment" to consist of careful teacher
intervention that assists students to develop their problem solving skills. For
instance, students need be taught problem-solving skills directly and to be given
sufficient opportunity to practise these skills and their applications to other contexts.
Teacher questioning could be used to assist the students to develop and practise these
skills, with the aim that the students will be able to master their own problem

solving without prompts from the teachers. In essence, the role of a teacher is

228

critical in developing problem-solving skills and metacognitive skills among the
students, and in the teaching for transfer.

The alternation between on- and off-computer activities could also be an
important consideration. Research has indicated that students tend to become more
“Impulsive" problem solvers if they only solve their problems in front of the
computer (cf Carver & Klahr, 1986; Pea & Kurland, 1984d). By encouraging
students to plan and to reflect on their solutions carefully and systematically away
from the computer, they are more likely to do so. For instance, students in the
present project were often seen carefully checking their plans on paper, identifying
and correcting the errors in the plans, before going to test them at the computer.
Moreover, off-computer activities can provide opportunity for students to practise
their problem-solving skills in non-computer contexts, which can arguably, increase
the likelihood of transfer.

Also, the teaching of programming should be of sufficient intensity and
duration to provide opportunities for acquiring both declarative, procedural and
conditional knowledge (cf Keller, 1990; Palumbo, 1990; Au, 1992a). Many
researchers have theorised that there is chain of cognitive accomplishment (cf
Chapter Four) along which students develop their programming and problem-solving
skills. Unless the learners have moved sufficiently along this chain, they are less
likely to acquire the required problem-solving skills. There is emerging evidence to
suggest that the intensity of learning of programming is related to the transfer of
problem-solving skills (cf Palumbo, 1990).

Coupled with a more structured LOGO environment for the learners,
somehow a balance must be found between allowing pupils the freedom to work on
their own extended projects and structuring the activity for specific learning
outcomes - to avoid "gaps" in pupils’ awareness of the potential use of LOGO and
to confront any misconceptions (Hoyles & Sutherland, 1987). By doing so, students
are more likely to devise projects that are of interests to them, important for the
sustenance of long-term interests and motivation. Also, students are more likely to
develop better self-management skills which are important for good problem solving.
In the present studies, students were given ample opportunities to choose their own

projects. Much enthusiasm was evident. Often, they would go away thinking about

0.8)

their projects after the completion of a session and then return during the following
session with very thoughtful plans that were carefully checked before these plans
were tested with the computer.

The encouragement of social interaction forms a very important part of the
strategies to assist the development of problem-solving skills. It has been
highlighted in both Chapters Four and Five that appropriate social interactions that
are of a cognitive nature may assist students to better develop their problem-solving
skills. A number of more recent studies on LOGO (eg, Clements & Nastasi, 1988;
Nastasi, Clements & Battista, 1990) have all noted that social interactions within a
LOGO environment may assist students in a number of problem-solving areas such
as cooperative problem solving, rule determination, and conflict resolution. The
examples of student dialogues cited on pages 201 to 202, and 204 clearly highlight
such experience for students in the present research. Therefore, when designing
strategies in the teaching of LOGO, the encouragement of social and reflective
interactions becomes an important consideration.

In summary then, the results of the present study and other research have
suggested that a teacher plays a critical role in facilitating a student’s development
and transfer of problem-solving skills. It is through the provision of a socially
interactive and reflective environment by a teacher within which a student may
acquire the necessary problem-solving skills for transfer. More specifically, the
teacher intervention has to do with ways in which teachers talk with students, the
types of questions they ask and the sort of discussion that take place between
students and teachers.

Based on the results of the present study and other research (eg, Riordan,
1982; Au, Horton & Ryba, 1987; Clements & Merriman, 1988; Ryba & Anderson,
1990), a list of practical recommendations for improving problem solving with
LOGO is presented. This list of recommendations represents ways in which
teachers can create an interactive and reflective LOGO environment within which
children can learn to acquire and transfer problem-solving skills.

1. observe how students talk to each other and how they solve their problems as

this information provides the basis for monitoring student progress;

230

p show and discuss with students how to apply problem-solving skills to other
contexts;
3. ensure that students are explicitly aware of thinking processes and problem-

solving skills;
4. ask students questions that encourage reflective thinking and that give control

to the students;

5. encourage students to explore various ways of solving problems;
6. reinforce students for using problem-solving skills;
7. encourage students to think aloud about their problem solving and share their

problems with each other as these social interactions provide a context for

cognitive growth;

8. promote child/teacher and child/child interaction;
O provide sufficient time for programming problem-solving both at and off the
computer.

An example of a typical LOGO lesson on problem solving is included in

Appendix 12 (adapted from Au, Horton & Ryba, 1987).

Limitations of the present project and suggestions for future research

The results of this study provide some support for the benefits of LOGO in
facilitating the development and transfer of problem-solving skills among students.
As well, the findings of the present research generally support the value of specific
instructional strategies and social interaction in the teaching of programming with the
language LOGO. Past research with LOGO programming often tended to ignore the
significance of instructional factors. Often, these studies concentrated on the so
called "LOGO environment" or "LOGO microworld" as a total entity without
considering the importance of the various factors within such an environment (Au,
1992a, 1992b; Jones, 1992). In so doing, the effects of factors such as instructional
strategies and social interactions among learners were neglected.

Moreover, past research has frequently omitted to consider the relationship
between LOGO programming and the types of problem-solving measures used. The

present research highlights the importance of distinguishing the type of problem-

231

solving measures used in the gauging of transfer of problem-solving skills.
Specifically, it shows that the transfer of problem-solving skills to a far-transfer
domain is very difficult.

As with any research project, there are a number of limitations within the
present study which must be acknowledged. These limitations are especially
apparent given that the present study was designed in 1985 and the fieldwork
completed in 1986. Since, subsequent studies have either pointed out or addressed
some of the limitations inherent in the present investigation. The following sections
will list some of the limitation of the present study and concurrently make
suggestions for future research.

First, the study confined its attention to a comparison of a LOGO content-
oriented group with a BASIC content-oriented group. The study’s scope would have
increased if it had proved possible to include an additional BASIC group taught with
a process-oriented approach. A number of studies that were published after the
conduct of the present study employed research designs that included groups that
were given problem-solving instructions without computer programming. Through
these studies, it can been seen that students could benefit from explicit instructions
on problem-solving skills. Future research would clearly need to address this issue
more closely.

Second, the duration of fieldwork in the study was brief and not particularly
intensive. This was owing to the need to fit in with the activities of the school for
that year. Like other studies that have been conducted in school settings, it was
necessary to modify the study so as not to disrupt the activities of the school and the
students. One session a week for each student was all that was possible. It would
also have been advantageous if the problem-solving skills of the students could have
been tested, say six months later, in order to examine the retention factor.
Unfortunately, the school year ended some two months after the conclusion of the
project and the year four students all left the school.

Third, there were some problems of ecological validity with this study. The
students stayed after schools to receive their programming learning in small groups -
a teacher-student ratio significantly difterent from the normal. It is often easier to

guarantee a high quality of instruction when dealing with a smaller group of students

232

than when teaching a larger group. With a smaller group, the teacher may focus
more on the management of learning than the management of learners, a factor
which Bloom (1976) considers critical. The project was also seen by the students as
a kind of extracurricular activity rather than a normal aspect of their school learning.

Fourth, the learning styles of the students were not examined. It has been
suggested by some researchers that the learning styles that students bring to a
learning situation might have important influence on learning outcomes. For
instance, Biggs (1987) made a distinction between surface, deep and achieving
learners. In many studies that employ such distinctions, it has been found that the
deep and achieving learners performed better. Future studies may show whether
learner characteristics may impinge upon the learning of programming.

Finally, there are grounds to believe that more in-depth observation of the
interactions of the students in relation to the social-cognitive interaction framework
used by Clements & Nastasi (1988) and Nastasi, Clements & Battista (1990) would
provide more insight into the nature of interactions that could have contributed to the

cognitive development of the students.

Conclusion

This study was conceptualized at a time (in the middle of the 1980’s) when
there was substantial conjecture over the benefits of learning LOGO. Many LOGO
enthusiasts argued that LOGO could assist the development of problem-solving skills
of the students. Other researchers more cautiously suggested that there was a need
for more systematic and empirical evaluation of the potential benefits of LOGO.
Also at issue was the way that LOGO should be taught. One group of LOGO
researchers supported a self-discovery model in the teaching of LOGO devoid of any
teacher intervention. Others adopted a more structured approach with carefully
designed teacher intervention.

It was amidst these debates that the present study evolved. Four important
questions guided the design of this study. First, what is meant by the learning of
LOGO and what kind of instructional strategies are required? Second, can another
programming language such as BASIC assist the development and transfer of

problem-solving skills? Third, what kind of transfer of problem-solving skills will

233

LOGO facilitate? Fourth, what kind of interactions are there within a programming-
learning environment? Consequently, two different instructional approaches were
used with the teaching of LOGO, and BASIC was included for comparison with
LOGO. Also, two types of problem-solving measures were used to gauge the far-
and near-transfer of problem-solving skills. Observation was also made on the
classroom interactions.

From the results of this study, it could be seen that LOGO did have some
beneficial effects on the transfer of some problem-solving skills, albeit to a near-
transfer context. The LOGO learners were able to solve the Tower of Hanoi
problems better than were those in the BASIC and control groups. These results are
similar to those of a number of LOGO studies conducted in the last ten years. Most
tend to highlight the difficulty of transfer of problem-solving skills.

The present study also showed that the incorporation of a process-oriented
approach was associated with higher levels of problem-solving performance in a
near-transfer context. The students in the process-oriented group were able to score
higher than did their counterparts in the content-oriented group with the more
complicated Tower of Hanoi problem.

Closer attention to the use of instructional methods and the role of the teacher
was evident in LOGO studies that were conducted since the middle of the 1980’s.
Almost invariably, studies that demonstrated the cognitive gains from the learning of
LOGO were those that taught students cognitive and metacognitive skills on an
explicit and systematic basis. The use of such teaching strategies is also apparent in
studies on problem solving and metacognition. Indeed, metacognitive researchers
are continuing to search for better teaching methods that would assist learners to
become better learners and problem solvers.

The difficulty with learning transfer was clearly manifested in the present
study. First, the transfer was only demonstrated in one problem-solving measure,
viz., the Tower of Hanoi. Second, the transter was only of a near-transfer nature.
This difficulty would inevitably lead to one of the questions that started the present
research: "Is LOGO a suitable medium in teach problem-solving skills effectively
and efficiently?" There is no simple answer to this question. However, a number

of points warrant further consideration.

234

There is a need to acknowledge difficulties with the transfer of learning.
Educators have been grappling with this issue for decades (cf Ellis, 1965; Mayer &
Fay, 1987). Recent work in metacognition and problem solving has provided some
encouraging results. If general problem-solving skills are supposed to be acquired
through learning LOGO, it is evident that instructional strategies used with LOGO
need to be examined. By itself, it could not be expected that students could acquire
general problem-solving skills through the learning of LOGO. Complementary
instructions in problem-solving skills are crucial.

It was obvious in this study that LOGO was able to facilitate social
interactions among the learners. Also, the creation of a suitable learning
environment could further enhance the social interactions which tended to focus on
the actual problem-solving processes themselves. If one accepts the hypotheses that
cognition is a consequence of interactions and that more social interactions could
lead to increased cognition, then LOGO could be considered as a medium in the
teaching of problem-solving skills.

The "how" question is a difficult one. The present study incorporated some
form of metacognitive training in the teaching of LOGO. However, the gains in
problem-solving skills, and hence their transfer were still limited. This brings back
one of the original questions asked in this study: does a process-oriented approach in
the teaching of programming assist the development and transfer of problem-solving
skills. A simple answer to this question is "yes, but limited". A more considered
answer would be "a number of factors need to be contemplated”. These factors
include the intensity and duration of treatment and a consideration of the learning
characteristics of the learners. More importantly, perhaps, is the type of LOGO
learning provided for the learners. The training provided in this study perhaps was
quite limited. More recently, metacognitive researchers have started to examine the
use of attribution training in order to enhance the problem-solving skills of the
learners. Future studies may take this aspect of metacognitive training into
consideration. Also, more focussed training on the ability of the learners to identify
the structures of "novel” problems may be useful as well since one of the difficulties
in the transfer of problem-solving strategies lies in a learner’s ability to recognize

isomorphic problems.

235

To summarize, the present study extends previous work in showing that
LOGO programming does have some beneficial effects on children’s problem-
solving behaviour. In addition, this study also demonstrates the importance of
instructional methods and the role of teachers in the teaching of programming for
transfer. The importance of social interaction and its relationship to the acquisition
and transfer of problem-solving skills within a programming-learning environment
has also been highlighted.

In the areas of further research, both the findings from this study and other
subsequent ones provide avenues for further investigation. In particular, future
research may prove beneficial in the following areas:

(1) Instructional strategies including duration and intensity of treatment that may
assist learners to develop and transfer of problem-solving skills more
effectively and efficiently;

(i1) types of social interactions that may help learners to become better problem
solvers;

(iii) relationship between LOGO programming and problem-solving measures;

(iv) relationship between the learning characteristics of learners, leamning of
programming and transfer of problem-solving skills; and

(v) the translation of the results of these investigations into normal classroom
settings.

Finally, in this work, a modest step has been taken in the study of LOGO
programming, instructional methods and the development and transfer of problem-
solving skills. Many more steps remain to be taken in the understanding of the
learning of programming and development and transfer of problem solving. What
can be concluded from this study is that LOGO is a useful medium to facilitate the
acquisition and transfer of problem-solving skills, but that earlier claims about
LOGO need to be regarded with caution. Also, closer attention to instructional
strategies and the role of the teacher in a LOGO environment may help to bridge
Seymour Papert’s vision and reality. As always, the test of science, explanation and

prediction have to be met.

236
BIBLIOGRAPHY

Abelson, H. (1982a). A beginner’s guide to Logo. Byte, 7(8), 88-112.
Abelson, H. (1982b). Apple Logo. N.H.: Byte Publications Inc.

Adams, R.S. (1965). The classroom setting: A behavioural anafysis. Unpublished doctoral dissertation.
University of Otago, Dunedin, New Zealand.

Adams, T. (1985). Logo environments: the evolution of the language. In B. Rasmussen (Ed.) The infornation
edge: The future for educational computing (pp. 133-140). Brisbane: Computer Education Group of
Queensland.

Adams, T. (1986). Towards a theory of microworlds. In A.D. Salvas & C. Dowling (Eds.). On the crest of a
wave? (pp. 312-320). Balaclava, Victoria: Computer Education Group of Victoria.

Adelson, B. (1981). Problem solving and the development of abstract categories in programming languages.
Memory and cognition, 9(4), 422-433.

Alexander, P.A., & Judy, E.J. (1988). The interaction of domain-specific and strategic knowledge in academic
performance. Review of Educational Research, 58(4), 375-404.

Alderman, D.L., Appel, L.R., & Murphy, R.T. (1978). PLATO and TICCIT: An evaluation of CAl in the
community college. Educational Technology, 18, 40-45.

Armbruster, B., & Brown, A. (1984). Learning from reading: The role of metacognition. In R. Anderson, J.,
Osborn, & R. Tiemney (Eds.), Learning to read in American schools: Basal readers and content tests (pp.

273-281). Hillsdale, N.J.: Lawrence Erlbaum.

Anastasio, E.J., & Morgan, 1.S. (1972). Study of fuctors that have inhibited a more widespread use of computers
in the instructional process. Princeton: Educom.

Anderson, J. (1984). Computing in schools. Australian Education Review No. 21. Hawthom: ACER.
Anderson, J.R. (1980). Cogunitive psychology and its implications. San Francisco: W.H. Freeman and Company.
Anderson, J.R. (1982). Acquisition of cognitive skills. Psychological Review, 89(4), 369-406.

Anver, R.A. (1978). Cost-effective applications of computer-based education. Educational Technology, 18, 24-
25

Anzai, Y., & Simon, H.A. (1979). The theory of learning by doing. Psychological Review, 86(21), 124-140.
Atkinson, R.C., & Shiffrin, R.M. (1968). Human memory: A proposed system and its control processes. In
K.W. Spence & J.T. Spence (Eds.), The psychology of learning and motivation: Advances in theory and

research (Vol. 2). N.Y.: Academic Press.

Au, W.K. (1986, December). Logo programming and problem solving. Paper presenied at the annual meeting of
the New Zealand Association of Research in Education, Hamilton, New Zealand.

Au, W.K. (1988a, August). Logo progranuning and problem solving. Paper presented at a seminar of the
N.S.W. Institute of Educational Research (Newcastle Branch), Newcastle.

Au, W.K. (1988b). Using computers in the teaching of English as a second language. Proceedings of the Hunter
Region English as a Second Language Conference (pp. 42-50). Newecastle: University of Newcastle.

Au, W.K. (1992a). Logo research - where is it heading? In Computing the clever country (pp. 232-243).
Melbourne: Computing in Education Group of Victoria.

237

Au, W.K. (1992b). Using computers to develop problem solving skills. In S.W. Wawrzyniak & L. Samootin
(Eds.) Kids, Curriculum, Computers and ..." (pp. 27-37). Sydney: New South Wales Computer Education
Group.

Au, W.K., & Bruce, M. (1990). Using Computers in Special Education. Journal of Remedial Education, 22(1-
2), 13-18.

Au, WK., & Cook, T.E. (1989). Joint venture between university and private sector in the development of
computer assisted instruction software. Paper presented at a research seminar at the University of

Newcastle, Newcastle, Australia.

Au, WK., & Horton, J. (1986). Logo: A process-oriented approach. Computer News and Views for Wanganui
Board Primary Schools, 3, 2-9.

Au, WK., & Horton, J. (1987). Teaching Logo with a process-oriented approach. Delta, 39, 49-58.

Au, WK., Horton, J. & Ryba, K. (1987). Logo, teacher intervention, and the development of thinking skills.
The Computing Teacher, 15(3), 12-16.

Au, WK., & Leung, J.P. (1988). Transfer of problem solving in Logo programming. In P. Alp (Ed.) Golden
opportunities (pp. 46-59). Mount Lawley: Educational Computing Association of Western Australia.

Au, WK., & Leung, J.P. (1991). Problem solving, instructional methods, and Logo programming. Journal of
Educational Computing Research, 7(4), 455-467.

Australian Information Industry Association (1990). Towards a new approach io computing education in schools.
ACT: Australian Information Industry Association.

Avner, A, Moore, C., & Smith, S. (1980). Active external control: A basis for suepriority of CBI. Journal of
Computer-based Instruction, 6, 115-118.

Babbs, P.J., & Moe, A.J. (1983). Metacognition: A key for independent learning from text. Reading Teacher,
36(4), 422-426.

Baker, L., & Brown, A.L. (1984). Metacognitive skills in reading. In D.P. Pearson (Ed), Handbook of Reading
Research (pp. 353-394). N.Y.: Longman.

Barlett, F. (1958). Thinking, an experimental and social study. London: Allen & Unwin Ltd.

Bames, B.J., & Hill, S. (1983). Should young children work with microcomputers - Logo before Lego. The
Computing Teacher, 10(9), 11-14.

Baron, J. (1978). Intelligence and general strategies. In G. Underwood (Ed.), Strategies of inforination
processing (pp. 403-450). London: Academic Press.

Baron, J. (1981). Reflective thinking as a goal of education. Intelligence, 5, 291-309.

Baron, J. (1985). Rationality and intelligence. Cambridge, England: Cambridge University Press.

Battista, M. & Clements, D. (1986, April). The effects of Logo and CAl problem-solving environments on
elementary stidents' problem-solving processes and mathematics achievenent. Paper presented at the annual
meeting of the American Educational Research Association, San Francisco.

Bearden, D. (1988). Thinking in Logo - A review. The Computing Teacher, 15(6), 41-2.

Bearison, D.J. (1982). New dircctions in studies of social interaction and cognitive growth. In F.C. Serafica
(Ed.), Social-cognitive development in context (pp. 199-221). N.Y.: Guilford.

Becker, H.J. (1985, April). National school uses of microcomputers survey: Review of past and promise of future
data. Paper presented at the annual meeting of the American Educational Research Association, Chicago.

238

Becker, H.J. (1986). Instructional uses of school computers: Reports from the 1985 national survey. Issues 1-3.
Center for Social Organization of Schools, John Hopkins University.

Becker, H.J. (1987). The importance of a methodology that maximizes falsifiability: Its applicability to research
about Logo. Educational Researcher, 16(5), 11-16.

Becker, H.J., & Sterling, C.W. (1987). Equity in school computer use: National data and neglected
considerations. Journal of Educational Computing Research, 3(3), 289-311.

Belmont, J.M., & Butterfield, E.C. (1977). The instructional approach to the developmental cognitive research.
In R.V. Kail, Jr., & J.W. Hagen (Eds.), Perspectives on the development of memory and cognition, (pp.
437481). Hillsdale, N.J.: Erlbaum.

Belmont, J.M., Butterfield, E.C., & Ferretti, R.P. (1982). To secure transfer of training instructions in self-
management skills. In D. Detterinan & R. Sternberg (Eds.), How and how much can intelligence be
increased, (pp. 147-154). N.J.: Ablex Publishing Corporation.

Bergin, D.A., Ford, M.E., & Mayer-Gaub, G. (1986, April). Social and motivational consequences of
microcomputer use in kindergarten. Paper presented at the annual meeting of the American Educational

Research Association, San Francisco.

Berkowitz, S.J. (1986). Effects of instruction in text organization on sixth-grade. Reading Research Quarterly,
XX1(2), 161-178.

Berry, D.C. (1983). Metacognitive experience and transfer of logical reasoning. Quarterly Journal of
Experimental Psychology, 354, 39-49.

Biggs, J.B. (1987). Student approaches to learning and swdying. Hawthome, Victoria: Australian Council for
Educational Research.

Billstein, R. (1983). Turtle Fever. The Computing Teacher, 11(2), 34-36.

Bitter, G.G., & Camuse, R.A. (1988). Using A Microcomputer In The Classroom. 2nd Edition. N.].: Prentice
Hall.

Black, J.B., Swan, K., & Schwartz, D.L. (1988). Developing thinking skills with computers. Teachers College
Record, 89(3), 384-407.

Blaschke, C.L. (1979). Microcomputer software development for schools: What, who, how? Educational
Technology, 19, 26-28.

Blitman, E., Jamile, B., & Yee, D. (1984). Computers, children and epistemology. Educational Perspectives,
22(4), 16-20.

Bloom, B.S. (Ed.). (1956). Taxonomy of educational objectives. Handbook: Cognitive domain. N.Y.: David
McKay.

Bloom, B.S. (1976). Human characteristics and school learning. N.Y.: McGraw-Hill.

Bondy, E. (1984). Thinking about thinking. Childhood Education, 233-238.

Boren, S. (1984). An apple for kids. Becaverton, Oregon: Dilithium Press.

Bork, A, & Franklin, S. (1979). Personal computers in learning. Educational Technology, 19, 7-12.
Bork, A. (1978). Machines for computer-assisted learning. Educational Technology, 18, 17-20.

Bork, A. (1980). Interactive learning. In R. Taylor (Ed.), The compuater in the school (pp. 53-66). N.Y.:
Teachers College, Columbia University.

Bork, A. (1987). Learning with personal computers. N.Y.: Harper & Row.

239

Borko, H., Livingston, C., & Shavelson, R.J. (1990). Teachers’ thinking about instruction. Remedial and
Special Education, 11(6), 40-49.

Borkowski, J.G., & Cavanaugh, J.C. (1981). Metacognition and intelligence theory. In M.P. Friedman, J.P.
Das, & N. O'Connor (Eds.), Intelligence And learning (pp. 253-258). N.Y.: Plenum Press in cooperation
with NATO Scientific Affairs Division.

Bomnet, R., & Brady, J. (1974). The linguistics of Logo. Memo No. CSM-4. Essex: University of Essex.
Boumne, L.E. (1970). Knowing and using concepts. Psychological Review, 77(6), pp. 546-556.

Boumne, L.E., & O’Banion, K. (1971). Conceptual rule learning and chronological age. Developmental
Psychology, 5(3), pp.525-534.

Bradley, C.A. (1985). The relationship between students’ information-processing styles and Logo programming.
Journal of Educational Computing Research, 1(4), 427-394.

Brady, M.P., O'Donoghue, J., & Bajpai, A.C. (1989). Top down programming for schools. The Computing
Teacher, 16(6), 29-34.

Bramble, W.J., & Mason, E.M., & Berg, P. (1985). Computers in schools. N.Y.: McGraw-Hill Book Company.
Bransford, J.D. (1979). Humnan cognition. Belmont, C.A.: Wadsworth Publishing.

Bransford, J.D. (1984). The ideal problem solver. N.Y.: Freeman.

Bransford, J.D., & Stein, B.S. (1984). Tl ideal problemn solver. N.Y.: W.H. Freeman.

Bransford, J.D., Stein, B.S., Arbitman-Smith, R., & Vye, N.J. (1985). Improving thinking and learning skills:
An analysis of three approaches. In J.W. Segal, S.F. Chipman, & R. Glaser (Eds.), Thinking and learning
skills: Vol 1. Relating instruction to research (pp. 133-206). N.J.: Lawrence Erlbaum.

Bransford, J.D., Stein, B., Delclos, V.R., & Littlefield, J. (1986). Computers and problem solving. In J.D.
Bransford, B. Stein, V.R. Delclos & J. Littlefield (Eds.), Computer strategies for education: Foundations
and content-area applications (pp. 147-180). Columbus: Merrill Publishing Company.

Breznitz, Z. (1987). Increasing first graders’ reading accuracy and comprehension by accelerating their reading
rates. Journal of Educational Psychology, 79(3), 236-242.

Broadley, K., & Au, W.K. (1988). Word processing and process writing. In V. Bickley (Ed.), Languages in
education in a bi-lingual or multi-lingual setting (pp. 290-302). Hong Kong: Institute of Language in
Education.

Brown, A.L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser
(Ed.), Advances in instructional psychology Vol. 1 (pp. 77-165). Hilisdale, N.J.: Erlbaum.

Brown, A.L. (1980). Metacognitive development and reading. In R.J. Spiro, B.C. Bruce, & W.F. Brewer
(Eds.), Theoretical issues in reading comprehension (pp. 453-481). N.J.: Lawrence Erlbaum.

Brown, A.L. (1982). Learning and development: The problems of compatibility, access and induction. Human
Development, 25, 89-115.

Brown, A.L. (1985). Mental orthopedics, the training of cognitive skills: An interview with Alfred Binet. In
S.F. Chipman, J.W. Segal, & R. Glaser (Eds.), Thinking and learning skills: Vol 2. Research and open
questions (pp. 319-337). N.J.: Lawrence Erlbaum.

Brown, A.L., Bransford, J.D., Ferrara, R.A., & Campione, J.C. (1983). Learning, remembering, and
understanding. In J.H. Flavell & E.M. Markman (Eds.), Handbook of child psychology: Vol 1. Cognitive
development (pp. 77-166). N.Y.: Wiley.

240

Brown, A.L., & Campione, J.C. (1982). Modifying intelligence or modifying cognitive skills: More than a
semantic quibble? In D.K. Detterman and R.J. Sternberg (Eds.), How and how much can intelligence be
increased (pp. 215-230). N.J.: Ablex Publishing Corporation.

Brown, A.L., Campione, J.C., & Barclay, C.R. (1979). Training self-checking routines for estimating test
readiness: Generalization from list learning to prose recall. Child Development, 50, 501-512.

Brown, A.L., Campione, J.C., & Day, J.D. (1981). Learning to learn: On training students to learn from text.
Educational Researcher, 10(2), 14-21.

Brown, A.L., & DelLoache, J.S. (1978). Skills, plans and self-regulation. In R.S. Siegler (Ed.), Children's
thinking: What develops, (pp. 3-35). Hillsdale, N.J.: Erlbaum.

Brown, J.S. (1985). Process versus product: A perspective on tools for communal and informal electronic
learning. Journal of Educational Computing Research, 1(2), 179-201.

Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational
Researcher, 18(1), 32-42.

Bruce, M.E., & Chan, L.K.S. (1991). Reciprocal teaching and transenvironmental programming: A program to
facilitate the reading comprehension of students with reading difficulties. Remedial and Special Education,

12(5), 44-54.

Bull, G., & Tipps, S. (1983-84). Problem spaces in a project-oriented Logo environment. The Computing
Teacher, 11(5), 54-57.

Burns, B., & Coon, H. (1990). Logo programming and peer interactions: An analysis of process- and product-
oriented collaborations. Journal of Educational Computing Research, 6(4), 393-410.

Bums, B, & Hagerman, A. (1989). Computer experience, self-concept and problem-solving: The effects of Logo
on children’s ideas of themselves as learners. Journal of Educational Computing Research, 5(2), 199-212.

Bums, H.L., & Capps, C.G. (1988). Foundations of intelligent tutoring systems: an introduction. In M.C.
Polson & J.J. Richardson (Eds.), Foundations of intelligent uuoring systemns, (pp. 1-19). Hillsdale, N.J.:
Lawrence Erlbaum.

Burton, J.K., & Magliaro, S.G. (1986, April). Computer progranuning and generalized problem solving skills: a
critical review of the literature. Paper presented at the annual meeting of the American Educational
Research Association, San Francisco.

Butterfield, E.C., & Belmont, J.M. (1977). Assessing and improving the executive cognitive functions of
mentally retarded people. In 1. Bialer & M. Sternlicht (Eds.), Psychological issues in mental retardation.
Chicago: Aldine.

Byrt, P.N. (1986). A tool to think with: A new look at some old problems. Australian Educational Computing,
1(1), 24-29.

Calfee, R. (1985). Computer literacy and book literacy: Parallels and contrasts. Educational Researcher, 14(5),
8-13.

Calvert, S.L., Watson, J.A., Brinkley, V.M., & Bordeaux, B. (1989). Computer presentational features for
young children’s preferential selection and recall of information. Journal of Educational Computing
Research, 5(1), 35-49.

Campbell, P.F., Fein, G.G., & Scholnick, E.K. (1986, April). Young Children's learning of Logo positioning
commands: A conceptual model. Paper presented at the annual meeting of the American Educational
Research Association, San Francisco.

Campbell, P.F., Fein, G.G., Scholnick, E.K., Schwartz, S.S., Frank, & R.E. (1986). Initial Mastery of the
Syntax and Semantics of Logo. Journal of Educational Computing Research, 2(3), 357-378.

241

Campbell, P.F., Fein, G.G., & Schwartz, S.S. (1991). The effects of Logo experience on first-grade children’s
ability to estimate distance. Journal of Educational Commputing Research, 7(3), 331-349.

Campione, J.C., & Brown, A.L. (1978). Toward a theory of intelligence: Contributions from research with
retarded children. Intelligence, 2, 279-304.

Campione, J.C., & Brown, A.L., & Ferrara, R.A. (1983). Mental retardation and Intelligence. In R.J.
Stemberg (Ed.), Handbook of hunan intelligence (pp. 392-490). Cambridge: Cambridge University Press.

Carmichael, H.W., Burnett, J.D., Higginson, W.C., Moore, B.G., & Pollard, P.J. (1985). Computers, children,
and classrooms: A multisite evaluation of the creative use of microcomputers by elementary school children.
Ontario: Queen’s Printer for Ontario.

Carver, S.M., & Klahr, D. (1986). Assessing children’s Logo debugging skills with a formal model. Journal of
Educational Computing Research, 2(4), 487-525.

Cathcart, W.G. (1990). Effects of Logo instruction on cognitive style. Journal of Educational Computing
Research, 6(2), 231-242.

Cawley, J.F., & Miller, J.H. (1989). Cross-sectional comparisons of the mathematical performance of children
with learning disabilities: Are we on the right track toward comprehensive programming? Journal of
Learning Disabilities, 22(4), 250-254, 259.

Chambers, S.M. (1984a, July). Developinent of thinking in primary school children using Logo. Paper presented
at the IT, Al and Child Development Conference, University of Sussex, Sussex.

Chambers, S.M. (1984b). The development of thinking in primary school children using Logo. In J. Hughes
(Ed.), Dreams and reality (pp. 67-72). Broadway: Computer Education Group of New South Wales.

Chambers, S.M. (1986). So Papert was right?: Evidence of general skills enhancement due to Logo experience.
In A.D. Salvas & C. Dowling (Eds.). On the crest of a wave? (pp. 261-264). Balaclava, Victoria:
Computer Education Group of Victoria.

Chan, L.K.S. (1988). The role of language in metacognitive instruction. In V. Bickley (Ed.), Languages in
education in a bi-lingual or multi-lingual setting (pp. 18-28). Hong Kong: Institute of Language in
Education.

Chan, L.K.S. (1990). Metacognition and remedial education. Auwstralian Journal of Remedial Education, 23(1),
4-10.

Chan, L.K.S. (1991). Promoting strategy generalization through self-instructional training in students with
reading disabilities. Journal of Learning Disabilities, 24(7), 427-433.

Chan, L.K.S., Cole, P.G., & Morris, J.N. (1990). Effects of instruction in the use of a visual-imagery strategy

on the reading-comprehension competence of disabled and average readers. Learning Disability Quarterly,
13, 2-11.

Chance, P. (1986). Thinking in the classroom: A survey of programs. N.Y.: Teachers College Press.
Chandler, P.D., Gesthuizen, R.J., & Clement, J.D. (1992). Raising the level of access to computer
communications in schools. In Computing the clever country (pp. 197-29). Melbourne: Computing in

Education Group of Victoria.

Chapman, J.W., & Ryba, K. (1983). Towards improving learning strategies and personal adjustment with
computers in education. The Computing Teacher, 11(1), 48-53.

Char, C.A. (1984). Research and design issues concerning the development of educational sofiware for children.
Technical report No. 14. N.Y.: Bank Strect College of Education, Center for Children and Technology.

Chiang, B., Thorpe, H.W., & Lubke, M. (1984). LD students tackle the Logo language: strategies and
implications. Jowurnal of Learning Disabilities, 17(5), 303-304.

242

Chipman, S.F., & Segal, J.W. (1985). Higher cognitive goals for education: An introduction. In S.F. Chipman,
J.W. Segal, & R. Glaser (Eds.), Thinking and learning skills: Vol 2. Research and open questions (pp. 1-
19). N.J.: Lawrence Erlbaum.

Clampit, M.K., & Silver, S.J. (1989). Distribution of relative attention deficits on the WISC-R by age, sex,
social class, and region. Journal of Learning Disabilities, 22(4), 258-259.

Clancey, W.J. (1988). The knowledge engineer as student: Metacognitive bases for asking good questions. In H.
Mandl and A. Lesgold (Eds.), Learning issues for intelligent tuoring svstem (pp. 80-113). N.Y.: Springer-
Verlagg N.Y. Inc.

Clarke, V.A., & Chambers, S.M. (1984a). Devcloping Logo activities for the primary classroom. In A.D.
Salvas (Ed.), Computing and education - 1984 and beyond, (pp. 309-312). Balacava: Computer Education

Group of Victoria.

Clarke, V.A., & Chambers, S.M. (1984b, September). Classroom activities using Logo. Paper presented at the
Australian Computer Education Conference, Macquarie University, Sydney.

Clayson, J. (1982). Computer games teach problem solving. Iinpact of science on society, 32(4), 435-441.

Clement, C.A., Kurland, D.M., Mawby, R., & Pea, R.D. (1986). Analogical reasoning and computer
programming. Journal of Educational Computing Research, 2(4), 473-486.

Clements, D.H. (1981). Affective considerations in computer based education. Educational Technology,
January, 37-39.

Clements, D.H. (19852a). Effects of Logo and CAl environments on cognition and creativity. Journal of
Educational Psychology, 78(4), 309-318.

Clements, D.H. (1985b, April). Effects of Logo programming on cognition, metacognition skills, and
achievement. Paper presented at the annual meeting of the American Educational Research Association,

Chicago.

Clements, D.H. (1985¢c). Researchon Logo in Education: Is the turtle slow but steady, or not even in the race?
Computers in the schools, 2(2/3), 55-71.

Clements, D.H. (1986a, April). Delaved effects of computer programming in Logo on mathematics and cognitive
skills. Paper presented at the annual meeting of the American Educational Research Association, San

Francisco, CA.

Clements, D.H. (1986b, April). Learning and teaching Logo.: An information-processing perspective. Paper
presented at the annual meeting of the American Educational Research Association, San Francisco, CA.

Clements, D.H. (1986¢c). Effects of Logo and CAl environments on cognition and creativity. Journal of
Educational Psychology, 78(4), 309-318.

Clements, D.H. (1987a). Computers in early and primary education. Englewood Cliffs, N.J.: Prentice-Hall.

Clements, D.H. (1987b). Longitudinal study of the effects of Logo programming on cognitive abilities and
achievement. Journal of Educational Computing Research, 3(1), 73-94.

Clements, D.H. (1988). Problem-solving processes: The mental company. Logo Exchange, 7(3), 27-29.
Clements, D.H. (1989a). The nature of the problem. Logo Exchange, 7(6), 28-29.
Clements, D.H. {(1989b). Planning for planning. Logo Exchange. 7(8), 26-27.

Clements, D.H. (1990). Metacomponential development in a Logo programming environment. Journal of
Educational Psychology, 82(1), 141-149.

243

Clements, D.H. (1991). Enhancement of creativity in computer environments. American Educational Research
Journal, 28(1), 173-181.

Clements, D.H., & Gullo, D.F. (1984). Effects of computer programming on young children’s cognition.
Journal of Educational Psychology, 76(6), 1051-1058.

Clements, D.H., & Merriman, S. (1988). Componential developments in LOGO programming environments. In
R.E. Mayer (Ed.), Teaching and learning computer programming: Multiple research perspectives (pp. 13-
54). Hillsdale, N.J.: Lawrence Erlbaum Associates.

Clements, D.H., & Nastasi, B.K. (1988). Social and cognitive interactions in educational computer environments.
American Educational Research Journal, 25(1), 87-106.

Coburmn, P., Kelman, P., Roberts, N., Snyder, T.F.F., Watt, D.H., & Weiner, C. (1982). Practical guide to
computers in education. Reading, Massachusetts: Addison-wesley Publishing Company.

Cohen, R. (1987). Implementing Logo in the grade two classroom: Acquisition of basic programming concepts.
Journal of Computer-Based Instruction, 14(4), 124-132.

Cohen, R. (1990). Computerized learning supports in pre-Logo programming environments. Journal of Research
on Computing in Education, 22(3), 310-335.

Coleman, L.J. (1986, April). Reflecting on one’s problem solving using videogames. Paper presented at the
annual meeting of the American Education Research Association, San Francisco.

Collier, P.A., & Samson, W.B. (1982). Prolog as a teaching tool for relational database interrogation. Computer
Education, November, 1982, 26-27.

Collins, A., & Smith, E.E. (1982). Teaching the process of reading comprehension. In D.K. Detterman and R.J.
Sternberg (Eds.), How and how much can intelligence be increased (pp. 173-185). N.J.: Ablex Publishing
Corporation.

Conabere, T., & Anderson, J. (1985). Towards a rationale for the educational ise of computer technology in
schools (Occasional Paper No. 8). Carlton, Victoria: The Australian College of Education.

Coombs, M.J., Gibson, R., & Alty, J.L. (1981). Acquiring a first computer language: a study of individual
differences. In M.J. Coombs & S.L. Ally (Eds.), Computing skills and the user interface (pp. 289-313).
N.Y.: Academic Press.

Covington, M.V. (1985). Strategic thinking and the fear of failure. In J.W. Segal, S.F. Chipman, & R. Glaser
(Eds.), Thinking and learning skills: Vol 1. Relating instruction to research (pp. 389-416). N.J.: Lawrence
Erlbaum.

Cox, D.A.H. (1980). Early adolescent use of selected problem solving skills using microcompuuters (ERIC
Document Reproduction Service No. ED 200 449).

Critchfield, M. (1979). Beyond CAI: Computers as personal intellectual tools. Educational Technology, 19, 18-
25.

Cuffaro, H.K. (1984). Microcomputers in education: Why is earlier better. Teachers College Record, 85(4),
561-568.

Cumming, G. (1985). Mental models - the world inside our heads. COM 3, 11(1), 7-9.

Cumming G., & Abbot, E. (1986). It's the educational strategy that matters, even if the language is Prolog.
Australian Educational Computing, 1(1), 34-39.

Cuneo, D.O. (1986a, April). Young children and turtle graphics programming: generating and debugging simple
turtle programs. Paper presented at the annual meeting of the American Educational Research Association,
San Francisco.

244

Cuneo, D.O. (1986b, May). Young children's misconce ptions of simple turtle graphics commands. Paper
presented at the annual symposium of the Jean Piaget Society, Philadelphia.

Cyert, R.M. (1980). Problem solving and educational policy. In D.T. Tuma & F. Reif (Eds.), Problem solving
and education: Issues in teaching and research (pp. 3-23). Hillsdale, N.J.: Lawrence Erlbaum Associates.

Dailhou, P. (1986). Computers and the process approach to writing. In B. Frederick (Ed.), What to do with
what you 've got (pp. 94-98). Broadway, N.S.W.: Computer Education Group of New South Wales Ltd.

Dalbey, J., & Linn, M.C. (1984, April). Spider world: A robot language for learning to program. Assessing the
cognitive consequences of computer enviromments for learning. Paper presented at the annual meeting of the
American Educational Research Association, New Orleans, LA.

Dalbey, J., & Linn, M.C. (1985). The demands and requirements of computer programming: A literature
review. Journal of Educational Computing Research, 1(3), 253-274.

Dalbey, J., & Linn, M.C. (1986). Cognitive consequences of programming: Augmentations to BASIC
instruction. Journal of Educational Computing Research, 2(1), 75-93.

Dalton, D.W., & Gooddrum, D.A. (1991). The effects of computer programming on problem-solving skills and
attitudes. Journal of Educational Computing Research, 7(4), 483-506.

Dansereau, D.F. (1978). The development of a learning strategies curriculum. In H.F. O'Neil (Ed.), Learning
strategies, (pp. 35-61). N.Y.: Academic Press.

Dansereau, D.F. (1985). Learning strategy research. In J.W. Segal, S.F. Chipman, & R. Glaser (Eds.),
Thinking and learning skills: Vol 1. Relating instruction to research (pp. 209-239). N.J.: Lawrence Erlbaum.

Day,].D., Cordon, L.A., & Kerwin, M.L. (1989). Informal instruction and development of cognitive skills: A
review and critique of research. In C.B. McCormick, G.E. Miller & M. Pressley (Eds.) Cognitive strategy
research: From basic research to educational applications (pp. 83-103). N.Y.: Springer-Verlag.

Day, J., French, L.A., & Hall, L. (1985). Social influences on cognitive development. In D.L. Forrest-
Pressley, G.E. MacKinnon, & T.G. Waller (Eds.), Metacognition, cognition, and lwman performance: Vol.
1. Theoretical perspectives (pp. 33-56). Orlando, Florida: Academic Press.

de Bono, E. (1973). CoRT thinking materials. London: Direct Education Services.

de Bono, E. (1985). The CoRT thinking program. In J.W. Segal, S.F. Chipman, & R. Glaser (Eds.), Thinking
and learning skills: Vol 1. Relating instruction 1o research (pp. 363-388). N.J.: Lawrence Erlbaum.

Degelman, D., Free, J.U., Scarlato, M., Blackburn, J.M., & Golden, T. (1986). Concept learning in preschool
children: effects of a short-term Logo experience. Journal of Educational Computing Research, 2(2), 199-
205.

Delclos, V.R., & Kulewicz, S.J. (1986). Improving computer-based problem solving training: The role of the
teacher as mediator. Computers in Human Behavior, 2, 1-12.

Delclos, V.R., & Littlefield, J.D. (1984, April). Does Logo lead 1o betier learning. Paper presented at the
spring conference of the Tennessce Association for Educational Data System, Nashville, TN.

Dennis, J.R., & Kansky, R.J. (1984). Instructional compuiing: An Action guide for educators. Glenview,
Illinois: Scott Foresman.

Derry, S.J. (1990). Remediating academic difficulties through strategy training: the acquisition of useful
knowledge. Remedial and Special Education, 11(6), 19-31.

Derry, S.J., Hawkes, L.W., & Tsui, C-J. (1987). A theory for remediating problem solving skills of older
children and adults. Educational Psychologist, 22, 55-87.

245

Derry, S.J., & Murphy, D.A. (1986). Designing systems that train learning ability: From theory to practice.
Review of Educational Research, 56(1), 1-39.

Deshler, D.D., Schumaker, J.B., & Lenz, B.K. (1984). Academic and cognitive interventions for LD adolescents
(Part i). Journal of Learning Disabilities, 17, 108-117.

Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process.
Lexington, Massachusetts: D.C. Heath.

Dickson, W.P. (1985). Thought-provoking software: Juxtaposing symbol systems. Educational Researcher,
14(5), 30-38.

D’Ignazio, F. (1991). The starship enterprise: New opportunities for classroom learning in the 1990s. In
Navigating the nineties (pp. 3-7). Brisbane: Computer Education Group of Queensland.

Dillashaw, F.G., & Bell, S.R. (1985, April). Learning outcomes of computer programming instruction for
middle-grade students: A pilot study. Paper presented at the annual meeting of the National Association for
Research in Science Teaching, French Lick Springs, IN.

DiSessa, A.A. (1986). From Logo to Boxer, a new computational environment. Australian Educational
Computing, 1(1), 8-15.

Dolan, D.T., & Williamson, J. (1983). Teaching problem-solving strategies. Menlo Park, California: Addison-
Wesley Publishing Company.

Doyle, W. (1983). Academic work. Review of Educational Research, 53, 159-199.

du Boulay, J.B.H., & Howe, J.A.M. (1982). Logo building blocks: Student teachers using computer-based
mathematics apparatus, Computers & Education, 6, 92-98.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), Whole No. 270.

Dyck, J.L., & Mayer, R.E. (1989). Teaching of transfer of computer program comprehension skill. Journal of
Educational Psychology, 81(1), 16-24.

Eimas, P.D. (1969). A developmental study of hypothesis behavior and focusing. Journal of Experimental Child
Psychology, 8, 160-172.

Eisner, E:W. (1981). On the differences between scientific and artistic approaches to qualitative research.
Educational Researcher, 10(4), 5-9.

Eisner, E.W. (1983). Anastasia might still be alive, but the monarchy is dead. Educational Researcher, 12(5),
13-24.

Elley, W.B., & Reid, N.A. (1969). Progressive Achievement Tests, Teacher's Manual: Reading Comprehension,
Reading Vocabulary. Wellington, N.Z.: New Zealand Council for Educational Research.

Elley, W.B., & Reid, N.A. (1971). Progressive Achievement Tests, Teacher's Manual: Listening Comprehension.
Wellington, N.Z.: New Zealand Council for Educational Research.

Ellis, E.S., Lenz, K., & Sabomie, E.J. (1987a). Generalization and adaptation of learning strategies to natural
environments: Part 1: Critical agents. Remedial and Special Education, 8(1), 6-20.

Ellis, E.S., Lenz, K., & Sabormie, E.J. (1987b). Generalization and adaptation of learning strategies to natural
environments: Part 2: Research into practice. Remedial and Special Education, 8(2), 6-23.

Ellis, H. (196S). The transfer of learning. N.Y.: Macmillan.
Emihovich, C., & Miller, G.E. (1986, April). Verbal mediation in Logo instruction: learning from a Vygotskian

perspective. Paper presented at the annual meeting of the American Educational Research Association, San
Francisco.

246

Emihovich, C., & Miller, G.E. (1988). Learning Logo: The social context of cognition. Journal of Curriculum
Studies, 20(1), 57-70.

Emihovich, C., & Miller, G.E. (in press). Talking to the turtle: A discourse analysis of Logo instruction.
Discourse Processes.

Evans, H.R. (1984). Some effects of Logo programming instruction with fourth grade children. Unpublished
doctoral dissertation. Virginia: University of Virginia.

Fay, A.L., & Mayer, R.E. (1987). Children's naive conceptions and confusions about Logo graphics commands.
Journal of Educational Psychology, 79(3), 254-268.

Feibel, W. (1978). On applying metacognition to metacognition about metacognition: A redundant reaction? In
J.M. Scandura & C.J. Brainerd (Eds.), Structural/process models of complex humnan behaviour (pp. 247-
258). Alphen aan den Rijn, the Netherlands: Sijthoff & Noordhoff.

Fein, G.G., Scholnick, E.K., Campbell, P.F., Schwartz, S., & Frank, R. (1985, June). Computing space. Paper
presented at the Jean Piaget Society Symposium, Philadelphia.

Feuerstein, R., Jensen, M., Hoffman, M.B., & Rand, Y. (1985). Instructional enrichment, an intervention
program for structural cognitive modifiability: Theory and practice. In J.W. Segal, S.F. Chipman, & R.
Glaser (Eds.), Thinking and learning skills: Vol 1. Relating instruction to research (pp. 43-82). N.J.:
Lawrence Erlbaum.

Feuerstein, R., Rand, Y., Hoffman, M.B., Hoffman, M., & Miller, R. (1979). Cognitive modifiability in
retarded adolescents: Effects of instrumental enrichment. American Journal of Mental Deficiency, 83(6),
539-550.

Feurzeig, W. (1986, July). Towards intelligent microworlds. Logo 86 Proceedings (pp. 44-45). Cambridge,
MA: Massachusetts Institute of Technology.

Feurzeig, W., Horwitz, P., & Nickerson, R.S. (1981). Microcomputers in education. Report for Department of
Health, Education, and Welfare, National Institute of Education, and Ministry for the Development of
Human Intelligence, Republic of Venezuela. Cambridge, M.A.: Bolt, Beranek & Newman.

Feurzeig, W., & Lukas, G. (1972). Logo: A programming language for learning mathematics. Educational
Technology, March, 1972, 39-46.

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1969). Programming languages as a
conce ptual framework for teaching mathematics (BBN Report no. 1889). Cambridge, Massachusetts: Bolt,
Beranek and Newman.

Finlayson, H.M. (1983). The development of mathematical thinking through Logo. D.A.l. Research paper no.
205. Paper presented to the British Logo User’s Group conference, September, 1983.

Finlayson, H.M. (1984). What do children learn through using Logo? D.A.l. Research paper no. 237. Paper
presented to the British Logo Users Group conference, Loughborough, September, 1984.

Finlayson, H.M. (1985). The wransfer of inathematical problemn solving skills from Logo experience. D.A.l
Research paper no. 238. Paper presented to the World Conference of Computers in Education, Norfolk,

Virginia, 1985S.

Fisher, C., & Mandinach, E. (1985, April). Individual differences and acquisition of computer programming
skill. Paper presented at the annual meeting of the American Educational Research Association, Chicago.

Fisher, R. (1987). Problem solving in primary schools. Oxford: Basil Blackwell.

Flavell, J.H. (1970). Developmental studies of mediated memory. In H.W. Reese & L.P. Lipsitt (Eds.),
Advances In Child Developmment And Behaviour Vol. 5 (pp. 181-211).

247

Flavell, J.H. (1976). Metacognitive aspects of problem solving. In L.B. Resnick (Ed.), The nature of intelligence
(pp- 231-235). N.J.: Lawrence Erlbaum Associates.

Flavell, J.H. (1977). Cognitive development. Englewood, N.J.: Prentice-Hall.

Flavell, J.H. (1978). Metacognitive development. In J.M. Scandura & C.J. Brainerd (Eds.), Structural/process
models of complex lwman behaviour (pp. 213-245). Alphen aan den Rijn, the Netherlands: Sijthoff &
Noordhoff.

Flavell, J.H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry.
American Psychologist, 34(10), 906-911.

Flavell, J.H., Speer, J.R., Green, F.L., & August, D.L. (1981). The development of comprehension monitoring
and knowledge about communication. Monographs of the society for research in child development, 46(5),
Serial No. 192.

Forrest-Pressley, D.L., MacKinnon, G.E., & Waller, T.G. (Eds.). (1985). Metacognition, cognition, and human
perfoninance: Vol. 1. Theoretical perspectives. Orlando, Florida: Academic Press.

Frampton, A. (1989). Educational Computing in New Zealand. Inforination Transfer, 9(1), 37.

Frederick, B. (1986). Introduction to telecommunications. In B. Frederick (Ed.), What to do with what you've
got (pp. 277-283). Broadway, N.S.W.: Computer Education Group of New South Wales Ltd.

Frederiksen, N. (1984). Implications of cognitive theory for instruction in problem solving. Review of
Educational Research, 54(3), 363-407.

Freehand, G.A. (1966). Epilogue: Constructs and strategies for problem-solving research. In B. Kleinmuntz
(Ed.), Problem solving: Research, method, and theory (pp. 355-383). N.Y.: John Wiley & Sons.

Freeman, C., Hawkins, J., & Char, C. (198S). Information management tools for classrooms: Explore database

management systems. Technical Report No. 28. N.Y.: Centre for Children and Technology, Bank Siree
College of Education.

Fredland, E., & Friedland, M. (1984). Beyond turtle graphics. Logo and Educational Computing Journal, 2(1),
7, 24-25.

Funkhouser, C., & Dennis, J.R. (1992). The effects of problem-solving software on problem-solving ability.
Journal of Research on Computing in Education, 24(3), 338-347.

Furth, H.G. (1969). Piaget and knowledge: Theoretical foundations. Englewood Cliffs, N.J.: Prentice-Hall.

Gagné, R.M. (1966). Human problem solving: Internal and external events. In B. Kleinmuntz (Ed.), Problem
solving: Research, method, and theory (pp. 127-148). N.Y.: John Wiley & Sons.

Gagné, R.M., & Briggs, L.J. (1974). Principles of instructional design. N.Y.: Holt, Rinehart and Winston.

Gallini, J.K. (1985). Instructional conditions for computer-based problem solving environments. Educational
Technology, February, 1985, 7-11.

Gallini, J.K. (1987). A comparison of the effects of Logo and a CALl learning environment on skills acquisition.
Journal of Educational Computing Research, 3(4), 461-4717.

Gholson, B. (1980). The cognitive-development basis of hunan learning: Studies in hypothesis testing. N.Y .
Academic Press.

Gick, M.L., & Holyoak, K.J. (1980). Analogicul Problem Solving. Cognitive Psychology, 12, 306-355.

Ginther, D.W., & Williamson, J.D. (1985). Learning Logo: What is reually learned? Computers in the Schools,
2(2/3), 73-78.

248

Glaser, R., & Pellegrino, J. (1982). Improve the skills of learning. In D.K. Detterman and R.J. Sternberg
(Eds.), How and how much can intelligence be increased (pp. 197-212). N.J.: Ablex Publishing
Corporation.

Goldenberg, E.P. (1982). Logo - A cultural glossary. Byte, 7(8), 210-228.
Gorman, H. Jr. (1982). The Lamplighter project. Bvte, 7(8), pp. 331-333.

Gorman, H. Jr., & Bourne, L.E. Jr. (1983). Learning to think by learning Logo: rule learning in third-grade
computer programmers. Bulletin of the Psychonomic Society, 21(3), 165-167.

Gourgey, A.F. (1987). Coordination of instruction and reinforcement as enhancers of the effectiveness of
computer-assisted instruction. Journal of Educational Computing Research, 3(2), 219-230.

Grabe, M., & Mann, S. (1984). A technique for the assessment and training of comprehension monitoring skills.
Journal of Reading Behaviour, XVI(2), 131-144.

Grandgenett, N., & Thompson, A. (1991). Effects of guided programming instruction on the transfer of
analogical reasoning. Journal of Educational Computing Research, 7(3), 293-308.

Grauer, R.T., & Gordon, J., & Schemel, M. (1984). Basic is child's play. Englewood Cliffs, N.J.: Prentice-
Hall Inc.

Gray, A., & Bell, S. (1991). Multimedia and multimodal texts. In MNavigating the nineties (pp. 280-287).
Brisbane: Computer Education Group of Queensland.

Green, B.F. (1966). Current trends in problem solving. In B. Kleinmuntz (Ed.), Problem solving: Research,
method, and theory (pp. 3-18). N.Y.: John Wiley & Sons.

Greeno, J.G. (1978a). A study of problem solving. In R. Glaser (Ed.), Advances in instructional psychology Vol.
1 (pp. 13-75). N.J.: Lawrence Erlbaum Associates.

Greeno, J.G. (1978b). Natures of problem-solving abilities. In W.K. Estes (Ed.), Handbook of learning and
cognitive processes, Vol. 5, Human inforinational processing (pp. 239-270). Hillsdale, N.J.: Lawrence
Erlbaum Associates, Publishers.

Greeno, J.G. (1985). Looking across the river: Views from the two banks of research and development in
problem solving. In S.F. Chipman, J.W. Segal, & R. Glaser (Eds.), Thinking and learning skills: Vol 2.
Research and open questions (pp. 209-213). N.J.: Lawrence Erlbaum.

Groen, G. (1984). Theories in Logo. In R. Sorkin (Ed.), Pre-proceedings of the national logo conference, Logo
84 (pp. 49-54). Cambridge: MIT.

Grogono, P., & Nelson, S.H. (1982). Problein solving And computer prograimning. Reading, Massachusetts:
Addison-Wesley Publishing Company.

Guntermann, E., & Tovar, M. (1987). Collaborative problem-solving with Logo: Effects of group size and group
composition. Journal of Educational Computing Research, 3(3), 313-334.

Guthrie, J.T., & Kirsch, 1.S. (1987). Distinctions between reading comprehension and locating infonnation in
text. Journal of Educational Psychology, 79(3), 220-227.

Guttorrnsen, R. (1986). Computer based information handling in the primary school: Learning tool or simply
awareness? In R. Guttormsen (Ed.), Computers in the curriculum - Realising the potential. Brisbane:
Computer Education Group of Queensland.

Halford, G.S. (1988). Cognitive process approaches to iniclligence. In A. Watson (Ed.), Intelligence:
Controversy & change (pp. 61-72). Hawthom, Victoria: Australian Council of Educational Research.

249

Hall, R. (1988). Doesthe concept of intelligence have a future? A discussion of the Ward and Halford papers.
In A. Watson (Ed.), Intelligence. Controversy & change (pp. 73-75). Hawthorn, Victoria: Australian
Council of Educational Research.

Haller, E.P., Child, D.A., & Walberg, H.J. (1988). Can comprehension be taught? A quantitative synthesis of
“metacognitive” studies. Educational Researcher, 17(9), 5-8.

Harper, D. (1989). Logo: Theory & Practice. Pacific Grove, California: Brooks/Cole Publishing Company.
Harvey, B. (1982a). Why Logo? Byre, 7(8), 163-193.

Harvey, B. (1982b). Why Logo? In M. Yazdani (Ed.), New horizons in educational computing (pp. 21-39).
Chichester: Ellis Horwood.

Hassett, J. (1984). Computers in the classroom. Psychology Today, 18(9), 22-28.

Hativa, N. (1988). Computer-based drill and practice in arithmetic: Widening the gap between high- and low-
achieving students. American Educational Research Journal, 25(3), 366-397.

Hawkins, J. (1983). Learning Logo together: the social context. In K. Sheingold (Ed), Chamelon in the
classroom: Developing roles for computers (pp.40-49). N.Y.: Bank Street College of Education, Center for
Children and Technology.

Hawkins, J. (1987). The interpretation of Logo in practice. In R.D. Pea & K. Sheingold (Eds.) Mirrors of
minds. Patterns of experience in educational computing (pp. 3-34). Norwood, N.J.: Ablex Publishing
Corporation.

Hawkins, J., Homolsky, M., & Heide, P. (1984). Paired problem solving in a computer context. Technical
report No. 33. N.Y.: Bank Street College of Education, Center for Children and Technology.

Hayes, J.R. (1966). Memory, goals and problem solving. In B. Kleinmuntz (Ed.), Problem solving: Research,
method, and theory (pp. 149-170). N.Y.: John Wiley & Sons.

Hayes, J.R. (1980). Teaching problem-solving mechanisms. In D.T. Tuma & F. Reif (Eds.), Problem solving
and education: Issues in teaching and research (pp. 141-147). Hillsdale, N.J.: Lawrence Erlbaum
Associates.

Hayes, J.R. (1981). The complete problem solver. P.A.: Franklin Institute Press.

Hayes, J.R. & Simon, H.A. (1977). Psychological differences among problem isomorphs. In N. Castellan, Jr.,
D. Pisoni, & G. Potts (Eds.), Cognitive theory Vol. Il (pp. 138 -165). Hillsdale, NJ: Erlbaum.

Hayes-Roth, B., & Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive Science, 3, 275-310.

Heller, R.S. (1991). Toward a student workstation: extensions to the Logo environment. Journal of Educational
Computing Research, 7(1), 77-88.

Herriott, R.E., & Firestone, W.A. (1983). Multisite qualitative policy research: Optimizing description and
generalizability. Educational Researcher, 12(2), 134-19.

Hess, R.D., & McGarvey, L.J. (1987). School-relevant effects of educational uses of microcomputers in
kindergarten classrooms and homes. Journal of Educational Computing Research, 3(3), 269-287.

Higgenson, W. (1982). Leading fish to water: Early observations on the use of Logo. Byvre, 7(8), 328-329.

Hillel, J. (1985). For the learning of mathematics. An International Journal of Mathematics Education, 5(2), 38-
45.

Hofmeister, A. (1984). Microcomputer applications in the classroom. N.Y.: Holt, Rinehart & Winston.

250

Hooper, S., & Hannafin, M.J. (1988). Cooperative CBI: The effects of heterogeneous versus homogeneous
grouping on the learning of progressively complex concepts. Journal of Educational Computing Research,
4(4), 413-424,

Homer, C.M., & Maddux, C.D. (1985). The effects of Logo on attributions toward success. Computers in the
Schools, 2(2/3), 45-54.

Horton, J.H., & Ryba, K.A. (1986). Assessing learning with Logo: A pilot study. 7lie Computing Teacher,
14(1), 24-28.

Horton, J.K. (1986). Assessing children’s thinking skills with Logo. Unpublished Diploma of Education
Dissertation. Massey University, Palmerston North, New Zealand.

Howard, J.R., Busch, J.C., & Watson, J.A. (1992). The change-over to computer-based technology in early
childhood special education. Journal of Research on Computing in Education, 23(4), 530-544.

Howe, J., Ross, P., Johnston, K., Plane, F., & Inglis, R. (1981). Teaching mathematics through programming in
the classroom. Research paper No. 157. Edinburgh: Department of Artificial Intelligence, University of
Edinburgh.

Howe, J.LA.M., O’Shea, T., & Plane, F. (1980). Teaching mathematics through Logo programming: an
evaluation study. In R. Lewis & D. Tagg (Eds.) Computer assisted learning scope, progress and limits
(pp. 85-102). Amsterdam, Holland: North Holland.

Howe, K.R. (1985). Two dogmas of educational research. Educational Researcher, 14(8), 10-18.

Howe, K.R. (1988). Against the quantitative-qualitative incompatibility thesis or dogmas die hard. Educational
Researcher, 17(8), 10-16.

Howell, R.D., Scott, P.B., & Diamond, J. (1987). The effects of “instant” Logo computing language on the
cognitive development of very young children. Journal of Educational Computing Research, 3(2), 249-260.

Hoyles, C., & Noss, R. (1985). Synthesising mathematical conceptions and their forinalisation through the
construction of a Logo-based school mathematics curriculin. London: Department of mathematics, statistics

and computing, University of London, Institute of Education.

Hoyles, C., & Sutherland, R. (1987). Ways of learning in a computer-based environment: some findings of the
Logo Maths Project. Journal of Computer Assisted Learning, 3, 67-80.

Hoyles, C., & Sutherland, R. (1989). Logo mathematics in the classroom. London: Routledge.

Hughes, M., & Macleod, H. (1986). Why Logo for very young children. In R.W. Lawler, B. du Boulay, M.
Huges, & H. Macleod (Eds.) Cognition and computers (pp. 180-181). Sussex: Ellis Horwood Limited.

Hughes, M., Macleod, H., & Patts, C. (1985). Using Logo with infant school children. Edinburgh Educational
Psychology, 5(3-4), 287-301.

Humphrey, G. (1951). Thinking: An introduction to its experimental psychology. N.Y.: Wiley.
Hunter, B. (1985). Problem solving with data bases. The Computing Teacher, 12(8), 20-27.
Inhelder, B., & Piaget, J. (1958). The growth of logical thinking. London: Routledge & Kegan Paul Ltd.

Irwin, K. (1985, August). Formn II children working with Logo and Basic. Paper presented to the First National
Conference of the New Zealand Computer Education Society, Aucklund.

Jacob, E. (1988). Clarifying qualitative research: A focus on traditions. Educational Researcher, 17(1), 16-19,
22-24.

James, L. (1986). Logo study. In A.D. Salvas & C. Dowling (Eds.). On the crest of a wave? (pp. 190-193).
Balaclava, Victoria: Computer Education Group or Victoria.

251

Jamison, D., Suppes, P., & Wells, S. (1974). Effectiveness of alternative instructional media. Review of
Educational Research, 44, 1-67.

Jewson, J., & Pea, R.D. (1982). Logo research at Bank Street College. Bye, 7(8), 332-333.

Johanson, R.P. (1988). Computers, cognition and curriculum: retrospect and prospect. Journal of Educational
Computing Research, 4(1), 1-30.

Jones, AJ. (1992). Encouraging teachers to use computers: A necessary step toward a clever country. In
Computing the clever country (pp. 322-329). Melbourne: Computing in Education Group of Victoria.

Johnson, D.L. (1985). What do we know about Logo? Computers in the Schools, 2(2/3), 1-2.
Johnson, D.M. (1955). The psychology of thought and judgment. N.Y.: Harper & Row.

Johnson, R.T., Johnson, D.W., & Stanne, M.B. (1986). Comparison of computer-assisted cooperative,
competitive, and individualistic leamming. American Educational Research Journal, 23(3), 382-392.

Karat, J. (1982). A model of problem solving with incomplete constraint knowledge. Cognitive Psychology, 14,
538-559.

Keat, J.A. (1988). Difficulties in studying the intellect: Comments on the Halford and Ward papers. In A.
Watson (Ed.), Intelligence: Controversy & change (pp. 76-77). Hawthorn, Victoria: Australian Council of
Educational Research.

Keller, J.K. (1990). Characteristics of Logo instruction promoting transfer of learning: A research review.
Journal of Research on Computing in Education, 23(1), 55-71.

Kendall, C.R., Borkowski, J.G., & Cavanaugh, J.C. (1980). Metamemory and the transfer of an interrogative
strategy by EMR children. [Intelligence, 4, 255-270.

Kersteen, Z.A ., Linn, M.C., Clancy, M., & Hardyck, C. (1988). Previous experience and the learning of
computer programming: The computer helps those who help themselves. Journal of Educational Computing

Research, 4(3), 321-333.

Khayrallah, M.A., & van den Meiraker, M. (1987). Logo programming and the acquisition of cognitive skills.
Journal of Computer-Based Instruction, 14(4), 133-137.

King, A. (1989). Verbal interactions and problem-solving within computer-assisted cooperative learning groups.
Journal of Educational Computing Research, 5(1), 1-15.

Kinzer, C., Littlefield, J., Delclos, V.R., & Bransford, J.D. (1985). Different Logo learning environments and
mastery: Relationships between engagement and learning. Computers in the Schools, 2(2/3), 33-44.

Kinzer, C.K., Sherwood, R.D., & Bransford, J.D. (1986). Computer strategies for education: Foundations and
content-area applications. Columbus: Merrill Publishing Company.

Klahr, D., & Robinson, M. (1981). Formal assessment of problem solving and planning processes in preschool
children. Cognitive Psychology, 13, 113-148.

Kleinmuntz, B. (Ed.). (1966). Problem solving: Research, method, and theory. N.Y.: John Wiley & Sons.
Kohler, W. (1927). The mentality of apes. N.Y.: Harcourt Brace.

Kolata, G. (1982). How can computer get common sense? Science, 217, 1237-1238.

Kozmetsky, G. (1980). The significant role of problem solving in education. In D.T. Tuma & F. Reif (Eds.),

Problem solving and education: Issues in teaching and research (pp. 151-157). Hillsdale, N.J.: Lawrence
Erlbaum Associates.

252

Krendl, K.A., & Lieberman, D.A. (1988). Computers and learning: A review of recent research. Journal of
Educational Computing Research, 4(4), 367-389.

Krasnor, L., & Mitterer, J. (1984). Logo and the development of general problem solving skills. T7ie Alberta
Journal of Educational Research, 30(2), 133-144.

Kuhn, D. (1990). Introduction. In D. Kuhn (Ed.), Developmental perspectives on teaching and learning thinking
skills (pp. 1 - 8). Basel: Karger.

Kulik, J.A., & Kulik, C.C. (1987). Review of recent research literature on computer-based teaching.
Contemporary Educational Psychology, 12, 222-230.

Kulik, J.A ., Kulik, C.C., & Bangert-Downes, R.L. (1985). Effectiveness of computer-based education in
elementary schools. Computer in Human Behaviour, 1, 59-74.

Kull, J.A. (1986, April). A Brunerian approach to teaching and learning Logo. Paper presented at the annual
meeting of the American Educational Research Association, San Francisco.

Kurland, D.M., & Pea, R.D. (1983). Children’s mental models of recursive Logo programs. Technical Report
No. 10. N.Y.: Bank Street College of Education, Centre for Children & Technology.

Kurland, D.M, Pea, R.D., Clement, C., & Mawby, R. (1986). A study of the development of programming
ability and thinking skills in high school students. Jowurnal of Educational Computing Research, 2(4), 429-

458.

Kurshan, B., & Williams, J. (1985). The effect of the computer on problem solving skills. (ERIC Document
Reproduction Service No. ED 259 714).

Lai, K. (1990). Problem solving in a Lego-Logo learning environment: Cognitive and metacognitive outcomes.
In A. McDougall & C. Dowling (Eds.) Computers in Education (pp. 403 - 408). Amsterdam: North-
Holland.

Lai, K., & Mace, R. (1989). Is there a place for computer games in secondary schools? Computers in New
Zealand Schools, 1(1), 37-42.

Larivée, S., Parent, S., Dupré, S., & Michaud, N. (1988). Programming Logo, cognition and metacognition.
Canadian Journal of Special Education, 4(1), 49-77.

Lawler, R.W. (1980). Extending a powerful idea. Logo memo no. S8. Cambridge: Artificial Intelligence
Laboratory, Massachusetts Institute of Technology.

Lawler, R.W. (1981). The progressive construction of mind. Cognitive Science, 5, 1-30.
Lawler, R.W. (1982). Designing computer-based microworlds. Byre, 7(8), 138-160.

Lawler, R.W., du Boulay, B., Hughes, M., & Macleod, H. (1986). Cognition and computers: Studies in
learning. Sussex: Ellis Horwood Limited.

Lawler, R.W., & Yazdani, M. (Eds.). (1987). Artificial intelligence and education. Vol. 1. Learning
environments and tutoring systems. Norwood, N.J.: Ablex Publishing.

Lawson, M.J. (1991). Testing for transfer following strategy training. In G. Evans (Ed.), Learning and teaching
cognitive skills (pp. 208 - 228). Hawthorne, Victoria: ACER.

Lawton, J, & Gerschner, V.T. (1982). A review of the literature on attitudes towards computers and
computerised instruction. Jowrnal of Research and Development in Education, 16(1), 50-55.

Lee, O., & Lehrer, R. (1988). Conjectures concerning the origins of misconceptions in Logo. Journal of
Educational Computing Research, 4(1), 87-105.

253

Lehrer, R. (1989). Computer-assisted strategic instruction. In C.B. McCormnick, G.E. Miller, & M. Pressley
(Eds.), Cognitive strategy research: From basic research to educational applications (pp. 303-320). N.Y.:
Springer—Vcrlag.

Lehrer, R., Guckenberg, T., & Lee, O. (1988). Comparative study of the cognitive consequences of inquiry-
based Logo instruction. Journal of Educational Psychology, 80(4), 543-553.

Lehrer, R., Harckham, L.D., Archer, P, & Pruzek, R.M. (1986). Microcomputer-based instruction in special
education. Journal of Educational Computing Research, 2(3), 337-355.

Lehrer, R., & Randle, L. (1987). Problem solving, metacognition and composition: The effects of interactive
software for first-grade children. Journal of Educational Computing Research, 3(4), 409-427.

Lehrer, R., & Smith, P.C. (1986, April). Logo learning: Is more better? Paper presented at the annual meeting
of the American Educational Research Association, San Francisco.

Leonard, R. (1991). Factors influencing the use of telecommunications by schools. In Navigating the nineties
(pp- 326-331). Brisbane: Computer Education Group of Queensland.

Leron, U. (1985). Logo today: Vision and reality. The Computing Teacher, 12(S), 26-32.

Levin, H.M., Glass, G.V., & Meister, G.R. (1987). Cost-effectiveness of computer-assisted instruction.
Evaluation Review, 11(1), 50-72.

Lewis, S.K., & Lawrence-Patterson, E. (1989). Locus of control of children with learning disabilities and
perceived locus of control by significant others. Journal of Learning Disabilities, 22(4), 255-257.

Liao, Y. (1992). Effects of computer-assisted instruction on cognitive outcomes: A meta-analysis. Journal of
Research on Computing in Education, 24(3), 367-380.

Lieber, J., & Semmel, M.1. (1987). The relationship between group size and performance on a microcomputer
problem-solving task for learning handicapped and nonhandicapped students. Journal of Educatioral
Computing Research, 3(2), 171-187.

Lieberman, D.A., & Linn, M.C. (1991). Learning to learn revisited: Computers and the development of self-
directed learning skills. Jowrnal of Research on Computing in Education, 23(2), 373-395.

Linn, M.C. (1985). The cognitive consequences of programming instruction in classrooms. Educational
Researcher, 14(5), 14-16, 25-29.

Linn, M.C. (1988). [Review of Mirror of minds: Patterns of experience in educational computing). Journal of
Educational Computing Research, 4(3), 349-358.

Linn, M.C., Rohwer, W.D., & Thomas, J. (1986). Annual Report: Autonomous classroom computer
environments for learning (ACCEL). Berkeley, CA: Lawrence Hall of Science, University of California.

Linn, M.C., Sloane, K.D., & Clancy, M.J. (1986, April). [deal and actual outcomes from precollege Pascal
instruction. Paper presented at the annual meetings of the American Educational Research Association, San
Francisco.

Lipman, M. (1985). Thinking skills fostered by philosophy for children. In J.W. Segal, S.F. Chipman, & R.
Glaser (Eds.), Thinking and learning skills: Vol 1. Relating instruction io research (pp. 83-108). N.J.:
Lawrence Erlbaum.

Lockard, J., Abrams, P.D., & Many, W.A. (1990). Microcomputers for educators, 2nd Edition. Glenview,
[llinois: Scott, Foresman/Little, Brown Higher Education.

Lockhead, J. (1985). Teaching analytic reasoning skills through pair problem solving. In J.W. Segal, S.F.
Chipman, & R. Glaser (Eds.), Thinking and learning skills: Vol 1. Relating instruction to research (pp. 109-
131). N.J.: Lawrence Erlbaum.

254

Lockheed, M.E., & Mandinach, E.B. (1986). Trends in educational computing: Decreasing interest and the
changing focus of instruction. Educational Researcher, 15(5), 21-26.

Longeot, F. (1974). L’échelle de Développement de la Pensée Logique. Manuel d’instructions, Issy-les-
Moulineaux: Editions Scientifiques et Psychométriques.

Loper, A.B. (1980). Metacognitive development: Implications for cognitive training. Exceptional Education
Quarterly, 1(1), 1-8.

Lough, T., & Tipps, S. (1983). Is there Logo after turtle graphics? Classroom Computer News, 3(S), 50-53.
Luehrmann, A. (1981). Computer literacy: what should-it be: Mathematics Teacher, 74(9),

Luger, G.F. (1976). The use of the state space to record the behavioural effects of subproblems and symmetries
in the Tower of Hanoi problem. International Journal of Man-Machine Studies, 8(4), 411-421.

Luger, G.F., & Bauer, M.A. (1978). Transfer effects in isomorphic problem solving situations. Acta
Psychologica, 42, 121-131.

Luger, G.F., & Steen, M. (1981). Using the state space to record the behavioural effects of symmetry in the
Tower of Hanoi problem and an isomorph. [International Journal of Man-Machine Studies, 14(4), 449-460.

MacGregor, S.K., Shapiro, J.Z., & Niemic, R. (1988). Effects of a computer-augmented learning environment
on math achievement for students with differing cognitive style. Jowurnal of Educational Computing

Research, 4(4), 453-465.

Maddison, J. (1983). Education in the microelectronics era: A comprehensive approach. Milton Keynes: Open
University Press.

Maddux, C.D. (Ed.). (198S). Logo inthe schools. N.Y.: Haworth Press.

Maddux, C.D., & Johnson, D.L. (1988). Logo. Methods and curriculum for teachers. N.Y.: The Haworth
Press.

Maltzman, I. (1955). Thinking: From a behavioristic point of view. Psychological Review, 25, 275-286.
Mandell, C.J., & Mandell, S.L. (1989). Computers in education today. N.Y.: West Publishing Company.

Mandinach, E.B. (1986, April). Aspects of prograinming courses that foster problem solving. Paper presented at
the annual meeting of the American Educational Research Association, San Francisco.

Mandinach, E.B., & Linn, M.C. (1986). The cognitive effects of computer learning environments. Journal of
Educational Computing Research, 2(4), 411-427.

Mandinach, E.B., & Linn, M.C. (1987). Cognitive consequences of programming: Achievements of experienced
and talented programmers. Journal of Educational Computing Research, 3(1), 53-72.

Many, W.A., Lockard, J., & Abrams, P.D. (1988). The effect of learning to program in Logo on reasoning skills
of junior high school students. Journal of Educational Comnputing Research, 4(2), 203-213.

Marshall, R. (1987). Computers in cducation: Confidence and control. Bits & Bytes, 5(6), 63-65.

Martin, A. (1985). Teaching and learning with Logo. N.Y.: Teachers College Press, Teachers College,
Columbia University.

Martin, K., & Riordon, T. (1983). Logo - beginning a new school year. The Computing Teacher, 11(1), 42-44

Mathinos, D.A. (1990). Logo programming and the refinement of problem-solving skills in disabled and
nondisabled children. Journal of Educational Computing Research, 6(4), 429-446.

255

Maxwell, B. (1984). Why Logo? In A. Kelly (Ed.), Microcompuuters and the curriculion (pp. 84-106). N.Y.:
Harper & Row.

Mayer, R.E. (1983). Thinking, problem solving, cognition. N.Y.: W.H. Freeman and Company.

Mayer, R.E. (1984, April). Learnable aspects of problem solving: Some examples. Paper presented at the annual
meeting of the American Educational Research Association, New Orleans, L.A.

Mayer, R.E., Dyck, J.L., & Vilberg, W. (1989). Learningto program and learning to think: What's the
connection? In E. Soloway & J.C. Spohrer (Eds.), Siudying the novice programmer (pp. 113-124).
Hillsdale, N.J.: Lawrence Erlbaum Associates.

Mayer, R.E., & Fay, A.L. (1987). A chain of cognitive changes with learning to program in Logo. Journal of
Educational Psychology, 79(3), 269-279.

McAllister, A. (1985). Problem solving at the threshold of computer programming (Bulletin No. 13). Toronto:
Toronto Board of Education.

McClurg, P.A., & Chaillé, C. (1987). Computer games: Environments for developing spatial cognition? Journal
of Educational Computing Research, 3(1), 95-111.

McCormick, C.B., Miller, G.E., & Pressley, M. (Eds.) (1989). Cognitive strategy research: From basic
research to educational applications. N.Y.: Springer-Verlag.

McDonald, R.P. (1988). The first and second laws of intelligence. In A. Watson (Ed.), Intelligence: Controversy
& change (pp. 78-85). Hawthorn, Victoria: Australian Council of Educational Research.

McDougall, A. (1983). Logo for senior secondary school students. In A.D. Salvas (Ed.), Could you use a
computer (pp. 50-54). Balaclava: Computer Education Group of Victoria.

McDougall, A. (1985). Logo: its use in education and research. In B. Rasmussen (Ed.), The inforination edge:
The future for educational computing (pp.141-150). Brisbane: Computer Education Group of Queensland.

McDougall, A. (1986). Children's difficulties in perceiving structure and using subprocedures in Logo. In A.D.
Salvas & C. Dowling (Eds.). On the crest of a wave? (pp. 53-55). Balaclava, Victoria: Computer
Education Group of Victoria.

McDougall, A. (1988). Children, recursion and ngo programming. Unpublished Ph.D. thesis. Melboume:
Monash University.

McDougall, A., & Adams, T. (1982). Logo environments: The development of the language and its use in
education and research. In A. Sale & G. Hawthorne, G. (Eds.), Proceedings of the rinth Australian
computer conference (pp. 116-132. Sydney: Australian Computer Society.

McDougall, A., & Adams, T. (1983). Children can teach computers to write poetry! Australian Journal of
Reading, 6(4), 222-228.

McDougall, A., Adams, T., & Adams, P. (1982). Learning Logo on the Apple 1ll. Sydney: Prentice-Hall.

McGee, G.W. (1987). Social context variables affecting the implementation of microcomputers. Journal of
Educational Computing Research, 3(2), 189-206.

McGrath, D. (1988). Programming and problem solving: Will two languages do it? Journal of Educational
Computing Research, 4(4), 467-484.

McMillan, B.W. (1987). Logo and the teaching of Logo: A Piagetian perspective. In J. Hancock (Ed.),
Tomorrow's technology today (pp. 179-186). Magill, S.A.: Computers in Education Group of South
Australia.

Mehan, H. (1989). Microcomputers in classrooms: Educational technology or social practice? Anthropology and
Education Quarterly, 20, 4-22. .

256

Mendelsohn, P. (1984). L’analyse psychologique des activités de programmation chez I’enfant. Compte-rendu
d’une recherche exploratoire sur la compréhension et la production de programmes en Logo chez des enfants
de 10-12 ans. Grenoble: Laboraoire de Psychologie Expérimentale.

Mendelsohn, P. (1985). L’analyse psychologique des activités de programmation chez I'’enfant de CM-1 et CM-2.
Enfance, 2-3, 313-221.

Mendelsohn, P. (1987). L'apprentissage des concepts inforiatiques: du déplacement de la tortue Logo a la
coordination d’objets graphiques. Revue Canadienne de Psycho-éducation, 16(2), 97-118.

Merrill, P.F., Tolman, M.N., Christensen, L, Hammons, K., Vincent, B.R., & Reynolds, P.L. (1986).
Computers in education. N..: Prentice-Hall.

Messick, S., & Sigel, I. (1982). Conceptual and methodological issues in facilitating growth in intelligence. In
D.K. Detterman and R.J. Sternberg (Eds.), How and how much can intelligence be increased (pp. 187-195).
N.J.: Ablex Publishing Corporation.

Michayluk, J.O. (1986). Logo: more than a decade later. British Journal of Educational Technology, 17(1), 35-
41.

Michayluk, J.O., & Saklofske, D.H. (1985). Some effects of Logo with emotionally disturbed children.
Canadian Journal of Educational Communication, 14(4), 4-7.

Michayluk, J.O., & Saklofske, D.H. (1988). Logo and Special Education. Canadian Journal of Special
Education, 4(1), 43-48.

Miles, M.B., & Huberman, A.M. (1984). Drawing valid meaning from qualitative data: toward a shared craft.
Educational Researcher, 13(5), 20-30.

Miller, G.A., Galanter, E., & Pribram, K.H. (1960). Plans and the structure of behaviour. N.Y.: Holt,
Rinehart & Winston.

Miller, G.E., & Emihovich, C. (1986). The effects of mediated programming instruction on preschool children’s
self-monitoring. Jowrnal of Educational Computing Research, 2(3), 283-297.

Miller, G.E., Emihovich, C., Clare, V., & Froning, D. (1986, April). The effectsof interactive programming on

preschool children’s self-monitoring. Paper presented at the annual meeting of the American Educational
Research Association, San Francisco.

Milner, S.D. (1973). The effects of teaching computer programming on performmance in mathematics.
Unpublished doctoral dissertation. Pittsburgh: University of Pittsburgh.

Minnesota Educational Computer Consortium. (1983). Apple Logo in the classroom. St. Paul, Minnesota:
Minnesota Educational Computer Consortium.

Minsky, M., & Papert, S. (1972). Artificial intelligence. A.l. memo No. 252. Cambridge: Artificial Intelligence
Laboratory, Massachusetts Institute of Technology.

Mitterer, J., & Rose-Krasnor, L. (1986). Logo and transfer of problem solving: an empirical test. The Alberta
Journal of Educational Research, XXXII(3), 176-194.

Moore, P.J. (1982). Children’s metacognitive knowledge about reading: A selected review. Educational
Research, 24(2), 120-128.

Moray, N. (1978). The strategic control of information processing. In G. Underwood (Ed.), Strategies of
infonnation processing (pp. 301-328). London: Acadcmic Press.

Moursand, D. (1988). Problem solving. The Computing Teacher, 16(4), 5, 56.

257

Nastasi, B.K., Clements, D.H., & Battista, M.T. (1990). Social-cognitive interactions, motivation, and cognitive
growth in Logo programming and CAI problem-solving environments. Journal of Educational Psychology,
82(1), 150-158.

Neilsson, N.J. (1971). Problem-solving methods in artificial intelligence. N.Y.: McGraw-Hill.

New South Wales Department of Education (1986). Using computers for problem solving in mathematics.
Erskinville, N.S.W.: NSW Department of Education.

Newell, A. (1980). One final word. In D.T. Tuma & F. Reif (Eds.), Problemn solving and education: Issues in
teaching and research (pp. 175-189). Hillsdale, N.J.: Lawrence Erlbaum Associates.

Newell, A., Shaw, J.C., & Simon, H.A. (1960). Report on a general problem-solving program. In W.R.
Reitman (Ed.), Inforination processing: Proceedings of the international conference on inforination
processing (pp. 256-264). Paris: UNESCO.

Newell, A., & Simon, H.A. (1972). Hwmnan problem solving. Englewood Cliffs, N.J.: Prentice Hall.

Newman, D. (1987). Functional environment for microcomputers in education. In R.D. Pea & K. Sheingold
(Eds.) Mirrors of minds. Patterns of experience in educational computing (pp. 57-66). Norwood, N.J.:

Ablex Publishing Corporation.

Nickerson, R.S. (1982). Computer programming as a vehicle for teaching thinking skills. 7hinking.: The Journal
of Philosopliy for Children, 4, 42-48. Cited in Kurland, Pea, Clement & Mawby, 1986.

~Nickerson, R.S. (1988-89). On improving thinking through instruction. Review of Research in Education. 15, 3-
£7/8

Nielsen, J. (1986). Not the computer but human interaction is the basis for cognitive development and education.
Education and Computing, 2, 53-61.

Niemiec, R.P., & Walberg, H.J. (1985). Computers and achievement in the elementary schools. Journal of
Educational Computing Research, 1(4), 435-440.

Niemiec, R.P., & Walberg, H.J. (1987). Comparative effects of computer-assisted instruction: A synthesis of
reviews. Journal of Educational Computing Research, 3(1), 19-37.

Niess, M.L. (1992). Seeing stars in a mathematical microworld. The Computing Teacher, 20(2), 36-39.
Nisbet, J., & Shucksmith, J. (1986). Learning strategies. London: Routledge & Kegan Paul.

Nolan, P., & Ryba, K. (1984). The microcomputers as a learning experience. New Zealand Journal of
FEducational Studies, 19(1), 24-33.

Nolan, C.J.P., & Ryba, K. (1986). Assessing learning with Logo. Eugene: International Council of Computers
in Education.

Norman, D.A. (1978). Notes toward a theory of complex learning. In A.M. Lesgold, J.W. Pellegrino, S.D.
Fokkema, & R. Glaser (Eds.), Cognitive psychology and instruction. N.Y.: Plenum.

Norris, C., Jackson, L., & Poirot, J. (1992). The cffect of computer science instruction on critical thinking skills
and mental alertness. Journal of Research on Computing in Education, 24(3), 329-337.

Norris, C.A., & Poirot, J.L. (1991). Problem solving, critical thinking, and computing: An overview. In C.A.
Norris & J.L. Poirot (Eds.), Problem solving and critical thinking for compuier science educators (pp. 1-7).

Eugene, Oregon: International Socicty for Technology in Education.

Noss, R. (1987a). Children's learning of geometrical concepts through Logo. Journal for Research in
Mathematics Education, 18(5), 343-362.

Noss, R. (1987b). How do children do mathematics with Logo? Journal of Computer Assisted Learning, 3, 2-12.

258

Okagaki, L. & Sternberg, R.J. (1990). In D. Kuhn (Ed.), Developmental perspectives on teaching and learning
thinking skills (pp. 63 - 78). Basel: Karger.

Oliver, R. (1986). Using Computers in Schools. Western Australia: Heron Computing.
Olson, D.R. (1985). Computers as tools of the intellect. Educational Researcher, 14(5), 5-8.

Olson, D.R. (1987). Mind and the technologies of communication. In J. Hattie, R. Kefford, & P. Porter (Eds.),
Skills, technology and management in education (pp. 83-90). Deakin, A.C.T.: The Australian College of
Education.

Olsen, J.K. (1985). Using Logo to supplement the teaching of geometric concepts in the elementary school
classroom. Unpublished doctoral dissertation. Oklahoma: Oklahoma State University.

Ortiz, E. & MacGregor, S.K. (1991). Effects of Logo programming on understanding variables. Journal of
Educational Computing Research, 7(1), 37-50.

O’Shea, T., & Self, J. (1983). Learning and teaching with computers: Artifical intelligence in education.
Brighton: Harvester.

Palincsar, A.S. (1986). Metacognitive strategy instruction. Exceptional Children, 53(2), 118-124.

Palincsar, A.S. (1986, April). The unpacking of a multi-component, metacognitive training package. Paper
presented at the annual meeting of the American Educational Research Association, Chicago.

Palincsar, A.S., & Brown, A.L. (1984). Reciprocal teaching of comprehension monitoring activities. Cognition
and Instruction, 1, 117-175.

Palumbo, D.B. (1990). Programming language/problem-solving research: A review of relevant issues. Review of
Educational Research, 60(1), 65-89.

Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International
Journal of Mathematical Education in Science and Technology, 3, 249-262.

Papert, S. (1980). Mindstonns: Children, computers, and powerful ideas. Sussex: Harvester Press Ltd.

Papert, S. (1984). Tomorrow’s classroom. In M. Yazdani (Ed.), New horizons in educational computing (pp.
17-20). Chichester: Ellis Horwood.

Papert, S. (1986). Are computers bad for children? In P.F. Campbell & G.G. Fein (Eds.), Young children and
microcomputers (pp. 171-180). Reston, V.A.: Reston Books. Cited in Silvern & Williamson (1986). An
extremely useful quote concemning the learning without curriculum. A must.

Papert, S. (1987). Computer criticism vs technocentric thinking. Educational Researcher, 16(1), 22-30.

Papert, S, Watt, D., diSessa, A., & Weir, S. (1979). Final report of the Brookline Logo Project. Part Il project
summary and data analysis. Massachusetts: Massachusetts Institute of Technology.

Paris, S.G., Newman, R.S., & McVey, K.A. (1983). Learning the functional significance of mnemonic actions:
A microgenetic study of strategy acquisition. Journal of Experimental Schild Psvchology, 34(3), 490-509.

Paris, S.G., & Oka, E.R. (1986). Self-regulated learning among exceptional children. Exceptional Children,
53(2), 103-108.

Paris, S.G., & Winograd, P. (1990a). Promoting metacognition and motivation of exceptional children.
Remedial and Special Education, 11(6), 7-15.

Paris, S.G., & Winograd, P.W. (1990b). How metacognition can promote academic learning and instruction. In
B.J. Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction (pp. 15-51). Hillsdale, N.J.:
Lawrence Erlbaum Associates.

259

Pea, R.D. (1983). Logo programming and problem solving. Technical report No. 12. N.Y.: Bank Street
College of Education, Center for Children and Technology.

Pea, R.D. (1986). Language-independent conceptual "bugs” in novice programming. Journal of Educational
Computing Research, 2(1), 25-36.

Pea, R.D. (1987). Integrating human and computer intelligence. In R.D. Pea & K. Sheingold (Eds.), Mirrors of
minds: Patterns of experience in educational computing (pp. 128-146). Norwood, N.J.: Ablex Publishing
Corporation.

Pea, R.D., & Hawkins, J. (1984). Children’s planning processes in a chore-scheduling task (Technical report No.
11). N.Y.: Bank Street College of Education.

Pea, R.D., & Kurland, D.M. (1984a). On the cognitive effectsof computer programming.: A critical look
(Technical report No. 9). N.Y.: Bank Street College of Education.

Pea, R.D., & Kurland, D.M. (1984b). Logo programming and the development of planning skills (Technical
report No. 16). N.Y.: Bank Street College of Education.

Pea, R.D., & Kurland, D.M. (1984c). On the cognitive prerequisites of learning computer programming
(Technical report No. 18). N.Y.: Bank Street College of Education.

Pea, R.D., & Kurland, D.M. (1984d). On the cognitive effects of learning computer programming. New Ildeas
Psychology, 2(2), 137-168.

Pea, R.D., & Kurland, D.M. (1987). On the cognitive effects of learning computer programming. In R.D. Pea
& K. Sheingold (Eds.) Mirrors of minds.: Patterns of experience in educational computing (pp. 147-177).
Norwood, N.J.: Ablex Publishing Corporation.

Pea, R.D., & Sheingold, K. (Eds.). (1987). Mirrors of minds: Patterns of experience in educational computing.
Norwood, N.J.: Ablex Publishing Corporation.

Pea, R.D., Kurland, D.M., & Hawkins, J. (1987). Logo and the development of thinking skills. In R.D. Pea &
K. Sheingold (Eds.) Mirrors of minds: Patterns of experience in educational computing (pp. 178-197).

Norwood, N.J.: Ablex Publishing Corporation.

Perkins, D.N. (1985). The fingertip effect: How information-processing technology shapes thinking. Educational
Researcher, 14(7), 11-17.

Perkins, D.N., & Salomon, G. (1989). Are cognitive skills context-bound? Educational Researcher, 18(1), 16-
25.

Perkins, D.N., & Simmons, R. (1988). Patterns of misunderstandings: An integrative model for science, math,
and programming. Review of Educational Research, 58(3), 303-326.

Peterson, P.L., Swing, S.R., Braverman, M.T., & Buss, R. (1982). Students’ aptitudes and their reports of
cognitive processes during direct instruction. Journal of Educational Psychology, 74(4), 535-547.

Phillips, D.C. (1981). Toward an evaluation of the experiment in educational contexts. Educational Researcher,
10(6), 13-20.

Phillips, D.C. (1983). After the wake: Postpositivistic educational thought. Educational Researcher, 12(5), 4-12.
Piaget, J. (1963). The child’s conception of the world. Paterson, N.J.: Littlefield, Adams.

Piaget, 1. (1976). The grasp of consciousness. Cambridge, Massachusctts: Harvard University Press.

Piaget, J. (1977). The development of thought: Equilibrium of cognitive structures. N.Y.: Viking.

Piedmont, C. (1983). Computer currents: Logo power grows. Curriculum Review, 12, 36.

260

Polson, P.G., & Jeffries, R. (1985). Instruction in general problem-solving skills: An analysis of four
approaches. In J.W. Segal, S.F. Chipman, & R. Glaser (Eds.), Thinking and learning skills: Vol 1.
Relating instruction to research (pp. 417-455). N.J.: Lawrence Erlbaum.

Polya, A. (1957). How to solve it: A new aspect of mathematical method. N.Y.: Doubleday-Anchor.

Pressley, M. (1986). The relevance of the good strategy user model to the teaching of mathematics. Educational
Psychologist, 21, 139-161.

Pressley, M., Borkowski, J.G., & O’Sullivan, J.O. (1985). Children’s metamemory and the teaching of memory
strategies. In D.L. Forrest-Pressley, G.E. MacKinnon, & T.G. Waller (Eds.), Metacognition, cognition,

and human perfonnance: Vol. 1. Theoretical perspectives (pp. 111-153). Orlando, Florida: Academic Press.

Preston, G.D., & Au, W.K. (1989). Gender differences in computer access of secondary school students. In D.
Sutton (Ed.), Hands on (pp. 219-231). Cheltenham: N.S.W. Computer Education Group Ltd.

Probert, P. (1985). Computer assisted instruction. Unpublished Bachelor of Educational Studies Dissertation.
University of Newcastle, Newcastle, Australia.

Putnam, R.T., Sleeman, D, Baxter, J.A., & Kuspa, L.K. (1986). A summary of misconceptions of high school
Basic programmers. Journal of Educational Computing Research, 2(4), 459-472.

Rankin, R.J., & Trapper, T. (1978). Retention and delay of feedback in a computer-assisted instructional task.
Journal of Experimental Education, 64(4), 67-70.

Raven, J.C. (1956). Guide to using progressive matrices (1938). London: H.K. Lewis & Co.

Raven, J.C., & Court, J.H., & Raven, J. (1984). Manual for Raven's progressive matrices and vocabulary
scales. London: H.K. Lewis & Co.

Ray, W.S. (1955). Complext tasks for use in human problem-solving research. Psychological Bulletin, 52, 134-
149.

Reed, K. (1982). An interview with Wallace Feurzeig. COM-3, 29, 9.

Reeve, R.A., & Brown, A.L. (1985). Metacognition reconsidered: Implications for intervention research.
Journal of Abnoninal Child Psychology, 13(3), 343-356.

Reid, N.A., & Hughes, D.C. (1974). Progressive Achievement Tests, Teacher’s Manual: Mathematics.
Wellington, N.Z.: New Zealand Council for Educational Research.

Reif, F. (1980). Theoretical and educational concerns with problem solving: Bridging the gaps with human
cognitive engineering. In D.T. Tuma & F. Reif (Eds.), Problem solving and education. Issues In teaching
and research (pp. 39-49). Hillsdale, N.J.: Lawrence Erlbaum Associates.

Renwick, W.L. (1985, January). Teachers, learning, and inforination technology. Opening Address to the New
Zealand Educational Administration Society, Dunedin, New Zealand.

Resnick, L.B. (1981). Instructional psychology. Annual Review of Psychology, 32, 659-704.

Resnick, L.B. (1990). Instruction and the cultivation of thinking. In N. Entwistle (Ed.), Handbook of educational
ideas and practices (pp. 694-707). London: Routledge.

Resnick, L.B., & Glaser, R. (1976). Problem solving and intelligence. In L.B. Resnick (Ed.), The nature of
intelligence (pp. 205-230). N.J.: Lawrence Erlbaum Associates.

Resnick, M. (1990). Overcoming the centralized mindset: Towards an understanding of emergent phenomena.
E&L Memo No. 11. Massachusetts: Media Laboratory, Massachusetts Institute of Technology.

Reiber, L. (1983). The effect of Logo on increasing systematic and procedural thinking according to Piaget’s
theory of intellectual development and on its ability to teach geometric concepts to young children. (Report

261

No. IR 011 583). Pennsylvania, PA: The Pennsylvania State University. (ERIC Document Reproduction
Service No. ED 256 288).

Riordon, T. (1982). Creating a Logo environment. Tlte Computing Teacher,]10(3), 46-50.

Roblyer, M.D., Castine, W.H., & King, F.J. (1988). Assessing the impact of computer-based instruction: A
review of recent research. N.Y.: The Haworth Press.

Rohwer Jr, W.D., & Thomas, J.W. (1989). Domain-specific knowledge, metacognition, and the promise of
instructional reform. In C.B. McCormick, G.E. Miller, & M. Pressley (Eds.), Cognitive strategy research:
From basic research to educational applications (pp. 104-132). N.Y.: Springer-Verlag.

Ross, P. (1983). Logo programming. London: Addison-Wesley Publishing Company.

Ross, P., & Howe, J.LA.M. (1981). Teaching mathematics through programming: Ten years on. In R. Lewis, &
D. Tagg (Eds.) Computers in education (pp. 143-148). Amsterdam: North-Holland.

Rousseauy, J.F., & Smith, S.M. (1981). Whither goes the turtle. Microcomputing, September, 1981, 52-54.
Rowe, H.A H. (1985). Problemn solving and intelligence. Hillsdale, N.J.: Lawrence Erlbaum.

Rowe, H.A.H. (1988a). A promising step: From psychometric to process measures of intelligence, competency,
and educational achievement. In A. Watson (Ed.), Intelligence: Controversy & change (pp. 33-43).
Hawthorn, Victoria: Australian Council of Educational Research.

Rowe, H.A.H. (1988b). Cognitive strategies and time-on task: An information-processing approach to the study
of time-on-task and achievement. In A. Watson (Ed.), Intelligence: Controversy & change (pp. 152-178).
Hawthorn, Victoria: Australian Council of Educational Research.

Rowe, H.A.H. (1991). Learning with computers: what type of research? In Navigating the nineties (pp. 130-
141). Brisbane: Computer Education Group of Queensland.

Rubinstein, M.F. (1980). A decade of experience in teaching an interdisciplinary problem-solving course. In
D.T. Tuma & F. Reif (Eds.), Problem solving and education: Issues in teaching and research (pp. 25-38).
Hillsdale, N.J.: Lawrence Erlbaum Associates.

Russell, S.J. (1983). Logo in special education. Classroom Computer Learning, 4(3), 34-39.

Ryba, K. (1987, July). Educational computing cultures: Hit or inyth. Paper presented to the Otago Institute of
Educational Research, Dunedin.

Ryba, K., & Anderson, B. (1987). Teaching metacognitive strategies with computer games: A case study. Dellu,
39, 41-48.

Ryba, K., & Anderson, B. (1990). Learning with computers: effective teaching strategies. Eugene, Oregon:
International Society for Technology in Education.

Ryba, K., Anderson, B., & Chapman, J.W., (1986, November). Metacognitive strategy training: The effects of
maze and adventure games programs on the development of children’s thinking skills. Paper presented at the
annual meeting of the New Zealand Association for Research in Education, Hamilton, New Zealand.

Ryba, K. & Mackrell, T. (1986). International telecommunications education project. Unpublished research
proposal, Department of Education, Massey University, Palmerston North, New Zealand.

Ryba, K.A. (1980). An evaluation of microcomputer assisted instruction for teaching word recognition 1o
mentally retarded adults. Unpublished doctoral dissertation. Massey University, Palmerston North, New
Zealand.

Salomon, D.N., & Simmons, R. (1988). Patterns of misunderstanding: An integrative model for science, math,
and programming. Review of Educational Research, 58(3), 303-326.

262

Salomon, G. (1984). On ability development and far transfer: a response to Pea and Kurland. New Ideas
Psychology, 2(2), 169-174.

Salomon, G. (1988). Al in reverse: Computer tools that tumn cognitive. Journal of Educational Computing
Research, 4(2), 123-139.

Salomon, G., & Gardner, H. (1986). The computer as educator: lessons from television research. Educational
Researcher, 15(1), 13-19.

Salomon, G., & Perkins, D.N. (1987). Transfer of cognitive skills from programming: When and how? Journal
of Educational Computing Research, 3(2), 149-169.

Salomon, G., Perkins, D.N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with
intelligent technologies. Educational Researcher, 20(3), 2-9.

Savell, J.M., Twohig, P.T., & Rachford, D.L. (1986). Empirical status of Feuerstein’s "instrumental
enrichment” (FIE) as a method of teaching thinking skills. Review of Educational Research, 56(4), 381-4009.

Scandura, J.M. (1977). Problem solving: A structural/process approach with instructional implications. N.Y.:
Academic Press.

Scardamalia, M., Bereiter, C., McLean, R.S., Swallow, J., & Woodruff, E. (1989). Computer-supported
intentional learning environments. Journal of Educational Computing Research, 5(1), 51-68.

Scott, T., Cole, M., & Engel, M. (1992). Computers and education: A cultural constructivist perspective.
Review of Research in Education, 18, 191-251.

Schaefer, L., & Sprigle, J.E. (1988). Gender differences in the use of the Logo programming language. Journal
of Educational Computing Research, 4(1), 49-55.

Schauble, L. (1984). The feasibility of a developmental cognitive science: a response to Pea and Kurland. New
ldeas Psychology, 2(2), 181-183.

Schibeci, R.A. (1990). Logo in pre-service and in-service teacher education. Computer Education, 14(1), 53-60.

Schneider, W. (1985). Developmental trends in the metamemory-memory behaviour relationship: An integrative
review. In D.L. Forrest-Pressley, G.E. MacKinnon, & T.G. Waller (Eds.), Metacognition, cognition, and
human perforinance: Vol. 1. Theoretical perspectives (pp. 57-109). Orlando, Florida: Academic Press.

Scriven, M. (1980). Prescriptive and descriptive approaches to problem solving. In D.T. Tuma & F. Reif
(Eds.), Problemn solving and education: Issues in teaching and research (pp. 127-147). Hillsdale, N.J.:
Lawrence Erlbaum Associates.

Seidman, R.H. (1981, April). The effects of learning a computer programining language on the logical reasoning
of school children. Paper presented at the annual meeting of the American Educational Research
Association, Los Angeles, CA.

Seidman, R.H. (1989-90). Computer programming and logical reasoning: unintended cognitive effects. Journal
of Eudcational Technology Systems, 18(2), 123-141.

Self, J. (Ed.). (1988). Artificial intelligence and hunan learning. London: Chapman and Hall.

Sharp, P. (1984a). Turtle power activiry book. Boca Raton, Florida: International Business Machines
Corporation.

Sharp, P. (1984b). Turtle power thinker's guide. Boca Raton, Florida: International Business Machines
Corporation.

Shavelson, R.J., & Salomon, G. (1985). Information technology: Tool and teacher of the mind. Educational
Researcher, 14(5), 4.

263

Sheinfold, K., Martin, L M.W.,| & Endreweit, M.E. (1987). Preparing urban teachers for the technological
future. In R.D. Pea & K. Sheingold (Eds.) Mirrors of minds: Patterns of experience in educational
computing (pp. 67-85). Norwood, N.J.: Ablex Publishing Corporation.

Sheingold, K. (1987). The microcomputer as a symbolic medium. In R.D. Pea & K. Sheingold (Eds.) Mirrors of
minds: Patterns of experience in educational computing (pp. 198-208). Norwood, N.J.: Ablex Publishing
Corporation.

Sherwood, C. (1991). Classroom 2000: Challenges and changes. In MNavigating the nineties (pp. 312-318).
Brisbane: Computer Education Group of Queensland.

Shrock, S., Matthias, M., Vensel, C., & Anastasoff, J. (1985, April). Microcomputers and peer interaction: A
naturalistic study of an elementary classroom. Paper presented at the annual meeting of the American
Educational Research Association, Chicago.

Shulman, L. (1981). Disciplines of inquiry in education: An overview. Educational Researcher, 10(6), 5-12.

Shute, V.J. (1991). Who is likely to acquire programming skills. Journal of Educational Computing Research,
7(1), 1-24.

Siegler, R.S. (1983). Information processing approaches to development. In P.H. Mussen (Ed.), Handbook of
child psychology Vol 1. History, theory and methods (4th Edition) (pp.129-211). N.Y.: John Wiley & Sons.

Silvern, S.B., & Williamson, P.A. (1986, April). A constructivist perspective for Logo curriculum. Paper
presented at the annual meeting of the American Educational Research Association, San Francisco.

Simon, H.A. (1976). ldentifying basic abilities underlying intelligent performance of complex tasks. In J.
Resnick (Ed), The nature of intelligence (pp. 65-97). N.Y.: Harper and Row.

Simon, H.A. (1979). The functional equivalence of problem solving skills. Models of thought (pp. 230-244).
New Haven: Yale University Press.

Simon, H.A. (1980). Problem solving in education. In D.T. Tuma & F. Reif (Eds.), Problem solving and
education: Issues in teaching and research (pp. 81-107). Hillsdale, N.J.: Lawrence Erlbaum Associates.

Simon, H.A., & Hayes, J.R. (1976). The understanding process: Problem isomorphs. Cognitive Psychology, 8,
165-190.

Skinner, B.F. (1966). An operant analysis of problem solving. In B. Kleinmuntz (Ed.), Problem solving.:
Research, method, and theory (pp. 225-257). N.Y.: John Wiley & Sons.

Smilansky, J. (1984). Problem solving and the quality of intervention: an empirical investigation. Journal of
Educational Psychology, 76(3), 377-386.

Smith, C.D. (1986). Learning Logo: effects on learning BASIC and statistics. Journa! of Computer Assisted
Learning. 2, 102-109.

Smith, J.K., & Heshusius, L. (1986). Closing down the conversation: The end of the quantitative-qualitative
debate among educational inquiries. Educational Researcher, 15(1), 4-12.

Smyrk, J.R. (1991). Artificial neural networks: Today’s promise - tomorrow’s too. In Navigating the nineties
(pp- 8-18). Brisbane: Computer Education Group of Queensland.

Solomon, C. (1978). Teaching young children to program in a Logo culture. Sigcue Bulletin, 12(3), 20-29.
Solomon, C. (1982). Introducing Logo to children. Byte, 7(8), 196-208.

Soloway, E. (1985). From problems to programs via plans: The content and structure of knowledge for
introductory Lisp programming. Journal of Educational Computing Research, 1(2), 157-172.

264

Soloway, E., Lockhead, J, & Clement, J. (1982). Does computer programming enhance problem solving ability?
Some positive evidence on algebra word problems. In R.J. Seidel, R.E., Anderson, & B. Hunter (Eds.),
Computer literacy: Issues and directions for 1985 (pp. 171-185). N.Y.: Academic Press.

Solso, R.L. (1988). Cognitive psychology, 2nd Edition. Boston: Allyn and Bacon.

Soulier, J.S. (1988). Tlie design and developiment of computer based instruction. Boston: Allyn and Bacon.

SPSS Inc. (1988). SPSSX user's guide, 3rd Edition. N.Y.: McGraw-Hill Book Company.

Stallings, J.A. (1983, November). T stallings observation system. Unpublished manuscript.

Steinberg, E.R. (1980). Evaluation processes in young children’s problem solving. Contemporary Educational
Psychology, 5, 276-281.

Steinberg, E.R., Baskin, A.B., & Hoffer, E. (1986). Organizational/Memory tools: A technique for improving
problem solving skills. Journal of Educational Computing Research, 2(2), 169-187.

Sternberg, R.J. (1981). Intelligence and nonentrenchment. Journal of Educational Psychology, 73, 1-16.

Sternberg, R.J. (1982a). Reasoning, problem solving, and intelligence. In R.J. Sternberg (Ed.), Handbook of
human intelligence (pp. 225-307). Cambridge: Cambridge University Press.

Sternberg, R.J. (1982b). Introduction: Some common themes in contemporary approachesto the training of
intelligent performance. In D.K. Detterman and R.J. Sternberg (Eds.), How and how much can intelligence
be increased (pp. 141-146). N.J.: Ablex Publishing Corporation.

Sternberg, R.J. (1983). Criteria for intellectual skills training. Educational Researcher, 12(2), 6-12.

Sternberg, R.J. (1984). What should intelligence tests test? Implications of a triarchic theory of intelligence for
intelligence testing. Educational Researcher, 13)1), 5-15.

Sternberg, R.J. (1985a). Beyond 1Q. Cambridge, M.A.: Cambridge University Press.

Sternberg, R.J. (1985b). Instrumental and componential approaches to the nature and training of intelligence. In
S.F. Chipman, J.W. Segal, & R. Glaser (Eds.), Thinking and learning skills: Vol 2. Research and open
questions (pp. 215-243). N.J.: Lawrence Erlbaum.

Stevenson, J.C. (1991). Cognitive structures for the teaching of adaptability in vocational education. In G. Evans
(Ed.), Learning and teaching cognitive skills (pp. 144 - 163). Hawthorne, Victoria: ACER.

Stone, C.A. (1989). Improving the effectiveness of strategy training for learning disabled students: The role of
communicational dynamics. Remedial and Special Education, 10(1), 35-42.

Sullivan, E.V. (1984). On the cognitive and educational benefits of teaching children programming: a response to
Pea and Kurland. New ldeas Psychology, 2(2), 175-179.

Swan, K. (1991). Programming objects to think with: Logo and the teaching and learning of problem solving.
Journal of Educational Computing Research, 7(1), 89-112.

Symons, S., Snyder, B.L., Cariglia-Bull, T., & Pressley, M. (1989). Why be optimistic about cognitive strategy
instruction? In C.B. McConmick, G.E. Miller & M. Pressley (Eds.) Cognitive strategy research: From
basic research to educational applications (pp. 3-32). N.Y.: Springer-Verlag.

Taylor, R. (1980). Tl compuier in the school: Tutor, tool, nuee. N.Y.: Teachers College, Columbia
University.

Telfer, R., & Probert, P. (1986). For and against: The pros and cons of computer assisted instruction.
Educational News, 19(9), 24-27.

265

Tetenbaum, T.J., & Mulkeen, T.A. (1984). Logo and the teaching of problem solving: A call for a moratorium.
Educational Technology, November, 1984, 16-19.

Thomas, J.W. (1986, April). Aspects of high school programming courses that foster autonomous learning
activities. Paper presented at the annual meeting of the American Educational Research Association, San

Francisco.

Thompson, A.D., & Chen Wang, H. (1988). Effects of a Logo microworld on student ability to transfer a
concept. Journal of Educational Computing Research, 4(3), 335-347.

Thornburg, D.D. (1991). Education, technology, and paradigins of change for the 21st century. U.S.A.:
Starsong Publications.

Tobias, S. (1982). When do instructional methods make a difference? Educational Researcher, 11(4), 4-9.

Tobias, S. (1985). Computer-assisted instruction. In M. Wang & H. Walberg (Eds.), Adaptive education.
Berkeley, California: McCutchan.

Torgerson, S. (1983-84). Classroom Management for Logo. The Computing Teacher, 11(5), 12-14.

Torgerson, S.R., Kriley, M.K., & Stone, J.T. (1984). Logo in the classroomn. Eugene: International Society for
Technology in Education.

Torgesen, J.K. (1986). Computers and cognition in reading: A focus on decoding fluency. Exceptional Children,
53(2), 157-162.

Torrance, E.P. (1966). Torrance tests of creative thinking: Norns-technical manual. N.J.: Personnel Press, Inc.

Torrance, E.P. (1972). Torrance tests of creative thinking: Directions manual and scoring guide, figural test
booklet A. N.J.: Personnel Press, Inc.

Torrance, E.P. (1974). Torrance tests of creative thinking: Directions manual and scoring guide, figurel test
booklet B. Bensenville, Illinois: Scholastic Testing Service Inc.

Trow, M. (1957). Comment on "Participant observation and interviewing: a comparison”. Human Organization,
16(3), 33-35.

Tuma, D.T., & Reif, F. (Eds.) (1980). Problem solving and education: Issues in teaching and research.
Hillsdale, N.J.: Erlbaum.

Tumer, S.V., & Land, M.L. (1988). Cognitive effects of a Logo-enriched mathematics program for middle
school students. Journal of Educational Computing Research, 4(4), 443-452.

Turnure, J.E. (1987). Social influences on cognitive strategies and cognitive development: The role of
communication and instruction. Intelligence, 11(1), 77-89.

Underwood, B.J. (1952). An orientation for research on thinking. Psychological Review, 59, 209-220.
Underwood, G. (Ed.). (1978). Strategies of information processing. London: Academic Press.

van de Geer, J.P. (1957). A psychological study of problem solving. Haarlem: Uitgeverij De Toorts.
Vinacke, W.E. (1952). The psychology of thinking. N.Y.: McGraw-Hill.

Vockell, E.L., & Rivers, R.H. (1984). Computerized science simulations stinulus to generalized problem solving
capabilities. (ERIC Document Reproduction Service No. ED 253 397).

Vockell, E., & Schwartz, E. (1988). The computer in the classroom. CA: Mitchell Publishing Inc.

Vygotsky, L.S. (1978). Mind in society. The development of higher psychological processes. Cambridge,
Massachusetts: Harvard University Press.

266

Wadsworth, B.J. (1989). Piaget's theory of cognitive and aff ectivedevelopment (4th Edition). N.Y.: Longman.

Wagner, R.K., & Stemberg, R.J. (1984). Alternative conceptions of intelligence and their implications for
education. Review of Educational Research, 54(2), 179-223.

Walker, D.F. (1987). Logo needs research: A response to Papert's paper. Educational Researcher, 16(5), 9-11.
Ward, J. (1988). Developments in intelligence testing and its application: A personal viewpoint. In A. Watson
(Ed.), Intelligence: Controversy & change (pp. 44-60). Hawthorn, Victoria: Australian Council of

Educational Research.

Watson, A. (Ed.). (1988). Intelligence: Controversy & change. Hawthorn, Victoria: Australian Council for
Educational Research.

Watt, D. (1979). Final report of the Brookline Logo project, Part Ill: Profiles of individual students’ work. Logo
memo No. 54. Cambridge: Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

Watt, D. (1982). Logo in the schools. Byte, 7(8), 116-134.

Watt, D. (1983a). Learning with Logo. Classroom Computer News, 3(5), 40-43.

Watt, D. (1983b). Learning with Logo. N.Y.: McGraw-Hill Book Company.

Watt, D. (1989a). Strategies for learning through exploration. Logo Exchange, 7(6), 23-26.

Watt, D. (1989b). Planning, carrying out and completing a Logo project. Logo Exchange, 7(8), 20-25.

Watt, M., & Watt, D. (1986). Teaching with Logo.: Building blocks for learning. Menlo Park, California:
Addison-Wesley Publishing Company.

Webb, N.M. (1984). Microcomputer learning in small groups: cognitive requirements and group processes.
Journal of Educational Psychology, 76(6), 1076-1088.

Webb, N.M. (1985). The role of gender in computer programming learning processes. Journal of Educational
Computing Research, 1(4), 441-458.

Webb, N.M., Ender, P., & Lewis, S. (1986). Problem solving strategies and group processes in small groups
learning computer programming. American Educational Research Journal, 23(2), 243-261.

Wechsler, D. (1974). Wechsler intelligence scale for children - revised. N.Y.: The Psychological Corporation.

Weiner, B. (1979). A theory of motivation for some classroom experiences. Journal of Educational Psychology,
71(1), 3-23.

Weiner, B. (Ed.). (1974). Achievement motivation and artribution theory. Morristown, N.J.: General Learning
Corporation.

Weinreb, W. (1982). Problem solving with Logo. Byre, 7(11), 118-134.

Weinstein, C.E., & Underwood, V.L. (1985). Learning strategies: The how of learning. In J.W. Segal, S.F.
Chipman, & R. Glaser (Eds.), Thinking and learning skills: Vol 1. Relating instruction to research (pp. 241-
258). N.J.: Lawrence Erlbaum.

Weir, S. (1981). Logo as an information prosthetic for the handicapped (Working Paper No. 9). Cambridge,
MA: MIT Division for Studies and Research in Education.

Weir, S. (1987). Cultivating minds: A Logo casebook. N.Y.: Harper & Row. Cited in Noss, R. (1987).

Weir, S., Russell, S.J., & Valente, J.A. (1982). Logo: An approach to educating disabled children. Byte, 7(9),
342-360.

267

Wellman, H. (1985). The origins of metacognition. In D.L. Forrest-Pressley, G.E. MacKinnon, & T.G. Waller
(Eds.), Metacognition, cognition, and lwman perforinance: Vol. 1. Theoretical perspectives (pp. 1-31).
Orlando, Florida: Academic Press.

Wertheimer, M. (1959). Productive thinking. N.Y.:. Harper & Row.
Wharton, J.S. (1986). Prompted writing using a computer. Information Transfer, 6(4), 26-28.

White, C.S. (1987). Developing information-processing skills through structured activities with a computerized
file-management program. Journal of Educational Computing Research, 3(3), 355-375.

Wickelgren, W.A. (1974). How To solve problems: Elements of a theory of problems and problem solving. San
Francisco: W.H. Freeman and Company.

Williams, A. (1987). Computer based learning environments for children with special needs. Australian Journal
of Special Education, 11(1), 36-43.

Williams, F., & Williams, V. (1984). Microcomputers in elementary education. London: Wadsworth.

Wiiliams, M. (1991). National Keylink projects. In Navigating the nineties (pp. 332-337). Brisbane: Computer
Education Group of Queensland.

Williamson, P.A., & Silvern, S.B. (1986). Parental teaching style while working with their children on Logo
concepts and the effects of teaching styles on a subsequenttask. Early Childhood Research Quarterly, 1,
407-415.

Wills, S. (1984). Is there life after Logo? In A.D. Salvas (Ed), Computing and education - 1984 and beyond
(pp. 281-284). Balaclava: Computer Education Group of Victoria.

Wood, D., Bruner, J.S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child
Psychology, 17, 89-100.

Wood, D.J. (1978). Problem solving - The nature and development of strategies. In G. Underwood (Ed.),
' Strategies of inforination processing (pp. 329-356). London: Academic Press.

Wood, D.L. (1986). Microcomputer applications beyond drill and practice: new challenges in special education.
Australian Journal of Special Education, 10(2), 29-32.

Woodward, J., Camine, D., & Collins, M. (1988). Closing the performance gap: CAl and secondary education
for the mildly handicapped. Journal of Educational Computing Research, 4(3), 265-286.

Woodworth, R.S., & Schlosberg, H. (1954). Experimental psychology. N.Y.: Holt, Rinehart, & Winston.

Yates, B.C., & Moursand, D. (1988). The computer and problem solving: How theory can support classroom
practice. The Computing Teacher, 16(4), 12-16.

Young, R.M. (1978). Strategies and the structure of a cognitive skill. In G. Underwood (Ed.), Strategies of
information processing (pp. 357-402). London: Academic Press.

Ysseldyke, J.E., O'Sullivan, P.J., & Thurlow, M.L. (1989). Qualitative differences in reading and math
instruction received by handicapped students. Remedial and Special Education, 10(1), 14-20

Yussen, S.R. (1985). The role of metacognition in contemporary theories of cognitive development. In D.L.
Forrest-Pressley, G.E. MacKinnon, & T.G. Waller (Eds.), Metacognition, cognition, and human
performance: Vol. 1. Theoretical perspectives (pp. 253-283). Orlando, Florida: Academic Press.

Zaks, R. (1983). Your first IBM PC program. Berkeley, California: Sybex Inc.
Zelman, S. (1985, April). Individual differences and the computer learning environment: Motivational constraints

to learning Logo. Paper presented at the annual mecting of the American Educational Research Association,
Chicago.

268

Zuk, D. (1986). The effects of microcomputers on children’s attention to reading. Computers in Schools, 3(2),
39-51.

Zuk, D., & Danner, F. (April, 1986). The effectsof microcomputers on children’s attention to reading tasks.
Paper presented at the annual meeting of the American Educational Research Association, San Francisco.

269

APPENDIX 1

Authors Year [Aflective Social Mathematics Cognitive skills and Metacognitive Sub jects Results
problem solving
Studies without teacher mediation
Milner 1973 Logo programming 18 5th graders. Logo programming can be a useful tool in
& the facilitation of 15 weeks of intervention: Ist [the teaching of elementary mathematics.
the understanding of five weeks - logo basics; 2nd |Logo group was able to write programs
number sequences & five weeks - writing successfully & demonstrated an ability to
variables. procedures (3 instructional usc variables.
groups); last five weeks -
4 independent programming
tasks.
Weir 1981 |Socio-allective 11 subjects who were Logo could be used successfully with
issues. severely handicapped. severely physically handicapped but
They learned Logoover a mentally alert cercbral palsy adolescents.
period of two years. Activitics included programming, maths
and problem solving activities. These
activities provided a high degree of
motivation for these learners.
Gorman & 1983 Logical reasoning - rule 15 3rd grade students Logo students improved on logical

Bourne

learning task.

received Logo instructions
for one school year
(5 of them | hour per week;

10 1.5 hours per week).

reasoning.

0LT

Authors Year |Allective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving
Pea 1983 Planning sKkills. 50 subjects (2 classes of 25 |No statistical signi('?ance on: elliciency of |
cach; 8-9, 11-12 yrs old) planning, quality of revisions, types of
with a matched group of decisions made during the planning
non-programming students. |process. Most children exhibited very
30 hours of programming in |poor understanding of commands and
one year. fundamental concepts such as variables and
conditional statements. They also have
problems with procedural errors,
sequentiality of program execution, and the
model of recursion within Logo
programming.
Rieber 1983 Logo programming & 22 (age: 7-9) Logo group performed better in
geometric concepts. Il in Logo group; 11 in systematically solving abstract problems of
Solving problems of a control. a combinatory nature (combination &
combinatory nature. Logogroup learned Logo permutations).
programming one hour per
week over a period of 3
months.
Evans 1981 |Attitudes towards Allitudes towards Cognitive abilities. 8 4th grade classes, 7 4th Logo programming had a positive
learning learning grade classes acted as influence on cognitive abilities & on
mathematics. mathematics. control. attitudes towards learning mathematics.
. Subjects worked in pairs for
45 hours in a year.
Hawkins, 1984 Collaboration when 100 subjects (8-9 and 11-12 |Subjects did collaborate more when they
Homolsky, & learning with Logo. year olds in two classrooms; |were working on microcomputer problems
Heide two cycles of 50 students). |than they did on other classroom tasks.

The Logo sessions were
conducted over a two year
period with two difl'erent
groups of 50 subjects each
although the actual time
spent on Logo programming
was not reported.

But as the ycar progressed, there was a
greater occurrence of individuals working
alone at the computer in a very focussed
way.

The computer provided an engaging
problem solving context in which task-
related talk occurred.

1LT

Macleod &
Palts

mathematics
concepls

competence; changes in
cognitive planning(BAS)

Authors Year |Aflective Sacial Mathematics Cognitive skills and Meclacognitive Subjects Results
problem solving

Mendelsohn 1984, T Psychological analysis of |25 subjects (11 -13 yrs). 16 [Mastery of programming related to

1985, cognitive mechanisms one hour sessions on Logo. |operational thinking level of learners.
1987 peculiar to

programming, which he

later sets in relation.

Bradley 1985 Relationships among 26 subjects (7-11 yrs; grades |Top-down processing, as measured by
l.ogo programming, 2,3,4,5,& 6; 18 boys & 8 writing activity, is positively related to
information processing girls). LLogo programming, field independence,
styles, academic IS weeks of 1 hour cach. holistic tendencices, & academic
achievement, and achievement.
cognitive abilities. Logo success & academic achievement

were positively related.

Carmichael, 1985 Peer interaction. Problem solving in real 433 students 18 classrooms [Extended pairing may lead to conllicts.

Burnett, classroom setlings. that involved 13 difTerent Logo can be a powerful medium for

Higginson, leachers over a two year developing problem solving skills based on

NMoore, & period (of these, 5 teachers |real needs rather than on hypothetical and

Pollard & 40 students were involved [irrelevant situations.

in the study).
Logo and word processing
were studies extensively.

Horner & 1985 [Locus of control. Mathematics Problem solving skills. 74 subjects (junior high) (two |No signiticant diflerences although further

Maddux attitude; experi-mental groups & 2 analysis on mathematics attitudes indicated

geomelric angle control groups) (onc intact |that Logo might be eflective in making
recognition. aroup of mixed 7th & 8th both LD and non-LD students feel
LD mathematics students). |responsible for their success with the Logo
14 hours in 6 weeks. activities.
Control groups received
regular mathematics classes.
lughes, 1985 Comprehensionof | Programming 17 subjects - 11 boys & 6 Improved comprehension in cettain

girls (mean age: 11.6 yrs).
Subjects learned Logo
programming for 24 sessions
of 15-20 minutes each.

mathematical concepts;
gains in block design, number memory,
and arithmetic.

Le

Social

Attention to Logo
and Basic.

Mathematics

Cognitive skills and
problem solving

Problem solving with
Logo and Basic

Metacognitive

Subjects

Results

140 subjects (36 in each of
two Logo groups; 34 in each
of Basic groups).

High & Low ability groups
for both Logo and Basic.

60 '/ hour sessions over
three months.

The level of attention of mom
remarkably high although Logo groups
tended to spend significantly more time
“on task”.

Children of lower ability were much less
interested in working with Basic.

This study did not pursue in the testing
whether Logo would improve problem
solving skills as researcher argued that
there was little similarity in the content of
the mathematics syllabus and the type of
problem solving that was occurring in the
computing sessions.

Logo groups continued to report high level
of interests whereas Basic groups showed a
decrease.

Cognitive strategies.
Problem solving
strategies used in Logo
programming & transfer
(Tower of Hanoi).

8 subjects (4 boys & 4 girls).
6 weeks of Logo treatment
(basic turtle graphics) with
weekly morning sessions
with the whole group, or the
instructor worked with
children in small groups of
3-5. One to one training was
given toward the end of the
project.

Positive correlation between the scores of
Tower of Hanoi with measures such as
program writing, program creating,
programreading, and the total for
programming measures, thus suggesting
that skills learnt while learning Logo
programming might transfer positively to
other non-programming environment
bearing similar properties.

Authors Year |Aflective

Iewin 1985 |Attitude towards
computing.

McAllister 1989

Zelman 1985 [Maotivational

constraints.

4 girls (12 - 16 years of age)
were observed for
approximately 50 hours
while programming with
Logo. Attitudinal
questionnaires were also
administered.

17 students interviewed.

An inductive teaching method was
inappropriate to motivational orientations
of students.

Researchers called for more controlled
studies to examine how instructional
practices might change the orientation of
learners over time.

€LT

such as experimenting,
predicting, using
analogies, coding,
analysis and planning,
and debugging.

Authors Year |Allective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving
Olsen 1985 [Locus of control. Geometry 42 6th graders. All children showed gains in geometry
achievement, spatial 8 weeks of Logo achievement, but those in the Logo group
visualization ability. instructions. improved in spatial visualization ability as
well.
FLogo was eflective in helping girls develop
increased feelings of responsibility and
personal control.
Webb 1985 Group processes Planning and debugging 35 subjects (grades 7 to 9; Males and females showed no diflerences
when learning with behaviours re gender 15 girls & 20 boys) learned [on any learning outcome and showed very
Logo. differences. Logo in three-person groups. |few diflerences in verbal behaviour in
Learned Logo for a total of |planning and debugging activity.
15 to 20 hours.
Campbell, 1986 Competence with the 20 subjects (5 - 6 year olds; [Subjects reorganized their model of Logo
Fein. syntax & semantics of 10 females, 10 males). and became more systematic although the
Scholnick, the Logo language. Subjects received a total of [researchers suggested that further study is
Frank, 50 - 60 minutes of needed to verify this reorganization.
Schwartz, individualized instant Logo
instructions.
Carver & 1986 Debugging skills. 9 subjects (7 - 9 year olds; 5 |Sub jects did not develop effective
Klahr females & 4 males). debugging strategies.
24 hours of Logo The researchers concluded that it is
programming over a three important to teach debugging skills directly
week period. to the learners.
Chambers 1986 Cognitive measurements 312 subjects (aged between 5 |Logo experiences enhance: computing

10 12).

The mean number of Logo
sessions was 63 with a
standard deviation of 25 and
a range from 5 to 100
sessions.

Does not provide explicit
instruction in general
problem solving skills or

transfer training.

performance, some general thinking skills
(Ravens test), but does not enhance
performance on similar tasks.
Researchers suggest more substantial
experience is needed.

YLT

Mawhy

of programming.

6 programming languages (9
weeks each) with the Logo
curriculum designed by the
rescarchers.

The Logo programming
lessons (at the end of the
year) were of 40 minute each
day, § days a week for 9
weeks.

Authors Year |Alicctive Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving
Clement, l9§6 - Analogical reasoning. 17 subjects (11 grade, all High correlations between structure
Kurland, females). Discovery mapping of analogical reasoning with two
Mawby, & Pea learning. Received 45 hours |aspects in programming: writing
of instructions in 6 weeks. [subprocedures and use of variables.
Cuneo 19864 Problem solving in a 32 4- & 5- year olds. The subjects could not easily generate a
Logo environment. A very simplified graphics [two- or three-command program.
environment. Their ability to give the correct sequence,
3 to 6 30 minute sessions. and at least the appropriate number and
type of commands, improved in the course
of study.
Limited ability in debugging program.
Degelman, 1986 Logical thinking - Rule 15 kindergarten students Logo group performed significantly better
Free, Scatlato, learning. 8 in Logo group in rule-learning problems involving
Blackburn & 7 in control. allirmatively defined concepts but not
Golden Students in Logo group conjunctively defined concepts.
received instructions for 15
minutes per day for 5 weeks;
they worked in pairs.
Kurland, Pea, |1986 Mathematical Procedural reasoning ; 45 subjects in three groups |Many students only have a rudimentary
Clement, & abilities. planning; understanding (Grade 10-12). They studies |understanding of the concepts in

programming. Progeamming expericnce
did not appear to transfer to other domains
which shared analogous formal properties.

SLT

implementing a

Logo program in a

typical primary
classroom.

programming concepls.

Authors Year |Afl'ective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving
Lehrer, 1986 |Aflective Cognitive development. (120 pre-school children Logo based environment enhanced
Ilarckham, development. Problem solving skills (Logo group and children’s problem solving skills and
Archer, & acquisition. instructional sotware group). [acquisition of linguistic pragmatics.
Pruzek 3 times a week for 25 mins |Instructional software promotes acquisition
over 12.5 weeks. of specific skills such as verbal directions,
Subjects in Logo group colours, & sorling.
usually worked in pairs or However, ncither software environment
small groups (2-5). enhanced children’s global levels of
cognitive or affective development.
Niterer & 1986 A systemalic Problem solving 96 subjects (age: 6.11 yrs), 4|l.ogo learning did not promote the transfer
Rose-Krasnor observation to including: block design, groups (Logo, Basic, of problem solving to other domains.
measure diflerent Tower of Hanoi, problem solving and Suggest that students should be made
behaviours in the flexibility for problem control). explicitly aware of the general utility of the
learners. solving (fluency & 40 hours of training over 7 |"powerful ideas” which mightin turn
originality), operational weeks. enhance the transfer of problem solving
tests (balance & skills.
probability).
[Williamson & [1986 Interaction of Problem solving of a 22 dyads of parents & Children with directive parents performed
Silvern parents & children. logico-mathematical children. better on a generalization tasks than
nature. One hour each day for 10 children who were less directive.
days.
Cohen 1987 General effects of Mastery of Logo 23 2nd graders. Logo activitics tended to generate an

The computer activity was

students, 20-30 minute
sessions throughout the
whole day, throughout the
school year.

carried out in teams of two

atmosphere of excitement and enthusiasm.
Subjects did not reach level of proficiency
needed for successful completion of
projects.

9LT

Authors

'Yenr

Allective

Social

Mathematics

Cognitive skills and
problem solving

Metacognitive

Subjects

Results

Tovar

size and group
composition on
learning Logo.

Fay & Mayer |1987 Misconceptions and 99 subjects (34 4th graders; |Children, especially of elementary school
confusions about Logo 34 5th graders; age, often harbour preconceptions about
graphics commands. 31 8th graders). spatial reference that conflict with the

30 to 45 min lesson: an conceptions underlying Logo.

introduction to the turtle & [The effectiveness of Logo may depend

graphics commands. upon on the instructor’s sensitivity to the

Subjects then tested on their |characteristics of each student.

understanding of turtle Care must be taken to consider student's

commands. level of development so they will benefit
from the learning of Logo.

Gallini 1987 Enhancing cognitive 44 4th graders (22 in control |LLogo group was able to better formulate
outcomes: follow (CAI treatment)). directions than the control group.
directions. Constructing 75 mins, 3 times a week for |Rescarcher maintains that:
directions in the process S weeks (under 20 hours in (i) a potentially positive relationship
ol problem xolving. total). between Logo training & success on

similar types ol tasks;

(i) Metacognitive types of guestions helped
to encourage reflective thinking among
learners.

Guniermann & [1987 Effects of group 36 subjects (10 yrs) learned [No difl'erences were found between

individunlly or in groups ol
two or three for one session,
had a practice session, then
were required to produce a
graphic in Logo for the
experimental session.

individuals and groups, in terms of
productivity.

Group interaction was found to be similar
in two and three person groups.
Significant dilferences were observed
among male, female, and mixed groups:
males displayed more solidarity than
female or mixed groups; females were
much more likely to express agreement
with their peers; there were also more
asking of information in the male groups
than female groups; males expressed more
antagonism than females or mixed groups.

1/ L1

Authors

Year

Allective

Social

Mathematics

Cognitive skills and
problem solving

Metacognitive

Subjects

Results

Lehrer &
Randle

1987

Planning, prediction,
and revision.

Test of metacognition.

39 subjects matched with
respect to their scores on the
Brigance developmental
inventory, and then assigned
to 3 conditions: Logo
programming, software to
aid composition & problem
solving, control.

Logo group received
instructions for 5 months, 2
times per week for 20
minutes each time.

Both software conditions were associated
with increased problem solving efliciency,
but only Logo condition results in durable
increases in problem solving efliciency.
Logo group increased in comprehension
monitoring, and ability to monitor and
establish relationship between old and new
information.

Mayer & Fay

1987

Cognitive changes
(model by Linn).

30 grade four students.
Students only received 3
sessions of Logo instructions
totalling approximately 130
minutes.

Logo programming can modestly influence
children’s thinking in areas similar to those
involved in programming.

When teaching programming, some
diagnosis and guidance, and mediational
learning would likely to assist in the
transfer of skills from the programming I
domain to other domains such as map
reading.

Noss

1987a

Children’s learning
of geometrical
concepts.

Logo group: 84

Control: 92

five classrooms: one from
each of five schools

one grade 3, one grade 4,
three grade S.

aged: 8-11.

The Logo group programmed
in pairs for a median time of
about 75 minutes per week
over one school year.

Logo learning helped to improve children’s
development of geometric concepts such as
length conservation, length measurement,
angle conservation, and angle
measurement.

8LT

{IChen Wang

of mathematical
concepls.

females & 17 males). Logo
and control (20 each).

Logo group learned Logo
programming for 45 minutes
cach day for 3 days. Control
group worked on their
normal mathematics lessons.

Authors Year |Aflective Social Mathematics Cognitive skills and Metacognitive Subjects Results
. problem solving
— R ——
Lee & Lehrer [1988 General prop:nics of (i) 7 graduate students. Researchers found that previous experience
Two studies cognition and specific (ii) 24 adult students. in Basic programming resulted in ncgative
instructional practices. Logo instructions for 1.5 transfer while learning to program with
hours each week for eight Logo.
wecks. Many of the students’ misconceptions were
Unlimited access to remediable through better pedagogy.
compulers,
NMany, 1988 Reasoning skills, 113 in Logo classcs, 58 in Logo group scored better than the control
Lockard, & control group. although further analysis indicated that the I
Abrams Students in Logo group males in Logo group achieved significantly
rveceived Logo instructions |higher acores than their male counlerparts
for 45 minutes per day over [in the control.
a 9 wecek period.
Schaefer & 1988 Preschoolers’ Preschool children: 10 boys [All subjects improved in all the three arcas
Sprigle development of & 10 girls. Enrolled in a on a pre-post test design.
mathemalics university laboratory school.
concepls together They received instruction in
with computer Logo on a daily basis for
terminology. three months in sessions
ranging from 10 to 30
minultes.
Thomson & 1988 Transfer of lcarning 40 subjects, grade 6 (23 Logo performed better on both knowledge

of the concepts and ability to transfer the
concepts although the greater transfer
occur in the measure of transfer.

6LT

Sutherland

in a Logo
environment

mathematics through
the use of Logo

Authors Year |Aflcctive Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving
Turner & 1988 Mathematical Levels of co_gnilivc 181 subjects (91 in Logo No signilficant group differences in the
Land concepts such as development. group & 90 in control; Sth, |understanding of mathematical concepts or
properties of 6th, 7th & 8th graders). cognitive development.
polygons, angle Logo group learned Logo However, those who learned most Logo
measurements, one hour per week for 16 gained significantly more than those with a
estimation, weeks. minimal mastery both in understanding of
rectangular mathematical concepts & level of cognitive
coordinate systems, development.
negative numbers, This study suggests that cognitive
and variables. development, achievement in mathematics,
and achievement in Logo programming all
share a common factor.
Burns & 1989 |Self-concept, 22 3rd graders (11 in Logo group showed significant increases in
lHagerman locus of control. experimental group; 11 in internal locus of control.
control group).
Experimental group learned
Logo programming - 20 - 2§
minutes per week over 4'
months; control group used
Delta Drawing.
Hoyles & 1989 Gender diflerences |Learning of A longitudinal study of: Logo programming provided an engaging

4 pairs of students (aged 11-
14; one boy pair, one girl
pair, and two mixed pairs)
for 3 years;

4 pairs of students (aged 11-
12) for 1 year;

32 pairs of students (aged 11
-14) for 2 years.

Children worked in pairs
while learning to program
with Logo during
mathematics lessons.

problem solving context.

Collaborative exchanges were found to be
important for children’s learning.

Gender differences: (i) boys - difficult to
share interactions & tended to dominate in
mixed pairs; (ii) girls preferred to choose
loosely defined goals.

Teacher’s intervention was crucial in
students’ leaming.

08¢

Cognitive skills and
problem solving

Problem solving &
verbal interactions.

|Metacognitive

Subjects

Results

36 4th graders assigned to
groups of three to form 6
groups of high and 6 of
average academic ability.
Subjects used a non-
programming version of
Logo turtle graphics to
reproduce a given line design
on the computer screen.

No relationship between success & ability,
and that successful groups asked more
task-related questions, spend more time on
strategy, and reached higher levels of
strategy elaboration than did unsuccessful
groups.

High ability groups made a greater number
of long task statements than did average
groups.

Peer interaction, Logo
programming & problem
solving.

Study 1: 20 3rd graders (8.5
yrs).

Experimental group learned
Logo programming
individually - 20 - 25
minutes per week over 4%
months; control group used
Delta Drawing.

Study 2: 18 3rd graders (8.6
yrs).

Both experimental group &
control group (10 & 8)
reccived instructions in pairs;
9 20 minute sessionsover 6
weeks.

Extensive Logo experiences may influence
peer collaboration on problem solving
tasks.

Peer collaborations using Logo were
shown to focus more on the process
relative to the product of problem solving.

Authors Year |Allective Social Mathematics
King = 1989 Verbal interactions |
& problem solving
behaviours.
Burns & 1990 Logo programming
Coon; 2 & peer interaction.
studies.
Cathcarnt 1990

Cognitive styles: ficld
independence
dependence, divergent
thinking, impulsivity
reflectivity.

43 5th graders (25
experimental group, 18
control).

Two 45-minute sessions per
week for 14 weeks. Total
hours=20.

Logo group performed better in divergent
thinking.

Both groups gained significantly in ficld
dependence independence.

Decline in latency for Logo group was
significant.

18¢

Authors Year |Aflective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving

Mathinos 1990 Changes in the types of T 40 LD & 40 ND subjects Programming with Logo under specific
problem solving skills. (grades 4-6). conditions used in this study allowed some
Possible transfer of these One hour a day each day for |children to refine and extend their use of
skills to noncomputer 16 weeks (80 hours). problem solving skills both within &
situations. across computer and noncomputer

conlexlts.
Schibeci 1990 |Attitude towards Development of problem 63 pre- and in- service Subjects showed a marked improvement in

computers &
learners
themselves.

solving strategies.

teachers (4 diflerent groups
according to their enrolment
in different courses at the
university).

Logotreatment varied
according to course
requirements (unclear as to
how many hours subjects
actually spent on Logo).

their attitude towards computers.
They were also more confidentin solving
problems while programming with Logo.

8¢

Year

development.

Authors Allective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving
. L] . .
Studies with teacher mediation

Howe, 1980 Algebraic topic. Two classes of Primary 7 An item analysis of the school maths tests
)'Shea, Plane students (22 subjects, with 11 [suggests that the Logo group's

in each; 11 - 12 years old). |performance was marginally better than

1 hour per week over two that of the control group.

school years. One class Logo students could argue sensibly ahout

learned Logo programming |mathematic issues and explain their own

during first year, used Logo |mathematical difficulties more clearly.

to explore troublesome topics

in mathematics in the second

year.

Structured worksheets were

used to develop various

problem solving skills such

as decomposing, debugging

etc.
Seidman 1981 Conditional reasoning 42 Sth graders - hal(in Traditional scoring of tests showed no

ability. control. significant diflerent in scores.
15 weeks of treatment, 2 However, an additional scoring procedure,
hours per week. indicated significantly better performance
of the experimental group on one of the
conditional reasoning principles.

Finlayson 1983 Mathematical Childrenwere able to "think

26 subjects (primary 5: 9 yr;
primary 6: 10 yr); no control
Average of 20 hours of Logo
learning time.

mathematically through Logo experience”,
and that a great deal of enthusiasm was
generated. However, the researchers also
noted that children could appear to be
competent at turtle graphics without
comprehending the underlying
mathematics.

€8¢

Authors

Year

Allective

Social

Mathematics

Cognitive skills and
problem solving

Metacognitive

Subjects

Resuits

Pea & Kurland

1983

Understanding of the
concept of recursion.

7 subjects (2 girls & S boys,
11-12 yrs) who have spent
more than 50 hours of
classroom programming.
Discovery learning.

Systematic misunderstanding of recursive
programs. Poor understanding of
sequential exccution,

Clements &
Gullo

1984

Cognitive style (creative
thinking, matching
familiar figures),
cognitive skills
(screening tests,
classification,
serialization), spatial
orientation.
Metacognitive skills in
aiding problem solving.

Netacognitive skills.

18 subjects (6 year olds)
randomly assigned to Logo
and control (CAI) groups.

2 40 minute sessions a week
for 12 weeks; worked in
groupsof 2 or 3.

Logo group scored higher on measures of
reflectivity & two measures of divergent
thinking; outperformed CAI group on
measures of metacognitive ability and
ability to describe directions.

No differences were found on measures of
cognitive development.

Pea & Kurland

1984

Planning skills.

32 subjects (16 8-9 yrs; 16
11-12 yrs).

Logo group spent about 2
45-minute sessions per week,
with a total of about 30
hours programming in Logo.

Students who have spent a year
programming did not difler on the
cilectiveness of their plans and their
processes of planning from same age
controls.

Finlayson

1985

Transfer of
mathematical
strategies from Logo
to normal school
mathematics.

64 subjects (from two
parallel mixed ability groups
(11 yrs old) of 32 students
each).

Experimental group showed overall
superiority in: understanding of concepts of
angles and variables; ability to use
mathematical strategies of gencralization
and abstraction; and ability to pick out
relevant information in novel problems not
directly related to Logo.

Kinzer, Little-
field, Declos,
& Bransford

1985

Efl'ects of Logo on
discipline and
organization..

Instructional approaches
on mastery of Logo
learning.

38 Sth graders into 2 groups
(2 different Logo
instructional conditions).

1 hour per day for 25 days.

Logo classrooms exhibit more learning-
oriented interactions than do normal
classrooms.

No observable differences between
instructional approaches but that might be

due to inadequate measures.

¥8¢

Authors Year |Aflective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving

Bauista & 1986 Mathematics Problem solving 17 4th graders & 39 6th No difference in the first problem solving

Clements achievement. processes. graders. test but Logo group performed better in the

Three groups within each second problem solving test (test of

grade: Logo, CAI problem |[metacomponential problem solving

solving, and computer processes).

literacy (control). Researchers concluded that Logo

42 sessions of 40 minutes per|programming can increase certain problem

week. solving abilities, especially those related to
executive processes such as cognitive
monitoring, selecting a mental
representation, and deciding on
performance level processes.

Clements 1986 Cognitive style (creative [Metacognitive skills. 136 st graders (6 yrs & 10 [Significantly better performance in
thinking, matching mons), 36 3rd graders (8 yrs [classification, seriation, TCCT, and spatial
familiar figures), & 10 mons). orientation tests. Rescarchers suggest that
cognitive skills 3 sub-groups: Logo, CAl, these results indicate the important
(screening tests, and control). contribution of Logo to the development of
classification, 22 weeks, two 45-min operative competence in children when |
serialization), spatial periods per week. Logo intervenes at a given point.
orientation. Logo group performed belter in the

metacomponents of problem solving,
comprehension monitoring, and creativity.
lotton 1986 Cognitive skills:

exploration, analysis and
planning, creativity,
debugging, coding, and
predicting.

16 subjects (8 in expt groups
and 8 in control).

Pre-post tests.

14 sessions over 7 weeks.
Learning was based on the
developmentof thinking
skills.

Logo group performed significantly better
in: exploration, analysis and planning, and
prediction.

Control performed better in debugging
skills.

¢3¢

Authors Year |Aflective Social Mathematics Cognitive skills and Metacognitive Sub jects Results
problem solving
Lehrer & 1986 Mathematical Cognitive conscquences. [Mctacognitive 47 3rd graders from two Students who were better instructed were
Smith understanding. consequences. randomly sclected classes. able to (i) use their knowledge in Logo to
45 minutes each week for 9 |solve mathematical problems when
weeks. reminded how such knowledge could apply
Two instructional conditions: |to the problem; (ii) integrate new with old
(i) teacher mediated (24); (ii) |information (based on a measure of
traditional (23). metacognition). However, there was little
difference in problem solving strategies
between the two groups.
Miller & 1986 Problem solving - a 14 subjects (8 boys & 6 Logo group better able to detect embedded
Emihovich block building task. girls; 5 yrs & 4 mons): 2 errors.
groups, Logo and CAI.
11 Logo lessons over a 3
week period. Control group:
computer game.
Logo instructions were
provided within a mediated
instructional framework.
Clements 1987 Cognitive abilities. Application of Same subjects as in Clements|Logo group was better able to apply
mectacognitive skills. | (1984) (delayed eflects of metacognitive skills such as those involved
Logo programming. in solving analogies and sequences, which
include the ability.
Howell, Scott | 1987 General cognitive

& Diamond

development:
conservation of number,
length & drawing of
Euclidean shapes.

67 subjects - (5-6 yrs old);
34 in Logo group, the rest in
control.

Using an expanded form of
instant Logo with guided
discovery learning.
Logogroup learned Logo
programming for 75-80
minutes per weck over §
months.

No significant statistical results although
anccdotal reports by teachers suggest that
Logo experience did make a positive
impact on some areas of cognitive
development such as directional
understanding, shape labelling &
construction.

98¢

development.

Authors Year |Affective Social Mathematics Cognitive skills and Metacognitive Subjects Resulls
problem solving
Clements & 1988 B Social competence — Informational processing [Metacognitive 24 1st graders (6 yrs & 6 Logo group exhibited a significantly higher
Nastasi components of components of problem [processing. mons), 24 3rd graders (8 yrs |percentage of social behaviours that have
problem solving. solving. & 8 mons). cognitive underpinning and/or would be
28 training sessions of 45 expected to occur in problem solving
mins over 14 weeks. situations.
Intervention similar to those [Logo group exhibited a significantly higher
in earlier studies. frequency of behaviours indicative of
metacognitive functioning.
Lehrer, 1988 Description of Solving a planning task. |Increase in 45 3rd graders (two Logo Children in Logo groups solved a planning
Guckenberg, geometric concepts. metacognitive skills. |groups: programming task more efliciently; and developed more
Lee strategies; geometry dynamic descriptions of geometric concepts
instructions; control). (enhanced level of understanding of
47 ‘4 hours sessions, two geometry).
times a week). Children learning geometry with Logo also
demonstrated increased metacognitive
skills.
NcDougall 19838 Social interactions |Recursion Two children (6 and 9). The importance of teacher expectations and
hetween learners Learned Logo in a home of social interactions between learners in
learning environment rich in |determining children’s levels of
materials and opportunities |achievement (abstract thinking) were
for learning about recursion. |emphasized by events in this study.
A cases study methodology
was used.
Clements 1990 Metacomponential 48 3rd graders (20 boys & |Logo group scored significantly higher on

28 girls; randomly assigned
to one of two group: Logo &
control).

These groups met three times
a week (45 mins each) over
26 weeks.

the total assessment of exccutive
processing. Features of the instructional
environment such as explicitness and
completeness, help account for these facts.

L8C

Authors Year |Aflective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving

Nastasi, 1990 [Motivation Social-cognitive Cognitive growlr. 40 subjects (12 4th graders & togo group evinced more cognitively

Clements, & interactions. 28 6th graders) randomly oriented conlflict, attempts at and successful

Battista assigned to either Logo or resolution of conflicts, rule making, and

CAI groups. pleasure at discovery.
2 40 min sessions per week

for a total of 42 sessions

during the school year.

Subjects worked in pairs.

Au & Leung |1991 Effects of Logo learning 60 subjects (20 in each: Process-oriented group performed better
on the facilitation of process-oriented; content- than content-oriented group in some sub-
problem solving in a oriented; control). tests of Tower of Hanoi.
non-programming One hour per week for 25 Based on these evidence, researchers
context. weeks. conclude that: (i) Logo programming might

Pre post design. facilitate near transfer of problem solving
Three measures: Ravens, skills; (ii) transfer of skills could perhaps
Tower of Hanoi, Rule he enhanced by a process-oriented
learning. Logo groups |approach in the teaching of Logo. |
outperformed control group
in Tower of Hanoi.

Campbell, 1991 Estimation of

Fein &
Schwartz

distance

48 first graders (23 in
experimental group & 25 in
control group).
Experimental group received
20-25 hours of Logo
instruction using a guided

instructional approach

Children who has Logo instruction were
significantly more accurate in estimating
distance, and more rellective of the
strength of the inverse relationship between
unit size and number.

88¢C

programming.

with extended workstations,
while 8 used only traditional
Logo programming
environment. Each subject
worked for one period a
week for twenty weeks.

Authors Year |Allective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving

Clements 1991 Creativity 73 subjects (33 boys & 40 Logo group had significantly higher scores
girls; 8 yrs) in three groups |than the other two groups on figural
(Logo programming, creativity.
nonLogo creativity, and Both Logo and creativity group scored
nontreatement). 3 45-55 min |performed better on verbal creativity.
scssions per week for 25 An implication is that certain computer
weeks. Subjects worked in [environment may ofler opportunities for
pairs under the guidance of |enhancement of both figural and verbal
one or two teachers. creativity.

Grandgenett & [1991 Transfer of analogical 144 university students of Far transfer results indicated significant

‘Thonpson reasoning introductory educational interaction between a student’s college year
computing class, given 12 and the experimental treatment, with
hours of Logo instruction. |guided programming instruction facilitating
One group experienced Logo [the performance of college freshman, and
programming instruction hindering the performance of college
guided toward the juniors. Near transfer results indicated that
development of general the guided instruction did not significantly
analogical reasoning; the increase student reuse of subprocedures
other group experienced between programming problems.
more traditional exploratory
Logo programming II
instruction. Both near and
far transfers were examined.

Ieller 1991 Learning of 17 3rd graders. Nine worked | When students were provided with

extended workstations, they could deepen
their understanding of the semantics of
Logo commands. Also, they were able to
explore Logo as evidenced by the more
complicated programming products.

68¢

abilities: subgoals
formation, forward

and error, and analogy.

chaining, systematic trial

Authors Year |Allective Social Mathematics Cognitive skills and Metacognitive Subjects Results
problem solving
Ortiz. & 1991 Understanding the 89 6th graders (47 female, |Students who programmed Logo =]
MacGregor concept of variables, 42 male) from four procedures with variables demonstrated
& attitudes towards classrooms. greater long term retention of their
mathematics. All subjects received 5 50- [understanding of the concept of variable
min lessons on general Logo [than the students in the textbook group.
programming (not involving |Students had more positive attitudes toward
variables). The Logo computer related aspects of instruction.
experimental group then This study also underscores the importance
received another § 50-min |of providing a direct link between
lessons on Logo programming instruction and specific
programming involving content area skills.
variables whilst the other
experimental group received
variable instruction using
textbooks.
Swan 1991 Problem solving 101 subjects - 4th graders

(30); Sth graders (35); 6th
graders (36). All of them
had at least one year (30
hours) prior experience
programming in Logo.
Subjects were randomly
assigned by grade to one of
three treatment conditions:
Logo graphics & problem
solving condition, a cut-
paper manipulatives
condition, or a Logo

discovery learning condition.

They worked in pairs or
groups of three.

Explicit instructions with Logo
programming practice supporied the
development and transfer of four problem |
solving strategies; whereas neither |
discovery learning in a Logo environment
nor explicit instruction with concrete
manipulatives practice did so.

06¢

291

APPENDIX 2

292
LOGO - PROCESS-ORIENTED GROUP

SESSION 1
MEET THE TURTLE
1. Type: SHOWTURTLE
Press: Enfen

If you make any typing mistake, use the Backspace key to erase the mistake and
type again.

The little triangle in the middle of the screen represents the TURTLE.

Type: HIDETURTLE
Press: Enter

Type: SHOWTURTLE
Press: Enter

What does the command SHOWTURTLE do?

What does the command HIDETURTLE do?

If you are not sure, try these two commands again until you understand what
they can do.

2. Play with the commands below. Try different numbers with the commands, for
example, FORWARD 20, BACK 30, RT 60, LT 200 etc.

FORIARD [- -]y
Remember ...

BACK .. leave a space between the coomand and the number.

RIGHT ... press Enter after each command.

LEFT

3. Guess what will happen with the following commands. Draw your guesses in the
space below. When you have finished drawing your guesses, try them out with
the computer to see if your predictions were correct. Remember to press the
Enter key after each command.

CLEARSCREEN
FORWARD 50
RIGHT 90

293

CLEARSCREEN
RIGHT 90
FORWARD 50

What does CLEARSCREEN do?

Are the turtle’s tracks the same?

How are they different?

. Try to predict what the turtle will draw by drawing your prediction in the space
below. Then try the commands out with the computer to see if your predictions
were correct.

Type: CLEARSCREEN
FORWARD 60
LEFT 90
FORWARD 60
HOME

What does HOME do?

Did you succeed in predicting the turtle’s track?

If you did not, find out what was wrong with your prediction.

Find out the difference between the CLEARSCREEN and the HOME commands.
If you are not sure, play with these two commands until you can find out the
difference.

. Guess what the following commands will draw. Draw your guess in the space
below and then try them out with the computer to see if your guesses were
correct.

CLEARSCREEN
FORWARD 20
RIGHT 60
FORWARD 20
LEFT 60
FORWARD 20

Did you succeed in predicting th2 turtle’s track? If not, find out what was wrong
with your prediction.

294

Now
Type: CLEARSCREEN

Type: FORWARD 20 RIGHT 60 FORWARD 20
Type: LEFT 60 FORWARD 20

Do you get the same picture?

Which way of typing commands do you like better:
One command at a time?
or
More than one command at a time?

Why do you like that way better?

. Record the turtle’s complaint that is printed when you type each command below.
Record how you would fix each command.
Type this: Turtle’s Complaint Fixed Command
FORWARD100
FORWARD
RIGHT
LEFT30
BACK
LEFT LOTS
FORWARD 999999
. Guess what will happen with the following commands.
Type: CLEARSCREEN
FORWARD 100
FORWARD 100
FORWARD 100
FORWARD 100

What happens?

295

Did you succeed in guessing the turtle’s track? If not, find out what was wrong
with your guess.

. EXERCISE

Use the commands that you have learnt today, draw pictures such as a square, a
rectangle, a house etc. Write down your commands on a piece of paper. Make
sure that you plan your drawings first. Try these commands with the computer
during the next lesson to find out if the turtle will draw according to your plan.
If it doesn’t, then fix the mistake so that the turtle will draw what you want.

For example, in order to draw a square

50

50 50

50

You ask the turtle to go FORWARD 50 steps first, then you ask the turtle to
make a RIGHT turn (how many degrees?).

After the RIGHT turn is made, you ask the turtle to go FORWARD again, and
SO on.

Just remember, planning systematically is most important.

If something goes wrong with your plan, ask yourself why something went
wrong.

Change your plan and then try again.

296
LOGO - PROCESS-ORIENTED GROUP

SESSION 4

TURTLE TRICKS AND PATTERNS

1. There are some tricks that you can ask the turtle to perform:

HIDETURTLE (HT)
SHOWTURTLE (ST)
PENUP (PU)
PENDOWN (PD)
PENERASE (PE)

Try these commands with the computer and find out what they can do. (Use the
shortcuts!!)

First, try HIDETURTLE

What does it do?

Can you make the turtle appear again?

How?

Now try

PENUP
FD 50

What happens, did the turtle draw?

Can you explain that?

Can you make the turtle draw again, how?

Now try

PENDOWN
FD 50
PENERASE
BK 50

What happens?

Can you explain that?

250

Which command erases the line that the turtle has just drawn?

Can you make the turtle draw again?

How?

5 STEPS IN PLANNING
Remember, always use this tactic when you plan:
- FIRST, THINK OF A PLAN.

- SECOND, ASK YOURSELF IF THE PLAN WOULD WORK BY
FOLLOWING EVERY SINGLE STEP IN THE PLAN.

- THIRD, TRY THE PLAN OUT WITH THE COMPUTER.

- FOURTH, IF THE PLAN DOES NOT WORK, ASK YOURSELF WHAT
WENT WRONG. MAKE SURE YOU CAN FIND OUT THE MISTAKES.

- FIFTH, CHANGE YOUR PLAN AND THEN TRY IT OUT AGAIN.
2. Draw a favourite shape of your own, and then erase it bit by bit after you have
finished drawing it.

First, draw the shape here.

1. Think of a plan. Write it down here

2. Check your plan again. Make sure you follow every step in your plan.
3. Try your plan with the computer.

Did the computer draw what you have planned?

4. If not, what problems needed fixing? Write down the problems here:

5. What is your new plan? Write it down here:

Can you erase the picture bit by bit?

How?

Did you have any problems in erasing it?

How did you fix these problems?

. There are some other tricks that you can teach the computer:

Explore the following commands and record here how they can be used:

TEXTSCREEN

MIXEDSCREEN

FULLSCREEN

In fact, there are shortcuts for these commands too:
Try these keys (at the top of your keyboard):
PF1

PF2
PF4

298

What do they do? (Are they the same as some of the commands that you have

just learned?)

PE1

PF2

299
PF4

How can you make use of these commands?

. Following is a list of commands to draw a square (Can you recognize these
commands?)

FD 50
RT 90
FD 50
RT 90
FD 50
RT 90
FD 50
RT 90

Try these commands with the computer.

Write down the set of the commands that is repeated to draw the square

How many times is this set of commands repeated?

You can use the REPEAT command to draw the same square as a repeated
list of commands

REPEAT 4 [FD 50 RT 90]

(oo oew (v ww
The REPEAT command needs The REPEAT command also

a number to tell how many needs a list of commands to
times to repeat. describe what action is repeated

Can you clear the screen?

Which command should you use?

Draw a square with sides that are 50 turtle steps long using the REPEAT
command.

1. First, write down your plan here.

2. Check your plan again, follow it through step by step.
Do you think it will work?

3. Now, try your plan with the computer.
Did your plan work?

4. If not, find out the mistake, write down your mistakes here:

5. Write down your new plan here and then try with the computer again.

300

Can you draw another square with sides that are 30 turtle steps long?
Remember, follow the 5 steps in planning.

1. Your plan

2. Check your plan by going through the plan step by step.
Do you think it will work?

3. Try your plan with the computer
Did it work?

4. If not, what are the mistakes?

5. What is your new plan?

301
5. EXERCISE

Write down in your own words the 5 steps in planning that you have learned earlier
in this session:

See whether you can draw a triangle and a hexagon with the REPEAT
command (remember how to draw a triangle and a hexagon in Session 3?)

Drawing a triangle

1. Your plan:

2. Check it step by step. Should it work?
3. Try it out with the computer. Did it work?

4. What are the mistakes and how did you fix them?

5. What is your new plan?

302

Drawing a hexagon

1. Your plan:

2. Check it step by step. Should it work?
3. Try it out with the computer. Did it work?

4. What are the mistakes and how did you fix them?

5. What is your new plan?

303
PROCESS-ORIENTED GROUP

SESSION 8

SUBPROCEDURES AND SUPERPROCEDURES

1. You have learned the REPEAT command, e.g.
REPEAT 360 [FD 1 RT 1]
In order to use the REPEAT command, you have to tell the turtle two things,
first, the number of times to REPEAT,

second, what action or actions to REPEAT.

Do you that you can actually REPEAT another REPEAT command or a
procedure.

Let’s look at these procedures
TO SQUARE
REPEAT 4 [FD 50 RT 90]
END
TO PATTERN
REPEAT 4 [REPEAT 4 [FD 50 RT 90] RT 90]
END
TO PAT
REPEAT 4 [SQUARE RT 90]
END

Sketch your predictions of what these procedures will draw:

SQUARE PATTERN PAT

Teach these procedures to the turtle.
Remember, the best way to define a procedure is to go into the LOGO EDITOR.

Now you do it.

304

Try these procedures with the computer.

Did you predict correctly?

If not, what was wrong with your predictions?

Is PAT the same as PATTERN?

When a procedure uses another procedure, it is called a SUPERPROCEDURE.

A procedure that has been used by another procedure is called a
SUBPROCEDURE.

In the above example, the superprocedure is

the subprocedure is

. Let’s try another one. Look at these procedures:

TO TRIANGLE
REPEAT 3 [FD 50 RT 120]
END

TO SHAPE
REPEAT 3 [REPEAT 3 [FD 40 RT 120] LT 120]
END

TO SHAPING
REPEAT 3 [TRIANGLE LT 120]
END

Predict what the turtle will draw before you try it out with the computer.

305

Draw your predictions here:

TRIANGLE SHAPE SHAPING

Did you succeed with your prediction?

If not, what was wrong with your predictions?

Is SHAPE the same as SHAPING?

Which is the superprocedure?

Which is the subprocedure?

. Look at this figure:

You are supposed to define a procedure that can draw this figure.
You may find this figure quite complicated at the beginning.

Now, remember, if a problem is too complicated, try to break it down into
smaller and simpler problems.

306

Look at this figure:

Can you write a procedure to draw this simpler figure?
Use the five steps in planning:

First, write down your plan:

Second, check through your plan step by step to make sure that your plan will
work.

Third, try your plan out with the computer.

Fourth, if something goes wrong, make sure you can DEBUG (find out the
mistakes) in your plan.

Fifth, change your plan so that it will work.

Now since you can solve the smaller and simpler problem, can you use this
answer (plan) to solve the original and more complicated problem?

Try to think of a superprocedure to draw the original complicated figure, using
the procedure that you have just defined.

Again, use the 5 steps in planning:

First, write down your plan:

Second, check your plan step by step to make sure that it will work.

Third, try your plan with the computer.

Fourth, if anything goes wrong, make sure you can debug your plan.

307

Fifth, change your plan so that it will work.

Did you succeed in drawing the original figure?

Just to remind you again, if a problem is too complicated, try to break it down
into smaller and simpler problems. Then solve the smaller problems one by one.
Combine these small solutions together to solve the bigger and more complicated
problem.

. Think about how you would make this house using one SUPERPROCEDURE.

Can you break it down into smaller problems?

How?

Can you solve these smaller problems using subprocedures?

Write down your plans here:

Now, use the 5 steps in planning to make sure that your plans work.

After you have done that, can you combine these answers (plans) to form a
bigger plan to draw the house?

Write down your plan here:

Check through your plan to make sure that it will work with the computer.
Try your plan out with the computer.

If something goes wrong, what are they?

308

Can you fix the plan so that it will work?

What is your new plan?

1 ERERCISE

Write down in your own words how you would solve a big and complicated
problem

309

Use the method you have learned today to draw this design using a
SUPERPROCEDURE.

-

How do you break it down?

What are your plans for the smaller and simpler problems?

Have you checked that your smaller plans would work?

If any one of them doesn’t work out as you have predicted, find out the error
(DEBUG) and try them again.

310
PROCESS-ORIENTED GROUP

SESSION 11

BUILDING BLOCKS AND STRUCTURE DIAGRAMS

1. Look at this house below:

10 10
[F={]

60 10

|

60

Can you tell the building blocks for this house?

Write down the building blocks here:
()
(b)
(©
(d)

The following is a structure diagram for the drawing of the building blocks
above:

kS
.’_// \.\ \\
| ROOF| |WALLS| [DOOR| [GLASS]

When you try to solve a complicated problem, it is useful if you could break
down this problem into smaller subproblems and then solve these simpler,
smaller subproblems one by one.

A structure diagram 1s a very useful tool to help you to see how a complicated
problem can be broken down into smaller subproblems.

311

Now use the 5 steps of planning (it is very important that you do that) that you
have learnt, write procedures that can draw each of the building blocks above,
i.e. ROOF, WALLS, DOOR, and GLASS.

TO ROOF TO WALLS TO DOOR TO GLASS

Try out these building blocks one by one to make sure that each one of them
works.

Now write a superprocedure called HOUSE which combines these subprocedures
together.

The important thing you need to remember is the position of the turtle after each
building block is drawn.

Again, you must use the 5 steps of planning.

In the structure diagram below, add in the movements of the turtle that are
needed to link the different subprocedures together.

[DOOR GLASS

Now based on the new structure diagram above, write a superprocedure HOUSE:

TO HOUSE

312

2. Use the same method that you have just learned above, write a superprocedure
that can draw the following picture.

I

=

Remember to use the five steps of planning whenever you try to solve a problem.

If a problem is too complicated, always try to break down into simpler and
smaller subproblems.

Now try drawing the different building blocks in this picture (give them a name
each)

Try to draw a structure diagram that shows are you can break down this
complicated problem into smaller and simpler subproblems.

313

Now, write subprocedures that can draw each building block (make sure you use
the five steps of planning in each case)

Remember:

1. Plan your solution carefully,

2. Check through your solution step by step,

3. Try out your solution with the computer,

4. If anything goes wrong, make sure you can find out what is wrong.
5. Change your original solution, go back to step 2.

Now, write a superprocedure that can draw the whole picture (again, you must
use the five steps of planning to make sure that your superprocedure will work)

Also, draw your new structure diagram that shows the connecting movements of
the turtle between each subprocedure.

314
LOGO - CONTENT ORIENTED GROUP

SESSION 1

MEET THE TURTLE

1. Drawing in LOGO
To set up the screen for drawing,
Type: SHOWTURTLE
and then press Enter.

If you make any typing mistake, use the Backspace key to erase the mistake and
type again.

Can you see the little triangle in the centre of the screen? That is the TURTLE.
You can also hide the turtle, type:
HIDETURTLE

Now show the turtle again by typing SHOWTURTLE.

2. Basic Turtle Commands
In order to ask the turtle to draw, you would need to know the basic commands.
There are four basic commands to move the turtle. the commands
FORWARD and
BACK
Make the turtle move in the direction it is pointing.

You will have to tell the turtle the number of steps to move forward or back
though. For example, you will need to type something like

FORWARD 40 or
BACK 50

The other two commands

315
LEFT and

RIGHT

make the turtle turn in either the left or the right direction. Again, you will need
to tell the turtle the extent to turn by typing a number like

LEFT 90 or
RIGHT 150
Now, can you draw something using these four commands.

Remember, leave a space between the command and the number. Press the
Enter key after the each command.

Practice moving around the screen using these commands:

FORWARD 50
RIGHT 90
FORWARD 30
RIGHT 60
FORWARD 60
LEFT 100
BACK 80
LEFT 50
FORWARD 60

. After you have drawn quite a bit of things on the screen, you may like to clear
up the screen and start from scratch again. The command

CLEARSCREEN

clears the screen and places the turtle in the centre of the screen.

Every time you type CLEARSCREEN, the screen is cleared and the turtle is
brought back to the centre of the screen, which is the home of the turtle. The
command

HOME

always brings the turtle back to its home no matter where the turtle is.

316

Now type:
HOME
CLEARSCREEN
You can see that the turtle went back to its home first, but the drawings remain.
After you have typed the CLEARSCREEN command, the drawings were cleared
too.
. So far, you have learned the commands
FORWARD
BACK
LEFT
RIGHT
CLEARSCREEN
HOME
How about practising the following exercises:
Type:
CLEARSCREEN
FORWARD 50
RIGHT 150
FORWARD 350
Now type:
CLEARSCREEN FORWARD 50 RIGHT 150 FORWARD 50
Do you get the same picture?
Which way of typing commands do you like better?
One command at a time?
or

More than one command at a time?

Why do you like that way better?

Let’s have some more practices with the commands you have learned today:

Type:

CLEARSCREEN
FORWARD 20
RIGHT 60
FORWARD 20
LEFT 60
FORWARD 20

CLEARSCREEN
FORWARD 60
LEFT 90
FORWARD 60
HOME

. Type:
CLEARSCREEN
FORWARD 100
FORWARD 100
FORWARD 100

317

You can see that the turtle first disappeared from the top of the screen, and then

it re-appeared from the bottom of the screen.
. EXERCISE

How about drawing some of your favourite pictures using the commands you
have leamed today? You can draw pictures such as a square, a rectangle, a
house etc. Write down your commands on a piece of paper and try out these
commands with the computer during the next lesson.

318

LOGO - CONTENT-ORIENTED GROUP

SESSION 4

TURTLE TRICKS AND PATTERNS

There are some ticks that you can ask the turtle to perform:

HIDETURTLE (HT)
SHOWTURTLE (ST)
PENUP (PU)
PENDOWN (PD)
PENERASE (PE)

HIDETURTLE (HT)
This command will hide the turtle from your view.

Type HIDETURTLE or HT
Did it hide the turtle?

SHOWTURTLE (ST)

This command will show the turtle if the turtle is hidden.
Type SHOWTURTLE or ST
Did the turtle appear?

PENUP (PU)

This command will ask the turtle to move around the screen without drawing.
Type PENUP

FD 50
Did the turtle draw a line?

PENDOWN (PD)

This command will ask the turtle to move around the screen and leave a trace
as well.
Type PENDOWN
BK 50
Did the turtle draw a line?

PENERASE (PE)

This command will ask the turtle to move around the screen and erase as it
moves along its track.

319

Type PENERASE
FD50
Did the turtle erase the line it just drew?

Now we are going to draw a square and then erase it bit by bit.

Type:

CS

FD 50
RT 90
FD 50
RT 90
FD 50
RT 90
FD 90
RT 90

Did you draw a square?

If you did not, do it again.

O.K. We are now going to erase the square by using the PENERASE
command.

Type:

PE

FD 50
RT 90
FD 50
RT 90
FD 50
RT 90
FD 50
RT 90

Did you succeed?

If you did not, make sure that you have typed exactly the same as the above.

320

There are some other tricks that you can teach the computer:

TEXTSCREEN - this command asks the computer to show the
words only.

MIXEDSCREEN - this command asks the computer to show the
words as well as the drawing.

FULLSCREEN - this command asks the computer to show the

drawing only.
Type these commands into the computer.

Did they do what they were supposed to do?

In fact, there are shortcuts for these commands too:

instead of typing you can press
TEXTSCREEN PF1
MIXEDSCREEN PF2
FULLSCREEN PF4

Press these keys (at the top of the keyboard) a few times and you should be
able to see the different types of displays of the screen.

The following is a list of commands to draw a triangle (Can you recognise
these commands?)

Type these commands into the computer.
Type:

FD 50
RT 120
FD 50
RT 120
FD 50
RT 120
FD 50
RT 120

They have been repeated three times.

You can use the REPEAT command to draw the same triangle as a repeated
list of commands.

321

REPEAT 3 [FD 30 RT 120]

(Souuvu) (v vuuue

The REPEAT command needs The REPEAT command also
a number to tell kow many needs a list of commands to
times to repeat. describe what action is repeated

Now clear the screen by using the CLEARSCREEN command.

Draw a triangle that are 40 turtle steps long using the REPEAT command
that you have just learned.

Write down the commands that you have used here:

How about drawing another triangle that is of 30 turtle steps each side?
Yes, you can use the following commands:

REPEAT 4 [FD 30 RT 90]

Clearscreen the screen first.

Type this command into the computer.

Exercise

Draw a square and a hexagon that have 50 turtle steps on each side using the
REPEAT command.

Write down your commands here.

322
LOGO - CONTENT-ORIENTED GROUP

SESSION 8

SUPERPROCEDURES AND SUBPROCEDURES

is You have learned to use the REPEAT command, e.g.
REPEAT 6 [FD 40 LT 60]
In order to use the REPEAT command, you have to tell the turtle two things.
First, the number of the times to REPEAT.
Second, what action or actions to REPEAT.

Do you know that you can actually REPEAT another REPEAT command or
a procedure.

Define these procedures with the computer (remember, the best way to define
a procedure is to go into the LOGO EDITOR).

TO TRIANGLE
REPEAT 3 [FD 50 RT 120]
END

TO SHAPE
REPEAT 3 [REPEAT 3 [FD 40 RT 120] LT 120]
END
TO SHAPING
REPEAT 3 [TRIANGLE LT 120]
END

Ask the computer to draw these procedures.

Does SHAPE draw the same picture as SHAPING does?

SHAPING is called a SUPERPROCEDURE because it uses another
procedure.

TRIANGLE is called a SUBPROCEDURE because it is used by another
procedure.

823

This procedure will draw a flag:

TO FLAG
FD 80
RT 90
FD 20
RT 90
FD 20
RT 90
FD 20
RT 90
BK 60
END

Type it into the computer to make sure that it can draw a flag.
Can you write a superprocedure WINDMILL, using FLAG as a
subprocedure to draw a windmill like the following figure.

|

Write down your answer here:

TO WINDMILL

324

So you see, since WINDMILL uses another procedure in itself, it is called a
SUPERPROCEDURE.

And since FLAG is used by another procedure, it is called a
SUBPROCEDURE.

In fact, SUPERPROCEDURE can use more than one SUBPROCEDURE in
itself. Look at the HOUSE below,

/N

/

Now write a SUPERPROCEDURE called HOUSE which contains two
SUBPROCEDURES - ROOF and WALL.

First of all, you have to write the two subprocedures ROOF and WALL.
Test them out with the computer to make sure that they can draw the roof
and the wall.

Then write a superprocedure HOUSE which uses these two subprocedures.

Write down your answer here:

TO ROOF TO WALL TO HOUSE

EXERCISE

Use the FLAG or WINDMILL procedures to write a superprocedures
PINWHEEL that can draw a pinwheel like the following:

\\
\\\ J b
{ | \ Fan

\\\-/ \\//
Fd b |
AN
SN
/'\.\
T
D

Write your answer here:

Based on the procedures ROOF, WALL and HOUSE, can you add a door

325

and a chimney (using procedures DOOR and CHIMNEY) to the house like

the following:

|

Write down your answer here:

326
LOGO - CONTENT-ORIENTED GROUP

SESSION 11

BUILDING BLOCKS AND STRUCTURE DIAGRAM

1. Look at the house below:

10 10
Ol
g 10

|

60

These are the building blocks for the house:

a. ROOF
b. WALLS
C. DOOR
d. GLASS

The following is a structure diagram for the drawing of the building blocks
above:

» / : ._ \
[ROOF| [WALLS| [DOOR| [GLASS]

A structure diagram will help us to see how a complicated picture can be
divided into smaller ones.

327

Now, you write procedures that can draw each of the building blocks:
TO ROOF TO WALLS TO DOOR TO GLASS

Now write a superprocedure called HOUSE combines these subprocedures
together in order to draw the house.

The important thing you need to remember is the position of the turtle after
each building block is drawn.

In the structure diagram below, add in the movements of the turtle that are
needed to link the different subprocedures together.

ROOF /’ l:l DOOR L GLASS

Now based on the new structure diagram above, write a superprocedure
HOUSE. '

HOUSE

Use the same method that you have just learned above, write a
superprocedure that can draw the following picture.

O
[Nl

(-

]
| |

L

Don’t forget to draw a structure diagram first.

328

These are the building blocks:

a. HEAD

[Gik BODY

@ LEFTARM
d. RIGHTARM
e. LEG

Now you write subprocedures that can draw each building block:

TO HEAD TO BODY TO LEFTARM TO RIGHTARM TO LEG

Now write a superprocedure ROBOT that can draw this robot.

TO ROBOT

329
BASIC GROUP

SESSION 1

BASIC BASIC

L. There are many things that a computer can do. For example, you can use the
computer as a calculator to help you do some arithmetic. Try typing the
following. You must press Enter after you have finished typing each line in
order to send the message to the computer.

Write down the answer given by the computer.

PRINT 3 + 5

PRINT 4 * 3

PRINT 64 / 4

PRINT 260 - 161

See, the computer can actually help you to do some complicated arithmetic.

Find the answers for the following problems. Write down the answers next
to the question.

Remember, you would need to use the PRINT command in front of each
problem.

160 + 231

28 F 81

72 - 25

121/ 11

Can you do them? How about doing some arithmetic of your own. You can
ask the computer to do some very complicated arithmetic, e.g.

1234567 + 9876543
1024 / 64 etc.

Write down your problems and answers in the space below.

330

Besides helping you to do arithmetic, the command PRINT can also print a
message on the screen. Type:

PRINT "I AM THE GREATEST NEW ZEALAND HERO."

What happened?

Now type:
PRINT "3 + 5"

What happened?

Did the computer do the arithmetic for you?
Is the computer on strike?

Not really.

Let’s try again. Type:

PRINT 7 + 12

PRINT "7 4+ 12v

Remember, the computer will print exactly what you type between speech
marks.

How about typing some of your favourite messages?
Write them down here before you type.

331

Now you probably have a lot of things on the screen.
The screen is like a blackboard, you can actually wipe the things off the
screen. Type:

CLS

The computer wipes everything off the screen when you type CLS.
Type a few more messages and then type CLS. Did it work?

You can also ask the computer to print the problem and then the answer.
For example, you can type the problem between the speech marks and then
just the problem,

PRINT "5 + 16 = "5 + 16

PRINT "182 /13 = " 182/ 13

PRINT "The sum of five and sixis " 5 + 6

Try these few examples to see if they work.

Also, try to do 5 mare problems of your own in this way. Record your
problems and answers on the back of this page.

Exercise

Write down some more arithmetic problems for the computer to solve for

you. Use the computer to find out the answers next week. Record your
problems on the back of this page.

332
BASIC GROUP

SESSION 4

MORE PRINTING

1. You have learned the GOTO and the END command during the last session.
Now there is a challenge for you. Look at the following program:

20 2"CAT"
40 ?"DOG"

Since dogs and cats used to right, we certainly don’t want them to be printed
together.

Can you find a way that only one of them is printed without removing any of
the statements or changing the line numbers of these two statements.

(Hint: you may use the GOTO command.)

How? Record your answers here:

2. Now that you have written a program, give a title to the program so that
when you look at this program in two months, you will know what this
program is about. The rule is the computer is not allowed to print the title
when the program is RUNed.

Record your answer:

3. There are two ways that you can control the computer to output (print
sentences).

Type:
2"Close?;"together"

What
happens?

338

Type: ?"Spreading","out"

What happens?

So now you know that you can use ; and , to control the computer to output
(print statements).

; will tell the computer to print sentences on the same line close to each
other, and

, will tell the computer to spread the output (sentences) on the screen with
some spaces separating them.

Type:

D) 502, 3B, B 4
2 +2;3+3;4+4
?IIReadyll’ llsetll’ ||G0||
?llReady"; llsetll; |IG0||

Can you see the difference now?

Use some output of your own and record your commands here:

334

You can print some patterns on the screen too.
Type (remember to count the spaces between the X’s):

NEW

10 HOME
20?"X X
SOR™" X{ X ™
402" X »
50?" X X "
60?"X X
70END

RUN

You should see a big X on the screen.
You can print any letter or word that you want.
You must remember to count the number of spaces.

Now try printing the patterns for H and GO.
Record your answers here.

335
EXERCISE

You can also draw pictures with PRINT statements.

Type: (remember to count the spaces between the numbers and letters)

NEW

110 cLs

120 2" 88888 "
T308 2 8 8 "
140 2" 8 8 =
150 2 8 8 "
160 2"8

170 2"8

180 2"8 X 8"
190 ?"8

200 2?"8

210 2" 8 .3 &5 2 8 "
220 2" 8 gy =
230 2" 8 8 e
240 2" 88888 "
250 END

END

Did you see a picture?

How about drawing a picture of your own?

Record your answer here:

336
BASIC GROUP

SESSION 8
LOOPS
1. You are going to learn three things today:
LOOP One or more instructions that are repeated.
FOR First statement in a loop.
NEXT Last statement in a loop.
2. A LOOP is a set of one or more statements.

These instructions can be repeated as many times as you like.

You can make a loop by typing two new words - FOR AND NEXT - in
your set of instructions.

Type:

NEW

10 FOR N =1TO 10
20 ? "HELLO"

30 NEXT N

RUN

How many times is HELLO printed on the screen?

Can you get GOODBYE to print ten times?
Record your commands here:

337

Try a new loop.
Type:

NEW

100 FORN =1TO 5
20 2?"HOKOWHITU"
30 NEXT N

RUN

How many times was the word "HOKOWHITU" printed?

N stands for the number of times that the computer goes through the loop.
How many times does the program tell the computer to print the word
"HOKOWHITU"?

Try this program.
Type:

NEW

5 CLS

10 FORN =1TO 6
202N

30 NEXT N

RUN

What did you see on the screen?

You see, the computer used a loop to count from 1 to 6.

Can you make this program to count to 10 instead of 6?

How?

Run this program again to make sure that it works.

338

The computer can count by any number.

The computer can count by twos instead of ones.
Type:

LIST

Now, change line 10 in the program.
Type:

10 FOR N = 2 TO 20 STEP 2
RUN

What did you

see?

That’s right.

First, you told the computer to start counting at 2 and stop by 20.

Second, you told the computer to count by twos by the command STEP 2.

Look at the whole program again.
LIST

Do you understand?

You can tell the computer to count by fives, start with 5 and finish with 30.
All you have to do is change one line.

Type:

10 FOR N = 5TO 30 STEP 5
RUN

Did it work?

Now, try counting by eights from 8 to 80.

339

Record your commands here:

Besides counting by twos, fives, eights, or any number, the computer can
also count backwards.

Type:

10 FOR N = 10 TO 1 STEP -1
LIST

What did you see on the screen?

Draw a box around the loop.

The FOR statement begins the loop.
It shows the starting number, ending number, and the step.

FORN =10 TO 1 STEP -1

starting ending
number number

Where does the computer start counting?

Where does the computer stop counting?

Before you RUN the program, add a line
Type:

40 ?"BLAST OFF"

Write a program so that your name is printed eight times.
Type NEW first before you start writing your program.

340

Record your commands here:

Save this program on your disk.
What is the name of your program?

Draw a flow chart for this program on the next page:

Write another program so that the computer can count by sevens from 7 to
0!
Type NEW before you write your program.

341

Record your commands here:

Save this program on your disk and then draw a flow chart of the program:

10. Write a program so that the computer can count by twelves from 240 to 12
backwards.
Record your commands here:

342

BASIC GROUP
SESSION 11
DRAWING PICTURES
1. In this session, you will learn how to draw lines and pictures with the BASIC
language.

In order to draw pictures with BASIC, type:
SCREEN 1
The screen can be pictured in this way with 320 columns across and 200

lines down:
(0,0) (319,0)

(0,199) (319,199)

The command LINE tells the computer to draw a line from one point to the other on
the screen.

Now type each of the following line followed by Enter:

LINE
LINE
LINE
LINE

You should see a box drawn around the screen.

We can add in the diagonals. Type:

343

Now draw some more lines using the same method.

If you want to start a new picture, just type CLS.

2. It is always nice to add a bit of colour to our life.
We can do the same to our screen.

Type (be aware of the American spelling, it is COLOR):

COLOR 1
COLOR 2
COLOR 3
COLOR 4
COLOR 5
COLOR 6
COLOR 7

In fact, you can use any numbers from O to 15 with the command COLOR.
Now add another number to COLOR. Type:

COLOR 1,0

COLOR 1,1

COLOR 2,0

COLOR 2,1

What did you see?

3. Besides drawing vertical and horizontal lines by using the LINE command,
you can actually draw some other pictures using DRAW command.

You always start at the centre of the screen with the DRAW command.

Let’s say we want to draw a house.

When we start drawing, we probably want to draw the walls first.
Type:

DRAW "R100 D83 L100 U83"

There are 5 commands here:

DRAW asks the computer to start drawing;

R100 asks the computer to move to the right by 100 units;

D83 asks the computer to move down 83 units;

L100 asks the computer to move left 100 units;

U83 asks the computer to move up 83 units

After the walls are drawn, we are back to the top left hand corner of the
"walls". So we want to draw our roof now.

First of all, we would need to turn in order to draw one side of the roof.

Type:

DRAW "TA-30"
DRAW "U83"

In order to draw the other side of the roof, type:

DRAW "TA30"
DRAW "U83"

The last thing we want to draw is a door. Type:

DRAW "TAO D83 L69 U40 R20 D40"

344

345

So the house is done!!

If you want the computer to move without drawing a line, then you add B in
front of the commands such as BU83, or BL100 etc.

We can put all these drawings into a program so that the house can be drawn
at once when the program is RUN.

Type this program and save it on to your own disk:

S REM A PROGRAM TO DRAW A HOUSE
10 CLS

20 SCREEN 1

30 DRAW "R100 D83 L100 U83"

40 DRAW "TA-30"

50 DRAW "U83"

60 DRAW "TA30"

70 DRAW "D83"

80 DRAW "TAO D83 L60 U40 R20 D40"

90 END

Exercise
Now can you add two windows to the house that you have just drawn?

Add your commands to the program above and save it on your disk.

Write down your own commands here:

346

APPENDIX 3

347

RULE NAMING TEST

INSTRUCTIONS FOR ADMINISTRATION

Tell the subject:

We are going to play four games today

There are four attributes on each card. They are the shape, colour, size and
number of figures. Explain to the subject by pointing to the pile of cards
say:

See these cards here. They contain figures of different shapes, colour,
size and number. Some of them contain circles, squares or triangles.
Some of them contain blue, red or yellow figures. Some of them contain
large, medium or small figures. Some of them contain one, two or three
figures.

Hold up the first card and say slowly:

You can tell four things from a card - the shape, colour, size and
number. For example, this card contains three, small, red, triangles.

Hold up the next card and say:

This card contains two, medium, yellow, squares.

Now ask the subject to describe the 11 sample cards. Say,

Now you describe these cards to me.

After the subject has finished describing the cards, say to the subject:

Now let me tell you how to play these games.

In each game, there is a rule between two things on the card. You have
to find out this rule. I will tell you what these two things are in each
game, for example, red and circles, and then you have to find out what
the rule between these two things is.

Pause 5 seconds.

I will show you one card at a time. You will then tell me whether the

rule is obeyed or not. If the rule is obeyed, you will say yes. If the rule
is not obeyed, you will say no. In return, I will tell you whether your

10.

1.

348

answer is right or wrong. You will be given hints from time to time
during the game.

Pause 5 seconds.
Say to the subject:

Now let us start playing the first game. In the first game, there is a rule
between blue and square. You have to find out the rule between blue
and square.

Re-prompt the subject by saying:

Remember, just concentrate on the rule between the two things. The first
thing is blue. The second thing is square.

Let us start playing the game.

Start showing the cards for problem A one by one to the subject.

Provide the subject with the appropriate feedback by saying either right or
wrong.

Record on the scoring sheets whether the answer is correct or not.

There are 40 cards to each problem. Repeat the attributes to the subject after
every twenty cards by saying:

Remember, just concentrate on the rule between the two things. The
first thing is blue. The second thing is square.

A problem comes to an end if the subject can provide 12 consecutive correct
answers or 100 cards are shown (as there are only 40 cards for each
problem, if the subject cannot identify the rule within 40 cards, repeat the
cards until either the rule is identified or 100 cards are shown.)

The three other problems are:

B. circle and yellow;

C. red and triangle;

D. square and one figure.

When problem A is finished, proceed with problems B, C and D. Repeat the
procedures for problem A.

When all the problems are finished, say to the subject:

Thank you for playing the games.

349

APPENDIX 4

00NV AW

S P PD DA PR PR A PDLWLWLWL L LWL WL LWIRNDNDNDNDNDRNDDRNDDRNDRNDRN — — e a t a a
SUF R E O RO R ARG RO 2SN O RORNESExNa LR ERES

N
NS

51.
52.
S8
54.
35t
56.
S
58.
3B.
60.
61.
62.
68k
64.
65.
66.
67.
68.
69°
%0.
7L
T4
73.
74.
75.
76.
i,
78.
781
80.
81.
82.
83.
84.
85
86.
87.
88.
89.
90.
Bl
O2%
98,
94.
95.
96.
7
98.
)
100.

350

351

APPENDIX 5

352
TOWER OF HANOI

INSTRUCTIONS FOR ADMINISTRATION

Tell the subject:

Today we are going to play a game.

Point to the disks.

See these disks here, they are of different sizes.
Point to the corresponding pegs.

The aim of this game is to move all these disks from peg number 1 to
either peg number two or peg number three.

There are two rules that you must follow:
The first rule, you can only move one disk at a time.

Demonstrate to the subject by moving the smallest disk from peg number 1 to
peg number two.

The second rule, you cannot place a bigger disk on top of a smaller one.

Demonstrate to the subject by moving the second smallest disk on top of the
smallest disk which is at peg number 2.

Move all the disk back to peg number 1.

Ask the subject if the two rules are understood.

Do you understand these two rules?

If yes, proceed to the next step.

If not, repeat the two rules.

Tell the subject:

Now I shall show you how to play this game with two disks.

Take away all the disks from peg number 1 except the two smallest ones.

Demonstrate to the subject how to move two disks from peg number one to
peg number two. Follow the steps below. and do it slowly and clearly:

353

i move the smallest disk to peg number 3.
i move the second smallest disk to peg number 2.
i move the smallest disk from peg number 1.

Tell the subject:

Now you do it. Go ahead and play the game with two disks.

When the subject is moving the disks, record on the scoring sheets the detail
movements made by the subject.

If the subject fails to solve a two disk problem, re-demonstrate the solution
and ask subject to try again. If the subject fails after three attempts, score 0
for all problems and go to the last step.

When the subject has finished the two disk problem, place the three smallest
disks at page number 1.

Tell the subject:
Now, go ahead and play the game with three disks.

Record their movements on the scoring sheets as above.

Continue the test with the four and five disks problem.

When the subject has finished all the problems, tell the subject:

Thank you for playing this game.

354

APPENDIX 6

0
11111
0 0
21111 ERO RS

0 0
23111 32z
0 0 0 0
33111 13111 12111 22111
0 0
3zn 22311
0 0 0 0
13211 23211 32311 12311
0 0 0 0
12211 21211 3n 13311
0 0 0 0 0 0 0 0
22211 32211 31211 11211 11311 21311 23311 33331
0 0
2223 33321
0 0 0 0
32231 12231 13321 21821
0 0 0 0
31231 13231 12321 11321
0 0 0 0 0 0 0 0
11231 21231 23231 33231 22321 22321 31321 11221
0 0 0 0
11331 33131 22121 11221
0 0 0 0 0 0 0 0
21331 31331 13131 23131 32121 12121 21221 31221
0 0 0 0 0 0 0 0
23331 339N 12131 21131 31121 13121 23221 32221
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33331 13331 12331 22331 22131 32131 31131 11131 11121 21121 23121 33121 33221 13221 12221 22221
0 0
33332 22223
0 0 0 0
13332 23332 32223 12223
0 0 0 0
12332 21332 31223 13223
0 0 0 0 0 0 0 0
22332 32332 21332 11332 11223 21223 23223 33223
0 0 0 0
22132 11232 11323 33123
0 0 0 0 0 0 0 0
32132 12132 21232 31232 21328, 31323 13123 23123
0 0 0 0 0 0 0 0
31132 13132 23232 32232 23323 32323 12123 21123
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11132 21132 23132 33132 33232 13232 12232 22232 33323 13323 12323 22323 22123 32123 31123 11123
0 0 0 0
11122 22212 33313 11133
0 0 0 0 0 0 0 0
21122 31122 32212 12212 1533193 2139113 21133 31133
0 0 0 0 0 0 0 0
23122 32122 31212 13212 12313 21313 23133 32133
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33122 13122 12122 22122 11212 21212 23212 33212 22313 31313 32313 11313 33133 13133 12133 22133
0 0 0 0 0 0 0 0
33222 22322 11312 33112 22113 11213 3312138 22333
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13222 23222 32322 12322 21312 31312 13112 23112 32113 12113 21213 31213 13233 33233 32333 12333
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12222 21222 31322 13322 23312 32312 12112 21112 31113 13113 23213 32213 12233 21233 31333 13333
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
22222 32222 31222 11222 11322 21322 23322 33322 33312 13312 12312 22312 22112 32112 31112 11112 11113 21113 23113 33113 33213 13213 12213 22213 22233 32233 31233 11233 11333 21333 23333 33333

SSE

356

APPENDIX 7

357
TOWER OF HANOI

Calculation of solving sub-problems

0
2244 1344
0
3324
0 0
1324 2321

0
) 0 5 a
1224 2121 n/fni 1331
n n n

1} 1} 0 0 G B 8
2221 oz i 1421 4454 2231 93AY A8

i
2223 2
) 0 0
3223 1223 {32 2332
0 0 0
3123 1323 1432 2132
0) 0 0)il 0) 0
1123 2423 2323 3323 I2332 3232 3132 1432
)) 0
1433 3213 2419 1122
0 i 0 0 o 0 0 0
2133 3133 1313 233 3242 1212 2122 3122
0 0 0 0 0 0
2333 43 1213 2113 12 1312 2322 3222
g g—ug g 0 o 0 0 0 0o o
985338 4833 1%5% 2233 2215 804§ 3448 442F 1442 2442 2812 8312 8322 4822 41222 2222

goal

Two disk level:

Three disk level:

Two disk level score:
Three disk level score:

I & 4 b % ©
@ 1 0
4/6 = .67
1/3 = .33

358

APPENDIX 8

Please answer the following questions carefully:

1.

2.

10.

COMPUTING RESEARCH PROJECT

1986

Name:

Birthday:

Age at last birthday:

Address:

What kind of work does your father do?

What kind of work does your mother do?

359

Have you ever used a computer? (answer yes Or no)

If the answer to this question is no, then you have finished answering this

questionnaire.
How often do you use a computer?

Everyday
times a week
times a month
times a year

What experience do you have with computers?

None A little
Playing games

Quite a bit

A lot

Programming

Others

What computer languages have you used?

None A little
LOGO

Quite a bit

A lot

BASIC

PASCAL

Others

11.

12,

13.

What kind of computers have you used?

None A little Quite a bit
Apple

A lot

Commodore

Spectrum

Atari

IBM

BBC

Others

What kind of computers(s) do you use most often?

360

What computer language(s) do you know well?

361

APPENDIX 9

NAME OF TEACHER:

DATE:
TIME:

Time

Episode

TEACHER OBSERVATION

Name of subject/Content of interaction

]

6

9¢

363

APPENDIX 10

364

UoNoeIa)Ul dnois Jo sadA], Juuty,

HWIL
HLVA
-dN1OY™D

NOILVAYHSHO dN10dD

365

APPENDIX 11

NAME OF STUDENT:
DATE:
TIME:

Time Episode

INDIVIDUAL OBSERVATION

Types of interaction/Other subjects involved

l

99¢

367

APPENDIX 12

A Typical LOGO Lesson

For the first few minutes of the session, the teacher introduced the key concepts of
the worksheets, eg, defining procedures. Students were first asked to explore
what happened when they typed SQUARE, for example. The teacher would help
the students’ exploration by asking questions such as, "What does the Turtle do
when you type SQUARE?" Based on the Turtle’s response, "I DO NOT KNOW
HOW TO SQUARE," students were then guided in how to teach the Turtle a new
word. Predictions were made on the outcome of these new words, eg, "Predict
what commands need to be included in a procedure to draw a circle," and further
explorations were encouraged, eg, "How about teaching the Turtle a new word to
draw a triangle?" Once students were familiar with the key concepts of the

lesson, they were able to progress with their individual work.

For the next hour or so, students were asked to work individually, alternating
between 15 minutes on the computer and 15 minutes off. While off the computer
they followed the general problem solving model by spending their time predicting
and planning their worksheet activities, either individually or in groups. Their
plans and prediction were then tried out when working on the computer. If their
plans did not work, they were encouraged to ask themselves where they went
wrong, and then to attempt to find their mistakes and change their plans, then to
try them out at the computer again. During this time the teacher was there to
facilitate and monitor the progress of the students’ learning by using questioning
techniques. The questions and suggestions impelled the students to develop their
thinking skills and problem solving processes. Some examples are: "Estimate how
many degrees the Turtle needs to turn by walking it out yourself," "Experiment
with those commands on the computer,” " Think through your steps carefully
when you are planning," "Think it ahead before you actually try it out," "Where
do you think you have gone wrong?" "What do these commands actually do?"

"Check through your plan carefully."

368

369

At the end of the session, the teacher provided opportunities for the students to
discuss and share their ideas and any problems that had arisen during the session.
Such problems formed the basis for class discussions on how they could be solved.
Students were also encouraged to focus specifically on the processes they used to
solve the problems, eg, "I predicted the commands by walking them out first.

This way I found out where I had gone wrong in my planning." The teacher also
provided opportunities for programming challenges that specifically related to the
session’s main concepts, eg, "Let’s see who can predict the outcome of this
procedure,” "Draw your predictions on the whiteboard, so that we can all compare
the outcomes," "Now let’s discuss how we made these predictions,"” "Where have
some of us gone wrong?" etc. These types of challenges were used to actively
encourage students in shifting from a concrete method (walking out or drawing the

Turtle’s path) to an abstract method (thinking through in their own minds) of

problem solving.

	10001
	10003
	10004
	10005
	10007
	10008
	10009
	10010
	10011
	10012
	10013
	10014
	10015
	10017
	10018
	10019
	10020
	10021
	10022
	10023
	10025
	10026
	10027
	10028
	10029
	10030
	10031
	10032
	10033
	10034
	10035
	10036
	10037
	10038
	10039
	10040
	10041
	10043
	10044
	10045
	10046
	10047
	10049
	10050
	10051
	10052
	10053
	10054
	10055
	10056
	10057
	10058
	10059
	10060
	10061
	10062
	10063
	10064
	10065
	10066
	10067
	10068
	10069
	10070
	10071
	10072
	10073
	10074
	10075
	10076
	10077
	10078
	10079
	10080
	10081
	10082
	10083
	10084
	10085
	10086
	10087
	10088
	10089
	10090
	10091
	10092
	10093
	10094
	10095
	10096
	10097
	10098
	10099
	10100
	10101
	10103
	10104
	10105
	10106
	10107
	10108
	10109
	10110
	10111
	10112
	10113
	10114
	10115
	10116
	10117
	10118
	10119
	10120
	10121
	10122
	10123
	10124
	10125
	10126
	10127
	10128
	10129
	10131
	10132
	10133
	10134
	10135
	10136
	10137
	10138
	10139
	10140
	10141
	10142
	10143
	10144
	10145
	10146
	10147
	10148
	10149
	10150
	10151
	10152
	10153
	10154
	10155
	10156
	10157
	10158
	10159
	10160
	10161
	10162
	10163
	10165
	10166
	10167
	10168
	10169
	10170
	10171
	10172
	10173
	10174
	10175
	10176
	10177
	10178
	10179
	10180
	10181
	10182
	10183
	10184
	10185
	10186
	10187
	10188
	10189
	10190
	10191
	10192
	10193
	10194
	10195
	10196
	10197
	10198
	10199
	10200
	10201
	10202
	10203
	10204
	10205
	10206
	10207
	10208
	10209
	10210
	10211
	10212
	10213
	10214
	10215
	10216
	10217
	10218
	10219
	10220
	10221
	10222
	10223
	10224
	10225
	10226
	10227
	10228
	10229
	10231
	10232
	10233
	10234
	10235
	10236
	10237
	10238
	10239
	10240
	10241
	10242
	10243
	10244
	10245
	10246
	10247
	10248
	10249
	10250
	10251
	10252
	10253
	10254
	10255
	10256
	10257
	10258
	10259
	10260
	10261
	10262
	10263
	10264
	10265
	10266
	10267
	10268
	10269
	10270
	10271
	10272
	10273
	10274
	10275
	10276
	10277
	10278
	10279
	10280
	10281
	10282
	10283
	10284
	10285
	10286
	10287
	10288
	10289
	10290
	10291
	10293
	10295
	10296
	10297
	10298
	10299
	10300
	10301
	10302
	10303
	10304
	10305
	10306
	10307
	10308
	10309
	10310
	10311
	10312
	10313
	10314
	10315
	10317
	10319
	10320
	10321
	10322
	10323
	10324
	10325
	10326
	10327
	10328
	10329
	10330
	10331
	10332
	10333
	10334
	10335
	10336
	10337
	10338
	10339
	10340
	10341
	10342
	10343
	10344
	10345
	10346
	10347
	10348
	10349
	10350
	10351
	10352
	10353
	10354
	10355
	10356
	10357
	10358
	10359
	10360
	10361
	10362
	10363
	10364
	10365
	10366
	10367
	10368
	10369
	10370
	10371
	10372
	10373
	10375
	10376
	10377
	10379
	10381
	10383
	10384
	10385
	10387
	10389
	10391
	10393
	10395
	10396
	10397
	10399
	10401
	10403
	10405
	10407
	10409
	10411
	10412

