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ABSTRACT 

This thesis reports the development of a pre filtering technique for 
estimating the parameters of continuous-time models given by 
differential equations. This technique is  based on some special integrals, 
named the Fixed Interval Integrals (FII), which result from multiple 
integrations over intervals of fixed length. An estimation method using 
this pre filtering technique has several significant features: 

- it is capable of estimating both system delay and the parameters of a 
second order dynamical mode1. 

- it is able to be implemented on discrete-time digital devices. 
- it is independent of initial conditions, hence these do not need to be 

known. 
- it uses well-established discrete-time estimation algorithms. 

This development starts with the definition of a new operator notation 
system. It then studies in detail the properties of the fixed interval 
integration and its relationship to traditional calculus operations. 
Several possible methods to realize the FII operation using analog and 
digital filters are also given. 

U sing these results and some simulation examples, the use of FII in 
parameter and delay estimation of continuous-time models is  
demonstrated. 

Since the FII is likely to be useful in engineering and mathematics 
beyond parameter estimation, some other possible applications of the FII 
are outlined. 
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CHAPTER ONE 

INTRODUCTION 

This chapter outlines the scope of the research work reported in this 

thesis. It also describes some of the standard approaches to parameter 

estimation. Some advantages of control system design using continuous

time models are also given. These advantages and the recent advent of 

low cost and fast computers have been the motivation for this research 

work of parameter estimation of continuous-time models. 
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1.1 SCOPE OF THIS THESIS 

The development of electronic devices and computers in the last two or 

three decades has had a profound influence on system identification and 

modern control engineering. In the last decade, users have been able to 

progress from interacting with main-frame computers that are 

relatively unresponsive to individual needs, to minicomputers and then 

to personal computers based on microchips.  Now portable and even 

laptop computers of phenomenal power and capability are available at 

relatively modest prices. 

This development in computational power accompanied by staggering 

reductions in the cost per unit of computing has had enormous 

implications for those intending to use computers to implement 

algori thms they design. Many designs thought a decade ago likely to 

make impractical cost and computing demands may now be realized. 

Gawthrop (1982) proposed the use of continuous-time models instead of 

discrete-time models in designing discrete-time self-tuning control for 

continuous-time systems. In his approach, continuous-time models are 

used to design continuous-time control schemes for dynamical systems. 

The continuous-time control schemes are then realized directly on 

digital devices that inherently involve discrete-time sampling. This 

direct realization is achieved using numerical methods for solving 

differential equations such as the Runge-Kutta method. As the discrete

time behaviour of the digital controller has not been compensated in the 

control design, a much faster sampling rate is thus needed when 

compared to the discrete-time model approach, in order to ensure an 

acceptable approximation. Also, the digital controller requires higher 

memory and computational capability because it needs to calculate the 

numerical solution during each control interval . This continuous-time 

model approach is now receiving increasing attention, perhaps due to 

the availability of fast and powerful digital controllers in low cost. The 

need for on-line parameter estimation techniques based on continuous

time models thus increases. 

At the outset of the project reported here, a number of parameter 

estimation techniques based on continuous-time models had been 

developed. However these techniques are sensitive to the initial system 
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conditions which are usually not known. They also involve special 

algorithms which are complicated to implement. Consequently, these 

techniques could not be used for on-line purposes without difficulty. 

For this reason, the objective of this research project was to find a 

parameter estimation technique for continuous-time models which, 

besides serving the traditional role of system identification, could also be 

coupled with an adaptive control scheme to form an explicit self-tuning 

control system based on a continuous-time model. 

During the course of this project, a pre-filter for parameter estimation of 

continuous-time-models has been developed. A parameter estimation 

technique can then be formed by "clipping on" the pre-filter to most well

developed discrete-time parameter estimation algorithms. This pre-filter 

is based on a special integral which will be referred to as Fixed Interval 

Integral (FII) .  This technique has the advantages of being 

computationally simple and being insensitive to noise. Most important of 

all, perhaps, both the parameters and the pure delay of a continuous

time system can be estimated when this pre-filter is used. 

It was found later that, although developed independently, the FII 

involved the same manipulation of sampled data as the "integrated 

sampling technique" of Schoukens (1990), and the "linear integral filter" 

of Sagara and Zhao (1990). However both Schoukens, and Sagara and 

Zhao did not include the problem of pure delay estimation. 

The FII technique is based on an approach termed the "Continuous-time 

model, discrete-time estimation" approach. More details on this 

approach are given in Section 1.2. 

1.2 CONTINUOUS-TIME-MODEL PARAMETER 

ESTIMATION 

There are three possible approaches to parameter estimation of 

continuous-time systems. 

The first is the "Discrete-time model discrete-time estimation" approach 

(DD). When a system is subjected to a control input that varies only at the 
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beginning of discrete-time intervals, the system, though it might be 

inherently continuous in time, could be modelled using a discrete-time 

model and coupled with a discrete-time estimation procedure. 

Continuous-time 
--... 

System 
� 

Discrete-time � 
Model 

Discrete-time 
Estimation 

DD parameter 
Estimation 

The second approach might be termed the "Continuous-time model 

continuous-time estimation" approach (CC). In this approach, the 

system is first modelled with a continuous-time model, and then the 

estimates of the parameters in the model are updated in continuous
time. 

r 
Continuous-time ... Continuous-time 

System 
... 

Model '" � 

r 

� Continuous-time 
Estimation 

" 

../ 

CC parameter 
Estimation 

The third approach is the "Continuous-time model discrete-time 
estimation" approach (CD), in which a continuous-time model of the 
system is estimated in discrete-time rather than in continuous-time. 

r r 
Continuous-time .... , Continuous-time 

-
System Model 

'" '" 

., 

� Discrete-time 

Estimation 

CD p arameter 
Estimation 

In the last two or three decades, the DD approach has dominated the 

field of system identification. This could be due to two reasons. Firstly, 

the popularity o! .d�gital controllers meant that discrete-time models 

rather than continuous-time models were the main concern of control 

system design. Secondly, the most important developments in the area of 

system identification can often be traced to parallel developments in 

digital computers; this is no doubt because of the computational 
complexity involved in system identification and parameter estimation. 

Therefore, it was logical to go "completely digital": to compute digitally 

and also to model in discrete-time terms, so that the mathematical 
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characterisation of the system matched the serial processing nature of 

the digital computer. Consequently, most of the significant advances in 

system identification of recent decades were concerned with the 

estimation of discrete-time models based on sampled data (Box and 

Jenkins 1970, Eykhoff 1974, Goodwin and Payne 1977, Hsia 1977, Astrom 

and Wittenmark 1984 and Ljung 1987). 

Nevertheless, it seems that the relevance and importance of parameter 

estimation of continuous-time-models have been increasingly recognized 

in recent years. This could be due to several advantages of using 

continuous-time models to design control systems, some of which are 

gathered together in Section 1.3. 

A natural development in parameter estimation of continuous-time 

models is the CC approach. Many pioneers in parameter estimation of 

the continuous-time models used 'steepest gradient' techniques 

(Margolis and Leondes 1959), and 'model-reference-adaptive-system' 

techniques (Whitaker 1958, Landau 1972, Eykhoff 1974,  Petrov and 

Krutova 1975). These techniques are CC in nature and are mostly 

implemented on analog devices. A continuous-time equivalent to some 

fundamental discrete-time estimation techniques such as recursive

least-squares has also been developed in recent years (Gawthrop 1987). 

However, as parameter estimation involves considerable computational 

complexity, it is inevitable from a practical point of view that it be 

implemented on digital devices which are more flexible and easier in 

handling computation. The CD approach has been thus receiving 

increasing interest and it has been a major direction in the recent 

research of parameter estimation of continuous-time systems. A survey 

of the related work is presented in Chapter 2 .  The underlying concept of 

the CD approach is the transformation of the parameter estimation 

problem of continuous-time models to a discrete-time-like form, and then 

most of the ideas
' used in connection with the estimation of discrete-time 

models are directly applicable to the estimation of the parameters of the 

continuous-time system model. 
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1.3 SOME ADVANTAGES OF USING CONTINUOUS

TIME-MODELS TO DESIGN CONTROL SYSTEMS 

6 

There are several advantages of using continuous-time models to design 
control systems, rather than using the discrete-time models that are 

either described by shift operators (Ogata 1987) or delta operators 
(Middleton and Goodwin 1990).  These advantages have indirectly 
motivated this research work on parameter estimation of continuous
time models. Some of these advantages are as follows. 

1 .  The system model relates directly to the physical system. Properties 

like heat or mass transfer coefficients, tank size, viscosity and time 

constant can often be observed directly from a continuous-time model. 

Thus the whole control design procedure can then make more sense 

in relation to the actual physical system. 

2. Artifacts of sampling are avoided. When a continuous-time system 
with zeros lying inside the stability region is sampled using a zero
order hold, the resultant discrete-time model may have zeros lying 
outside the stability region. It is well known that unstable zeros limit 

the performance that can be achieved when controlling a system. 
Another consequence of zeros is that such systems may be excited by 
unbounded input pulse sequences giving zero sampled output signal, 
but the actual continuous-time system may have hidden oscillations, 

"inter-sample ripple" (Jury 1956), between sampling points. Unstable 
zeros may occur in systems in which (Astrom et al 1984): 

a) the number of poles exceeds the number of zeros in the continuous
time system by at least two. 

b) there is a time delay that is not an integral multiple of the sampling 
time. 

c) the continuous-time system transfer function is improper or non
minimum-phase. 

3. The system model and controller design are independent of sampling 

interval. This is useful for the following reasons: 
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a) only one common overall continuous-time system model is 
necessary even though different sub-sections of the identification or 
the control scheme are implemented at different sampling rates 

b) a re-design is not needed when the sampling interval must be 

changed. 

c) in the case of adaptive control, existing system model parameters 
are not affected by changes in the sampling interval. This means 
that a new learning phase for parameter estimation is avoided. 

1.4 ORGANIZATION OF THIS THESIS 

There are six subsequent chapters in this thesis: 

Chapter 2 surveys on-line techniques used to estimate the time delay 
and parameters of continuous-time models. 

Chapter 3 develops an operator notation system for use throughout this 

thesis. It introduces the special Fixed Interval Integrals 
(FIT) and presents a set of operator algebra relating the FII 
to some traditional calculus operators. It also determines 
some important properties of the FII. 

Chapter 4 determines several possible methods to realize the FIr. A 

detailed analysis is given for the recommended method -- the 
numerical method. 

Chapter 5 develops a parameter estimation technique based on the FII 
transformation. This technique is capable of estimating 
simultaneously both the delay and the parameters of a 
continuous-time model. Other possible applications of FII 

are also outlined to motivate future study. 

Chapter 6 gives the final conclusion of the thesis. 



8 

CHAPTER TWO 

LITERATURE SURVEY 

This chapter surveys methods for on-line time delay and parameter 
estimation of continuous-time models and categorizes them into 
different groups. Some features of these methods are compared and 
contrasted. 
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2.1 CONTINUOUS·TIME PARAMETRIC MODELS 

The systems of interest in this thesis are lumped parameter dynamical 
systems which: 

- are time-invariant; 
- have a single output and a single input; 
- have an input delay; 

- can be described by models in the form of linear ordinary 
differential equations (ODE). 

Thus a description of these systems is the state-space description given 
by: 

d��t) = G x(t) + H u(t--r) + M w(t) 

y(t) = L x(t) + N v(t) 

where 

(2.1-1) 

(2.1-2) 

x(t) = vector of state variables characterizing the system dynamics. 

yet) = the observed output of the system. 

u(t) = the input which is assumed to be known exactly. 

'r = the input delay. 

wet) = unmeasurable input disturbances. 

vet) = unmeasurable output disturbances. 

The stochastic inputs wet) and vet) are taken to be zero-mean white noise 

independent of u(t). ·The G, H and L are suitably dimensioned matrices 
whose elements constitute the unknown system parameters. The M and 
N matrices relate the stochastic inputs to the system states. When M and 
N are unknown, the unknown input disturbances are, 

d(t) = M w(t) (2.1-3) 

and the output disturbances, also unknown, are, 
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n(t) = N vet) (2.1-4) 

Another linear representation is the polynomial matrix description 
(PMD) of the general form, 

yet) 
A(p) = 
B(p) u(t) + E(t) 

where 

A( ) = n n-l n-2 
p p + an-l P + an-2 P + ... + ao 

B( ) = b C b c-l b c-2 b P cP + c-l P + c-2 P + ... + 0 

(2.1-5) 

(2. 1-6) 

(2.1-7) 

where ai and bi are real coefficients some of which may by zero, and pi is 

the ith derivative operator. The transfer function of the system is thus 
given by, 

A(p) 
B(p) 

The e(t) is a vector of stochastic disturbances which accounts for the 

combined effect of the input and output disturbances w(t) and v(t) , 

respectively, at the output of the system. It is often considered to have 
rational spectral density and to be of the form, 

E(t) = 
D(p) 
C(p) �(t) (2.1-8) 

= E(p) �(t) 
where 

E(p) = 
D(p) 
C(p) 

(2.1-9) 

is the disturbance transfer function, and �(t) is a zero-mean white noise. 

The parameter -estimation of continuous-time models amounts to 
estimating the quantities an-l ... ao and bn ... bo in Equations (2. 1-6) and 
(2. 1-7). 
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2.2 A SURVEY OF METHODS FOR ESTIMATING 

DELAY-FREE CONTINUOUS-TIME MODELS 

2.2.1 General Classification 

11 

The parameters of a lumped linear dynamic system can be estimated 

either indirectly or directly. 

In the case of indirect methods, there are two possible approaches to 
estimate a continuous-time model, that is, 

(i) via non-parametric models 

(ii) via discrete-time models 

In the first indirect approach, the system is first modelled by a non
parametric description such as its frequency response, impulse response 

or its step response. A continuous-time parametric model may then be 

fitted to the non-parametric model (Sanathanan and Koerner 1963, 

Lawrence and Rogers 1979, Godfery 1980). In contrast the second indirect 

approach begins by estimating a discrete-time model, and then a 
continuous-time model is derived from the discrete-time model (Astrom 

and Eykhoff1971, Sargan 1974, Unbehauen and Rao 1987, Ogata 1987). 

In the case of direct methods for parameter estimation of continuous

time models, the general underlying principle is that the system 

parameters are chosen to minimize a scalar cost (or loss) function which 

is formulated in terms of one of a number of possible norms of an error 

function. This error function reflects the discrepancy between the model 

and the real system. Based on the nature of the error function, three 

general classifications of direct methods are possible: 

(i) deterministic output error (DOE) methods 

(ii) stochastic output error (SOE) methods 

(iii) equation error (EE) methods 

The output error is the numerical difference between the output of the 

actual system and the output due to the model. The deterministic 

methods presume the system is free from unknown disturbances, 

meanwhile disturbances are taken into account in the stochastic 

methods. The equation error is generated from the input-output equation 
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of the system. A more in depth discussion of these methods is given in 

the later sections. 

The indirect methods of identifying continuous-time models are 
generally unsuitable for on-line purposes (Unbehauen and Rao 1987, 

1990). This is because they usually involve complex procedures and non

numerical transformations. In view of these, this section concentrates 

only on the direct methods which are more suitable for the purpose of 

this study, that is on-line parameter estimation of continuous-time 

models. 

2.2.2 Deterministic Output Error Methods 

The deterministic output error (DOE) method is a classical direct 

approach to the problem of system parameter estimation. Here, the 

parameters are chosen so that they minimise the error, e(t) , between the 

model output �(t) , and the observed output yet) .  In this deterministic 

framework, it is assumed that the system output yet) can be observed 

exactly, or there is no measurement noise. So the DOE is defined in the 
form. of: 

e(t) = y et) - ' (t) 

= yet) - �(p) u(t) 
�(p) 

(2.2-1) 

(2.2-2) 

where "A(p) and A(p) are respectively the estimates of the polynomials 
B(p) and A(p). 
Research on DOE methods has been strongly tied to self adaptive system 

design using the "Continuous-time model continuous-time estimation" 
(CC) ·mechanism:Therefore, as pointed out by Young (198 1),  it is not easy 

to segregate those DOE methods specifically for parameter estimation 

and those related methods aimed at adjusting control system parameters 

using the model of the process. Noted pioneers of the DOE approach to 
parameter estimation include Margolis and Leondes (1959), Whitaker 

(1958) and Donaldson and Leondes (1963). In these works, the update of 

parameters was based on a steepest descending-gradient of the output 

error. These algorithms were thus inherently continuous in time and 
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were implemented using analog devices. Conditions for convergence of 

the CC algorithms for these DOE methods have been studied and 

developed by researchers such as Shackcloth and Butchart (1965), 

Landau (1976) and Ljung (1977). Some general multivariable cases were 

covered by Anderson ( 1977 and 1985). Texts by Narendra (1976) and 

Landau (1979) are useful references on these topics. 

A later development of the DOE approach was the "adaptive observer". 

Although there were several different forms of adaptive observer, there 

were two essential features in all of these adaptive observers. First, the 

system input and output were passed through a certain form of the 

Luenberger (1964) observer or its equivalent to obtain the states. Second, 

the observed states were used to estimate implicitly or explicitly the 

system parameters which in turn are applied to update the parameters 

of the observer. 

The adaptive observers of Carroll and Lindorff (1973), and Kudva and 

Narendra ( 1973) were derived by means of Lyapunov synthesis 

techniques.  Their development depended on a minimal realization for 

the unknown system and required injection of certain auxiliary signals 

to ensure convergence. Later modifications, which rested on a non

minimal canonical form for the representation of the unknown system, 

can be found in work by Luders and Narendra ( 1974). A complete 

discussion of minimal and non-minimal realizations has been given by 

O'Reilly ( 1983). The methods based on non-minimal realizations 

eliminated the need of any auxiliary signal and thereby simplified the 

synthesis of the observer. 

Other modifications were the adaptive observers of Ichikawa ( 1982) and 

the parameterized observer of Kreisselmeier ( 1977). These observers 

converged exponentially and were usually called "fast-convergence 

observers", as they converged faster than other observers, which 

converged asymptotically. 

Research on the DOE approach was very much limited to the period 

between the 1960's and 1970's. This could be due to the realization that 

whilst the DOE methods have yielded interesting simulated results, the 

concentration on the theoretical basis within a restrictive and somewhat 

artificial deterministic framework has limited the practical application 

of these methods (Young 1981). Another reason could be the popularity 
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and the superiority of digital devices set the trend upon "equation error" 

approaches (see later Section 2.2.4), on which most discrete-time 

parameter estimation techniques are based. 

Nevertheless, the DOE methods formed an important foundation for 

most modem techniques, especially for adaptive control, because the 

DOE methods are inherently to be implemented on line. As pointed out by 

Young (1979), there is a direct link between the adaptive observers and 

the stochastic EE estimation procedures based on "state variable filters". 

Further details concerning the EE approaches are given in Section 2.2.4. 

2.2.3 Stochastic Output Error Methods 

Parameter estimation techniques in this category can usually be 

identified as one of the following three: 

a) Prediction error (PE) Methods 

b) Maximum likelihood (ML) Methods 

c) Bayesian methods 

The prediction error is the discrepancy between the actual system output 

and the best prediction of the system output given all the current and 
past information on the system and the system disturbance. This usually 

involves concurrent and explicit estimation of system and system 

disturbance model parameters. The PE method commonly involves the 

minimisation of e(t) defined as, 

e (/) = -i-- ( y(/) - � u (t) J (2.2-3) 

where � and 11 are estimates of the system polynomials A and B given in 

$ection 2.1.  t an4 tJ. are the estimates of the disturbance polynomials C 
and D. 

The ML method (Kendall and Stuart 1961) is based on the definition of an 

error function of the PE type, but the formulation is restricted by an 

additional assumption that the system disturbances are specified by 
probability distributions. 
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The Bayesian method (Young 1968) can be considered as an extension of 

the PE or the ML methods. It arises from the application of the Bayes 

rule for linking a priori to a posteriori probability statements and so 
allows for the inclusion of a priori information into the solution of the 

estimation problem. The most well known example of this kind is a 

recursive algorithm in the case of discrete-time update; here the 

covariance of a previous estimate is used to obtain the covariance of the 

present estimate and the estimate itself (Ljung 1986). 

Before proceeding further, it is useful to note that the aforementioned 

groups of methods are not mutually exclusive. In fact some researchers, 

such as Young (198 1), considered the PE methods as the general set for 

the Stochastic Output Error (SOE) approaches, the lVIL methods as a 

subset of the PE methods, and the Bayesian methods as a subset of ML 

methods. However, in order to include some modern methods and also, 

for generality, the set of discrete-time-model methods, it seems to be 

more convenient to consider these three methods as three separate but 

mutually inclusive groups. 

Early research of SOE originated from the "continuous-time-model 

discrete-time estimation" (CD) approach, using off-line and batch

processing ML techniques for systems with zero-mean measurement 

noise. These were the sum-of-square-errors techniques of Box and Coutie 
(1956) and Box (1960), and the modification by Rosenbrock and Storey 
(1966) using weighted least squares. 

Some extensions of the ML work to enable it to handle more general 

cases with input and output noises were the PE-ML type CC techniques 

of Astrom and Kallstrom ( 1973), Stepner and Mehra ( 1973), and 

Balakrishnan ( 1973). A CD version was later given by Kallstrom et al 
(1976). Basically these were the stochastic version of the "adaptive 

observer" discussed in the previous section , but with two major 

differences. The 'Kalman type filter (Kalman 1960, Kalman and Bucy 

196 1) was used instead of the Luenberger type observer, and the output 

error was replaced by the square of the output error. 

Mehra and Tyler (1973) and Sastry and Gauvrit (1978) gave a Bayesian 

form of these observers. Here, in a CD case, the difference between the 

estimated output from a predictive type Kalman filter and the measured 
output, were used in a Bayesian type algorithm to update the system 
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states, parameters and the covariance of the estimates. Although the 

convergence of this approach was not fully dealt with until much later, 

by Yashin (1986), it had been used successfully in some application work 

(Mehra and Tyler 1973). 

More recently, a different approach to the SOE adaptive observer was 

given by Chen and Tomizuka (1988). Instead of estimating both the states 

and the parameters, their observer estimated only the parameters, using 

some implicit states. The implicit states required for the parameter 

estimation were generated from the input and output of the system using 

some pre-determined filters. This approach amounts in fact to an SOE 

formulation of an EE approach based on state variable filters. More 

details on this EE approach are given later in Section 2.2.4. 

Another popular SOE method is based on the Extended Kalman Filter 

(EKF). It was first used for a continuous-time system by Kopp and Orford 

in 1963 (Young 198 1).There is one major difference between the EKF and 

the aforementioned adaptive observer. The adaptive observer employs two 

separate but dependent estimation routines, used respectively for 

estimating the system states and the system parameters. In contrast the 

EKF employs only a single routine to estimate an augmented state vector, 

� ,  which has the general form of, 

(2.2-4) 

where x is a vector of the original system states as given in Equation 
(2.1-1) and e is the vector of system parameters. As the e is the multiplier 

(coefficient) of x, the augmented state equations are thus nonlinear. A 

number of different methods have been used to solve this nonlinear 

estimation problem. These included direct linearization (Jazwinski 

1970,Young 1974), quasi-linearization (Bellman and Kalaba 1965, Burns 

and Cliff 1980), invariant imbedding (Bellman et al 1960, Bellman and 

Kalaba 1964) and generalized partitioning (Eulrich et al 1980). They all 

involved some form of linearization about the current estimates. Some 

asymptotic behaviour of the EKF were given by Ljung ( 1979) and 

Westerlund and Tysso (1980). 

The EKF had been a popular SOE method pnor to 1980 and had 

reasonable success in application (Young 198 1). It is inherently 
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recursive and the system states are estimated concurrently. Thus it can 

be used for adaptive state-feedback control. However, as pointed out by 
Young ( 1981), the EKF is only an approximation to the true PE methods 

due to the underlying linearization implied by the algorithm. This may 

have accounted for the rather poor performance of EKF in certain 

circumstances and the problem of convergence and low statistical 

efficiency (Ljung 1979, Young 1981). This perhaps is also the reason for 

the reduced use of the EKF from 1980 on. 

2.2.4 Equation Error Methods 

The equation error (EE) is a linear algebraic function of the unknown 

parameters. It has a basic definition of, 

e(t) = A y(t) - :a u(t) ) (2.2-5) 

where A and 11 are estimates of the system polynomials A and B given in 

Section 2.1, and e(t) is the EE. As A and 11 are polynomials of derivatives 

in a continuous-time model, this implies the generation of time 

derivatives of the system output y(t), and input u(t). 'ro avoid the problems 
that arise from differentiation of a noisy signal, an alternative form of EE 
is usually used, that is, 

e(t) = F {  A y(t) } - F { :a u(t) } (2.2-6) 

where F{-}  is a certain transformation (This form of EE was termed the 

"Generalized equation error" by some researchers such as Young, 198 1). 

Early works on using EE methods for continuous-time models can be 

traced back to Kendall and Stuart ( 1961) in a deterministic setting. 

However a large number of different techniques have since been 
developed in both deterministic and stochastic settings. The EE methods 

have become the most popular on-line technique in recent years (Young 

1981, Unbehauen and Rao 1987, Ljung and Gunnarsson 1990). This could 

be due to their simplicity and the ease with which they may be developed 
and implemented. 
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The EE methods for continuous-time models can be identified in terms 

of, 

- the kind of F{ e }  transformation that is used. 

- the estimation technique or algorithm used to estimate the system 

parameters using the equation error. 

The F{ e }  transformation can generally be divided into three groups, 

- derivative approximation. 

- special characterization. 
- integral transformation. 

The derivative approximation is a straightforward approach in which 

the derivatives of the system input and output are approximated from the 

measurements of the input and output. The approximation techniques 

applied include the use of generalized orthogonal polynomial (Chang et 
al 1986) and block pulse function (Kraus and Schaufelberger 1990). 
Development of this approach seems very limited. This may be due to the 

fact the problems arise from differentiation of noisy signal are hard to 

overcome in this approach. However this approach has the advantage of 

having the same parameterization as the system equation. 

The techniques in the category of special characterization are those 

involving a pre-determined filtering. This special filtering serves the 

purpose of eliminating the need for differentiating noisy signals. The 

resulting model equation depends on the filtering applied. An early 

technique is the use of state variable filters (Kaya and Yamamura 1962, 
Valstar 1963, Kohr 1963, Young 1965, 1969, 1976, Young et al I978). In 

more recent years the state variable filter approach has been developed 

into the use of the Poisson moment functional (Saha and Rao 1980,1981 ,  
1982, 1983; Sivakumar and Rao 1982). Other techniques include the use of 

modal function (EI-Shafey and Bohn 1987, Kraus and Schaufelberger 

1990). A disadvantage of this approach is that the parameters of the 

resulting model -equation differ from the original system parameters. 

The parameters of the resulting model equation are generally functions 
of the filter parameters and the system parameters. 

A popular approach in recent years is the integral transformation. The 

integral transformation approach starts by transforming the differential 

equation of the system model into an integral equation model using 
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multiple integrations. Consider a simple second order differential 

equation model, 

d2y" dy" 
"d(2't) + at(ft\t) +aoY(t) = bu(t) (2.2-7) 

The integral equation model of the system is obtained by integrating 

repeatedly the system's differential equation, that is, 

t t t t t t 
d2y" dy" 

J J dt2't) dt d t  + at J J di't) dt d t  + ao J J yet) d t  d t  o 0 0 0 0 0 

t t 

= b J J u(t) d t  dt 
o 0 

This yields, 

t t t yet) + at J yet) d t  + ao J J yet) dtd t - t (%r-<o)+aty(o) ) 
0 0 0 

t t 

= b J J u(t) dtd t o 0 

(2.2-8) 

(2.2-9) 

This method has the advantages that the differentiation of noisy signals 

is avoided. Furthermore, the integral equation has the same parameters 
( the a t ' ao and b in Equations (2.2-7) and (2 .2-9) ) as the original 

differential equation model . 

The question now is how to realize the integrals in this integral equation. 

A large number of techniques have been used. An early technique is the 

use of orthogonal functions such as the Walsh function (Mathew and 

Fairman 1974, Rao and Sivakumar 1981). Palanisamy and Bhattacharya 

(1981) later introduced the use of another orthogonal function, the block 

pulse function. As' the block pulse function was easier generated than 

Walsh function, it soon became a common approach in early 1980's (Rao 

1983 , Hwang and Guo 1984, Jiang and Schaufelberger 1985) .  An 
extension to state estimation using block pulse function was given by 

Sinha and Zhou (1984). Mukhopadhyay and Rao ( 199 1) extended this use 

further to a joint state and parameter estimation in multiple input and 

output systems. Some related works include the use of orthogonal 

polynomials such as the Legendre polynomial (Hwang and Guo 1984). 
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In recent years, the numerical methods are also applied to approximate 

the integrals. This includes the use of the trapezoidal integration rule 

(Whitefield and Messali 1987) and Simpson's integration rule (Chao el. al 

1987). With availability of low cost and fast digital devices, the numerical 

approximation seems to be a more attractive technique as the 

complicated mathematical formulation which is involved in the use of 

orthogonal functions or polynomials can be avoided. 

A major draw-back of the integral transformation approach is that some 

additional terms corresponding to the initial conditions result from the 

multiple integration. In the previous second order example, this 

additional term is the, 

in Equation (2.2-9) which consists of the initial system conditions, ¥<o) 
and yeO). The complexity of the estimation problem thus increases as the 

initial conditions are also unknown quantities and need to be estimated 

concurrently with the system parameters. 

Another problem with the integral transformation approach is that the 

integral equation consists of quantities that might accumulate 

indefinitely. These quantities are the integrals of the system input and 

output, and also the time variable t associating with the initial conditions 

as shown in the above example. As a result, the estimation routine needs 

to be reset at regular intervals and a learning phase needs to be allowed 

for after each reset. 

In order to overcome the problem of initial conditions in the integral 

transformation, two techniques have been developed in recent years. 

They are the "integrated sampling technique" (IST) of Schoukens (1990) 
and "linear integral filter" (LIF) of Sagara and Zhao ( 1990). These 

techniques involve a special integration defined by, 

f y et )  d t  
t - M 

where M is a constant determining the interval of integration. The same 

manipulation of data is involved in the parameter estimation technique 

to be presented later in this thesis. However, this special integral is 
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referred to as the "fixed interval integral" (FII) as the length of the 

integration interval is constant. 

Almost all of these transformations result in a model description similar 

to the standard linear-in-the-parameters description (Ljung 1987, 
Gawthrop 1982) of discrete-time models. In the case of the previous 

example of integral transformation, the resulting integral model given 

by Equation (2.2-9) can be written as, 

(2.2-10) 

where 

(2.2-11) 

X3 (t) = J yet) dt (2.2-12) 
0 

t t X2(t) = J J yet) dtd t (2.2-13) 
o 0 

Xl (t) = t (2.2-14) 

t t Xo(t) = J J u(t) dtd t  (2.2-15) 
o 0 

and, 

P3 = al (2.2-16) 

P2 = ao (2.2-17) 

P I  = -( �7(0)+alY(0») (2.2-18) 

Po = b (2.2-19) 

Note that the Equation (2.2- 10) is linear in terms of the parameters P3 . . . Po· The variables X4 • • •  Xo are quantities to be realized. Therefore 

Equation (2.2- 10) is in the form of a standard linear-in-the-parameters 

description or a standard regression equation. The problem of estimating 

the parameters of the continuous-time model thus becomes the 
estimation of the parameters P3 . . . Po given the quantities x4 . . . xo· 
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The transformed model description can generally be sampled with 

discrete time intervals. Consequently, most of the reported works used 

directly the well-established EE estimation algorithm for discrete-time 

models (Ljung 1987), to estimate the parameters of the transformed 

model descriptions. However some reported work incorporated specially 

developed algorithms to suit their purposes. These algorithms included 

the refined instrumental variable of Young ( 1 9 76) and the bias 

compensating least square of Zhao et al ( 1991). 

2.3 A SURVEY OF METHODS FOR ESTIMATING THE 
TIME DELAY AND PARAMETERS IN 
CONTINUOUS-TIME MODELS 

In the last twenty years, several methods have been developed to estimate 

the unknown time delay and parameters in continuous-time models. 

These methods can be divided into two general classes, that are the direct 

methods and the indirect methods. The direct methods base directly on 

continuous-time models. The indirect methods require a discrete-time 

approximation of the continuous-time model. 

The direct methods can be further divided into two groups. The first 

group involves two separate stages of estimation routine. The second 

group uses only one stage of estimation routine. 

In the two-stage direct methods, the delay and parameters are estimated 

separately in two different stages. In the first stage, the parameters are 

estimated using an assumed value of the delay. These parameter 

estimates are passed to the second stage to calculate a cost or error 

function with respect to the time delay. A suitable minimization routine 

is then applied to·find a better estimate of the delay. These two stages are 

iterated to form the time delay and parameter estimation process. These 

methods include the moment functional method of Rao and Sivakumar 

( 1976) and their later work ( 1979) using Walsh functions. The method of 

Pearson and Wuu (1984) also consists of two separate stages. However, 

their routine estimates the decoupled delay first using a spline 

approximation, and then estimates the system parameters. 
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The one-stage direct methods usually start by approximating the delay 

term with a rational function. The resulting model is a model of higher 

order, with the delay value appears as a normal parameter or a 

combination of the parameters . The delay and parameters are then 

estimated simultaneously using one of the methods for delay-free 

systems. Following this principle , Gabay and Merhav ( 1 976), and 

Agarwal and Canudas (1987) proposed using Pade type approximation; 

while Gawthrop and Nihtila ( 1 985)  introduced an all poles 

approximation. All these methods used the equation-error approach 

described in the previous section. 

Comparing with the two-stage methods, the one-stage methods require 

less computation as they involve only one estimation routine. The 

parameters and delay estimates also converge faster in terms of the 

number of iterations. 'l'he one-stage methods are thus more ideal for on
line purposes. 

The indirect methods generally are limited to time delays that are 

integral multiples of the sampling interval. An exception is the method 

of Ferretti el al (1991) which is based on zero of sampling systems. The 

indirect methods can also be divided into the two-stage methods and the 

one-stage methods. The two-stage methods include the correlation 
method of Zheng and Feng (1990), and the method of Ferretti et al (1991) 
mentioned earlier. 

The common one-stage indirect methods are the extended B-polynomial 

methods. These include the work of Biswas and Singh (1978) and Kurz 

and Goedecke (1981). In these methods, the numerator of a shift operator 

model is expanded to include the possible time delay terms. The time 

delay is then derived by analysing the significance of the estimated 

numerator coefficients. For example, consider a simple delay system 

that is described in discrete-time by, 

y(k) = b u(k-2) (2.3-1) 

where k is the discrete-time index and b is the model parameter. 

When the time delay is not known, above description is expanded to give, 

y(k) = bo u(k) + b l  u(k- l) + b2  u(k-2) + b3 u(k-3 ) (2.3-2) 
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The parameters bo . . .  b3 are then estimated using an equation-error 

routine for delay free systems. If the conditions for consistent parameter 

estimation are fulfilled, the parameters bo, b I  and b3 will converge to 

zero. The time delay and model parameter can thus be identified 

simultaneously. 

The major requirement of the extended B-polynomial methods is that the 

possible range of time delay must be a priori. Also the range of possible 

time delay can not be too large, otherwise the computational load will be 

too high to be practical. However, with the availability of powerful digital 

devices in recent years, this limitation is  becoming less and less 

significant. 

The time delay and parameters estimation method developed in this 

thesis follows the extend B-polynomial approach. However, it is based 

directly on continuous-time models rather than discrete-time models. 

This method will be presented later in Chapter 5.  

2.4 SUMMARY 

This chapter has surveyed the methods used for the parameter 

estimation of continuous-time models. The survey concentrated on the 

methods which will be most suitable for on-line estimation. It was found 

that among the many different methods that have been employed to 

estimate on-line the parameters of continuous-time systems, the most 

popular methods are the equation error methods. Reasons for this are 

that these methods are easy to develop and to implement on digital 

computers. Most of the equation error methods can be coupled directly 

with a well-established discrete-time-model estimation algorithm. 
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CHAPTER THREE 

FIXED INTERVAL INTEGRALS 

AND DEFINITE INTEGRALS 

This chapter presents a special integral transformation called the 
Fixed Interval Integral transformation, using a modified operator 
notation. This special integration is developed to overcome some of the 
problems encountered in using the classical definite integration. The 
relationship between this special integral and the classical definite 
integral is then given using an algebra for some related calculus 
operators. 
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3 . 1  INTRODUCTION 

The previous chapter outlined some of the many different techniques 
employed in parameter estimation of continuous-time models.  Most 
techniques involve pre-processing or special transformation of the 
system signals in order to avoid computation of the derivative terms 
occurring in the continuous-time model. A popular class of techniques 
constitutes the Equation-Error approach based on an "integral equation". 
Among the advantages of this approach are that it is, 

1 .  simple, 
2. relatively easy to implement, 
3. inherently immune to noise.  

However, as mentioned in the previous chapter, these techniques have 
three undesirable properties which make them difficult to use for 
practical adaptive control. These undesirable properties are that the 
techniques, 

1. involve terms that accumulate indefinitely with time. 
2. depend on some initial conditions at an arbitrary initial instant. 
3. depend on all the past quantities back to the arbitrary initial 

instant. 

The infinite accumulation (the first property) means a reset mechanism 
is needed at a regular interval. Due to the second and third properties 
above, the problem of initial conditions has to be dealt with at every reset. 

These problems motivated the use of a special integral in this research 
work. This integral has the form: 

f I(v) dv  - - (3. 1-1) 
t -M 

It is  named the Fixed-Interval-Integral (FII) because, at any time 
instant t, the length of integration interval is fixed by the argument M. 
The use of this FII to overcome the aforementioned problems will be 
discussed in detail in Chapter 5 .  The purpose of this chapter is  to 
establish a convenient algebra for later work, and to determine the 
relationship of the FII to the derivative operation and to the classical 
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definite integral operation. It is determined later, in Chapters 4 and 5, 

that this relationship is important in order to derive a suitable 
realization for the FII, and to derive a delay and parameter estimation 
technique based on the FII operation. 

There are four subsequent sections in this chapter: 

Section 3.2 develops a new notational system for some calculus 
operations. 

Section 3.3 establishes an operator algebra for thes e  calculus 
operations. It also determines the relationship of the FII to 
the derivative and classical definite integral operations. 

Section 3.4 gives some general comments about the operator algebra. 

Section 3.5 determines other important properties of the FII. 

3.2 A NOTATIONAL SYSTEM FOR OPERATORS 

Most operations in electrical and electronic engineering can be 
summarized as the manipulation of signals .  This manipulation of 
signals often consists of a repetition or a cascade of similar elements. 
Furthermore, these operations might have some auxiliary parameters 
or variables that need to be pre-assigned or updated from time to time. A 

popular description of such operations in engineering is the graphical 
block diagram of the form: 

where v is the input signal feeding into a cascade of physical devices, 
each denoted by G; a is an auxiliary parameter, and the output y is the 
desired transformation of v. In this description it is very clear: 
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1. how many times the elementary operation is repeated. 

2. which is the input, which is the output and which are the other 
parameters for the cascade of operations. 

3. which are the significant variables for the cascade of operations 
as a whole. (The intermediate outputs from the first two G blocks 
are not significant in this case.) 

However in mathematics, the common description for these signal 
manipulations is the functional notation. For the system given in the 
above block diagram, its description in the functional notation is: 

G( G( G(v,a) , a) ,a) 

This description can become very complicated, for example,  when a 
cascade of integrations is represented using Leibnitz's or Newton's 
integral notation (Spiegel 1974). For example,  the difference between two 
triple integrals is represented by: 

t V3 V2 t V3 V2 
Y (t) = J J J f( v I ) d v 1 d v 2 d v 3 - J J J g (v 1 ) d v I d v 2 d v 3 

0 0 0  0 0 0  

It can be seen from this equation that the functional notation system does 
not offer the three advantages of block diagrams mentioned above. This 
notation can become too complicated to enable easy manipulation of 
terms when there are more elements involved. Furthermore, it makes 
the argument rather difficult to follow. 

Consequently, an alternative notation system is developed in this work. 
Such a system should fulfill the following criteria: 

Criteria 3.2-1 (An Appropriate Notation System) 

1. be convenient for manipulation. 

2. be convenient for implementation 

3. display explicitly all significant variables and parameters. 

4. be general in form. 

A notational system intended to satisfy these criteria is defined in the 
next subsection for use throughout this work. It is a system developed 
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from the more conventional operator notation used by a number of 
authors (Martin 198 1, Lee 1987, Marchenko 1988). 

3.2.1 Definition of Some Calculus Operators 

We will want to represent the derivative operation, 

d 
d v  f(v)  

by the operator, p.  We could thus write, 

d 
p f(v )  = d v  f(v) (3.2-1) 

However we may want to evaluate the operation at a particular value of v ,  

for example at v =t: 

To represent this,  a subscript for the operator notation is  thus 
introduced: 

P f(v)  = � f(v)  I ( v=t) d v t (3.2-2) 

In this section a number of different operators will also be defined, 
among them the FII given by Equation (3. 1-1). The general notational 
structure for these operators is given in Definition 3.2-1 .  

Definition 3.2-0 (Sets of numbers) 

W is the set -of positive integers including zero, { 0,1,2 . . . .  } 
R is the set of real numbers • •  
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Definition 3.2-1a (General format of operator notation) 

The operations on a function, f, may be represented In the general 
format, 

where 

e represents a particular operator. 

f(VI 'V2' . . . .  ) is the operand, which is a function of VI ' V2 . . . .  

k E W is  the order of  the operation defined in Definition 3 .2-2. 

VI the first argument in the subscribed parenthesis, is the operational 

variable.  It indicates which input variable the operator e is  to 
operate on. 

x is the output variable of the operation, or the value that VI takes for 

the operation. 

a p a2 . . .  E R (unless otherwise specified) are the auxiliary parameters 

or arguments of the operation. Note that they are separated from 
the operational variables by a semi-colon. + + 

So using this notation, an operator, 0" ,  for the FII gIven In 
Equation (3. 1-1), may be defined as: 

O'(v= t ; M ) f(v)  = J f(v )  d v  
t -M 

(3.2-3) 

Though for single integral operations, the advantages of this apparently 
complex notation" may not be apparent at first sight, they will be amply 
demonstrated in the case of operations involving multiple integrals .  

The second operational argument, x, in Definition 3 .2-1a,  makes for 
flexible use of the operator. It allows the output variable to be different 
from the input variable. In the example of the FII operator of 
Equation (3.2-3), V is the input variable and t is the output variable. Also it 
gives a means of identifying sampled information. For example: 
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8CV=XI) means the output of the operation is sampled at V=XI 

8Cv=xv means the output of the operation is sampled at V=X2 

31 

However there are cases where it may not be necessary to use this second 
operational argument, for example,  when the variable that is to be 
operated on is obvious, especially when the input is a function of time. 
Similarly the intermediate outputs in a cascade of similar operations 
will usually have no significance, as they are simply dummy variables to 
be passed to the next operation. Consequently, for simplicity in 
representing a cascade of operations, the following three definitions are 
useful . 

Definition 3.2-1b (First notational abbreviation) 

The operator notation employed when the input variable does not need 
explicit reference is as follows, 

8ex ; a )  f(t)  = 8( t=x ; a ) f(t )  

Definition 3.2-1c (Second notational abbreviation) 

• •  

When none of the arguments or variables needs to be . specified, we will 
write , 

• •  

Definition 3.2-2 (Order of an operation) 

The order of an operation is the number of times the operation is 
repeated. That is,_ � kth order operation is defined as, 

e1 f = e( e ·  . .  (e( ef) ) . . .  ) 
'----v-------' 

1 

• •  
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Using these abbreviations, a cascade of similar operations represented 
formally as, 

can be more simply represented, without ambiguity, as, 

Definition 3.2-3 (Zero order operation) 

The operand is defined to be invariant under a zero order operation, ie: 

• •  

Assumption 3.2-1  (Linearity of operators) 

We will restrict attention to operators that are linear in the following 
senses:  

E> ( fl + f2 + . . . .  + fi ) = E> fl + E> f2 + . . . .  + E> fi 

Using these definitions, a set of operators is  defined for the operations 
used later in this work. These are given in the next definition. 
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Definition 3.2-4 (Operators) 

Operation 

8(v=t ;t ) f(v) 

p(v=t) f(v) 

l1 (v=t )  f(v) 

( v=t ; to )  f(v) 

O"(v=t ;M) f(v) 

V (v=t ; M) f(v) 

Definition 

f(t -'t )  

�f(V) 1 dv t 

J� f(v)dv 

5,: f(v)dv 

5,�M f(v)dv 

f(t ) - f(t -M) 

By these definitions, it is clear that 

3 3  

O(v=t;t) f(v) gives the value of f(v) backward shifted by t units o f  time, 

and evaluated at time t. 
p(v=t) 

f(v) 

l1(v=t) f(v) 

gives the derivative off(v) evaluated at time t. 

gives the (definite) integral off(v) evaluated between 0 

and t. 
gives the (definite) integral off(v) evaluated between to 

and t. 

(J(v=t; M) f(v) gives the fixed-interval integral of f(v) evaluated at time 

t, with fixed interval of M units of time. 

V(v=t; M) f(v) gives the backward difference off(v) evaluated at time t, 

with fixed difference interval of M units of time. 
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The ( operator is a generalization of 11 . These two operators are effectively 

the same when to = 0, ie: 

(Ct ; 0) f(v )  = 11( t) f(v )  

However, they are given as two distinct operators here In  order to 
emphasize the inherent reset mechanism of (, at time to .  

The basic properties of differences can be found in a standard text on 
finite element differences such as Richardson ( 1954). Two important 
properties of differences for this work are given in Lemma 3 .2- 1  and 
Lemma 3.2-2. 

Lemma 3.2-1 
( i+ 1 th order backward difference involving the ith power of a variable ) 

For all positive integers i ,  the following holds (Richardson 1954): 

V( . M ) . . . . .  V( . M )V ( . M ) vi = 0 Xi + l '  i + 1 x 2 ,  2 v =X 1 ,  1 

where v i means v to the power of i .  

Therefore if, 

Mi+ l = Mi = . . . . .  = M l  = M 
then the above equation can be simplified to: 

Lemma 3.2-2 
( ith order backward ·difference involving the ith power of a variable ) 

For all positive integers i ,  the following holds (Richardson 1954): 
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3.2.2 Advantages of the Operator Notation 

The operator notation system defined in the previous section has several 
advantages that are important to the work presented in this thesis. This 
section will demonstrate these advantages by using some quantities that 
will be dealt with often in the later chapters. These quantities are the 
backward differences of integrals .  Let consider the following two 
quantities, 

h I l -M 

f J(t)  d t  - f J(t )  d t  
o o 

V =t l  v v =l t -M v 

f f J(t)  d t d v -
2 f 

o 0 0 

+ 

v =/ 1 -2M v 

f f J(t)  d t  dv  
o 0 

f J(t )  d t  d v  
o 

(3.2-4) 

(3.2-5) 

where Xl (tl) is the first order backward difference of a first order integral, 
and X2(tj ) is the second order backward difference of a second order 
integral. Both of them are to be evaluated at time tl . 

U sing the operator notation system defined in the previous section, these 
two quantities can be rewritten as, 

Xl (t l ) = V (t=t 1 ; M) 1](t) J(t )  (3.2-6) 

2 2 
x2(t d = V (t=/ l ;  M) 1] (t) J(t)  (3.2-7) 

The advantages of the operator notation are now examined using 
Criteria 3.2- 1 .  

1 .  Be convenient for manipulation 

Comparing Equations (3.2-4) and (3.2-5) with Equations (3.2-6) and (3.2-7), 
it is obvious that the equations using the operator notation are much 
shorter and simpler. This is more obvious when the order of the 
difference and integral is high. Therefore,  the quantities involved can be 
bring forward easier to other equations when the operator notation is 
used. 
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2. Be convenient for implementation 

It is quite clear from Equations (3.2-6) and (3.2-7) that, Xl (tl) and X2(tl) can 
be realised by cascading backward difference devices and integrals .  
Meanwhile, careful inspection is required to  find out the operations 
needed to implement Equations (3.2-4) and (3.2-5). 

3 .  Display explicitly all significant variables and parameters 
The variables such as t, v and M appear in several places in Equations 
(3 .2-4) and (3 .2-5). Careful inspection is needed to comprehend their 
purposes and significance. However, it is clear from Equations (3 .2-6) 
and (3.2-7) that M is common to all the difference operations, and all the 
operations operate on the time variable t. 

4. Be general in form 

Using the operator notation, a general form can be written for XI(tl) and 
X2(tl), that is, 

n i i 
Xi (t l ) = v 11 fCt ) (/=/ 1 :  M) ' / (I) (3.2-8) 

However, Equations (3.2-4) and (3.2-5) can not be arranged into a simple 
and general form. • •  

Although the work presented in this thesis can be developed using the 
traditional Leibnitz's integral notation, the use of the operator notation 
system has enable some of the results to be derived easier. Furthermore, 
these results can be presented in a simpler and clearer form when the 
operator notation is used. 
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3.3 AN ELEMENTARY ALGEBRA OF DERIVATIVE 

AND INTEGRAL OPERATORS 

37 

Using the notation defined in the previous section, an operator algebra 
representing some elementary properties and relationships  of the 
operators p, 1] ,  " (J, and V are given in this section. The relevant 

properties and relationships are grouped together and presented in five 
theorems, Theorems 3.3-1 to 3.3-5. 

Theorem 3.3-1 shows the commutativity for the differential operator p, 

the Fll operator (J, the shift operator 0, and also the backward difference 
operator V. Then using Assumptions 3.3-1 and 3.3-2, the commutativity 
property is extended to include the classical integral operators, 1] and ' in 

Theorems 3 .3-2 and 3.3-3. This follows by some relationships between 
operators in Theorem 3.3-4. These relationships and the commutativity 
properties are important to the development of the parameter estimation 
technique in this thesis. The last theorem, Theorem 3 .3-5, is included 
largely for theoretical interest. It presents a framework to enable the 
differential operator to be commutative with the classical integral 
operators. 

In most of these theorems, the commutativity is shown only for the first 
order operators. The applicability of these theorems for operators of 
higher order and some other general comments are given Section 3 .4.  

These theorems are given in the following. For simplicity, the operands 
are omitted in most cases. 

Theorem 3,3- 1 (Commutativity of operators) 

(a) p o =  o p 
(b )  a o = o a  
(c ) V p. = p V 
(d )  V a = (J V 
( e ) a p = p a • •  
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Proof 
(a) 

P (1)8 (v;T)·f(v) = 

= 

= 

= 

= 

= 

= 

= 

(b) 
(J (I;M)8 (v;T,.f(v) = 

= 

= 

= 

= 

= 

(c) 

V(I;M) P(I) f(t) = 
= 

= 

(d) 
V(I;N) (J(I;M) f(t) = 

= 
= 

P (I)·f(v - -r) 
d -f(v - -r)1 dv v=1 
df(v - -r) . d(v - -r) l v_, d(v - -r) dv -
df(v - -r) I d(v - -r) v=1 
d ��) I OJ=I-T , w = v - -r 
d:�V) 1 v=H 
p (H)·f(v) 
8 (l-qP (t,f(v) 

(J (I.M).f(V - -r) 

J,�M f(v - -r)dv 

J,�:-M f(w)dw 

f (I-T) 
(I-T)-M f(v)dv 

0" (I_T;M).f(v) 
8 (I;T)(J (I;M).f(V) 

P(I) f(t) - P(I-M) f(t) 
P(I) f(t) - P(I) f(t - M) 
p(I)V(I;M) f(t) 

(J(I;M) f(t) - (J(I-N;M) f(t) 
(J(I;M) f(t) - (J(I;M) f(t - N) 
O"(I;M)V(I;N) f(t) 
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, w = v - -r  

, by theorem 3.3 - l a  

,by theorem 3.3 - l b  
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(e) 

First we have, 

= rt df(v) dv Jt-M dv 
= f(t) - f(t - M) 
= V(t;M) f(v) 

Now using Leibnitz's rule: 

we have, 

p(t)G(t;M) f(v) 

= f(a) da _ feb) d
b 

dt dt 

= �[ rt f(v) dV] dt Jt-M 
= f(t) dt _ f(t - M) d(t - M) 

dt dt 
= f(t) - f(t - M) 
= V(t;M) f(v) 

Finally, with Equations (3.3- 1) and (3.3-2), we have, 
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(3.3 - 1) 

(3.3 - 2) 

• •  

The above two theorems can be extended to include the 17 and , operator 

using the following assumptions. 

Assumption 3.3-1 

f(t)  is an integrable function such that : 

f(t)  = 0 for all t < 0 

and thus 

f(t -M) = 0- ' for all t < M • •  
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Assumption 3.3-2 

f(t)  is an integrable function such that: 

f(t)  = 0 for all t < to 

and thus 

f(t -M) = 0 for all t < to  + M • •  

Theorem 3.3-2 (Commutativity among 0, TI ,  V and 0) 

If Assumption 3.3-1 holds, then the following are true. 

(a) 7J 8 = 8 7J 

(b )  V 7J = 1] V 
( c ) (J 7J = 1] (J 

C d )  The above results (a) to (c) are also true for 1]k, for all k E W • •  

Proof 
(a) 1](1) f(v - -r) = f; f(v - -r) dv 

(b) V(I;M) 1](1) f(t) 

= f�Tf(w) dw 

= f;-Tf(w) dw 

= f;-f(v) dv 
= 1](I-T) f(v) 

,w = v - -r 

, by assumption 3.3 - 1  

= 1](1) f(t) - 1](I-M) f(t) 
= 1](1) f(t) - 1](1) f(t - M) , by theorem 3.3 - 2a 

= 1](I)V(I;M) f(t) 
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(c) 17(/) <J"(/;M) f (v) 
IO/2 I "  = t, -M f(v)dvdtl 

= I�2 I�' f(v)dvdtl - I�2 I�' -M f(v) dvdtl 

= I;2 I;' f(v)dvdtl -f�M I: f(v) dvdw , OJ = tl - M  

(d) 

= I;2 I: f(v)dvd-r - I;2-M I: f(v) dvd-r 

= I /2 I T f(v)dv d-r ,2 -M 0 

= <J"(t;M) 1h .f(v) 

, by assumption 3.3 - 1 
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Because of the inherent associativity of the operator, we can consider a 
17k+ 1 operation as a 17 operation, with the result of 17k operation as the 

operand, that is: 

11
k
(;)l f(t) = 11 (!) ( 11 (�) f(t )) = 11(t) fk (t ) 

where 

Therefore Theorems 3.3-2a to 3.3-2c, which require the operand to follow 
Assumption 3.3-1, are also true for if+l, if fk (t) follows Assumption 3.3-1. 

Now to prove that the fk (t) follows Assumption 3.3-1 for all k, let: 

then 

k = 1 and f(t) obeying Assumption 3.3- 1 

k 1 fk (t ) = 11(t) f(t) = 11 (t) f(t) = 0 , for all t < 0 

so by induction, -fk (t) follows Assumption 3 .3-1  for all k. As a result, 

Theorem 3.3-2a to 3.3-2c are also true for k = 2, 3, . . . .  
• •  
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Theorem 3.3-3 (Commutativity among 0, T\ ,  V and �) 

If Assumption 3.3-2 holds then the following are true for all 't' E R 

(a )  ( 8  = 8 ( 
(b )  V ( = ( V 
( c )  a ( =  ( a  
( d )  17 ( = ( 17  

42 

(e) The above results (a) to (c) are also true for (k , for all k E N • •  

Proof 
(a) , (b) ,  (c) and (e) are proved in the same way as Theorems 3 .3-2 a to 
3.3-2d, but using Assumption 3.3-2. 

(d) 
71(1) '(1; 1. ) f(t) = r' rl2 f(t1 ) dt1dtz Jo J,. 

= f; [f;l f(t1 )dt1 - f;· f(t1 ) dt1 ]dtz 
but by Assumption 3.3-2, 

rl. Jo f(t1 )dt1 = 0 

so ,  

71(1) '(1;1. ) f(t) = f; J;2 f(t1 )dt1dtz 
= rt r t2 f(t1 )dt1dtz = '(1;10 ) 71(1) f(t) Jto Jo 

• •  
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Theorem 3,3-4 (Relationship between operators) 

(a)  (J = V 1] = V ,  
(b )  (J P = V 

(c ) P 1] = P '  = 1 
Proof 
(a) 

(jf = f.' f(v)dv ,-M f., f.'-M = f(v)dv - f(v)dv 
'a 'a 

= V'f 

By assigning to = 0, it can be proven in the same way that, (j = V11 . 

(b) 
(jpf f., df = -dt t-M dt 

= f(t) - f(t - M) = V f 

(c) Using the First principle of calculus or Leibnitz's rule, 

= !!..{f.' f(V)dV} = f dt 'a 

By assigning to = 0, it can be proven in the same way that, P 7J = 1 .  

4 3  

• 

• •  

Theorems 3 .3- 1 to 3 .3-4 show the properties of the V ,  p, 11 ,  , and (j 

operators. Note that some properties or relationships are true for some 

operators but not for some others. This is due to the lack of commutativity 
between the p and 11 and, between the p and , operators. However, 

restricted commutativities between these operators can be achieved when 
the operators are used following the backward-difference: 



Chapter 3 FII & Definite Integrals 

Theorem 3,3-5 (A commutativity framework for P, TI ,  and �) 

(a) 'V 17 P = 'V P 17 = 'V 

( b )  'V ( p  = 'V P ( = 'V 

Proof 
(a) and (b) : 

Using Theorems 3.3-4a and 3.3-4b, it can be shown that, 

'V 17 P = 'V ( p  = (J P = 'V 

and using Theorem 3.3-4c, 

'V p 17 =  'V p 17 = 'V 

3.4 SOME GENERAL COMMENTS 

44  

• •  

Three general comments about these results may be made. Firstly, the 

commutativity given in Theorem 3.3-1  and the inherent associativity 

imply that the theorem is also true for operators of any order. For 

example, we can show 

'V p2 = p2 'V 

using the following procedure, 

'V p2 = 'V p p = ( 'V  p) P 

= ( p 'V ) p 
= P ( 'V P ) 
= p ( p 'V )  
= p2 'V 

, by Theorem 3.3-1c 

, by Theorem 3.3-1c 

However the commutativity of the first order 1] and , operators given by 

Theorems 3.3-2 and 3.3-3 is restricted respectively by Assumption 3.3-1 
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and 3.3-2. It is thus necessary to prove that these operators of higher 
order, 1]k and ,k, have the same commutativity when the assumptions 
are followed. In view of these, Theorems 3.3-2d and 3.3-3e are presented 
in order to justify the commutativity of nk and ,k respectively. 

Secondly, Theorems 3.3-1 to 3 .3-3 mean that: 

(i) p, cr and V are always commutative with respect to each other. 

(ii) 1] is commutative with respect to (J and V, if Assumption 3 .3-1  
holds. 

(iii) , is commutative with respect to 0', V and 1] ,  if Assumption 3 .3-2 

holds. 

Note that p and 1],  and p and , are not generally commutative with 

respect to each other. The commutativity relationships between these 
operators that are specified in Theorem 3.3-5 are provided largely for 
theoretical interest. 

Finally, the FII relationships given by Theorems 3.3-4a and 3.3-4b are the 
most important results for the remainder of this thesis. 

3.5 PROPERTIES OF FII 

Some important properties of the FII are now presented. 

Corollary 3.5-1 (Independence of Constant Initial Conditions) 

The FII, of any order, is independent of any constant initial conditions . 
• •  

Proof 
This is directly due to Theorem 3 .3-4a; that is because 

(J = Y' 1J 
the constant initial conditions that result from the classical definite 
integration, 17 ,  are eliminated by the difference operation Y' .  • •  
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Corollary 3,5-2 (Boundness of FIT) 

If itt) is bounded for all time t, then the FII of fCt), of any order is also 
bounded for all time. • •  

Proof 
A bounded function, fCt), can be represented by a Fourier cosine series 

over a period 0 � t � L for an arbitrarily large L , 

- nn f(t) = ao + La" cos(-t) 
,,=1 L 

where ao and an are the Fourier half-range cosine coefficients. 

Noting the identity: 

sin (t) � c o s( � - t ) 
the kth definite integral over the interval [0 ,  t] is thus of the form: 

(3.5-1) 

(3.5-2) 

(3.5-3) 

where bn and en are some appropriate constants, and the functions gn( t) 
are some appropriate functions of t . 
As (j = V1} (Theorem 3.3-4a), (jkf(t) is thus the kth backward difference of 

Equation (3.5-3). Noting that, 

cos(t) - cos(t - M) = - 2sin(21;M) sin(%:) 

= K sin( 21;M) 

= K cos( M+;-21) 

and using Lemma 3.2-1 and 3.2-2, we get 

-
(j(�;MJ(t) = qo + Ld" cos(h,, (t») 

,,=1 

, K = constant 

(3.5-4) 
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where dn are some appropriate constants and hn(t) are some appropriate 
functions of t. 

As both terms In the right-hand side of Equation (3 . 5-4) do not 
accumulate with time , the FII is thus also  bounded In the 
interval [O , L] .  • •  

Corollary 3.5·3 (Frequency response of FIn 

The frequency domain equivalent of the FII operator, a{ro} is: 

where M is the fixed-interval of the FII, and (J) is the frequency variable . 
• •  

Proof 
The backward difference operator V is defined in Definition 3.2-4 as: 

So its frequency domain equivalent, V is} '  is given by: 

v { s } = ( 1  - e -Ms ) 

(3.5-5) 

(3.5-6) 

where s is the Laplace transform variable. Also, the integral operator 17 

has its frequency domain equivalent of: 

1 
7J { s }  = s (3.5-7) 

It has been determined from Theorem 3 .3-4a that a = V 17 . So the 
frequency domain eqUivalent of the FII operator, a{s} , is given by: 

a { s }  = V { s } 7J { s }  

= ( 1 - e-Ms ) � 
= j� ( 1 - c a s( -roM) - jsin( -coM) ) (3.5-8) 
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andj is the imaginary variable, U 
Using the identity, 

and 

sin (A) = 

Equation (3 .5-8) above becomes, 

1 2 . ( ro M)( . ( ro M) . ( ro M) ) = jro SIn --2- sm -T - JC O S  -T 
2 . (ro M)( . ( ro M) . ( ro M) ) = -jro SIn -2- SIn --2- - JC O S  -2 

2 . ro M  ( 1 . ro M  ro M  ) = ro SIn (-2-) -ys m ( - -2-) + CO S (-T) 
2 . (ro M)( . . ( ro M) ( ro M) ) = ro SIn -2- Jsm --2- + CO S --2-

1 jro M ro M  -
= ro 2 sin (-2-) e 2 

48 

• •  

Corollary 3 .5-3 shows that the bandwidth of the FII operation can be 
manipulated by changing M. A linear plot of the frequency response of 
the FII is show in Figure 3.5-1. 
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Figure 3.5-1 Frequency Response of the FIr Operator 
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Corollary 3.5-4 (Constant input response of the FII) 
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When the FII operation is subjected to a constant input (that is when 
co=O), the response of the FII is given by, 

a(oo=O )  = M . 

Proof 
By Corollary 3.5-3: 

2 roM _ ;m M 
a{ ro}  = ro sin (T) e  2 

• 
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Thus the constant input response is, 

cr{ co=O }  = lim 2 mM _ jm M  
sin (-2 ) e 2 CJ) �O m 

2 mM = m 2 = M 

Corollary 8,5-5 CImpulse response of the FII operator) 

The impulse response of the FII operator in the time domain, SCt) is, 

S(t)  = { � , for  0 � t � M 
, else 

Proof 

• •  

• 

The impulse response of an operator is given by the inverse Laplace 
transform of the operator's Laplace description CCoughanowr and 
Koppel 1983). So the impulse response of the FII operator, SCt), is: 

Set)  = L-1 { cr { S } } = L-l {C 1 _ e -Ms ) !}  
= 

{ 01 , fo r  0 � t � M 
• •  

, else 

Some of these properties are useful for developing possible realizations of 
the FII operator in the next chapter. 
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3.6 SUMMARY 

In this chapter, a new operator notation system has been developed. This 
is  conveni ent for mathematical manipulation  and for the 
implementation of the calculus operation in this work. Some results 
towards an algebra of calculus operators including a special integral , 
named the Fixed-interval-integral (FII) are then given. The key results 
for the purposes of the rest of this work are : 

(1) a = V 17 = V ,  

(2) ap = V 

This means that the kth order FII is the kth backward difference of a 
classical kth order integral . 

It has also been determined that the FII is: 
(1) independent of constant initial conditions. 
(2) bounded for all time if the operand is bounded for all time. 

The frequency response, constant input response and impulse response 
of the FII operator are also presented as they are useful later in realizing 
the FII operation. 



CHAPTER FOUR 

REALIZATION OF 

FIXED-INTERVAL-INTEGRALS 

This chapter presents several possible methods to implement the Fixed
Interval-Integral operation. These methods include the use of : 

(1)  frequency response 
(2) a hybrid of analog and digital devices 
(3) numerical techniques 

Some limitations and advantages of these methods are also discussed. 
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4 . 1  INTRODUCTION 

The last chapter showed several properties of the Fixed Interval Integral 

(FII). Some of these properties were given purely for theoretical interest 

while others have significance in parameter estimation and system 

control. In particular, two of them are useful in realizing the FII 

operation. These are the relationship between FII and the classical 

definite integral, determined in Theorem 3 .3-5a, and the frequency 

response determined in the Corollary 3 .5-3. Using these two properties, 

three methods of realization of FII are possible, namely the: 

1) frequency response method 

2) hybrid method 

3) numerical method 

The use of these three methods in realizing the FII operation is 

discussed respectively in Sections 4.2 to 4.4 in this chapter. A summary 

is then given in section 4.5. 

4.2 FREQUENCY RESPONSE METHOD 

One way to realize the FII operation is to use analog or digital filters 

whose frequency responses approximate those of the FII. This is possible 

because the frequency response of FII, O"{co} , has been determined in 

Corollary 3.5-3 as 

2 coM _ iw M  
a{ co }  = co s in (T) e 2 

where, M, is the ti�ed interval of the FII. 

(4.2-1) 

A linear plot of the gain amplitude and phase shift at various frequencies 

in terms of the fixed interval of FII, M, is shown in Figure 3 .51 .  

The design of analog and digital filters to match this frequency response 

is discussed in the following Sections 4.2. 1 and 4.2.2. 
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4.2.1 Analog Filters 

Some standard techniques for designing analog filters to match 

frequency requirements can be found in texts such as Hasler and 

Neirynck ( 1986), and White ( 1980). These are usually based on a 

frequency description in the Laplace domain, which is in the form of a 

linear polynomial in the Laplace variable, s. So, for the purpose of filter 

design, it is more convenient to use the Laplace domain equivalent of 

Equation 4.2-1;  that is, 

-MS 
1 - e 

err s }  = s (4.2-2) 

However, this equation consists of a nonlinear exponential term in the 

numerator, therefore an approximation such as series expansion is 

needed to enable it to be used for filter design. Furthermore, Figure 4.2-1 

shows that discontinuities occur in both the gain amplitude and the 

phase shift of the FII operation when the input frequency is a multiple of 

� Hz. These discontinuities are not easily matched using analog filters, 

therefore the analog realization of FII operation is usually limited to 

operational frequencies of less than � Hz. 

For example, using the second order Pade approximation (Middleton 

and Goodwin 1990), that is, 

-Ms 
e 0:: 

M M2 
1 - "2 s + 12 s2 

M M2 
1 + "2 s + 12 s2 

Equation (4.2-2) can be rewritten as, 

errs } 0:: 
M 

- . .  M M2 2 1 + - s  + -- s  2 1 2  

(4.2-3) 

(4.2-4) 

A comparison between this approximation and the actual FII can be 

seen in the frequency plot in Figure 4 .2 -1 .  It shows that this 

approximation fails to match the discontinuities at � Hz and beyond. So 

its use is limited to frequencies below � Hz. The plot also shows the 
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approximation is exact for constant input (that is zero frequency) and the 

error of approximation increases as the frequency increases. 

Figure 4.2-1 Frequency Response of An Analog Approximation to FII 

Operation. 
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4.2.2 Digital Filters 

In digital filter design, it is useful to plot the frequency response at 

various frequencies in terms of the sampling frequency, Is, as given in 

Figure 4.2-2. 

Due to the discrete-time nature of digital filters, it is convenient to have 

the FII interval, M, as a multiple of the sampling interval, Ts. The effect 

of different values for M can also be seen from Figure 4.2-2. 

Figure 4.2-2 Frequency Response of FII in terms of Sampling 

Frequency, Is. 
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Also, i n  order to avoid the effect of frequency aliasing (Hamming 1977, 

Bose 1985, Ogata 1987), the operational frequency of a digital filter should 

be more than the Nyguist Frequency, IN , where, 

(4.2-5) 
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There are generally two approaches to designing digital filters to match 

a given frequency response, namely the: 

1) indirect approach 

2) direct approach 

The techniques used in the indirect approach are based on finding a 

discrete-time equivalent of a continuous-time filter (Hamming 1977, Bose 

1985, Williams 1986, Kuc 1988). These involve transforming the Laplace 

domain description to a discrete-time description. The discrete-time 

description is usually in the form of a linear difference equation 

involving the shift operator (or operational variable), z-l such as, 

G(z) = 
1 b - 1  b -2 + 1 z + 2z + . . .  
1 - 1  -2 + a l z + a 2z + . . .  

(4.2-6) 

where G(z) is the transfer function between the input and output of the 

filter, and ai and bi are the filter's coefficients. The transformation is 

performed using one of a number of transformations between the 

Laplace operational variable, s ,  and the discrete-time operational 

variable, z. The resultant filter is an Infinite-Impulse-Response (IIR) 

digital filter which is recursive in form. As these techniques rely on the 

continuous-time description, they suffer the same limitation as the 

analog filters described in the previous section. 

In the case of the direct approach, the resultant filter is usually a non

recursive filter with Finite-Impulse-Response (FIR). The FIR filter has a 

description similar to Equation (4.2-6) but with no denominator. There 

are two common techniques for designing a FIR filter (Hamming 1977, 

Bose 1985, Williams 1986, Kuc 1988). The first involves finding the 

impulse response of the desired filter and truncating the response using 

an appropriate window if the impulse response is not finite . The 

coefficients of the filter are then taken to be the values of the impulse 

response at various time-shifted instants. However this technique is not 

suitable for the FII operation, due to the peculiar finite impulse response 

of the FII operation. As determined in Corollary 3 .5-5,  the impulse 

response of the FII is finite and it has a constant value of one over the FII 

interval. This means the coefficients of the filter are all simply one as 

well. So for a FII interval of, M = k Ts , the transfer function in z domain 

of the ideal FII filter, cr(z), is given by, 
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a(z) = 1 + z - 1  + z-2 + . . . + z-k 
which means, 

t 

J f(t) d t = f(t) + f(t-Ts) + f(t-2Ts) + . . .  + f(t-kTs) 
t-kTs 

(4.2-7) 

(4.2-8) 

This is simply a running sum and a very bad realization of the integral 

even for a very large k .  

The second FIR filter design technique is the Frequency-Sampling 

Method for linear phase filters. It is suitable for the FII operation as 

Corollary 3.5-3 indicates that the FII operation is also of linear phase. In 

this method, samples of the gain function are taken at various 

frequencies. But, rather than calculating the impulse responses using 

these samples as in the impulse response technique, a special parallel 

filter structure is used to implement each frequency sample directly. It is 

capable of implementing frequencies higher than � Hz, provided 

sufficient samples are used. However, the design procedure is rather 

complicated and a large filter structure usually results since the size of 

the filter is proportional to the number of samples used. 

An alternative approach is the technique given by Schoukens et al ( 1988). 
Here, the designing of filters was re-formulated as a problem of 

parameter estimation, and the objective was to estimate a difference

equation description from frequency response data in terms of both phase 

shift and gain amplitude. In this case, Equation (4 .2-1) is used to 

generate the frequency data. However, as pointed by Schoukens ( 1991), 

the discontinuity in the FII frequency response is not easy to match. So 

this technique is also usually limited to frequencies less than � Hz. 

4.2.3 Comments on Frequency Response Methods 

The previous two sections have outlined several approaches to the 

realization of the FII operation based on its frequency response. These 

techniques can only provide limited realization, mostly due to the 
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peculiar frequency and impulse response of the FII operation. This 

peculiarity can be explained by Theorem 3.3-5a, that is, 

a = V 1]  
From this equation, it can be seen that the FII is a hybrid of a discrete

time operation (the backward difference )  and a continuous-time 

operation (the integration). So a realization using analog filters which 

are inherently continuous in time suffer from the fact than the discrete

time backward difference is difficult to match. Meanwhile the use of a 

digital filter based on frequency response methods is complicated by the 

continuous-time integration. In addition, a digital filter design using a 

frequency response technique usually involves complex and numerous 

calculations. 

In view of the hybrid characteristics of the FII operation, a realization 

involving both analog and digital components is suggested in the 

following section. 

4.3 HYBRID METHOD 

Theorem 3.3-5a in the previous chapter established that, 

a = V 1] ( 4.3-1) 

This gives an important undertanding of the FII operation. It means the 

FII operation can be separated into two sub-operations, backward 

differencing (denoted by V in Equation 4.3-1)  and definite integration 

(denoted by 11 ). Because it is easier to implement the backward difference 

opearation in discrete-time and the definite integration operation in 

continuous-time, a natural way to realize the FII operation is to use a 
.. - - . 

hybrid of digital and analog devices. Therefore a possible implementation 

is that given in Figure 4.3-1. 
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Figure 4.3-1 Hybrid Method I 

ANALOG 

f( t) --"""'---1 

integrator 

DIG ITAL 

delay 

Here, 8 is the delay operator as defined in Chapter 3 

If Assumption 3.3-1 or 3.3-2 holds, the commutativity of V and T7 

(determined in Theorem 3.3-2) can be used to yield an alternative 

arrangement given in Figure 4.3-2, 

Figure 4.3-2 Hybrid Method II 

DIGITAL 

f(t) --r---"""'--I 

delay 

ANALOG 

cr t  

integrator 

The validity of these two assumptions in practice will be discussed in 

detail in Chapter 5. 

Apart from the arrangement of blocks, there is another major 

implementational difference in these two hybrid configurations. In 
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Hybrid Method I, the analog integrator integrates the input ft.t) directly. 

So its output may accumulate indefinitely and thus this configuration 

requires a reset mechanism. In Hybrid Method II, the output of the 

integrator is also the final result of the FII operation. It has been 

determined in Corollary 3.5-2 that the FII is bounded for all time if the 

input f(t) is bounded for all time. So a reset mechanism may not be 

needed if the boundary value of the FII is within the capability of the 

integrator. 

As both the integrator and the delay components are usually standard 

devices in a modern control system, the hybrid method provides a very 

simple and easy means to realize the FII operation. However the 

capability of this method is limited by the capability of the available 

integrator. 

It is important to note that the arrangements given by the two hybrid 

methods are valid even if the integrator is a discrete-time approximation. 

The use of a digital integrator in this arrangment provides the 

foundation for the next form of FII realization, the numerical method. 
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4.4 NUMERICAL METHOD 

It is well known that the definite integral of a function can be 

approximated using the Newton-Cotes family of numerical integration 

formulae or rules (Bajpal et al 1974, Davis and Rabinowitz 1984). These 

formulae have the general form of 

b 
f !(t)  d t  = h [ wo !(a ) + W I  !(a +h )  + . . .  + wn !(b) ] 
a 

(4.4-1) 

where h is a constant step size and Wi is an appropriate weighting. Also 

the weightings of these formulae are symmetric so that, 

(4.4-2) 

In the context of instrumentation science, it is more convenient to assign 

the upper limit of integration as the present time, the lower limit as a 

given initial time and the step size as the sampling interval Ts (Williams 

1986, Ogata 1987). This gives 

t 
f !(t) d t  = h [ wo f(t )  + W I  f(t-Ts) + . . .  + wn f(to) ] 

to 

or in a recursive form, 

f !(t)  d t = J n C f(t » )  + 
to 

where 

t- nTs f f(t)  d t  
to 

(4.4-3) 

(4.4-4) 

Jn C f(t » )  = Ts [ wo !(t) + w l f(t-Ts) + . . .  + wn f(t-n Ts) ]  (4.4-5) 

n E W, and W = { 0 ,1,2,3, . . .  } as defined in definition 3 .2-0. 

J n is the "fundamental formula" of a Newton-Cotes type numerical 

integration rule (Davis and Rabinowitz 1984). It consists of the minimum 

number of moving terms required for the numerical integration rule. 

The number of terms in J n depends on the order of the numerical 
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integration rule; an nth order (or (n+ l )-point) requires (n+ l ) terms. For 

example, using the Trapezoidal Rule (Davis and Rabinowitz 1984), which 

is a first order Newton-Cotes formula, Equation 4.4-3 becomes, 

t 
f f( t )  d t :::: 11 + 

to 

t -Ts 
f f(t)  dt 

to 

where the fundamental formula, In. consists of two terms of form, 

T 
In = II = � [ f(t)  + f(t-Ts) ] 

Before proceeding, it is convenient to make the following definition, 

which will be used in the sections that follow. 

Definition 4.4-1 (Delay Interval of Delay Operator) 

The delay interval of the delay operator is the sampling interval, Ts ' 

unless otherwise specified, that is, 

• •  

Using this definition and the operators' notation defined in Chapter 3 ,  a 

Newton-Cotes formula for numerical integrati on given in 

Equation (4.4-4) can be rewritten as, 

s f( t ) :::: [ 1  n( 8) + 8n s ]  f( t) ( 4.4-6) 

where 

I n( 8) = T s ( W 0 + w I  8 + W 2 82 + . . .  W n 8n ) (4.4-7) 

or omitting the operimd, f(t), 

(4.4-8) 

Equation (4 .4-8) can be expanded in the second term, 8n " using 

Equation (4.4-8) itself to give, 
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( z J n( 0) + 8n [ J n( 0) + 
8n ( ] 

z ( 1  + 8n ) J n( 0) + 82n ( 
This expansion process can be repeated to give, 

r 

( z I, i-i- l )n Jn(O) + 8rn ( 
i= l  

for some integer, r E W 
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(4.4-9) 

Equation (4.4-9) plays an important role later in deriving a numerical 

approximation to the FII. 

When a FII is approximated by numerical rules, the fixed-interval of the 

FII is limited to a multiple of the sampling interval because of the 

discrete-time nature of numerical methods. 

Three numerical methods for the realization ofFII operations have been 

developed in this thesis.  All these methods assume that, the fixed

interval, M, is a multiple of the sampling interval, Ts, such that: 

M = m Ts , m E W (4.4-10) 

These methods are different in terms of the number of fundamental 

numerical formulae which are combined, and the possible orders of the 

numerical rules. They are described in the following. 

4.4.1 Numerical Method I 

In this approach, a single fundamental numerical formula is used. The 

9rder of this fO�1l:la, n, is chosen such that, 

m = r n r , n  E W 

where m is defined in Equation (4.4-10). The following theorem gives an 

approximation of FII operations using this approach. 
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Theorem 4.4-1_ (Numerical Method l) 
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If In(5) is the fundamental formula of an nth order or (n+ 1) point (ne W) 
Newton-Cotes rule and, Ts is the sampling interval, then a numerical 

approximation of a FII with interval, M, such that, 

M = r n Ts , r e  W 

is given by, 

k 
cr (t ;  rnT s) � [ .1: o(i- l )n J nCo) ] k 

l= 1 

Corollary 4.4-1_ (Recursive Numerical Method l) 

• •  

The recursive version of the numerical rule given in Theorem 4.4.1 is, 

Note : the FII interval, M = r n Ts 

Proof 
By Theorem 3.3-5, 

cr = V S (t ;  rnTs) (t ; rnTs) (t ; to) 

= ( l orn ) y ':>(t ;  to) 

= y _ om y ':>(t ; to) ':>(t ;  to) 

and from Equation 4.4-8, 

r 
, �  L c5< i - 1 ) n J n( 8) + 8m , 

i = l  

• •  

(4.4-11) 

(4.4-12) 

Substituting Equation (4.4-12) into the first term of Equation (4 .4- 1 1) 
yields, 
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r 

::= � i-i- l )n In(� + 8rn r _ 8rn r cr (t ; rnTs) L.J V) I;, I;, i=l  
r 

::= L i-i- l )n In(5) 
i=l 
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(4.4-13) 

So cascading the above equation gives the k th FII numerical 

approximation in Theorem 4.4-1. 

The recursive equation in Corollary 4.4-1 is obtained by noting that the 

summation term in Theorem 4.4-1, 

r 

L i-i- l )n 
i=l  

is  a geometric series of lJl. So using the well known summation formula 

for a geometric series (Tennent 1971), we get, 

r I, i-i- l )n In( S) = 
i=l  

In(8) 

Substituting this equation into Theorem 4.4-1 gives, 

Finally, rearranging Equation (4.4-15) yields Corollary 4.4-1 . 

(4.4-14) 

(4.4-15) 

• •  

Using this approximation a FII version of the popular Trapezoidal rule 

and the Simpson rule can be derived and are given as follows 

Rule 4.4-L (Trapezoidal Rule for FII) 

cr�t ; rTs) ::= !f[ 1 + 2 8  + 282 + . . .  + 2 8r- l + 8, ] k 
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Proof 
The trapezoidal rule is a first order Newton-Cotes rule, that is, n = 1,  and 

it has the fundamental formula of: 

So, using Theorem 4.4-1,  Rule 4.4-1 is derived. 

Rule 4.4-2 (Simpson 1/3 Rule for FII) 

a� ; 2rTs) ,.. t [ ( 1 + 4 ( 0 + 03 + . . .  + 02r- l ) 

• •  

+ 2 (  02 + 04 + . . .  + 02r-2 ) + 02 r ] k • •  

Proof 
Again by using Theorem 4.4-1 with, n=2, and, 

• •  

The use of these rules are demonstrated in the following example. 

Example 4.4.1 
Let the sampling interval be 1 second and the FII of interest be second 

order with interval of 2 second, that is, 

Ts = 1 ,  k = 2 , and M = 2 = 2Ts 
(i) for Trapezoidal rule, r = 2 : 

a�t ;  2) ,.. � 1 + 20 + 02 )
2 

,.. � 1 + 20  + 02 )( 1 + 20  + 02 ) 

,.. � 1 + 4 0 + 602 + 4 83 + 84 ) 
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k 
so, aU;  2) f(t ) 

=: i[ f(t) + 4f(t-Ts ) + 6f(t-2Ts) + 4f(t-3 Ts ) + f(t -4Ts ) ] 

(ii) for Simpson 1/3 rule, r=l : 

cr�t ; 2) =: t< 1 + 40 + 02 )2 
=: t< 1 + 8 0  + 1 8 02 + 8 03 + 04 ) • •  

Some properties of these rules and a comparison of different orders is 

discussed in Section 4.4.4. 

4.4.2 Numerical Method II 

In this approach, two fundamental formulae of nl th order and n2th order 

respectively are combined. The orders are chosen so that, 

An approximation to the FII using this approach is determined in the 

following lemma and theorem. 

Lemma 4.4-1 (Sum of FII Interval) 

For all MI and M2 E R, 

cr = cr + 0  cr (t ; M I +M2) ' . .  (t ; M l )  (t ; M l )  U; M2 )  • •  
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Proof 

= J fCv) d v 
t-M I -M2 

= J fCv) d v + 
t -M l = cr M l ) fCv) + (t ; = cr M d fCv) + (t ; 

Theorem 4.4-2 (Numerical Method II) 

t -M l  

J fCv) d v 
t-M I -M2 

cr (t -M 1 ;  M 2) fC v) 

8(t ; M d fCv) O'(t ; M2) fCv) 

• •  

If Jn1(5) and Jn2(5) are fundamental formulae, respectively of nlth and n2th 

order Newton-Cotes rule ,  and T s is the sampling interval, then a 

numerical approximation of a FII with interval, M, such that, 

is given by, 

k cr (t ; M )  

• •  

Proof 
By Lemma 4.4-1, 

(4.4-16) 

and using Theorem 4.4-1, the first term in Equation (4.4-16) becomes, 

q 

= L 8(i - l )n l Jn1( 8) (4.4-17) 
i = l 
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and the second term in Equation (4.4-16) becomes, 

f2 

= 0 rl n l L 0(i- l )n2 Jn2(0) 
i= 1  

'I n l +r2 
= L 0(i - l )n2 Jn2( 0) 

i =rl n l + 1 
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(4.4-18) 

Combining Equations (4.4-17) and (4.4-18) yields Theorem 4.4-2 . • •  

The following example demonstrates the use of this theorem. 

Example 4.4.2 

Let M = 3Ts' The FII can then be approximated by using, nl =1 and n2=2, 
namely the Trapezoidal and Simpson rule respectively, and by setting 

'1='2=1. So, 

aCt; 3 Ts) = 11 (8) + 8 12(8) 
T T 

= ,; ( 1 +8) + T 8 ( 1 +4 8  + 82) 

Note that the weightings of these combined rules lose the symmetry 

property given by Equation 4.4-2. Further discussion and some properties 

of this approach. compared with the other two numerical methods are 

given in Sections 4.4.4 and 4.4.5 later. 
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4.4.3 Numerical Method III 

A similar approach is taken to that in the previous section, that is, two 
fundamental formulae of respectively, nl th order and n2th order are 

used, but the orders are chosen such that, 

An approximation of FII using this approach is  determined In the 
following lemma and theorem. 

Lemma 4.4-2 (Difference of FII Interval) 

For all Ml and M2 E R, 

0' = 0'  - 0  0' (t ;  M t -M2) (t ;  M l ) (t ; M I -M2) (t ;  M2 ) 
Proof 

= J f(v) dv t-M l 
= 0' (t ;  M } ) f(v) 

t -M l +M2 
J f(v) d v t -M 1 

0' (t -M l +M2; M2 )  f(v) 
= 0' M } ) f(v) o(t ; M I -M2) O'(t ; M2) f(v) (I; 

Theorem 4.4-3 (Numerical Method III) 

• •  

• •  

If Jn1(O) and Jn2(5) are fundamental formulae respectively of nlth and n2th 

order Newton-Cotes rule and, Ts is the sampling interval , then a 
numerical approximation of a FII with interval, M, . such that, 
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is given by, 

Proof 
By Lemma 4.4-2, 

Using Theorem 4.4-1, with r = 1, the above equation becomes, 

Theorem 4.4-3 is then obtained by cascading Equation (4.4-20). • •  

The following example demonstrates the use of this theorem. 

Example 4.4.3 
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• •  

(4.4-19) 

(4.4-20) 

Let M = Ts. For this method, a possible choice of orders is, nl =3 and n2=2. 
These correspond to the Simpson 1/3 and 3/8 rules. So , 

(J'(t ; Ts) = J3 (8) - 8 J2(8) 
3 T  T = Y (1+ 3 8 +3 02  + 83 ) - f 8 ( 1 +4 8 + 51) 
3 Ts 5 Ts � 7 Ts cl ��3 = -8- + 1 2  u - 1 2  0- + 2 4  u • •  

Further discussion· of this approach and a comparison with the other two 
numerical methods are given in Sections 4.4.4 and 4.4.5. 
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4.4.4 Frequency Response 

A useful method of comparing the performance of the numerical 
methods is the frequency response analysis .  Because of the discrete-time 
nature of the numerical methods, the Shannon (Ogata 1987, Middleton 
and Goodwin 1990) or the Nyquist (Hamming 1977, Kuc 1988) sampling 
theorem should be followed when choosing the sampling rate. Following 
this theorem, the highest useful frequency is limited to half the sampling 
frequency. Therefore it is more convenient to express the frequency 
response of the numerical methods in terms of the relative frequency, In 

given by: 

Ir = Lf s (4.4-21) 

where I is the actual frequency in hertz and Is is the sampling frequency 

in hertz . This relative frequency can be related to other common 
quantities by: 

OJ Ir = - = OJs (4.4-22) 

where, (J) and (J)s are, respectively, the actual frequency and sampling 

frequency in radians, and Ts is the sampling interval. 

The following theorem and five corollaries provide some of the properties 
of the numerical rules given by Numerical Method 1.  The properties 
derived are general for all numerical rules used in Numerical Method I 
and provide an general and easy means to design and analyse these 
numerical rules. All these properties are due to the symmetry of the 
coefficients in these rules (see Equation 4.4-2). 

As the rules given by Numerical Method II and Numerical Method III 
are not symmetric in the coefficients, they do not enjoy the neat and 
general properties of Numerical Method 1.  However the frequency 
response of each numerical rule in Numerical Method II and 
Numerical Method III can be analysed individually in a similar way. 
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Theorem 4.4-4 ( Frequency Response of Numerical Method 1) 
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For an nth order Newton-Cotes type numerical approximation of FII 
operation, as determined in Theorem 4.4. 1 CNumerical Method 1), the 
frequency response, anUm), is given by, 

.Mco &nUro) = NUro) e -JT 
where 

NU ro) = 

and 

• (MCO) Sln T 
G { JnUro) } . (nTsco) sm --2 

(n - l )/2 

G { JnUro) } = 2 Ts L Wi c o s (co:S(n-2 i») 
i=O 

(n -2)/2 

, if n is odd 

G { J n U ro) } = 2 T s [ iw n/2 + L Wi CO S (co: S (n -2 i )  ) ] , if n is even 
i=O 

Note : M = rnTs 

Proof 
From Corollary 4.4-1, the numerical rules given by Numerical Method I 
have the general form: 

(4.4-23) 

where JnCo) is the Newton-Cotes type nth order fundamental formula of 
the rule and has the form: 

_ .n . 

= T � W ·  oi s L l 
i=O 

and the FII interval, M, is given by: 

M = r n Ts ' r E W 
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Because of the symmetry in the coefficients Wi (Davis and Rabinowitz 

1984), that is: 

In can be rewritten as: 

(n - l )/2 

J nCO) = Ts L Wi ( 8
i 

+ 8n- i ) 
i=O 

(n -2)/2 
In(O) = Ts [ wnl2 8n/2 

+ L wi ( 8
i 

+ 8n- i ) ] 
i=O 

So if n is odd, the frequency response of In is given by: 

(n- l )/2 

In(s) = Ts L Wi ( e -sTs i  + e -sTs (n -i » 
i=O 

, if n is odd 

, if n is even 

(n�l l2 
sT sn sT s (n-2i) 

= Ts e - 2 . W i ( e 2 
l =O 

sT s(n-2i) 
+ e - 2 ) 

Using the identity, 

gIves ,  

. _ .n wTs wTs(n -2i) 
(n�l 12 

In(j OJ) = 2Ts e J 2 wi cos (  2 ) 
i=O 

Defining G {Jn(jm) }  as the gain function of In(jm) , then, 

(n�l /2 
wT  (n -2i) 

G { J nVOJ) } = 2Ts Wi CO S (  s 
2 ) 

i=O 

Similarly, if n is even, it be can shown that, 

(n-2)/2 
[ 1 � WT . ] G { (J n(j OJ) } = 2T s 7].W n/2 + £.J Wi cos(�n -2 l »  

i=O 

(4.4-24) 

(4.4-25) 

(4.4-26) 
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Also the frequency response of ( l--On) is given by, 

due to the identity, 

T .nroTs 
= 2j s in(� s) e -} 2 
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(4.4-27) 

So substituting Equations (4.4-24), (4.4-25) and (4.4-27) into Equation 
(4.4-23) gives, 

= 

= 

.rnroTs 
2 · . (7nroTS) -} T }S ln  2 e 2 _j

nro  s 
nroTs e 2 O { fnUm) }  

2 ·  . (nroTS) -j 2 }Sl n 2 e 
. (7nroT  S) Si n 2 
. (nroTS) s i n  -2 -

.rnroTs 
) e -} 2 O {  fnUm) } 

Theorem 4.4-4 is then obtained by substituting r n Ts with M. • •  

In Theorem 4.4-4, the frequency response is given in the form of the gain 
function, G{- } ,  and the phase function, P{ - } ,  that is, 

(4.4-28) 

where 

(4.4-29) 

.Mro 
and P {  �nUm) } = e -}T (4.4-30) 

Note that the gain function can have both positive and negative values. 
This gain and phase functions form of representation (Kuc 1988) is 
chosen rather than the magnitude and phase shift form (Hostetter 1988) 

because the frequency response is of linear phase. Also, the gain and 
phase function form is able to provide the important information on 
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phase jump (Kuc 1988). The phase jump of 1t in a linear phase response 

(such as the response of the ideal FIl shown in Figure 4.2-1) is due to the 
change of sign of the filter gain. As the gain function, G { · } ,  can have 
both positive and negative values ,  a sign change can be observed directly 
and thus a phase jump may be seen. On the other hand, the magnitude 
has only positive values and thus the phase jump could not be observed 
directly. 

Some important properties of the frequency response of the Numerical 
Method I are given in the following corollaries. 

Corollary 4.4-2 (Contributor to approximation error) 

The approximation errors in both the gain magnitude and phase shift of 
a numerical rule for FIl, as defined in Theorem 4.4-4, are solely due to 
the mismatch in the gain function. • •  

Proof 
Comparison of the frequency response of the actual FIl (Corollary 3.5-3) 

and the frequency response of Numerical Method I (Theorem 4.4-4) 

shows that both of them have the same phase function, that is : 

.M OJ 
e -JT 

Both of them therefore have the property of linear phase. As the jumps in 
phase shift of the actual FII are due to the change of sign in the gain 
function of the FIl, there will be no error in phase shift if the gain 
function of the numerical rule has the same sign changes in its gain 
function. So both the approximation errors in phase shift and magnitude 
are solely due to the mismatch in the gain function. • • 
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Corollary 4.4-3 (Exact match for constant input) 
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At zero frequency (constant input), the response of the numerical rules 
are exactly the same as the ideal FII. • 

Proof 
It is well known that all Newton-Cotes type formulae are exact for 

constant functions (Davis and Rabinowitz 1984). Also, an nth order 

formulae requires n sampling intervals and thus it covers a total 
interval of nTs. Therefore the gain of in at cv=O is: 

So, from Theorem 4.4-4, the gain function of the numerical rule becomes: 

N( OJ=O)  l i m  = nTs CO�O 

l im = n Ts co�O 

. (rnTsco) s m  -2-
• (nTsCO) s m  -2 -

nTsOJ 
-2 -

= r n Ts = M 
This gain is exactly the same as the ideal FII gain at m=O. As it has been 

determined in Corollary 4.4-2, the gain function is the sole contributor to 
approximation error; the numerical rule thus has no error in 
magnitude or phase shift at cv=O • •  

Y sing Theorem _
4:4�4,  the frequency responses of numerical rules for 

Numerical Method I can then be found. These frequency responses are 

demonstrated in Figures 4.4- 1a and 4.4-1b for the first six orders of the 

numerical rules. The exact match property given by Corollary 4.4-3 can 

be clearly seen in these plots . Note that these plots are given in terms of 
the relative frequency fro 
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Figure 4.4-1a : Gain of Numerical Rules for FIT 
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Figure 4.4-1h : Gain of Numerical Rules for Fll (cont') 
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A useful measure of the errors in approximating a quantity of varying 

magnitude, such as the gain of the FII at various frequencies, is  the 
approximation ratio. In our case the approximation ratio for the FII 

gain is given by, 

G { anUm) }  
G {  crUm) } (4.4-31) 

The percentage error can be obtained from the approximation ratio by, 

[ G { anUm) }  
%error = G { crUm) } - 1 ] x 1 0 0 %  (4.4-32) 

The gain approximation ratio alone is a sufficient indicator for both the 

error in phase shift and magnitude because it has been determined in 

Corollary 4.4-2 that the sole contributor to approximation errors is the 

gain function. An important relationship between the gain 

approximation ratio and phase error is determined in the following 

corollary. This corollary serves as a useful tool in analysing and 

designing a numerical realization for the FIr. 

Corollary 4.4-4 (Indication for phase error) 

An approximation error in the phase shift o ccurs when the 

approximation ratio of the gain function is negative, that is when, 

G { anUm) }  
G {  crU m) } 

< 0 

which is equivalent to when the percentage error is less than negative 

one hundred percent, that is when, 

%error < _ -:- 1 00 %  

where 

% error = [ G { anUm) } 
G {  crUm) }  

- 1 ] x 1 0 0 %  • •  



Chapter 4 Realization of FII 

Proof 
It has been discussed in the proof of Corollary 4.4-2 that a change of sign 
in the gain function will result in a phase jump of 1t. So an error in phase 

shift occurs when the sign of the numerical rule 's  gain function is 

different from the actual FII gain function. A difference in the sign of 

these two functions will then result in a negative gain approximation 
ratio and a percentage error of less than (-100%). • •  

Corollary 4.4-5 (Approximation error of FII gain) 

The gain approximation ratio with respect to relative frequency In for a 

numerical approximation of FII using Numerical Method I ,  is given by, 

G { d"oUro) }  
G { O'Uro) }  

= 

2rt!r 
s in (nrt!r) 

(0 - 1 )/2 

L Wi 
i=O 

cos( n -2 i)rt!r) 
(0-2)/2 

2mr [ 1 � ] sin (nrt!r) "?, 0/2 + 
i
70 Wi co s ( n -2 i )rt!r) 

provided it is defined at the particular relative frequency. 

,if n odd 

, if n is even 

The ratio is not defined at the relative frequencies corresponding to the 

actual frequencies which are multiples of � Hz, that is at, 

Ir = ;n ' i = 1 , 2 ,  3 ,  . . .  

Note : n is the order of the numerical rule and M = rnTs 

Proof 
If n is odd, then by Corollary 3.5-3 and Theorem 4.4-4, 

G { d"nU ro) } 

G { O'Uro) } 

2 T . (M OJ) (0- 1 )12  
s sm 2 � . oTsOJ ) !- Wi 

sm (-2 -) l =O 

• •  

c o s ( 0J:S(n -2 i») 
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Using Equation (4.4-22), that is: 

the ratio becomes: 

21tI, sin(M2
m) G { anU m) }  

G {  (JU m) } -
sin (n1tI,) sin (M2

m) 

(n - l )/2 
L Wi c o s ( n-2i)1t!r) 
i=O 

83 

It has been determined in Corollary 3.5-3 that G { a(jro) } ,  which is the 

denominator of above ratio, is zero at frequencies: 

co i i 1 - - - - - - z· - 1 2 3 - - M - T ' - , , , . . .  2lt Tn s 

or the relative frequencies, 

I, = I Ts = :n ' i = 1 , 2 , 3 , . . .  
Therefore the term sin(�(\ which occurs in both the numerator and the 

denominator, can be cancelled out except at these frequencies. In other 

words, the ratio is not defined at these frequencies. 

At other frequencies, the gain ratio can be rewritten as, 

G { anU m) } 
G { (JU ro) } 

2nl, = sin (n 7if,) 

(n - I )/2 
L wi c o s ( n -2 i )7if,) 
i=O 

Similarly, the second result can be obtained for even values of n. • • 

CQrollary 4.4-6 (Invariance of approximation error) 

The approximati_on ratio, as given by Corollary 4.4-5, for different FII 

intervals and sampling frequencies are the same at the same relative 

frequency, provided the approximation ratio can be defined at this 
relative frequency. • • 
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Proof 
The approximation ratio given by Corollary 4.4-5 shows also the 

relationship between the approximation ratio and the relative frequency 
fro It does not involve the FII interval M nor the sampling frequency fs• So 

the ratio is the same for all M and fs as long as the ratio is defined at a 

particular fro 

• •  

Corollary 4.4-6 provides an important and simple way to design a 

numerical realization of a FII. It means that the percentage error 
calculated from convenient values of the sampling interval Ts and the 

FII interval M can be used to analyse numerical rules of the same order 
n but different Ts and M. 

Tables 4.4- 1a and 4.4- 1b tabulate the percentage errors at various relative 

frequencies for the first six Newton-Cotes type formulae for FIr. In these 
tables, the percentage errors are calculated by setting Ts=l and M =n. 

However, due to Corollary 4.4-6, they are applicable for all M and Ts' 

There are two special entries in these tables. The first is at the relative 
frequencies where the percentage error is not defined due to division by 

zero. The second one is more important. It is at the relative frequencies 

where phase errors occur, that is,  where the percentage error is less 
than -100% (Corollary 4.4-4). In order to minimise the approximation 

errors, a numerical rule should not be used at these frequencies where 

phase error occurs. 

These tables serve as a reference in selecting appropriate parameters, 

such as the sampling interval and formula order, for a numerical 

realization of a FIr. An example of the design procedure based on this 
table is illustrated later in Example 4.4.5. 

Some observations from these tables and Figures 4.4-1a and 4.4-1b are 

now discussed. 
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Table 4.4-1a Percentage Error of Numerical Formulae 

�� : zero divided by zero. 

# # : phase error occurs. 

Relative Order of numerical formula 

freq. 1st 2nd 3rd. 4th 5th 

0.01 -0.033� O.OOO� O.OOO� O.OOO� O.OOO� 

0.02 -0. 132� O.OOO� O.OOO� O.OOO� O.OOO� 

0.03 -0.296� 0.001� 0.002� O.OOO� O.OOO� 

0.04 -0.527� 0.002� 0.005� O.OOO� O.OOO� 

0.05 -0.824� 0.005� 0.012� O.OOO� O.OOO� 

0.06 -1. 187� 0.011� 0.026� -0.001� -0.001� 

0.07 -1.617� 0.021� 0.049� -0.002� -0.004� 

0.08 -2. 114� 0.037� 0.085� -0.004� -0.009� 

0.09 -2.679� 0.059� 0. 138� -0.008� -0.020� 

0.10 -3.312� 0.091� 0.215� -0.016� -0.040� 

0.11 -4.013� 0.134� 0.322� -0.030� -0.077� 

0.12 -4.783� 0. 192� 0.467� -0.054� -0. 144� 

0.13 -5.623� 0.268� 0.661� -0.094� -0.262� 

0.14 -6.533� 0.366� 0.916� -0. 157� -0.472� 

0.15 -7.514� 0.489� 1.248� -0.259� -0.850� 

0.16 -8.567� 0.644� 1.676� -0.420� -1.557� 

0.17 -9.694� 0.835� 2.224� -0.675� -2.980� 

0.18 -10.894� 1.069� 2.924� -1.082� -6.302� 

0.19 -12.168� 1.353� 3.814� -1.741� -17.497� 

0.20 -13.519� 1.697� 4.946� -2.839� �� 
0.21 -14.948� 2.111� 6.390� -4.761� 32.442� 

0.22 -16.454� 2.605� 8.238� -8.416� 21.739� 

0.23 -18.041� . 3. 193� 10.619� -16.565� 19.258� 

0.24 -19.709� 3.892� 13.718� -43.077� 19.054� 

0.25 -21.460� 4.720� 17.810� �� 19.991� 

6th 
O.OOO� 

O.OOO� 

O.OOO� 

O.OOO� 

O.OOO� 

O.OOO� 

O.OOO� 

0.001� 

0.002� 

0.005� 

0.012� 

0.029� 

0.070� 

0. 175� 

0.493� 

2.110� 

-7.042� 

-2.875� 

-2.636� 

-2.917� 

-3.506� 

-4.412� 

-5.718� 

-7.579� 

-10.240� 
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Table 4.4-1b Percentage Error of Numerical Formulae (<x>nt') 

Relative Order of numerical formula 

freq. 1st 2nd 3rd 4th 5th 6th 
0.26 -23.296� 5.698� 23.318� 71.131� 21.749� -14.102� 
0.27 -25.218� 6.852� 30.934� 45.247� 24.259� -19.842� 
0.28 -27.229� 8.214� 41.870� 38.160� 27.571� -28.676� 
0.29 -29.331� 9.820� 58.453� 36.031� 31.824� -42.991� 
0.30 -31.525� 1 1.715� 85.809� 36.138� 37.248� -68.111� 
0.31 -33.814� 13.954� 137.845� 37.624� 44.198� -81.370� 
0.32 -36.201� 16.603� 270. 193� 40.179� 53.220� # #  
0.33 -38.688� 19.745� # #  43.709� 65. 179� # #  
0.34 -41.278� 23.486� # #  48.237� 8 1.524� # #  
0.35 -43.975� 27.959� # #  53.867� 104.862� # #  
0.36 -46.780� 33.334� # #  60.774� 140.405� # #  
0.37 -49.699� 39.839� # #  69.217� 200.307� # #  
0.38 -52.734� 47.773� # #  79.557� 321.008� # #  
0.39 -55.889� 57.550� # #  92.305� 684.649� # #  
0.40 -59. 169� 69.748� # #  108. 184� # #  # #  
0.41 -62.579� 85.205� # #  128.247� # #  # #  
0.42 -66. 122� 105. 178� # #  154.082� # #  # #  
0.43 -69.804� 131.646� # #  188.192� # #  # #  
0.44 -73.631� 167.911� # #  234.755� # #  # #  
0.45 -77.609� 219.920� # #  301.302� # #  # #  
0.46 -81.744� 299.570� # #  402.902� # #  # #  
0.47 -86.043� 434.633� # #  574.731� # #  # #  
0.48 -90.513� 708.434� # #  922.333� # #  # #  
0.49 -95.162� 1537.634� # #  1973.476� # #  # #  
0.50 # #  # #  # #  # #  # #  # #  
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Effect of Increasing Order of FOnPulae 

The effect of increasing the order of formulae can be seen in Table 4.4-1 .  
At a low relative frequency, say 0 .1 ,  increasing formula order generally 
decreases the percentage error. However moving from an even order 
formula to the next odd order formula does not reduce the error. This is 
consistent with the well known property of original numerical formulae 
(Bajpal el al 1974, Kreyszig 1988, Davis and Rabinowitz 1984). 

In contrast, the errors of a higher order formula are generally higher at 
the upper range of the relative frequency. This is because the error of a 
higher order formula increases more rapidly as the frequency increases. 
This characteristic is in fact also a property of the original numerical 
formulae but is less well known (Hamming 1977, Williams 1986). 

Also a higher order formula generally encounters a phase shift error at 
a lower relative frequency. 

Response at High Frequency 
A major limitation of the original Newton-Cotes type numerical rules for 
a definite integral is the "blow out" phenomenon at some high 
frequencies (Hamming 1977, Williams 1986). In other words the gain 
grows to infinity at these high frequencies.  This phenomenon is  
demonstrated for Simpson 113 rule in Figure 4.4-2. 

Figure 4.4-2 ''Blow-out'' of Simpson 1/3 rule. 

50�----------------� 
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� 
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O�------------------� 
o 0.5 

relati ve freq. 
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This phenomenon can be explained using the common stability concept 
in the discrete-time z domain (Ogata 1987). In the z domain, the original 
Newton-Cotes rules of order n have the general form of, 

�(z) = (4.4-33) 

This means these rules have n repeated poles at z=1.  As a discrete-time 
system is unstable when there are multiple real poles on the unit circle 
(Ogata 1987), a Newton-Cotes rule becomes unstable when nS::2,  that is 
when the rule is of higher order than the Trapezoidal rule. 

This problem does not occur with the FII versions. From Theorems 4.4-1 
to 4.4-3 , the z domain descriptions of these FII version have the general 
form: 

(4.4-34) 

That is all the FII numerical rules have only repeated poles at z=O, and 
thus they are stable. This is formalized in the following corollary. 

Corollary 4.4-7 (stability of FII numerical rules) 

All the numerical rules given by Theorems 4.4-1 to 4.4-3 are stable. 

4.4.5 Selecting. the Appropriate Numerical Method 

• •  

The previous Sections 4.4. 1 to 4.4.3 determined three numerical methods 
to approximate the FII operation. The equations given in Theorems 4.4-1 
to 4.4-3 appear complex but are in fact very easy to use if the underlying 
concept is understood. That is, a fundamental numerical formula of nth 
order, J n '  requires (n+1) points or n sampling intervals .  So the FII 

interval that can be approximated by a single fundamental formula is n 
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sampling intervals.  If a FII interval, M, longer than n is needed, it is 
necessary to cascade this fundamental formula until the required length 
is reached. 

Let us consider the case where M=5Ts' The simplest approach is to choose 
a fundamental formula of fifth order (n=5). If this is more complex than 
required, a first order fundamental formula can be used by cascading 
five of first order fundamental formulae. These two approaches are given 
by Theorem 4.4- 1 .  If n=l is too inaccurate and n=5 is too complex, 
Theorem 4.4-2 gives an alternative to use fundamental formulae whose 
orders are not exact divisors of 5. Using Theorem 4.4-2, two fundamental 
formulae respectively of second order (n=2) and third (n=3) can be used 
(as 2+3=5). 

Another alternative is given by Theorem 4.4-3 where a fundamental 
formula of order higher than M can be used. For the previous example, 
one could use formula of n=11  and n=6. This is because formula of n= 6 
gives a basic interval of M=6Ts and formula of n=11 gives an interval of 
M=l 1 Ts'  So an interval of M=5 can be obtained by taking the difference 
between these two. 

Note that a FII interval of M can always be divided into different 
subintervals and all the three theorems can be combined in whatever 
fashion by applying each of them to different subintervals. Of course this 
may not be much use in practice . 

Although all the three numerical methods determined by Theorems 4.4- 1 
to 4.4-3 can be used to derive a suitable numerical realization for the FII, 
the Numerical method I is recommended in practice because of the neat 
properties determined in Section 4.4.4. 

Also, as discussed in Section 4.4.4, a higher order formula can only 
provide a superior approximation at very low relative frequencies. To 
compensate for the loss of useful bandwidth, a higher sampling rate is 
then required. Furthermore , it can be seen from Table 4 .4- 1 ,  the 
reduction in error becomes less significant at a higher sampling rate. 
So, unless a very high sampling rate is available and a very high 
accuracy is required, the Numerical Method I with a low order 
fundamental formula should be used in practice. 
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From Table 4.4- 1 ,  the Simpson 113 formula has the best overall 
performance. At a relative frequency of 0 .25, it has a percentage error of 
less than 5%. This means that if the sampling rate is four times the 
highest natural rate of the system, a numerical realization based on the 
Simpson 1/3 rule will return a maximal error of 5%. A design procedure 
using Table 4.4- 1 is demonstrated in the following example. 

Example 4.4.5 
Let the highest natural frequency, in' in the system be 1 Hz, the required 
FII interval, M, be 2 seconds, and the sampling interval, Ts, be a multiple 
of 0 .1  second, ie. 

in = 1 Hz 

M = 2 sec 

Ts = k ( 0 .1) sec , k = 1,2,3, . . .  

Also the maximal error allowed i s  5 %  and Numerical Method I i s  to be 
applied. So from Table 4.4-1 ,  two possible choices are, 

(a) Trapezoidal rule (n=l) with maximal relative frequency, ir, of 0 . 12 

or (b) Simpson 1/3 (n=2) with maximal ir of 0.25. 

The minimal sampling frequency can be calculated for each case using 
the equation, 

In Ir = Is 

So the minimal is and the maximum Ts for each case is,  

(a) min is = O�i2· Hz = 8.3 Hz 
1 

max Ts = . I" = 0.12 second mln JS 

(b) min is = 0�25 Hz = 4 Hz 
1 max Ts = 4 Hz = 0.25 second 
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As the FII interval needs to be an exact multiple of nTs (n is the order of 
the numerical formula) when Numerical Method I is used and, Ts is 
restricted to a multiple of 0 . 1  second, the possible numerical realization 
are thus : 

a)  Trapezoidal rule with Ts = 0 . 1  sec. This means, M = 20 Ts and the 
index r in Theorem 4.4-1 is 20. 

b) Simpson 113 rule with Ts = 0.2 sec, M = 10 Ts and r = 5 .  

From Theorem 4.4-1 ,  the size of the numerical realization is  "given by the 
FII interval in terms of the sampling interval. Comparing the above two 
cases, the Simpson 113 rule has a longer sampling interval and thus a 
smaller structure, but yet returns the same accuracy. Therefore the 
Simpson Rule is preferred to the Trapezoidal rule. • •  



Chapter 4 Realization of FII 

4.5 SUMMARY 

Three methods of realizing the FII operation have been determined, 
namely the frequency response method, the hybrid method and the 
numerical method. 

Among these three methods, the simplest is the hybrid method. This is 
because it uses two basic elements which are commonly available in 
modern control system, that is an analog integrator (can also be a digital 
integrator) and a digital backward differentiator. The major 
disadvantage is that it requires two separate components, and also its 
capability is limited by the capability of the available integrator. 

The recommended method for FII realization is  the Numerical 
Method 1 .  It offers the most flexibility in terms of both accuracy and 
frequency range. Also its design procedure and realization structure are 
simple and can be generalized. This is mostly because the nature of 
numerical methods match the behaviour of the FII operation, as the 
fundamental formulae of Newton-Cotes numerical rules are inherently 
a form of fixed interval integration. A reference table on percentage 
errors has been developed for designing this numerical realization for 
any sampling interval and FII interval. A drawback of the numerical 
method is that a reasonably fast sampling rate is usually needed. 

The third alternative is the frequency response method, in which analog 
or digital filters are designed to match the required frequency response. 
It requires a complicated design procedure. Furthermore this method is 
usually limited to frequencies of less than � Hz, where M is the FII 

interval . This is because the discontinuities in gain magnitude 
occurring at multiples of � Hz are difficult to match using filter design 

techniques. Therefore it is not recommended for general cases. However 
this method is useful when a continuous-time FII operation is needed as 
it is the only given method suitable for analog filters. 



CHAPTER FIVE 

APPLICATION OF THE 

FIXED INTERVAL INTEGRAL 

In this chapter, several possible applications of the Fixed Interval 
Integral (FII) are presented. 

It details the formulation of a FII description of a system, which can be 
employed to estimate in discrete-time, both the continuous-time-model 
parameters and the pure delay. This approach to continuous-time
model parameter estimation is then demonstrated using several 
simulation examples. 

Other possible applications of FII are also discussed. 

93 
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5 . 1  INTRODUCTION 

In Chapter 3 ,  a special integral called the Fixed Interval Integral (FII) 
was introduced. A FII operator, (I, was also defined in Definition 3 .2-4, 
that is:  

aCv=t; M ) f(v) = f f(v) dv 
t -M 

Several characteristics of the FII operator were then determined. Of 
particular importance is its relationship with the derivative operator 
determined in Theorem 3.3-4b as, 

a p = V 

where p is the differential operator and V IS the backward-difference 
operator as defined in Definition 3.2-4, that is: 

V (v=t ; M) f(v) = f(t ) - f(t-M) 
This theorem indicates that the FII operator acts as a special kind of 
inverse derivative operator. Also, as shown in Corollary 3.5-1, the result of 
this inverse operation is independent of any constant initial conditions. 
These two characteristics of the FII operation indicate that the FII 
operation may be useful for transforming a differential equation to an 
equivalent description which is free of derivatives and independent of 
constant initial conditions. In fact it is determined in Section 5.2 of this 
chapter that several transformations of this sort can be achieved easily. 

Furthermore, Chapter 4 has established that the FII operation can be 
readily realized using several different methods. Consequently, the FII 
description of a system is useful in practice. As determined in Sections 5.3 
and 5.4, the FII is especially important in estimating the continuous
time-model parameters and pure delay. 

This FII estimation technique for continuous-time models follows the 
equation-error approach described earlier in Chapter 2. In this approach, 
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continuous-time system models that use differential equations are 
transformed to system descriptions that can be sampled in discrete-time 
and do not involve derivatives .  This transformation avoids the 
differentiation of noisy signals and allows the parameters of the 
continuous-time models be estimated using one of the well established 
discrete-time algorithms. 

However the use of FII is not limited to parameter estimation. Several 
other possible applications are suggested .a} the end of this chapter for 
future study. 

There are five subsequent sections in this chapter : 

Section 5.2 details the transformation of system descriptions that use 
differential equations to system descriptions that use the 
F I I .  

Section 5 . 3  shows the use o f  this FII description for estimating, 
in discrete-time , a system's continuous-time-model 
parameters. 

Section 5.4 shows an extension of the FII technique given in Section 
5 .3  to include estimation of continuous-time pure delay 
when the system is subj ected to a piece-wise constant 
input. 

Section 5.5 discusses other possible applications of FII, for future 
research. 

Section 5.6 summaries the key contributions in this chapter. 
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5.2 FII SYSTEM DESCRIPTIONS 

The systems of interest for the parameter estimation technique given in 
this section are as follows. 

Definition 5.2-1 (Systems of Interest) 

The systems of interest are single input and single output, lumped 
parameter and strictly proper dynamical systems,  which can be described 
by models in the form of linear ordinary differential equations (ODEs), 
that is: 

such that n >  c, and without loss of generality, an = 1.  

Here yet) is  the output, u(t) is the input, e(t) is  the model error, and ai and 
bi are the system parameters that need to be estimated. 

• •  

Writing the above ODE using the derivative operator, p, which is defined 
in Chapter 3 gives, 

A (p) y (t )  = B (p) u (t )  + e(t )  

where 

A (p) = pn + pn- I + pn-2 + + 
a n_ I ·  an-2 · . . . .  a O 

B (p) = b c . pc + b pc- I + b pc-2 + + b c- I · c-2 ·  . . . 0 

(5.2-1) 

(5.2-2) 

(5.2-3) 

n and c are thus respectively the orders of the polynomials A(p ) and B(p ) . 

In order to avoid computation of derivatives, the differential Equation (5.2-

1) can be transformed into a FII description using the operators defined in 
Chapter 3. The following three transformations are possible. 
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Theorem 5.2-1 

For systems given by Definition 5.2-1, the following holds 

( vn + a n- l Vn- l a + . . . . + an-k vn-kak + ao � ) y et )  

= ( bc vc�-c + . . . . + bc-k vc-k�-c+k + bo � ) u (t) + �e(t)  
• •  

Proof 
Applying the nth order FII operator, 0", to both sides of Equation (5.2-1) 
that is: 

� [ pn + a n- l pn- l + . . . .  + a o ] y et )  

= � [ ( b c pC + . . . . + bo ) u (t )  + e (t ) ] 

gives: 

( anpn + a n- l �pn- l + . . . . + ao � ) yet )  

Then by using Theorem 3.3-4b, that is: 

ap = V 

and the commutativity of V ,  P and (J determined in Theorem 3 . 3-2, 
Theorem 5.2-1 is obtained. • •  

Theornm 5.2-2 
For systems given by Definition 5 .2- 1 ,  with yet) and u (t) observing 
Assumption 3.3- 1 ,  the following holds, 

• •  
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Proof 
If Assumption 3 .3-1  holds, then by the commutativity of V and 1] ,  and 
Theorem 3.3-4a, that is, 

(J = V 11 
a kth order FII operator can be replaced as, 

d' = Vk 11k 

So, replacing all the ok operators in Theorem.5.2-1  gives Theorem 5.2-2 . 
• •  

Theorem 5.2-3 

For systems given by Definition 5 .2- 1 ,  with y(t) and u(t) observing 
Assumption 3.3-2, the following holds, 

( vn + an- l  vn � + . . . + an -r vn �r + ao vn �n ) y(t) 

= ( b e vn �n-e + . . . + be-r vn �n-c+r + bo vn �n ) u (t) + vn �n e(t) 
• •  

Proof 
If Assumption 3.3-2 holds, then by the commutativity of V and " and the 
second identity in Theorem 3.3-4a, that is: 

(J = V � 
a kth order FII operator can be replaced as: 

d' = Vk �k 

So, replacing all the ok operators in Theorem 5.2-1 gives Theorem 5.2-3 . 
• •  

Theorems 5 .2-1  to 5.2-3 give three forms of FII description for the 
continuous-time system. There are two major differences in these three 
theorems .  Firstly, they are different in their dependence on 
Assumptions 3.3-1 and 3.3-2. Theorem 5 .2-1 is the more general theorem 
as it is not dependent on either of the two assumptions. Theorem 5.2-2 is 
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constrained by Assumption 3.3- 1  and is thus weaker than Theorem 5.2-l.  
Theorem 5 .2-3 is the generalization of Theorem 5.2-2, because the initial 
time in Assumption 3.3-2 can be any time instant besides zero. 

Secondly, these theorems imply two different forms of realization of the 
variable quantities in the transformed system description. Theorem 5 .2-1 
implies the realization of the kth order FII operator, de. This can be 
achieved by using the methods determined in Chapter 4.  As all these 
methods rely on the identity determined by Theorem 3.3-4a, t�at is, 

(J = V ( 
Therefore, the realization of ok effectively means cascading the operation, 
V" k times. In the block diagram form, this is represented as follows: 

-1 Vs H Vs 1 - - - - - - - - - - - -1 Vs � 
On the other hand, Theorem 5.2-3 (or 5.2-2) implies the realization of some 
kth backward differences of kth order integrals , Vk,k, (or Vk1Jk). In block 
diagram, this is represented as follows: 

These two forms are not generally identical, as the equation: 

is only true if the system obeys Assumption 3.3-2. 

The validity of Assumptions 3.3- 1 and 3.3-2 in the case of parameter 
estimation is discussed later in Section 5 . 3 .2.  Three important 
characteristics of these FII descriptions of Theorems 5 .2- 1 to 5.2-3 are 
discussed in the following. 

Corollary 5.2-1 (Independence on Constant Initial Conditions) 

The FII descriptions of a system are independent on any constant initial 
condition. • 
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Proof 
The FII descriptions given in Theorems 5.2-1 to 5.2-3 do not consist of any 
variable with a fixed time-index. • •  

Corollary 5.2-2 (Independence on Derivatives) 

The FII descriptions of a system do not inv��ve any derivativ� term in the 
system input or output. • 

Proof 
As seen from Theorems 5.2- 1 to 5.2-3, the FII descriptions consist of only 
the backward difference and FII of the system input and output. • • 

Corollary 5.2-3 (Independence on Infinitely Accumulating Terms) 

The FII descriptions of a system do not involve any explicit term that 
accumulates infinitely with time • 

Proof 
As seen from Theorems 5.2- 1  to 5.2-3, the FII descriptions do not consist of 
any term with the time variable, t, as a multiplier. • •  

Note that if the system input is bounded and the system is stable then 
using the Corollary 5 .2-3 and Corollary 3.5-2 (Boundness of FII), none of 
the quantities in the FII description accumulates infinitely with time. 

To appreciate these characteristics better, let us consider the popular 
integral equation described earlier in Chapter 2. In this approach the 
differential Equation 5 .2-1  is integrated repeatedly using the finite 
integration from a certain initial time to present time. Using the operator 
notation, this is represented by: 

<;n [ ( pn + a n_ 1 pn- l + . . . .  + ao ) y(t) ] 
= <;n [ ( bc pC + bC_ 1 pc- l + . . .  + bo) u (t )  + e (t) ] (5.2-4) 
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The resultant integral description has a general form of, 

(5.2-5) 

where �(t) is the error term and, ck relates to the initial conditions such 

that: 

k - l  k - l  

(5.2-6) 
i=O i=O 

This integral equation does not possess the three characteristics of the FIT 
description given by Corollaries 5.2-1 to 5.2-3. Firstly, the integral equation 
consists of constant initial terms, u(to ) and y(to ) in the ck Secondly it has 

(constant) derivative terms, {i u(to ) and {i y(to ) Finally it has explicit 

terms that accumulate infinitely with time, namely: 

�- l 

(k - l ) ! 

The most important characteristic of the FII descriptions is their 

independence on initial derivative terms. It is usually not too difficult to 
obtain initial values of u(t) and yet), and the infinitely accumulating terms 
can be constrained by choosing an arbitrary finite period. But the 

derivative terms are usually not measurable. The characteristics given by 

Corollaries 5.2-1  to 5 .2-3 enable the development of an important 

parameter estimation technique in the next section, using the FII 
descriptions of continuous-time systems. 

5.3 PARAMETER ESTIMATION OF CONTINUOUS-TIME

MODEL 

The exercise of parameter estimation can often be divided into two stages 
(Ljung 1987, Unbehauen and Rao 1987). The first stage is to derive some 

parameterised model equations from the original model of the system to 

be identified. The second stage is to estimate the parameters of the system 

model, directly or indirectly, by estimating the parameters of the 

parameterised model equations using appropriate estimation algorithms. 
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So the whole process of parameter estimation usually involves the four 
elements illustrated in Figure 5.3-1 .  They are, the system to be identified, 
a model of the system, parameterised model equations and estimation 
algori thms . 

Figure 5.3-1 Elements of Parameter Estimation 

System 

, 

System .... 

Model 
.. 

. .  -

Parameterised 
model 

equation 
� 

, 

Estimation 
algorithm 

When setting up a parameter estimation mechanism using the 
"Continuous-time-model discrete-time estimation" (CD)  approach 
discussed in Chapter 2 ,  the parameterised model equations used for 
estimating the parameters of the system model should meet the following 
three criteria. 

Criteria 5.3-1 (Parameter estimation criteria for CD approach) 

a) All the parameters of the system model can be derived easily from 
the parameterised model equations. 

b) All the variable quantities required for the estimation can be readily 
realized in practice. 

c) The parameters can be estimated using a discrete-time algorithm . 

• •  

Three possible forms of parameterised model equations for this purpose 
are the FIr system descriptions derived earlier in Theorems 5.2- 1  to 5.2-3. 
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5.3.1 FII Parameterised Model Equations 

1 03 

The three FII system descriptions given by Theorems 5.2-1 to 5.2-3 can be 
rewritten in a vector form that is linear in terms of the parameters. For 
example. the FII system description given by Theorems 5.2-1:  

( vn + an - l Vn- l a + . . . + ao � ) y(t )  

= ( b e Ve�-e + . . .  + bo � ) u (t) - + �e(t) (5.3-1) 

can be rewritten as: 

+ ( be ve�-e + . . .  + bo � ) u (t) + �e(t )  (5.3-2) 

o r  

T 
_vn- l oy(t)  a n- l 

vny (t )  
-any( t )  ao + �e(t)  = ve�-eu (t )  b e 

(5.3-3) 

�u(t )  bo 

Note that Equation (5.3-3) is linear in terms of the parameters. an _ l • . . . •  bO . 

This linear-in-the-parameter form of the FII descriptions is formalized in 
the following corollary. 

Corollary 5,3-1 
(Linear-in-the-parameter vector form of FII system descriptions) 

The FII system descriptions given by Theorems 5.2- 1 to 5.2-3 can be 
written in a vector form which is linear in terms of the system 
parameters. that is:  

1jf (t) = ;} (t) e + e(t) 

where 
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lfI(t)  = vn y (t) 

A(t) = [ AY n- l AYn-2 . . . AyO AUe . . . AuO ]T  

e = [ an- l an-2 . . . .  ao be . . .  bo ]T 

with 

AYi = _Vi <f1-i y (t ) ,  _vn 1Jn-i y(t) or _vn r, n-i y (t )  

AUi = Vi<f1-i u (t )  , vn 1Jn-i u (t) or vn r,  n-i U (t ) 

£(t) = an e( t )  , vn 1Jn e(t )  or vnr,n e (t )  
• •  

Corollary 5,3-2 (Augmented vector form of FII system descriptions) 

The linear-in-the-parameter vector form of the FII system descriptions 
given by Corollary 5.3-1 can be augmented to form: 

where tl . . .  tn are any sampling time instants that need not to be regularly 
time-spaced or in the correct sequence. • •  

Proof 
The vector equation given by Corollary 5.3-1 is an pure algebraic equation 
that does not consist of dynamics. Therefore it is true for any time 
instant. • •  

The applicability of the FII equations given by Theorems 5.2-1 to 5.2-3 as 
parameterised model equations in the context of CD approach to 
parameter estimation, is now examined in terms of the three criteria in 
Criteria 5.3-1.  
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a) Obtaining the system parameters easily 
The vector () is the parameter vector of the FII equation. It also 
consists of all the parameters of the original system model given by 
Equation 5.2- 1.  Therefore the parameters of the system model can be 
obtained directly from these FII parameter estimation equations. 

b) Realizing the required variable Quantities readily 
The vectors 'l'<t) and A(t) consist of quantities in the form of the FII of 
the system output and input. Consequently, if the system output and 
input are measurable, these quantities can be easily realized using 
one of the three possible methods established in Sections 4.2 to 4.4. 

c )  Using discrete-time estimation algorithm 
As described in Corollary 5.3-1 ,  the three FII descriptions are linear 
in the system parameters. Furthermore, as both l{I(t) and A(t) may be 
constructed from measurable quantities ,  they may be sampled at 
different time instants, ti . So the augmented equation given by 
C orollary 5.3-2 can be formed. This equation is in the form of a 
standard discrete-time linear-in-the-parameter equation for 
parameter estimation. Therefore the parameters of the FII equations 
can be estimated using a discrete-time algorithm implemented on a 
digital computer. 

In view of these,  the FII equations given by Theorems 5.2-1  to 5 .2-3 are 
applicable as a parameter estimation equation to form a CD parameter 
estimation mechanism. 

In practise,  it is easier to sample the FII vector equation given by 
C orollary 5 .3 - 1  with a constant sampling interval , Ts . So a more 
convenient form of the equation is: 

lj/ (hTs) = AT (hTs) 8 + £(hTs) 

o r  lj/ (h) = AT (h) 8 + £(h) 

where h = 0,1,2, . . .  , is the discrete-time index. 

(5.3-4) 

(5.3-5) 

The question now is, which of the three FII equations given by Theorems 
5 .2 -1  to 5.2-3 should be chosen and, what FII interval and parameter 
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estimation algorithm should be applied. These are discussed in detail in 
the next three subsections. 

Before proceeding to this though, the following simulation example is 
provided to demonstrate the use of the FII equation given by 
Theorem 5.2- 1 ,  in estimating the continuous-time-model parameters of a 
simple deterministic system. 

Simulation Example 5,3-1 

Suppose a system is described by, 

d2y(t) + dy(t) (t) b u (t )  d t2 a 1 dt  + a oy = 

that is: 

( p2 + a lP + a 0 ) y (t) = b u (t )  

and a 1 = 3 , a 0 = 2 ,  b = 5 .  

(5.3-6) 

(5.3-7) 

Also  suppose the sampling interval, T S ' is 0 .01 sec and that, the FII 

interval, M, is 0.5 sec. (A detailed discussion on selecting M is given later 
in Section 5.3.3). 

Applying Theorem 5.2-1 to Equation (5.3-7) yields, 

( V2 + a 1 Va + ao(2 ) y (t) = b a2u (t) 

or V2y (t )  = a 1 [ -V ay(t) ] + ao [ -a2y(t) ] + b [ (j2u (t ) ] (5.3-8) 

Comparing with Corollary 5.3- 1 ,  it can be recognised that Equation (5.3-8) 
is in the linear-in-the-parameter form: 

ljf (t )  = ,tT (t) e 
where 

ljI(t) = (5.3-9) 

(5.3-10) 

(5.3-11) 
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The output of this system when subjected to a Pseudo-random-binary
signal ,  PRBS (Ljung 1987) input is simulated using MATLAB , a 
commercial computer aided control systems design package. The FII 
quantities of the input and output in A(t) are then found using Numerical 
Method I (Theorem 4.3-1) with Simpson 113 formula. The parameters in () 
is estimated using a recursive least square algorithm that is described by 
(Ljung 1987), 

'riCh)  = 

K(h ) = 

P(h)  = 

'ri(h - I )  + K(h ) [ 1jI (h ) - }? (h ) 'ri(h ': l )  ] 

P(h - I )  A(h )  
kf + A7 (h ) P(h - I )  A(h ) 

[ P(h - I )  - K(h ) AT P(h - I )  ] 
kf 

(5.3-12a) 

(5.3-12b) 

(5.3-12c) 

where h is the discrete time index, � is the estimate of () and kf is the 
forgetting factor. The values used in this simulation are, 

'riCO) = [ 0 0 0 ]T 

P(O) = 1 06 

kj = 0 . 99 

A plot of  the estimated parameters can be seen in Figure 5.3-2. 

Appendix A gives the details of the related MATLAB functions and 
customized routines. 
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Figure 5.3-2 Simulation result of Simulation Example 5.3-1 for 
a 1  = 3, ao = 2, b = 5. 
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5.3.2 Validity of Assumption on Past System Behaviour 

100 

The dependence of Theorems 5 .2-2 and 5 .2-3 on Assumptions 3.3-1 and 
3.3-2 means that, both the system's input, u(t), and output, yet), need to be 
zero before a parameter estimation procedure based on these corollaries 
can be started. 

To have the natural behaviour of the system following this requirement, it 
is necessary to apply an input of zero value to the system and to wait until 
the output settles to a zero value. Alternatively, if the system description is 
linearized about its steady states, then both the input and the output are 
required to reach steady states.  

In many practical situations this requirement on the natural behaviour of 
the system is not feasible. Also this requirement limits the use of these 
techniques in on-line parameter estimation. 
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However this zero condition can be imposed artificially. This is done by 
setting all the measurements and related quantities before the starting 
time to zero. This imposition effectively introduces a step change to the 
input and output. But it does not disturb the validity of the model described 
by the differential E quation 5.2- 1 .  This is because the formulation of 
Theorems 5.2-2 and 5 .2-3 requires u(t) and yet) and their integrals to begin 
at zero but not their derivatives. Consider the following - Theorem 5.2-1 
uses the transformation involving derivatives: 

(5.3-13) 

which needs neither Assumption 3 .3 -1  nor Assumption 3 .3-2.  Then 
Theorems 5 .2-2 and 5.2-3 are derived from Theorem 5.2-1  using the 
transformation: 

(5.3-14) 

This transformation only holds subject to the zero condition defined by the 
two assumptions, but it does not involve any derivative terms. Note that 
this is possible due to the independence on derivative terms of the FII 
description as determined in Corollary 5.2-2. 

This establishes that Assumptions 3.3-1 and 3 .3-2 do not in practice 
impose any limitation on the three parameter estimation equations given 
by Theorems 5.2-1 to 5.2-3. They are thus functionally identical and should 
all produce the same result, although due to the differences in their form, 
discrepancies  might occur resulting from numerical error in 
implementation. Nevertheless these discrepancies should not be 
significant if reasonable implementations are applied. In view of this, the 
three parameter estimation equations are considered interchangeable in 
the estimation procedures discussed later. 

5.3.3 Selecting the FII Interval (M) 

Schoukens ( 1990) suggested a fixed interval, M, of either, 

(5.3-15) 

where T s is the sampling interval which observes Nyquist's (or 
Shannon's) Sampling Criterion. His selection of this interval is to avoid 
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the phase jump and zero transmittance of FII at frequencies of multiples 
of � Hz and to have the flattest possible gain behaviour over the Nyquist 

interval (0 to 0 .5 relative frequency). However his presumption of the need 
for the flattest possible gain response is mistaken. In fact it is also shown 
later in this section that a FII interval of Ts or 2Ts is not applicable in 
practice. 

Another suggestion for M is  that of Sagara and Zhao ( 1990). They 
suggested M be chosen such that the frequency bandwidth of the FII 

matches the bandwidth of the system. This choice will be shown later in 
this section to be appropriate. 

To demonstrate that it is unnecessary to have a flat gain response, let us 
consider the frequency domain equivalent of Equation 5.2-1 ,  

B (s) 
y es) = A(s) u (s) + e (s) (5.3-16) 

where s is the Laplace transform variable and e(s) is the appropriate error 
term. The FII descriptions in Theorems 5.2-1 to 5 .2-3 are obtained by 
filtering Equation (5 .3- 16) with an nth order FII filter, ones), that is, 

n 
-'l B(s) 

a (s) yes) = u (s) A(s) u (s) + an(s) e (s) 

B(s) 
A(s) [ an(s)u (s)] + an(s) e (s) = (5.3-17) 

This shows that the transfer function between ones) yes) and ones) u(s) is 
identical to the original system transfer function. This arises from the 
property of the FII equations discussed in Section 5.3. 1 ,  that is the FII 

equations have the same parameters as the original system model. 

Therefore, on condition that filtered signals, ones) yes) and ones) u(s),  can 
still provide sufficient information for the purpose of parameter 
estimation, the original system transfer function can be identified even 
though the ones) filter does not have a flat frequency response over the 
significant range of the system's natural spectrum. Ljung ( 1987) has 
determined that a sufficient condition for an nth order system to provide 
persistently exciting measurements, which will result in consistent and 
convergent parameter estimates, is that there are n significant frequency 
components over the significant range of the system's natural spectrum. 
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This means the zero transmittance at multiples o f  � Hz does not limit the 

usefulness of the FII parameter estimation equations because not every 
single frequency in the system's natural spectrum is required to obtain 
consistent and convergent estimates of parameters. 

A small M is not applicable in practice because the resultant parameter 
estimation technique is sensitive to noise and computational error. This 
problem can be explained by the identity given by Theorem 3.3-4a, that is: 

(j = Vs 
This identity shows that the FII is the (backward) difference between two 
integrals. So the smaller the FII interval, the smaller this difference is.  
Therefore a FII of small M will be sensitive to implementational error and 
system noise. Also Davis and Rabinowitz ( 1984) have shown that the 
smaller the integration interval with respect to the sampling interval, Ts' 

the larger the error in a numerical realization. 

Corollary 3.5-3 (Frequency response of FII) shows that the FII operation is 
a form of lowpass filter. The larger the FII interval , the faster the gain 
decays at high frequency. As a result, a large FII interval results good 
immunization to high frequency noise, but it reduces the number of 
useful frequencies and also requires a more complex realization. 

Consequently, a balance between the following two criteria is needed in 
selecting the FII interval . 

Criteria 5,3-2 (Selecting the Interval of FII) 

a) The FII interval, M, should be small enough to preserve the range of 
significant frequencies of the system's spectrum. 

b) The FII interval, M, should be large enough to allow the system's 
output to change significantly. 

Considering these criteria, a suitable FII interval may be: 

1 1 M - - - -- - /f' - - - �n 
OJn 2rcfn 

• •  

(5.3-18) 
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where (Un is  the natural frequency of the system in radians, In is the 
natural cyclical frequency of the system in hertz and 'en is the effective 
time constant of the system. 

We now examine the suitability of this value of M using Criteria 5.3-2: 

a) Preserving' the rang'e of system's significant freQuencies 
As seen from Figure 3.5-1 (Frequency response of the FII operator), 
the transmittance of the FII decays more rapidly after the first zero 
transmittance at � Hz. So in order' to preserve the significant 

frequencies of the system, the first zero transmittance of FII should 
occur at a frequency of reduced significance, that is at a frequency at 
which the amplitude ratio of the system has significantly decayed. 

Now, for the value of M given by Equation (5.3-18),  the first zero 
transmittance of FII occurs at frequency of: 

1 
M Hz = 2rtfn Hz (5.3-19) 

Also, it is well known that (Marshall 1978, Coughanowr and Koppel 
1983, Banks 1986) for a system given by Definition 5.2- 1 which has 
more poles than zeros, the amplitude ratios of frequencies larger than 
In decay at a rate of at least 20dB per decade. Therefore at a frequency 
of 21tln Hz, the amplitude ratio of the system has decayed at least: 

2 1t  TO x 2 0  d B  = 1 2 .6 d B  (5.3-20) 

This means that with the value of M given by Equation (5.3-18), the 
first zero transmittance of the FII occurs at a frequency at which the 
amplitude ratio of the system has significantly decayed and thus, 
most of the significant frequencies of the system have been preserved. 

b) Allowing' significant changes in the system's output 
The value of M given by Equation (5.3-18) is equal to the time constant 
of the system. Therefore, significant changes in the system's output 
generally will occur during this period of M. 
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Consequently, the value of M given by Equation (5 .3- 18) is a suitable 
choice. This guideline for selecting the FII interval M is formalised in the 
following. 

Rule 5,3-1 (Selecting the FII interval for systems with white noise) 

A suitable FII interval, M, for systems with white noise is:  

1 1 M = -- = - = 'fn 2rtln ron 

where ron is the natural frequency of the system in radian, In is the 
natural cyclical frequency of the system in hertz and 'fn i s  the effective 
time constant of the system. 

• •  

This selection of M is similar to the conclusion of Sagara and Zhao (1990) 
which is made from some simulation results. However, they did not 
considered the cases of non-white noise. 

In the case of non-white noise whose bandwidth peaks at a particular 
frequency, it is proposed here that a different M value should be chosen to 
minimise the effect of the noise. The proposed FII interval is, 

k M = Ip , k = 1 ,2 ,3 . . .  (5.3-21) 

where Ip is the frequency (Hz) at which the noise has the peak magnitude. 

This interval is chosen so that zero transmittance of FII at multiples of 

� Hz coincides with the peak frequency of the noise. The optimal value of k 

depends on the nature of noise and the system. Nevertheless, the k values 
should be chosen such that the M value is close to the M value given by 
Rule 5 .3- 1 so that Criteria 5 .3-2 are fulfilled. This second guideline for 
selecting the FII interval is formalised in the following. 
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Rule 5,3-2 (Selecting the FII interval for systems with coloured noise) 

A suitable FII interval, M, for systems with coloured noise is: 

k M = Jp 
, k = 1 ,2 ,3 . . . 

provided this value of M is close to the M value given by Rule 5.3-1 .  Here, 
Jp , in hertz, is the frequency at which the coloured noise has the peak 
magnitude. 

• •  

The usefulness of Rules 5.3-1 and 5.3-2, and also the effect of different FII 
interval length in parameter estimation is demonstrated in the following 
simulation examples. 

Simulation Example 5,3-2 

Suppose the system given in Example 5.3-1 is now subjected to a zero
mean Gaussian white-noise that is, 

(p2 + a l P + aO) y et) = b u (t)  + e(t) 

where a1 = 3, ao =2, b = 5 and E(t) is a white-noise term. 

A noise-to-signal ratio (NR) is defined as, 

NR _ standard deviation of li.t) 
- standard deviation of y(t) 

and NR of the white-noise is assumed to be 5%. 

(5.3-22) 

Note that the natural frequency of this second order system CCoughanowr 
and Koppel 1983, Banks 1986) is: 

(On = .y  a O  = 1 .4 1 4 r a d  

S o  using Rule 5.3- 1,  the FII interval selected is: 

M = 1 
= 0 .7 s e c  

These system parameters are then estimated using the recursive least 
square algorithm described by Equation (5.3-12) in Simulation Example 
5.3-1 .  The forgetting factor used is 0.99 and the initial values used are, 
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�(O) = [ 0 0 0 f 
P(O) = 1 06 

The result of the estimation is shown in Figure 5.3-3. 

Figure 5.3-3 Simulation result of Simulation Example 5 .3-2: a 
system with 5% white noise, M=O. 7, a1 = 3,  ao =2 

and b = 5. 
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Above figure shows that the estimates of the system parameters converge 
to the actual values. Therefore, the value of M given by Rule 5.3- 1 ,  that is 
M = 0 .7 ,  is a suitable choice. 

In order to investigate the effect of different FIr interval length, the 
system parameters are also estimated using different M values. 

The performance of the estimators with different M values is then 
compared using an error norm defined as: 

I I  I I  I I  � - e I I  
e = I I  e I I  (5.3-23) 

where e is the vector of system parameters, [a1 ao b], e is the estimated 
parameters and I I  • I I  is the Euclidean norm. 
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It is found that, generally, stable estimates can be obtained after 150 
iterations. Table 5.3-1 shows the parameter estimates, the bias in terms of 
percentage error and the error norm after 150 iteration. 

The error norm after 150 iterations is also plotted in Figure 5.3-4. 

Table 5.3-1 Parameter estimates, percentage errors and error 
norm for various FII interval, M: a system with 5% 
white noise. 

M Parameter Estimates Percentage Error Error 
a1 ao b a1 ao b Norm. 

0.1 2.931 1.960 4.939 -2.29% - 1.98% - 1.21% 0.0162 
0.2 2.988 1.996 4.976 -0.38% -0.20% -0.47% 0.0043 
0.3 2.993 1.996 4.973 -0.20% -0. 15% -0.52% 0.0044 
0.4 2.996 1.997 4.971 -0. 1 1% -0. 15% -0.57% 0.0048 
0.5 2.999 1.998 4.972 -0.00% -0.08% -0.55% 0.0045 
0.7 3.010 2.004 4.987 0.34% 0.24% -0.24% 0.0027 
1.0 3.022 2.011 5.005 0.74% 0.58% 0 . 10% 0.0042 
1.2 3.027 2.013 5.008 0.92% 0.66% 0. 17% 0.0052 
1.4 3.029 2.011 5.004 0 .99% 0.55% 0.08% 0.0052 
1.6 3.024 2.003 4.984 0.81% 0. 16% -0.30% 0.0047 
1.8 3.010 1.990 4.951 0.34% -0.48% -0.97% 0.0082 
2.0 2.987 1.972 4.903 -0.43% -1.38% -1 .92% 0.0164 
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Figure 5.3-4 Error norm for various FII interval, M: a system with 
5% white noise . 
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As seen from above figure, the lowest error norm occurs around M=O.7. 
Therefore, the FII interval, M, value given by Rule 5 .3- 1 in fact is the 
optimal choice for the system in this example. 

Appendix A gives the software used for the simulation. 

Simulation Example 5,3-3 
The previous example is now subjected to a "pink" noise whose spectrum 
is given by Figure 5.3-5. 

Figure 5.3-5 Spectrum of the noise in the system of Simulation 
Example 5.3-3 
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It can be seen from this figure that the noise peaks at frequencies in the 
neighbourhood of 0 . 5. to 1 . 1  Hz. The noise to signal ratio, as defined in 
Equation (5.3-22), is assumed to be 5%. 

Various M value is then applied to estimate the parameters. The 
parameters are estimated using the recursive least square algorithm 
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described by Equation (5.3-12) in Simulation Example 5.3- 1 .  The forgetting 
factor used is 0.99 and the initial values used are, 

�(O) = [ 0 0 0 ]T 

P(O) = 1 06 

It i s  found that, generally, stable estimates are obtained after 150 
iterations. Table 5.3-2 shows the parameter estimates, the bias in terms of 
percentage error and the error norm after 150 iteration. The error norm is 
also plotted in Figure 5.3-6. 

Table 5.3-2 Parameter estimates, percentage errors and error 
norm for various FII interval, M:  a system with 5% 
coloured noise and al = 3, ao = 2, b = 5. 

M Parameter Estimates Percentage Error Error 

a1 ao b a1 ao b Norm 

0.2 2.893 1.945 4.922 -3.55% -2.73% -1.59% 0.023 
0.4 2.908 1.953 4.834 -3.05% -2.33% -3.32% 0.031 
0.6 2.919 1.956 4.849 -2.67% -2. 16% -3.01% 0.028 
0.8 2.962 1.975 4.924 -1.24% -1.23% -1 .51% 0.014 
1.0 2.985 1.989 4.968 -0.48% -0.54% -0.63% 0.005 
1.2 2.990 1.992 4.979 -0.32% -0.37% -0.42% 0.004 
1.4 2.991 1.995 4.984 -0.28% -0.23% -0.31% 0.003 
1.6 2.990 1.992 4.979 -0.32% -0.38% -0.41% 0.004 
1.8 2.989 1.994 4.979 -0.34% -0.35% -0.42% 0.004 
2.0 2.986 1.992 4.976 -0.46% -0.39% -0.47% 0.004 
2.2 2.995 1.996 4.991 -0. 16% -0. 17% -0. 18% 0.002 

2.4 2.989 1.995 4.982 -0.36% -0.26% -0.35% 0.003 
2.6 2.993 1.995 4.988 -0.23% -0.23% -0.25% 0.002 
2.8 2.959 1.979 4.931 -1.36% - 1.01% - 1.30% 0.013 
3.0 2.922 1.963 4.879 -2.58% -1 .85% -2.43% 0.024 
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Figure 5.3-6 Error norm for various FII interval , M: a system with 
5% coloured noise. 
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This figure shows that the minimal error norm no longer occurs at a FII 
interval of M=0.7 ,  but in the neighbourhood of 1 to 2 .5 .  Therefore ,  
Rule 5 .3-2 is useful here for selecting the FII interval. Using Rule 5 .3-2 
with k=l, the suitable range of M values is 0.9 to 2. The value of one should 
be used for the k in Rule 5 .3-2 because this k value gives a FII interval 
closest to the interval given by Rule 5.3-1, that is M=0.7.  

Appendix A gives the software used for the simulation. 

5.3.4 Selecting a Parameter Estimation Algorithm 

It has been established in Corollary 5.3- 1 that the FII system equation 
given by Theorems 5.3-1 to 5 .3-3 can be written in standard linear-in-the
parameter form of the Equation-error (EE) structure for discrete-time 
parameter estimation (Ljung 1987, Young 1980). Therefore all the well 
established EE estimation algorithms for discrete-time systems (Astrom 
and Eykhoff 197 1 ,  Saha and Rao 1983, Ljung 1987) can be used for the FII 
technique. 

In the case of on-line estimation, the (weighted) recursive least-squares 
(RLS) and the recursive instrumental-variable (RIV) methods have been 
found to be the most effective (Young and Jakeman 1979, Whitfield and 
Messali 1987, Saha et al 1982, Chang et al 1986, Sagara et al 1991). 
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However, it is  important to note that the equation errors of the FII 
equations in Theorems 5.3-1 to 5.3-3 are effectively given by: 

an e (t )  

where e(t) is  the original system noise and an is  an n order FII operator. 
Therefore, the equation error will not be white even if the system noise is 
white due to the FII filtering. It is well known that the simple least
squares method results biased estimates in a situation with high level of 
coloured equation error (Saha and Rao 1983, Ljung 1987). Consequently, 
algorithms for coloured noise such as the instrumental variable methods 
and the modified or extended least-squares methods should be considered 
when the noise level is high. 

Nevertheless, the best estimation method for the FII estimation technique 
might be different for systems and noise of different nature. Simulation 
study should thus be carried out before adopting an estimation method for 
practical use. 
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5.4 SIMULTANEOUS ESTIMATION OF CONTINUOUS· 

TIME·MODEL PARAMETER AND PURE DELAY 

The previous section has determined that the FII descriptions are useful 
in parameter estimation of continuous-time models. It will be shown in 
this section that when the system is controlled by a discrete-time digital 
controller, the FII descriptions can be extended for the estimation of pure 
delay in a continuous-time-model. Although the system input is restricted 
to a discrete-time input, a delay which is not an exact multiple of the 
sampling interval can be estimated when the FII descriptions are used. 
Also, as most modern controllers are digital controllers, an estimation 
technique based on the FII descriptions is useful in practice. The 
estimation technique proposed in this section is based on the extended B
polynomial (Biswas and Singh 1978 ) approach described earlier in 
Chapter 2. 

The system model considered here has a form similar to that of 
Definition 5.2-1 but with an added delay term in the system input. So the 
model can be described as follows. 

Definition 5.4-1  (Systems of interest with pure delay) 

The systems of interest with pure delay are single input and single 
output, lumped parameter and strictly proper dynamical systems, which 
have a pure delay term in their input and can be described by models in 
the form of linear ordinary differential equation (ODE), that is:  

= 
c diu (t - -r) I. bi  d i + e ( t )  

i=O t 

such that n >  c, and without loss of generality, an = 1 .  

Here y(t) i s  the output, u(t) i s  the input, 't i s  the pure delay, e(t) is the model 
error (or system noise), and ai and bi are the model parameters .  
Quantities that need to be estimated are 't ,  an- l . . .  aO, and bc  . . .  bo. 

• •  

Using the operator notations defined In Chapter 3 the above delay
differential equation can be written as: 
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A(p) y (t ) = B (p) D(t ; -r) u (t ) + e ( t) (5.4-1) 

where 8 is the delay operator and p is the differential operator as defined 
in Definition 3.2-4, and, 

B (p) = b c .pc + b pc- l + b pc-2 + + b c- l · c-z · . . . 0 

(5.4-2) 

(5.4-3) 

Equation (5 .4- 1) will be used later to develop the FII technique for 
simultaneous estimation of delay and parameters. To present the FII 
technique, this section is divided into the following five subsections: 

Section 5.4. 1 The development of the FII estimation technique for delay 
system starts with finding the FII of a group of special 
functions. This group of functions is named here the Piece
wise Defined Functions (PDF) because it can be smoothly 
described in continuous-time only within pieces or intervals 
of time. In other words, the PDF is a series of functions 
such that each function in the series is valid only for a 
certain duration. 

Section 5.4.2 Using the result from Section 5 .4 . 1 ,  the FII is found for a 
subclass of PDF which is named the Piece-wise Constant 
Function (PCF). The PCF is used in later subsections to 
describe the control signal generated by a digital controller. 
The FII of this PCF is needed to formulate a FII estimation 
equation for delay systems that are controlled by digital 
controllers. 

Section 5.4.3 Using the result from Section 5 .4 .2 ,  an FII estimation 
equation is formulated for the delay system. The FII 
estimation equation can be  used by a discrete-time 
estimation method to estimate the delay and parameters of 
a continuous-time model. 

Section 5 .4.4 This subsection details the formulae for calculating the 
delay and other model parameters from the coefficients of 
the estimation equation given by Section 5.4.3. 



Chapter 5 Application of FII 1 23 

Section 5.4.5 This subsection summarIzes the steps involved in 
simultaneous estimation of delay and parameters using the 
FII equation. 

5.4.1 FII of Piece-wise Defined Functions 

This subsection presents the FII of a special function named here the 
piece-wise defined function (PDF). The PDF is defined as follows. 

Definition 5.4-2 (Piece-Wise Defined Functions) 

A piece-wise defined function (PDF) of t, ret) , is a series of subfunctions. 
Each of these subfunctions in the series, rh (v) , is defined only within an 
interval of t with interval length Ts , such that: 

ret) = rh(v)  

where , 

th = hTs h E W = { O , 1 ,2 ,3 ,  . . .  } 

V = t - th 
• •  

This PDF is illustrated in Figure 5.4-1 .  

Figure 5.4-1 Piece-Wise Defined Function. 

� . . . .  1's . . . . .  > 

t 
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When the component functions rh (v) are known. the FII of ret) can be 
determined and it is given in the following theorem. 

Theorem 5.4·1 (FII of Piece-Wise Defined Functions) 

If ret) is a piece-wise defined function as defined in Definition 5.4-2 then 
the FII of ret), with FII interval of length m Ts. is given by: 

Where. as defined in Definition 5.4-2. 

o � v < Ts v = t - th 
th = hTs h E W = { O , 1 ,2 ,3 , . . .  } 

also as in Definition 3.2-4, 

TJ (v =w) f( v) 

Proof 

W 

= ff(v) dv 
o 

Applying the FII operator on the PDF ret) : 

(J ret) (t=t h+ v ;m Ts) 

= f r(t )- tit" th+ v -m Ts 

= 

th- l  +Ts 

f ret) dt + . . .  + t h- l  f ret) d t  th -m + v 
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= 

th -m +Ts 
f rh_m (v) dt 

th -m +v 

125 

In above equation, substituting t with (th+v) for the first integral, t with (th _ 

i+v) for the integrals within the summation and t with (th_m+V) for the last 
integral yields, 

v Ts 
= J rh(v ) dv + J [i rh _; (v) dv 1 

Also as, 

r(t) = rh(v ) , for th ::; t < th+ l  
then, 

rh-i(v) = ret-iTs) = �t=t ;Ts ) r(t ) 

v 

(5.4-4) 

(5.4-5) 

Therefore substituting Equation (5 .4-5) into Equation (5 .4-4) and 
expressing the integral with the operator 11 yields Theorem 5.4-1 .  

• •  

It is important to note that the integration operators in Theorem 5.4- 1 ,  

7]( _ ) and 7]( -T ) ,operate on the variable v, but the delay operators , v - v v - s 
O(t=t;Ts)' operate on the variable t. 

An important class of PDFs in the estimation of the pure delay and the 
parameters of a continuous-time system model is the piece-wise constant 
function (PCF). This is because the output of most digital controllers are 
driven by a zero--c>:rder-hold. Using Theorem 5.4-1 ,  the FII of a PCF is 
found in the following subsection. 
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5.4.2 FII of Piece-Wise Constant Functions 

126 

A piece-wise constant function is a class of PDFs such that each of the 
component functions is a constant. The piece-wise constant function is  
defined as follows. 

Definition 5.4·3 (Piece-Wise Constant Functions) 

A piece-wise constant function (PCF), u(t), is defined as: 

where Uh is constant within the interval of th � t < th+l and th is as defined 

in Definition 5 .4-2 that is, 

h E W = { O , 1 ,2 ,3 , . . .  } 
• •  

As a PCF is a piece-wise defined function, the FII of a PCF can thus be 
found by assigning the PCF as the operand in Theorem 5.4-1 ,  that is 
replacing ret) with u(t) in Theorem 5.4-1.  This gives: 

(J u (t)  (t=t + v . m T ) h , s 

= [ 1) (v=V ) + 1) (v=T,) i !fr.t=t ; T,) - 1) (v=v) .s;':=t ; T,)] u (t ) i= l  (5.4-6) 

As seen from Definition 5 .4-3, u(t) is independent of the variable v, the 
resultant quantities of, 

are thus independent of v as well and thus they are considered as 
constants in the integration, 11(v =v )  and 11(v =Ts ) . 
As a result, Equation (5 .4-6) becomes (subscripts of 0 are omitted for 
simplicity): 
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(5.4-7) 

Equation (5.4-7) gives the first order FII of a PCF. Note that P1(v, S)  is a 
polynomial of 8 and the coefficients of 8 are · functions of variable v .  
Consequently, the first order FII of a PCF i s  a function of v and thus has 
the form of the piece-wise defined function given by D efinition 5 .4-2. So 
Theorem 5.4-1 can be used again to find the second order FII of a PCF, by 
setting the operand to be the first order FII of PCF, P1(v,S) u(t). That is:  

2 (J(t=t h+V ; mTs) u (t )  

= [ 7) (,=, ) + 7) (,=T,) i� 5c'=t ; T,) - 7) (,=, ) <l(,=t ; T,)] p\(v , Sj U (I) 
(5.4-8) 

Again, as �t=t; Ts) u(t) is independent of v, above Equation (5.4-8) becomes, 

or m 
2 (J(t=th+ v ; m T) u (t )  = L Pi . 2(v , 0) (j u (t )  

where , 

;=0 

1J (V=V ) PI(v , O) 

-T/ (v=Ts) P 
l(v , 0) 

(5.4-9) 

, i= O  

, l � i �(m- l ) (5.4-10) 

This process can be continued to find a kth order FII of u(t) . So it provides 
a recursive means to evaluate the FII of PCFs. Note that the polynomial, 
Pkev ,8), serves as an operator to transform the u(t) into its FII. This is 
formalised in the following theorem. 
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Theorem 5.4·2 (FII of Piece-Wise Constant Functions) 

If u(t) is a piece-wise constant function as defined in Definition 5 .4-3 then 
the kth order FII of u(t) with FII interval M = m Ts is given by: 

where Pk(v,O) is an "operational polynomial" transforming u(t) to its FII. It 

is given by: 
m 

i=O 
with 

PO(V , O) = 1 

11 (v =v ) P k-l ( v , 0) , i= O 

11 (v =Ts) Pk-1(v , O) , l �  i �(m- l )  

Also, as defined in Definition 5.4-2: 

h e  W = { O ,I ,2 ,3 ,  . . . } 
• •  

Another form of the FII operational polynomial of PCF, Pk(v,O) ,  can be 

observed directly from Theorem 5.4-2 and it is given in the following 
corollary. This form is more explicit and provides better understanding 
when Pk(v, O) is applied in later subsections to develop an estimation 
technique for system parameters and delay. 
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Corollary 5.4- 1 (Alternative form of FII operational polynomial) 

The FII operational polynomial of PCF, Pk(v,O), defmed in Theorem 5.4-2 

has the form of, 

mk 

Pk (v , 5) = L w i . k (V) �t=t ; Ts) 
i=O 

where wi.k(v) is an appropriate polynomial of v .  Also as defined in 
Theorem 5.4-2, k is the order of the FII and the FII interval is m Ts . 

• •  

Proof 
Observe from Theorem 5 .4-2 that, P k(v, O) , is a polynomial of 8. The 
coefficients of this polynomial of 8 are polynomials of v. Also the lowest 
order of 8 in Pk(v,O) is zero and the highest order is mk. • •  

Corollary 5.4- 1 is important because it determines the number of past 
values of u(t) needed to evaluate the FII of u(t) .  In other words, it shows 
that in order to find the kth FIr of u(t) with an FIr interval of mTS ' a total of 
(mk+ 1) measurements of u(t) is required. 

The coefficients wi.k(v) are polynomials in the variable v, as they result 
from multiple integration of the constants Uh with respect to v .  The 
interval Ts is usually pre-defined and thus considered as a constant. An 

important property of the coefficients wi.k(v) in this context of parameter 

estimation, is determined in the following theorem. 

Theorem 5.4-3 (Sum of coefficients of FIr for PCF) 

If wO.k' w 1 ,k' . . . , wmk•k are coefficients of the FII operational polynomial 
Pk(v,O), as defined in Corollary 5.4-1 ,  then, 

m k 

� w .  = m
k

T 
k 

£.J l . k s 

i=O 

where, as defined in Theorem 5 .4-2 , k is the order of the FII, Ts is  the 
interval of the PCF and the FII interval is mTs .  • •  
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Proof 
From Theorem 5.4-2 , 

Pk(V . O) u (t )  = [1/ (V=V/k - 1 (V ,0) + 1/ (v=T,/k - l (V ,O) � �t=t; T,) 
- 11 (v=v) Pk_1 (v ,0) �=t ; Ts)J u (t ) 

In the right-hand side of Equation (5.4-11), the first term, 

11 cv=v)Pk- 1 (V ,0) 
and the last term, 

- 11 Cv=v) Pk_1(v ,0) �=t ;Ts) 

(5.4-11) 

have the same coefficients for 8 but with opposite sign. Therefore the 
coefficients of 8 for this two terms sum up to zero. 

This means that the sum of the coefficients in Pk(v,O) is simply equal to the 

sum of the coefficients in the second term in the right-hand side of 
Equation (5.4-11), that is: 

m 

17 CV=Ts)Pk- 1(V ,5) i�l i'ct=t ; Ts) (5.4-12) 

Note that in Equation (5.4-12), the coefficients of 8 are decided by the term: 

11 (V=Ts)P k - l  (v ,O) 
Also , the coefficients of 8 in 1JCv=Tstk-1 (V,0) repeat m times in because of the 

summation in Equation (5.4-12). 

If Theorem 5 .4-3 is true, the sum of the coefficients in Pk- 1 (v ,8) will be 
equal to mk-1T/- 1 and thus the coefficients due to 1JCv=Tstk-1 (V,0) sum to: 

= k - l T k - l T m s s 

= mk- 1  T k s (5.4-13) 
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As mentioned earlier, this sum repeats m times for Equation (5 .4-12), that 
is :  

Therefore, if  Theorem 5 .4-3 is  true for P k- l (v, 0) then it  is  also  true for 
P k(v,O) ,  

Now for k=l ,  it has been found in Equation (5.4-7) that: 

So the sum of the coefficients of 8 are: 
m 

which means Theorem 5 .4-3 is true for k=1 .  Therefore, by induction 
Theorem 5.4-3 is true for all k=1,2,3, . . .  • •  

The coefficients wi,k(v) of the FII operational polynomial can be found 

using Theorem 5 .4-2 .  Despite the complicated appearance of the 
equations , the mechanism to evaluate these coefficients is reasonably 
simple. This is demonstrated in the following example. 

Example 5.4-1 

Let M=5 Ts '  that is m=5. The first order of FII is found by first evaluating 
the Pi,k(v,O) in Theorem 5.4-2: 

= T - v s 

v 
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Note that it is necessary to do integration only once. 

The coefficients wi,k(v) are then found by shifting Pi.k(v,O) and summing 

their elements as illustrated in the following: 

P O , l : v 
P 1 1 : , Ts 
P2 1 : , 
P 3 , 1  : 
P 4 1 : , 

+ P S 1 : 
wO, l WI , I 

So, 
WO, l = v 

W I  1 = w2 1 = W3 1 = w4 1 = T , , , , s 

WS , l = Ts - v 

and 

Ts 
Ts 

Ts 
Ts-v 

w2, 1 W3 , 1 W4, 1 WS , l 

This mechanism is  more obvious for the second order FII. Again, to find 
the second order FII of u(t) , first evaluating Pi.2(v,8): 

v 

= f [v + TsC 81 + 82+ 83+ $' )  + (Ts- v)� ]dv 
° 

= tv2 + vTsC 81 + 82+ 83+ 04 )  + (vTs-tv2)8S 

P 1 , 2 ( v , 8) = P 2 , ; (v , 8) = P 3 , 2 ( V ,8)  = P 4 , 2 ( v , 8) 
= iT 2 + T 2( 81 + 8 + 83 + $' )  + iT 2 � 2 s s 2 s 

To find the coefficients w2.i ' the P2,i are shifted and tabulated as before, 
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PO,2: y2 vTs vTs vTs vTS 
2 y 

2 VTs-T 
Pl,2: T 2 _s_ T 2 

s T 2 
s T 2 

s T 2 
s T 2 

_s_ 
2 2 

P2,2: T Z _$_ 
T Z 

S T Z 
S T Z 

$ 
T Z 

S T Z 
_s_ 

2 2 
P3,2: T Z 

_s_ T Z 
s T Z 

s T Z 
s T Z 

s T 2 
_s_ 

2 2 
P4,2: T 2 

_s_ 
T 2 

s T 2 
s T 2 

s T 2 
s T Z 

-.L 
2 2 

P5,2: T 2_y2 2 T;-vTS 
2 Z (Ts-V)Z + _$ __ 

Ts -vTS Ts -vTS Ts-vTs 
2 2 

wO•2 w1 •2 wz.z w3•Z w4•2 wS •2 W6•2 w7•Z wg•z w9•2 w 1 O•Z 

The wi.2 are then found by summing the elements in respective rows in 
the table. This gives, 

• •  

Theorems 5.4-2 and 5 .4-3 for a PCF may be used to develop an estimation 
technique for the continuous-time-model parameters including the pure 
delay. This is discussed in the next subsection. 
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5.4.3 Delay and Parameter Estimation Equation 

It has been indicated in Section 5.3 that an appropriate e stimation 
equation is needed before the parameters of a model can be estimated. By 
combining the results obtained in Sections 5 .3 . 1 and 5.4.2, an estimation 
equation can be obtained that facilitates simultaneous estimation of 
parameters and pure delay of the systems given by Definition 5.4-1. 

As given by Equation 5.4-1, the system model in operator notation is: 

A (p) yet) = B (p) D(t; -r) u (t ) + e(t )  

where 't' is the pure delay and: 
n 

A(p) = L a n-i pi 

i=O 

c 

B (p) = 'L bc_i pi 

i=O 
, c<n 

(5.4-14) 

(5.4-15) 

(5.4-16) 

When the system is controlled by a discrete-time controller with zero
order hold and a sampling interval of Ts , the control signal, u(t) , can be 
described as a piece-wise constant function (PCF) , which is defined in 
Definition 5.4-3 as: 

(5.4-17) 

where Uh is constant within the interval of th � t < th+l and this a sampling 

time point given by: 

, h E W = { O ,  1 ,2 ,3 'O O .  } 

The input delay 't' can be divided into the two parts as follows. 

(5.4-18) 
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Definition 5.4-4 (Portions of Pure Delay) 

a) The integral delay, 'Cd' is defined as the portion of delay which is  an 
exact multiple of the sampling interval, Ts .  That is: 

, de W  

b) The fractional delay, v is defined as the difference between the pure 
delay, 'C, and the integral delay 'Cd. That is: 

v = 1'd - l' , 0 � v < Ts 
• •  

Note that by this definition, 'Cd is larger than or equal to 'C, and v is smaller 
that the sampling interval Ts . When the FIl description is used with a 
discrete-time estimation algorithm, it is more convenient to evaluate the 
FIls at the sampling time point, th o An important time point for later 
work is the sampling time point th delayed by the delay 'C. That is: 

These quantities are illustrated in Figure 5.4.3-1 .  

Figure 5.4-2 Delays and time indices 

j� u h-d-! 

L < _ _ _ _ _ _ _  s _ _ _ _ _  -:> 

uh_d 
I 
I 

v I .. - - - -� 
I I I 

I 
I l' .. - - - . - . . . . . . . . . .  - �  

(Delay) I 

: � • • • • •  1'
d 

= d � - - . . . .  � 

A FIl description for this delay system is now determined. 

(5.4-19) 

... t 
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Lemma 5.4-1 (FII Description for Delay Systems) 

For a system described by Definition 5.4-1 with piece-wise constant input 

having the form of Definition 5.4-3 , the following holds: 

n 
n -i i 

� a n _i 
V(t omT ) (J(t=t 0m T  ,v et )  £.J h '  s h '  sY 

i=O 

where E(t) is an error term given by, 

i 
(J(t=t ° m T  )e(t) 

h '  s 

and P n-c+i is the FII operational polynomial for a (n-c+i)th FII of PCF as 

defined in Theorem 5 .4-20 
• •  

Proof 
Using Theorem 502-1 (FII system equation), a FII description, evaluated 
at time th for a system given by Definition 5.4-1 is: 

(5.4-20) 

Then using the commutativity of CJ and (5 determined in Theorem 3.3-1 ,  the 

summation term in the right-hand side of Equation (5.4-20) becomes (note 

the changes in the_ s_ubscripts of operators): 

c 0 

c-i n -C-l 
� b V (J u (t )  £.J c- l (th ;mT ) (t=t - 'f °mT ) i=O S h '  s 

c . . , C-l n-C- l  
= � b V (J 0 mT ) u (t )  (;:0 c- l (th ;m Ts) (t=th_d+v , s 

, by Equation (5.4-19) 
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c c-i d n-c-i 
= � bc- 1 V(th ;mTs) D(th ; Ts)G(t=th +V ;mTs) U (t ) 

and by Theorem 5.4-2 (FII of PCFs): 

n-c-i 
G(t=t +v 'mT )u (t ) = Pn-c+ i u (t) h ' s 
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(5.4-21) 

(5.4-22) 

Lemma 5 .4-1 is then obtained by substituting Equation (5 .4-22) into 

Equation (5.4-21). 
• •  

The FII system description in Lemma 5.4-1 can be rearranged to form an 

estimation equation which is suitable for discrete-time estimation of pure 

delay and other system parameters. This FII estimation equation is 

developed in the following. 

Lemma 5.4-2 (Backward difference of Polynomial of Delay Operator) 

If P(S) is a polynomial of the delay operator, O(t ; Ts ) '  such that: 

i2 

P(S) = L wi �t ; Ts) 
i =i 1 

where wi are the coefficients of 0 such that: 

for 

then the backward difference of P(S) with respect to t is given by: 

i2 

V:t :mTs) L Wi �t : Ts) = 
i =i1 

(5.4-23) 

Proof 
Consider the first order V: 

� � 
V (t ;mTs) L Wi �t ;Ts) = ( 1 - S[: ; Ts ») L w i �t ;Ts) 

i�l i� l  

• •  
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i2 

= L wi (�t ; Ts) - �7:�s») 
i =il 
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(5.4-24) 

Equation (5.4-24) shows that the Wi are the coefficients of d and (_d+m) and 

thus Wi-m are the coefficients of d-m and (-8). Therefore, the coefficients of 
d is: 

Also the highest order of S in Equation (5.4-24) is (i2+m). So: 

i2 
V(t ;mTs) L wi �t ; Ts) = 

i =il 

N ow for a kth order V: 

i2 
V�t ;mTs) L wi $ 

i =il 

i2+m 

i2+m 

L V (i ;m )Wi �t ; Ts ) 
i =il 

(5.4-25) 

= V�t-;�Ts) L V (i ;m )Wi $ 
i =il 

, by Equation (5. 4-25) 

, by Equation (5. 4-25) 

Continuing this process gives Lemma 5.4-2 
• •  

Note that the V and S operators in the left-hand side of Equation (5.4-23) 
operate on variable t. In contrast, the V in the right hand side operates on 

the index i. Lemma 5.4-2 effectively shows that the coefficients of d in the 
k k 

V peS) are V(i;m)Wi. 
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Theorem 5.4-4 (FII Estimation Equation for Delay Systems) 

For a system described by Definition 5.4-1 with piece-wise constant input 

having the form of Definition 5.4-3 , the following holds: 

n d+nm 
L a n-i V�t�;mTs) O"�t=th; Ts)y (t) = L f3i �t=th; Ts) u (t ) + e(t) 
i=O i=d 

where, Ts is the sampling interval, th = hTs' h e W, and (as defined in 

Definition 5.4-4) v and d are given by: 

, -r is the pure delay of the system and de W 

where f3i is an appropriate function of v and the system parameters 

bo,bp . . ,bc that is given by: 

with, 

Wj , l = { 

c 
= � b Vc-1 

L.,; c- l (j'  ) Wj ,  l+n -c 1=0 ,m 

Wj, I (V) , for O �  j �lm 

o , for other values ofj 

(5.4-26) 

and Wj, I(V)  is the jth coefficient of the Ith FII of PCF as defined in 

Corollary 5.4-1. 
• •  

Proof 
It has been determined in Lemma 5.4-1 that the right-hand side of the FII 

description of Delay system is (omitting the error term): 

c c-l d 
� b V 8 P u (t) L.,; c-l (t ;mTs) (t ; Ts) l +n -c 1=0 

c d c-l 
= � b 8 V PI u (t) L.,; c- l (t ; Ts) (t ;m Ts) +n-c 

1=0 
Also by Corollary 5.4-1, P1+n-c is a polynomial of 8 operator: 

(5.4-27) 
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m (l +n-c) 
P1 +n-c = L wj , l +n _c(v) �t ; Ts) 

j=O 

So by Lemma 5.4-2: 

So substituting Equations (5.4-28) into (5.4-27) yields: 

c m n 
� � c-l ..ti+j 

= L.J bC -1 L.J V U;m ) wj , l +n _c(v ) D(t ; Ts) U (t )  
1=0 j=O 

140 

(5.4-28) 

As the upper and lower limits of the second summation is independent of 

the index 1 of the first summation, the order of the two summations can be 

interchanged to give: 

mn c 
� � c-l ..ti+j 
L.J L.J bc-1 V U;m ) Wj , l +n _c(V) D(t ; Ts) U (t)  

j=O 1=0 

substituting index (j+d) with index i gives the theorem. 
• •  

An alternative form of the FII estimation equation in Theorem 5 .4-4 is 

given in the following corollary in order to examine the suitability of this 

FII estimation equation for the continuous-time model discrete-time 

estimation approach. 
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Corollary 5.4-2 CLinear-in-the-Parameter Form of FII Estimation 
Equation for Delay systems) 
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The FII estimation equation given by Theorem 5.4-4 can be written in a 

linear-in-the-parameter vector form: 

1jI(t) = A(t? () + £(t) 

where 

and 

n 
1jI(t) = V(t 'm T ) y(t)  h ' s 

A(t ) = 
n -cr(t=th ;mTs) y(t) 

u*(t  h) 

u*( t  h) = [ u (t h-d) . . . u (t h-d-nm ) r 

b* = [ f3d . . .  f3d+nm ] 
• •  

This shows that the FII estimation equation in Theorem 5 .4-4 has the 

standard form of a equation-error type estimation equation for discrete
time estimation. The system parameters, an_1 . . .  ao can be obtained directly 

from the estimate of e. Also, it has been found in Theorem 5.4-4 that Pi is a 
function of the system delay -r and parameters bc . . .  bo. Consequently, the 

FII estimation equation fulfils the Criteria 5 .3- 1 for continuous-time

model discrete-time-estimation (CD ) approach. The FII estimation 

equation can thus be used in a CD approach to estimate the continuous

time model parameters and delay. 

When 'rd (the integral delay as given by Definition 5.4-4) and thus the index 

d is not known, the extended B polynomial technique (Biswas and Singh 
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1978, Kurz and Goedecke 1981) can be applied to identify the index d . 
Following this technique, the u* and b* vectors are expanded to form, 

(5.4-29) 

b* = [ f3L . . .  f3H+nm ] (5.4-30) 

where L is the lower limit of d and H is the higher limit. When the 

conditions of consistent estimation is fulfilled (Ljung 1987) the elements of 

f3i other that f3d • • •  f3d+nm should approach zero and thus d can be 

identified. 

The use of f3i to solve for 'f and bc . . .  bo is discussed in the next subsection. 

Also, more details on the overall estimation process are given later in 
Section 5.4.5. 

The following example demonstrates the use of Theorem 5.4-4 to find the 
FII estimation equation for a delay system. 

Example 5.4-2 (FII description of 2nd order delay system) 

For a strictly proper second order delay system of Definition 5 .4-1 ,  we have 
the order of polynomial A(p). n=2 and the order of the polynomial B(p) , c=1 .  
Then from Theorem 5.4-4, there are (nm+ 1 ), that is (2m+ 1 ), non-zero f3i 
given by: 

c 
f3d+j(V ,  bo, · · · ,  b c) = � b Vc-k 

w L.J c-k U. ) j .  k+ n-c 
k=O , m 

, j=O . . .  2m 

Thus when j=O: 

, as W j. k = 0 for j < 0 ,  

This process can be repeated to find f3d+ l to f3d+m - l . 
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For j=m, we have: 

f3d+m  = b l [ wm , l - wm -m , l ] + bo [ wm , 2 ] 

= b l [ wm , I - wO, I ] + bo [ wm , 2] 

Consider now the case of j=m+ 1 :  
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, as wj. k = 0. for j > km, 

Similarly can find f3d+m+2 to f3d+2m ' Table 5.4-1 summarises these results. 

When the FII interval, M=5 Ts , that is when m = � = 5, the f3i can be 
s 

found using the wi, k obtained in Example 5.4-1 .  These f3i are tabulated in 

Table 5.4-2. 

Table 5.4-1 

f3d 

f3d+1 

f3d+m 

Coefficients f3i in FII description of strictly proper 

2nd order delay systems 

b i wO,l + bo wO,2 

bi wl,l + bo wl•2 

b i [ wm,l - wO,l ] + bo wl •2 

f3d+m+ I 
- b i wl,l + bo wm+l,2 

f3d+2m 
- b i wm•l + bo w2m.2 
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Table 5.4-2 

f3d 

f3d+1 

f3d+2 

f3d+3 

f3d+4 

f3d+5 

f3d+6 

f3d+7 

f3d+8 

f3d+9 

f3d+lO 

Coefficients f3j in FII description of strictly proper 2nd 

order delay systems when M=5 Ts .  

2 
bi v + bo ; 
bi Ts + bO [ � � + v Ts ] 

bi Ts + bO [ 1� � + v Ts ] 

bi Ts + bO [ 2� � + v Ts ] 

bi Ts + bo [ �� +  v Ts ] 

bi [ Ts - 2v ]  L jl  2 + bo [ 42 s + v Ts - v 1 

-bi Ts + 
-bi Ts + 
-bi Ts + 

-bi Ts + 
bi  [ v - Ts 1 

bo [ 4��  - v Ts l 

bo [ 3� �  - v Ts ] 

bo [ 2�� - v Ts ] 

bo [ 1�� - v Ts ] 

1 2 + bo [ 2 (Ts - v) ] 

1 44 
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5.4.4 Solving for Delays and Parameters 

It has been determined that the FII estimation equation given by Theorem 

5.4-4 can be used for discrete-time parameter estimation. The quantities 

obtained directly from the estimation routine are estimates of the FII 
estimation equation's coefficients which are given in the vector 8 defined 

by Corollary 5.4-2, that is: 

8 = [ an _ !  an_2 . . .  aO f3d . . .  f3d+nm r 
The system parameters can be obtained directly from 8. However, the 
pure delay 't", and system parameters bc . . . bo need to be found from the Pi 
which are functions of the fractional delay v and parameters bc o . . bo . 

Before proceeding to find the formulae for calculating the pure delay and 

other system parameters, it is useful to establish the following results 
about the sum of the coefficients f3i ' 

Lemma 5.4·3 (Sum of Coefficients of Backward Difference) 

Let X(8) be a polynomial of the delay operator OCt ) given by: 

A\ s: I 2 s: 3  XCV) = ( ko + k I V(t) + k2 o(t ) + k3 V(t) + . . .  ) 

where ko' kl ' k2' . . .  are coefficients of OCt ) in the polynomial xeS) such that 

they are invariant under the operation of oc t) . 
Then the sum of the coefficients of o(t ) resulting from the operation: 

V(t) X(5) 

IS zero . • •  

Proof 
According to the definition in this lemma, X( O) can be written in the 

following vector form: 

X(5) = KT D (t )  

K = [ ko k 1 k2 . . . ] T  

D (t )  = [ 1  D(!) D(;) . . .  ] T 

(5.4-31) 

(5.4-32) 

(5.4-33) 
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So: 

V (t) X(D) = ( 1 - 8(t) ) KT D(t)  (5.4-34) 

By the definition in this lemma, KT is invariant under the operation of o(t ) .  
Therefore Equation (5.4-34) becomes: 

(5.4-35) 

Note that the coefficients of o(t )  for both terms in the right-hand side of 

Equation (5.4-35) are given by J(f. Therefore the sum of the coefficients is: 

Theorem 5.4·5 (Sum of Coefficients) 

• •  

If f3i are the coefficients of a FII description for a delay system, as defined 

in Theorem 5.4-4 , then: 

d+nm 
L f3i = mnT/ bo 
i=O 

Proof 

• •  

It can be seen from Lemma 5.4-1 and Theorem 5.4-4 that the coefficients f3i 

result from expanding: 

(5.4-36 ) 

Note that the elements with index i=O to i=c- l in the summation given by 

Equation (5.4-36 ) involve the operation: 

As defined in Corollary 5.4-1, Piv,8) is a polynomial in o( t ) ,  that is: 

(5.4-37 ) 

The coefficients of o( t )  in this polynomial are given by wi , k (v) ,  which are 

invariant under the operation of o( t) . So , by Lemma 5 .4-3,  all the 



Chapter 5 Application of FII 1 47 

coefficients of 8(t ) in these elements with summation index i=O to i=c- l will 

sum up to zero . 

Consequently, and the sum of coefficients of 8(t ) in Equation (5 .4-36 ) is 

solely due to the element with index i=c, that is: 

�t) b o P n(v ,O)  

As it has been determined in Theorem 5 .4-3 that the coefficients of D(t ) in 
p n(v,c5) sum to mn Tsn, the coefficients of 8( t) in Equation (5.4-36 ) thus sum 
to mnTsnbo ' 

• •  

We now proceed to establish suitable formulae for finding the pure delay 't' 
and parameters bo . . . be from f3i ' 
The pure delay and parameters bo . . .  be should be found in the following 

three steps: 
a) identifying the integral delay, 't'd 
b) calculating bo o 
c) solving simultaneously for the fractional delay v ,  and 

parameters bI . . .  be • 

These steps are discussed as follows. 

a) Identifying the integral delay, 't'd 
As discussed earlier, when the integral delay is not known we should use 
the extended vector of f3j given by Equation (5.4-30), that is: 

b* = [ f3L . . .  f3H+nm ] 
where L is the lower limit of index d and H is the higher limit. The index d 
is related to the integral delay 't'd by Definition 5 .4-4, that is: 

(5.4-38 ) 
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There are three possible means to  identify the index d and thus the 

integral delay. 

i) Identify, is , the smallest value of i for which a statistically significant f3i 
exists. As already determined in Theorem 5 .4-4, the first non-zero f3i is 

f3d' so the index d is given by: 

d = i s (5.4-39 ) 

ii) Identify, ii ' the largest value of i for which a statistically significant f3i 
exists. The last non-zero f3i is f3d+nm and thus: 

d = i l  - nm (5.4-40) 

where, as defined in Theorem 5.4-4, n is the order of the system model 
and the FII interval is M=m Ts .  

iii) Calculate the sum of absolute values for (nm+ 1 )  consecutive f3i, that is: 

i+nm 
S i = L l .8j l  

j=i 
(5.4-41) 

where I ·  I means the absolute value. Then identify the value of i 
giving the largest value of Sj . 
It has been determined in Theorem 5.4-4 that there are (nm+l) number 
of non-zero consecutive f3i (or nm consecutive f3i if v=O or v= Ts) .  So the 

maximal value of Si occurs when Si=Sd as it contains all the non-zero 
f3i· 

In practice the third method is preferred. This is because it is difficult to 
set an arbitrary level of significance for f3i, as the value of f3i depends on 

the unknown quantities, v and b1 . . .  bc ' 
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b) Calculating bo 

It has been determined in Theorem 5.4-5 that the sum of the coefficients Pi 
is, mnT s n boo So after the index d of integral delay is identified using the 

method described earlier, bo can be found by: 

d+nm 
b - 1 " [3  o - mnT n £.. i 

s i=d (5.4-42) 

c) Solving simultaneously for the fractional delay v and parameters 
b I · · ·be  

Theorem 5.4-5 shows that Pi are functions of v and bo . . .  bc . As bo has been 

obtained using Equation (5.4-42), v and b1 . . .  bc can be found by solving (c+l )  
number of simultaneous equations that are relating Pi to v and b1  . . .  bc • 

However there is not a general solution because the relationship of Pi to v 

and b1 . . .  bc depends on the value of n and c which are respectively the order 

of the system polynomial A (p) and R (p) given by Equations (5 .4-2) and 

(5 .4-3). The highest power of v in f3i is n .  Therefore, an nth order system 

generally involves the solution of an nth order algebraic equation. 

The following demonstrates the derivation of appropriate formulae to find 
v and b1 for second order systems. 

There are three possible forms of second order systems that can be 

described by Definition 5.4- 1 .  These are the: 

1) systems with no system zero, that is when b1 =0 and bo;t.O 

2) systems with system zero at zero, that is when b1 :;c0 and bo=O. 

3) system with system zero at non-zero, that is when b1:;c0 and bo:;CO. 

For each of these forms of second order systems, the next three theorems 

respectively present a suitable formula for finding the fractional delay v 
and the parameter b1 . 
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Theorem 5.4-6 (Formula for Fractional Delay of Second Order Systems 
with no System Zero) 

For second order systems that can be described by: 

the fractional delay, v, can be found from: 

f3d+l 1 
V = -b T - 2Ts o s 

where, as defined in Theorem 5.4-4, Ts is the sampling interval and f3d+ l  
i s  the second significant coefficient of the FII estimation equation. 

• •  

Proof 
From Table 5 .4-2, the second significant coefficient of the FII estimation 

Equation for second order systems is: 

f3d+1 = b I Ts + bo [ tT/ + Tsv ] 

When bl =0, this becomes: 

f3d+1 = tboTs 2 + boTsv 

Rearranging gives :  

1 -Ts 2 

Theorem 5.4-7 (Formula for v and bl of Second Order Systems with 
S�stem Zero at Zero) 

For second order systems that can be described by: 

( p2 + a l P + ao ) y (t)  = ( b I P ) D(t ; clI's+v) u (t)  

the parameter bi can be found by: 

f3d+l b i  = Ts 

• •  
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and when bl is found, the fractional delay v can be obtained from: 

f3d V = b; 
where, as defined in Theorem 5.4-4, Ts is the sampling interval and, f3d 
and f3d+l are the first two significant coefficients of the FII estimation 

equation. 
• •  

Proof 
From Table 5.4-2, when bo=O the first two significant coefficients of the FII 

estimation equation for second order systems are: 

f3d+ l = b l Ts 
Rearranging these two equations respectively gives : 

v = f3d 
bl 

b l f3d+l = r;- • •  

So far, formulae have been established for second order systems that 
consist of either the parameter bo or b l .  These formulae are obtained 

using only simple algebraic substitution and rearrangement. However it 

will be shown in the following that more complicated manipulation is 
needed when the second order system consists of both bo and b l . This is 

because variables of higher power are involved. Also special conditions 

are needed to ensure the existence of a unique solution. 

Lemma 5.4-4 

For second order systems that can be described by: 

the fractional delay, v, can be obtained from: 
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where , 

k l 
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(5.4-43) 

(5.4-44) 

(5.4-45) 

(5.4-46) 

As defined in Theorem 5.4-4 fJd and fJd+ l are the first two significant 

coefficients of the FII estimation equation for the system. 
• •  

Proof 
For a strictly proper second order system, the first two coefficients of the 
FII estimation equation can be obtained from Table 5.4-2: 

Rearranging Equation (5 .4-47) gives: 

{3d 1 = V - 2 bov 

Substituting (5.4-49) into (5.4-48) and then by rearranging gives:  

(� boTs )v2 + (t boTs 2 - f3d+ l )V + Ts {3d = 0 

Equation (5.4-50) is a quadratic equation of form: 

(5.4-47) 

(5.4-48) 

(5.4-49) 

(5.4-50) 

Therefore v is given by Lemma 5.4-4 which is the solution of the quadratic 
equation (5.4-50). 

• •  

Note that there are two solutions for Equation (5.4-43). The appropriate 
solution for v is the solution that lies within the range of O�v�Ts .  However, 

it is possible that both the two solutions of Equation (5.4-43) are within this 
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acceptable range of v. Therefore, Lemma 5 .4-4 itself is not sufficient and 

thus a condition needs to be established to identify the right solution for v. 
This is established in the following lemma and theorem. 

Lemma 5.4-5 

The solutions of Equation (5 .4-43), VI and V2 , are: 

= v 

= v + 21zl bo 
where v is the actual fractional delay and, bo and b I are the system 

parameters as given in Lemma 5 .4-4. 
• •  

Proof 
Substituting Equations (5.4-47) and (5 .4-48) back to (5 .4-45) and (5 .4-46) 
gIves: 

k2 = -( b I Ts + bo Tsv ) (5.4-51) 

(5.4-52) 

So using Equations (5.4-51) and (5 .4-52) to solve Equation (5.4-43) gives: 

b I Ts + boTsv - b I Ts 
boTs 

= v 

b 
v + 2_1 bo 

Theorem 5.4·8 (Formula for v and bi of Second Order Systems with 
System Zero at Non-zero) 

For second order systems that can be described by: 

provided the sampling interval, TS ' satisfies the condition of: 

• •  
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then the fractional delay, v, can be obtained from: 

where , 

k l 

and 0 ::;  v < Ts 
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As defined in Theorem 5.4-4 f3d and f3d+ 1  are the first two significant 

coefficients of the FII estimation equation for the system. 

Also when v is found, the parameter bl can be obtained from:  

• •  

Proof 
From Lemma 5.4-5, the two possible solutions for v are: 

and 

This means the undesirable solution is V2 ' In order to distinguish v2 from 

vI ' we need to have V2 lies outside the acceptable range of v defined in 

Definition 5.4-4, that is: 

Therefore we need to have: 

V2 < 0 

that is: b 
v + 2b� < 0 

or 2b 1 > T v + bo - s 

or 

(5.4-53) 

(5.4-54) 
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Now consider the two end values of v. When v=Ts' from Equation (5 .4-53):  

b 1 b 1 Ts + 2 bo < 0 <=> Ts < -2 bo (5.4-55) 

When v=O, from Equation (5.4-54): 

T < 2P--L s 
- bo (5.4-56) 

As we need to have Ts>O, the common solution for inequation (5 .4-55) and 

(5.4-56) is: 

Ts < 2 1�: I 
This is thus the condition to have only the right solution of v lies within 
the acceptable range. 

When v is found, b 1 can then be obtain from rearranging E quation 

(5.4-48). 

5.4.5 General Procedure to Estimate Delay and Model 

Parameters 

• •  

In view of all the previous results, the sequential procedures to estimate 
the system delay and parameters should be: 

1) Decide on the appropriate FII interval , M ,  and thus the index, m,  
such that, M=mTs' Use Rules 5.3-1  and 5.3-2 a s  guideline. 

2) Find the FII coefficients of piece-wise-constant functions, wi,k' An 
n th order system generally requires W i ,k up to k= n . Use 

Theorem 5.4-2 and see also Example 5.4-1 .  

3) Formulate the FII estimation equation o f  the delay system. See 

Theorem 5.4-4 and Example 5 .4-2. 

4) Determine the lower limit, L, and upper limit, H, of the index d for 

the integral delay. 
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5) Using L and H, expand the FII estimation equation from step (3) to 

formulate an appropriate estimation equation. Use Corollary 5 .4-2, 
Equations (5.4-29) and (5.4-30), that is: 

ljI(t) = 1t(t)T e + £(t) 
where, 

and, 

n 
lfI(t)  = Vet · m T ) y( t )  h ' s 

It(t)  = 

n - I I 
-V 0' y (t) (t . m T ) (t=t . m T ) 

n 

h ' s h ' s 

-O'(t=t · m T ) y et )  h ' s 

u*( t  h) 

e = [ an_ 1  a n-2 . . .  aO b* r 

U* ( th) = [ U (th -L ) . . . U ( t h_H+nm ) ] T , H>L 

b* = [ f3L . . . f3H+nm ] 

6) Derive the formulae for fractional delay v and parameters be . . .  bi  
using f3i by assuming the index d for integral delay and parameter bo 

are known. For second order systems, use one of Theorems 5 .4-6 to 

5.4-8. 

7) Estimate the direct parameter 8 for the FII estimation equation 

using an appropriate discrete-time parameter estimation algorithm. 

See Section 5.3 .4 on selecting a parameter estimation algorithm. 

8) Obtain an-I . . .  aO directly from 8. 

9) Calculate Sj using Equation (5 .4-41) that is: 

i+ nm 
Si = L l f3j l  

j=i 
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10) Find index d by identifying the maximal Si. See Section 5.4.4. 

11) Calculate the integral delay 'rd using Definition 5 .4-4, that is: 

'rd = d Ts·  

12) Calculate bo using Equation (5.4-42) that is: 

d+nm 
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13) Find the fractional delay v,  using the appropriate formula derived 
in step (6). 

14) Calculate the system delay 't using Definition 5.4-4 that is: 

15) Find the rest of the system parameters b l . . . b c using the appropriate 

formulae derived in step (6). 

Two simulation examples using the FIT description to estimate the delay 

and parameters in continuous-time models are presented next. 
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Simulation Example 5.4-1 

Suppose a first order system is described by, 

d yJ:) + a y ( t )  = b u ( t  - t )  + e ( t ) 

where, 

a and b are the system parameters. 

t is the input delay. 

y(t) is the system output. 
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(5.4-57) 

u(t) is the system input whose signal is piece-wise constant. 

e(t) is a white noise term. 

Using the notation defined in Definition 3.2-4, this description can be 

rewritten as, 

( p + a )  y e t )  = b u ( t - 'f )  + e ( t )  (5.4-58) 

It is assumed here that the delay can be divided into the two portions 

defined by Definition 5.4-4, that is, 

'f = 'f d - v  = d Ts - v 

where 'fd = d Ts is the integral delay and v is the fractional delay. 

Now let, 

- a = l  
- b = 10 
- 'f = 0.15 sec 
- 'f is known to be in between 0 sec and 0.4 sec. Thus the lower limit 

and upper limit of the integral delay are respectively L = 0 and H = 4 . . 

A' noise-to-signal ratio (NR) is defined as, 

standard deviation of at) 
NR = standard deviation ofy(t) 

and NR of the white noise is assumed to be 5%. 

Note that the time constant of the first order system (Banks 1986) is, 
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1 
'rn = a - 1 sec 

Therefore , using Shannon Sampling Theorem (Ogata 1987) ,  an 

appropriate sampling interval is, 

T s = 0.1  sec 

The integral delay and the fractional delay are now respectively given by, 

r d = 2 T s = 0.2 sec 

v = 0.05 sec 

and the index d is given by, 

Using Rule 5.3-1, the FIT interval selected is, 

M = 'r n = 1 sec = 10 T s 
and the index m is thus, 

m = M / Ts 
A FIT description of this system can now be obtained using Theorem 5.4-4. 
This gives, 

2+ 1 0  . 
V y(t) + a (j y(t) = I Pi 01  u (t)  + e(t) 

i =2 

where , 

f32 = f3d = b v = 10 x 0.05 = 0.5 

f3i = b Ts = 10 x 0.1 = 1, for i = 3 to 11 

f312 = b (Ts - v) = 10 x 0.05 = 0.5 

(5.4-59) 

(5.4-60) 

(5.4-61) 

(5.4-62) 

Note that when the parameter b and index d of integral delay are found, 

the fractional delay can be obtained from Equation (5.4-60), that is by, 

(5.4-63) 

As the delay is known to be between 0 sec and 4 sec, above description is 

extended to give the following parameterised model equation for a 

discrete-time estimation routine, 
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4+ 1 0  . 
V yet) + a (J yet) = L f3i Ol u (t) + E(t) 

i ::()  

1 60  

(5.4-64) 

The output of this system, when driven by a pseudo-random-binary 

system CLjung 1987), is simulated using MATLAB. The parameters are 

then estimated using the recursive least square algorithm described by 

Equation (5.3-12) in Simulation Example 5.3-1 .  The forgetting factor used 

is 0.99, the initial guesses of all the parameters are zero and, 

P(O) = 1 06 

Table 5.4-3 gives the value of parameters a and f3i that are obtained from 

the recursive least-square routine. 

The index d of integral delay can be identified using Equation (5.4-41), that 
is by calculating the sum of absolute values for (m +l) consecutive f3i , 

i + 1 0  S i = L 
j = i  

then identify the value of i giving the largest value of Si . 
These Si values are presented in Table 5.4-4, along with the identified 
index d of the integral delay. 

The estimated values of b and v are also given in Table 5 .4-4. The 

parameter b is calculated using Theorem 5.4-5, that is, 

d + l 0  
b = L l f3 i l 

i =d 

Finally, the fractional delay v is calculated using Equation (5.4-63). 

(5.4-65) 

Note that the values of Si , d, 'Cd , b and v can be obtained on-line during 

each iteration of the-RLS routine . 

Figure 5.4-3 shows the estimates of the system parameters a and b, and 
the delay 'C. 

The computer software routines for this simulation are given In 

Appendix A. 
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Table 5.4-3 Estimated Values of Parameters a and f3i 

Iteration a f30 f31 f31 f33 f34 f3s 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 1 .239 0.009 0.062 0.579 0.99 1 1 .063 1 .087 
40 1 .024 -0.002 0.014 0.508 1 .0 13  1 .028 1 .045 
60 0.997 -0.015 0.019 0.521 0.997 1 .006 1 .005 
80 1 .003 -0.002 0.008 0.528 1 .020 0.995 1 .006 

100 1 .009 0.003 -0.007 0.5 15  1 .042 0.993 1 .007 
120 1 .015 -0.002 0.001 0.505 1 .025 0.993 0.999 
140 1 .018 0.002 0.002 0.504 1 .022 0.993 0.999 
160 1 .004 0.002 0.01 1 0.5 18 1 .0 15  0.992 1 .0 14 
180 1 .001 -0.002 0.008 0.508 1 .0 15  0.992 1 .0 12  
200 0.999 0.003 0.014 0.5 15  1 .016 0.987 1 .006 
220 1 .001 0.0 10 0.013  0.5 1 1  1 .021 0.990 1 .0 12 
240 0.999 -0.001 0.01 1 0.503 1 .0 17 0.992 1 .009 
260 1 .010 0.003 0.01 1 0.503 1 .012 0.999 1 .007 
280 1 .008 0.001 0.006 0.503 1 .0 14 1 .000 1 .007 
300 1 .010 0.004 0.005 0.503 1 .008 1 .004 0.998 

Iteration f37 f3s f39 f3 l o f31 1 f31 1 f31 3 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 1 . 164 1 . 138 1 . 179 1 . 107 1 .052 0.5 10 0. 1 63 
40 1 .062 1 .035 1 .03 1 0.97 1 0.95 1 0.453 -0.028 
60 1 .025 0.982 1 .025 0.976 0.988 0.483 -0.018 
80 1 .014 0.992 1 .026 0.967 0.998 0.499 -0.023 

100 1 .028 0.990 1 .028 0.985 0.990 0.509 -0.021 
120 1 .023 1 .013 1 .022 0.982 1 .0 16  0.497 -0.025 
140 1 .021 1 .013 1 .023 0.978 1 .0 18 0.494 -0.009 
160 1 .016 1 .000 1 .013 0.977 0.998 0.483 -0.017  
180 1 .012 0.999 0.993 0.989 1 .006 0.478 -0.007 
200 1 .006 0.996 0.992 0.992 1 .001  0.480 -0.001 
220 1 .002 0.989 0.996 1 .000 1 .000 0.474 0.0 10 
240 1 .015 0.989 1 .002 0.999 1 .004 0.482 -0.006 
260 1 .020 0.999 1 .001 1 .004 1 .007 0.497 0.003 
280 1 .016 0.994 0.997 1 .005 0.998 0.498 0.003 
300 1 .02 1 1 .005 1 .001 1 .009 0.999 0.502 -0.007 
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f36 

0.000 
1 . 1 1 2  
1 .063 
1 .001  
1 .012 
1 .022 
1 .021 
1 .022 
1 .0 10 
1 .006 
0.993 
0.989 
0.987 
0.990 
0.995 
0.996 

f31 4 

0.000 
0.061 
-0.001 
-0.031 
-0.020 
-0.024 
-0.018  
-0.014 
-0.013 
-0.030 
-0.015 
-0.010 
-0.006 
-0.003 
0.003 
0.007 
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Table 5.4-4 Calculated Values of Si. d, b and v 

I teration S o S I S 2 S3 S 4 d 
0 0.000 0.000 0.000 0.000 0.000 0 

20 9.491 10.534 10.983 10.566 9.637 2 
40 8.773 9.722 10. 161  9.680 8.669 2 
60 8.573 9.546 10.010 9.507 8.54 1 2 
80 8.568 9.564 10.055 9.550 8.550 2 

100 8.619 9.607 10. 108 9.615 8.597 2 
120 8.586 9.600 10.096 9.616 8.609 2 
140 8.579 9.595 10.087 9.593 8.584 2 
160 8.567 9.563 10.036 9.535 8.533 2 
180 8 .536 9.540 10.010 9.509 8.523 2 
200 8.521 9.5 18 9.984 9.470 8.469 2 
220 8.532 9.522 9.984 9.483 8.47 1 2 
240 8.525 9.528 10.000 9.503 8.492 2 
260 8.548 9.552 10.038 9.538 8.528 2 
280 8.539 9.536 10.029 9 .528 8.5 1 7  2 
300 8.553 9.548 10.045 9.549 8.547 2 
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b V 

0.000 0.000 
10.983 0.053 
10. 16 1  0.050 
10.010 0.052 
10.055 0.052 
10. 108 0.05 1 
10.096 0.050 
10.087 0.050 
1 0.036 0.052 
1 0.010 0.05 1 
9.984 0.052 
9.984 0.05 1 

10.000 0.050 
10.038 0.050 
10.029 0.050 
10.045 0.050 
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Figure 5.4-3 Estimates of Parameters and Delay 

1 63 
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Simulation Example 5.4-2 

The system given by Example 5.3-2 is now subjected to an input delay of, 
't = 0.35, that is, 

( p2 + a lP  + aO ) y(t) = b u (t -0 .35)  + e(t) 

where , 

al = 3  

ao = 2  

b = 5  
£(t) is a white noise signal with noise-to-signal ratio of 5%. 

Let - the sampling interval be, Ts = 0 .1  sec, 

- the FII interval be, M = 5Ts = 0.5 sec. 

(5.4-66) 

- the delay, 't, is known to be in between 0 .1  sec and 0.5 sec. Thus the 

lower and upper limits of integral delay are respectively £=1 and 

H=5. 

Using Theorem 5.4-4, the FII description of the system is, 

5+ 1 0  . 
V2 y(t)  + 3 V cry(t) + 2 cr2y(t) = L Pi 0 1  u (t )  + £(t) 

i =1 
(5.4-67) 

As the system has no system zero, Theorem 5.4-6 can be used to find the 

fraction delay v. 

The coefficients Pi are then estimated using the recursive least square 

algorithm described by Equation (5.3-12) in Simulation Example 5 .3-1 .  The 

forgetting factor used is 0 .99, the initial guesses of all the parameters are 

zero and, 

P(O) = 1 0 6  

Table 5.4-5 gives these estimates of Pi . The resulting estimates of  system 

parameters and delay are given in Table 5.4-6. These system estimates are 

also shown in Figure 5.4-4. 

The computer software routines for this simulation are given in 
Appendix A. 
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Table 5.4-5 Estimates of coefficients f3i 

Iteration f31 f3z f33 f34 f3s 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

20 -0.0017 0.0007 0.0051 0.0082 0.0387 

40 0.0024 0.0036 0.0035 0.0096 0.05 3 1  

60 0.0016 0.0009 -0.0003 0.0056 0.0482 

80 0.0008 -0.0000 -0.0002 0.0055 0.0494 

100 0.0028 0.0027 0.00 18 0.0074 0.0509 

120 0.0004 -0.0002 -0.0008 0.0055 0.0494 

140 -0.0001 -0.0012 -0.0022 0.0038 0.0477 

160 -0.0005 -0.0014 -0.0022 0.0039 0.0480 

180 -0.0019 -0.0022 -0.0026 0.0038 0.0479 

200 -0.0010 -0.0009 -0.001 1 0.0049 0.0493 

220 0.0002 0.0001 0.0002 0.0066 0.0506 

240 0.0000 -0.0002 -0.0000 0.0066 0.0509 

260 0.00 10 0.0008 0.0013 0.0074 0.05 14 

280 0.0008 0.0007 0.0010 0.0077 0.05 16 

300 0.0024 0.00 12 0.0023 0.0082 0.0533 

Iteration f39 f31 0 f3l l f3l l f31 3 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

20 0.0988 0.0662 -0.04 17 -0.0867 -0.0749 

40 0.2331 0. 1929 0.1423 0.0932 0.0441 

60 0.2305 0. 1916 0.1422 0.0936 0.0457 

80 0.2403 0.2034 0 . 1 545 0. 1056 0.0554 

100 0.2372 0. 1997 0.1501 0.1009 0.05 1 5  

120 0.2424 0.2063 0.1 568 0. 1067 0.0561 

140 0.2389 0.2021 0.1 526 0. 1027 0.0522 

160 0.2399 0.2029 0.1532 0. 1030 0.0523 

180 0.2373 0. 1996 0.1497 0.0997 0.0495 

200 0.2397 0.2024 0.1 526 0.1018 0.05 12 

220 0.2389 0.201 1 0.1512 0. 1007 0.0502 

240 0.2391 0.2012 0. 1 5 1 1  0.1008 0.0502 

260 0.2393 0.20 17 0.15 1 1  0. 1007 0.0496 

280 0.24 12 0.2034 0.1 532 0. 1026 0.05 16 

300 0.2332 0. 1992 0.1448 0.0949 0.0442 
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f36 f37 f3s 

0.0000 0.0000 0.0000 

0.08 1 3  0. 1 00 1  0.0984 

0.1015 0. 1499 0.1977 

0.0980 0. 1472 0. 195 1 

0.1007 0. 1 5 12 0.20 16 

0.101 1 0. 1 505 0.2001 

0. 1003 0. 1 5 1 5  0.2032 

0.0983 0. 1492 0.2006 

0.0988 0. 1500 0.20 1 5  

0.0984 0. 1492 0.1997 

0.0994 0.1 505 0.20 1 5  

0.1009 0. 1 5 1 2  0.20 14 

0. 101 1 0. 1 5 1 5  0.20 16 

0.1016 0. 1 5 1 7  0.20 16 

0.1020 0. 1 526 0.2034 

0.0994 0. 1486 0.20 1 3  

f31 4 f3I S  

0.0000 0.0000 

-0.0553 -0.2 1 12 

0.0013 -0.0032 

0.0034 -0.00 1 l 

0.01 1 1  0.0029 

0.0077 0.00 10 

0.0 1 1 0  0.0026 

0.0076 0.0007 

0.0076 0.0004 

0.0055 -0.00 1 1 

0.0063 -0.000 1 

0.0060 -0.0004 

0.0059 -0.0004 

0.0049 -0.001 3  

0.0066 -0.0004 

0.0040 -0.00 1 1  
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Table 5.4-6 Estimates of Parameters and Delay 

Iteration a t a o b 't' 

0 0.000 0.000 0.000 0.000 

20 -0.003 0. 124 0.933 0.300 

40 2.901 l .648 4 .875 0.343 

60 2.876 l .907 4 .805 0.345 

80 3.078 l .954 5 . 1 1 5  0.354 

100 3.026 l .925 5 .028 0.350 

120 3 .147 2.025 5 . 1 57 0.355 

140 3.054 2.033 5.022 0.352 

160 3.063 2.024 5.044 0.352 

180 2.983 l .987 4.962 0.350 

200 3.016 2.01 1 5 .039 0.352 

220 3.009 2.0 14 5 .035 0.350 

240 3.008 l .96 1 5 .040 0.350 

260 3.028 1 .950 5.044 0.350 

280 3.059 l .978 5 . 1 03 0.3 5 1  

300 2.935 l .957 4.924 0.343 
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Figure 5.4-4 Delay and Parameter Estimates 
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5.5 OTHER POSSIBLE APPLICATIONS OF THE FII 

168 

It has been explained in Section 5.2 that FIl descriptions of a system have 
three convenient characteristics. Of particular importance is the absence 

of any derivative terms. Also, Section 5.3 shows that the FIl descriptions 

have three further properties which are useful in applying them: 

- their parameters are exactly the same as those in the original 

continuous-time differential equation model. 

- all their required operations can be realized relatively easily. 

- the FIl description can be sampled in discrete-time. 

In view of these , there seems to be considerable potential for the 

application of FIl in both system science and engineering. The following 

outlines two other possible applications of FIl, to motivate future 

research. 

5.5.1 Solution of Differential Equation 

The FIl transformation can be applied to find a solution for a differential 
equation. This solution has the advantage over the classical integral 

method because it does not depend on any prior knowledge of constant 

initial conditions and derivative terms. 

This application of FIl can be demonstrated with the following example: 

«An object is driven by a constant force, F. Find the distance travelled, 

x, at time t, assuming there is no other force acting. " 

By Newton's seconc( law of motion, the system can be described by: 

(5.5-1) 
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Using classical integration methods, the solution can be found by 

integrating twice from time zero to t, and the result is: 

t2 dx 
x(t) = F "2  + t dt(O) + x(O )  (5.5-2) 

This classical solution requires the initial conditions x(O) and �O). The 

initial velocity �O) might not be measurable or be measured accurately in 

practice. However the FIT solution does not has this problem. 

Applying the second order FII transformation on both sides of 

Equation (5.5-1) yields, 

V 2 x ( t )  = 

that is: 

or 

(5.5-3) 

where Ts is some constant time interval. This solution has no derivative 

term and thus does not have the problem presented by Equation (5.5-2). 
Comparison of Equations (5.5-2) and (5.5-3) shows that the FII solution 

effectively replaces the constant initial conditions in the integral solution 

with some moving initial conditions. 

5.5.2 Discrete-time Control for Continuous-time System 

It has been shown.that when a linear continuous-time system is subjected 
to a discrete-time input, a possible description of the behaviour of the 
system is the FII description given by: 

Vny (t )  + an- l V
n- 1 a1y(t) + . . .  + aoany(t)  

= f3ou (t -Ts) + . . .  + f3iu (t - iTs) 
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This description can be considered as, 

where x
i
(t) is a realizable (or observable) state of the system corresponding 

to the ricfl-iy(t) quantity. 

This description is an exact description of the continuous-time system and 

it is true for all time t. The classical z domain description (Ogata 1987) is 

only true at the sampling instants and it is usually an approximation due 

to the irrational exponential terms involved. 

In view of these, the FII description offers a possible description for the 

design of feedback control using some continuous-time states. However 

further research is required to determine the feasibility of this approach. 

5.6 SUMMARY 

In this chapter, a technique to estimate both the parameters and delay 
term of a strictly proper continuous-time model is established. This 
technique makes use of the FII transformation of the original differential
equation model. When the system is  subjected to a discrete-time control 

input, the technique is able to estimate both the input delay and system 
parameters simultaneously. 

The major advantages of this technique include: 

it makes use of existing discrete-time estimation algorithms. 

it is able to estimate an input delay which is not an exact multiple of 
the sampling· interval . 

A summary of this technique is given in Section 5 .4.5. 

However a disadvantage of the technique is that general formulae for all 

system orders can not be established. Formulae for second order systems 

have been found in this thesis work. Several simulations have shown that 

the technique is applicable for some second order systems.  Nevertheless 
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the usefulness of the technique in other situations IS yet to be fully 

examined.  

It  is likely that there are other potential applications in system science 

and engineering because of several convenient and useful features of the 

FII description. Two other possible applications of FII are also given to 

motivate future research. 
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CHAPTER 6 

CONCLUSION 

This chapter presents a concluding summary of the thesis and suggests 
several areas for future work. 
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6 . 1  CONCLUDING SUMMARY 

There is an increasing need for on-line techniques for estimating the 
parameters of continuous-time models, mostly due to the increasing 

popularity of the continuous-time-model approach to digital controller 

design. Using continuous-time models instead of discrete-time models to 
design digital controllers has several important advantages but requires 

digital devices of higher capability. However this hardware
_
requirement 

has become insignificant due to the recent availability of fast and powerful 
computers in low cost. Some of the advantages of the continuous-time

model approach are that the artefacts of sampling in discrete-time models 
can be avoided, and also the controller design process makes more sense 

in relation to the actual physical systems. 

In Chapter 2, surveys of existing parameter estimation techniques show 

that the equation-error methods are the most popular techniques in recent 
years. This could be due to their simplicity and the ease with which they 

may be developed and implemented. The ease and simplicity of using the 
equation-error approach is apparent in this thesis. Using the equation

error approach, the development of parameterised model equations can be 

segregated from the development of estimation algorithms. Furthermore, 

the estimation equation in an equation-error form is only a linear 
summation and thus can be easily manipulated. 

This thesis work has successfully developed an recursive technique which 

is capable of estimating the delay and other parameters of continuous

time models. It is based on the equation-error approach and a special 

integral which has an integration interval of constant length. This 

integral is named the Fixed Interval Integral. 

A major contributor to the success of this work is the calculus operator 

notation system developed in Chapter 3 .  This operator notation system 

consists of three major components ; a notation represents the operation, a 
superscript indicates the repetition of the operation and some subscripts 
identify the operational variables and parameters. The use of this operator 

notation system allows high order calculus operations to be manipulated 

easily. It also enables the results to be presented clearly in a simple form. 

Using the operator notation, several important properties of the Fixed 
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Interval Integral (FII) were found in Chapter 3.  The FII is a backward 

difference of the traditional definite integral. The FII operator is a perfect 

anti-derivative operator; it eliminates all derivatives in time varying forms 

and derivative terms in the initial conditions, and it is applicable on 

derivatives of any order. An operator algebra was established to present 

the relationship between the FII and other calculus operations. The 

algebra allows the calculus operations of any order to be manipulated in a 

similar and simple manner. 

Three methods of implementing the FII operation are d�termined in 

Chapter 4, namely the frequency response method, the hybrid method and 

numerical method. The frequency and impulse response of FII given in · 

Chapter 3 are useful for designing analog and digital filters using the 

frequency response method. However, it is found that the frequency 

response method is applicable only for a limited range of low frequencies. 

This is because of the peculiar frequency and impulse response of FII, 

which includes zero transmittance and phase jumps at the frequencies of 

multiples of �Hz (M is the length of FII integration interval). This 

peculiarity is due to the FII operation is a combination of an inherently 

discrete-time backward shift operation and an inherently continuous-time 

integration. This understanding of the FII characteristics resulted the 

hybrid method that uses analog integrators and digital b ackward 

differencing devices. The hybrid method is simplest and easiest to use as 

integrators and delay elements are usually available as standard units in 

modern devices for system control. 

However, the numerical methods provide greater flexibility in realising 

the FII operation. Three numerical methods are presented in Chapter 4.  

The Numerical Method I is  recommended. Because of the symmetry in 

coefficients, the design and analysis procedure of the Numerical Method I 

can be generalised. A table of percentage errors has been established as a 

guide for selecting the sampling interval, order of numerical formula and 

frequency range. 

In Chapter 5, by applying the FII operator to continuous-time models 

described in differential equations, two forms of FII system descriptions 

were established respectively for systems without delay elements and 

strictly proper systems with input delay. These FII system descriptions 

are linear in terms of the parameters and are independent on any 
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derivatives, constant initial conditions and infinitely accumulating terms. 
Furthermore, they can be sampled at any time instant to form discrete

time descriptions without any further transformation. Consequently, the 

FII system descriptions can be used as the parameter estimation 

equations for discrete-time estimation. A 'continuous-time model discrete

time estimation' technique is thus formed when the FII equations are 

coupled with any of the well-established discrete-time estimation 
algorithms. 

The FII system description for delay systems I S  applicable only for 

systems controlled by digital controllers with zero-order hold. However, 

the use of this FII system description allows the input delay to be 
estimated simultaneously with other system parameters. Both fractions of 

the delay that are and are not exact multiples of sampling interval can be 
estimated simultaneously. Detailed formulae and procedures of the FII 

parameter and delay estimation technique were established for second 

order strictly proper systems. Simulation results show that the FII 
estimation technique is feasible in practice. 

In view of these, the reported work has achieved its objective of developing 

a pre-filter for recursive parameter estimation of continuous-time models. 

However, there are several areas where further work is required before 
the FII technique can be fully applied in practice. These areas are 
suggested in the following. 

6.2 FURTHER WORK 

Only for second order systems, this thesis has presented in details the 

formulae that relate the system parameters and delay to the estimated 

coefficients. Although these formulae can be obtained for other system 

orders using the suggested procedure, general formulae for any system 

order have not be established. The development of the general formulae is 

thus a priority in further work. If the general formulae do not exist, 

formulae for some higher order systems need to be established in order to 
increase the usefulness of the FII estimation technique in practice. 

Study of convergence and asymptotic behaviour needs to be added in the 
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future. The number of iterations required to achieve a certain accuracy 

should be established, in order to decide the appropriate learning interval 
to be allowed for. 

The error in implementing the FII operation might have significant effect 

on the accuracy of the parameter estimation. The relationship between the 

realization error and the estimation error needs to be established. This 

will assist in selecting the appropriate realization of FII. The realization 

error might be able to be compensated for in the parameter estimation. 

To fully explore the usefulness of the FII pre-filtering technique, more 

simulations involving systems of different structure and order are 

required. The comparison of estimation algorithms needs to be extended to 

include other modern algorithms. The interaction between the length of 

FII integration interval and the estimation algorithm should also be 
analysed. 

As the FII description is free of any derivative tenus and its discrete-time 

form is an exact description of the continuous-time system, there seems 
considerable potential for the application of the FII in system science and 

engineering. As suggested in Chapter 5,  the FII might be useful in 
solving differential equations and in designing discrete-time control for 

continuous-time systems. Further study should thus be carried out to 
explore the application of the FII besides in parameter estimation. 
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APPENDIX A 

MATLAB PROGRAMS FOR 
SIMULATION EXAMPLES 

Custom Functions 

FILm 

FIIdu .m 

backdiff.m 

PRBS.m 

spectral.m 

l simdu.m 

Batch Files 

Function to find Fixed Interval Integral of a continuous
time variable using numerical approximation. 

Function to find Fixed Interval Integral of a piece-wise
constant variable using numerical approximation. 

Fucntion to find backward difference 

Function to generate PRBS signal. 

Function to find spectral magnitude 

Function to generate output of a system that is driven by 
piece-wise-constant control input 

eg_system.m Batch routines to generate deterministic system output of 
simulation examples 

pinknoise.m Batch routines to generate pinknoise for simulation 
Example 5.3-3 

delay_sys .m B atch routines to generate delay system output of 
simulation examples 
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B atch routines  for Simulation Example 5 . 3 - 1  
(Deterministic System) 

Batch routines for Simulation Example 5 .3-2 (Effect of 
different FII interval length -- system with white noise ) 

Batch routines for Simulation Example 5 .3-3 (Effect of 
different FII interval length -- system with colour noise ) 

B atch routine s  for .S.imulation Example 5 . 4 - 1  
(Simultaneous delay and system parameters estimation of 
a first order system) 

B atch routines for Simulation Example 5 . 4 - 1  
(Simultaneous delay and system parameters estimation of 
a second order system) 

FII.m 

function yfii = FIl(y,T,M,method) 
% FII Returns numerical approximation of Fixed-Interval-Integral 
% y = function input-- capable for muitivariable 
% each column is a variable 
% T = sampling interval of y (per unit time) 
% M = interval of Fil (per unit time) 
% method = order of Newton-Cotes numerical method to approximate the 
FIT 
% = 1 : trapezoidal rule 
% = 2 : Simpson's 1 /3 rule 
% = 3 : Simpson's 3/8 rule 
% = 4 : Boole's rule 
% 
% Assumption : All past values of y is zero 
% by W.H.Siew 1 992. Reference: Chapter4 of WanHing Siew's thesis. 

if abs( (M/T)-round(M/T» > 1e3*eps, 
error('FII interval must be multiple of sampling interval');end 

mm=M/T; 

if nargin<4, method=2; end; %Simpson1 /3 by default 

if method==l, % Trapezoidal rule 
n=l; In=T / 2*[1 1] ;  end 
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if method==2, % simpson 1 /3 rule 
n=2; In=T /3*[1 4 1 ]; end 

if method==3, % simpson 3/8 rule 
n=3; In= T*3/8*[1 3 3 1]; end 

if method==4, % Boole's rule 
n=4; In= 2*T / 4S*[7 32 12 32 7]; end 

order = in t2str(n); 
if rem(mm,n), 
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error(.. ['FII interval must be multiple of ',order,' for ',order,' order rule']); 
end 

r=mm/ n; 
w=zeros(1,mm+ 1 ); 
for k=O:r-1,  w(k*n+1 :(k+l)*n+1)=w(k*n+1 :(k+l)*n+1)+Jn; end 

den =zeros(w) ; den(1) = 1 ;  
yfii=zeros(y) ; yfii = dlsim(w,den,y); 
return 
%Alternative 
[ry cy] = size(y); y=[zeros(mm,cy);y]; 
for k=1 :ry, 

yfii(k,:)=w*y(k:k+mm,:); 
end 
return 

Flldu.m 

function [ufii1, ufii2]= FIIdu(u,T,M) 
% FII Returns analytic 1st and 2nd order 
% Fixed-Interval-Integral of Pi ese-wise Constant u 
% u = function input-- each column is a variable 
% T = sampling interval of u (per unit time) 
% M = interval of FII (per unit time) 
% 
% Assumption : All past values of u is zero 
% by W.H.Siew 1992. Reference: ChapterS of WanHing Siew's thesis. 
% 

if abs( (M/T)-round(M/T» > 1 e3*eps, 
error(,FII interval must be multiple of sampling interval');end 

mm=M/ T; 

num1= T*ones(1 ,mm); den 1 =zeros(1 ,mm); 

num2=zeros(1,2*mm); den2=zeros(1,2*mm); 
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num2(1 :mm) =(TI\2) /2*(1:2:2*mm-1); 
num2(mm+ 1 :2*mm) =(TI\2) / 2*(2*mm-1 :-2 :1); 

ufii1 =dlsim([O num1 ],[1 den1],u); 
ufii2=dlsim([O num2],[1 den2],u); 
return 

backdiff.m 

function [dx ,DO ]=  backdiff(x, shift,order) 
% BACKDIFF Return backward difference of x 
% 
% dx = x(k) - n. x(k-T) + n.x(k-2T) - . . . . .  x(k-nT) 
% 
% dx = backdiff(x, shift,order) 
% [dx, DD] = backdiff(x, shift,order) 
% order = n = order of backward difference 
% shift = T = number of data shift 

x 

100 

= data % 
% 
of x 

dx = backward difference 

% DD = Matrix of [x -n.x(k-T) n.x(k-2T) . . . .  ] 
% W.H. Siew 

if nargin ==2, shift =1; end 
n =order; T =shift; 
x=x(:); 

[rx,cr] = size(x) ; 
dd = zeros(rx, n+1); 

for i = 1 : n+1 
m = (i-1)*T ; 
if m+1>rx, break, end 
dd(m+1 :rx,i) = (-1)I\(i-1 )* x( l :rx-m); 

end 

if n>=2, dd(:,2:n) = n*dd(:,2:n); end 
DD=dd; 
dx = sum(dd')'; 
return 
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PRBS.m 

function x = prbs(r,c,subdivision) 
%PRBS Generating descrete-time Pseudo Random Binary Signal 
% X = PRBS(A) 
% X = PRBS(r,c) 
% X = PRBS(r,c, subdivision) 
% 
% A and X are column vector(s) 
% 
% W.H. Siew 

[nr,nc] = size(r); 

if any( [nr nc]-=[1 1 ]), 
if nargin -= 2, subdivision = 1; 
else subdivision = c; 
end 
r=nr; c=nc; 

else 
if nargin -= 3, subdivision=l; end; 

end 

if r==l, x = zeros(r, c*subdivision); 
else x = zeros(r*subdivision , c); 
end 

xx = ones(subdivision,l); 
rand( 'normal') 
n = sign( rand(r,c) ); 
n = xx * n(:)' ; 
xC:) = n; 
return 

spectral.m 

function [M,fq]=spectra1(y,T) 
% 
% SPECTRAL find the spectral magnitude of Y 
% ** NOT the power spectral density 
% 
% [M,FQl = SPECTRAL(Y, T) 
% Y = data 
% T = sampling time (not frequency) 
% M = Spectral magnitude of Y 
% FQ = corresponding frequency for M. 
% Maximum frequency is half the sampling frequency. 
% 
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% plot(fq,M) give the spectral magnitude plot 
% plot(fq,M.1\2) give the Power spectral density plot 
% 
% SPECTRAL(Y,T) ie no output arguements returns spectral magnitude 
plot 
% 
% W.H. Siew 5th Sep 1990 

if nargin==l, 

1� 

fprintf('Warning : Sampling time not specfied! Default of 1 used. \007\n'); 
T=l; 

end 

fsampling=l /T; 

ty=fft(y); 
M = abs(ty) ; 

[r,c]=size(ty); 
M = M(1 :r /2,:); 
fq = fsampling*( 0:(r/2-1) )' /r; 

if nargout==O, 
plot(fq,M) ; xlabel('freq (Hz)') ; ylabel('Spectral Mag'); 
M =[]; 

end 
return 

lsimdu.m 

function [y,x] = Isimdu(num,den,u,Tu,t) 
%LSIMDU Simulation of continuous-time linear systems 
% y(s) = NUM(s) /DEN(s) u(s) 
% subjected to PIECE-WISE CONSTANT Inputs with regular interval, Tu 
% -- Scalar only 
% [y,x] = lsimdu(NUM,DEN,u,Tu,t) 
% By W.H. Siew 

Ts=t(2)-t(1 ); t=t(:); u=u(:); 

if Tu<Ts, 
error('Input interval must be equal or larger that sampling interval'); end 
if rem(Tu,Ts» eps, 
error('Input interval must be multiple of sampling interval'); end 

%Expanding the input vector 
div=Tu /Ts; U= ones(div,l)*u' ; u=u(:); 
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nt=length(t); u=u(1 :nt); 

% Convert to state space 
[a,b,c,d] = tf2ss(num,den); 

% Get equivalent zero order hold discrete system 
[Ad,Bd] = c2d(a,b,Ts); 
x = Ititr(Ad,Bd,u); 
y = x '" c.' + u '" d.'; 

return 

%System deterministic input and output 
fname='eg53 _system' 

Ts=O.Ol; tt=(O:Ts:30-Ts)'; 
Tu=O.l ;  u=prbs(30/Tu,l); 

%Continuous-time system 
num=5; den=[l 3 2]; 
yy=lsimdu(num,den,u,Tu,tt); 
stdy=std(yy); 
thm= [ den(2:length(den)) num] '; 

%Discrete-time system 
[numd dend]=c2dm(num,den,Tu); 
thmd= [ dend(2:length(dend)) numd(2:3)] '; 

[Magy,fy]=spectral(yy,Ts); 

vars='Ts Tu tt u num den thm yy stdy numd dend thmd Magy fy'; 

eval( ['save ',fname, ' .mat ' ,vars]) 
disp([fname,' .m done']) 
return 
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pinknoise.m 

% Generating pinknoise normalized w.r.t variance of the 
% deterministic output of system in example 5.3 

load eg53_system.mat 
load pink1 .mat % fpeak=1;fvar=0.2; 

eep = stdy*pink; % normalizing w.r.t the variance of y 
yye = lsim(1,den,eep,tt); 

sa ve eg53 _pinknoise l .mat fpeak fvar eep 'pie
disp(,eg53 _pinknoise 1 .m done') 
return 

%Delay System deterministic input and output 
load eg53_system.mat 
%variable from eg53_system.mat are: 
% Ts tt Tu u num den thm yy stdy numd dend thmd Magy fy 

delay = 0.35 
nndelay = delay ITs; nyy=length(yy); 
yydelay=zeros(yy); yydelay(nndelay+ 1 :nyy)=yy(1 :nyy-nndelay); 
clear nyy 
return 

eg5.3_1 .m 

Ts=O.Ol; t=(O:Ts:30-Ts) '; 
Tu=O.l ;  u=prbs(300,1); 
y=lsimdu(5,[l 3 2],u,Tu,t); 
M=O. l ;  

[ufiil ,ufii2]=FIIdu(u,Tu,M); 
yfiil =FII(y,Ts,M); 
yfii2=FII(yfiil,Ts,M); 

ly=length(y); 
y=y(1 :Tu/Ts:ly); 
yfiil =yfii1 (1 :Tu/Ts:ly); 
yfii2=yfii2(1 :Tu/Ts:ly); 

mm=M / Tu; 
yy=[O; backdiff(y,mm,2)]; % added unit delay for algorithm 
yy(length(yy» =[]; 
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uul =-backdiff(yfiil ,mm,l); 
uu2=-yfii2; 
uu3=ufii2; 

na=O; nb=[1 1 1 ] ;  nk=[1 1 1]; nn=[na nb nk ]; 
lamda = 0.9 %forgetting factor 
thm_MOl =rarx([yy uul uu2 uu3],nn,'ff',lamda); 

return 

eg5.3_2.m 

M=O.l ;  
noiseratio=O.s ; lamda=0.99; 

load eg53_system.mat 
load eg53_whtnoise1 .mat ; disp(' white noise') 

yy = yy+sqrt(noiseratio)*yye; %adding noise 

%Calcula ting FH 
[ufiil ,ufii2] =FHdu(u,Tu,M); 
yfiil =FII(yy,Ts,M); yfii2=FII(yfiil,Ts,M); 

y=yy(1 :Tu /Ts:length(tt» ; t=tt(1 :Tu/Ts:length(tt» ; 
yfiil =yfiil (1 :Tu/Ts:length(tt) ); 
yfii2=yfii2(1 :Tu/Ts:length(tt) ); 

%Parameter estimation 
mm=M /Tu; 
xy=[O; backdiff(y,mm,2)]; % added unit delay for algorithm 
xy(length(y» =[]; % 
xul=-backdiff(yfiil,mm,l); 
xu2=-yfii2; 
xu3=ufii2; 

na=O; nb=[1 1 1 ]; nk=[1 1 1 ]; 
thmRLS=rarx([xy xul xu2 xu3],[na nb nk],'ff',lamda); 

enorm300 = norm( thmRLS(300,:) '-thm) /norm(thm); 
enorm150 = norm( thmRLS(150, :)'-thm)/norm(thm); 
pe150 = 1 00*( thmRLS(150,:)'-thm) ./ thm; 
pe300 = 1 00*( thmRLS(300,:) '-thm) . /  thm; 
return 
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eg5.3_3.m 

M= 0.1; % FH interval 

noiseratio=0.5; 
lamda=0.99; 

% var(noise) / var(y) 
% forgeting factor of algo 

load eg53_system.mat 
load eg53_pinknoise1 .mat ; disp('pinknoise') 
yy = yy+sqrt(noiseratio)*yye; %adding noise 

%Calcula ting FH 
[ufiil ,ufii2]=FIIdu(u,Tu,M); 
yfii1 =FII(yy,Ts,M); yfii2=FH(yfiil,Ts,M); 

y=yy(1 :Tu/Ts:length(tt» ; t=tt(1 :Tu/Ts:length(tt» ; 
yfiil=yfii1(1 :Tu/Ts:length(tt) ); 
yfii2=yfii2(1 :Tu/Ts:length(tt) ); 

%Parameter estimation 
rnm=M /Tui 
xy=[O; backdiff(y,mm,2)]; % added unit delay for algorithm 
xy(length(y» = []; % 
xul =-backdiff(yfiil ,mm,l); 
xu2=-yfii2; 
xu3=ufii2; 

na=O; nb=[1 1 1 ]; nk=[1 1 1 ]; 
thmRLS=rarx([xy xul xu2 xU3],[na nb nk],'ff',lamda); 

enorm300 = norm( thmRLS(300, :) '-thm) /norm(thm)i 
enorm150 = norm( thmRLS(150,:) '-thm) /norm(thm); 
pe150 = 100*( thmRLS(150,:) '-thm) ./ thm; 
pe300 = 1 00*( thmRLS(300,:) '-thm) . /  thm; 
return 

%Generate system input and output 
%---------------------------
Tb = 0.01; tt = (O:Tb:30-Tb)'; 
Ts = 0.1; u = prbs(300,l); 
delay = 0.15; 

yy = Isimdu(10,[1 1 ],u,Ts,tt); 

[ryy,cyy]= size(yy); yydelay = zeros(ryy,cyy); 
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%Shift the yy to form delayed output 
%-------------------------------------
idelay = 1 + delay /Tb ; 
yydelay(idelay:ryy) = yy(1 : ryy-idelay+1); 

yClean = yydelay(1 :Ts/Th:ryy); 

save eg541sys.mat Ts Th u yy yydelay yClean 
clear ryy cyy tt idelay 

%Estimate direct coefficients using RLS 
%------------------------------
load eg541sys 

m = 1 0; %FII interval M = m Ts 

%Add white noise 
%-----------------
NoiseRatio = 0.05 %in term of std. dev. 

e = randn(size(yClean» ; 
y = yClean + NoiseRatio *std(yClean)*e; 

%Form FIT of output 
%---------------------
yFIT = FIT(y,Ts,m*Ts); 

%Form delay array of input 
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L= O ;H = 4; 
nBeta = l *m + (L - H + 1) 

xy = [O;backdiff(y,m,l) ] ;  
xy(length(xy»=[]; 

xul = -yFII; 
xu2 = u; 

na=O; nb = [I,  nBeta ]; 
lamda = 0.99; 

%add unit delay required by algo 

nk = 1 +  [0, dmin ]; 

thm = rarx([xy xul xu2],[na nb nk], 'ff', lamda); 
[rthm, cthml = size(thm); 

a = thm(:,l); beta = thm(:,2:cthm); 
save eg541rls.mat m NoiseRatio e y a beta lamda 

%Ca1culate parameters and delays 
%---------------------------
[rbeta,cbetal = size (beta) ; 

% Find integral delay 
%-----------------------
numSi = cbeta - (m+l) + 1 ;  Si = zeros(rbeta, numSi); 

for k = 1 : numSi 
ii = k + (O:m); 
SiC:, k) = sum( abs(beta(:,ii»' )' ; 

end 

maxSi = max(Si') '; 
d = zeros(rbeta,l ); 
for k = 1 :rbeta 

d(k) = min(find(Si(k,:) == maxSi(k») - 1;  
end 

%Find other 
%-----------

b = sum( beta(:, 3+(O:m) )' )'; 
v = beta(:,3) . f  b; 

save eg541 cal Si b v d 
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NoiseRatio =0.05 ; lamda=0.99; 
load eg541_system.mat 
load eg533_whtnoise1 .mat ; disp(' white noise') 

M=O.5; mTu = M/Tu; %mTu=5 
ndelayarray=mTu*2+5 % = 15  
L = 1; H = 5; % Lower and higher limit of delay in terms of sampling 

% interval 
nBeta = 2*mTu + (H-L) + 1 

if nBeta« 2*mTu+l), error('Not enough delay array');end 
yydelay = yydelay+NoiseRatio *yyei %adding noise 

% %% % %parameter and delay estimation%%%%%%%% 
%Calculating FII of output 
ydelayfiil =FII(yydelay,Ts,M)i ydelayfii2=FII(ydelayfiil,Ts,M)i 
ydelay = yydelay(I :Tu/Ts:length(tt» ; t=tt(1 :Tu/Ts:length(tt» ; 
ydelayfiil = ydelayfiil ( 1 :Tu/Ts:length(tt) )i 
ydelayfii2 = ydelayfii2(1 :Tu/Ts:length(tt) ); 

%Parameter estimation 
mTu=M/Tu; 
xy=[O; backdiff(ydelay,mm,2)]i % added unit delay for algorithm 
xy(length(ydelay»=[]; % 

xu 1 =-backdiff(ydela yfii l,mm,I); 
xu2=-ydelayfii2; 
xu3= u; 

na=O; nb=[1 nBeta ]i nk= 1 + [0 0 L]; 
thmRLS=rarx([xy xul xu2 xu3],[na nb nk],'ff',lamda); 

clear xy xu 1 xu2 xu3 xu4 

alhat=thmRLS(:,I); aOhat=thmRLS(:,2)i 
beta=thmRLS(:, 2+(1 :nBeta) ); 

nctot= ndelayarray-2*mTu; tot=zeros(length(beta), nctot ); 
for h=l :nctot 

tot(:,h)=sum(beta(:,h:2*mTu+h)')' i 
end 

dd=find( tot(300,:)==max(tot(300,:» ); 
bhat=[ sum(beta(:,dd:dd+2*mTu)') /mTuI\2/TuI\2 ] '; 

df1 = sqrt(2*thmRLS(:,6). /bhat); 
df2= Tu-sqrt( abs(thmRLS(:,1 6) . /bhat» i 
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df3= (beta(:,dd+2)-beta(:,dd+9» /2/Tu . /bhat; 
hh=find(df3<0); if any(hh), df3(hh)=zeros(length(hh),l); end; 
hh=find(df3>Tu); if any(hh), df3(hh)=Tu*ones(length(hh),l); end; 

df4= (beta(:,dd+3)-beta(:,dd+8» /2/Tu . /bhat; 
hh=find(df4<0); if any(hh), df4(hh)=zeros(length(hh),l); end; 
hh=find(df4>Tu); if any(hh), df4(hh)=Tu*ones(length(hh),l); end; 

dfS= (beta(:,dd+4)-beta(:,dd+7» /2/Tu . /bhat; 
hh=find(dfS<O); if any(hh), dfS(hh)=zeros(length(hh),l); end; 
hh=find(dfS>Tu); if any(hh), dfS(hh)=Tu*ones(length(hh),l); e�d; 

%dela yha t=(dd +ddmin)*Tu-(df3+df4+dfS) 13; 
delayhat=(dd+ddmin)*Tu-dfS; 

h=300; param300 = [alhat(h) aOhat(h) bhat(h) delayhat(h)]; 
h=lSO; paramlSO = [alhat(h) aOhat(h) bhat(h) delayhat(h)]; 
enorm300 = norm( param300-[thm' delay])/norm([thm' delay]); 
enormlSO = norm( paramlSO-[thm' delay])/norm([thm' delay]); 
pe300 = 1 00*( param300-[thm' delay]) . 1  [thm' delay]; 
pel SO = 1 00*( paramlSO-[thm' delay]) . 1  [thm' delay]; 
pe= [alhat aOhat bhat delayhat] - ones(alhat)*[3 2 S 0.3S]; 
pe=lOO*pe . /  ( ones(alhat)*[3 2 S O.3S] ); 

clear nctot 
return 
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APPENDIX. Bl 

MODELLING OF PAPER

STOCK CONCENTRATION 

C ONTROL SYSTEM 

This appendix introduces an industry case study on paper-stock 

concentration control system. It details the modelling of the control 

system and several system disturbances 
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B l . l INTRODUCTION 

The three paper machines at Tasman produce newsprint from blends of 

semi-bleached Kraft pulp, mixed groundwood (refiner plus stone 

groundwood) and broke. These three components, which are collectively 

named the "furnish components", are combined in the desired ratios in 

the blend chests at the wet end of each paper machine. The general stock 

blending arrangement is illustrated in -Figure B I-I.  The objective of the 

stock blending control is to ratio the components on a dry fibre basis, even 

though it is the total stock flows (fibre plus water) that are manipulated. 

The flows are controlled via the blend chest level and are corrected for 

changes in concentration on an infrequent basis,  using manual 

concentration test results entered by operators (every two or four hours). 

To maintain a uniform blend it is therefore essential that any variability 

in stock concentration is minimized through good concentration control. 

Figure Bl·l Schematic layout of stock blending process 
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The concentration of each furnish component is controlled upstream of 

the blend chest by adding dilution water prior to each stock pump (see 

Figure B l-2). Concentration transmitters are located some distance 

downstream from the dilution points , causing a delay of roughly 25 

seconds in the concentration control loop. Pneumatic two-term (PI) 

controllers are currently used as concentration controllers, but a new 

distributed control system is about to replace all the wet-end controls on 

two of the paper machines. This provides the perfect opportunity to 
improve concentration control through the implementation of a more 

effective control strategy. 

Figure Bl-2 Schematic layout of concentration control system 
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The notation used in Figure Bl-2 and subsequently, is as follows: 

Ci = concentration of incoming pulp from stock chest 

Cd = concentration of dilution water 

Co = concentration of mixed (furnish) stream at mixing point (as 

if there were instant perfect mixing) 
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em = measured concentration 

F· , = flowrate of incoming pulp 

Fo = flowrate of pulp at mixing point. 

Fm = measured flowrate 

Fd = desired flowrate of dilution water 

P = variation in dilution flow due· to changes in pressure 

B l .2 UNITS 

Units common to the pulp and paper industry, rather the 81 units, are 
used in this chapter for variables and constants. These are, percentage of 
fibre (%) for stock concentration and gallon per minute (gpm) for 
flowrate. The variation in pressure has the same units as flowrate, gpm, 
because it is expressed as the resultant change in flow. 

It has been found that the numerical values of concentration are small 
relative to the flowrate and thus the computation for design and analysis 
involves the division of numbers with a large difference in magnitude. 
This causes significant computational errors in digital computer and 
complication in handling the numerical results. To avoid these 
difficulties, units of 0.00 1% is used for the calculation of all parameters 
and indices. The units used are summarized as the following : 

Stock Concentration -- Parameter calculation 
0.001% , one thousandth percentage of fibre in pulp stock by mass. 

Stock Concentration -- Presentation 
%, percentage of fibre in pulp stock by mass. 
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Flowrate 
gpm, gallon per minute. = x 4.4 Litre per minute 

= x 264 Litre per second 

Effect of Variation in Pressure 
gpm, gallon per minute. 

B I .3 MODELLING STOCK CONCENTRATION 

In order to simulate the behaviour of the stock control system and to 

determine suitable controllers, an appropriate model of the system must 

first be determined. It is determined in the following section that this 

model is nonlinear. For design of the controllers, a linearized version of 

this model is required and it is detailed in Section 6.3.2. 

B I .3 . 1  Nonlinear Model 

The system illustrated in Figure B 1-2 can be modelled as the mixing of 

two incompressible fluid streams. The system is thus governed by the 

following mass balance equations : 

Fj(t) + F J.t)  + pet) = Fo(t) 001-1) 

Fi(t) ·C,{t)  + [ F  J.t) + Pet) ] Cd(t ) = F o(t) .CoCt) (B1-2) 

The first is a balance of volumetric flowrates and the second is a balance 

of pulp stock. Assuming the concentration of the dilution water is 

negligible, that is, 

(B1-3) 

these equations yield a relationship between the controlled output, Co, the 

control input, Fd, and the system disturbances, Ci, Fo and P : 
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(Bl-4 )  

A s  the concentration i s  measured some distance downstream and the 
pulp fluid assumed incompressible, the measured concentration and 
flow are given by : 

Cm(t) = Co(t-L) 
F m(t)  = F o(t) 

(B1-5) 

(Bl-6) 

where L is the pure time delay between the mixing point and the 
measuring point. Substituting Equations (Bl-5) and (Bl-6) into Equation 
(Bl-4 ) ,  gives an equation for the measured concentration: 

(Bl-7 ) 

B 1 .3.2 Linearized Models 

Equation (Bl-7 ) describing the behaviour of measured concentration is 
nonlinear due to the multiplication and division of variables in the 
equation. Most methods of controller design presume the system 
equations have been linearized. To linearize Equation (Bl-7 ) ,  the actual 
values of the variables (upper case symbols) are written as deviations 
around the steady state values of these variables. Thus deviation 
variables (lower case symbols) are defined as follows : 

(o Ct) = Fo(t) - Foss 

(d(t) = Fit) - Fds� 

pet) = Pet) - Pss 

, Ciss = steady state value ofCi(t) 

, Cmss = steady state value of Cm(t) 

, Foss = steady state value of Fo(t) 

, F dss = steady state value ofF d(t) 

' Pss = steady state value of P(t) 
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The use of these variables, in conjunction with suitable Taylor's Series 
expansions (Coughanowr and Koppel 1983), enables the following 
linearized continuous-time system description to be determined : 

(BI-8) 

where 

k }  1 - Fdss + Pss = Foss (BI-9) 

k2 Ciss Fdss + Pss 
= Foss (BI-IO) 

k3 Ciss = Foss (BI-II) 

Notice that the three parameters k } , k2 and k3 of this simple linearized 

model are completely determined by the steady state values of the system. 

In this dilution process, the manipulated dilution flow (fd) is considered 

as the controlled input and the diluted or regulated concentration of 
mixed stream (co) is the system output. As far as the dilution process is 
concerned, the concentration of incoming stock (ci), the stock flow rate 
(fo) and the variation of dilution flow due to pressure fluctuation (p) are 

uncontrollable quantities. So they are considered as the system 
disturbances. Consequently the concentration of the mixed stream can be 
modelled as the weighted sum of the control input and disturbances 
described by Equation (Bl-8). 

The company's furnish concentration target or setpoint of 3% is taken as 
the steady state value of the furnish consistency, ie : 

Cmss = Coss = s etpoint  = 3% = 3000 x 0. 00 1% 

To decide on the steady state values of the incoming concentration and 
furnish flow, measurements are taken from the plant during some 
typical runs. The mean values of these disturbances are then evaluated 
and taken as the steady state values. The mean value of variation in flow 
due to pressure, P ss, could not be obtained from the plant as it was not 
measured during this work. So, for simplicity, Pss, is taken to be zero. 
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The steady state value of dilution flow, F dss can be obtained by 
rearranging Equation B I-7 : 

<B1-12) 

A suitable linearized model is derived for each of the three streams. The 
steady state values about which these models are linearized, and the 
resultant linearized model parameters are tabulated in Table Bl-l. 

Table Bl-l Parameters and Steady States of Linearized Model 

Broke Stream Kraft Stream Groundwood Stream 

Coss = Cmss = 3.000 % Coss = Cmss = 3.000 % Coss = Cmss = 3.000 % 

Ciss = 3 .8635 % Ciss = 3.255 % Ciss = 3.439 % 

Foss = 501. 10 gpm Foss = 359.07 gpm Foss =1431.64 gpm 

Pss = 0 gpm Pss = 0 gpm Pss = 0 gpm 
-

Fdss = 112.00 gpm Fdss = 28.18 gpm F dss = 182.60 gpm 

kl = +0.7765 kl = +0.9215 kl = +0.8724 

k2 = +1.7232 k2 = +0.7116 k2 = +0.3064 

k3 = -7.7101 k3 = -9.0666 k3 = -2.4019 

laplace Transform ofl,jnearized Model 
Taking the Laplace transform of the linearized continuous-time system 
equation gives the following model in the frequency domain : 

<B1-13) 

output disturbances input pure delay 
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1Jnearized Discret.e-time Model 
Assuming that the pure time delay, L, is an integer multiple of the 
sampling interval, T, that is : 

L = mT (BI-I4) 

the linearized discrete-time model is given by, 

output disturbances control input 

where k is the discrete time variable, that is k stands for kT seconds. 

B l .4 MEASUREMENT MODELS 

Four different measurements can be made of the flow mixing process. 
They are, 

1. concentration of the furnish stock, C m 

2. concentration of the incoming stock, Ci 
3. flow rate of the furnish stock, F m 

4. variation in dilution flow due to changes in pressure, P. 

A control strategy based on only the first measurement results in a 
purely feedback control loop. The use, in addition, of one or more of the 
other three measurements will lead to a feedforward-feedback control 
system. " Several measurement models were formulated in order to 
investigate the effect of increasing the number of measurements and the 
effect of different combinations of measurements on control 
performance.  

For easy reference, a simple binary code was employed to indicate which 
measurements are made. The left most digit represents the first 
measurement, Cm ' the second represents the second measurement, Ci ' 
and so on. A "1"  indicates the measurement is made and a "0" indicates 
it is not. For example a feedforward-feedback control system based on a 
measurement y(t) of furnish concentration and furnish flow, 
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would be coded as 1010 because it is based on measurements 1 and 3. 
Each of the control strategies used in the study is determined for each of 
the six following measurement schemes, 

y(t) = [ em(t) ] T 
y(t)  = [ cm(t) fm(t) ] T 

y(t) = [ em(t) fm(t) p(t) ]T 

y(t) = [ em(t) ci(t) ]T 

y(t)  = [ cm(t) ci(t) fm(t) ] T 

y(t) = [ em(t) ci(t) fm(t) p(t) ]T 

c o d e : 1000 (B1-16) 

c o d e : 1 0 1 0  (B1-17) 

c o d e : 1 0 1 1  (B1-18) 

c o d e : 1 1 00 (B1-19) 

c o d e : 1 1 1 0 (B1-20) 

c o d e : 1 1 1 1  (B1-21) 

Here a superscripted "T" after a vector means transpose of the vector. 

B l .5 MODELS OF CONCENTRATION DISTURBANCES 

A knowledge of the dynamics of the system disturbances, namely Ci, Fo 
and P, is essential for the design and simulation of controllers for this 
system. The disturbance dynamics determine the appropriate sampling 
time and provide realistic disturbance sequences for simulation. 

The -disturbances, incoming concentration, C i, and mixed stream 
flowrate, Fo, were sampled on-line from the furnish stream to Tasman's 
number 2 paper machine. The incoming concentration could not be 
measured directly because concentration transmitters were not installed 
at the incoming streams. Therefore the incoming concentration was 
measured using the concentration transmitters at the furnish stream by 
keeping the dilution valves closed. Measurement noise was presumed to 

be a small fixed fraction of the variations in the measurements. 

It was found that the steady state values Ciss and Foss are the dominant 

components in both incoming concentration and furnish flow. Therefore 
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in order to identify the variability precisely, these constant values were 
subtracted from the data for all subsequent analysis. 

B l .S . l  Spectral Analysis 

Power spectra of the disturbance processes were obtained from the raw 
data which is sampled at 1 second intervals. Their highest natural 
frequencies then detected. This was done by taking the Fourier 
Transformation of the sampled data using the commercial computer 
package, MATLABTM. 

Figures B 1-3a to B 1-3c show the power spectra of incoming concentration 
and furnish flow (after subtracting the steady state values) for the three 
streams. The fastest measured variability of each was determined from 
the following highest frequencies shown by the power spectrum plots: 

Broke stream incoming concentration 2.5 cycle/min 
Broke stream furnish flow -- 4.0 cycle/min 

Kraft stream incoming concentration 1.5 cycle/min 
Kraft stream furnish flow -- 1.0 cycle/min 

Groundwood stream incoming concentration -- 1 .0 cycle/min 
Groundwood stream furnish flow -- 1 .0 cycle/min 

The highest frequency present is 4 cycle/min or 15 sec/cycle, in the case of 
the broke stream flow. Thus, by the Shannon sampling theorem 
(Hostetter 1988), the maximum sampling time, T, should be 7 sec. 
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Figure Bl-Sa Power Spectrum of Incoming Concentration and Furnish 
Flow in Broke Stream 
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Figure Bl-3b Power Spectrum of Incoming Concentration and Furnish 
Flow in Kraft Stream 
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B l .5.2 Sampling Time 

There are two considerations to be taken into account when deciding on 

the sampling time. On one hand the sampling interval should be kept 

small to avoid the effects of aliasing. But on the other hand, 

complications arise if the sampling time is much smaller than the dead 

time, or pure delay. This results from the fact that matrices and vectors 

increase in size by the number of sampling intervals in the dead time 

thereby increasing computer processing time. Furthermore, control 

algorithms gain much simplicity by having the dead time an integral 

number of sampling intervals. A dead time of 25 seconds and a 

maximum sampling interval of 7 seconds therefore leads to the choice of 

5 seconds as a suitable interval. 
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B 1 .5.3 Black Box Modelling 

214 

Black box modelling techniques were applied to find the deviation 
variable models of the disturbances sampled at Tasman's number 2 
paper machine. Because there are no easily measured 'inputs' that can 
be said to be causing the disturbance variations, only time series models 
driven by random input terms can be considered (Ljung 1987). The time 
series models considered were of the linear form : 

y (k) + Q l .y (k- l )  + Q 2 .y (k-2 ) + . . . . . 
-

= e (k) + b 1 . e (k- l )  + b2 .e(k- l )  + . . .  (B1-22) 

where y is measurement or quantity to be modelled and e is the random 
input term or the "noise". 

The left hand side of Equation (B1-22) is the autoregressive (AR) part, 
with constant coefficients Q 1 ,  Q2 . . .  , while the right-hand-side is the 
moving average part (MA) with constant coefficients bi t  b2 . . . . A model 

of this form is called an ARMA model, or Autoregressive model with 
coloured noise driving terms (Ljung 1987). This model reduces to an AR 
model (or autoregressive model with white noise driving term) when all 
the coefficients, bb b2, . • .  in the MA part are zero. 

The significant orders of the AR part of the models can be estimated from 
the autocorrelation plots of the disturbances as given Figures B 1-4a to 
B 1-4c. All these autocorrelation plots show only a single spike peaking at 
zero sample shift. This indicates that all the significant quantities are in 
the region of zero sample shift and, in general, the significance of time
shifted or past quantities decreases with the shift interval. Also it means 
that these disturbances do not exhibit significant periodic behaviour. The 
highest significant order or sample shift for each disturbance, at 99% 
confidence, is seen from the lower close-up plot in each of these figures 
and they are given as the following : 

Broke stream incoming concentration -- 7 
Broke stream furnish flow -- 15 

Kraft stream incoming concentration -- 12 
Kraft stream furnish flow -- 20 

Groundwood stream incoming concentration -- 17  

Groundwood stream furnish flow -- 5 
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Figure BI-4a Autocorrelation: Broke stream 
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Figure Bl-4b Autocorrelation: Kraft stream 
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Figure Bl-4c Autocorrelation: Groundwood stream 
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Based on these estimates for the order of the AR part, several ARMA 

models with different orders for AR and MA parts were fitted to the data 
using the minimum-prediction-error method. 

The Mean-Square-Error (MSE) of models of different order are tabulated 
in part (a) of Tables B l-2 to B l-7.  (Note that an ARMA model with zero 
order MA part is equivalent to an AR model). All these tables show that 
the MSE decreases rapidly when the order of the AR part increases to 
two, but further increase of the order 'of the AR part gives only small 
decrease in MSE. Also, the use of MA orders higher than zero does not 
result in a significant decrease in MSE when the orders of the AR part 
are two or more. Therefore it can be concluded that a pure AR model (ie. 
with zero order MA part) of order two or higher is appropriate for all the 
three streams. 

The Final-Prediction-Error, FPE, (Ljung 1987) criteria which penalizes 
the use of insignificant higher orders is given in part (b) of Tables B l-2 to 
B l-7.  It can be observed that the second order AR model results in a 
minimum or near minimum value of FPE in all these tables. This 
suggests the choice of a second order AR model rather than a higher 
order model for the sake of simplicity. 

As a consequence of these results it was decided that the adequate and 
appropriate models for the two disturbances ,  that is the incoming 
concentration and furnish flow, in all three streams were second order 
autoregressive models with a random and uncorrelated white noise 
driving term, i .e .  a second order AR model . Thus the deviation variable 
disturbance models for each of these components of the furnish are of the 
form : 

/o Ck+ l )  = VJl .foCk) + VJ2.fo Ck- l )  + wfk) 
(B1-23) 

(B1-24) 

where Vel , Ve2, Vfl and Vj2 are constants determined by the modelling, 
and week) and w.t<k) represent respectively the white noise driving terms 

for the incoming concentration model and the furnish flow model. 
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Table Bl-2a MSE Of ARMA Models -- Broke Incoming 
Concentra tion. 

Order MA 0 1 2 3 4 5 
A R  

1 9.944e-05 4. 158e-05 3. 117e-05 2.78ge-05 2.797e-05 2.781e-05 
2 3.348e-05 2.745e-05 2.720e-05 2.745e-05 2.751e-05 2.74ge-05 
3 2. 824e-05 2.736e-05 2.741e-05 2.685e-05 2.742e-05 2.713e-05 
4 2.746e-05 2.747e-05 2.745e-05 2.755e-05 2.705e-05 2.726e-05 
5 2.759e-05 2.761e-05 2.708e-05 2.678e-05 2.702e-05 2.747e-05 
6 2.772e-05 2.75ge-05 2.657e-05 2.738e-05 2.662e-05 2.706e-05 
7 2.67ge-05 2.67ge-05 2.701e-05 2.570e-05 2.532e-05 2�544e-05 

Table Bl-2b FPE Of ARMA Models -- Broke Incoming 
Concentration 

Order MA 0 1 2 3 4 5 
AR 

1 1.002e-04 4.227e-05 3. 194e-05 2.882e-05 2.914e-05 2.921e-05 
2 3.403e-05 2.813e-05 2.810e-05 2.860e-05 2.889e-05 2.911e-05 
3 2.894e-05 2.827e-05 2.856e-05 2.820e-05 2.903e-05 2.896e-05 
4 2.837e-05 2.862e-05 2.883e-05 2.917e-05 2.887e-05 2.933e-05 
5 2. 874e-05 2.89ge-05 2.867e-05 2.85ge-05 2.908e-05 2.981e-05 
6 2.911e-05 2.921e-05 2.836e-05 2.947e-05 2.889e-05 2.960e-05 
7 2.837e-05 2.860e-05 2.907e-05 2.78ge-05 2.770e-05 2.806e-05 
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Table Bl-3a MSE Of ARMA Models -- Broke Furnish Flow 

Order MA 0 1 2 3 4 5 
A R  

1 4. 146e+Ol 3.241e+Ol 3. 146e+Ol 3.160e+Ol 3.171e+Ol 3.092e+Ol 
2 3.264e+Ol 3. 162e+Ol 3. 150e+Ol 3.037e+Ol 3. 174e+Ol 3.047e+Ol 
3 3.181e+Ol 3.168e+Ol 3. 160e+Ol 3.027e+Ol 3.04ge+Ol 3.056e+Ol 
4 3.170e+Ol 3.16ge+Ol 3. 13ge+Ol 3.051e+Ol 3.114e+Ol 2.924e+Ol 
5 3. 180e+Ol 3. 177e+Ol 3. 143e+Ol 3.12ge+Ol 3. 148e+0 1 2.950e+Ol 
6 3. 167e+Ol 3. 167e+Ol 3.091e+Ol 2.945e+Ol 2.941e+Ol 2.932e+Ol 
7 3.168e+01 3.008e+Ol 2.980e+01 3.015e+01 2.995e+01 3.00 1e+O 1 
8 3.162e+01 3.11ge+01 3.023e+01 3.004e+01 3.013e+01 2.944e+Ol 
9 3.058e+01 2.971e+01 2.970e+Ol 2.944e+Ol 2.942e+Ol 2.942e+Ol 
10 3.000e+Ol 3.001e+Ol 2.986e+Ol 2.943e+Ol 2.895e+Ol 2.963e+Ol 
11  2.998e+01 2.967e+01 2.931e+Ol 2.924e+Ol 2.926e+Ol 2.923e+Ol 
12 2.991e+Ol 3.025e+Ol 2.962e+Ol 2.928e+Ol 2.974e+Ol 2.915e+Ol 
13 2.988e+Ol 2.953e+Ol 2.892e+Ol 2.891e+01 2.875e+01 2.963e+01 
14 2.957e+01 2.957e+01 2.928e+Ol 2.906e+Ol 2.923e+Ol 2.924e+Ol 
15 2.971e+Ol 3.100e+Ol 2.952e+01 2.860e+01 2.918e+01 2.906e+01 

Table Bl-3b FPE Of ARMA Models -- Broke Furnish Flow 

Order MA 0 1 2 3 4 5 
A R  

1 4.180e+Ol 3.295e+Ol 3.224e+Ol 3.265e+Ol 3.303e+Ol 3.248e+01 
2 3.318e+Ol 3.241e+Ol 3.255e+Ol 3. 164e+0 1 3.333e+Ol 3.226e+01 
3 3.260e+Ol 3.273e+Ol 3.291e+Ol 3. 17ge+Ol 3.228e+Ol 3.262e+Ol 
4 3.275e+Ol 3.301e+Ol 3.296e+Ol 3.231e+Ol 3.324e+Ol 3.147e+Ol 
5 3.313e+Ol 3.336e+01 3.328e+Ol 3.340e+Ol 3.388e+Ol 3.201e+Ol 
6 3.326e+Ol 3.353e+Ol 3.29ge+Ol 3. 170e+Ol 3. 191e+01 3.208e+Ol 
7 3.354e+Ol 3.211e+Ol 3.208e+01 3.272e+Ol 3.277e+01 3.310e+Ol 
8 3.375e+Ol 3.357e+Ol 3.281e+Ol 3.286e+Ol 3.323e+Ol 3. 274e+01 
9 3.291e+01 3.224e+Ol 3.24ge+Ol 3.248e+Ol 3.272e+Ol 3.298e+Ol 
10 3.255e+Ol 3.283e+Ol 3.294e+Ol 3.273e+Ol 3.246e+01 3.34ge+01 
11  3.280e+01 3.273e+Ol 3.260e+01 3.27ge+01 3.307e+01 3.332e+01 
12 3.29ge+Ol 3.364e+01 3.321e+Ol 3.310e+01 3.38ge+01 3.350e+01 
13 3.323e+Ol 3.312e+Ol 3.269e+Ol 3.296e+Ol 3.304e+Ol 3.433e+Ol 
14 3.316e+Ol 3.343e+Ol 3.337e+Ol 3.33ge+Ol 3.386e+Ol 3.416e+Ol 
15 3.358e+Ol 3.533e+Ol 3.392e+Ol 3.314e+Ol 3.40ge+Ol 3.423e+Ol 
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Table Bl-4a MSE Of ARMA Models -- Kraft Incoming 
Concentra tion 

Order MA 0 1 2 3 4 5 
A R  

1 1. 197e-06 9.970e-07 9.583e-07 9.436e-07 9.348e-07 9.257e-07 
2 9.340e-07 9.092e-07 8.98ge-07 9.01Oe-07 8.994e-07 8.997e-07 
3 9.226e-07 9.021e-07 9.013e-07 9.00ge-07 8.962e-07 8.986e-07 
4 9. 144e-07 9.003e-07 8.977e-07 9.0 15e-07 9.025e-07 8.956e-07 
5 9.027e-07 8.997e-07 8.985e-07 8.940e-07 8.939e-07 8.913e-07 
6 9.003e-07 8.975e-07 9.086e-07 8.900e-07 8.861e-07 8.711e-07 
7 8.969e-07 8.963e-07 8.962e-07 8.892e-07 8.796e-07 8.807e-07 
8 8.974e-07 8.96ge-07 8.894e-07 8.892e-07 8.793e-07 8.855e-07 
9 8.968e-07 8.96ge-07 8.908e-07 8.850e-07 8.815e-07 8.814e-07 
10 8.970e-07 8.966e-07 8.963e-07 8.915e-07 8.896e-07 8.900e-07 
11  8.984e-07 8.875e-07 8.869e-07 8.814e-07 8.943e-07 9.030e-07 
12 9.003e-07 8.870e-07 8.874e-07 8.868e-07 8.745e-07 8.761e-07 

Table Bl-4b FPE Of ARMA Models -- Kraft Incoming 
Concentration 

Order MA 0 1 2 3 4 5 
AR 

1 1.202e-06 1.005e-06 9.699e-07 9.58ge-07 9.538e-07 9.483e-07 
2 9.415e-07 9.203e-07 9. 134e-07 9.193e-07 9.214e-07 9.254e-07 
3 9.338e-07 9.167e-07 9. 196e-07 9.230e-07 9.218e-07 9.280e-07 
4 9.292e-07 9.186e-07 9. 197e-07 9.273e-07 9.320e-07 9.286e-07 
5 9.211e-07 9.217e-07 9.241e-07 9.232e-07 9.269e-07 9.27ge-07 
6 9.223e-07 9.231e-07 9.384e-07 9.22ge-07 9.225e-07 9.106e-07 
7 9.225e-07 9.256e-07 9.293e-07 9.257e-07 9. 194e-07 9.243e-07 
8 9.268e-07 9.300e-07 9.259e-07 9.294e-07 9.228e-07 9.331e-07 
9 9.299e-07 9.337e-07 9.311e-07 9.288e-07 9.289e-07 9.324e-07 
10 9.338e-07 9.372e-07 9.407e-07 9.394e-07 9.411e-07 9.454e-07 
11  9.391e-07 9.315e-07 9.345e-07 9.325e-07 9.500e-07 9.631e-07 
12 9.44ge-07 9.346e-07 9.38ge-07 9.420e-07 9.326e-07 9.381e-07 
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Table Bl-5a MSE Of ARMA Models -- Kraft Furnish Flow 

Order MA 0 1 2 3 4 5 
A R  

1 5.211e+00 4.826e+00 4.827e+00 4.816e+00 4.797e+00 4.735e+00 
2 4.835e+00 4.82ge+00 4.73ge+00 4.643e+00 4. 645e+00 4.704e+00 
3 4.818e+00 4. 648e+00 4.654e+00 4.65ge+00 4.633e+00 4.63ge+00 
4 4.79ge+00 4.645e+00 4.645e+00 4.633e+00 4.644e+00 4.658e+00 
5 4.787e+00 4.731e+00 4.708e+00 4.635e+00 4.63ge+00 4.632e+00 
6 4. 746e+00 4.67ge+00 4.612e+00 4:624e+00 4.645e+00 4.605e+00 
7 4.747e+00 4.687e+00 4.676e+00 4.660e+00 4.655e+00 4.727e+00 
8 4.713e+00 4.712e+00 4.704e+00 4.696e+OO 4.607e+00 4.636e+00 
9 4.722e+00 4.724e+00 4.682e+00 4.683e+00 4.657e+00 4.68ge+00 
10 4.728e+00 4.678e+00 4.679e+00 4.661e+00 4.623e+00 4.647e+00 
1 1  4.732e+00 4.676e+00 4.725e+00 4.700e+00 4.625e+00 4.626e+00 
12 4.732e+00 4.677 e+00 4.692e+00 4.647e+00 4.637e+00 4.632e+00 
13 4.735e+00 4.77ge+00 4.598e+00 4.752e+00 4.642e+00 4.602e+00 
14 4.735e+00 4.696e+00 4.682e+00 4.625e+00 4.610e+00 4.605e+00 
15 4.67ge+00 4.691e+00 4.639e+00 4.626e+00 4.616e+00 4.607e+00 

Table Bl-5b FPE Of ARMA Models -- Kraft Furnish Flow 

Order MA 0 1 2 3 4 5 
A R  

1 5.232e+00 4.865e+00 4.885e+00 4.894e+00 4.895e+00 4.850e+00 
2 4.874e+00 4.887e+00 4.816e+00 4.738e+00 4.75ge+00 4.83ge+00 
3 4.877e+00 4.724e+00 4.748e+00 4.773e+00 4.765e+00 4.791e+00 
4 4.877e+00 4.73ge+00 4.758e+00 4.766e+00 4.796e+00 4.830e+00 
5 4.884e+00 4.847e+00 4.843e+00 4.787e+00 4.810e+00 4.823e+00 
6 4.862e+00 4.813e+00 4.763e+00 4.795e+00 4.836e+00 4.814e+00 
7 4.882e+00 4.B41e+00 4.B4ge+00 4.851e+00 4.866e+00 4.961e+00 
8 4.867e+00 4.885e+00 4.897e+00 4.90ge+00 4.835e+00 4.885e+00 
9 4.896e+00 4.918e+00 4.894e+00 4.914e+00 4.907e+00 4.961e+00 
10 4.923e+00 4.889e+00 4.911e+00 4.911e+00 4.891e+00 4.936e+00 
11  4.946e+00 4.908e+00 4.979e+00 4.973e+00 4.913e+00 4.934e+00 
12 4.967e+00 4.928e+00 4.964e+00 4.936e+00 4.945e+00 4.960e+00 
13 4.990e+00 5.056e+00 4.884e+00 5.068e+00 4.971e+00 4.948e+00 
14 5.010e+00 4.98ge+00 4.994e+00 4.953e+00 4.957e+00 4.971e+00 
15 4.971e+00 5.003e+00 4.968e+00 4.974e+00 4.984e+00 4.994e+00 
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Table Bl-6a MSE Of ARMA Models -- Groundwood Incoming 
Concentra tion 

Order MA 0 1 2 3 4 5 
AR 

1 1.430e-06 1.048e-06 9.408e-07 9.390e-07 9.417e-07 9.264e-07 
2 9.486e-07 9.470e-07 9.361e-07 9.383e-07 9.413e-07 9.403e-07 
3 9.474e-07 9.316e-07 9.390e-07 9.330e-07 9.361e-07 9.427e-07 
4 9.454e-07 9.441e-07 9.279e-07 9.316e-07 9.398e-07 8.951e-07 
5 9.454e-07 9.31ge-07 9.290e-07 9.281e-07 9.204e-07 8.843e-07 
6 9.477e-07 9.218e-07 9. 180e-07 9.232e-07 9. 175e-07 8.938e-07 
7 9.078e-07 8.973e-07 8.902e-07 8.902e-07 8.766e-07 8.767e-07 
8 9.091e-07 9.04ge-07 8.944e-07 8.891e-07 8.879e-07 8.870e-07 
9 8.753e-07 8.740e-07 8.740e-07 8.718e-07 8.588e-07 8.557 e-07 
10 8.746e-07 8.70ge-07 8.704e-07 8.699e-07 8.61ge-07 8.675e-07 
11  8.774e-07 8.736e-07 8.736e-07 8.460e-07 8.58ge-07 8.61ge-07 
12 8.73ge-07 8.733e-07 8.541e-07 8.624e-07 8.58ge-07 8.48ge-07 
13 8.753e-07 8.726e-07 8.673e-07 8.638e-07 8.654e-07 8.360e-07 
14 8.608e-07 8.482e-07 8.451e-07 8.458e-07 8.365e-07 8.208e-07 
15 8.467e-07 8.465e-07 8.471e-07 8.467e-07 8.095e-07 8.226e-07 
16 8.491e-07 8.46ge-07 8.459e-07 8.400e-07 8.447e-07 8.258e-07 
17 8.485e-07 8.478e-07 8.477e-07 8.463e-07 8.307 e-07 8.217 e-07 

Table Bl�b FPE Of ARMA Models -- Groundwood Incoming 
Concentration 

Order MA 0 1 2 3 4 5 
AR 

1 1.440e-06 1.063e-06 9.608e-07 9.657e-07 9.753e-07 9.663e-07 
2 9.620e-07 9.671e-07 9.628e-07 9.718e-07 9.818e-07 9.877e-07 
3 9.676e-07 9.582e-07 9.726e-07 9.731e-07 9.832e-07 9.972e-07 
4 9.723e-07 9.77ge-07 9.678e-07 9.785e-07 9.941e-07 9.535e-07 
5 9.792e-07 9.71ge-07 9.757e-07 9.817e-07 9.804e-07 9.486e-07 
6 9.884e-07 9.682e-07 9.710e-07 9.834e-07 9.843e-07 9.656e-07 
7 9.536e-07 9.491e-07 9.482e-07 9.550e-07 9.470e-07 9.538e-07 
8 9.616e-07 9.63ge-07 9.595e-07 9.605e-07 9.659e-07 9.718e-07 
9 9.324e-07 9.376e-07 9.441e-07 9.485e-07 9.409e-07 9.441e-07 
10 9.382e-07 9.40ge-07 9 .469e-07 9.531e-07 9.50ge-07 9.63ge-07 
11  9.47ge-07 9.504e-07 9.571e-07 9.334e-07 9.544e-07 9.644e-07 
12 9.507e-07 9.568e-07 9.423e-07 9.583e-07 9.611e-07 9.566e-07 
13 9.58ge-07 9.627e-07 9.637e-07 9.665e-07 9.752e-07 9.487e-07 
14 9.498e-07 9.425e-07 9.457e-07 9.531e-07 9.493e-07 9.380e-07 
15 9.407e-07 9.472e-07 9.546e-07 9.609e-07 9.251e-07 9.468e-07 
16 9.501e-07 9.543e-07 9.600e-07 9.600e-07 9.722e-07 9.572e-07 
17 9.561e-07 9.621e-07 9.688e-07 9.741e-07 9.62ge-07 9.592e-07 
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Table Bl-7a MSE Of ARMA Models -- Groundwood Furnish Flow 

Order MA 0 1 2 3 4 5 
A R  

1 1.222e+02 8.524e+01 8.417e+01 8. 165e+01 8.055e+01 8. 140e+01 
2 8.16ge+01 8. 153e+Ol 8.015e+Ol 8.066e+Ol 8.051e+Ol 8. 122e+O 1 
3 8.245e+01 8. 122e+01 8.070e+01 7.951e+01 8.057e+01 8.118e+Ol 
4 8.167e+Ol 8.091e+Ol 7.532e+01 7.59ge+01 7.683e+01 7.658e+Ol 
5 8. 11ge+Ol 8.085e+01 7.874e+Ol 7.508e+01 7.574e+Ol 7.582e+Ol 

Table Bl-7b FPE Of ARMA Models -- Groundwood Furnish Flow 

Order MA 0 1 2 3 4 5 
A R  

1 1.23ge+02 8.773e+Ol 8.788e+01 8.64ge+01 8.656e+01 8.875e+01 
2 8.407e+01 8.513e+Ol 8.490e+01 8.668e+01 8.778e+01 8.984e+Ol 
3 8.60ge+Ol 8.603e+Ol 8.673e+Ol 8.66ge+Ol 8.911e+01 9.110e+01 
4 8.651e+Ol 8.695e+Ol 8.212e+Ol 8.405e+01 8.622e+Ol 8.718e+01 
5 8.725e+01 8.815e+01 8.70ge+01 8.425e+01 8.623e+Ol 8.758e+Ol 

The adequacy of second order models can be seen clearly from the plots of 
AR model order against Mean-Square-prediction-Error (MSE) and Final
Prediction-Error (FPE) in Figures Bl-5a to Bl-5c. 
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Figure Bl-5a MSE & FPE VB AR Model Order: Broke Stream 
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Figure Bl-5b MSE & FPE VB AR Model Order: Kraft Stream 
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Figure Bl-5c MSE & FPE VB AR Model Order: Groundwood Stream 
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Due to the fact that, p,  the effect of variations in dilution flow pressure on 
pulp flow, could not be measured at the time of this study, the model of 
the effect of pressure variation on dilution is estimated to have the same 
form as the furnish flow : 

p (k+ l )  = Vp l .p (k)  + Vp2 .p (k- l ) + wp(k) (B1-25) 

where wp(k) represents the white noise driving term of the model, and the 
constants Vpl and Vp2, in the absence or qetter information, have been 
taken as Vj1 and Vj2 respectively. 

The coefficients and steady state values for each of the models are given 
in Table B 1-8. 

Table Bl-8 Parameters of Disturbances' Model 

Incoming Cs Vcl Vc2 Steady State 

Broke 1.775 -0.812 3.863 % 

Kraft 1.441 -0.464 3.255 % 

Groundwood  1.565 -0.573 3.438 % 

Furnish flow Vn Vf2 Steady State 

Broke 1.110 -0.423 501.1 gpm 

Kraft 1.185 -0.203 359. 1 gpm 

Groundwood 1.548 -0.586 1431.6 gpm 



Appendix B 1 Modelling of Paper Stock Concentration Control System 

B 1 .5.4 Stability of Disturbance Models 

229 

As given in Table B 1-8,  the deviation models of the concentration 
disturbances are : 

Broke Cs 
Flow 

y(k) - 1.775 y(k-1) + 0.812 yCk-2) = e(t) 
yCk) - 1.110 yCk-1) + 0.423 yCk-2) = e(t) 

Kraft Cs 
Flow 

y(k) - 1.441 yCk-1) + 0.464 yCk-2) = e(t) 
yCk) - 1.185 yCk-1) + 0�29� yCk-2) = e(t) 

Groundwood Cs  
Flow 

: yCk) - 1.565 yCk-1) + 0.573 yCk-2) = e(t) 
: yCk) - 1.548 yCk-1) + 0.586 yCk-2) = e(t) 

Using these equations, the corresponding eigenvalues can be found and 
are given in Table B l-9. None of the absolute magnitudes of these 
eigenvalues are larger than one, and so all these models are stable 
(Ogata 1987). 

Table Bl-9 Eigenvalues of Disturbances' Model 

Eigenvalues Absolute magnitude 

Broke Cs 0.885 + 0. 18li 0.903 

0.885 - 0.18li 0.903 

Broke Flow 0.566 + 0.38li 0.683 

0.566 - 0.38li 0.683 

Kraft Cs 0.953 0.953 

0.493 0.493 

Kraft Flow 0.961 0.961 

0.300 0.300 

Groundwood Cs 0.983 0.983 

0.589 0.589 

Groundwood Flow 0.886 0.886 

0.661 0.661 
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B1.6 DISCRETE-TIME STATE SPACE DESCRIPTION 

For the purpose of system analysis and controller design, it is convenient 
to have the discrete-time models of the control system and the system 
disturbances in the form of a state space description (Coughanowr and 
Koppel 1983, Ogata 1987).  For simplicity and the reasons discussed in 
Section B 1 .5 .2 ,  the following assumption is made for the subsequent 
state-space models. 

Assumption Bl-l 

The pure delay, L, is assumed to be an exact multiple of the sampling 
interval, T, that is: 

L = mT , m = 0 ,1 ,2 ,3 . . .  

B1 .6.1 Disturbances State-Space Description 

Defining the disturbances state vector, Xn : 

Ci(k-m + 1) 
foCk) 
foCk-l) 

foCk-m+l)  

p(k) 
p(k-1) 

p(k-m+1) 

and the white noise driving vector, w : [ wc(k) ] 
w(k) = wfk ) 

wp(k) 
, w(k) E R3 

• 

(B1-26) 

(B1-27) 
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the disturbance models described in Section B 1.5.3 can then be combined 
and written in state-space form as : 

Ci(k+l) 
ci (k) 
· 

ci(k-m) 
fo(k+l) 

xn(k+l)  
fo(k) 

= · 
· 

fo(k-m) 

p(k+l) 
p(k) 

p(k-m) 

[ Nci 0 : 1 xn(k) 

[ Eci 1 = 0 Nf + � + w(k)  CBl-28) 

0 0 Np 

where 

= [T Vc2 0 0 0 1 0 0 0 0 
Nci 1 0 0 0 dimension m x m 

0 0 1 0 

= [ T 
Vf2 0 0 0 1 0 0 0 0 

Nfo 1 0 0 0 dimension m x m 

0 0 1 0 [ Vpl Vp2 0 0 

! l Np = f 0 0 0 
1 0 0 dimension m x m 

0 0 1 

= [ ! 0 

! l 0 
Eci 0 dimension m x 3 

0 
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Ero = [ ! ! ! l mmension m x 3 

� = [ ! ! ! 1 dime�ion m x 3 

and 0 is the zero matrix of appropriate dimension. 

Bl.6.2 Augmented System 

232 

An augmented state-space description incorporating all the disturbances 
is chosen in order to allow for the design of control strategies including 
feedforward elements, 

Defining two more state vectors, the concentration system state, xs(k) , 
and control-input state vector, xc(k) as : 

[ fd(k-l) ] 
xc(k)  = 

�d(k-2) 

fd(k-m+l) 

a possible augmented system state vector, x(k), is thus, 

xs(k) 

x(k) = xn(k ) 

xc(k ) 

, x(k) E R4m 

(B1-29) 

(B1-30) 

(B1-31) 
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The dynamics of the system can then be described by an augmented state
space system description of the form, 

x(k+l ) = 

o A ci 
o Nci 

o 0 

Afo Ap Afd 
0 0 0  

Nfo 0 0 

o 0 0 Np 0 

o 0 0 0 Nfd 

+ 

o 
o 
o id(k) + 

o 
Bfd 

x(k) 

Ero w(k) 

Ep 
o 

= A .  x(k) + B . fd(k) + E . w(k) 

x(k) E R4m ; id(k) E RI ; w(k) E R3 

(B1-32) 

where Nei, Nro, Np, Eci ,  Ero and Ep are defined as in the previous section 
and 

Aci = [ 0 .. . 0 kl ] dimension I x m 

Afo = [ 0 . . .  0 k2 ] , l x m  

Ap = [ 0 . . . 0 k3 ] I x m  

Afd = [ 0 . . . 0 k3 ] , l x (m-I) [ 0 0 

Nfd = � � 
o 0 

, Cm-I) x Cm-I) 

, (m-l) x 1 
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The parameter kl' k2 and k3 are the coefficients of the linearized system 
equation defined in Equation B l-8. The values of these parameters are 
determined totally by the steady state values of the system. 

Following this state-space description, the measurement vector, y(k) , is 
given by, 

y(k) = C x(k) + D v (k) (B1-33) 

where, v(k), is a vector of measurement noises. The structures of the 
matrices C and D are dependent on the measurement scheme employed. 

B 1 .6.3 Controllability 

For the a system described by Equation (B 1-32): 

x(k +  1 )  = A x(k)  + B f d(k) + E w(k) 

the controllability matrix (Ogata 1987), Pc is given by : 

Pc = [ B 1 A B 1 A2 B I . . . . . .  1 A4m-l B ] 

Consequently the controllability of our system is given by : 
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0 Afd·Bfd Afd· Nfd·Bfd Afd·Nfd4m-2 .Bfd 

0 0 0 0 

Pc = 0 0 0 0 

0 0 0 0 

Bfd Nfd·Bfd Nfd2.Bfd Nfd4m-1.Bfd 

0 0 0 0 ka 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
= 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 

f- m-I � 

where k3 is the non-zero parameter given in Table B I-l  for each stream. 

The matrix is of rank m. The controllability matrix indicates that the first 
state and the last (m - I )  states are controllable. This controllability 
characteristics is expected for the augmented system, as the first state 
corresponds to the original system state, xs, and the last (m-l) states are 
the states of control input, Xc' The uncontrollable states correspond to the 
3m disturbance states, Xn' described in Section B 1.5.  Since it has been 

found that the disturbance model is stable, the augmented system is 
stabilizable (Ogata 1987). 

BI .6.4 0bservability 

For a measurement vector, y(k) , and measurement matrix, C, such that: 

y (k) = C x(k) 
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the observability matrix (Ogata 1987), Qo , of the system described by 

Equation (Bl-32) is given by : 

Qo = 

C .A (4rn- l) 

Therefore, the observability matrix of the augmented system can be 

obtained for the six different measurement schemes.  Using the computer 
package MATLAB, it is found that the observability matrices of all the 

measurement schemes are of full rank. Thus all the states are 

observable when any of the six measurement schemes is employed or, in 

other words, the concentration system given by Equation (B l-32) is 

completely observable . This property of complete observability is  

important in the design of an optimal multivariable control which will be 

discussed in detail in the next chapter. 

B 1 .7 SUMMARY 

The problem of paper stock concentration control has been outlined in 

this chapter. The overall concentration control system consists of three 
separate but structurally identical systems,  one for each of the broke, 

kraft and groundwood streams of paper stock. 

Several models involved in these control systems are established. It is 

found that each of these systems is inherently described by a purely 

algebraic (or zero order) model. The system model is found to be driven by 

one controllable input, F d. It has one output requiring regulation, Cm and 
three uncontrollable disturbances, Ci, F m and P. This model is nonlinear 
and contains a pure delay term, as given by Equation Bl-7: 

[ F d(t-L) + P(t-L)  ] 
Cm(t)  = Ci(t-L) 1 - F m(t-L) 
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For the purpose of controller design, a linearized discrete-time version of 

this model is determined in Equation Bl-15 as: 

The appropriate model parameters for these system models are tabulated 
in Table Bl- l. 

U sing measurements from the actual plant, three models were also 
determined respectively for the three disil!rbances in each . stream. This 

was achieved with the assistance of a computer-aided parameter 

estimation package. 

It was found that the most suitable models for all these three 

disturbances were the second order auto-regressive models driven by 

white noise terms. They have the general form of, 

y(k+ l )  = VI .y (k) + V2.y (k- l ) + w(k) 

where y is the disturbance variable, w is the white noise driving term 

and V I  and V2 are constant parameters. The appropriate model 

parameters for these disturbances are tabulated in Table B l-S. 

Six possible measurement schemes were also assigned. They consist of 
different combinations of system disturbances (feedforward) and system 
output (feedback) measurements. For easy reference, some simple binary 

codes were assigned to each of these schemes,  to indicate which 

measurements were made. 

For the purpose of system analysis and controller design, a state-space 

model was derived to combine the system model and the disturbance 

models into a single description. 
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SUMMARY 

A New Zealand pulp and paper company wishes to improve its stock 
concentration control , and has needed therefore to investigate the 

performance of various alternative control systems. The paper reports the 

results of a simulation study that formed a part of this investigation. 

A model of the stock concentration system contains pure delay elements 

and dominant disturbances.  The pulp and paper company is  thus 
interested in applying deadtime compensation, possible combined with 

one or more feedforward control loops. In this paper, the performance of 

six control strategies is simulated, including three-term, deadbeat and 

optimal multi-variable controllers, each with and without the inclusion of 
a Smith predictor. For each strategy, a pure feedback control solution is 

calculated, as well as a number of feedforward-feedback control solutions, 

depending on the disturbances measured. The work was done with the aid 
of a commercially marketed computer aided control system design 
package. 



Appendix 82 240 

INTRODUCTION 

Tasman Pulp and Paper Company is evaluating the performance of 

consistency controllers in the paper mill stock blending area. It currently 

uses standard three-term (PID) controllers to regulate the consistency of 

the individual furnish components, namely groundwood, kraft and broke. 

The company wishes to install an improved consistency control system, 
and has needed therefore to investigate the performance of various 

alternative control systems. The paper rep'orts the results of' a simulation 
study that formed a part of this investigation. 

STOCK CONSISTENCY CONTROL AT TASMAN PULP 
AND PAPER 

The three paper machines at Tasman produce newsprint from blends of 

semi-bleached Kraft pulp, mixed groundwood (refiner plus stone 

groundwood), and broke. These furnish components are combined in the 

desired ratios in the blend chests at the wet end of each paper machine. 

The general stock blending arrangement is illustrated in Figure 1. The 
objective of the stock blending control is to ratio the components on a dry 
fibre basis, even though it is the total stock flows (fibre plus water) that are 
manipulated. The flows are controlled by the blend chest level and are 
corrected for changes in consistency on an infrequent basis, using 

manual consistency test results entered by operators (every two or four 

hours). To maintain a uniform blend it is therefore essential that any 

variability in stock consistency is minimized through good consistency 

control. 

The consistency of each furnish component is controlled upstream of the 

blend chest by adding dilution water prior to each stock pump (see Figure 

2). Consistency transmitters are located some distance downstream from 

the dilution points , causing a delay of the order of 25 seconds in the 

consistency control loop. The consistency controllers used currently are 

pneumatic two-term (PI) controllers, but on two of the paper machines, all 

the wet end controls are about to be replaced with a new distributed control 

system. This provides the perfect opportunity to improve consistency 

control through the implementation of a more effective control strategy. 
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Fig. 1 • Schematic layout of stock blending process 
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The notation used in Figure 2 and subsequently, is as follows: 

Ci = consistency of incoming pulp from stock chest 

Cd = consistency of dilution water 

Co = consistency of mixed ( furnish ) stream at mixing point ( as if 

where were instant perfect mixing ) 

Cm = measured consistency 

Fi = flowrate of incoming pulp 

Fo = flowrate of pulp at mixing point. 

Fm = measured flowrate 

Fd = intended or ideal flowrate of dilution water 

P = variation in dilution flow due to changes in pressure 

MODELLING STOCK CONSISTENCY 

In order to simulate the behaviour of the stock control system and to 

determine controllers for it, an appropriate model of the system must first 

be determined. This model is nonlinear. For the design of the controllers, 

a linearized version of this model is required. 

Nonlinear Model 
The system ill ustra ted in Figure 2 can be modelled as the mixing of two 

incompressible fluid streams. The system is  thus governed by the 
following mass balance equations: 

Fi(t) + Fd(t) + pet) = Fo (t) (1) 

(2) 
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The first is a balance of volumetric flowrates and the second is a balance of 

pulp stock. Assuming the consistency of the dilution water is negligible ,  
that is Cd = 0, these equations yield a relationship between the controlled 
output, Co, the control input, Fd, and the system disturbances,  Ci' F 0 and 

P: 

Co(t) = Ci(t) . ( 1 - ( Fd( t) + pet) )/ Fo(t) ) (3) 

As the consistency is measured some distance downstream and because 

the pulp fluid has been assumed in.c�mpressible ,  th¥ measured 
consistency and flow are given by : 

Cm (t) = Co(t-L) (4) 

Fm (t) = Fo(t) (5) 

where L is  the pure time delay between the mIXIng point and the 

measuring point. Substituting equations (4) and (5) into equation (3), gives 
an equation for the measured consistency: 

Cm(t) = Ci(t-L) . {  1 - ( Fd(t-L)  + P(t-L) )/  Fm(t-L) J (6) 

Linearized discrete model. 

Equation (6) describing the behaviour of measured consistency is 
nonlinear due to the multiplication and division of variables in the 
equation. Most methods of controller design presume the system 

equations have been linearized. To linearize equation (6), assume first that 

the pure time delay L is an exact integer multiple of the sampling 

interval, T, that is L = mT. Then the actual values of the variables (upper 
case symbols) are written as deviations around the steady state values of 

these variables. Thus deviation variables (lower case symbols) are defined 
as follows : 

, Ciss = steady state value of Clk) 

cm(k) = Cm(k) - Cmss ' Cmss = steady state value of Cm(k) 

fJk) = F Jk) - F dss 

p(k) = P(k) - Pss 

, Foss = steady state value of F o(k) 

, F dss = steady state value of F d(k) 

, P ss = steady state value of P(k) 
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The use of these variables, in conjuction with suitable Taylor's Series 

expansions, see [ 1] ,  enables the following discretized linearized system 
description to be determined : 

where k is the discrete time variable, that is k stands for kT seconds, and: 

(8) 

(9) 

(10) 

Notice that the three parameters k1 ' k2 and k3 of this simple linearized 

model are completely determined by the steady state values of the system. 

Measurement Models 
Four different measurements can be made of the flow mixing process. 
They are : 

1 .  consistency of the furnish stock, C m 

2. consistency of the incoming stock, Ci 

3. flow rate of the furnish stock, F m 

4.  variation in dilution flow due to changes in pressure, P. 

A control strategy based on only the first measurement results in a purely 

feedback control loop. The use, in addition, of one or more of the other 
three measurements will lead to a feedforward-feedback control system. 
In order to investigate the effect on controlled performance of increasing 

the number of measurements and the effect of different combinations of 

measurements, several measurement models are formulated. For easy 

reference,  a simple binary code is employed to indicate which 
measurements are made. The left most digit represents the first 
measurement, C m '  the second represents the second measurement, C i' 

and so on. A "I" indicates the measurement is made and a "0" indicates it 
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is not. For example a feedforward- feedback control system based on a 

measurement y(t) of furnish consistency and furnish flow : 

y (t) = [ cm( t) fm (t) J T (11) 

is coded as 1010 because it is based on measurements 1 and 3. Each of the 

control strategies used in the paper is determined for each of the following 
measurement schemes : 

1000, 1100, 1010, 1110, 1110 and 1111 

MODELS OF CONSISTENCY DISTURBANCES 

A knowledge of the dynamics of the system disturbances for each stream, 
namely C j, F 0 and P is essential for the design and simulation of 

controllers. The disturbance dynamics determine the appropriate 

sampling time and provide realistic disturbance sequ ences for 
simulation. In this paper, for the sake of brevity, only the details of 

modelling the broke stream are presented - this stream exhibits the 
greatest variation in consistency and flow. However, the disturbance 

models of the kraft and groundwood streams are determined in the same 

way and have exactly the same form as the broke stream disturbance 

models, only the parameters and constants have different values. 

The disturbance processes Cj and F m for the furnish to Tasman's number 

2 paper machine were sampled on-line at 1 second intervals.  Incoming 
consistency is measured by closing the dilution valve. Measurement 

noises are presumed to be a small fixed fraction of the variations in the 
measurements . 

The steady state values Cjss and Foss are the dominant components in both 

incoming consistency and furnish flow. Therefore in order to identify the 

variability precisely, these constant values are subtracted from the data 
for all subsequent analysis. 
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Fig. 3 - Power spectrum of broke incoming consistency and furnish flow 
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Figure 3 shows the power spectra of incoming broke consistency and 
furnish flow (after subtracting the steady state values) .  The fastest 
measured variability of each is determined from the following highest 
frequencies shown by the power spectrum plots: 

Broke stream incoming consistency -- 2.5 cycle/min 

Broke stream flow -- 4 cycle/min 

The fastest variability has frequency 4 cycle/min or 15 sedcycle, in the 
case of the broke stream flow. By Shannon sampling theorem, see [2], the 
maximum sampling time should enable at least two samples to be taken 
within on cycle of the fastest mode. ' Therefore here , the maximum 
sampling rate should be at least one sample in 7.5 seconds. Since the dead 
time is known to be 25 sec, a sampling time of 5 second is used in this 
study for the digital control systems designed . .  

5 



Appendix 82 247 

Black box modelling techniques have been applied to find the deviation 
variable models of the disturbances sampled at Tasman's number 2 paper 
machine. Because there are no easily measured 'inputs' that can be said 
to be causing the disturbance variations, only autoregressive time series 
models driven by random inputs terms can be considered [3] . By using a 
commercial computer aided control system design package called 
MATLABTM [4] ,[5] , several linear time series models were fitted to the 
data using the minimum-prediction-error method. After considerable 
investigation of a range of possible models, it was found that a second 
order time series model with a random and uncorrelated white noise 
driving term was appropriate and adequate for each of the disturbances. 
Thus the deviation variable disturbance models for each of these 
components of the furnish are of the form : 

(12) 

(13) 

where Veb Ve2' Vfl and Vf2 are constants determined by the modelling, and 
week) and wfk) represent respectively the white noise driving terms for the 

incoming consistency model and the furnish flow model. 

Figure 4 gives the plots of model order against Mean-Square-prediction
Error (MSE). It shows that the MSE reduces dramatically as the model 
order increases from on to two, but any further increase in model order 
results only in a smal reduction in MSE. Therefore, with control system in 
mind, a second order model is chosen for both furnish flow and incoming 
stock concentration. 

Autocorrelation plots of the prediction error, Figure 5, shows prediction 
errors are uncorrelated with past and future prediction errors. This 
indicates the appropriateness of the white noise models. Figure 6 shows a 
comparison of actual data with one-step-ahead predictions using the above 
models .  
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Fig. 4 - MSE for various orders of model 
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Fig. 6 - Comparison of one-step-ahead predictions with actual data 
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Due to the fact that P ,  the effect on flow of variations in dilution flow 
pressure, was not able to be measured at the time of this study, the model 
of the effect of pressure variation on dilution is estimated to have the same 
form as furnish flow : 

(14) 

where wp(k) represents the white noise driving term of the model, and the 

constants Vp] and Vp2 '  in the absence of better information, have been 
taken as VI] and V j2 respectively. 

The coefficients and steady state values for each of the models are given in 
Table 1. 

60 
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Table 1 - Parameters for broke stream 

Steady states System model Disturbance model 

Coss = 3.000% k] = 0.7765 Vel = 1.7700 

Ciss = 3.863% k2 = 1. 7233X10-3 Vc2 = -0.8160 

Foss = 2204.8 Umin k3 = -7.7101X10-3 VI] = 1.1335 

Fdss = 492.8 Umin Vf2 = -0.4668 

Pss = o L/min Vpl = 1.1335 

Vp2 = -0.4668 

DESIGN OF POSSIBLE CONTROL SYSTEMS 

In order to obtain realistic simulations, the two hundred and forty data 
points obtained for each disturbance are divided into two halves. The first 
half of the data is used for controller design and tuning. The second half is 
then used for simulation. 

It is the control objective to minimize the error between the furnish stock 
concentration, Co, and its setpoint, S. However a controller, giving the 

minimum error alone, may employ an impractically large dilution flow, 
F d. Thus the controllers are designed to minimize the error in furnish 
flow stock concentration while keeping a check on the magnitude of the 
dilution flow. The design criterion can thus be expressed in the 
performance index: 

00 

J = L { Q  [ Co(k)-S ]2 + R [ FJk)-Fdss ]2 } 
k =O  

(15) 

The two weightings Q and R are set by the designer to ensure that the 
control system delivers control action of appropriate magnitude. A large 
QIR ratio will result in a controller giving only small variations in furnish 
consistency but it may employ large amounts of control action. Reducing 
the QIR ratio will reduce the magnitude of the control action called for but 
will increase the variation in furnish consistency. The effect of changing 
this QIR ratio can be seen in Figures lOa and lOb, which will be discussed 
in further detail in the following sections. \ 
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pm Controllers 
Currently at Tasman Pulp and Paper Company, pulp stock consistency is 
controlled by a PI controller using only the measured furnish consistency 
as a feedback signal. In order to compare the best possible performance of 
traditional control technology with more modern control strategies, the 
derivative action (D term) is used in the simulation work, in addition to 
the PI action. The performance of the purely feedback PID controller, 
coded as PIDIOOO, is used subsequently as a ·baseline for the comparison of 
controller performance. In terms of the measurement coding system 
described in the previous section, the five other designs of PID controller 
evaluated are PID I0 I0, PID IO l l , PIDII00, PIDIII0 and PIDlll1. The 
configuration of PID l l l l  is illustrated in Figure 7. 

These PID controllers are tuned to minimize the performance index of 
equation ( 15). The PID gains that minimize this index were found using 
an optimization routine based on the Nelder- Mead simplex algorithm [4] 
provided in the MATLABTM package, with Cohen Coon settings [6] used 
as initial values. 
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Optimal Multiyariable Controller 
The structure of an optimal multivariable controller [7]-[9] is determined 
optimally to minimize the performance index equation (15). The optimal 
controller consists of a Kalman filter [8] , [9] , which filters the 
measurement noise and estimates the quantities required by the rest of 
the controller. Based on the different measurement schemes, the optimal 
multivariable controllers evaluated are MVI000,  MVI0I0,  MVI0ll ,  
MVII00, MVIII0 and MYll l 1. Figure 8 , shows the general configuration 
of optimal multivariable controllers. 
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Smith Predictor 
To overcome the complication of pure delay, a Smith predictor (10) can be 
used. The Smith predictor enables any feedback controller to control the 
system as if there was no pure delay. A loop is added between the control 
signal and the feedback signal as illustrated in Figure 9, from which it 
can be seen that the Smith predictor consists of a disturbance- free model 
of the system dynamics to estimate the output consistency without pure 

� _. _ or 

delay and an estimation of pure delay to predict the actual measured 
consistency output. This idea provides two further types of control strategy 
for this study. They result from using the Smith predictor with firstly PID 
controllers and secondly with optimal muItivariable controllers. These 
controllers are again determined so as to minimize the performance 
index of equation (15). 

t 

Fig. 9 : Configuration of Smith predictor 
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SIMULATION OF CONTROLLED CONSISTENCY 

The non-linear system model is used to simulate the behaviour of 
consistency under the twenty four different control systems designed 
using the linearized model, as described in the previous section. The 
discrete-time non-linear simulation is carried out over a simulation 
period of 900 sec. 

A number of measures of the performance of the various control systems 
designed are considered : 

Mean-square-error of the furnish consistency :  This measures the 
capability of a controller to achieve the required furnish stock 
concentration, 

k =N- I  
ms e(Co) = l iN L { Co(k) - R } 2 

k =O  

where N = number of points in the simulation 

R = furnish consistency setpoint 

Minimum and maximum values of furnish consistency: 

min(Co) = minimum of CoCk) 

max(Co) = maximum of CoCk) , 0 � k � N-1 

(16) 

(17) 

(18) 

Mean-square-value of the dilution flow: This measures the variation in 
dilution flow, 

k =N- I  
mse(FcJJ = l IN L { Fik) - Fdss J 2 

k =O  
(19) 

Maximum and minimum values of dilution flow: Recording these 
maximum and minimum values enables a check to be made that dilution 
flow is always within the range of the valve, 

min(F d) = minimum of F Jk) 

max(F d) = maximum of F Jk) , 0 � k � N-1 
(20) 

(21) 
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CONTROLLER COMPARISON AND DISCUSSION 

Variation in dilution flow 

The simulations show that across all the control schemes, the variations 
in the maximum and minimum values of dilution flow for different 
controllers are quite small, though the dilution flow mean-square-value 
varies significantly. The highest dilution flow recorded is 577 L/min and 
the lowest is 447 L/min. These values are well within the range of the 

• • - #. 

dilution flow valve. Because of this, and space limitation in this paper, the 
maxImum and minimum values of dilution flow are not be presented 
here. 

Effect ofyarying wejghtings in oPtimal nerformapce index 
Figures lOa and lOb illustrate the mean-square-values of error in furnish 
consistency and of dilution flow, for different values of the Q!R ratio. From 
these simulations, certain characteristics of the performance of the 
resulting controllers are evident. 

Firstly, as the ratio QIR is decreased, the deviations from the setpoint of 
furnish flow increase, while the amount of dilution flow used decreases. 
This behaviour, which was expected, is true for all PID and all 
multivariable controllers. 

Secondly, the greater the number of measurements that are made and 
hence the more feedforward control loops that are employed by the 
controller, the greater is the impact on mean square furnish error of 
varying the ratio QIR. For controllers 1111 ,  the mean square furnish error 
is highly sensitive to Q!R: 

PID 

multivariable 

QJR.=1000 
MSE = 16 
MSE = 16 

QJR.=O.OOl 
MSE = 1165 
MSE = 776 

while for controller 1000 it is very insensitive. Noting that even for QIR 
ratios of 1000, the amount of dilution flow demanded is always well within 
the range of the dilution flow valve, one can conclude that for all but 
controller 1000 ( for which a very small QIR values is acceptable), the value 
QIR=1000 should be used. 
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Fig. lOa - Effect of varying weightings in performance index on PID 
controllers 
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Effect of Smith predictor 
Figures 1 1  shows the performance comparison using Q!R=1000 of the four 
control strategies - PID, optimal multivariable, and their corresponding 

Smith predictor type-controllers. 

Even when used with the real nonlinear system, the Smith predictor 

evidently does not generally improve the controllers' performance. As 
shown in Figure 9, the Smith predictor is· determined from a 'disturbance
free model of the process. However, the stock consistency control problem 

being studied here is  strongly driven by significant disturbances. Thus in 

this situation, the Smith predictor is unable to take appropriate action, not 

having the necessary information about the disturbances .  

Fig. 1 1  - Comparison of the controllers' performance 

2000 

1 500 

mse(Co) 1 000 

500 

- � - - - -\  '/ ., \ M¥ -Smith \ 
\ \ 

P�D-Smith \\ . \ 
\ \ \ 

\ 
'6. \ 

\ 
, MV ' , \ 

� ....... - - - - -� ,, �--
" , / "*  

�---...... ' "  / ....... . " 'S... , ,,  
,, -<.. 

" 
...., ::-....... , 

o+------+------�----�----����� 
1 000 1 01 0  1 01 1  1 1 00 1 1 1 0 1 1 1 1  

CONTROLLER CODE 



Appendix B2 258 

pm controllers and multivariable controllers 
As illustrated in Figure 11 ,  the performance of the purely feedback PID 
controller is comparable with that of the purely feedback optimal 
multivariable controller. But when feedforward terms are introduced, the 
multivariable controllers with large weight on furnish consistency gitVe 
superior performance. On average, the mean-square-error in consistency 
is 25% better for designs with QIR larger than one. Furthermore obtaining 
the optimal tuning parameters for the PID-controllers is a very difficult 
task even in the computer aided simulation, especially when feedforward 
loops are used, because there are a large number of correlated parameters 
that need to be tuned. The actual plant performance may not be as good as 
the simulated plant performance because the actual tuning parameters 
may not be the optimal ones determined in this simulation study. 

As already observed, the variations in dilution flow called for by each 
controller design are quite acceptable. 

Effect Qfthe number offeedforward controls 
The mean square error of the furnish consistency resulting from optimal 
mUltivariable and PID controllers for different measurement models can 
be seen from Figures lOa and lOb. The furnish consistency resulting from 
multivariable and PID controllers improves with each feedforward loop 
that is introduced . Among the three disturbances fed forward, using the 
measurement of incoming consistency for feedforward control by itself 
resulted in the greatest improvement, because it reduces the mean 
square error in furnish consistency to between 20% to 3 1% of what it was. 
Furnish flow is the next most significant measurement, by itself reduces 
the mean square error to between 36% and 73%. A controller with all three 
feedforward loops has the best performance, resulting in a mean square 
error of only about 2% of the mean square error resulting from purely 
feedback control. The question of which controllers . to use ( 1000, 1011  or 
1 1 1 1  or some other) is to be answered by comparing the cost of installing 
appropriate sensors to make the required feedforward measurements 
with the value to the company of the improved control of furnish that 
results. 
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Figures lOa and lOb also illustrate the increase in the mean- square-value 
of the dilution flow as the number of feedforward terms increases. An 

increase in control action is a natural consequence of increasing the 
number of control loops. However considering the improvement in 
furnish consistency, this increase is small and easily accommodated by 
the dilution flow valve. 

The importance of feeding forward measurements of incoming 
consistency and of furnish flow can be seen from the linearized 
consistency equation (7). Using the steady state values for the broke 
stream given in Table 1, equation (7) becomes (time index omitted): 

Cm = 0 . 7 7 65 ci + 0 . 00039 10 - 0 . 00 1 75  p - 0 . 00 1 7 5 1d (30) 

As the standard deviations of the three disturbances ,  q, lo and p are 

0.09%, 66 Umin and 1.32 Umin respectively, their contributions to the 
variation in furnish consistency are in the ratio of 

0.7765 x 0.09 : 0.00039 x 66 : 0.00175 x 1.32 

or 70 : 26 : 2 

when the manipulated dilution flow is maintained constant. Thus the 
variation in incoming consistency, C;, has the dominant effect, followed by 
the variation in furnish flow, 10, 
Figure 12 shows the incoming and the simulated furnish consistency and 
the control input, dilution flow, when the optimal multivariable controller 
with Q!R=1000 is used with all three feedforward loops over the simulation 
period. 
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Fig. 12 - Incoming, controlled consistency and dilution flow: 
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A simulation has been conducted to compare the performance of a 
number of possible different control schemes for stock consistency control 
Tasman Pulp and Paper's second paper machine. Six different 
measurement schemes for each of four different control strategies have 
been considered. In comparing the four different control strategies, it has 
been found that optimal multivariable controllers have performance 
superior to that of three term controllers, in regulating the furnish 
consistency. Three term controllers have a pre-set structure whereas 
optimal multivariable controllers have their structure determined 
optimally by the plant model and are thus better fitted to the actual plant. 
Furthermore, optimal values of the three term controller tunning 
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parameters are very time consuming to obtain, whereas optimal 
multivariable controllers are much more straigtforwardly determined 

The question was considered of whether to use Smith predictors with 
either three term controllers or multivariable controllers. Standard Smith 
predictors were found to give poorer performance, because of the 
significance for the system of the disturbances, which a standard Smith 
predictor is unable to compensate for. 

In considering the question of which measurements of the system to make 
for use by the controller, it has been shown that the most dominant 
disturbance is incoming consistency and the next most dominant is  
furnish flowrate . Compared with the purely feedback controlled 
consistency alone, the addition of a feedforward loop based on a 
measurement of incoming consistency reduces the resulting mean square 
error in controlled consistency to between 20% and 31% of what it was with 
feedback alone.  The addition of a feedforward loop based on a 
measurement of furnish flowrate reduces the mean square error to 
between 36% and 73%. Using dilution pressure in a feedforward loop 
offers a small improvement. 
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APPENDIX B3 

CONTINUOUS-TIME-MODEL 

SELF TUNING CONTROL 

This appendix demonstrates the use of the FII parameter estimation 
technique in a self-tuning control scheme for a system with delay. The 
main features of this scheme are that the continuous-time model of the 
system is used and the system delay is estimated simultaneously with 
other system parameters . The estimated continuous-time model 
updates the tuning of a continuous-time controller incorporating a 
delay compensator (Smith predictor). The continuous-time controller is 
then realized directly as a discrete-time controller. A simulation 
example is given based on an industrial case study of paper-pulp 
concentration system. 
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B3.1  INTRODUCTION 

In the Chapter 5 of this thesis ,  a parameter estimation technique was 
developed for continuous-time systems with delay elements . This 
technique is based on a special integral called the Fixed Interval Integral 
(FII). Two important features of this FII estimation technique are that: 

- it is able to estimate simultaneously both the syste� delay and 
system parameters; 

- it is suitable for on-line tuning with slow time-varying systems. 

In view of this, it is possible to form an explicit self-tuning controller by 
coupling the FII estimation technique with an appropriate control 
scheme based on a continuous-time model. This follows directly from the 
continuous-time-model approach to self-tuning control of Gawthrop (1987 
and 1989). 

This appendix proposes a self-tuning control scheme for a system with 
delay. It is based on a state-feedback control scheme incorporating a 
Smith predictor. It will be shown that this control scheme matches the 
characteristics of the FII technique and makes use of a delay element 
which is not a necessarily exact multiple of the sampling time (that is the 
"fractional delay" defined in Chapter 5). It will also be shown that this 
continuous-time control scheme can easily be implemented directly on 
digital devices. 

There are eight major sections in this appendix, 

Section B3.2 gives an overview of the structure and components 
involved in the proposed explicit continuous-time
model self-tuning control system. 

Section B3.3 describes the assumptions made on the delay 
system to be controlled. 

Sections B3A to B3.6 detail the structure and the implementation of the 
major components in the self-tuning controller. 
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Section B3.7 demonstrates the use of this continuous-time-model 
self-tuning control scheme on a simulated 
industrial case study of paper-pulp concentration 
control . 

Section B3.8 summarizes the key contributions in this chapter. 

B3.2 AN OVERVIEW OF THE PROPOSED 

CONTINUOUS-TIME-MODEL SELF-TUNING 

CONTROL SYSTEM 

The proposed continuous-time-model self-tuning control system can be 
divided into the three major blocks, as illustrated in Figure B3.2-1 .  That is 
the,  

a) controller, 
b) control tuner, and 
c) parameter estimator. 

Figure B3.2-1 Overview of the Continuous-time-model Self-
tuning Control System 
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These three blocks can be implemented on either a single digital device or 
on three separate digital devices. The sampling time in each block can be 
different since they are all based on the same continuous-time model 
which is valid for all sampling intervals. This flexibility of sampling is 
also true for the sub-blocks or elements inside each block. 

The main function of the controller block is to provide an appropriate 
control action to the system. Its action is based on control settings which 
can be adjusted externally without dis�pting the oper�tion of the 
controller. In tuning the controller, the updated control settings are 
provided by the control tuner. Using the most current estimates of the 
system parameters found by the parameter estimator, the control tuner 
calculates the appropriate settings for the controller to satisfy some 
pre-defined criteria. 

In practice the controller should be able to function with the absence of the 
other two blocks. Its function and structure is kept simple to enable rapid 
control of the system. Therefore it is recommended that the controller be 
implemented on a separate digital device with a fast rate of operation and 
sampling. Most of the complex computations are allocated to the 
parameter estimator and the control tuner. Therefore, digital devices with 
high computational capability are required for these two blocks. More 
details on these three blocks and the delay system to be controlled are 
given in the following sections. 

B3.3 SYSTEM 

It is assumed here that the system or process to be controlled can be 
described by Definition 5.4-1,  that is: 

n 

L a i pi yet)  = 

i=O 

n - l 

L b i pi O( t; 1') u (t )  
i=O 

where the delay is 't and the vector of parameters is given by, 

This system model has the equivalent state-space description of, 

(B3.3-1) 

(B3.3-2) 
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p x(t)  = Ax(t) + B u (t- -r) (B3.3-3) 

y( t )  = Cx(t)  (B3.3-4) 

where x(t) is a vector of some appropriate states. The matrices, A, B and C 
can be formed easily by using the elements in the parameter vector, a ,  
when the controllable or  ob,servable canonical form (Blackman 1977, 
Banks 1986, Delchamps 1988) 1 of the state-space description is applied. In 

the case of the controllable canonical form, these matrices can be written 
as :  

A = 

B = 

-a n -1  -an -2 • 

1 
o 
• 

• 

o 

1 
0 
• 

0 
0 

0 • 

1 • 

• • 

0 • 

0 • 

-q 1 -a D 
0 0 
0 0 
• • 

1 0 
0 0 

or in the case of observable form, 

-a n- 1  1 0 • 0 
-a n -2 0 1 • 0 

A = • • • • • 

-a 1 0 0 • 1 
-aD 0 0 • 0 

b n- 1  

B 
bn-2 = 

• 

b o 

C = [ 1 0 0 • • 0 

(B3.3-6) 

(B3.3-7) 

CB3.3-B) 

0 
0 
• (B3.3-9) 
0 
0 

(B3.3-10) 

] (B3.3- 11) 
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Note that these matrices can be formed without any numerical 
operations. The ease in transforming the delay-differential equation into a 
state-space description is important for the control scheme discussed in 
the next section. 

B3.4 CONTROLLER 

The controller used here is a state-feedback controller (Kwakernaak and 
Siven 1972, Lewis 1986, Banks 1986) incorporating a Smith predictor 
(Smith 1957, Marshall 1979). It is chosen for reasons discussed later in 
this section. The controller block consists of one primary input signal, 
several auxiliary input signals for tuning and one output signal as 
illustrated in Figure B3A-l. 

Figure 00.4-1 Input and Output Signals of the Controller 

A, B, C, 't 

� � 

Measurement Control actio n 
Controller 

yet) u(t) 

The primary input of the controller is the measurement from the system, 
yet). The controller output is the control action, u(t), which is passed to the 
system. The auxiliary input, A, B and C are (estimates of) the state-space 
system matrices. These matrices and the delay are required for the 
operation of the Smith Predictor. The auxiliary input Gc' Hc' Lc and Mc 
are the state-space description matrices for the state-feedback controller. 
The reasons for selecting this kind of controller and its structure are now 
discussed. 
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B3.4.1 Selecting an Appropriate Control Scheme 

Two major factors were considered in selecting an appropriate control 
scheme for the proposed continuous-time-model self-tuning control 
system. Firstly, as determined in Chapter 5, the FII technique can 
estimate the parameters of a model given by differential equations. 
Furthermore the technique can estimate the delay element including the 
portion which is not an exact multiple of the controller's sampling 
interval. This gives two primary criteria - for the appropnate control 
scheme, the control scheme should: 

- be based on the parameters of the differential equations when 
finding appropriate control parameters and control action. For 
simplicity in implementation, the parameters of the differential 
equations should be applied without, or with few,  additional 
numerical operations. 

utilize the fractional delay in order to fully exploit the capability of 
the FII technique. 

The second consideration was the realization of continuous-time control 
using discrete-time digital devices. The method used here is the "direct 
approximation" approach given by Gawthrop (1989). In his approach the 
continuous-time transfer function of the controller is first written in the 
state-space description (Coughanowr and Koppel 1983), that is, 

dxc(t) 
d t  = G e  xc(t ) + H e  y(t )  

u ( t )  = Le  xc( t )  + Me y( t )  

(B3.4-1) 

(B3.4-2) 

where yet) is the measurement of the · system, u(t) is the desired control 
input, xc(t) are some appropriate states and, Ge, He, Le and Me are some 

appropriate matrices for the controller. This effectively reduces the 
original high order transfer function into a set of first order differential 
equations. Therefore when the measurement yet) is sampled and the 
values of yet) between samples are interpolated (usually with a first order 
approximation), the values of u(t) can be approximated using any of the 
well known numerical solution methods for first order differential 
equations (Bajpal et. al. 1974, Kreyszig 1988). 
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In view of this, a third criterion for the control scheme is established, 

- the controller should be given in the state-space form of 

Equation B3.4-1 and B3.4-2. to simplify implementation. 

An example algorithm for the direct approximation approach to realizing 
a continuous-time controller is given in Figure B3.4-2. It is based on the 
fourth order Runge-Kutta method (Kreyszig 1988). Here, r, is the step size 
of the approximation. 

Figure B3.4-2 Direct Approximation of Continuous-time Transfer 
Function using Runge-Kutta method 

INPUT : y(t-r), yet), xc(t-r) 

DEFINE FUNCTION: F(x,y) = Ge x + He y 

MAIN PROGRAM : 

kl = r F( xc(t-r) , y(t-r) ) 
k = r F( x (t-r) + 1. k y(t-r) + yet) ) 2 c 2 l '  2 
k = r F( x (t-r) + 1. k y(t-r) + yet) ) 3 c 2 2 ' 2 

u(t) = Le xc(t) + Me yet) 

OUTPUT : u(t) and xc(t). 

xc(t) is fedback as xc(t-r) for next iteration 

An obvious requirement of this approach is a relatively small sampling 
interval for yet) .  However the step size, r, needs not to be equal to the 
sampling interval as the values of yet) between samples are interpolated. 

Considering the two factors mentioned earlier, a state-feedback control 

scheme (Kwakernaak and Siven 1972, Lewis 1986, Banks 1986) 
incorporating a Smith predictor (Smith 1957, Marshall 1979) was chosen 
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for the proposed self-tuning control system. Figure B3.4-3 illustrates the 
general structure of this control scheme. The appropriateness and 
implementation of this control scheme is discussed in the next two 
subsections . 

B3.4.2 Smith Predictor 

As seen from Figure B3.4-3, the Smith predictor effectively replaces the 
measurement, yet) with a predicted measurement, Yp(t) in the feedback 
loop. The predicted measurement is given by (Smith 1957), 

yp(t) = yet ) + y(t) - 9(t)  (B3.4-3) 

where yet) is the estimated measurement without delay and, 9(t) is the 
estimated measurement with delay. Therefore the realization of a Smith 
predictor involves the approximation of these two quantities. 

Figure B3.4-3 General Structure of Smith Predictor Control Scheme. 
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Once the system state-space matrices or their estimates are known, the 
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undelayed measurement, yet) , can be approximated using the 
aforementioned direct approximation method, that is, 

(B3.4-4) 

and y(t) = C.t(t) (B3.4-5) 

Here, the control input, u(t) is maintained constant within each sampling 
interval to match the discrete-time nature of the controller. As discussed 

. 

in Section B3.3,  the matrices A, B and C in a state-space description can 
be obtained easily from the parameters of a differential equation. 
Therefore the parameters estimated by the FII estimation technique can 
be applied here without complicating the controller's structure. 

To generate the delayed estimate, 9(t) , it is proposed that a Serial-in 
Parallel-out (SIPO) Shift-Register (Malvino and Leach 1981 )  be used. 
Using this mechanism, the value of yet) at each step of approximation is 
stored in a stack of memory units. When the most current value of yet) is 
found, it is stored at the top of the stack while all the old values are shifted 
downward (and the oldest value is discarded). This is illustrated in 
Figure B3.4-4. 

Figure B3.4-4 
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This mechanism also allows the value of delay to be adjusted, because the 
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output signal from the memory stack, that is the 9(t), can be assigned to a 
different memory unit in the stack. 

Note that the time difference between two values in consecutive memory 
units is the step size of approximation, r. As mentioned earlier, this value 
is independent of the interval of u(t) or any sampling interval in the 
system. So it can be set as an arbitrarily small value within the capability 
of the digital device. In other words the control scheme can make use of 
the fractional delay up to a precision of r units of time. 

B3.4.3 State-feedback control 

It is well known that the transfer function of an optimal state-feedback 
controller can be written as (Kwakernaak and Siven 1972, Lewis 1986), 

(B3.4-6) 

(B3.4-7) 

where K o  is the optimal feedback gain matrix and Ke is the state 
estimation gain matrix. Both Ko and Ke are found using the system state

space matrices, A, B and C. 

Comparing Equations (B3.4-6) and (B3.4-7) with Equation (B3.4-1)  and 
(B3.4-2) we obtain: 

(B3.4-8) 

(B3.4-9) 

(B3.4-10) 

Therefore when all the A, B ,  C ,  Ke and Ko matrices are given, the 

continuous-time state-feedback control can be realized easily using the 
direct approximation method mentioned earlier. The required matrices 
for this control block are generated by the control tuner block that is 
discussed in the next section. 
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B3.5 CONTROL TUNER 

The function of the control tuner is to find the matrices required for the 
controller in the previous section. It uses estimates of the system 
parameters in S provided by the parameter estimator. 

As mentioned earlier in Section B3.3, the A, B and C matrices are formed 
directly from parameters in S. Once these matrices have been established, 
the optimal feedback gain, Ko , and state-observation gain, Ke, can be 

found using methodologies given in standard texts on optimal control 
such as Kwakernaak and Siven ( 1972) and Lewis (1986). The state-space 
description of the controller given by Ge, He and Le are then formed using 

Equations B3.4-8 to B3.4-10.  The functions of the control tuner and its 
main input and output signals can be seen in Figure B3.5-1 .  Note that the 
estimate of the delay is not used in this block and is passed directly to the 
block output. 

Figure B3.5-1 Functional Structure of the Control Tuner 
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B3.6 PARAMETER ESTIMATOR 

The parameter estimator provides estimates of the system parameters 
and delay which are then used by the control tuner block. Its main input 
and output signals are given in Figure B3.6-1. 

Figure B3.6-1 

yet) 

u(t) 

Major input and output signals of the Parameter 
Estimator 
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The configuration of the parameter estimator is based on the FII 
estimation technique for continuous-time models, which was developed in 
Chapter 5. An overview of the functional structure is shown in 
Figure B3.6-2. 

For flexibility and accuracy, the FII filter in the parameter estimator 
should be implemented using Numerical Method I developed in 
Chapter 4.  

The SIPO shift register in Figure B3.6-2 works on the mechanism 

mentioned in Section B3.4. Its function is to provide the array of delayed 
u(t) required for the FII estimation technique. Details on other elements in 
the FII parameter estimator have been given in Chapter 5. 
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Figure B3.6-2 Structure of FII Parameter Estimator 
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B3.7 SIMULATION STUDY 

The previous sections have proposed a continuous-time-model self-tuning 
control scheme for delay systems. In this section, the feasibility of this 
self-tuning control system will be studied using a simulation of paper
pulp concentration control. This simulation is based on an industrial case 
study of paper machines at Tasman Paper and Pulp Company, Rotorua, 
New Zealand. The details of the modelling work in this study are given in 
Appendix B 1. A publication about the performance comparison of stock 
concentration controllers is attached in Appendix B2. 

B3.7.1 Concentration Control System 

In Tasman, the concentration of the paper pulp is controlled by adding 
dilution water prior to each stock pump (see Figure B3.7-1) .  Concentration 
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transmitters are located some distance downstream from the dilution 
points, causing a delay in the concentration control loop. 

Figure B3.7-1 Schematic Layout of the Concentration Control 
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The notations used in Figure B3.7-1 and subsequently, are as follows: 

C · £ = concentration of incoming pulp from stock chest 

Co = concentration of diluted (furnish) stream at dilution point (as 

if there were instant, perfect mixing) 

Cm = measured concentration 

Fo = flowrate of furnish stream 

Fd = flowrate of dilution water 

p = variation in dilution flow due to changes in pressure 

The flowrate of the diluted pulp, termed here the furnish flowrate , is 
usually maintained constant downstream by an independent controller. 
However the furnish flowrate is occasionally changed by plant operators 
to follow different production criteria. It has been found in Appendix B l  
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that the dynamics of the concentration system depends on the furnish 

flowrate. In other words, these step changes in flowrate result in step 

changes in the parameters and delay of the concentration control system. 
Consequently the concentration controller needs to be re-tuned each time 

the flowrate is changed in order to obtain optimal performance. A self

tuning scheme is therefore a possible solution to this problem. 

It was found in Appendix B l  that a linearized equation for the measured 
concentration is,  

(B3.7-1) 

where the deviation variables (lower case symbols are defined as follows, 

Ci(t) = Ct{t) - Ciss ' Ciss = steady state value of Ci(t) (B3.7-2) 

cm(t) = C m(t) - C mss ' Cmss = steady state value of Cm(t) (B3.7-3) 

fo(t) = F oCt) - Foss ' Foss = steady state value of F oCt) (B3.7-4) 

f tit) = F tit) - F dss ' F dss = steady state value of F tit) (B3.7-5) 

p(t) = pet) - Pss ' Pss = steady state value of pet) (B3.7-6) 

and kj , k2 and k3 are some appropriate constants. 

However this original model is not appropriate for this simulation study 
because it does not involve any derivative terms. The FII technique has 

been developed for systems of higher order. A simulation study using this 

original system will not be able to demonstrate the capability of the FII 

technique for systems with derivatives. Consequently a second order 

dynamics representing the dilution flow valve is added in this simulation 

study. The modified concentration system is given by, 

Cm( t )  = bflt-'t) + £(t) (B3.7-7) 

(p2 + a ]p + ao) fJt)  = u(t) (B3.7-8) 

where b, ao and a] are the system parameters, u(t) is the control signal 

driving the dilution valve and e(t) is the disturbance of the system given by, 
cm( t )  = k] ci(t -'t)  (B3.7-9) 

The deviation of furnish flow, fo' does not appear in Equation B3.7-7 as the 
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furnish flow is assumed constant. The variation in pressure, p,  is omitted 
in this simulation for simplicity. 

B3.7.2 Simulation 

In the industrial study mentioned earlier, three separate concentration 
control systems were studied. Each of thes� �ystems are base4 on different 
streams of paper pulp. These different kinds of paper pulp are the termed 
by the company as kraft pulp, mixed groundwood pulp and broke pulp. 
However it was found that the broke and groundwood systems are not 
suitable for the proposed Smith predictor type control scheme because the 
disturbances dominate the behaviour of the system. In view of this, the 
simulation study given here is based on the kraft pulp system. The actual 
concentration of incoming pulp is applied in the simulation. 

The values of system parameter and delay used in the simulation are, 

b = -9.048 
't = 13.14 

Other details of the kraft concentration control system are given in 
Appendix B 1. 

The FII interval used in these simulations is 0 .8 seconds, which was 
chosen according to the recommendation in Chapter 5. For simplicity, a 
single sampling interval of 0.2 seconds is used here for all the blocks in 
the self-tuning control system. Both the simulation step for the delay 
system and the approximation step for Smith predictor are set as 0.02 
seconds. A recursive least squares algorithm with a forgetting factor of 
0.99 is applied in the parameter estimator. 

The simulation was performed using a commercial computer package 
called MATLAB. The programme written for this simulation is given in 
Appendix C .  
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B3.7.2 Results and Discussion 

Three possible cases are simulated in this study: 

1) The self tuning controller starts with zero values as initial guesses 
for the system parameters and delay. 

2) As for case (1)  but after 500 iterations (or 100 sec) the furnish flow is 
subjected to a step change, which .effectively changes .the value of 
parameter b to -5. The delay is maintained constant in this case. 

3) As for case (1) but after 500 iterations the parameter b and the delay 
are changed to -5 and 7.32 seconds respectively. 

For the purpose of comparison, the performance of a controller with fixed 

parameters is also simulated in each case. The fixed parameter controller 
is designed using the actual parameters of the original system. 

Both the fixed parameter and self-tuning controllers are tuned to 
minimize the performance index, J, given by: 

00 

J = L { 1000 [ C o(k)-S ]2 + [ F  d(k)-F dss ]2 } 
k=O 

where S is the desired furnish concentration. 

In all these cases the variation in dilution flow is limited to ±25 litre per 
minute around steady state. 

The simulation results for the three cases are shown in Figures B3.7-2 to 
B3. 7 -4. In these figures, 

- part (a) shows the resultant furnish concentration of the fixed 
parameter controller. 

- part (b) shows the resultant furnish concentration of the self-tuning 
controller. 

- part (c) shows the percentage error in estimates of the parameters. 

- part (d) shows the percentage error in estimates of the delay. 
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The unit of concentration in the figures is one thousandth percentage of 
fibre in paper stock by mass (0.001%). 

Figures B3.7-2 Simulation result of Case (1):  zero initial guesses 
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Figures B3.7-3 Simulation result of Case (2): parameter b 

____ 3005 � 
o 3000 o 
o 
":: 2995 
o 
o 2990 

� 

changes by -45% after 100 sec. 

Fixed parameter controller 

/ � ...., 

� � .i � � � � � 

2B2 

1 00 1 10 120 1 30 140 150 " 1 60 170 1 80 190 200 

Time (sec) 

____ 3005 � 
o 3000 o 

� 2995 
o 
o 2990 

� IV 

100 1 10 

I-c 

g Q) 
Q) bIl 

100 b O r-- --- --r� . 
I � ;g 

c:: - 100 r in '  Q) 't � � & -200 

ontmuous-tune-m e se -turung contro er C 00 1  li 11 

.� � 
V "\  � � � � � 

120 130 140 150 1 60 170 180 190 200 

Time (sec) 

Estimate of parameters 

100 1 10 120 130 140 150 160 170 180 190 200 

Time (sec) 

I-c 10  
Estimate of delay 

g f' Q) 
� 0 

i I 
;g I� . c:: Q) 
� I 
& - 10  

100 1 10 120 130 140 150 160 170 180 190 200 

Time (sec) 



Appendix 83 Continuous-lime-model Self-luning Conlrol 283 

Figures B3.7-4 Simulation result of Case (3): parameter b 
changes by -45% and delay changes by -50% after 100 

sec.  
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The feasibility of the proposed self-tuning control system for the delay 

system can be clearly seen from Figure B3.7-2. This figure shows that the 

performance of the self-tuning controller approaches the performance of 
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the fixed parameter controller after a learning phase of about 25 second. 

The replacement of a fixed parameter controller with the self-tuning 
controller in the concentration system might be hard to justify if the delay 
element is constant and known. It is shown in Figure B3. 7-3 that the fixed 
parameter controller performs reasonably well, even though the system 
gain (parameter b) has changed by about 45%. Meanwhile the self-tuning 
controller needs to undergo a learning phase of about 15 second. 
Furthermore its eventual performance 5� very similar to the fixed 
parameter controller which is designed using the original parameter of 
b = -9.048. 

However the usefulness of the self-tuning controller is highlighted in 
Figure B3. 7 -4 when the delay is changed. Here the fixed parameter 
controller becomes unstable, while the self-tuning controller manages to 
adjust itself after a learning period. 

B3.8 SUMMARY 

In this chapter a continuous-time-model self-tuning control scheme was 
developed for a class of delay systems. This self-tuning control system was 
formulated by coupling the on-line FII parameter and delay estimation 
technique with an appropriate control scheme. It is found that an 
appropriate control scheme for this purpose is a state-feedback control 
incorporating a Smith predictor, because such a control scheme couples 
nicely with the FII estimation technique and can make full use of the 
delay estimated by the FII technique. Furthermore this continuous-time 
control can be implemented easily on digital devices. 

The performance of the self-tuning controller is demonstrated using a 
simulation study based on an industrial case study of paper stock 
concentration control . It is found that a self-tuning controller is most 
useful for the system with both uncertain delay and system parameters. 
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APPENDIX C 

MATLAB PROGRAMMES FOR 
SIMULATION STUDY OF 
CONTINUOUS-TIME-MODEL 
SELF-TUNING CONTROL 

Programmes List 

CTSTC 

CTSTC_system 

CTSTC _ con trol 

CTSTC_pe 

CTSTC_tuner 

F I I  

BACKDIFF 

Main programme for simulating continuous-time
model self-tuning control 

Sub-routine called by CTSTC to initialize variables 
needed for CTSTC 

Sub-routine called by CTSTC to simulate output of 
concentration system. 

Sub-routine called by CTSTC to find control action. 

Sub-routine called by CTSTC to estimate parameters 
and delay of the concentration system. 

Sub-routine called by CTSTC to calculate control 
setting needed to tuner the controller. 

Function called by CTSTC_pe to find Fixed Interval 
Integral using numerical approximation. 

Function called by CTSTC_pe to find backward 
difference.  
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CTSTC.m 

%CTSTC.m M files for continuous-time Self-tuning Control 

% cm = vector of measured furnish pulp concentration (deviation) 

% fd = vector of the control input, dilution flow (deviation) 
% cohat = vector estimated delay-free furnish concentration 

% by Smith Predictor 

% cmhat = vector of estmated cm by Smith Pr�dictor 

% 

% xs = iterative system states 

% xsp = iterative Smith predictor states 

% xc = iterative control states 

% 

% numhat = vector of estimated numerator 

% denhat = vector of estimated denominator 

% delayhat = vector of estimated delay 

% 
% Ae,Be,Ce,De = iterative estimate of system matrices 

% delaye = iterative estimate of delay 

% Defining paper-stock concentration system 

Foss = 359 ; Ciss = 3.2555e3 ; k3 = -Ciss/Foss ; 

num=[ k3 ]; den=[ 1 2 2  ]; delay = 13.14 ; 

cmi = 0 % 0.le3 

E = [1;0]; 

% initial output of system 

%Defining Implementational parameters 

Thase = 0.05; 

Tu = 0.5 % Sampling interval for controller 

no_subinterval = 1 0 ; % No. of subinterval between Tu (must be =< 1 ), 

% it defines the base unit of fractional delay 

ddmin = 0 ; % minimum no. of "exact delay" 

ddmax = 5 ; % max. no. of "exact delay" 

Tfii = Tu 

M = 6"Tfii % FIT interval 

lamda = 0.98 % Forgettin factor for Parameter estimation 
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% Initialize Simulation 

tend = 300*Tu ; %ending time of simulation 

Tsim = Tu ; %simulation step ##must be exact divider of tend 

CTSTC_ini 

%Defining initial guess of system parameter and delay 

numhat(1 ,:) = [ 0 ]; 

denhat(1,:) = [ 0 0 0 ] ; 

delayhat(1) = 0 

% Calculate initial control parameters 

QQ=le6*eye(2); RR=l; 

WW=l; VV=l ;  

h=l  ; CTSTC_tuner 

fprintf('Simulating : ') 

for h=2 : tend/Tsim 

%Continuous-time delay system with discrete-time control 

% @ return cm(h) and xs 

CTSTC_system 

%Calculate DT estimate of CT control. 

% need Ae,Be,Ce,De,delaye,Kc,Ke, no_subinterval,lcohat, Tsim, Tu, 

% xsp & xc @@ return fd(h) 

CTSTC_control 

% parameter estimation @ return numhat(h), denhat(h) and 

CTSTC_pe 

% update control parameters 

%## need numhat(h), denhat(h) and delayhat(h) 

% @Return Ae,Be,Ce,De,delaye,Kc and Ke 

CTSTC_tuner 

end 

disp('Sim ula tion end ') 

return 

2137 
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CTSTC_ini.m 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
%CTSTC_ini M file to initialize simulation of CTSTC 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

[A,B,C,D] = tf2ss(num,den); 

xs=zeros(length(A),I) ; 

xs(2) = cmi ; %initial states of the sys.tem 

rsys = max(delay /Tbase+ I, Tu/Thase+ 1 ); ; 

sys_buffer = zeros(rsys,I); 

xsp = zeros(length(A),I); % - Smith predictor 

xc = zeros(xsp) ; % - con troller 

cm=zeros(tend/Tsim,l) ; 

lcohat = ddmax ; 

cohat = zeros(lcohat,no_subinterval); 

ysp=zeros(2,1) ; % input vector for estimating DT approx of CT fd(h) 

fd=zeros(tend/Tsim,l)  ; 

cm=zeros(fd) ; cm(1)  = cmi ; 

n umhat=zeros (tend /Tsim,length(n urn) ); 

denha t=zeros (tend / Tsim,length (den) ); 

return 
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CTSTC _system.m 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
%CTSTC_system M file to simulate delay system with discrete-time 
%input for CTSTC 

%SWH Feb 1 992 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

Iud = Tu/Tbase +1 ; ud = fd(h-1)*onesOud,l); 

[y,xs]=lsim(A, B ,C,D ,ud, (O:Tbase:Tu),xs); . _ _  

xs = xs(lud,:)'; 

sys_buffer(1 :rsys-Iud+ 1) = sys_bufferOud :rsys) ; 

sys_buffer(rsys-Iud+1:rsys) = y ;  

cm(h)=sys_buffer(1) + ci(h); 

return 

CTSTC_control.m 

% % % %% % % % % % %%%%%%%%%%%%%%%%%%%%%%% % % % %  
%CTSTC_control 

% Mfiles to find DT estimate of CT optimal state feedback 
% control with state estimator (Kalman filter) 

% 

% Ae,Be,Ce,De = pre-defined estimate of system parameters 

% Kc = pre-defined control gain 

% Ke = pre-defined state-estimator gain 

% no_subinterval, lcohat, Tsim, Tu, xsp, xc 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% Smith Predictor 

%%% Estimate delay free co 

[Ade,Bde] = c2d(Ae,Be,Tu/no_subinterval); 

Iud = no_subinterval+ 1; ud = fd(h-1)*ones(lud,l); 

[y,xsp] =dlsim(Ade,Bde,Ce,De,ud,xsp); 

xsp=xsp(lud,:)' ; 

% % %  Storing into delay buffer 

cohat(1 :lcohat-1,:) = cohat(2:lcohat,:) 
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cohat(lcohat,:)= fliplr( y(2:lud)' ) 

%% Separate delay estimate into two parts : 

%% - exact delay in terms of no. of Tu 

%% - fractional delay in terms of no of Tu/no_subinterval 
exactdelay = fix(delaye/Tu) ; 

fractdelay = round( rem(delaye,Tu) * (Tu/no_subinterval) ) ; 
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if (fractdelay == no_subinterval), exactdelay = exactdelay+l; fractdelay=O; 
end 

% % %  estimate cm (with delay) 

erne =cohat(lcohat-exactdelay, fractdelay+ 1); 

ysp(1) = ysp(2); ysp(2) = cohatOcohat) + cm(h) - cme ; 

% state feedback control with state estimator, as if no delay 

[Afb,Bfb,Cfb,Dfb] = reg(Ae,Be,Ce,De,Kc,Ke); 

[fde, xc] = lsim(Afb,Bfb,Cfb,Dfb, ysp, (O:Tsim:Tsim)', xc ); 

xc=xc(2,:)' ; fd(h) = -1 *fde(2); 

return 

CTSTC-pe.m 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
%CTSTC_pe M files to estimate system parameters 

% ufiil , ufii2 = iterative FH of piece-wise constant u 

% 

% SWH Oct 1991,  Ref : Wanhing Siew's thesis 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

mTu=M/Tfii; sys_order=2 ; 

ndelayarray = sys_order*mTu + ddmax - ddmin +1  ; 

%Calculating FH 

yfiil=FH( cm(1 :h) ,Tfii,M); 

yfii2=FH( yfiil ,Tfii,M); 

%Parameter estimation 

clear xy xu 1 xu2 xu3 
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xy=backdiff( [O;cm(1 :h-1)] ,mTu,2) ; % added unit delay for algorithm 

xu1 =-backdiff( yfii1 (1 :h),mTu,l ); 

xu2=-yfii2(1 :h); 

xu3= fd(1 :h)*ones(1 ,ndelayarray); 

na=O; nb=ones(1,2+ndelayarray); 

nk= [1 1 [1 + 1 +ddmin:ndelayarray+ 1 +ddmin] ]; 

if h<=2, 

disp('initialize parameter estimation') 

thm=zeros(ndelayarray+2,l); 

phi=zeros(na+sum(nb+nk-1),l); 

P= 1 e4 *eye(ndela yarray +2); 

end 

[thm,yhat,P,phi] =rarx([xy(h) xu1 (h) xu2(h) xu3(h,:)], . .  

rna nb nk],'ff',lamda,thm,P,phi); 

thm= thm';  

al hat=thm(1); aOhat=thm(2); 

beta=thm(3:2+ndelayarray); 

nctot= ndelayarray-2*mTu; tot=zeros(nctot,l ); 
for kk= 1 :nctot 

tot(kk)=sum( beta(kk:kk+2*mTu) ); 

end 

dd=find( tot==max(tot) ); 

dd=dd(1); % estimate of exact delay 

bhat= sum( beta(dd:dd+2*mTu) ) /mTuA2/TuA2 ; % estimate b 

df3= (beta(dd+1 +3)-beta(dd+2*mTu-3» /2/Tu /bhat; 

if (df3<O), df3=O; end 

if (df3>Tu), df3=Tu ; end 

delaye= (dd +ddmin)*Tu-df3; 

numhat(h,:)= bhat 

denhat(h,:)= [ 1 alhat aOhat ] 

delayhat(h) = delaye 
return 
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CTSTC_tuner 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

% CTSTC_tuner M file to calculate control parameters given 

% estimate of system parameters 

% 

% numhat = predefined estimate of system 
_
n�meritor 

% denhat = predefined estimate of system denominator 

% QQ,RR = predefined control weightings 

% WW = predefined system noise covariance 

% VV = predefined measurement noise covariance 

% 

% Return Ae,Be,Ce,De, Kc, Ke and delaye 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
[Ae,Be,Ce,Del= tf2ss(numhat(h,:),denhat(h,:» ; 

Kc = Iqr(Ae,Be,QQ,RR); 

Ke = Iqe(Ae,E,Ce,WW,VV); 

del aye = delayhat(h) ; 

return 

FII.m 

function yfii = FII(y,T,M,method) 

% FII Returns numerical approximation of Fixed-Interval-Integral 

% yfii = Fll(y,T,M,method) 

% y = function input-- capable for muitivariable 

% each column is a variable 

% T = sampling interval of y (per unit time) 

% M = interval of FH (per unit time) 
% method = order of Newton-Cotes numerical method to approximate 

% the FIl 

% = 0 : rectangular rule 

% = 1 : trapezoidal rule 

% = 2 : Simpson's 1 /3 rule 

% = 3 :  Simpson's 3/8 rule 

% = 4 :  Boole's rule 

% 
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% Assumption : All past values of y is zero 

% SWH Feb 1992 Reference: WanHing Siew's thesis. 

if ( abs( (M/T)-round(M/T) » 1e3*eps ), 

error('FII interval must be multiple of sampling interval');end 

mm=M/T; 

if nargin<4, method=2; end; 

if method==O, 

n=O; In=T ; end 

%Simpson1 /3 by default 

if method==1, % Trapezoidal rule 

n=1; In=T/2*[1 1 ]; end 

if method==2, % simpson 1 /3 rule 

n=2; In=T /3*[1 4 1 ]; end 

if method==3, % simpson 3/8 rule 

n=3; In= T*3/8*[1 3 3 1 ]; end 

if method==4, % Boole's rule 

n=4; In= 2*T / 45*[7 32 12  32 7]; end 

if n==O, 

numFTI = T*ones(1,mm+1) ; numFII(1) = 0; 
else 

order = int2str(n); 

if ( abs( (mm/n)-round(mm/n) » 1 e3*eps ), error(.. 

['FII interval must be multiple of ',order,' for ',order,' order rule']); 

end 

r=mm/n; w=zeros(1,mm+ 1); 

for k=O:r-l,  w(k*n+l: (k+l)*n+l)=w(k*n+l : (k+1)*n+l)+Jn; end 

numFII=w; 

end 

denFII = [1  zeros(1,mm)] ; 

yfii=filter(numFII, denFII, y); 
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%End of FII 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
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backdiff.m 

function dx = backdiff(x, shift,order) 

% BACKDIFF Return backward difference of x 

% dx = backdiff(x, shift,order) 

% order = order of backward difference 

% shift = number of data shift 

% x = data 

% dx = backward difference of x 

if nargin ==2, shift =1; end 
In=zeros(1 ,shift+ 1 )  ; In(1)=1; In(shift+ 1)=-1; 

num=Jn; 

for k=2:order, 

num=conv(Jn,num); 

end 

dx = filter(num,[1  zeros(1 ,order*shift) ] ,x); 
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%End of Backdiff 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  
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