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ABSTRACT

The New Zealand Ministry of Fisheries relies on fishery assessments to determine

suitable catch quotas for exploited fisheries. Currently, 628 fish stocks are managed

in New Zealand using the Quote Management System, which includes the 8 com-

mercial flatfish species caught within the Exclusive Economic Zone. These eight

species of flatfish, which includes four species of flounder, two species of sole, brill

and turbot, are currently managed using a combined catch quota. Since these eight

species are managed using a common catch quota, there is concern that some of the

individual species may be under or over-fished.

This thesis describes work involving the flatfish species caught in the FLA3 man-

agement area, around the south island of New Zealand. The FLA3 management area

contains three key species: New Zealand sole, lemon sole, and sand flounder. Due

to the nature and limitations of the data available, simple biomass dynamic models

were applied to these species. The maximum likelihood and Bayesian goodness of fit

techniques were used to estimate the model parameters. Three models were used:

the Fox model, the Schaefer model and the Pella-Tomlinson model with m = 3. As a

mathematical/statistical exercise, these models were used to conduct a risk analysis

to analyse the advantages and disadvantages of six management options for setting

a TACC. However, because of issues over the way that the parameter K has been

modelled (due to necessity caused by the lack of data), this should not be seen as

an appropriate method for estimating the fish stock. Conclusions were drawn from

the results regarding suitable future action for the assessment and management of

flatfish stock in FLA3.
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Chapter 1

BACKGROUND

1.1 Flatfish Data

1.1.1 Introduction

The population dynamics of flatfish (FLA) is of interest in New Zealand for a num-

ber of reasons, including the fact that the average amount of yearly catch during the

twenty year period between 1987 and 2007 was more than 3000 tonnes per year [3].

The commercial flatfish stock in New Zealand consists of eight individual species:

black flounder, Rhombosolea retiaria (BFL); greenback flounder, Rhombosolea tapa-

rina (GFL); sand flounder, Rhombosolea plebeia (SFL); yellowbelly flounder, Rhom-

bosolea leporine (YBF); lemon sole, Pelotretis flavilatus (LSO); New Zealand sole,

Peltorhamphus novaezeelandiae (ESO); brill, Colistium gunetheri (BRI); and tur-

bot, Colistium nudippinnis (TUR). Witch (WIT) can also be found, though the

numbers are small and therefore not commercially important.

Stock assessment provides fishery managers with scientific information about

the size and productivity of a fish stock, and is used to help fishery managers make

decisions. Information on flatfish comes from a variety of sources. The key sources

of information used for stock assessment include biological information gathered by

fishery biologists, catch and fishing effort information provided by fishers in their

logbooks, as well as landings data provided by licensed fishing processors.

Fishery biologists provide information regarding biological factors such as age

structure, size at maturity, movements of fish, spawning, and fecundity. The New

1



Zealand Ministry of Fisheries commission relevant studies to be conducted in order

to provide needed biological information for stock assessment. Fishery biologists

can obtain data using direct observations, fishing surveys, tagging studies, as well

as other methods. Biologists can estimate the age of fish by studying the scales

and otoliths of captured fish. To date there have been no tagging studies or fishing

surveys aimed specifically at flatfish, as these studies can be time consuming and so

costly.

Commercial fishermen also provide important information relevant for fishery

assessment. Commercial fishers are required to fill out forms detailing the catch and

effort made each day. Effort can mean the amount of time spent trawling, or the

amount of gill net used. For fishermen targeting flatfish this may include the Catch

Effort Landing Returns (CELR). The forms used are the Trawl Catch Effort Pro-

cessing Returns (TCEPR) or, more frequently, the Catch Landing Returns (CLR).

For flatfish, fishermen can record the catch under individual species codes (BRI,

BFL, ESO, GFL, LSO, SFL, TUR, and YBF) in the CELR and CLR forms, how-

ever in practice the catch is not always recorded using these codes and is generally

reported using the generic flatfish code FLA [4].

All fish intended for commercial sale must be handled by licensed fish receivers,

who are required to comply with fisheries regulations. Licensed fish receivers must

fill in a Licensed Fish Receiver Returns (LFRR) form which records the landed catch

for each month. The information provided by licensed fish receivers can be used to

verify the information provided by commercial fishermen.

The data used in this study come from a combination of biological data, data

from fishermen, and data from landings. Though there are 8 individual species in

the flatfish stock, the key biological information used in this project were based

on general flatfish data from around New Zealand, due to a lacking of information

on all of the individual species. The majority of information used to conduct this

study comes from work conducted by/for the Ministry of Fisheries and the National

Institute of Water and Atmospheric Research (NIWA).
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1.1.2 Flatfish Biology

There are more than 400 known species of flatfish found throughout the world.

Eleven of these can be found in New Zealand waters. Eight of the eleven flatfish

species found in New Zealand are combined to form the commercial fishing group

’flatfish’. All of the eight species included in the flatfish commercial stock are unique

to New Zealand waters. These fish share some common characteristics, such as depth

and benthic lifestyle, asymmetry of the body, as well as other similarities such as

feeding habits, spawning, and fecundity.

With respect to flatfish biology, there is some variability in the expected life

spans of the different species. However, for the commercially exploited New Zealand

species, most generally survive to 3− 4 years of age with a small number reaching 5

or 6 years. The flatfish species caught in New Zealand are fast growing, with females

reaching maturity at 2 or 3 years of age, and males reaching maturity earlier [8].

The commercial size for flatfish is between 23− 25cm, which is about the same size

that females reach maturity. This indicates that females have a chance to spawn at

least once before being fished, and since males mature earlier they have more chance

of spawning before reaching commercially fished size [8].

The survival rate for juvenile flatfish is variable from year to year. Mortality rates

for adult flatfish are relatively high because of natural mortality (e.g. predation)

and fishing mortalities, which includes by-catch mortality, grading mortality and

mortality of fish escaping from nets but dying because of wounds sustained while

escaping.

Flatfish are shallow water fish living mostly in waters less than 50 metres deep

[3]. They are all bottom dwelling fish which lay on their side resting on the sea floor.

The fact that they lie on one side differentiates them from other bottom dwelling

fish which lie on their abdomen, such as stingrays. They can move along the seabed

on their side aided by extended anal and dorsal fins.

The defining feature that distinguishes flatfish from other fish is the asymmetry

in the body of the fish. While flatfish are born resembling other typical fish with

one eye on each side of the body, they undergo a process of metamorphosis after the

planktonic stage whereby one eye migrates to the other side of the head so that both

eyes are on the same side of the body. This allows them to make best use of both
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eyes while laying on the sea floor. Whether the fish faces its left side or right side

upwards is species dependent, and while they are born resembling other symmetric

fish, their optical nerves are in fact asymmetric even before the fish is hatched [5].

Flatfish also develop other features to allow for the fact that they lay on their

side. They have protrusible eyes which allows for better sight while laying on the

sea floor. Most species also have pigments on the upward facing side which allow

them to camouflage to blend in with the sea floor, while the side facing down is left

colourless. The jaws and teeth on the bottom side are better developed than on the

upwards facing side to make it easier to feed without leaving the sea floor [5].

Flatfish lay eggs which hatch into larvae. The fecundity of flatfish is high -

ranging from 200,000 eggs per year to over a million eggs per year [?]. However, the

mortality rates for flatfish can be high. Little is known about New Zealand flatfish

reproductive behaviour.

This study focuses on flatfish caught in the FLA 3 fishing area, where the pre-

dominant species caught are the lemon sole, New Zealand sole and sand flounder,

with small numbers of other species caught. Soles differ from flounders in that floun-

ders generally have more symmetric, developed teeth which allow them to feed on

small fish, whereas the soles are generally more asymmetric in the jaw and teeth

structure and feed on small invertebrates and molluscs [6].

Figure 1.1: New Zealand lemon sole (image obtained from [19] with permission from
NIWA).
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Lemon sole is the most commonly caught species of flatfish in the FLA 3 fishing

area. They are a right eye fish, which means that they face their right side upwards.

In nature lemon sole can grow up to 25 - 50cm. They are usually a dark green-brown

colour on the upwards facing side, and white on the seabed facing side. The body is

oval in shape, with the anal and dorsal fins starting close to the mouth and running

all the way to the tail (see Figure 1.1).

Figure 1.2: New Zealand sole (image obtained from Peter McMillan with permission
from NIWA).

New Zealand sole is a right eye flatfish, and is also a dominant species in FLA 3.

In nature they reach a length of between 25cm and 45cm. The upwards facing side

is generally a green colour, duller than the lemon sole, with a pale underside. Like

the lemon sole, they are oval in shape with both the anal and dorsal fins starting

close to the mouth and running all the way to the tail (see Figure 1.2).

Sand flounder is a less common species caught in FLA 3. They are smaller than

the soles, reaching between 25cm and 35cm in adulthood. The upside is a brown

colour, and like the soles, the underside is colourless. These fish differ from the soles

in shape - sand flounder are a diamond shape in contrast to the oval shape of the

soles. Like the soles, sand flounder has anal and dorsal fins running from close to

the mouth all the way to the tail (see Figure 1.3).
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Figure 1.3: Sand flounder (image obtained from [18] with permission from NIWA).

1.2 Fishery Summary

Commercial fishing in New Zealand is controlled using the Quota Management Sys-

tem (QMS), which was implemented in 1986. Since individual fish species can live

in separate geographical areas and have different biological characteristics, the fish

species managed under the QMS are divided into separate fish stocks and managed

under individual geographical areas (Quota Managements Areas or QMA’s). The

exclusive fishing area to New Zealand, called the Exclusive Economic Zone (EEZ),

is divided into ten Fisheries Management Areas (FMA’s), and these are used as a

starting point for determining the QMA’s. In some cases multiple species in the

QMS are managed together, such as flatfish. The QMS was implemented to protect

the fish stocks from overfishing, whilst maximizing catch rates in order to maxi-

mize revenue. Under the QMS, individuals or companies are allocated individual

transferable quota (ITQ), which allows them to catch a fixed percentage of the total

allowable catch (TAC). ITQ can be bought, sold, divided and transferred between

entities. The TAC allows for recreational fishing and Maori customary fishing as

well as commercial fishing. The allowance for commercial fishers is called the total

allowable commercial catch (TACC). The amount of catch taken by fishermen is
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monitored through fishing forms as well as through licensed fishing receivers. The

catch weights caught by commercial fishers must be recorded using relevant forms,

and catch is transferred to licensed fishing receivers who also record the catch weight.

The commercial flatfish fishery is divided into five management areas: FLA 1,

FLA 2, FLA 3, FLA 7 and FLA 10. The current TACC for flatfish is 6670t, which is

divided between the 5 areas. This study is focused on the FLA 3 management area,

which is in the south island of New Zealand (see Figure 1.4). The FLA 3 fishing

area accounts for about 50% of the total landed flatfish catch over the last 20 years

[4]. The current TACC for the FLA 3 area is 2681t. The reason for focussing on

this area is because the CPUE data needed to conduct an assessment are available

only for FLA 1 and FLA 3. FLA 1 has only two dominant species while FLA 3 has

three, and so FLA 3 was of more interest.

The commercial flatfish fishery is an inshore domestic fishery where most fishing

occurring in waters less than 50m deep, with a small number taken from depths of

50 - 100m. The majority of flatfish caught in New Zealand are caught using inshore

bottom trawling, with some taken from set netting, and a small amount by Danish

Seine. In the FLA 3 stock area, 95% of targeted flatfish were caught by inshore

bottom trawl, 3% by set nets and less than 1% by Danish seine [7].

Bottom trawling is a fishing method used to target bottom dwelling fish as well

as some semi-pelagic fish. A trawl net is dragged behind a trawl vessel which catches

the fish by initially stirring the sediments lying on the sea bed. The trawl net is

held open by the trawl doors, which are connected to the net by steel wires called

”sweeps”. The trawl doors cause a mud cloud, and the fish don’t like this, so they

get herded towards the line of the net. The fish also avoid the vibrations and noise

caused by the doors and the trawl sweeps. Since trawls are dragged along the sea

floor there can be damage to the sea bed. Consequently, this type of fishing has

been restricted in certain parts of the world, and is permitted only for commercial

fishermen in New Zealand.
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Figure 1.4: Map of the five key flatfish management areas (obtained from
www.fish.govt.nz)
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Chapter 2

PROBLEM

2.1 Background

2.1.1 Previous Research

Early research on flatfish was conducted by Colman in the 1970’s and 1980’s, [10],

[11], [12]. Colman focussed his research on flounders in the Hauraki Gulf region,

with studies on the biology of flounders. He studied sand flounder and yellow-belly

flounder in particular, including investigations on the size at maturity [10], spawning

behaviour [11], fecundity [11], and movements in the Hauraki Gulf [12].

Colman studied hundreds of males from two flounder species, and found sand

flounders that were mature at as small as 12cm, and yellow-belly flounders that

were mature at only 15cm length. The legal size for retaining the fish when fishing

is 22.9cm and 25.4cm for the sand flounder and yellow-belly flounder respectively, so

Colman’s findings indicate that the male fish can probably spawn at least once before

being fished. Female flatfish mature at larger sizes, and the study was focussed on

the female fish. Colman was able to conclude from his study that the minimum

landed sizes allow male and female sand flounder and male yellow-belly flounder

to mature before being susceptible to fishing pressure, though female yellow-belly

flounders are less likely to mature before being caught. Colman considers this to be

a problem only if the species are heavily fished.

In his study on spawning behaviours of sand flounder and yellow-belly flounder,

Colman found that these two species spawn in a similar fashion to other species
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of flatfish from around the world, with sand flounder spawning during winter and

spring, and yellow-belly flounder spawning during the spring months. Spawning

may be related to water temperature, or salinity, though day length and light time

are likely factors. The fecundity for each species was also studied, where the number

of eggs produced was related to the size of the fish. The number of eggs for sand

flounder ranged from 100,000 eggs to 500,000 eggs and from 250,000 to over a million

eggs for yellow-belly flounder.

Colman later studied the movements of flounder in the Hauraki Gulf in 1974.

Tagging studies, direct observations, acoustics, analysis of biological characteristics

and fishery statistics were used to determine the movements of the fish. The study

indicated that both sand flounder and yellow-belly flounder stay in shallow waters

less than 5m deep during the first two summers, before moving further out to depths

of 30-40m during winter. Tagging studies showed that both species remain within

the stock area in which they were tagged, indicating that the populations within the

management area are localized. The studies conducted by Colman have provided

valuable insight into flounder biology, which has been generalized to the New Zealand

flatfish group in general for subsequent studies.

In 1988, a characterisation of the flatfish fishery was conducted by Kirk [8]. The

flatfish characteristics were based on the flounder studies by Colman. Kirk briefly

reviewed the fishery and provided an estimate for the maximum constant yield

(MCY) of flatfish, which is the maximum constant amount of catch that can be

taken each year without risking a collapse in the stock. In 1985 a TAC of 4900t was

recommended based on the assumption that the landings reflected the amount of

available yield. This recommendation was based on the catch from the 1983 fishing

year, which was the highest recorded amount to date. However, a TAC of 6050t was

implemented (1150t higher than recommended) from the 1986-1987 fishing year,

where this TAC was divided between the management areas. It was assumed that

an annual yield of between 3000 and 5000t was sustainable under this management

method. Kirk noted that the high level of the TAC can have implications for other

fisheries due to incidental by-catch, whereby fishers who have ITQ for flatfish take

by-catch of other species for which they have no ITQ.

The work done by Kirk was updated by Beentjes, who conducted a review of
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flatfish catch data in 2003 [4]. The purpose of the report was to analyse data

for flatfish from a number of sources to determine the suitability of the stock for

catch per unit effort (CPUE) analyses. In this report, the individual species were

described regarding main fishing areas and the percentage of flatfish catch for each

of the individual species. Data from a number of sources were analysed by Beentjes

to provide a better understanding of flatfish. From the sources, Beentjes concluded

that the key contributors for catch in the FLA 3 fishing area are lemon sole, New

Zealand sole and sand flounder. In fact, during the period 1989-2002, 40% of catch

was recorded under the generic FLA stock code, 23.4% was recorded as lemon sole,

21.2% was recorded as New Zealand sole, and 7.2% as sand flounder (see Figure

2.1). The report concluded that CPUE analyses could be conducted for this stock.

Figure 2.1: Catch for individual species in the FLA 3 stock area

In 2004, Hartill conducted a characterisation of commercial flatfish in the Kaipara

Harbour, which is in the FLA 1 stock area [13]. Flatfish is the predominantly tar-

geted stock in the Kaipara Harbour. Data from CELR forms filled out by fishermen

between the 1989-1990 fishing year to the 2000-2001 fishing year in this area were

analysed. Most catch for flatfish was during autumn, when effort was at its high-

est, however there was only a small increase in effort during this period compared

with other times. There was a noted increase in the amount of effort employed by

fishermen from year to year, but the total catch had declined, which may indicate

the number of flatfish was declining. This is a concern for the flatfish stock, as it

suggests the catches being taken were not sustainable, which indicates the need for

stock assessment.
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The work in the FLA 1 area was extended a year later by Coburn and Beentjes,

who conducted a review of the current TACC for flatfish using CPUE analyses for

the FLA 1 stock area [27]. Data from the CELR records were used as an indicator

of catch, and information from fishing vessel was used as an indicator of effort.

The analysis was focused on the set net fishery which accounts for 90% of the total

fished catch in FLA 1. The data was extracted and then groomed to discard any

data with missing information. For the CPUE analysis 88% of the original data

from FLA 1 was used. Since flatfish are generally a localized population, with little

migration between areas, the analysis was divided into seven subareas to account

for the differences in effort for each subarea. The behaviour of the fishing vessels

was also examined to determine the movements of fleets and the time spent fishing

in each subarea. The standardised CPUE analyses were based on kilograms of stock

per kilometre of set net as the index of abundance. The key species in FLA 1 are

sand flounder and yellow-belly flounder and the results were analysed for each of

these species. The analyses outlined the need for study of the individual species,

since the CPUE declined, presumably due to declining numbers of sand flounder

catch. From the study the authors were able to estimate CPUE index for each year

analysed.

More recently, a similar CPUE analysis has been conducted by Beentjes and

Manning for the FLA 3 stock area (Beentjes pers. com.; presented to the Ministry

of Fisheries but currently unpublished). From the work conducted in this study,

standardised values for CPUE were obtained for each of the three individual species

as well as for the combined species. These values are plotted in Figures 2.2, 2.3,

2.4 and 2.5 with the catch for each year. Since effort can differ from year-to-year

and between different areas, CPUE is used as a way to standardize catch data with

respect to the amount of effort employed at each time.

CPUE was used as an index of abundance in this study, based on the assumption

that the CPUE is proportional to abundance [20]. This assumption may be too

strong and several studies have shown that CPUE can be a poor index of abundance,

and can consequently result in the population being overestimated [20]. CPUE

is used as an index of abundance when there are no independent abundance data

available. The reliability of CPUE as a measure of abundance can depend on whether
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the fish remain largely in schools or not since high schooling fish have high CPUE

regardless of the size of the population. Hence, we assume that CPUE is a good

measure of abundance for flatfish since they are not considered to be a largely

schooling fish.

The assumed relationship between the index of abundance (in this case CPUE)

and the catch amount is that as catch increases, CPUE decreases since catch de-

creases population size. After a time the catch should begin to decrease as the

abundance of fish is low (the catch can no longer be taken). CPUE will increase

when the catch becomes less than the amount of fish which are entering the fishery

(recruitment) and the stock gets bigger. In some fisheries, such as those with high

schooling behaviour, the fish may continue grouping as the population decreases,

and fishers can continue to maintain high CPUE until the population is fished out

of the fishery. The following figures show that the CPUE and catch show unex-

pected behaviour. For each of the figures the CPUE and catch follow similar trends.

This type of behaviour indicates that the fishing has little effect on the population

size or CPUE is not an index of abundance. In some cases, CPUE can be an index

of something other than the population abundance, such as an index of fishing be-

haviour, in which case high CPUE simply reflect high levels of catch because of a

fisher choice, rather than a large abundance of the population.

Figure 2.2: Catch (solid line) and CPUE (dotted line).
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Figure 2.3: Catch (solid line) and CPUE (dotted line).

Figure 2.4: Catch (solid line) and CPUE (dotted line).
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Figure 2.5: Catch (solid line) and CPUE (dotted line).

2.2 Mathematical Models

Mathematical models are often applied to fish populations to estimate the size of

the population. Fisheries managers use these models to determine the best way to

manage individual stocks to ensure that populations remain at long term sustainable

levels.

The types of models used in this project are biomass dynamic models (also called

surplus production models). These models use changes in biomass as a measure of

the population. The basis for this type of model is

NewBiomass = OldBiomass + NewProduction − Catch. (2.1)

Here biomass is used as the measure of a population (it is much easier to weigh

fish than to count them). These models are simple due to the fact that individual

differences such as age, size and sex are ignored and the effects of other factors such

as recruitment and mortality do not appear explicitly in the model, rather they are

combined in the surplus production function [9]. Using biomass dynamic models,

the behaviour of the population can be analysed with varying catch. This allows
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us to vary the catch and examine how the population reacts, and therefore we can

determine the best amount of catch that will maximize the catch while ensuring

long term production for the stock.

The choice of model for this project was because the data available for this stock

were limited to catch and CPUE, and because of the simplicity of the model [4].

Since the stocks are considered to be fairly localized, migration is assumed to be

insignificant, and is excluded from the model. There are no data for this stock

regarding age distributions, therefore a complete age-structured assessment for this

stock could be unsuitable. Hence, without further information for this stock, a more

complex model would be misleading.

2.2.1 Schaefer Model

The Schaefer model was first developed for the Pacific Halibut fish stock by Schaefer

in 1954. Written formally, the model is

dB

dt
= rB

(

1 − B

K

)

− C, (2.2)

where B is the biomass, r is the intrinsic growth rate, K is the population fish

would tend to in absence of fishing, and C is the catch. This equation says that the

total biomass of the population changes at a rate proportional to the biomass at

the previous time multiplied by the growth rate of the population. The term in the

bracket restricts the total biomass so that when the biomass at the previous time

equals the biomass that fish would tend to in absence of fishing, then the change in

biomass is just minus catch. The catch C is determined from the fishing effort E

employed at each time multiplied by the efficiency of the fishing q0 (usually called

“catchability”) and the current biomass B. So the equation for catch is

C = q0EB. (2.3)

Schaefer observed that the growth of fish populations show a logistic type growth,

and was able to use the above model to express the expected relationship between

the size of the stock and the size of catches [9]. The advantage of this model is

that the biomass can be estimated at some time t with just two sets of data for the
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catch and effort employed for the previous times. The maximum production for this

model occurs when the biomass is half of the biomass that fish would tend to in

absence of fishing, or K/2 [25]. The Schaefer model assumes that CPUE decreases

linearly with increasing fishing effort [24].

2.2.2 Pella-Tomlinson Model

Pella and Tomlinson extended the work by Schaefer and formulated a new biomass

dynamic model in 1969 which can be represented by the following equation

dB

dt
= rB − r

K
Bm − C. (2.4)

When m = 2 in this equation we have the original Schaefer model from equation

2.2. The parameter m was added by Pella and Tomlinson to account for the vari-

ability in the relationship between the size of the stock and the surplus production,

where surplus production is the difference between the new and the old biomass plus

the catch [1]. So, varying the parameter m alters the skew of the surplus production

curve in relation to stock size (see Figure 2.6). Therefore, for m 6= 2 the maximum

production is no longer at K/2. In practice, the Pella-Tomlinson model is applied

to a data set with different values for m which can be determined by applying the

model for a range of m and establishing which provide the best fit for the data. The

maximum productivity of the Pella-Tomlinson model depends on the value of m,

and can be expressed using the general formula m
1

1−m × K [25].

2.2.3 Fox Model

In 1970, Fox proposed a biomass dynamic model which uses the Gompertz curve

[23]. The Fox model is similar to the Schaefer model and can be expressed as

Bt+1 = Bt + rBt

(

1 − ℓn(Bt)

ℓn(K)

)

− Ct. (2.5)

The Fox model is the same as the Pella-Tomlinson model with m → 1. For this

model, as fishing effort increases CPUE decreases in a curve [24]. The maximum

productivity for the Fox model occurs at around 36.8% of K [25].
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Figure 2.6: Surplus production curve for different m

2.2.4 Assumptions

A key assumption used in this particular study is that the initial biomass at time 0

equals the biomass that fish would tend to in absence of fishing. This assumption

is based on the idea that the stock was un-exploited prior to 1991. However, it is

known that the species were fished before 1991, though too few data are available

before this time to be able to apply these models. This assumption is made to

allow these models to be applied to the stock for mathematical/statistical modelling

purposes, and is necessary due to the lack of data available to estimate the initial

biomass independent of K. The results obtained from applying these models are

meant as an academic exercise rather than for management purposes.

A number of assumptions were made to allow these models to be applied to

fisheries in general. The most important assumption is that the population was at

equilibrium. However in many cases the population varies naturally due to external

factors such as sea surface temperature or extreme weather conditions. The mortal-

ity rate is also assumed to be relative to the amount of catch, without considering

external causes of mortality like changing rates of natural mortality. The parame-

ter K represents the biomass that fish would tend to in absence of fishing which is
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the same as the carrying capacity used in the logistic model. For this project the

parameter K was kept as a constant value, though the maximum population that

an environment can sustain may vary from year to year based on other factors such

as age structure and the populations of other species in the environment. Another

important assumption for long term fisheries is that the fishing methods remain

constant and so the methods are assumed to not improve with time from new tech-

nologies or improvements in the fishery. These assumptions allow the problem of

applying mathematical models to fish stocks to be simplified by using a model based

on the logistic growth model, which accounts for the fact that natural resources in

the environment are limited.

Due to the formulation of these models, the net growth rate remains positive

for all levels of the population [24]. However, in the real life context, many species

require a minimum level of the population for growth (above 0). Therefore, these

models can fail to capture the true dynamics of the fishery when the population is

fished to low levels.

2.3 Review of Previous Research

From the background information, some conclusions can be made regarding the bio-

logical parameters of interest. Since flatfish are short-lived with high fecundity, the

intrinsic growth rate r of each of the species is expected to be high, with r > 1. The

biological parameters for fish populations can be estimated based on the behaviour

of the fishery. In general, using these types of models, the population is assumed

to be stable while the population is un-fished. When the population begins to be

fished, the abundance is expected to decrease, and this gives information about K.

If the population is not fished to zero, there will be a point where the catch rate will

decrease and if catches are then reduced, the population will level off or begin to in-

crease. When the population begins to increase, this gives some information on the

rate of increase r. The strength of this estimate for r can be related to how heavily

the population was fished, since heavier exploitation can give better indications for

r because it gives a greater change in the population size. Following a fish popula-

tion over a larger length of time can also make better inferences for the biological
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parameters. Every time the fishery exhibits this decreasing-increasing behaviour,

more indications for K and r can be found based on how quickly the population

declines and recovers from exploitation. In the case of FLA3, the time series is short

and this behaviour is weak, therefore the estimates for the biological parameters will

be more uncertain than in a fishery that better exhibits this behaviour. The models

also

The use of biomass dynamic models in fisheries management has been highly

criticized for a number of years due to the high number of assumptions required to

use these types of models. However, in the case where little data are available for a

population, these methods can be useful [21].

2.4 Concerns and Limitations

There are a number of concerns for the flatfish stock. Research conducted by Hartill

in 2004 on the FLA 1 area indicates that, as a unit stock, the population of flatfish

may be decreasing under recent catches. Also, the fact that there are eight species

managed as a unit stock could mean that some of the individual species of flatfish

may be significantly under or over-fished depending on their biology (their respective

r’s and K’s). The TACC for the combined management areas as well as for FLA3 has

never been reached since flatfish have been managed under the Quota Management

System (QMS) (see Figures 2.7 and 2.8). The high level of the TACC means that

the flatfish fishery is essentially unregulated. There could also be significant habitat

damage caused by fishing, and in the case of flatfish, bottom trawling can damage

the sea bed and disrupt or damage other wildlife living on the sea floor.

Due to the high level of the TACC, there is concern for incidental by-catch.

Since the TACC is set above reported catch amounts, fishermen can continue to fish

unsuccessfully for flatfish to try to reach the allocated quota and consequently take

incidental by-catch of other species.

The key limitation for this project is the lack of data available. While there

are requirements for fishermen to record catch using individual species codes in the

Catch-Effort section of the CELR form, about 40% of catch in FLA 3 is recorded

as the generic FLA code. Therefore the proportions of each species in FLA 3 are
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reasonably uncertain. There have been no biological studies applied to flatfish in the

FLA 3 management area. As described earlier in this chapter, for the parameters

of interest (r and K), it is likely to be difficult to find certain estimates due to

the previously exhibited behaviour of the stock as well as the short time series of

data available for these species. The simulations will therefore be limited since the

certainty of the simulations relies on the certainty of the parameter estimates.

Due to concerns outlined by research conducted on the flatfish stock in New

Zealand, further studies are required to assess the status of flatfish stock, and the

long term sustainability of the stock subject to the current management strategy.

As well as this, it is necessary to study the individual species managed as flatfish

to determine the potential risks for the individual species. This study provides a

starting point for such assessments.

Figure 2.7: Catch and TACC for all stock areas
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Figure 2.8: Catch and TACC for the FLA 3 stock area.

2.5 Project Objectives

The overall objective of this project is to review the current management method,

and to analyse alternative management approaches (TACC’s). The objectives for

each chapter are outlined:

Chapter 3 This chapter provides the key information regarding the mathematical

models used to determine the suitability of each of the management strategies as

outlined in the previous chapter. Objectives:

i. Analysis of the mathematical models used for the parameter estimations and

simulation models.

ii. Describe the simulation model applied to the flatfish stock as a single unit.

iii. Describe the simulation model applied to each of the species individually.

Chapter 4 This chapter details the method of estimating the parameters needed

to apply a model to the flatfish data. Objectives:
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i. Identify the optimal method to estimate the parameters required to apply the

mathematical models described in Chapter 3 to the flatfish data.

ii. Describe two goodness of fit estimations for the parameters; maximum likeli-

hood and Bayesian methods.

iii. Analyse the accuracy and suitability of the parameter estimates for the flatfish

stock.

Chapter 5 This chapter describes an overview of some of the possible ways that

the flatfish stock can be managed, including the current management strategy.

Objectives:

i. Provide an overview of six possible management options.

ii. Outline the advantages and disadvantages for employing each management

strategy.

Chapter 6 This chapter provides a risk assessment of the different methods, where

the assessment of risk is the risk of overfishing an individual species. Objectives:

i. Calculate the percentage of simulations which fall below 20% and 10% of the

initial biomass.

ii. Calculate the percentage of simulations which remain above 50% and 36.8%

of the initial biomass.

Chapter 7 This chapter makes concluding remarks about the project, with anal-

yses of the results obtained from the risk analysis.

Chapter 8 A discussion of the results, the data, and the methods used in this

project.

Chapter 9 Recommendations for possible further work to be conducted in the

future to improve the results obtained from this study.
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Chapter 3

SIMULATION MODEL

3.1 Introduction

Simulations were used to model the population of each species forward in time.

This allows the dynamics of the models to be seen for each species under each of

the management strategy options for the level of catch. They allow the reader to

visualize the estimated outcome of each management option, based on the models

and the estimated parameter values.

The model used to run the simulation is the Pella-Tomlinson model, as described

in the previous chapter. The simulation was run in the Matlab student package,

version 7.1.

The Pella-Tomlinson equation was used with two values for m; m = 2, and

m = 3, to test the sensitivity of the model to this parameter. The Fox model was

also used (see below), which is also a form of the Pella-Tomlinson equation with

m → 1. Two types of simulations were used, each based on different assumptions

on how the catch was taken. Parameter estimation methods were used for the three

models with m = 2, m = 3 and m → 1. These models are analysed in the next

section to determine the fixed points (or invariant points), and the stability of these

points. The stability of the fixed points is of interest as it gives an idea of the

behaviour of the model around these points.

Each of the three types of model used in this study are based on the following

assumptions, similar to the assumptions for the logistic equation:� The carrying capacity K is constant.
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� All members of the population are considered equal.� Emigration and immigration are equal (effectively they are ignored).� Factors relating to age and size structure, sex and other differences are ignored.

3.2 Model Analysis

3.2.1 Schaefer Model

For m = 2 we have the Schaefer model [17],

Bt+1 = Bt + rBt −
r

K
B2

t − Ct, (3.1)

which was the first equation of this type applied to fish stocks. In fact the Pella-

Tomlinson model was formed as an extension of the Schaefer model. To determine

the fixed points of the Schaefer model, we use the fact that the catch Ct depends on

the biomass Bt, using the equation

Ct = qBt, (3.2)

where q = q0Et is a constant value and Et is the fishing effort at time t. Written as

a function Equation 3.1 becomes

f(B) = B + rB − r

K
B2 − qB. (3.3)

Setting f(B) = B in 3.3 we get the formula for the fixed points B̄

B̄ = B̄ + rB̄

(

1 − B̄

K

)

− qB̄. (3.4)

Rearranging and solving 3.4

r

K
B̄2 + (q − r) B̄ = 0 (3.5)

26



gives the fixed points B̄ = 0 and B̄ = K
(

1 − q

r

)

. Computing the derivative of f(B)

gives

f ′(B) = 1 + r − 2r

K
B − q. (3.6)

At the fixed point B̄ = 0, f ′(0) = 1 + r − q, which is stable when

|1 + r − q| < 1 (3.7)

or

−2 + q < r < q. (3.8)

This means that at the fixed point B̄ = 0 the population will grow away from the

fixed point for positive growth rates (provided B 6= 0) and when the growth rate is

negative the population will move toward the fixed point. Similarly, for the fixed

point at B̄ = K
(

1 − q

r

)

, f ′(K
(

1 − q

r

)

) = 1− r + q, and the fixed point is stable for

|1 − r + q| < 1 (3.9)

which is the same as

q < r < 2 + q. (3.10)

This means that the population will steadily grow (or decline) to K
(

1 − q

r

)

and

then stabilize at K
(

1 − q

r

)

for r < 2 + q. When r > 2 + q the behaviour of the

population exhibits unstable behaviour - either periodic or chaotic depending on

how large r is.

The maximum sustainable yield (MSY) of a stock; which is the maximum

biomass that can be taken from a stock without significantly damaging the long

term sustainability of the stock, can be derived by assuming a steady state condi-

tion of the population. From Equation 3.1, we can obtain the parameters for the

MSY from the Schaefer model (see Table 3.1) [1].
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Table 3.1: Parameters for MSY

MSY rK/4
Stock size for MSY K/2
Rate of exploitation at MSY r/2
Maximum rate of exploitation r

3.2.2 Pella-Tomlinson Model with m = 3

When m = 3 in the Pella-Tomlinson model we have

Bt+1 = Bt + rBt −
r

K
B3

t − Ct, (3.11)

or written in function form

g(B) = B + rB − r

K
B3 − qB, (3.12)

with fixed points at B̄ = 0, B̄ =

√
r2K−rKq

r
and B̄ = −

√
r2K−rKq

r
. Using the

derivative of g(B)

g′(B) = 1 + r − 3
r

K
B2 − q, (3.13)

we obtain g′(0) = 1 + r − q, g′(

√
r2K−rKq

r
) = 1 − 2r + 2q and g′(−

√
r2K−rKq

r
) =

1− 2r +2q. The fixed point B̄ = 0 is stable for |1+ r− q| < 1, which is the same as

−2 + q < r < q. (3.14)

By the same reasoning as above, this inequality is logical since the constant q is very

small with q ≪ 1. The fixed point at B̄ = 0 is unstable for positive r values and

hence the population moves away from the fixed point.

The fixed point B̄ =

√
r2K−rKq

r
is stable for |1 − 2r + 2q| < 1 or

q < r < q + 1. (3.15)

Similarly the fixed point B̄ = −
√

r2K−rKq

r
is stable for q < r < q + 1. Since

r2K > rKq, this fixed point is non-positive, and for this problem we are only
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interested in non-negative populations. Therefore the stability of the non-zero fixed

points is more restricted than in the previous model.

The MSY for this model can be calculated as

MSYPella−Tomlinson = rK

(

1

m

)(( 1

m−1
)+1)

, (3.16)

so for m = 3, the MSY is

MSYPella−Tomlinson,m=3 = rK

(

1

3

)(( 1

2
)+1)

, (3.17)

and the biomass at the MSY is

BMSY = m( 1

1−m
)K = 3( 1

1−3
)K (3.18)

which is at 57.735% of K.

3.2.3 Fox Model

The third type of model used was the Fox model [16], which can be expressed as

Bt+1 = Bt + rBt

(

1 − ℓn(Bt)

ℓn(K)

)

− Ct, (3.19)

or written in function form

h(B) = B + rB

(

1 − ℓn(B)

ℓn(K)

)

− C. (3.20)

This has fixed points at B̄ = 0, B̄ = K(1−
q

r
). Taking the derivative of h(B) gives

h′(B) = 1 + r ∗
(

1 − ℓn(B)

ℓn(K)

)

− r

ℓn(K)
− q. (3.21)

The fixed point at B̄ = 0 is unstable due to the term in the denominator ℓn(0). For

the fixed point at B̄ = K(1−
q

r
), evaluating h′(B) at this point gives

h′

(

K(1−
q

r
)
)

= 1 + r ∗



1 −
ℓn

(

K(1−
q

r
)
)

ℓn(K)



 − r

ℓn(K)
− q. (3.22)
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The MSY for the Fox model can be calculated using the formula

MSYFox =
rKe−1

ℓn(K)
, (3.23)

with the biomass at the MSY

BMSY ≃ 0.368K (3.24)

3.3 Simulation Models

3.3.1 Model 1

The first simulation model was run in Matlab 7.1 using an m-file to store the code.

The code was set up to run for 50 time steps (years) to allow enough steps to see

the behaviour of the model. Each of the three types of models (with m → 1, m = 2

and m = 3 in the Pella-Tomlinson model) were run using the same m-file with an

initial input of m in the command window (see Appendix A). For the case when

m → 1, m = 1 was inputted in the code to run the program using the Fox model.

The estimated parameters r and K from the Bayesian parameter estimates de-

scribed in the following chapter were stored as a vector µ, as well as the covariance

matrix (the matrix of the covariances between the vector of estimated values of r

and the vector of estimated values of K) corresponding to the vector µ for each of

the three species. A matrix (M) was formed for each species by applying Cholesky

factorization to the covariance matrix for each µ. An initial step in the code was

used to employ Monte Carlo simulation for r and K using the matrix M . The Monte

Carlo simulation was run for 1000 time-steps to give 1000 estimates for r and K.

This step allows for the level of uncertainty in the estimated parameters. A step

was then used to calculate the biomass for each time using each of the 1000 pairs of

r and K from the previous loop, with an inner step to ensure the biomass remains

non-negative. The steps were run individually for each of the three key species, with

fixed proportions of catch based on the average proportion of catch from 1989-2002

as reported in [4].

The fixed proportion of catch is the key difference between the first simulation
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model and the second simulation model. This simulation model is based on the as-

sumption that fishers can choose how much of each species they can take, and hence

the proportions of catch remain the same regardless of the respective populations.

3.3.2 Model 2

The second simulation model was also run in Matlab 7.1 using a single m-file for

each of the three models (m → 1,m = 2 and m = 3)(see Appendix A). As with the

previous simulation model, the case when m → 1 was input as m = 1. The codes

for these models were similar to the codes for the first simulation model with the

initiating steps the same. The biomass for each population was calculated within

the same step, again beginning with an initial step to apply Monte Carlo simulation

on the parameters r and K. At the end of the step for the biomass calculations, the

new proportion of each species was recorded, and this new proportion was used in

the following step. This simulation model is based on the assumption that the total

catch is fixed, but the proportions change depending on the ratio of biomass of each

species. Therefore we are assuming that the fishers employ equal effort to catch each

of the species, and what is caught depends on the abundance of the species at each

time. This simulation model accounts for the fact that fishers cannot take equal

amounts of a species from year to year, since low abundance levels will generally

result in lower catch rates for that species.
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Chapter 4

PARAMETER ESTIMATION

4.1 Introduction

A number of parameters must be estimated in order to use the mathematical mod-

els described in the previous chapters. Therefore, a large amount of work required

for stock assessment of fisheries involves parameter estimation. In order to obtain

parameter estimates, there are three key requirements: first a model must be for-

mulated in which the parameters to be estimated are detailed; next real world data

from observations must be obtained; finally a method for estimating the parame-

ters based on a goodness of fit calculation calculation (where model predictions are

compared against real world data).

4.1.1 Model Choice

The choice of which model to use is based on the desire to best represent or simplify

the behaviour of the modelled population. However, the model that accounts for

all the necessary factors may not always be possible to implement due to a lack of

data. Therefore we want to formulate a model that can be implemented which best

accounts for the factors related to the population such as mortality rates, growth

rates, predation and so on. The choice of parameters to use to apply a model will

also determine which model best suits the data. In the case of flatfish, the primary

data available are catch and effort data. In the simulation model, each parame-

ter has estimation uncertainty. Therefore, beginning with the simplest model that

requires estimating the least amount of parameters reduces the total possible error
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(uncertainty) and provides the best starting point for understanding the population.

Since no previous models have been applied to the flatfish population, the simplest

model that can account for the expected behaviour of the population is the best

starting point for modelling the population.

4.1.2 Data for Flatfish

As described in the previous chapter, the model to be used in this project is the

Pella-Tomlinson surplus production model. The equation used to implement this

model is

Bt+1 = Bt + rBt −
r

K
Bm − Ct, (4.1)

where Bt is the biomass at time t, Ct is the catch at time t, r is the intrinsic growth

rate, and K is the biomass that the species would tend to in absence of fishing.

For this model, we know the catches at each time, Ct, and we have data from

previous times about the amount of catch and effort (CPUE) employed by the

fishing fleet in each fishing year. The catch and effort (CPUE) data were obtained

from Mike Beentjes and Michael Manning (see [27] for further information on the

methods used for the CPUE analysis). The data were only used for the years 1991-

2002, when CPUE data are available. The parameters in this equation that we need

to estimate are the growth rate r, the biomass fish would tend to in absence of

fishing K, and the initial (virgin) biomass B0. The sensitivity of the parameter m

in the Pella-Tomlinson model will be analysed in the risk assessment.

These data values were obtained from catch and effort data analysed by Mike

Beentjes and Mike Manning [4]. The catch values for each of the individual species

include the individual species recorded catch data, as well as a percentage of the

catch recorded under the generic flatfish code, where the percentages were based on

the proportion of each type of fish caught in that given year.

4.1.3 Goodness of Fit

The method for estimating the unknown parameters r and K involves using goodness

of fit calculations. Two methods for calculating the goodness of fit were used in this
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Table 4.1: Catch and CPUE for FLA, ESO, LSO and SFL

FLA ESO LSO SFL
Year Catch CPUE Catch CPUE Catch CPUE Catch CPUE
1991 1136 0.88 381 0.9 177 1.15 237 0.72
1992 1069 1.05 462 0.93 264 0.97 148 1.07
1993 1964 1.17 697 1.15 808 0.96 267 1.06
1994 1659 1.2 751 1.05 563 0.97 201 1.22
1995 1738 1.37 650 1.22 605 1.1 249 1.2
1996 1962 1.36 673 1.33 795 1.05 226 1.05
1997 2148 1.21 796 1.07 824 1.51 302 1.08
1998 1979 1.1 518 0.97 1069 1.52 213 1.02
1999 1607 1.02 359 1.09 921 1.12 141 1.01
2000 1366 0.98 431 1.1 584 0.96 129 1.04
2001 1512 1.1 567 1.5 545 0.95 142 1.07
2002 1347 1 592 1.13 373 0.75 136 0.98

study - the maximum likelihood method, and the Bayesian statistical method [9].

The maximum likelihood method can be used with a normal as well as a log

normal distribution. In this case it was used with the log-normal distribution, since

this distribution better fits the data. This method was initially used for estimating

the parameters using the negative log likelihood as the measure of best fit.

Bayesian statistics require prior distributions for the parameters. For this par-

ticular problem very little prior knowledge for the parameters of interest are known.

Therefore, a combination of informative and non-informative priors are used to es-

timate the parameters.

4.2 Maximum Likelihood Calculation

4.2.1 Introduction

Using the previous formula for the Pella-Tomlinson equation, along with the assump-

tion that the initial biomass equals the biomass that fish would tend to in absence

of fishing (K), we have the following equations for the estimated parameters [2]:

Best,t+1 = Best,t + rBest,t −
r

K
B2

est,t − Ct (4.2)

35



Best,0 = K. (4.3)

Assigning I as the index of abundance, we have the equation for the estimated index

of abundance:

Iest,t = qBest,t, (4.4)

where the observed index of abundance in this case is the CPUE calculated by

Manning and Beentjes.

Using the log normal distribution, the negative log likelihood is given by the

equation

Lt = log(σ) +
1

2
log(2π) +

[log(Iest,t) − log(It)]
2

2σ2
, (4.5)

where σ is the standard deviation of the observation uncertainty [2]. This equation

is derived from the general likelihood equation for a normal distribution of the

observations:

L{Y |m, σ} =

n
∏

i=1

1

σ
√

2π
exp

(

−(Yi − m)2

2σ2

)

, (4.6)

with n = 1 in our case. The Yi are the observations with mean m and variance

σ2 [2]. We use the log-likelihood equation since it avoids there being a negative

biomass or index of abundance, which would make no sense in this example. In the

log-likelihood equation we assume there is some observation uncertainty. Assuming

observation uncertainty but no process error implies that the dynamics of the fishery

are deterministic. Applying this equation for the negative log likelihood means that

the simulation model does not accumulate errors in the population estimates since

these errors are independent of one another, and there is an equal probability of

under and over estimating the population in each step. Finally, using the above

equation, we can calculate the total negative log likelihood as the sum of all the

negative log likelihoods. This gives the most likely estimates for the model, which

are the values for r, K, q and σ that give the minimal total negative log likelihood.
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4.2.2 Implementation

Using the equations for Best,t+1, B0, Iest,t and Lt, the total negative log likelihood was

minimized using the R software package. The code written to minimize the function

required one step using a multi-parameter optimizer with the simulated annealing

method to find an approximation for the minimum, followed by the Nelder and

Mead method to give a more accurate value for the minimum (see Appendix B).

The initial step using the annealing method was used to overcome the problem of

local minima. Where other methods in general stop once they have found a local

minimum, the annealing methods searches until it finds the global minimum. The

code was designed to run starting with estimates for the parameters r, K, q and σ.

Each step was limited by a maximum of 100000 iterations.

To test the minimizer, an example from Hilborn and Mangel (1997) was used to

estimate the same parameters for the Namibia Hake stock using the Schaefer model.

The data provided for this example is CPUE (in tons per standardized trawl hour),

and catch (in thousands of tons) per year from 1965 to 1987. This example is similar

to the flatfish problem in that two species of hake were managed as a single stock.

This example shows behaviour expected from exploited fisheries, where the stock

begins to be overfished and consequently CPUE, and then catch decline. The Hake

problem is a good example because the catch and CPUE show behaviour similar

to what is assumed to occur in a fishery of this type, and indicates that in this

case CPUE is related to abundance. In the 1970’s, the fishery became regulated

due to concerns in the decreasing CPUE. Subsequently catches were reduced and

CPUE began to increase as the stock recovered (see Figure 4.1). A key concern

for management is maintaining adequate levels of the CPUE, because profit may

decline as CPUE declines, as more effort is required to maintain catches levels.

The optimal values of the parameters reported by Hilborn and Mangel are r =

0.39, K = 2709, q = 0.00045 and σ = 0.12. Using the code written in R gives

the optimal values as r = 0.3938579, K = 2708.337, q = 0.0004487035 and σ =

0.1230662.

The plot of the CPUE and the line of best fit calculated from this code show that

this fit is relatively good (see Figure 4.2), which indicates the model with observation

uncertainty is relatively accurate at estimating the data.
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Table 4.2: Catch and CPUE for Namibia Hake

Year Catch (thousands of tons) CPUE (tons per standardized trawl hour)
1965 94 1.78
1966 212 1.31
1967 195 0.91
1968 383 0.96
1969 320 0.88
1970 402 0.90
1971 366 0.87
1972 606 0.72
1973 378 0.57
1974 319 0.45
1975 309 0.42
1976 389 0.42
1977 277 0.49
1978 254 0.43
1979 170 0.40
1980 97 0.45
1981 91 0.55
1982 177 0.53
1983 216 0.58
1984 229 0.64
1985 211 0.66
1986 231 0.65
1987 223 0.63

Figure 4.1: Catch and CPUE for Namibia Hake.

The same method was then used with fixed values of either r or K so that the

negative log likelihood was minimized with respect to the remaining parameters
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Figure 4.2: The observed CPUE (dots) and the line of best fit for the Namibia Hake.

in order to determine the level of confidence for each of r and K. By initially

fixing r, the negative log likelihood was minimized with respect to the remaining

three parameters K, q, and σ. The optimal values for each of the three parameters

were recorded, as well as the negative log likelihood. The same procedure was then

repeated for K. This method allows us to conduct a likelihood profile for r and K.

The likelihood profiles are conducted for only r and K because the values of q and

σ are less variable in the calculation, and in fact an analytical solution for q can be

found which does not depend on σ (see [2]). Plotting the negative log likelihoods for

each value of r (or K) allows us to visually represent the likelihood of each value of r

(see following Figures). Ideally, the values should decrease toward the optimal value

of r, and increase after the optimum. Larger differences in likelihood for different

values of r indicate that the likelihood of r being at the optimum is greater. As we

can see from the plotted values of the negative log likelihood for both r and K for

the Namibia hake example the curves both decrease in a parabolic manner to the

optimal r and K, with the differences in likelihood from other values of r and K and

the optimal values being reasonably large. The 95% confidence bounds indicate that

the estimated parameters are reasonably certain. Here the confidence bounds were
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calculated using the formula CIx = x̂ ± txσx, where x is the parameter of interest

(r,K) and tx is the t distribution with respect to x (or more precisely, the number

of degrees of freedom in the calculation of x).

Figure 4.3: Likelihood profile for Namibia Hake for r.

Figure 4.4: Likelihood profile for Namibia Hake for K.
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4.3 Maximum Likelihood for FLA 3

The same code was then run using the data for the flatfish stock in the FLA 3

stock. Using the data from Table 3.1, the code was applied initially to the stock as

a whole, and then to each of the three key species (ESO, LSO and SFL), using the

three models. The remaining species caught in FLA 3 are not plotted due to the

fact that they are all less than 5% of the total stock. This was done for each of the

models (Schaefer, Pella-Tomlinson with m = 3, Fox).

4.3.1 Maximum Likelihood using Schaefer Model

The code written to estimate the parameters outputs the optimal parameter values

as well as the minimum negative log-likelihood. These optimal values are summa-

rized in Table 4.3.

For each of the four cases, the CPUE was plotted with the fit from the model,

as in the Hake example (see the Figures 4.5, 4.6, 4.7, 4.8). Comparing these four

plots with the plot from the Namibia Hake example, we can see that the fit is much

worse than in the example. In particular for the stock as a whole, the fit is almost

a straight line.

As we can see there is little variability in the optimal values for q and σ. Since

ESO is the second most productive stock in FLA3 after LSO, we would have expected

the virgin biomass to be higher than that of SFL, which is the third most productive

stock in FLA3. In fact, the difference between the virgin biomass of LSO and SFL is

much smaller than expected, due to the fact that LSO produces approximately twice

as much of the total catch as SFL. These values for K do not reflect the proportions

of catch in the population, based on the basic assumption that the number of catches

is related to the number of fish in the population for each of the three species.

Looking at the parameter estimates for FLA3-All, the estimated value of K for

FLA3-All contradicts the values of K for the three individual species since K for

FLA3-All should be more than the sum of the K’s for each of the individual species.

The sum of the estimated K values for the three individual species is more than

100000 above the estimated value for K for FLA3-All.
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Table 4.3: Optimal parameter values for each of the three key species using maxi-
mum likelihood method for Schaefer model

Species K r q σ -Log Likelihood
ESO 51261.53 2.314671 0.00002185303 0.1334687 -7.139348
LSO 108802.9 2.614116 0.00001 0.1691975 -4.141916
SFL 103890.1 2.326340 0.00001 0.1247933 -7.946086

FLA3-All 109508.9 1.834420 0.00001000039 0.1656193 -4.550041

FLA 3 ALL

C
P

U
E

 in
de

x

1991 1993 1995 1997 1999 2001

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Figure 4.5: The observed CPUE (dots) and the line of best fit for FLA3 - All.
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Figure 4.6: The observed CPUE (dots) and the line of best fit for New Zealand sole
(ESO).
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Figure 4.7: The observed CPUE (dots) and the line of best fit for lemon sole (LSO).
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Figure 4.8: The observed CPUE (dots) and the line of best fit for sand flounder
(SFL).
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Based on previous assumptions of what the parameter r should be, FLA3-All

seems to provide better estimates than for the individual species. However, to date

there have been no biological studies which calculate the true value for r for this

family of fish. Therefore it is difficult to establish whether these estimates are

realistic.

4.3.2 Likelihood Profile

As described earlier, we can determine the confidence of the estimated parameters r

and K by conducting a likelihood profile for each of these parameters. This was done

for each of the three individual species. The values of the negative log likelihoods are

plotted against the values of r and K (see the Figures 4.10, 4.9, 4.12, 4.11, 4.14 and

4.13). The 95% confidence bounds are also plotted for each of the three species. For

each of the three species, the optimal values for both r and K are very uncertain.

The plotted confidence bounds show that the range of possible optimal parameters

is very wide and therefore the confidence of the optimal parameters is very low.

The likelihood of the above values for K for each of the individual species was

discussed with Mike Beentjes, who has done a lot of work on this stock and in the

stock area of interest. We considered the combined values for K for ESO, LSO and

SFL, which is 263954.5. The highest level of catch taken since 1983 is 2573 tons,

which was taken in the 1996-1997 fishing year. As a percentage of the estimated

virgin biomass this catch is around 1%. If we assume that the amount of catch

taken is 10% of the biomass at that time (a reasonable estimate according to Mike

Beentjes), and that the catch in the current fishing year is 2500 tons, then that would

indicate that the current biomass is 25000 tons, which is 10% of the estimated virgin

biomass. This indicates that these values for the virgin biomasses are not altogether

impossible, however they are much higher than expected, and at that level the fishery

is being under-fished.

Fishery managers use these percentages to determine what action needs to be

taken to maintain sustainable catch levels. In New Zealand under the 2009 leg-

islation, when a fishery falls below 20% of the virgin biomass the catch must be

reduced to allow the stock to rebuild, and when a fishery falls below 10% of the

virgin biomass, closing the fishery should be considered.
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Figure 4.9: Likelihood profile associated with r for New Zealand sole (ESO).

Figure 4.10: Likelihood profile associated with K for New Zealand sole (ESO).
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Figure 4.11: Likelihood profile associated with r for lemon sole (LSO).

Figure 4.12: Likelihood profile associated with K for lemon sole (LSO).
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Figure 4.13: Likelihood profile associated with r for sand flounder (SFL).

Figure 4.14: Likelihood profile associated with K for sand flounder (SFL).
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4.3.3 Maximum Likelihood using Pella-Tomlinson Model with

m = 3

The same code that was used for the maximum likelihood for the Schaefer model

was applied to the Pella-Tomlinson model with m = 3, with one difference in the line

calculating the new biomass. The program outputted an error after the simulated

annealing step:

Error in optim(y, fr, method = "SANN", control = list(maxit = 1e+05),

: non-finite finite-difference value [1]

which means that the first element y (y = (K, r, q, σ)), has one or more elements

that are either infinite, not a number (NaN) or not available (NA). Therefore, this

program fails for the Pella-Tomlinson model.

4.3.4 Maximum Likelihood using Fox Model

Applying the same program to the Fox model was successful. The program works

for the simulated annealing step as well as the Nelder and Mead step, and the output

from the program indicates that the values converge. The results from the maximum

likelihood method using the Fox model are summarized in Table 4.4.

Table 4.4: Optimal parameter values for each of the three key species using maxi-
mum likelihood method for Fox model

Species K r q σ -Log Likelihood
ESO 49984.56 25.27234 0.0000224 0.1332784 -7.156673
LSO 108638.9 30.19385 0.00001 0.1725430 -4.05817
SFL 103880.7 26.84465 0.00001 0.1247861 -7.945668

FLA3-All 115959.8 1.025068 0.00001 0.1789020 -3.479238

The CPUE was plotted with the fit from the model for each of the four cases

FLA-All, ESO, LSO and SFL (see Figures 4.15, 4.16, 4.17, 4.18). Comparing the

hake example with the likelihood method using the Fox model shows the great

uncertainty in these estimates. The optimal values for r for each of the individual

species are extremely high compared with the estimated values from the Schaefer

model (approximately 10 times more). The combined value of r (FLA-All) is lower
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than the values obtained using the Schaefer model, and is more realistic than the

individual r’s. The K values are close to those calculated using the Schaefer model.

The likelihood profiles yielded wide confidence intervals like those from the maximum

likelihood estimates for the Schaefer model.
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Figure 4.15: The observed CPUE (dots) and the line of best fit for FLA3 - All.

4.3.5 Summary of Maximum Likelihood Estimates

Comparing the plots for the Namibia hake example and the flatfish data outlines

the difference in certainty between the two sets of estimated parameters. Therefore,

further work needs to be done to obtain more certain estimates for r and K, and the

uncertainty of the estimated parameters needs to be accounted for in the simulation

model and also in the analysis of the results.

The great uncertainty in the parameter estimates for flatfish was expected due

to the behaviour between the CPUE and catch data, as discussed in the previous

chapter, where trends in CPUE do not clearly relate to trends in catch (i.e. when

catch goes up CPUE goes down and vice-versa). Due to the high level of uncertainty

in the parameter estimates, the Bayesian goodness of fit method was applied to

attempt to estimate more certain biological parameters.
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Figure 4.16: The observed CPUE (dots) and the line of best fit for New Zealand
sole (ESO).
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Figure 4.17: The observed CPUE (dots) and the line of best fit for lemon sole (LSO).
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Figure 4.18: The observed CPUE (dots) and the line of best fit for sand flounder
(SFL).

4.4 Bayesian Goodness of Fit

4.4.1 Introduction

Bayesian goodness of fit is based on Bayes’ Theorem, which was developed and

named after Thomas Bayes (for further reading on Bayes’ Theorem, see [28]). The

basis for use of this method in estimating parameters is that often there is some

previous information available. In particular, Bayesian goodness of fit is useful when

previous (but independent) studies have been conducted. This method allows the

information from previous studies to be incorporated into the parameter estimation.

Bayes’ theorem can be written in terms of probabilities using the basic formula

P (H|Data) =
P (Data|H)P (H)

P (Data)
, (4.7)

where H is the given hypothesis. P (H) is known as the prior probability which is

the probability of H before the data was obtained. P (Data|H) is the probability

of the data when the hypothesis H is true and P (H|Data) is called the posterior

probability, which is the probability of H given the data. The term in the denomi-
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nator P (Data) represents the probability of the data over all hypotheses, which can

be summed over i for all possible hypotheses Hi.

Although there have been few studies conducted on flatfish species in New

Zealand, information from studies conducted on flatfish species from around the

world can be incorporated as prior information in the parameter estimation since

many flatfish species share common biological characteristics and have similar life

expectancies. Information from the Fish Base website was incorporated into the

calculation to attempt to better estimate the unknown parameters.

4.4.2 Biological Parameters from Fish Base

The Fish Base website provides a catalogue of information available for more than

30000 individual fish species from around the world [15]. The site is available through

the internet as well as on CD-rom, with genetic information, morphology, catch

analysis, fish statistics, and more. There is also a life-history tool which makes an

estimation of the value of r using the maximum length and the maximum age which

the species can live to, as well as other biological parameters. The site includes

references from more than 40000 sources, and has contributions from more than

1600 collaborators.

The life-history tool was developed by Eli Agbayani, a former Fish Base staff

member. This tool was used to estimate the parameters for the species in this study.

The tool begins with an estimate for either the maximum length, Lmax or the asymp-

totic length L∞ (the mean length fish would grow to if allowed to grow indefinitely).

In some cases, this information is published in the website, otherwise the user can

enter this information. Using these values, along with available information on the

length at maturity, natural mortality rate, life span, age at first maturity, relative

recruit per yield, intrinsic rate of increase r, as well as the growth parameter K

(from the von Bertalanffy growth function) the missing parameters are estimated.

The values of the biological parameters are already on the Fish Base website, but

these can all be updated if better estimates are known. This allows the user to

improve the estimates when more information is gathered. The key parameter of

interest from this tool in this study is the rate of increase r.

The tool was able to be used for New Zealand sole and New Zealand sand floun-

52



der, but not for New Zealand lemon sole (an error message was displayed). Using the

life-history tool for New Zealand sole with maximum length 50cm and maximum age

5 years, the tool calculated that the growth rate r is 1.92. Similarly, using the tool

for New Zealand sand flounder with L∞ = 37.4, the value for r is given as 2.8 (the

tool allows the user to enter a value for L∞ but not for Lmax for the sand flounder).

This value for the asymptotic length is based on data for males from the Fish Base

website. If we run the tool again using L∞ = 59.9, which is the asymptotic length

for females given by Fish Base, the life-history tool gives a value for r of 1.3. Using

the average of these two asymptotic lengths, 48.7, calculates r as 1.76.

4.4.3 Regression Analysis

Using the life-history tool from Fish Base, the growth rates (r) of 40 species of

flatfish from around the world were estimated. These 40 species were chosen from

over 600 species of sole and over 500 species of flounder at random. Only species

for which there was enough information that the life-history tool was available were

used, and those which led to an error message were excluded. The values for Lmax

that were used as a basis for the estimates were the original entered values set for

each of the species in Fish Base (see Table 4.6).

Different trend lines were fitted to the Lmax and r values from the 40 species

from Fish Base in Microsoft Excel 2007. Linear, power, polynomial and log trend

lines were fitted Using the formulae outputted from the trend lines an estimate for

r was obtained for each of the three key species in FLA3 using the mean values of

Lmax for each of the three key species (see Table 4.5).

Table 4.5: Estimate of r for each of the three key species

ESO LSO SFL

Linear 1.3427 2.1827 1.9027
Power 1.259872831 1.651520634 1.651520634
Polynomial 1.0078 1.5133 1.2498
Log 1.128324337 1.852488121 1.584649498

A log-normal distribution was also fitted to the data from Fish Base using the

Easy Fit 5.1 Professional statistical program. The prior for r was constructed as

53



a lognormal distribution with µ = 0.73881, τ = 2.588915 from the lognormal fit in

Figure 4.19. The prior for K was a non-informative prior with a uniform distribution

from 0 to 200000. From discussions with Matthew Dunn and Mike Beentjes (both

from NIWA) this non-informative prior was considered to be the best prior for K at

the time due to the uncertainty in K and no prior information available. The prior

for q was also kept relatively uninformative, with a gamma distribution being used

with r = 1, µ = 1000 (this is a standard non-informative prior gamma distribution).

The biomass was calculated for the 12 time steps that data was available for the

catch and CPUE, with an error term included in this calculation to allow for the

uncertainty in the biomass calculation. The biomass was assumed to follow a normal

distribution and the CPUE was assumed to follow a log-normal distribution. A

gamma distribution was used for the τ values for the error in the CPUE and the

biomass calculation. These distributions were chosen based on the expected values

for the parameters following discussions with Matthew Dunn (NIWA) and Geoff

Jones (statistician, Massey University).

Figure 4.19: Log-normal fit of r from the data obtained from Fish Base
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Table 4.6: Estimated r data for sole and flounder from Fish Base

Common Name Country Species Lmax r
Annular sole Australia Brachirus annularis 13 6.22

Big-eyed tongue-sole Australia Cynoglossus macrophthalmus 27.7 2.64
Black sole Australia Synaptura nigra 55 1.76

Blackhand sole UK Solea bleekeri 17 3.54
Brown sole UK Achirus klunzingeri 23 3.5
Butter sole UK Isopsetta isolepis 55 1.36
Dover sole UK Microstomus pacificus 76 1.34
Eyed sole UK Microchirus ocellatus 20 2.94

Flathead sole UK Hippoglossoides elassodon 52 1.42
Freshwater sole Australia Trinectes maculatus 20 2.7

Fringed sole UK Trinectes fimbriatus 9 8.34
Guinean sole UK Synaptura cadenati 35 2.38
Klein’s sole UK Synapturichthys kleinii 40 1.72
Lemon sole Canada Parophrys vetulus 49 1.34
Lemon sole Sth. Africa Solea fulvomarginata 26 2.28
Lemon sole UK Microstomus kitt 65 0.82

Long tongue sole UK Cynoglossus lingua 46.9 45 1.66
Long-finned sole UK Glyptocephalus zachirus 60 0.62

Marbled sole Japan Pseudopleuronectes yokohamae 45 1.72
Moses sole Micronesia Pardachirus marmoratus 26 3.26

Pacific sand sole UK Psettichthys melanostictus 63 1.24
Red tonguesole UK Cynoglossus joyneri 24 1.92

Sole Australia Paraplagusia bilineata 30 2.44
Southern sole Australia Aseraggodes haackeanus 14 4.22
Whiskered sole UK Monochirus hispidus 20 2.66

American smooth flounder UK Liopsetta putnami 30 1.44
Arctic flounder USA Liopsetta glacialis 35 0.38

Banded-fin flounder Australia Azygopus pinnifasciatus 20 2.1
Bay flounder Australia Ammotretis rostratus 30 1.44

Black flounder NZ Rhombosolea retiaria 25 2.18
Channel flounder UK Syacium micrurum 40 2.84
European flounder UK Platichthys flesus 60 1.02

Flounder Australia Pseudorhombus arsius 45 1.74
Greenback flounder NZ Rhombosolea tapirina 45 1.26

Jenyn’s flounder Australia Pseudorhombus jenynsii 34 2.44
Long-fin right-eye flounder UK Nematops macrochirus 15 2.62

Mottled flounder UK Bothus maculiferus 25 2.9
Pacific eyed flounder UK Bothus constellatus 15.7 3.1
Southern flounder UK Paralichthys lethostigma 83 1.56

Yellow-dabbled flounder UK Brachypleura novaezeelandiae 14 5.92
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4.4.4 Implementation

The Bayesian goodness of fit method was applied to the data for FLA3 using Win-

BUGS version 1.4 (a program written specifically to do Bayesian analysis using

Markov chain Monte Carlo methods). Using the WinBUGS program, a model was

written to estimate the parameters K, r, and q (see Appendix C). The method used

to estimate the parameters using the WinBUGS program involves using Markov

chain Monte Carlo (MCMC) simulation with Gibbs sampling. Using prior esti-

mates for K, r and q, a loop was used to calculate the new biomass at each time.

Probability density functions were used for the prior estimates for K, r and q. The

program was run individually for each of the three species and took approximately

5 hours to run 10000000 updates with the updates thinned by every 1000. Figure

4.20 shows the relationships between the parameters. Parameters within a loop are

placed within the plate with constant parameters denoted as rectangles, stochastic

nodes denoted as ellipses, and the relationships between the parameters connected

using solid arrows which indicate stochastic dependence, and hollow arrows which

indicate logical function.

Figure 4.20: The relationship between the parameters of interest
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4.4.5 Bayesian Method using Schaefer Model

The parameter estimates obtained from updating the MCMC chains 10000000 times

using the Schaefer model are summarized in Table 4.7.

Table 4.7: Optimal parameter values for each of the three key species using Bayesian
statistical methods with the Schaefer model.

Species K r q MSY
ESO 6528 1.647 0.0001489 2688
LSO 12160 1.634 0.00005806 4968
SFL 8079 1.442 0.0000995 2912

These values for K seem more reasonable than those obtained from the max-

imum likelihood estimations, based on the expected value of the initial biomass

relative to the current amount of catches. The estimates for r are close in value,

which is expected since these species have similar life expectancies and biological

characteristics.

The following figures (4.21, 4.22, 4.23) are from the WinBUGS program for the

Schaefer model with density, quantile and history graphs plotted for r and K for

ESO, LSO and SFL. Each plot shows the output from 10 million iterations which

were thinned by 1000.

Figure 4.21 shows the plots related to ESO. Ideally for the density plot, we would

like the curve to be smooth with only one peak, similar to a normal distribution

curve. The shape of the density plot for r is reasonably similar to a normal curve,

though not as smooth. For K, the density plot has multiple peaks, and therefore

has a number of likely values. We can see from the quantile plots that the 2.5%

and 97.5% quantiles show a wide range for both r and K. The history plots show

the desired behaviour for r with the estimates fluctuating consistently through time,

while the history plot for K shows that the values are fluctuating inconsistently and

therefore they are not converging. The history and density plots for this species

show that the estimate for r is relatively certain while the estimate for K is more

uncertain.

Figure 4.22 shows the plots related to LSO. Again the density plots show multiple

peaks, though the shape itself is relatively normal for r and skewed for K. The
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quantile plots also show a high level of uncertainty, with wide ranges for both r and

K, with r between 0.5 and 2.5 and K between approximately 8000 and 30000. The

history plot for r indicate that the chain is converging, however the history plot for

K shows a number of uneven fluctuations which indicate that the estimate is not

converging and very uncertain.

The plots related to SFL are shown in Figure 4.23. The density plot for K show

that there are several peaks, with similar likelihood, which indicate that the estimate

for K is extremely uncertain for this species. The density plot for r is reasonable,

with one significant peak and normal-like shape.

Presumably these results reflect the fact that r has an informative prior and K

has an un-informative vague prior. Similar to the other species, the quantile plot

for r shows the 95% confidence interval is between 0.5 and 2.2.

4.4.6 Bayesian Method using Pella-Tomlinson Model with

m = 3

The same WinBUGS code that was used for the Bayesian parameter estimation

using the Schaefer model was used for the Pella-Tomlinson model with m = 3, with

the only difference between the two codes in the line used to calculate the biomass.

For the Pella-Tomlinson model with m = 3, WinBUGS was unable to generate

initial values for the uninitialized parameters. WinBUGS uses forward sampling

to generate initial values based on the prior distributions given in the model. The

sampling continues until a feasible solution is found, however once 100 attempts

have been made to generate the initial values, the sampling stops and a trap mes-

sage comes up with “undefined real result” displayed. The reason the initial value

generator fails can be due to a prior distribution being too vague (see WinBUGS

manual). Without the generated initial values, the program cannot run the MCMC

simulation. The program also rejects manually inputted initial values for the unini-

tialized parameters. Therefore this method fails for the Pella-Tomlinson model with

m = 3, using these initial values and prior distributions.

58



The figures below are for ESO.

(a) ESO: Density graph for K from Bayesian pa-
rameter estimate in WinBUGS.

(b) ESO: Quantile graph for K with 2.5% and
97.5% percentiles.

(c) ESO: Density graph for r from Bayesian pa-
rameter estimate in WinBUGS.

(d) ESO: Quantile graph for r with 2.5% and
97.5% percentiles.

(e) ESO: History graph for K.

(f) ESO: History graph for r.

Figure 4.21: Graphs for ESO parameter estimates from WinBUGS
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The figures below are for LSO.

(a) LSO: Density graph for K from Bayesian pa-
rameter estimate in WinBUGS.

(b) LSO: Quantile graph for K with 2.5% and
97.5% percentiles.

(c) LSO: Density graph for r from Bayesian pa-
rameter estimate in WinBUGS.

(d) LSO: Quantile graph for r with 2.5% and
97.5% percentiles.

(e) LSO: History graph for K.

(f) LSO: History graph for r.

Figure 4.22: Graphs for LSO parameter estimates from WinBUGS
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The figures below are for SFL.

(a) SFL: Density graph for K from Bayesian pa-
rameter estimate in WinBUGS.

(b) SFL: Quantile graph for K with 2.5% and
97.5% percentiles.

(c) SFL: Density graph for r from Bayesian pa-
rameter estimate in WinBUGS.

(d) SFL: Quantile graph for r with 2.5% and
97.5% percentiles.

(e) SFL: History graph for K.

(f) SFL: History graph for r.

Figure 4.23: Graphs for SFL parameter estimates from WinBUGS
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4.4.7 Bayesian Method using Fox model

The WinBUGS code written for the Schaefer model was applied to the Fox model.

The code was run for 10 million iterations, thinned by 1000. The optimal parameter

values from the WinBUGS output for this model are summarized in Table 4.8, along

with the MSY for each of the species.

Table 4.8: Optimal parameter values for each of the three key species using Bayesian
statistical methods with the Fox model.

Species K r q MSY
ESO 9986 4.508 0.000027 1798
LSO 24355 2.6201 0.0000684 2325
SFL 25070 2.772 0.0000881 2524

The values for K are reasonable, and quite similar to those obtained from the

Schaefer model. The values for the r’s are more likely than those obtained from the

maximum likelihood estimates for LSO and SFL, however the r for ESO is still very

high. The r values are expected to be close in value, but the r for ESO is much

higher than r’s for LSO and SFL.

Figures 4.24, 4.25 and 4.26 show the outputted density, history and quantile

plots from the WinBUGS program for each of the three key species for the Bayesian

estimates using the Fox model.

Figure 4.24 shows the plots related to ESO. The density graphs show that r and

K are correlated, which can be seen by the opposing skews. The density plot for K

has multiple peaks, which indicate that the estimate is uncertain, while the density

plot for r is reasonably smooth. The quantile plots indicate that the confidence

bounds are wide for both K and r. The history plot for K indicates that the chain

is not converging, whereas the history plot for r is oscillating reasonably consistently.

The plots relating to LSO are in Figure 4.25. The density graphs for LSO also

indicate that K and r are correlated. The density plot for r is very skewed, and the

quantile plots for r show an extremely wide range for the confidence bounds. The

history plot for r shows that the chain is oscillating between 0 and 20. The density

plot for K shows high uncertainty due to the multiple peaks, and the quantile plot

shows a wide range of values within the confidence bounds.
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The figures below are for ESO.

(a) ESO: Density graph for K from Bayesian pa-
rameter estimate in WinBUGS.

(b) ESO: Quantile graph for K with 2.5% and
97.5% percentiles.

(c) ESO: Density graph for r from Bayesian pa-
rameter estimate in WinBUGS.

(d) ESO: Quantile graph for r with 2.5% and
97.5% percentiles.

(e) ESO: History graph for K.

(f) ESO: History graph for r.

Figure 4.24: Graphs for ESO parameter estimates from WinBUGS
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The figures below are for LSO.

(a) LSO: Density graph for K from Bayesian pa-
rameter estimate in WinBUGS.

(b) LSO: Quantile graph for K with 2.5% and
97.5% percentiles.

(c) LSO: Density graph for r from Bayesian pa-
rameter estimate in WinBUGS.

(d) LSO: Quantile graph for r with 2.5% and
97.5% percentiles.

(e) LSO: History graph for K.

(f) LSO: History graph for r.

Figure 4.25: Graphs for LSO parameter estimates from WinBUGS
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The figures below are for SFL.

(a) SFL: Density graph for K from Bayesian pa-
rameter estimate in WinBUGS.

(b) SFL: Quantile graph for K with 2.5% and
97.5% percentiles.

(c) SFL: Density graph for r from Bayesian pa-
rameter estimate in WinBUGS.

(d) SFL: Quantile graph for r with 2.5% and
97.5% percentiles.

(e) SFL: History graph for K.

(f) SFL: History graph for r.

Figure 4.26: Graphs for SFL parameter estimates from WinBUGS
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Figure 4.26 shows the plots relating to SFL. The density plot for K show that

this estimate is the least certain of the three species, with the curve least-resembling

a normal curve. The density plot for r is also skewed. The quantile plots both show

a wide range of values within the confidence bounds. The history plot for K shows

that the chain is not converging, whereas the history plot for r is the most dense of

all the species.

4.5 Concluding Remarks

The estimated values for r and K calculated using the maximum likelihood method

were very uncertain for both the Schaefer model and the Fox model. This was

expected since the assumption that the initial biomass equals the biomass that fish

would tend to in absence of fishing is invalid in this case. The CPUE data also

do not show the behaviour expected from a fishery of this kind, where the CPUE

decreases as catched increase, up to a point where CPUE will begin to increase when

catches decrease, as was exhibited by the Namibia Hake example.

This led to the use of the Bayesian method to attempt to increase the certainty

of the parameters. These estimates were expected to have a high level uncertainty

for the same reasons (the assumption that B0 = K, and the poor data). However,

the estimates for r for each of the three species obtained using Bayesian methods are

closer to the estimated values from Fish Base and the regression described in this

chapter than the estimated values from the maximum likelihood calculations. This

was expected since the priors came from Fish Base. The plots from WinBUGS show

that overall the estimates for r are reasonably certain compared with the estimates

for K which are very uncertain. These findings were expected since the prior log

normal distribution for r used in the calculation was an informed prior, while the

prior for K was non-informative. In fact gave very little information about K since

a uniform distribution was used between a very wide range (between 0 and 200000).

Using both methods the estimated values for K for each of the species are very

uncertain.

The Pella-Tomlinson model with m = 3 fails due to the nature of the model,

and the initial values and priors used. The non-zero fixed point for this model is
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stable only for q < r < q + 1 (see previous chapter), therefore is not suitable for

these species, where r is expected to be close to 2. This fixed point is also much

smaller than the non-zero fixed point for the Schaefer model,

B̄Schaefer = K
(

1 − q

r

)

(4.8)

and since q ≪ 1 then

B̄Schaefer ≈ K. (4.9)

Comparing this to the non-zero fixed point for the Pella-Tomlinson model with

m = 3

B̄m=3 = B̄ =

√

r2K − rKq

r
(4.10)

and again using the fact that q ≪ 1,

B̄m=3 ≈
√

K. (4.11)

Also, due to the cubed term in the model, the biomass decreases at a much faster

rate than the Schaefer and Fox models. Since the K values are expected to be

reasonably high for this problem (initial value used in the estimation was 10000t),

the cubed term will then become very large. In order for this method to obtain

non-zero values after the first time-step in the simulation models, the inequality

K + rK − rK2 > Catch (4.12)

must be satisfied. Since this inequality is unlikely to be satisfied for this type of

data, the Pella-Tomlinson model with m = 3 gives no useful information for this

problem.

Based on discussions with fisheries employees from NIWA, the estimated val-

ues from the Bayesian calculations are more reasonable than those calculated using

maximum likelihood. Consequently, the simulation models were run with the pa-

rameter estimates obtained using the Bayesian method rather than those obtained
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from the maximum likelihood method. Due to the fact that these estimates are still

relatively uncertain, the simulation models were run with Monte Carlo simulation

on the parameter estimates to account for this uncertainty.
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Chapter 5

MANAGEMENT STRATEGY

OPTIONS

5.1 Introduction

There are several different ways in which a stock can be managed. The current

management method for the FLA 3 fishing area allows a total amount of commercial

catch (TACC) of 2681 tonnes. As was discussed earlier, there are some concerns for

this stock due to the fact that several species are managed as one stock, and the high

level of the TACC means this stock shows behaviour characteristic of open fisheries

due to the fact that the TACC is well above yearly catches. This document presents

six different management options, which are detailed below. The first three options

are based on those in [7] which include the current management strategy, a TACC

based on the average commercial catch from a 15 year period, and a TACC based on

the average commercial catch from a 5 year period. Three further options use the

data obtained from this study; these are based on the maximum sustainable yield

(MSY) for the most productive species, the MSY for the least productive species,

and a MSY based on the average of all three species. Since this project is interested

only on the commercial catches, the management options discussed in this chapter

refer only to the commercial catches. The additional allowances for recreational and

customary fishing are ignored in this study.
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5.2 Option 1

The first management option is based on the current management strategy. Cur-

rently the TACC is set at 2681 tonnes. This allowance is set at a high level above

yearly catch, and allows fishers to capitalize on years with high abundance. This

high level for the TACC was set in 1987, based on the catch from the 1983 fishing

year (which was the highest ever recorded catch from FLA 3 on record [7]).

5.3 Option 2

The second option proposed in [7] is a TACC of 1780 tonnes. This figure comes

from the average catch from the 15 year period between 1991 and 2006. This period

allows for the natural variability in flatfish abundance that occurs over a number

of years. This option sets the allowable catch at a level greater than the reported

commercial catch per year for the last 10 fishing years. This means that effectively

the behaviour of the fishers can remain unchanged, but this lower level of the TACC

will close the gap between the TACC and yearly catch amounts, which can reduce

the incidental by-catch of other species caught when targeting flatfish.

5.4 Option 3

A TACC of 1430 tonnes is proposed as the third option in [7]. This allowance is

based on the average catch from the 5-year period from 2001-2006. This TACC is

lower than that of option 2 due to the fact that there was a high level of catches in

the years 1995-1996 and 1997-1998, which is not in the period considered for this

TACC.

5.5 Option 4

The fourth management option is based on the data found in the previous chapter.

The allowance for commercial catches for this option is 14902 tonnes for the Schaefer

model, and 7572 tonnes for the Fox model. This TACC recommendation is based on

the MSY for the most abundant stock (which is lemon sole (LSO) for the Schaefer
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Figure 5.1: Landed Catch plotted with proposed TACC for management options 1,2
and 3 from recommendations from [7]

model and sand flounder (SFL) for the Fox model), so the catch for this option

equals three times the MSY for LSO (or SFL), as calculated from the Bayesian

parameter estimates from WinBUGS (see previous chapter). This option allows for

the abundance in the most productive stock and allows catches to remain high for

the abundant species.

5.6 Option 5

The fifth management option is based on the MSY for the least productive stock as

calculated using the data from the previous chapter. The TACC recommendation

for this option is 8738 tonnes for the Schaefer model and 5394 tonnes for the Fox

model. This TACC recommendation is based on the MSY for the least abundant

stock (which is New Zealand sole (ESO) for both models), so the catch for this option

equals three times the MSY for ESO, as calculated from the Bayesian parameter

estimates from WinBUGS (see previous chapter). This management strategy is a

low risk option since it ensures sustainable production of the least abundant stock,

and therefore the more abundant stocks as well. However, this catch is lower than

that of option 4 and therefore there may potentially be a loss of profits due to

decreased catches.
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5.7 Option 6

The last option considered in this project is also based on the data from the previous

chapter. The TACC recommendation for this option is 10568 tonnes for the Schaefer

model and 6647 tonnes for the Fox model. Here the TACC is based on the MSY for

the average of the three species, as calculated from the Bayesian parameter estimates

from WinBUGS (see previous chapter).This method reconciles with the previous two

methods in that it provides a middle ground between setting the TACC too high

and setting it too low.

Figure 5.2: Landed Catch plotted with proposed TACC for management options 4,
5 and 6 from bayesian estimates calculated in previous chapter

Table 5.1: Management Options with recommended TACC’s

Basis for Recommendation Recommended TACC (t)
Option 1 Status Quo 2681
Option 2 15-year average 1780
Option 3 5-year average 1430
Option 4 MSY (LSO) 14902-Schaefer, 75210-Fox
Option 5 MSY (SFL) 8738-Schaefer, 29958-Fox
Option 6 MSY (Combined) 10568-Schaefer, 59416-Fox
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Chapter 6

RISK ASSESSMENT

6.1 Introduction

This chapter contains figures from Matlab showing the results from the work de-

scribed in the previous chapters. The sections are divided into the six management

options described in Chapter 5. Both simulation models described in Chapter 3

were applied to each management option for the Schaefer model and Fox model.

For each management option there are four figures - two for each of the simulation

models, with 1000 simulations for each of the species. The simulations are coloured

according to the behaviour of the simulation based on whether they are stable and

converge to a positive number (green), oscillating indefinitely (red), or are decreas-

ing towards 0 (blue). For each run, the number of simulations which ended above

the Maximum Sustainable Yield (MSY) were recorded (above 0.5K for the Schaefer

model, and above 0.386K for the Fox model), as well as those which ended below

10% and 20% of the starting biomass. The results are described in this chapter, and

analysed in the following chapters.

6.2 Option 1

The Matlab code for m = 1 and m = 2 was implemented with catch = 2681. The

results are summarized in Table 6.1 as well as in Figures 6.1, 6.2, 6.3, 6.4.
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Table 6.1: Summary of results for option 1

Simulation Model 1 Simulation Model 2

Species Type Schaefer Fox Schaefer Fox

ESO
Above 0.5K 97.5 84.2 98.2 88.4

Above 0.368K 97.6 85.6 98.6 89.9
Less than 20% 2.4 12.8 1.2 8.6
Less than 10% 2.4 12.4 1.2 8.1

LSO
Above 0.5K 95.7 83.0 97.5 75.7

Above 0.368K 96.3 85.3 98.6 80.5
Less than 20% 3.3 12.2 1.2 15.6
Less than 10% 3.3 12.2 1.2 14.9

SFL
Above 0.5K 98.1 88.5 98.1 81.7

Above 0.368K 98.1 89.6 98.4 85.7
Less than 20% 1.8 8.0 1.4 10.6
Less than 10% 1.8 8.0 1.4 10.1

Figures in the table represent the probability of the simulations ending above 0.5K
(BMSY for Schaefer model), above 0.368K (BMSY for Fox model), below 10% of the
starting (virgin) biomass, and below 20% of the starting biomass.

6.2.1 Schaefer Model

Using the Schaefer model the management strategy is low risk with a very low

percentage (less than 5%) of the simulations going below 10% of the virgin biomass

for each of the three species for both simulation types.

6.2.2 Fox Model

Using the current catch quota, the management strategy is also a low risk option

for the Fox model. The percentage of simulations which go below 20% of the virgin

biomass is relatively low (below 15%) for ESO and LSO and low (below 10%) for

SFL for the first simulation type. This behaviour is expected for this simulation

type since the fishers will continue to catch a higher amount of ESO and LSO than

SFL. For the second simulation type, however, the percentage of simulations which

go below 20% of the virgin biomass is higher for LSO (just above 15%), and more

even for ESO and SFL (around 10% for each). This is expected since fishers will

begin to catch more of the less abundant species when the population of the most

abundant species begins to decrease.
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The following three figures are for the Schaefer model:
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Figure 6.1: Option 1 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.2: Option 1 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Schaefer model:
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Figure 6.3: Option 1 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)

77



The following three figures are for the Fox model:
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Figure 6.4: Option 1 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)

78



6.3 Option 2

The Matlab code for m = 1 and m = 2 was implemented with catch = 1780. The

results for option 2 are summarized in Table 6.2 and in Figures 6.5, 6.6, 6.7, 6.8.

Table 6.2: Summary of results for option 2

Simulation Model 1 Simulation Model 2

Species Type Schaefer Fox Schaefer Fox

ESO
Above 0.5K 98.8 90.9 99.0 93.8

Above 0.368K 98.8 92.7 99.3 94.4
Less than 20% 1.2 6.3 0.5 4.7
Less than 10% 1.2 6.2 0.5 4.7

LSO
Above 0.5K 97.5 87.5 98.8 85.0

Above 0.368K 98.2 89.5 99.0 86.6
Less than 20% 1.8 7.4 0.7 10.1
Less than 10% 1.8 7.4 0.6 9.3

SFL
Above 0.5K 97.8 91.7 99.2 89.3

Above 0.368K 97.9 92.7 99.3 91.0
Less than 20% 2.0 6.4 0.7 6.7
Less than 10% 2.0 6.4 0.5 6.2

Figures in the table represent the probability of the simulations ending above 0.5K
(BMSY for Schaefer model), above 0.368K (BMSY for Fox model), below 10% of the
starting (virgin) biomass, and below 20% of the starting biomass.

6.3.1 Schaefer Model

This management is a low risk option for all three species, with less than 5% of

simulations going below 10% of the virgin biomass, and over 95% of simulations

remaining above the MSY for all of the three species and for both simulation types.

6.3.2 Fox Model

This management strategy for the Fox model is also a low risk strategy, since less

than 10% of simulations ended below 10% of the virgin biomass of each of the three

species. For both simulation models over 85% of simulations remain above the MSY

for the Fox model (above 0.368K).
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The following three figures are for the Schaefer model:
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Figure 6.5: Option 2 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.6: Option 2 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Schaefer model:
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Figure 6.7: Option 2 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.8: Option 2 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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6.4 Option 3

Implement Matlab code for m = 1, and m = 2, with catch = 1430. The results

are summarized in Table 6.3 below along with Figures 6.9, 6.10, 6.11, 6.12 in the

following pages.

Table 6.3: Summary of results for option 3

Simulation Model 1 Simulation Model 2

Species Type Schaefer Fox Schaefer Fox

ESO
Above 0.5K 98.7 93.5 99.6 94.6

Above 0.368K 98.7 94.7 99.9 95.6
Less than 20% 1.3 4.6 0.1 3.5
Less than 10% 1.3 4.6 0.1 3.4

LSO
Above 0.5K 97.8 90.3 97.6 86.2

Above 0.368K 98.4 90.9 97.8 88.0
Less than 20% 1.5 6.8 1.9 8.5
Less than 10% 1.5 6.8 1.8 7.7

SFL
Above 0.5K 98.8 91.9 99.1 90.6

Above 0.368K 99.0 93.2 99.3 92.0
Less than 20% 1.0 4.7 0.6 5.4
Less than 10% 1.0 4.6 0.5 4.8

Figures in the table represent the probability of the simulations ending above 0.5K
(BMSY for Schaefer model), above 0.368K (BMSY for Fox model), below 10% of the
starting (virgin) biomass, and below 20% of the starting biomass.

6.4.1 Schaefer Model

This management option is a low risk option for the Schaefer model since both

simulation types result in less than 2% of simulations ending below 10% of the

virgin biomass for each of the three species.

6.4.2 Fox Model

For the Fox model, this is also a very low risk management option. For both simu-

lation models, over 85% of simulations remain above the MSY, meaning the stock

is likely to remain at sustainable levels under this management option. This option

has the lowest catch amount of the six management options proposed in this study,

and is the least risky option.
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The following three figures are for the Schaefer model:

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

14000
ESO

Year

B
io

m
as

s 
(t

on
ne

s)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 LSO

Year

B
io

m
as

s 
(t

on
ne

s)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4 SFL

Year

B
io

m
as

s 
(t

on
ne

s)

Figure 6.9: Option 3 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.10: Option 3 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Schaefer model:
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Figure 6.11: Option 3 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.12: Option 3 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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6.5 Option 4

Implement Matlab code for m = 1 and m = 2, with catch = 14902 for the Schaefer

model and catch = 7572 for the Fox model. The results are summarized in Table

6.4 and in Figures 6.13, 6.14, 6.15, 6.16 in the following pages.

Table 6.4: Summary of results for option 4

Simulation Model 1 Simulation Model 2

Species Type Schaefer Fox Schaefer Fox

ESO
Above 0.5K 11.1 29.7 8.0 27.1

Above 0.368K 11.3 33.7 9.2 29.4
Less than 20% 88.7 65.6 90.5 67.5
Less than 10% 88.7 65.6 90.5 66.9

LSO
Above 0.5K 57.0 45.5 12.6 18.9

Above 0.368K 57.1 49.6 12.9 26.3
Less than 20% 42.8 45.9 86.9 69.4
Less than 10% 42.8 45.9 86.9 68.2

SFL
Above 0.5K 58.6 74.1 8.2 29.5

Above 0.368K 58.6 76.3 9.5 35.3
Less than 20% 41.2 20.9 89.9 59.4
Less than 10% 41.2 20.7 89.8 59.0

Figures in the table represent the probability of the simulations ending above 0.5K
(BMSY for Schaefer model), above 0.368K (BMSY for Fox model), below 10% of the
starting (virgin) biomass, and below 20% of the starting biomass.

6.5.1 Schaefer Model

For simulation model 1 this management strategy has high risk for ESO (less than

15% of simulations ending above MSY) and medium risk for LSO and SFL (less

than 60% of simulations ending above MSY). However, using the second simulation

model, this strategy is high risk for all of the three species.

6.5.2 Fox Model

For the first simulation model, the risk is reasonably high for ESO with less than

25% of simulations ending above the MSY, less risky for LSO, and even less risky

for SFL. However, for the second simulation model, this method has medium risk

for all three species with less than 40% of simulations ending above the MSY.
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The following three figures are for the Schaefer model:
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Figure 6.13: Option 4 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.14: Option 4 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Schaefer model:
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Figure 6.15: Option 4 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.16: Option 4 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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6.6 Option 5

Implement Matlab code for m = 1 and m = 2, with catch = 8738 for the Schaefer

model and catch = 5394 for the Fox model. The results are summarized in Table

6.5 below as well as Figures 6.17, 6.18, 6.19, 6.20 in the following pages.

Table 6.5: Summary of results for option 5

Simulation Model 1 Simulation Model 2

Species Type Schaefer Fox Schaefer Fox

ESO
Above 0.5K 55.0 55.0 59.8 55.8

Above 0.368K 60.4 59.5 60.9 60.0
Less than 20% 38.7 39.1 38.7 37.0
Less than 10% 38.6 39.1 38.7 36.4

LSO
Above 0.5K 62.6 62.4 63.9 43.6

Above 0.368K 65.9 66.8 65.1 51.5
Less than 20% 30.3 29.2 34.4 40.5
Less than 10% 30.3 29.2 34.4 38.9

SFL
Above 0.5K 77.8 81.2 57.7 51.4

Above 0.368K 80.5 83.3 60.0 58.9
Less than 20% 14.4 45.0 38.8 34.5
Less than 10% 14.4 42.5 38.3 33.1

Figures in the table represent the probability of the simulations ending above 0.5K
(BMSY for Schaefer model), above 0.368K (BMSY for Fox model), below 10% of the
starting (virgin) biomass, and below 20% of the starting biomass.

6.6.1 Schaefer Model

This management option is a medium to low risk for each of the species using the

Schaefer model, with more than 50% of the simulations ending above the MSY for

both simulation models and less than 40% of simulations ending below 10% of the

virgin biomass.

6.6.2 Fox Model

Using the Fox model this management strategy is also a medium to low risk option,

with more than 55% of the simulations for the first simulation model ending above

the MSY, and more than 50% of the simulations ending above the MSY for the

second simulation model.
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The following three figures are for the Schaefer model:
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Figure 6.17: Option 5 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.18: Option 5 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Schaefer model:
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Figure 6.19: Option 5 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.20: Option 5 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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6.7 Option 6

Implement Matlab code for m = 1 and m = 2, with catch = 10568 for the Schaefer

model and catch = 6647 for the Fox model. The results are summarized in Table

6.6 below along with Figures 6.21, 6.22, 6.23, 6.24 in the following pages.

Table 6.6: Summary of results for option 6

Simulation Model 1 Simulation Model 2

Species Type Schaefer Fox Schaefer Fox

ESO
Above 0.5K 36.7 37.5 39.1 34.6

Above 0.368K 36.8 43.1 40.0 38.9
Less than 20% 62.9 56.0 59.2 58.0
Less than 10% 62.9 55.9 59.0 57.2

LSO
Above 0.5K 72.6 47.8 42.7 26.5

Above 0.368K 72.8 52.8 44.1 34.4
Less than 20% 27.2 43.5 55.5 59.4
Less than 10% 27.2 43.5 55.5 57.8

SFL
Above 0.5K 77.2 73.8 38.0 35.7

Above 0.368K 77.3 76.7 40.3 42.3
Less than 20% 22.5 19.8 58.7 51.8
Less than 10% 22.5 19.8 58.4 50.7

Figures in the table represent the probability of the simulations ending above 0.5K
(BMSY for Schaefer model), above 0.368K (BMSY for Fox model), below 10% of the
starting (virgin) biomass, and below 20% of the starting biomass.

6.7.1 Schaefer Model

This management strategy is medium to high risk for ESO for the first simulation

model and low risk for LSO and SFL for the Schaefer model. For the second sim-

ulation model, the strategy is medium risk for the three species with over 50% of

simulations falling below 10% of the virgin biomass.

6.7.2 Fox Model

For the Fox model this strategy is low risk for SFL and medium risk for ESO and

LSO for the first simulation model. For the second simulation model, this method

is medium risk for all three species with more than 50% of the simulations ending

below 10% of the virgin biomass.
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The following three figures are for the Schaefer model:
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Figure 6.21: Option 6 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.22: Option 6 - Simulation Model 1 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Schaefer model:
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Figure 6.23: Option 6 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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The following three figures are for the Fox model:
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Figure 6.24: Option 6 - Simulation Model 2 (green line: stable converging, blue:
decreasing towards zero, red: oscillating)
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Chapter 7

CONCLUSION

It is difficult to make definitive conclusions about the management options, due

to the high uncertainty in the parameter estimates. In particular, the estimates

for K are very uncertain, as seen in the density and history plots for the Bayesian

estimates in Chapter 4. The history plots show that the values are not converging

for K for each of the three species, even for a large number of iterations. Therefore,

more information is needed to make the estimates more certain. However, for the

r estimates, the density and history plots show that the values are converging and

are reasonably certain, because of the prior. The estimated values of r are also

reasonably close to the estimated values from Fish Base as well as the regression

because of the prior. With no information from the observations the prior will have

a large influence on the estimate.

As discussed in Chapter 3, the non-zero fixed point for the Schaefer model is

unstable for q < r < 2 + q. While the optimized values for r for each of the species

using the Bayesian method are less than 2 + q, the values used in the simulation

models ranged widely in the Monte Carlo simulation, due to the high level of uncer-

tainty in the parameter estimates. Consequently, a large number of simulations were

run with r > 2 + q and these simulations oscillate for long periods (marked in red

in the figures). For simulations of this type, the population may be over-estimated

or wrong.

With respect to the simulation models, the second type of model with non-

constant proportions of catch is probably more realistic than the first type of model

with constant catch proportions. In particular, when the population of the species
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becomes relatively low, it is unlikely that fishers will be able to catch the same num-

ber as when the populations are abundant, or that the fishers will be able to target

a specific species. It is more likely that the fishers will target flatfish in general,

and the proportion of catch will be based on the abundance of the species. These

models (type 2) are less pessimistic in general, and result in a more balanced level

of depletion than type 1 simulates. Though, if the fishers can target specific species,

then the simulations indicate that the initially less abundant species will be rela-

tively unaffected, whilst the initially most abundant species will become relatively

depleted. The results of model 1 (constant proportion) and model 2 (variable) were

very different for options 4-6.

Due to the short-falls of the Pella-Tomlinson model with m = 3, the Schaefer and

Fox models are the most appropriate model for this problem, along with the second

simulation type (with varying catch proportions). From the results in Chapter 6,

the Fox model shows that the current management strategy is a reasonably low risk

strategy for all three species, with most simulations ending above the MSY’s. This

indicates that the populations of each of the key species are likely to remain at

sustainable levels, based on the parameters used for the estimation.

From the figures and the tables in the risk assessment chapter, the safest (lowest

risk) management option is the third option with TACC of 1430t. In this study, the

preferred risk is the risk adverse options that minimise the chance of any simulations

going below 10% or 20% of K. This conclusion is obvious since this strategy has

the lowest catch allowance. However, the current management strategy (option 1),

maintains sustainable levels while at higher catch rates. Therefore, the simulations

indicate that this option is the optimal strategy for this area. The last three man-

agement options with TACC’s based on the parameter estimates in this study may

be all unrealistically high. Since there is concern for these species at the current level

of catch, it is unlikely that implementing a TACC higher than the current allowance

would be a suitable option. The high level of the MSY’s for each of the three species

may be due to the high levels of the estimated K values, compared with the current

level of catches. These estimates for the MSY’s are very uncertain since the MSY

is calculated using r and K for each of the species, and all the estimates for these

parameters are very uncertain. The figures for options 4, 5 and 6 show a number of
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simulations remaining at good levels. This is due to the nature of the models, where

the MSY’s are derived from the models themselves, and taking catch below the MSY

for each species will result in sustainable levels in the simulations. Those simulations

which go below 10% of the virgin biomass are the simulations which have a MSY

lower than the average MSY (calculated from the mean parameter estimates).

The key question for this problem was whether the management of these species

using a single catch quota will result in some of the individual species being under

or over-fished. Figures 6.1, 6.2, 6.3 and 6.4 indicate that all species remain at

sustainable levels, including ESO which is the least abundant species. The figures

for options 2 and 3 also show that all species are remaining at sustainable levels.

However, for the first simulation type, the options with higher catch quotas (options

4-6) show that the combined catch quota has a negative effect on ESO, which has

only 11.1% of simulations ending above the MSY for option 4 using the Schaefer

model, and only 33.3% for option 4 using the Fox model. For the second simulation

type, the simulations ending above the MSY’s are reasonably even for each of the

species. Since the second simulation type is considered to be more realistic, the

simulations indicate that managing these species using a single catch quota will not

result in the individual species being over-fished. However, from the simulations

no conclusions can be made about whether some of the individual species may be

under-fished.

Since the invalid assumption was made that the initial biomass was equal to

the biomass that fish would tend to in absence of fishing (K), no inferences can be

made for these species on suitable management decisions. This study is an initial

analysis of the stock, and should be treated purely as an academic exercise in fisheries

modelling.
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Chapter 8

DISCUSSION

Due to the fact that this study was based around the catch and CPUE data for

flatfish, it is worthwhile commenting on the validity of this data. The catch data

comes from fishers and processors, and the data from these sources can have some

biases. Fishers can catch flatfish when targeting other species, and this catch can go

unrecorded. Fish which are caught below the minimum size limits can be discarded,

which may contribute to the mortality rate of these species. The CPUE data used in

this study was based on data provided from a study commissioned by the Ministry of

Fisheries, which has not yet been published. Therefore the findings from the study

are only preliminary findings, and the results have not yet been critically reviewed

by the Ministry of Fisheries inshore working group.

While CPUE was used as the index of abundance in this study, this may not

be the best index to use. In some cases, CPUE can over-estimate the abundance of

the fishery, especially in cases where the fish school together. In this instance, the

CPUE can remain at the same level regardless of the population size, since fishers

will be able to continue catching the same amounts (providing they are fishing in an

area which includes some fish schools). CPUE for flatfish might change as fishers

change their target species (e.g. from flatfish to snapper). CPUE would then change,

but this has nothing to do with flatfish abundance. Therefore, the assumption that

CPUE provides a valid index of abundance can be a strong assumption to make.

In fisheries, the Maximum Sustainable Yield (MSY) can be used as a basis for

setting a catch quota. This choice is based on the assumption that the MSY is a

good estimate of the sustainable amounts of catch. However, this method has been
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highly criticized in the past due to the fact that the MSY can be an over-estimate

of the sustainable level of catch, and can ultimately result in populations becoming

depleted [22].

The prior estimate for the r parameters was based on information obtained from

the Fish Base website, using the life-history tool. However, the method used to

estimate these parameters is based on correlates, and therefore the validity of these

estimates for the species in this study is unknown.
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Chapter 9

FURTHER RESEARCH

As the parameter estimates for K for each of the three species have a high level

of uncertainty, the first option for improving the results is to give an informed prior

estimate for these parameters in the Bayesian parameter estimation. One of the

ways to create such a prior is to have some experts give their opinion on what

the median or mean may be for each K, as well as the upper and lower quartiles,

or the 5% and 95% confidence bounds. In fact, for these species, some experts

provided some opinions on the K’s. One expert estimates that the median values

for the K’s are 60000t, 85000t, and 20000t for ESO, LSO and SFL respectively

with the 90% confidence bounds of 15000t, 20000t and 5000 for the lower bounds

and 120000t, 170000t and 40000t for the upper bounds. Another expert estimated

that the combined current biomass for all three species is 10000t. Another expert

estimated that the current biomass for ESO is approximately 2200t, with 90% lower

confidence bound of 450t and upper confidence bound 27000t, for LSO the current

3200t, with 90% lower of 650t and the upper confidence bound 10000t, and for SFL

the current 750t, the 90% lower confidence bound of 150t and upper confidence

bound 2300t. A fourth expert estimated the current biomasses as 1350t, 1950t and

450t for ESO, LSO and SFL respectively, and the 90% confidence bounds as 675t,

975t and 225t for the lower bounds and 9000t, 13000t and 3000t for the upper

bounds. Using the estimates for the current biomass for each species, the models

can be iterated backwards in time to give estimates for the virgin biomass, and the

estimate for the virgin biomass can be incorporated into the prior distribution for K

making it a log-normal or gamma distribution for example rather than the uniform
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distribution used in this study. These estimates were obtained after completing

the simulations for this study, though it would be worthwhile to incorporate them

in later research. Comparing the estimates for the K’s from the first expert, the

estimated values from the Bayesian goodness of fit are much smaller than these

values, which may indicate that the values used in the simulation model’s may be

too small (in that expert’s opinion).

The methods and computer codes used in this study can be applied to other

fish species in New Zealand. For flatfish in particular, the FLA1 area currently

has catch and CPUE data from previous years which can be directly inputted into

the WinBUGS and Matlab codes. Once CPUE analyses have been completed on

the other management areas of New Zealand for flatfish, the methods described in

this study can also be applied. In particular, more studies have been conducted

in the FLA1 management area, around the Kaipara harbour, so this data can be

incorporated into the priors for the Bayesian estimations.

Another useful suggestion for further research would be to conduct further bio-

logical studies aimed specifically at flatfish, such as trawl surveys, tagging studies

or age distribution studies. Though these are known to be very costly, biological

studies are the best way to improve the certainty of the parameter estimates and

increase the validity of the results. Once more biological data is available, different

types of models can be used such as age-structured models, or dynamic pool models.

The down-side of re-estimating the r and K’s using the expert-opinion prior on

K is that the r values from the estimations would be largely determined from the

(Fish Base) prior, and the K values from this expert-opinion prior, making them

both just educated guesses rather than determined by real data. Therefore, getting

more and better real data should be a priority and further investigation into this

would be worthwhile in future research.

Given further resources and data, it could be worthwhile to assess the suitability

of other models for these species. If the initial biomass could be estimated indepen-

dent of the K, the parameter estimates, and hence the risk analysis, may be more

informative.
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Appendix A

Matlab code for Simulation Model 1

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Simulation Model 1 %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 clear all

6 %Number of years to simulate

7 t = 50;

8 %Input to determine model type (m=1: Fox model,m=2 or m=3: Pe lla −
9 %Tomlinson with parameter m)

10 m = input( 'm=' );

11 %Input constant catch amount

12 Catch = input( 'Catch=' );

13 %Optimal (r,K) for species 1 as calculated using bayesian go odness

14 %of fit in WinBUGS with covariance matrix for Schaefer model

15 mu1 = [6528; 1.647];

16 cov1 = 1.0e+006 * [4.65085548767833 −0.00033883424605;

17 −0.00033883424605 0.00000023214346];

18 MSY1 = (mu1(2) * mu1(1))/4;

19 %Optimal (r,K) for species 1 as calculated using bayesian go odness

20 %of fit in WinBUGS with covariance matrix for Fox model

21 mu1Fox = [9986; 4.508];

22 cov1Fox = 1.0e+006 * [6.49208658715848 −0.00336698817548;

23 −0.00336698817548 0.00000672736319];

24 MSY1Fox = (mu1Fox(2) * mu1Fox(1)) * (exp( −1)/log(mu1Fox(1)));

25 %Optimal (r,K) for species 2 as calculated using bayesian go odness

26 %of fit in WinBUGS with covariance matrix for Schaefer model

27 mu2 = [12160; 1.634];
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28 cov2 = 1.0e+007 * [4.44854913999548 −0.00005244794830;

29 −0.00005244794830 0.00000002890212];

30 MSY2 = (mu2(2) * mu2(1))/4;

31 %Optimal (r,K) for species 2 as calculated using bayesian go odness

32 %of fit in WinBUGS with covariance matrix for Fox model

33 mu2Fox = [24360; 2.621];

34 cov2Fox = 1.0e+007 * [4.84484371766459 −0.00015766626091;

35 −0.00015766626091 0.00000032586628];

36 MSY2Fox = (mu2Fox(2) * mu2Fox(1)) * (exp( −1)/log(mu2Fox(1)));

37 %Optimal (r,K) for species 3 as calculated using bayesian go odness

38 %of fit in WinBUGS with covariance matrix for Schaefer model

39 mu3 = [8079; 1.442];

40 cov3 =1.0e+007 * [1.21937741550840 −0.00000543468431;

41 −0.00000543468431 0.00000002050719];

42 MSY3 = (mu3(2) * mu3(1))/4;

43 %Optimal (r,K) for species 3 as calculated using bayesian go odness

44 %of fit in WinBUGS with covariance matrix for Fox model

45 mu3Fox = [25070; 2.772];

46 cov3Fox =1.0e+008 * [3.47895766612056 −0.00004665388342;

47 −0.00004665388342 0.00000003341849];

48 MSY3Fox = (mu3Fox(2) * mu3Fox(1)) * (exp( −1)/log(mu3Fox(1)));

49 %Initialise biomass for monte carlo simulation (Schaefer)

50 B1=mu1(1) * ones(t,1000); M1 = chol(cov1);

51 %B1 = Population of species 1

52 B2=mu2(2) * ones(t,1000); M2 = chol(cov2);

53 %B2 = Population of species 2

54 B3=mu3(2) * ones(t,1000); M3 = chol(cov3);

55 %B3 = Population of species 3

56 %Initialise biomass for monte carlo simulation (Fox)

57 B1Fox=mu1Fox(1) * ones(t,1000); M1Fox = chol(cov1Fox);

58 B2Fox=mu2Fox(2) * ones(t,1000); M2Fox = chol(cov2Fox);

59 B3Fox=mu3Fox(2) * ones(t,1000); M3Fox = chol(cov3Fox);

60 %Initial proportions based on previous data

61 B1P = 28/100; %B1P = proportion of species 1 in FLA3

62 B2P = 30/100; %B2P = proportion of species 2 in FLA3

63 B3P = 16/100; %B3P = proportion of species 3 in FLA3

64 %Initial values for dividing into respective types

65 B1Type1 = 0; B1Type2 = 0; B1Type3 = 0; B1Type4 = 0;

66 B2Type1 = 0; B2Type2 = 0; B2Type3 = 0; B2Type4 = 0;

114



67 B3Type1 = 0; B3Type2 = 0; B3Type3 = 0; B3Type4 = 0;

68 %Tolerance for absolute differences from last 5 iterations

69 tol = 1000;

70 %Initial values for risk analysis

71 Lessthan20percentB1 = 0; Lessthan10percentB1 = 0;

72 Lessthan20percentB2 = 0; Lessthan10percentB2 = 0;

73 Lessthan20percentB3 = 0; Lessthan10percentB3 = 0;

74 Above501 = zeros(1,1000); Above502 = zeros(1,1000);

75 Above503 = zeros(1,1000);

76 Above3681 = zeros(1,1000); Above3682 = zeros(1,1000);

77 Above3683 = zeros(1,1000);

78 DifferenceMSY1 = zeros(1,1000); DifferenceMSY2 = zeros(1 ,1000);

79 DifferenceMSY3 = zeros(1,1000);

80 DifferenceMSY1Fox = zeros(1,1000); DifferenceMSY2Fox = z eros(1,1000);

81 DifferenceMSY3Fox = zeros(1,1000);

82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

83 %SPECIES 1− ESO

84

85 %Plot simulations for species 1 (ESO)

86 figure

87 hold on

88 title( 'ESO' );

89 xlabel( 'Year' );

90 ylabel( 'Biomass (tonnes)' );

91 %Biomass for species 1 (ESO)

92 for j = 1:1000

93 if m == 1

94 %MC simulation to account for error in parameter estimation

95 %for Fox model

96 hat1 = mu1Fox + M1Fox * randn(2,1);

97 r1(j) = hat1(2);

98 K1(j) = hat1(1);

99 K1t = K1(j);

100 if K1t ≤ 0

101 K1(j) = 0;

102 end

103 B1(1,j) = K1(j);

104 MSY1 = MSY1Fox;

105
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106 %Loop to calculate biomass for t years

107 %Fox model

108

109 for i = 1:t −1

110 B1(i+1,j)=B1(i,j) + ((r1(j) * B1(i,j)) * (1 −log(B1(i,j))/

111 log(K1(j)))) − (Catch * B1P); B1j = B1(i+1,j);

112 if B1j > 0

113 B1(i+1,j)=B1(i,j) + ((r1(j) * B1(i,j)) * (1 −
114 log(B1(i,j))/log(K1(j)))) − (Catch * B1P);

115 else

116 B1(i+1,j)=0;

117 end

118 end

119

120 %Pella −Tomlinson with m=2

121 elseif m > 1

122 %MC simulation to account for error in parameter estimation

123 %for Schaefer model

124 hat1 = mu1 + M1 * randn(2,1);

125 r1(j) = hat1(2);

126 K1(j) = hat1(1);

127 K1t = K1(j);

128 if K1t ≤ 0

129 K1(j) = 0;

130 end

131 B1(1,j) = K1(j);

132 MSY1 = MSY1m2;

133

134 for i = 1:t −1

135 B1(i+1,j)=B1(i,j) + r1(j) * B1(i,j) − (r1(j)/K1(j)) *

136 ((B1(i,j))ˆm) − (Catch * B1P); B1j = B1(i+1,j);

137 if B1j > 0

138 B1(i+1,j)=B1(i,j) + r1(j) * B1(i,j) − (r1(j)/K1(j)) *

139 ((B1(i,j))ˆm) − (Catch * B1P);

140 else

141 B1(i+1,j)=0;

142 end

143 end

144 end
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145

146 %Divide each simulation into respective type

147 B1ta(j) = B1(50,j); B1t = B1ta(j);

148 XB1t(j) = abs(B1(46,j) − B1(45,j))+abs(B1(47,j) − B1(46,j))+

149 abs(B1(48,j) − B1(47,j))+abs(B1(49,j) − B1(48,j))+abs(B1(50,j)

150 − B1(49,j)); XB1 = XB1t(j);

151 B1gradt(j) = B1(49,j) − B1(50,j); B1grad = B1gradt(j);

152 B1gradtminus1(j) = B1(48,j) − B1(49,j);

153 B1gradminus1 = B1gradtminus1(j);

154 B1gradtminus2(j) = B1(47,j) − B1(48,j);

155 B1gradminus2 = B1gradtminus2(j);

156 FinalProportion1(j) = B1t/K1(j); x1 = FinalProportion1(j );

157

158 %Type 1 − Oscillating

159 if ((XB1 > tol) & (B1grad > 0) & (B1gradminus1 < 0))

160 B1Type1 = B1Type1 + 1;

161 B1(51,j) = 1;

162 plot(B1(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

163 elseif ((XB1 > tol) & (B1grad < 0) & (B1gradminus1 > 0))

164 B1Type1 = B1Type1 + 1;

165 B1(51,j) = 1;

166 plot(B1(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

167 elseif ((XB1 > tol) & (B1t 6= 0) & (B1grad < 0) &

168 (B1gradminus2 > 0))

169 B1Type1 = B1Type1 + 1;

170 B1(51,j) = 1;

171 plot(B1(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

172 elseif ((XB1 > tol) & (B1t 6= 0) & (B1grad > 0) &

173 (B1gradminus2 < 0))

174 B1Type1 = B1Type1 + 1;

175 B1(51,j) = 1;

176 plot(B1(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

177

178 %Type 2 − Decreasing towards zero

179 elseif (B1t == 0)

180 B1Type2 = B1Type2 + 1;

181 B1(51,j) = 2;

182 plot(B1(1:50,j), 'Color' , 'blue' , 'MarkerSize' ,8)

183 elseif ((B1t 6= 0) & (x1 ≤ 0.6))
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184 B1Type2 = B1Type2 + 1;

185 B1(51,j) = 2;

186 plot(B1(1:50,j), 'Color' , 'blue' , 'MarkerSize' ,8)

187

188 %Type 3 − Stable converging

189 else B1Type3 = B1Type3 + 1;

190 B1(51,j) = 3;

191 plot(B1(1:50,j), 'Color' , 'green' , 'MarkerSize' ,8)

192 end

193

194 %Risk Analysis

195 if (x1 < 0.2) & (XB1 ≤ tol)

196 Lessthan20percentB1 = Lessthan20percentB1 + 1;

197 end

198 if (x1 < 0.1) & (XB1 ≤ tol)

199 Lessthan10percentB1 = Lessthan10percentB1 + 1;

200 end

201 if (B1t ≥ 0.5 * K1t)

202 Above501(j) = 1;

203 DifferenceMSY1(j) = B1t − 0.5 * K1t;

204 elseif (B1t < 0.5 * K1t)

205 Above501(j) = 0;

206 DifferenceMSY1(j) = B1t − 0.5 * K1t;

207 end

208 if (B1t ≥ 0.368 * K1t)

209 Above3681(j) = 1;

210 DifferenceMSY1Fox(j) = B1t − 0.368 * K1t;

211 elseif (B1t < 0.368 * K1)

212 Above3681(j) = 0;

213 DifferenceMSY1Fox(j) = B1t − 0.368 * K1t;

214 end

215 end

216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

217 %SPECIES 2− LSO

218

219 %Plot simulations for species 2 (LSO)

220 figure

221 hold on

222 title( 'LSO' );
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223 xlabel( 'Year' );

224 ylabel( 'Biomass (tonnes)' );

225 %Biomass for species 2 (LSO)

226 for j = 1:1000

227 %Fox model

228 if m == 1

229 %MC simulation to account for error in parameter estimation

230 hat2 = mu2Fox + M2Fox * randn(2,1);

231 r2(j) = hat2(2);

232 K2(j) = hat2(1);

233 K2t = K2(j);

234 if K2t ≤ 0

235 K2(j) = 0;

236 end

237 B2(1,j) = K2(j);

238 MSY2 = MSY2Fox;

239

240 %Loop to calculate biomass for t years

241 for i = 1:t −1

242 B2(i+1,j)=B2(i,j) + ((r2(j) * B2(i,j)) * (1 −log(B2(i,j))/

243 log(K2(j)))) − (Catch * B2P); B2j = B2(i+1,j);

244 if B2j > 0

245 B2(i+1,j)=B2(i,j) + ((r2(j) * B2(i,j)) * (1 −
246 log(B2(i,j))/log(K2(j)))) − (Catch * B2P);

247 else

248 B2(i+1,j)=0;

249 end

250 end

251

252 %Pella −Tomlinson with m=2

253 elseif m > 1

254 %MC simulation to account for error in parameter estimation

255 hat2 = mu2 + M2 * randn(2,1);

256 r2(j) = hat2(2);

257 K2(j) = hat2(1);

258 K2t = K2(j);

259 if K2t ≤ 0

260 K2(j) = 0;

261 end
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262 B2(1,j) = K2(j);

263 MSY2 = MSY2m2;

264

265 %Loop to calculate biomass for t years

266 for i = 1:t −1

267 B2(i+1,j)=B2(i,j) + r2(j) * B2(i,j) − (r2(j)/K2(j)) *

268 ((B2(i,j))ˆm) − (Catch * B2P); B2j = B2(i+1,j);

269 if B2j > 0

270 B2(i+1,j)=B2(i,j) + r2(j) * B2(i,j) − (r2(j)/K2(j)) *

271 ((B2(i,j))ˆm) − (Catch * B2P);

272 else

273 B2(i+1,j)=0;

274 end

275 end

276 end

277 %Divide each simulation into respective type

278 B2ta(j) = B2(50,j); B2t = B2ta(j);

279 XB2t(j) = abs(B2(46,j) − B2(45,j))+abs(B2(47,j) − B2(46,j))+

280 abs(B2(48,j) − B2(47,j))+abs(B2(49,j) − B2(48,j))+abs(B2(50,j) −
281 B2(49,j)); XB2 = XB2t(j);

282 B2gradt(j) = B2(49,j) − B2(50,j); B2grad = B2gradt(j);

283 B2gradtminus1(j) = B2(48,j) − B2(49,j);

284 B2gradminus1 = B2gradtminus1(j);

285 B2gradtminus2(j) = B2(47,j) − B2(48,j);

286 B2gradminus2 = B2gradtminus2(j);

287 FinalProportion2(j) = B2t/K2(j); x2 = FinalProportion2(j );

288

289 %Type 1 − Oscillating

290 if ((XB2 > tol) & (B2grad > 0) & (B2gradminus1 < 0))

291 B2Type1 = B2Type1 + 1;

292 B2(51,j) = 1;

293 plot(B2(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

294 elseif ((XB2 > tol) & (B2grad < 0) & (B2gradminus1 > 0))

295 B2Type1 = B2Type1 + 1;

296 B2(51,j) = 1;

297 plot(B2(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

298 elseif ((XB2 > tol) & (B2t 6= 0) & (B2grad < 0) &

299 (B2gradminus2 > 0))

300 B2Type1 = B2Type1 + 1;
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301 B2(51,j) = 1;

302 plot(B2(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

303 elseif ((XB2 > tol) & (B2t 6= 0) & (B2grad > 0) &

304 (B2gradminus2 < 0))

305 B2Type1 = B2Type1 + 1;

306 B2(51,j) = 1;

307 plot(B2(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

308

309 %Type 2 − Decreasing towards zero

310 elseif (B2t == 0)

311 B2Type2 = B2Type2 + 1;

312 B2(51,j) = 2;

313 plot(B2(1:50,j), 'Color' , 'blue' , 'MarkerSize' ,8)

314 elseif ((B2t 6= 0) & (x2 ≤ 0.6))

315 B2Type2 = B2Type2 + 1;

316 B2(51,j) = 2;

317 plot(B2(1:50,j), 'Color' , 'blue' , 'MarkerSize' ,8)

318

319 %Type 3 − Stable converging

320 else B2Type3 = B2Type3 + 1;

321 B2(51,j) = 3;

322 plot(B2(1:50,j), 'Color' , 'green' , 'MarkerSize' ,8)

323 end

324

325 %Risk Analysis

326 if (x2 < 0.2) & (XB2 ≤ tol)

327 Lessthan20percentB2 = Lessthan20percentB2 + 1;

328 end

329 if (x2 < 0.1) & (XB2 ≤ tol)

330 Lessthan10percentB2 = Lessthan10percentB2 + 1;

331 end

332 if (B2t ≥ 0.5 * K2t)

333 Above502(j) = 1;

334 DifferenceMSY2(j) = B2t − 0.5 * K2t;

335 elseif (B2t < 0.5 * K2t)

336 Above502(j) = 0;

337 DifferenceMSY2(j) = B2t − 0.5 * K2t;

338 end

339 if (B2t ≥ 0.368 * K2t)

121



340 Above3682(j) = 1;

341 DifferenceMSY2Fox(j) = B2t − 0.368 * K2t;

342 elseif (B2t < 0.368 * K2t)

343 Above3682(j) = 0;

344 DifferenceMSY2Fox(j) = B2t − 0.368 * K2t;

345 end

346 end

347 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

348 %SPECIES 3− SFL

349

350 %Plot simulations for species 3 (SFL)

351 figure

352 hold on

353 title( 'SFL' );

354 xlabel( 'Year' );

355 ylabel( 'Biomass (tonnes)' );

356 %Biomass for species 3 (SFL)

357 for j = 1:1000

358

359 %Loop to calculate biomass for t years

360 %Fox model

361 if m == 1

362 %MC simulation to account for error in parameter estimation

363 hat3 = mu3Fox + M3Fox * randn(2,1);

364 r3(j) = hat3(2);

365 K3(j) = hat3(1);

366 K3t = K3(j);

367 if K3t ≤ 0

368 K3(j) = 0;

369 end

370 B3(1,j) = K3(j);

371 MSY3 = MSY3Fox;

372

373 for i = 1:t −1

374 B3(i+1,j)=B3(i,j) + ((r3(j) * B3(i,j)) * (1 −log(B3(i,j))/

375 log(K3(j)))) − (Catch * B3P); B3j = B3(i+1,j);

376 if B3j > 0

377 B3(i+1,j)=B3(i,j) + ((r3(j) * B3(i,j)) * (1 −
378 log(B3(i,j))/log(K3(j)))) − (Catch * B3P);
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379 else

380 B3(i+1,j)=0;

381 end

382 end

383

384 %Pella −Tomlinson with m=2 or m=3

385 elseif m > 1

386 %MC simulation to account for error in parameter estimation

387 hat3 = mu3 + M3 * randn(2,1);

388 r3(j) = hat3(2);

389 K3(j) = hat3(1);

390 K3t = K3(j);

391 if K3t ≤ 0

392 K3(j) = 0;

393 end

394 B3(1,j) = K3(j);

395 MSY3 = MSY3m2;

396

397 for i = 1:t −1

398 B3(i+1,j)=B3(i,j) + r3(j) * B3(i,j) − (r3(j)/K3(j)) *

399 ((B3(i,j))ˆm) − (Catch * B3P); B3j = B3(i+1,j);

400 if B3j > 0

401 B3(i+1,j)=B3(i,j) + r3(j) * B3(i,j) − (r3(j)/K3(j)) *

402 ((B3(i,j))ˆm) − (Catch * B3P);

403 else

404 B3(i+1,j)=0;

405 end

406 end

407 end

408

409 %Divide each simulation into respective type

410 B3ta(j) = B3(50,j); B3t = B3ta(j);

411 XB3t(j) = abs(B3(46,j) − B3(45,j))+abs(B3(47,j) − B3(46,j))+

412 abs(B3(48,j) − B3(47,j))+abs(B3(49,j) − B3(48,j))+abs(B3(50,j) −
413 B3(49,j)); XB3 = XB3t(j);

414 B3gradt(j) = B3(49,j) − B3(50,j); B3grad = B3gradt(j);

415 B3gradtminus1(j) = B3(48,j) − B3(49,j);

416 B3gradminus1 = B3gradtminus1(j);

417 B3gradtminus2(j) = B3(47,j) − B3(48,j);
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418 B3gradminus2 = B3gradtminus2(j);

419 FinalProportion3(j) = B3t/K3(j); x3 = FinalProportion3(j );

420

421 %Type 1 − Oscillating

422 if ((XB3 > tol) & (B3grad > 0) & (B3gradminus1 < 0))

423 B3Type1 = B3Type1 + 1;

424 B3(51,j) = 1;

425 plot(B3(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

426 elseif ((XB3 > tol) & (B3grad < 0) & (B3gradminus1 > 0))

427 B3Type1 = B3Type1 + 1;

428 B3(51,j) = 1;

429 plot(B3(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

430 elseif ((XB3 > tol) & (B3t 6= 0) & (B3grad < 0) &

431 (B3gradminus2 > 0))

432 B3Type1 = B3Type1 + 1;

433 B3(51,j) = 1;

434 plot(B3(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

435 elseif ((XB3 > tol) & (B3t 6= 0) & (B3grad > 0) &

436 (B3gradminus2 < 0))

437 B3Type1 = B3Type1 + 1;

438 B3(51,j) = 1;

439 plot(B3(1:50,j), 'Color' , 'red' , 'MarkerSize' ,8)

440

441 %Type 2 − Decreasing towards zero

442 elseif (B3t == 0)

443 B3Type2 = B3Type2 + 1;

444 B3(51,j) = 2;

445 plot(B3(1:50,j), 'Color' , 'blue' , 'MarkerSize' ,8)

446 elseif ((B3t 6= 0) & (x3 ≤ 0.6))

447 B3Type2 = B3Type2 + 1;

448 B3(51,j) = 2;

449 plot(B3(1:50,j), 'Color' , 'blue' , 'MarkerSize' ,8)

450

451 %Type 3 − Stable converging

452 else B3Type3 = B3Type3 + 1;

453 B3(51,j) = 3;

454 plot(B3(1:50,j), 'Color' , 'green' , 'MarkerSize' ,8)

455 end

456
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457 %Risk Analysis

458 if (x3 < 0.2) & (XB3 ≤ tol)

459 Lessthan20percentB3 = Lessthan20percentB3 + 1;

460 end

461 if (x3 < 0.1) & (XB3 ≤ tol)

462 Lessthan10percentB3 = Lessthan10percentB3 + 1;

463 end

464 if (B3t ≥ 0.5 * K3t)

465 Above503(j) = 1;

466 DifferenceMSY3(j) = B3t − 0.5 * K3t;

467 elseif (B3t < 0.5 * K3t)

468 Above503(j) = 0;

469 DifferenceMSY3(j) = B3t − 0.5 * K3t;

470 end

471 if (B3t ≥ 0.368 * K3t)

472 Above3683(j) = 1;

473 DifferenceMSY3Fox(j) = B3t − 0.368 * K3t;

474 elseif (B3t < 0.368 * K3t)

475 Above3683(j) = 0;

476 DifferenceMSY3Fox(j) = B3t − 0.368 * K3t;

477 end

478 end

479 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Matlab code for Simulation Model 2

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Simulation Model 2 %

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 clear all

6 %Number of years to simulate

7 t = 50;

8 %Input to determine model type (m=1: Fox model,m=2 or m=3: Pe lla −
9 %Tomlinson with parameter m)

10 m = input( 'm=' );

11 %Input constant catch amount

12 Catch = input( 'Catch=' );

13 %Optimal (r,K) for species 1 as calculated using bayesian go odness

14 %of fit in WinBUGS with covariance matrix for Schaefer model

15 mu1 = [6528; 1.647];

16 cov1 = 1.0e+006 * [4.65085548767833 −0.00033883424605;

17 −0.00033883424605 0.00000023214346];

18 MSY1m2 = (mu1(2) * mu1(1))/4;

19 %Optimal (r,K) for species 1 as calculated using bayesian go odness

20 %of fit in WinBUGS with covariance matrix for Fox model

21 mu1Fox = [9986; 4.508];

22 cov1Fox = 1.0e+006 * [6.49208658715848 −0.00336698817548;

23 −0.00336698817548 0.00000672736319];

24 MSY1Fox = (mu1Fox(2) * mu1Fox(1)) * (exp( −1)/log(mu1Fox(1)));

25 %Optimal (r,K) for species 2 as calculated using bayesian go odness

26 %of fit in WinBUGS with covariance matrix for Schaefer model

27 mu2 = [12160; 1.634];

28 cov2 = 1.0e+007 * [4.44854913999548 −0.00005244794830;

29 −0.00005244794830 0.00000002890212];

30 MSY2m2 = (mu2(2) * mu2(1))/4;

31 %Optimal (r,K) for species 2 as calculated using bayesian go odness

32 %of fit in WinBUGS with covariance matrix for Fox model

33 mu2Fox = [24360; 2.621];

34 cov2Fox = 1.0e+007 * [4.84484371766459 −0.00015766626091;

35 −0.00015766626091 0.00000032586628];

36 MSY2Fox = (mu2Fox(2) * mu2Fox(1)) * (exp( −1)/log(mu2Fox(1)));
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37 %Optimal (r,K) for species 3 as calculated using bayesian go odness

38 %of fit in WinBUGS with covariance matrix for Schaefer model

39 mu3 = [8079; 1.442];

40 cov3 =1.0e+007 * [1.21937741550840 −0.00000543468431;

41 −0.00000543468431 0.00000002050719];

42 MSY3m3 = (mu3(2) * mu3(1))/4;

43 %Optimal (r,K) for species 3 as calculated using bayesian go odness

44 %of fit in WinBUGS with covariance matrix for Fox model

45 mu3Fox = [25070; 2.772];

46 cov3Fox =1.0e+008 * [3.47895766612056 −0.00004665388342;

47 −0.00004665388342 0.00000003341849];

48 MSY3Fox = (mu3(2) * mu3(1))/exp(1);

49 %Initialise biomass for monte carlo simulation (Schaefer)

50 B1=mu1(1) * ones(t,1000); M1 = chol(cov1);

51 %B1 = Population of species 1

52 B2=mu2(2) * ones(t,1000); M2 = chol(cov2);

53 %B2 = Population of species 2

54 B3=mu3(2) * ones(t,1000); M3 = chol(cov3);

55 %B3 = Population of species 3

56 %Initialise biomass for monte carlo simulation (Fox)

57 B1Fox=mu1Fox(1) * ones(t,1000); M1Fox = chol(cov1Fox);

58 B2Fox=mu2Fox(2) * ones(t,1000); M2Fox = chol(cov2Fox);

59 B3Fox=mu3Fox(2) * ones(t,1000); M3Fox = chol(cov3Fox);

60 %Initial proportions based on previous data

61 B1P0 = 28/100; B1P=B1P0 * ones(t,1000);

62 B2P0 = 30/100; B2P=B2P0 * ones(t,1000);

63 B3P0 = 16/100; B3P=B3P0 * ones(t,1000);

64 %Initial values for dividing into respective types

65 B1Type1 = 0; B1Type2 = 0; B1Type3 = 0; B1Type4 = 0;

66 B2Type1 = 0; B2Type2 = 0; B2Type3 = 0; B2Type4 = 0;

67 B3Type1 = 0; B3Type2 = 0; B3Type3 = 0; B3Type4 = 0;

68 %Tolerance for absolute differences from last 5 iterations

69 tol = 1000;

70 %Initial values for risk analysis

71 Lessthan20percentB1 = 0; Lessthan10percentB1 = 0;

72 Lessthan20percentB2 = 0; Lessthan10percentB2 = 0;

73 Lessthan20percentB3 = 0; Lessthan10percentB3 = 0;

74 Above501 = zeros(1,1000); Above502 = zeros(1,1000);

75 Above503 = zeros(1,1000);
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76 Above3681 = zeros(1,1000); Above3682 = zeros(1,1000);

77 Above3683 = zeros(1,1000);

78 DifferenceMSY1 = zeros(1,1000); DifferenceMSY2 = zeros(1 ,1000);

79 DifferenceMSY3 = zeros(1,1000);

80 DifferenceMSY1Fox = zeros(1,1000); DifferenceMSY2Fox = z eros(1,1000);

81 DifferenceMSY3Fox = zeros(1,1000);

82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

83 %MC simulation to account for error in parameter estimation

84 for j = 1:1000

85 %Loop to calculate biomass for t years

86 %Fox model

87 if m == 1

88 %Monte Carlo simulation for species 1

89 hat1 = mu1Fox + M1Fox * randn(2,1);

90 r1(j) = hat1(2);

91 K1(j) = hat1(1);

92 K1t = K1(j);

93 if K1t ≤ 0

94 K1(j) = 0;

95 end

96 B1(1,j) = K1(j);

97 %Monte Carlo simulation for species 2

98 hat2 = mu2Fox + M2Fox * randn(2,1);

99 r2(j) = hat2(2);

100 K2(j) = hat2(1);

101 K2t = K2(j);

102 if K2t ≤ 0

103 K2(j) = 0;

104 end

105 B2(1,j) = K2(j);

106 %Monte Carlo simulation for species 3

107 hat3 = mu3Fox + M3Fox * randn(2,1);

108 r3(j) = hat3(2);

109 K3(j) = hat3(1);

110 K3t = K3(j);

111 if K3t ≤ 0

112 K3(j) = 0;

113 end

114 B3(1,j) = K3(j);
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115 MSY1 = MSY1Fox;

116 MSY2 = MSY2Fox;

117 MSY3 = MSY3Fox;

118

119 for i = 1:t −1

120 B1(i+1,j)=B1(i,j) + ((r1(j) * B1(i,j)) * (1 −log(B1(i,j))/

121 log(K1(j)))) − (Catch * B1P(i,j)); B1j = B1(i+1,j);

122 B2(i+1,j)=B2(i,j) + ((r2(j) * B2(i,j)) * (1 −log(B2(i,j))/

123 log(K2(j)))) − (Catch * B2P(i,j)); B2j = B2(i+1,j);

124 B3(i+1,j)=B3(i,j) + ((r3(j) * B3(i,j)) * (1 −log(B3(i,j))/

125 log(K3(j)))) − (Catch * B3P(i,j)); B3j = B3(i+1,j);

126 if B1j > 0

127 B1(i+1,j)=B1(i,j) + ((r1(j) * B1(i,j)) * (1 −
128 log(B1(i,j))/log(K1(j)))) − (Catch * B1P(i,j));

129 else

130 B1(i+1,j)=0;

131 end

132 if B2j > 0

133 B2(i+1,j)=B2(i,j) + ((r2(j) * B2(i,j)) * (1 −
134 log(B2(i,j))/log(K2(j)))) − (Catch * B2P(i,j));

135 else

136 B2(i+1,j)=0;

137 end

138 if B3j > 0

139 B3(i+1,j)=B3(i,j) + ((r3(j) * B3(i,j)) * (1 −
140 log(B3(i,j))/log(K3(j)))) − (Catch * B3P(i,j));

141 else

142 B3(i+1,j)=0;

143 end

144 %Loop to calculate new proportions

145 if (B1(i+1,j)+B2(i+1,j)+B3(i+1,j)) > 0

146 B1P(i+1,j) = B1(i+1,j)/(B1(i+1,j)+B2(i+1,j)+B3(i+1,j) );

147 B2P(i+1,j) = B2(i+1,j)/(B1(i+1,j)+B2(i+1,j)+B3(i+1,j) );

148 B3P(i+1,j) = B3(i+1,j)/(B1(i+1,j)+B2(i+1,j)+B3(i+1,j) );

149 else

150 B1P(i+1,j) = 0;

151 B2P(i+1,j) = 0;

152 B3P(i+1,j) = 0;

153 end
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154 end

155

156 %Pella −Tomlinson with m=2 or m=3

157 elseif m > 1

158 %Monte Carlo simulation for species 1

159 hat1 = mu1 + M1 * randn(2,1);

160 r1(j) = hat1(2);

161 K1(j) = hat1(1);

162 K1t = K1(j);

163 if K1t ≤ 0

164 K1(j) = 0;

165 end

166 B1(1,j) = K1(j);

167 %Monte Carlo simulation for species 2

168 hat2 = mu2 + M2 * randn(2,1);

169 r2(j) = hat2(2);

170 K2(j) = hat2(1);

171 K2t = K2(j);

172 if K2t ≤ 0

173 K2(j) = 0;

174 end

175 B2(1,j) = K2(j);

176 %Monte Carlo simulation for species 3

177 hat3 = mu3 + M3 * randn(2,1);

178 r3(j) = hat3(2);

179 K3(j) = hat3(1);

180 K3t = K3(j);

181 if K3t ≤ 0

182 K3(j) = 0;

183 end

184 B3(1,j) = K3(j);

185 MSY1 = MSY1m2;

186 MSY2 = MSY2m2;

187 MSY3 = MSY3m2;

188

189 for i = 1:t −1

190 B1(i+1,j)=B1(i,j) + r1(j) * B1(i,j) − (r1(j)/K1(j)) *

191 ((B1(i,j))ˆm) − (Catch * B1P(i,j)); B1j = B1(i+1,j);

192 B2(i+1,j)=B2(i,j) + r2(j) * B2(i,j) − (r2(j)/K2(j)) *
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193 ((B2(i,j))ˆm) − (Catch * B2P(i,j)); B2j = B2(i+1,j);

194 B3(i+1,j)=B3(i,j) + r3(j) * B3(i,j) − (r3(j)/K3(j)) *

195 ((B3(i,j))ˆm) − (Catch * B3P(i,j)); B3j = B3(i+1,j);

196 if B1j > 0

197 B1(i+1,j)=B1(i,j) + r1(j) * B1(i,j) − (r1(j)/K1(j)) *

198 ((B1(i,j))ˆm) − (Catch * B1P(i,j));

199 else

200 B1(i+1,j)=0;

201 end

202 if B2j > 0

203 B2(i+1,j)=B2(i,j) + r2(j) * B2(i,j) − (r2(j)/K2(j)) *

204 ((B2(i,j))ˆm) − (Catch * B2P(i,j));

205 else

206 B2(i+1,j)=0;

207 end

208 if B3j > 0

209 B3(i+1,j)=B3(i,j) + r3(j) * B3(i,j) − (r3(j)/K3(j)) *

210 ((B3(i,j))ˆm) − (Catch * B3P(i,j));

211 else

212 B3(i+1,j)=0;

213 end

214 %Loop to calculate new proportions

215 if (B1(i+1,j)+B2(i+1,j)+B3(i+1,j)) > 0

216 B1P(i+1,j) = B1(i+1,j)/(B1(i+1,j)+B2(i+1,j)+B3(i+1,j) );

217 B2P(i+1,j) = B2(i+1,j)/(B1(i+1,j)+B2(i+1,j)+B3(i+1,j) );

218 B3P(i+1,j) = B3(i+1,j)/(B1(i+1,j)+B2(i+1,j)+B3(i+1,j) );

219 else

220 B1P(i+1,j) = 0;

221 B2P(i+1,j) = 0;

222 B3P(i+1,j) = 0;

223 end

224 end

225 end

226

227 %SPECIES 1− ESO

228 % Divide each simulation into respective type

229 B1ta(j) = B1(50,j); B1t = B1ta(j);

230 XB1t(j) = abs(B1(46,j) − B1(45,j))+abs(B1(47,j) − B1(46,j))+

231 abs(B1(48,j) − B1(47,j))+abs(B1(49,j) − B1(48,j))+abs(B1(50,j) −
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232 B1(49,j)); XB1 = XB1t(j);

233 B1gradt(j) = B1(49,j) − B1(50,j); B1grad = B1gradt(j);

234 B1gradtminus1(j) = B1(48,j) − B1(49,j);

235 B1gradminus1 = B1gradtminus1(j);

236 B1gradtminus2(j) = B1(47,j) − B1(48,j);

237 B1gradminus2 = B1gradtminus2(j);

238 FinalProportion1(j) = B1t/K1(j); x1 = FinalProportion1(j );

239

240 %Type 1 − Oscillating

241 if ((XB1 > tol) & (B1grad > 0) & (B1gradminus1 < 0))

242 B1Type1 = B1Type1 + 1;

243 B1(51,j) = 1;

244 elseif ((XB1 > tol) & (B1grad < 0) & (B1gradminus1 > 0))

245 B1Type1 = B1Type1 + 1;

246 B1(51,j) = 1;

247 elseif ((XB1 > tol) & (B1t 6= 0) & (B1grad < 0) &

248 (B1gradminus2 > 0))

249 B1Type1 = B1Type1 + 1;

250 B1(51,j) = 1;

251 elseif ((XB1 > tol) & (B1t 6= 0) & (B1grad > 0) &

252 (B1gradminus2 < 0))

253 B1Type1 = B1Type1 + 1;

254 B1(51,j) = 1;

255

256 %Type 2 − Decreasing towards zero

257 elseif (B1t == 0)

258 B1Type2 = B1Type2 + 1;

259 B1(51,j) = 2;

260 elseif ((B1t 6= 0) & (x1 ≤ 0.6))

261 B1Type2 = B1Type2 + 1;

262 B1(51,j) = 2;

263

264 %Type 3 − Stable converging

265 else B1Type3 = B1Type3 + 1;

266 B1(51,j) = 3;

267 end

268

269 %Risk Analysis

270 if (x1 < 0.2) & (XB1 ≤ tol)
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271 Lessthan20percentB1 = Lessthan20percentB1 + 1;

272 end

273 if (x1 < 0.1) & (XB1 ≤ tol)

274 Lessthan10percentB1 = Lessthan10percentB1 + 1;

275 end

276 if (B1t ≥ 0.5 * K1t)

277 Above501(j) = 1;

278 DifferenceMSY1(j) = B1t − 0.5 * K1t;

279 elseif (B1t < 0.5 * K1t)

280 Above501(j) = 0;

281 DifferenceMSY1(j) = B1t − 0.5 * K1t;

282 end

283 if (B1t ≥ 0.368 * K1t)

284 Above3681(j) = 1;

285 DifferenceMSY1Fox(j) = B1t − 0.368 * K1t;

286 elseif (B1t < 0.368 * K1)

287 Above3681(j) = 0;

288 DifferenceMSY1Fox(j) = B1t − 0.368 * K1t;

289 end

290

291

292 %SPECIES 2− LSO

293 %Divide each simulation into respective type

294 B2ta(j) = B2(50,j); B2t = B2ta(j);

295 XB2t(j) = abs(B2(46,j) − B2(45,j))+abs(B2(47,j) − B2(46,j))+

296 abs(B2(48,j) − B2(47,j))+abs(B2(49,j) − B2(48,j))+abs(B2(50,j) −
297 B2(49,j)); XB2 = XB2t(j);

298 B2gradt(j) = B2(49,j) − B2(50,j); B2grad = B2gradt(j);

299 B2gradtminus1(j) = B2(48,j) − B2(49,j);

300 B2gradminus1 = B2gradtminus1(j);

301 B2gradtminus2(j) = B2(47,j) − B2(48,j);

302 B2gradminus2 = B2gradtminus2(j);

303 FinalProportion2(j) = B2t/K2(j); x2 = FinalProportion2(j );

304

305 %Type 1 − Oscillating

306 if ((XB2 > tol) & (B2grad > 0) & (B2gradminus1 < 0))

307 B2Type1 = B2Type1 + 1;

308 B2(51,j) = 1;

309 elseif ((XB2 > tol) & (B2grad < 0) & (B2gradminus1 > 0))
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310 B2Type1 = B2Type1 + 1;

311 B2(51,j) = 1;

312 elseif ((XB2 > tol) & (B2t 6= 0) & (B2grad < 0) &

313 (B2gradminus2 > 0))

314 B2Type1 = B2Type1 + 1;

315 B2(51,j) = 1;

316 elseif ((XB2 > tol) & (B2t 6= 0) & (B2grad > 0) &

317 (B2gradminus2 < 0))

318 B2Type1 = B2Type1 + 1;

319 B2(51,j) = 1;

320

321 %Type 2 − Decreasing towards zero

322 elseif (B2t == 0)

323 B2Type2 = B2Type2 + 1;

324 B2(51,j) = 2;

325 elseif ((B2t 6= 0) & (x2 ≤ 0.6))

326 B2Type2 = B2Type2 + 1;

327 B2(51,j) = 2;

328

329 %Type 3 − Stable converging

330 else B2Type3 = B2Type3 + 1;

331 B2(51,j) = 3;

332 end

333

334 %Risk Analysis

335 if (x2 < 0.2) & (XB2 ≤ tol)

336 Lessthan20percentB2 = Lessthan20percentB2 + 1;

337 end

338 if (x2 < 0.1) & (XB2 ≤ tol)

339 Lessthan10percentB2 = Lessthan10percentB2 + 1;

340 end

341 if (B2t ≥ 0.5 * K2t)

342 Above502(j) = 1;

343 DifferenceMSY2(j) = B2t − 0.5 * K2t;

344 elseif (B2t < 0.5 * K2t)

345 Above502(j) = 0;

346 DifferenceMSY2(j) = B2t − 0.5 * K2t;

347 end

348 if (B2t ≥ 0.368 * K2t)
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349 Above3682(j) = 1;

350 DifferenceMSY2Fox(j) = B2t − 0.368 * K2t;

351 elseif (B2t < 0.368 * K2t)

352 Above3682(j) = 0;

353 DifferenceMSY2Fox(j) = B2t − 0.368 * K2t;

354 end

355

356 %SPECIES 3− SFL

357 % Divide each simulation into respective type

358 B3ta(j) = B3(50,j); B3t = B3ta(j);

359 XB3t(j) = abs(B3(46,j) − B3(45,j))+abs(B3(47,j) − B3(46,j))+

360 abs(B3(48,j) − B3(47,j))+abs(B3(49,j) − B3(48,j))+abs(B3(50,j) −
361 B3(49,j)); XB3 = XB3t(j);

362 B3gradt(j) = B3(49,j) − B3(50,j); B3grad = B3gradt(j);

363 B3gradtminus1(j) = B3(48,j) − B3(49,j);

364 B3gradminus1 = B3gradtminus1(j);

365 B3gradtminus2(j) = B3(47,j) − B3(48,j);

366 B3gradminus2 = B3gradtminus2(j);

367 FinalProportion3(j) = B3t/K3(j); x3 = FinalProportion3(j );

368

369 %Type 1 − Oscillating

370 if ((XB3 > tol) & (B3grad > 0) & (B3gradminus1 < 0))

371 B3Type1 = B3Type1 + 1;

372 B3(51,j) = 1;

373 elseif ((XB3 > tol) & (B3grad < 0) & (B3gradminus1 > 0))

374 B3Type1 = B3Type1 + 1;

375 B3(51,j) = 1;

376 elseif ((XB3 > tol) & (B3t 6= 0) & (B3grad < 0) &

377 (B3gradminus2 > 0))

378 B3Type1 = B3Type1 + 1;

379 B3(51,j) = 1;

380 elseif ((XB3 > tol) & (B3t 6= 0) & (B3grad > 0) &

381 (B3gradminus2 < 0))

382 B3Type1 = B3Type1 + 1;

383 B3(51,j) = 1;

384

385 %Type 2 − Decreasing towards zero

386 elseif (B3t == 0)

387 B3Type2 = B3Type2 + 1;
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388 B3(51,j) = 2;

389 elseif ((B3t 6= 0) & (x3 ≤ 0.6))

390 B3Type2 = B3Type2 + 1;

391 B3(51,j) = 2;

392

393 %Type 3 − Stable converging

394 else B3Type3 = B3Type3 + 1;

395 B3(51,j) = 3;

396 end

397

398 %Risk Analysis

399 if (x3 < 0.2) & (XB3 ≤ tol)

400 Lessthan20percentB3 = Lessthan20percentB3 + 1;

401 end

402 if (x3 < 0.1) & (XB3 ≤ tol)

403 Lessthan10percentB3 = Lessthan10percentB3 + 1;

404 end

405 if (B3t ≥ 0.5 * K3t)

406 Above503(j) = 1;

407 DifferenceMSY3(j) = B3t − 0.5 * K3t;

408 elseif (B3t < 0.5 * K3t)

409 Above503(j) = 0;

410 DifferenceMSY3(j) = B3t − 0.5 * K3t;

411 end

412 if (B3t ≥ 0.368 * K3t)

413 Above3683(j) = 1;

414 DifferenceMSY3Fox(j) = B3t − 0.368 * K3t;

415 elseif (B3t < 0.368 * K3t)

416 Above3683(j) = 0;

417 DifferenceMSY3Fox(j) = B3t − 0.368 * K3t;

418 end

419 end

420 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

421 %Plot for species 1 (ESO)

422 figure

423 hold on

424 title( 'ESO' );

425 xlabel( 'Year' );

426 ylabel( 'Biomass (tonnes)' );
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427 for i = 1:1000

428 B151 = B1(51,i);

429 if B151 == 1

430 plot(B1(1:50,i), 'Color' , 'red' , 'MarkerSize' ,8)

431 elseif B151 == 2

432 plot(B1(1:50,i), 'Color' , 'blue' , 'MarkerSize' ,8)

433 elseif B151 == 3

434 plot(B1(1:50,i), 'Color' , 'green' , 'MarkerSize' ,8)

435 end

436 end

437

438 %Plot for species 2 (LSO)

439 figure

440 hold on

441 title( 'LSO' );

442 xlabel( 'Year' );

443 ylabel( 'Biomass (tonnes)' );

444 for i = 1:1000

445 B251 = B2(51,i);

446 if B251 == 1

447 plot(B2(1:50,i), 'Color' , 'red' , 'MarkerSize' ,8)

448 elseif B251 == 2

449 plot(B2(1:50,i), 'Color' , 'blue' , 'MarkerSize' ,8)

450 elseif B251 == 3

451 plot(B2(1:50,i), 'Color' , 'green' , 'MarkerSize' ,8)

452 end

453 end

454

455 %Plot for species 3 (SFL)

456 figure

457 hold on

458 title( 'SFL' );

459 xlabel( 'Year' );

460 ylabel( 'Biomass (tonnes)' );

461 for i = 1:1000

462 B351 = B3(51,i);

463 if B351 == 1

464 plot(B3(1:50,i), 'Color' , 'red' , 'MarkerSize' ,8)

465 elseif B351 == 2
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466 plot(B3(1:50,i), 'Color' , 'blue' , 'MarkerSize' ,8)

467 elseif B351 == 3

468 plot(B3(1:50,i), 'Color' , 'green' , 'MarkerSize' ,8)

469 end

470 end

471

472 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix B

R code for maximum likelihood estimation for ESO (similar for LSO, SFL, FLA-

ALL)

1 ################################################### ###############

2 # #

3 # Fitting a Schaefer model to CPUE and Catch data for FLA 3 ESO #

4 # #

5 ################################################### ###############

6

7 rm(list=ls(all=TRUE))

8 # function to replace a number (x, in this problem x=K) with a

9 #small number (in a smooth way so the

10 # gradient minimiser doesn't get stuck) − this prevents K from

11 #being negative

12

13 v<− 0.00001

14 z<− function (x,v) {
15 ifelse(x ≥v,x,v/((2 −x)/v)) }
16

17 # initial parameter estimates, in order K,r,q,sigma

18 y<−c(10000, 1, 0.001, 0.1)

19

20

21 # the catch and cpue indices

22 CPUE<−c(0.9,0.93,1.15,1.05,1.22,1.33,1.07,0.97,1.09,1.1,1 .5,1.13)

23 catch <−c(381,462,697,751,650,673,796,518,359,431,567,592)

24

25

26 # function returning negative log likelihood for each set of
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27 # parameters

28 fr <−function (y) {
29 K<−y[1]

30 r <−y[2]

31 q<−y[3]

32 sigma <−y[4]

33 Biomass <−rep(K,length(CPUE))

34 for (i in 1:(length(Biomass) −1)) {
35 Biomass[i+1] <− Biomass[i]+r * Biomass[i] * (1 −(Biomass[i]/

36 z(K,v))) − catch [i]

37 }
38 LogLik <−(log(z(sigma,v))+0.5 * (log(2 * pi))+((log(z(q,v) *

39 z(Biomass,v)) −log(CPUE))ˆ2)/(2 * (z(sigma,v))ˆ2))

40 sumLL<−(sum(LogLik,na.rm=T))

41 }
42

43 # optimise function

44 result1 <− optim(y,fr, method="SANN", control=list(maxit=100000,

45 parscale=c(y[1]/10,y[2]/10,y[3]/10,y[4]/10)))

46 result1

47

48 w<−c(result1$par[1], result1$par[2], result1$par[3],resu lt1$par[4])

49 # function returning negative log likelihood for each set of

50 # parameters

51 fn <−function (w) {
52 K1<−w[1]

53 r1 <−w[2]

54 q1<−w[3]

55 sigma1 <−w[4]

56 Biomass1 <−rep(K1,length(CPUE))

57 for (i in 1:(length(Biomass1) −1)) {
58 Biomass1[i+1] <− Biomass1[i]+r1 * Biomass1[i] * (1 −
59 (Biomass1[i]/z(K1,v))) −catch [i]

60 }
61 LogLik1 <−(log(z(sigma1,v))+0.5 * (log(2 * pi))+((log(z(q1,v) *

62 z(Biomass1,v)) −log(CPUE))ˆ2)/(2 * (z(sigma1,v))ˆ2))

63 sumLL1<−(sum(LogLik1,na.rm=T))

64 }
65
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66 # optimise function

67 FinalResult1 <− optim(w,fn, control=list(maxit=100000,

68 parscale=c(w[1]/10,w[2]/10,w[3]/10,w[4]/10)), hessia n = TRUE)

69 FinalResult1

70

71

72

73 # plot the CPUE and fit

74 plot(CPUE, main = "FLA 3 ESO", xlab = "", ylab = "CPUE index",

75 axes = FALSE)

76 axis(1, 1:12, 1991:2002)

77 axis(2)

78 box()

79 Biomass2 <−rep(FinalResult1$par[1],length(CPUE))

80 for (i in 1:(length(Biomass2) −1)) {
81 Biomass2[i+1] <− Biomass2[i]+FinalResult1$par[2] * Biomass2[i] *

82 (1 −(Biomass2[i]/FinalResult1$par[1])) −catch [i]

83 }
84 lines(FinalResult1$par[3] * Biomass2)

85

86 cov1 <−solve(FinalResult1$hessian[1:2,1:2])

87 cov1

88 mu1<−FinalResult1$par[1:2]

89 mu1

90

91 ################################################### #################
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R code for likelihood profile for maximum likelihood estimation for ESO (similar

for LSO, SFL)

1 ################################################### ################

2 # #

3 # Fitting a Schaefer model to CPUE and Catch data for FLA 3 ESO #

4 # − Likelihood Profile #

5 # #

6 ################################################### ################

7

8 rm(list=ls(all=TRUE))

9 # function to replace a number (x, in this problem x=K) with a

10 #small number (in a smooth way so the gradient minimiser does n't

11 #get stuck) − this prevents K from being negative

12

13 v<− 0.00001

14 z<− function (x,v) {
15 ifelse(x ≥v,x,v/((2 −x)/v)) }
16

17

18 # initial parameter estimates, in order K,r,q,sigma

19 y<−c(50000, 1.000000e −05, 1.458858e −01)

20

21

22 # the catch and cpue indices

23 CPUE<−c(0.9,0.93,1.15,1.05,1.22,1.33,1.07,0.97,1.09,1.1,1 .5,1.13)

24 catch <−c(466,517,730,774,681,706,830,537,374,458,602,634)

25

26 r <−2.6

27 # function returning negative log likelihood for each set of

28 # parameters

29 fr <−function (y) {
30 K<−y[1]

31 q<−y[2]

32 sigma <−y[3]

33 Biomass <−rep(K,length(CPUE))

34 for (i in 1:(length(Biomass) −1)) {
35 Biomass[i+1] <− Biomass[i]+r * Biomass[i] * (1 −(Biomass[i]/
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36 z(K,v))) − catch [i]

37 }
38 LogLik <−(log(z(sigma,v))+0.5 * (log(2 * pi))+((log(z(q,v) *

39 z(Biomass,v)) −log(CPUE))ˆ2)/(2 * (z(sigma,v))ˆ2))

40 sumLL<−(sum(LogLik,na.rm=T))

41 }
42

43 # optimise function

44 result <− optim(y,fr, method="SANN", control=list(maxit=100000,

45 parscale=c(y[1]/10,y[2]/10,y[3]/10)))

46 result

47

48 w<−c(result$par[1], result$par[2], result$par[3])

49 r1 <−r

50 # function returning negative log likelihood for each set of

51 # parameters

52 fn <−function (w) {
53 K1<−w[1]

54 q1<−w[2]

55 sigma1 <−w[3]

56 Biomass1 <−rep(K1,length(CPUE))

57 for (i in 1:(length(Biomass1) −1)) {
58 Biomass1[i+1] <− Biomass1[i]+r1 * Biomass1[i] * (1 −
59 (Biomass1[i]/z(K1,v))) −catch [i]

60 }
61 LogLik1 <−(log(z(sigma1,v))+0.5 * (log(2 * pi))+((log(z(q1,v) *

62 z(Biomass1,v)) −log(CPUE))ˆ2)/(2 * (z(sigma1,v))ˆ2))

63 sumLL1<−(sum(LogLik1,na.rm=T))

64 }
65

66 # optimise function

67 FinalResult <− optim(w,fn, control=list(maxit=100000,

68 parscale=c(w[1]/10,w[2]/10,w[3]/10)))

69 FinalResult

70

71 ################################################### ################
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Appendix C

WinBUGS code used to calculate bayesian parameter estimates for ESO (similar

code for LSO, SFL, FLA-ALL)

1 #ESO − Final

2 model

3

4 {
5 for ( i in 1: Trials) {
6

7 mu[i] <− log(q * Biomass[i])

8 CPUE[i] ¬ dlnorm(mu[i], tau)

9

10 muB[i+1] <−Biomass[i]+r * Biomass[i] * (1 −(Biomass[i]/K)) −catch [i]

11 Biomass[i+1] ¬ dnorm(muB[i+1], tauB)

12 }
13 K ¬ dunif(0,200000)

14 q ¬ dgamma(1,1000)

15 r ¬ dlnorm(0.73881,2.588915)

16 tau ¬ dgamma(20,1)

17 tauB ¬ dgamma(0.0001,0.01)

18 Biomass[1] <− K

19 }
20

21 list(Trials = 12, catch = c(381,462,697,751,650,673,796,518,359,

22 431,567,592),

23 CPUE =c(0.9,0.93,1.15,1.05,1.22,1.33,1.07,0.97,1.09, 1.1,

24 1.5,1.13))

25

26 list(r = 1, K = 10000, q = 0.001, tau = 100, tauB = 0.00001)
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