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Abstract
Muscle foods such as meat are a perishable, nutritious, relatively expensive food commodity, a great

source of human nutrition and are a large part of the New Zealand economy, as well as overseas.
Currently, New Zealand’s meat producing companies measure meat quality attributes by using a
different technology for every trait, with no overarching way to combine them, with many of the
technologies requiring collection and destruction of the product. There is a desire by the meat
industry to find a single way to measure and compare meat quality parameters in a single process or
technology. The development of an in-line (within the normal production line of an abattoir or meat
processor), real time, non-destructive quality control system could help define multiple meat traits in
a way that can guarantee the product in terms of composition, safety and consistency. These
guarantees not only help the producer to ask a higher premium for their product, but also give

assurances to the consumer that they are getting exactly what they are expecting and paying for.

This thesis focussed on determining whether the spectral imaging technologies of near infrared and
hyperspectral imaging, and relevant pre-processing and modelling techniques were suitable for use in

an in-plant situation for the prediction of lamb meat quality attributes.

Data was collected on 2511 lambs from 10 separate kills. The lambs were slaughtered through three
abattoirs owned by Alliance Group Limited with near infrared and hyperspectral imaging of intact M.
Longissimus thoracis et lumborum muscle surface collected at 24 hours post-mortem. Traditional
meat quality measurements were also collected; tenderness using a MIRINZ tenderometer, CIELab
colour using a CR-400 colour meter, ultimate pH using an Eutech Cyberscan pH 300 meter, marbling
using subjective scoring by trained personnel and intramuscular fat content using gas chromatography
— flame ionisation detector. The resulting data were split and used to generate calibration and
validation data sets. The calibration data was used together with the spectral data that was processed
using a variety of chemometric techniques including partial least squares, variable selection and neural
networks to generate predictive models. The accuracy of the predictive models was then tested using

the validation data set.



This work found that not all meat quality traits were able to be predicted accurately and certain
techniques worked better for differing traits. The best predictive models for ultimate pH using the
near infrared and hyperspectral data achieved R? values (a measure of goodness of fit) from the
validation data sets of 0.63 and 0.48 respectively. For near infrared the best predictive models were
achieved using partial least squares with pre-processing (standard normal variate, orthogonal signal
correction and mean centring) applied, while for hyperspectral imaging neural networks provided the
best model using a decay of 0.00004 and a node size of 2. The best predictive models for intramuscular
fat using the near infrared and hyperspectral data achieved R%values from the validation data sets of
0.56 and 0.75 respectively. For near infrared this was achieved using partial least squares with pre-
processing (normalisation, multiplicative scatter correction and mean centring) applied, while for
hyperspectral imaging neural networks provided the best model using a decay of 0.0009 and a node
size of 4. This performance of these two traits in particular, shows that that the prediction abilities
are of a quality that future work on implementing these into an in-line system at a pilot scale should

be considered.

Overall, the use of novel modelling techniques such as neural networks showed potential to increase
the predictive abilities of the resulting models, over more traditional modelling techniques.
Additionally, it was demonstrated that the number of predictors needed to create a calibration model
could be reduced, increasing the speed of analysis with only minimal loss in the accuracy of the

resulting model.

Results obtained during this study suggest that the calibration models are not abattoir dependent and
the transfer of one calibration model to multiple abattoirs could decrease the costs and allow for

faster development and implementation of an in-line, in-plant system.
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