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Abstract. 

Electromagnetic fields (EMFs) have been associated with increased incidences of 

cancer as suggested by epidemiological studies. The in vitro sister chromatid exchange 

(SCE) technique, radiation-induced micronucleus assay (MN assay), COMET assay, 

and fluorescence in situ hybridization (FISH) were used in the present study to test the 

carcinogenic potentiality of extremely low frequency (ELF) EMFs on human peripheral 

blood lymphocytes. All experiments were performed single blind and used lymphocytes 

taken from 6 age-matched donors. The SCE experiments were conducted twice: round I 
(RI) and round 2 (R2), in order to determine whether or not the results obtained could 

be duplicated. 

Detailed analysis of the SCE results showed that there was a significant increase in the 

number of SCEs/cell in the grouped experimental conditions compared to the controls 

in both rounds. Similarly, in the MN assay, a significant increase of mean number of 

micronucleated CB cells/l OO CB cells (Ma) and m ean number of micronuclei/l 00 CB 

cells (Mb) was observed in the grouped experimental conditions compared to the 

controls. Moreover, the highest SCE frequency in RI was 1 0 .03 for a square continuous 

field, and the SCE frequency of 10 .39 for a square continuous field in R2 (albeit a 

different strength) was the second highest in this latter round. But in the MN assay a 

square pulsed field with increasing EMF strength showed the greatest effect on the 

DNA repair system. The COMET assay also showed that both a l m T  square field 

(continuous or pulsed) resulted in significant fragmentation of the DNA. On the other 

hand, a FISH analysis failed to show any translocations. 

In the field of EMF research, perhaps the most outstanding question that remains to be 

answered with certainty is how weak EMFs exert their effects at the molecular level. 

Various mechanisms are reviewed and evaluated in this thesis. From the results of the 

research performed in the current study which concentrated on testing and discovering 

genetic effects, a model is postulated that weak EMFs stimulate the production of free 

radicals which result in genetic damage. Further extensive research should be conducted 

to test this hypothesis. 
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