Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Internal Lower Oxygen Limits of Apple Fruit

A thesis presented in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy in Plant Science

at

Massey University New Zealand

Christopher William Yearsley 1996 In memory of my mother and to Kathryn, Tim. Daniel. Elissa and Andrew

Abstract

The optimum atmosphere for a crop, with respect to oxygen, lies just above the lower oxygen limit (*LOL*), at which maximum benefits in relation to fruit quality are achieved and below which fruit quality is compromised by fermentation. In contrast to previous work, *LOLs* in this study were estimated on the basis of steady-state internal atmospheres (*LOL*ⁱs) as well as external atmospheres (*LOL*^es) as it is the internal O₂ partial pressure ($p_{O_2}^i$, Pa), close to equilibrium with the cytosol, that mediates important physiological processes. The study tested whether *LOL*ⁱs of 'Cox's Orange Pippin' and 'Braeburn' apples were affected by temperature, elevated CO₂, and physiological age.

Two types of *LOLs* were identified: the anaerobic compensation point (*ACP*) and the fermentation threshold (*FT*). *ACP* was described in terms of plots of the internal $CO_2(p_{CO_2}^i)$ versus internal $(p_{O_2}^i)$ and external $(p_{O_2}^e)$ O₂, and *FT* in terms of plots of both a measure of the respiratory quotient (*RQ_{ia}*) and ethanol (EtOH) concentration versus $p_{O_2}^i$ and $p_{O_2}^e$. Mathematical solutions for estimating *ACP* and *FT* based on the *RQ_{ia}* (*FT_{RQ}*), and a statistical 'bootstrap' procedure suitable for estimating all *LOLs* and their bias-corrected 95% confidence intervals, are described.

 LOL^{i} s of postclimacteric fruit of both cultivars tended to increase slightly between 0° and 28°C and sharply at 32°C. LOL^{i} s ranged between 0.5 kPa and 2.2 kPa $p_{O_{2}}^{i}$; values for FT_{RQ}^{i} and FT_{EtOH}^{i} tended to be higher than for ACP^{i} . Elevated $p_{CO_{2}}^{e}$ (0 to 8 kPa at 0° and 20°C) did not significantly affect LOL^{i} s at 20°C, but increases in FT_{RQ}^{i} and FT_{EtOH}^{i} occurred for fruit at 0°C. A small decrease in O₂ uptake and RQ_{ia} was measured for fruit in 2 to 8 kPa $p_{CO_{2}}^{e}$ at 20°C. No consistent changes in LOL^{i} s were observed for either cultivar in relation to physiological age (preclimacteric, climacteric, or postclimatceric fruit at 0° or 20°C).

In contrast to ACP^{i} , ACP^{e} increased markedly with temperature, resulting from its dependence on both skin permeance and respiration rate (both of which change with time fruit are in storage). Consequently, use of LOL^{i} s, rather than LOL^{e} s is recommended for optimising atmospheres for both sealed packages and controlled atmosphere storage, to minimise risk of fermentation.

Acknowledgements

My chief supervisor, Professor Nigel Banks has been both an inspiration and friend, and I am indebted to him for completion of this thesis. I thank my cosupervisors, Professor Errol Hewett for his advice and Dr Siva Ganesh for patient guidance through statistical problems and introducing me to 'bootstrapping'. I thank Professor Don Cleland who willingly gave his time to help with mathematical issues.

My colleagues at HortResearch have been both encouraging and patient during my absence. I thank Dr Chris Watkins (Cornell University, New York) who encouraged me to enrol for this PhD, and Dr Nagin Lallu for all he has taught me about horticulture, their friendship and support. I am indebted to HortResearch management, Drs James McWha, John Shaw and Ian Ferguson for their help and financial assistance. Thanks also to Dr Roger Harker for collaboration on the 'Braeburn Browning Disorder' research that was conducted during the course of the PhD but not reported herein. I also thank Professor Art Cameron and Dr Randy Beaudry of Michigan State University for their suggestions.

Generous financial support was received from the Foundation for Science Research and Technology, and from ENZA New Zealand (International) who awarded me the 1993 Don Sinclair Research Fellowship. My thanks go to Drs John Field-Dodgson, Gisela Ahlborn, Mr Hamish Tough and Shayna Hoggett of ENZA New Zealand (International) for their help.

I deeply appreciate the assistance and friendship of the Plant Science Department. staff at Massey University. My sincere thanks to Professor Ken Milne and the office staff, Colleen Hanlon, Pam Howell, Hera Kennedy and Lois Mather. Many colleagues have assisted, given advice and encouraged me, among both academic staff and fellow postgraduates. I wish to acknowledge the help of Dr Ben Dadzie, Sue Nicholson, Anna Kingsley, Dr Jonathan Cutting, Jonathan Dixon, Suzie Newman, Wirip Ampum, Inge Merts, Peter Jeffery, Colin Todd, Chris Rawlinson, Mike Currie, Tom Robertson, Craig Mowatt, Cassandro Amarante, and Kate Maguire. In addition to those above, Sohail Choudry, Delwyn Cooke, Jane Young and Alisdair Noble willingly contributed as panellists. I have learnt much through the weekly Fruit Science Group, and Controlled Temperature Lab Group meetings and thank all who contributed to those discussions. I am grateful to Massey University engineers and technicians, Ian Painter, Leo Boulter, John Alger, Bruce Collins and Jarred Harrigan who helped with equipment. I thank the staff at the Massey University Plant Growth Unit, particularly Ray Johnson, and Shane Max of the Fruit Crops Unit for cool storage facilities. Peter Catcherside of Trigon Packaging generously supplied plastic film, David Flemming of Carmel Orchard allowed me to harvest his fruit for the experiments and Stuart and Leslie Humphry to use the Algernon Trust Packhouse.

I reserve special thanks to my family who have made sacrifices for me throughout. I can not express in words thanks to my wife Kathryn, whose tolerant support and encouragement has made our stay in Palmerston North an enriching experience. Thanks Tim, Daniel, Elissa and Andrew for your help, and to the extended family of friends who made the stay in Palmerston North so enjoyable.

Table of Contents

Abstract	iii
Acknowledgements	iv
Table of Contents	vi
List of Tables	xvii
List of Figures	xxi
List of Symbols and Abbreviations	xxx

Chapter 1

General Introduction

1.1	Background to project	1
1.2	Generalized model for gas exchange in apples	4
1.3	Optimum internal atmospheres and lower oxygen limits	7
1.4	Research objectives and structure of the thesis	10
1.5	References	13

Chapter 2

Literature Review

2.1	Introd	uction		14
2.2	Respin	atory meta	abolism	15
	2.2.1	Introduct	ion	15
	2.2.2	Aerobic	respiration	17
		2.2.2.1	Glycolysis	17
		2.2.2.2	Tricarboxylic acid cycle and the electron transport system	ı. 20
		2.2.2.3	Cyanide-resistant respiration	23
		2.2.2.4	Respiratory quotient (RQ) and the effects of reduced O_2	
			and elevated CO ₂	23
		2.2.2.5	Respiration rate and the effects of reduced O_2 and	
			elevated CO ₂ on aerobic respiration	25

		2.2.2.6	Mode of action of reduced O_2 and elevated CO_2 on	
			aerobic respiration	26
		2.2.2.7	Effect of reduced O_2 and elevated CO_2 on glycolysis and	d
			TCA cycle	28
	2.2.3	Anaerob	ic respiration	31
		2.2.3.1	Function of anaerobic respiration and biochemical	
			pathways	32
		2.2.3.2	Regulation of anaerobic respiration	34
		2.2.3.3	Responses of crops to metabolites of anaerobic	
			respiration	36
	2.2.4	Respirati	on rates of crops and changes with physiological age	38
		-		
2.3	Aerob	ic-anaerob	vic respiratory transition	41
	2.3.1	Introduct	ion	41
	2.3.2	Extinctio	n point of anaerobic respiration	41
	2.3.3	Anaerobi	c compensation point	42
	2.3.4	Effect of	temperature on LOLs	44
	2.3.5	Effect of	elevated CO ₂ on <i>LOL</i> s	45
	2.3.6	Effect of	physiological age on LOLs	46
2.4	Effect	s of decrea	used O_2 and elevated CO_2 on ethylene biosynthesis	
	and ac	tion		47
2.5	Gas ex	change of	bulky plant organs	49
	2.5.1	Introduct	ion	49
	2.5.2	Laws of g	gas diffusion	50
	2.5.3	The skin	as a barrier to gas diffusion, and pathways for gas	
		exchange	÷	53
		2.5.3.1	The structure of the skin	54
		2.5.3.2	Permeance of the skin to gases	55
		2.5.3.3	Routes for gas exchange through the skin	56
	2.5.4	Gas diffu	usion in fruit flesh	58
2.6	Refer	ences		61

viii

Chapter 3

General Materials and Methods

3.1	Introd	luction		77
3.2	Fruit	supply and	d ethylene pretreatments	77
	3.2.1	Fruit sup	pply	77
	3.2.2	Ethylene	e pretreatment	78
3.3	Contr	olled temp	perature fruit storage	78
	3.3.1	Tempera	ature monitoring	79
	3.3.2	Relative	humidity monitoring	80
3.4	Gas m	nixing, cor	ntrolled atmosphere system and treatments	
	3.4.1	Gas mix	ing	
	3.4.2	Controll	ed atmosphere system	
	3.4.3	Controll	ed atmosphere treatments	
3.5	Meası	rement of	f internal atmospheres	
	3.5.1	Surface of	chambers	
		3.5.1.1	Gas tightness of surface chambers	
		3.5.1.2	Equilibration of surface chambers to the internal	
			atmosphere of apples	
		3.5.1.3	Results	
	3.6.2	Direct sa	mpling from the core cavity	
3.7	Measu	ired gas va	ariables	99
	3.7.1	Gas anal	ysis	
	3.7.2	Calibrati	on standards	
		3.7.2.1	CO_2 and O_2 standards	101
		3.7.2.2	Ethylene (C_2H_4) and ethane (C_2H_6) standards	
		3.7.2.3	Ethanol, acetaldehyde, ethyl acetate and ethylene	
			analysis	102
	3.7.3	Convers	ion of units for amounts of gas in samples	105
		3.7.3.2	Calculation of concentrations of dissolved O_2 in	
			equilibrium with partial pressures of O_2	106
		3.7.2.3	Converting mole fractions to concentrations	107
		3.7.4	Rates of transfer of physiological gases	107

		3.2.4.1	Rate of respiration10
		3.7.4.2	Ethylene production rate11
	3.7.5	Estimatir	ng fruit skin permeance to gases11
		3.7.5.1	Permeance to ethane11
		3. 7. 5. 2	Permeance to CO ₂ and O ₂ 11
3.8	Measu	ires of othe	er fruit attributes 11
	3.8.1	Fruit tissu	ie firmness 11
	3.8.2	Fruit tota	l soluble solids content114
	3.8.3	Starch ind	lex 114
	3.8.4	Fruit back	ground skin colour114
	3.8.5	Fruit surfa	ace area115
	3.8.6	Cortical ti	issue porosity and density115
3.9	Discus	sion	
3.10	Refere	nces	

Determination of Lower Oxygen Limits for Apple Fruit

4.1	Abstra	ct	125	
4.2	Introdu	uction	126	
4.3	Theore	tical background	128	
4.4	Materi	als and methods	132	
	4.4.1	Fruit supply	132	
	4.4.2	CA treatments	132	
	4.4.3	Gas measurement and analysis	133	
	4.4.4	Respiration and ethylene production rates	134	
	4.4.5	Skin permeance	134	
	4.4.6	Tissue porosity and cortical tissue density	135	
	4.4.7	Experimental design and analysis	136	
4.5	Result	Results		
	4.5.1	$p'_{\rm CO_2}$ as a function of $p'_{\rm O_2}$ and $p'_{\rm O_2}$	137	

	4.5.2 RQ_{ia} as a function of $p_{\bullet_2}^i$ and $p_{O_2}^e$	140
	4.5.3 c'_{Acob} c'_{EtAc} and c'_{EtOH} as a function of p'_{O_2} and p'_{O_2}	142
4.6	Discussion	144
4.7	Supplementary results and discussion	147
	4.7.1 $p_{(i-e)}$ as a function of $p'_{\underline{0}_2}$	147
4.8	References	

Temperature Effects on Lower Internal Oxygen Limits of Apple fruit

5.1	Abstra	act
5.2	Introd	uction
5.3	Mater	ials and methods
	5.3.1	Fruit supply, initial measurements, treatments and storage159
	5.3.2	Temperature treatments, temperature and relative
		humidity monitoring160
	5.3.3	CA system and model for estimating CA atmospheres161
	5.3.4	Gas measurement and analysis
	5.3.5	Respiration and ethylene production rates164
	5.3.6	Skin permeance, cortical tissue porosity and density165
	5.3.7	Estimation of LOL ⁱ s based on partial pressures and dissolved
		oxygen 165
	5.3.8	Estimation of ACP^e from ACP^i
	5.3.9	Statistical analysis
5.4	Result	ts
	5.4.1	Fruit maturity
	5.4.2	Skin permeance to ethane $(P_{C_2H_6})$
	5.4.3	Cortical tissue porosity (ϵ) and density (ρ)169
	5.4.4	Respiration rate (r_{CO_2}) and ethylene production $(r_{C_2H_4})$ as a
		function of fruit temperature
	5.4.5	Verification of steady-state model 1 predictions

	5.4.6 $LOL^{i}s$ as	.4.6 LOL^{i} s as a function of temperature	
	5.4.6.1	ACP ⁱ and ACP ^e as a function of temperature	
	5.4.6.2	$FT_{R_{e}}^{i}$ as a function of temperature	
	5.4.6.3	Chamber FT_{EtOH}^{i} as a function of temperature	177
5.5	Discussion		
5.6	Acknowledgem	ents	
5.7	References		

Chapter 6 Effect of Elevated Carbon Dioxide on the Lower Internal Oxygen Limits of Apple Fruit

6.1	Abstra	act	192
6.2	Introd	uction	
6.3	Mater	ials and methods	195
	6.3.1	Fruit supply, initial measurements, treatments and storage	195
	6.3.2	CA and elevated CO ₂ treatments	
	6.3.3	Gas measurement and analysis	197
	6.3.4	Respiration and ethylene production rates	197
	6.3.5	Skin permeance, cortical tissue porosity and density	
	6.3.6	Estimation of <i>LOL</i> 's	
	6.3.7	Statistical analysis	
6.4	Results		199
	6.4.1	Fruit maturity	
	6.4.2	Cortical tissue porosity (ϵ), density (ρ) and skin permeance t	o ethane
		$(P_{C_2H_6})$	
	6.4.3	Respiration rate (r_{CO_2}) and ethylene production ($r_{C_2H_4}$)	
	6.4.4	LOL^{i} s as a function of $p_{CO_{2}}^{e}$	
		6.4.4.1 ACP ⁱ as a function of $p_{CO_2}^e$	
		6.4.4.2 $FT'_{R_{e}}$ as a function of $p^{e}_{CO_{2}}$	
		6.4.4.3 FT'_{EOH} as a function of $p^e_{CO_2}$	205
	6.4.5	$\Delta p_{\rm O_2}$ as a function of $p_{\rm O_2}'$ and $p_{\rm CO_2}^{e}$	

	6.4.6 RQ_{ia} as a function of $p_{O_2}^{\prime}$, temperature and $p_{C \bullet_2}$	
6.5	Discussion	
6.6	Acknowledgements	
6.7	References	220

Chapter 7Effect of Physiological Age on the Lower InternalOxygen Limits of Apple Fruit

7.1	Abstr	act	223
7.2	Introd	luction	224
7.3	Mater	ials and methods	225
	7.3.1	Fruit supply, initial measurements, treatments and storage	225
	7.3.2	Selection of experimental fruit	226
	7.3.3	Controlled atmosphere treatments	226
	7.3.4	Gas measurements and analysis	227
	7.3.5	Respiration and ethylene production, skin permeance, cortica	.1
		tissue porosity and density	227
	7.3.6	Estimation of LOL ⁱ s	228
	7.3.7	Statistical analysis	229
7.4	Result	ts	229
	7.4.1	Descriptors of physiological age of apples	229
	7.4.2	Cortical tissue porosity, density	232
	7.4.3	Fruit permeance to CO ₂ and O ₂	232
	7.4.4	LOL ⁱ s as a function of physiological age	232
		7.4.4.1 ACP^{i} as a function of physiological age	235
		7.4.4.2 FT'_{RQ} as a function of physiological age	
7.5	Discu	ssion	237
7.6	Ackn	owledgements	242
7.7	Refer	ences	243

Cannulation as a Technique for Monitoring

Changes in Apple Internal Atmospheres

8.1	Abstra	act		245
8.2	Introd	uction		246
8.3	Mater	ials and m	ethods	247
	8.3.1	Experim	ent 1: Surface chambers and cannulation	247
		8.3.1.1	Fruit supply	247
		8.3.1.2	Treatments	247
8.	3.2 Ex	xperiment	2: Multiple cannulation	248
		8.3.2.1	Fruit supply	248
		8.3.2.2	Treatments	248
8.	3.3 Ca	annulation	procedure	249
	8.3.4	Measure	ment of internal atmospheres	249
	8.3.5	Estimatio	on of respiration rate and ethylene production rate	251
	8.3.6	Data ana	lysis	251
8.4	Result	S		251
	8.4.1	Experim	ent 1: Surface chambers and cannulation	251
		8.4.1.1	Respiration rate (r _{CO2})	252
		8.4.1.2	Internal ethylene partial pressure $(p_{C_2H_4}^{'})$	253
		8.4.1.3	<i>Ethylene production rate</i> (<i>r</i> _{C2H4})	254
		8.4.1.4	Internal partial pressures of carbon dioxide $(\mathbf{p}_{CO_2}^{'})$ and	1
			$oxygen(p_{0}')$	255
		8.4.1,5	Physical damage resulting from cannulation	255
	8.4.2	Experin	nent 2: Multiple cannulation	257
		8.4.2.1	Respiration rate	257
		8.4.2.2	Ethylene production rate	257
8.5	Discus	ssion		259
8.6	Ackno	owledgme	nts	261
8.7	Refere	ences		262

General Discussion

9.2 Difference in partial pressure as a function of skin permeance and	
respiration rate	65
9.2.1 Effect of skin permeance on differences between external and	
internal partial pressures	66
9.2.2 Differential permeance of the skin to O_2 and CO_2	66
9.2.3 Effect of respiration rate on partial pressure gradients	71
9.3 Estimation of <i>LOLs</i>	71
9.3.1 Methods for estimating <i>LOLs</i> 27	71
9.3.2 Quantification of <i>LOLs</i>	74
9.4 Factors affecting <i>LOL</i> s27	76
9.4.1 Diffusion of O_2 to sites of oxidative metabolism	77
9.4.1.1 Diffusion of O_2 through intercellular spaces	79
9.4.1.2 Diffusion of O_2 in cells	31
9.4.2 Uptake of O ₂ by oxidative metabolism	32
9.5 Relationship between LOL^i s and LOL^e s as a function of temperature	36
9.6 Internal atmosphere modulated CA storage of apples (IAMCA)29)4
9.7 Recommendations for further research)8
9.8 Conclusions)3
9.9 References)5
Annendix 1 Sample Plots of Data for Assessment of Lowe	٦r
Ourse Lineit	21
Oxygen Limit	.S
Sample plots of data for assessment of lower oxygen limits	0

Appendix 2Panel Assessments of Lower Oxygen Limits

Panel assessments of lower oxygen limits	21
--	----

Appendix 3

Gauss Programme to Calculate Bootstrap Estimates of *LOL*ⁱs

Appendix 4

Quantifying the Association between

'Braeburn Browning Disorder' with Mineral

Composition and Skin Permeance to Gases

of 'Braeburn' Apples

A4.1	Abstract	29
A4.2	Introduction	30
A4.3	Materials and methods	31
	A4.3.1 Fruit supply and initial fruit measurements	31
	A4.3.2 Respiration rates	31
	A4.3.3 Skin permeance to ethane	32
	A4.3.4 Controlled atmosphere storage	33
	A4.3.5 Evaluation of stored fruit	33
	A4.3.6 Mineral analyses	34
	A4.3.7 Statistical analysis	34
A4.4	Results and discussion	35
	A4.4.1 Initial fruit maturity	34
	A4.4.2 Respiration rates and skin permeance	35
	A4.4.3 Disorders	37
	A4.4.3.1 Symptoms of the disorders	37
	A4.4.3.2 Incidence and severity of the disorders	37
	A4.4.4 The relationship between skin permeance, internal BBD and cavities. 3	38
	A4.4.5 Tissue mineral content and the severity of internal BBD	39
A4.5	Conclusions	44
A4.6	Acknowledgements	44
A4.7	References	45

Appendix 5

Regional Differences in Gas Exchange Characteristics of 'Braeburn' Apples in relation to the Incidence of 'Braeburn Browning Disorder'

A5.1	Abstract.	346
A5.2	Introduction	347
A5.3	Materials and methods	348
	A 5.3.1 Fruit supply.	348
	A5.3.2 Gas exchange characteristics	348
	A5.3.2.1 Respiration rates	348
	A5.3.2.2 Internal CO_2 and O_2 partial pressures	349
	A 5.3.2.3 Skin permeance	349
	A5.3.2.4 Statistical analysis	350
A5.4	Results and discussion.	351
	A5.4.1 Respiration rates	351
	A5.4.2 Skin permeance.	353
	A5.4.3 Internal atmospheres	354
	A5.4.4 Differences between trees and fruit position in the canopy	365
A5.5	Conclusions	365
A5.6	Acknowledgements	365
A5.7	References	366

List of Tables

Chapter 3

General Materials and Methods

Chapter 4 Determination of Lower Oxygen Limits for Apple Fruit

Table 4.1	Biophysical measurements for subsamples of 'Cox's Orange	
	Pippin'	138
Table 4.2	Fitted and bootstrap estimates of means and standard errors of	
	means, lower and upper 95% bias corrected confidence intervals	
	of steady-state lower oxygen limits of 'Cox's Orange Pippin'	
	apples held in controlled atmospheres at 24°C	140

Chapter 5 Temperature Effects on Lower Internal Oxygen Limits of Apple fruit

Table 5.2Cortical tissue porosity, density and skin permeance to ethane for
'Cox's Orange Pippin' and 'Braeburn' apples from a Hawkes Bay
orchard stored at 2°C and 0°C respectively for various durations. 170

Table 5.3	Values for fruit and gas variables used for model 2 predictions of	
	$p_{\Phi_2}^e$ as a function of $p_{O_2}^i$ using Eq. 5. 8 for 'Cox's Orange Pippin'	
	and 'Braeburn' apples	175

Chapter 6 Effect of Elevated Carbon Dioxide on the Lower Internal Oxygen Limits of Apple Fruit

Table 6.1	Fruit firmness, soluble solids content, and background colour
	(lightness and hue angle), for 'Cox's Orange Pippin' and
	'Braeburn' apples from a Hawkes Bay orchard stored at 2°C and
	0°C respectively for various durations
Table 6.2	Cortical tissue porosity, density, and mean (\pm standard error of
	means) skin permeance to ethane for 'Cox's Orange Pippin' and
	'Braeburn' apples from a Hawkes Bay orchard stored at 2°C and
	0°C respectively for various durations
Table 6.3	Estimates of respiration rate and ethylene production for 'Cox's
	Orange Pippin' and 'Braeburn' apples from a Hawkes Bay
	orchard stored at 2°C and 0°C respectively for various durations203
Table 6.4	Estimates of parameters and standard errors for Eq. 6.2 describing
	the relationship between the difference in external and internal
	(chamber) steady-state partial pressures of O_2 and internal partial
	pressure of O_2 for 'Cox's Orange Pippin' and 'Braeburn' apples
	at 20° and 0°C at various external CO_2 partial pressures
Table 6.5	Estimates of parameters for plots and standard errors of the
	respiratory quotient as a function of internal (chamber) steady-
	state partial pressure of O_2 using Eq. 6.3, for 'Cox's Orange
	Pippin' and 'Braeburn' apples at 20° and 0°C, and at various
	external CO ₂ partial pressures

Chapter 7 Effect of Physiological Age on the Lower Internal Oxygen Limits of Apple Fruit

Table 7.1	Fruit firmness, soluble solids content, background colour and
	starch index, for 'Cox's Orange Pippin' and 'Braeburn' apples
	from a Hawkes Bay orchard stored at 2°C and 0°C respectively
	for various durations
Table 7.2	Estimates of respiration rate, ethylene production, and skin
	permeance to CO_2 and O_2 for 'Cox's Orange Pippin' and
	'Braeburn' apples from a Hawkes Bay orchard stored at 2°C and
	0°C respectively for various durations
Table 7.3	Cortical tissue porosity and density, for 'Cox's Orange Pippin'
	and 'Braeburn' apples from a Hawkes Bay orchard stored at 2°C
	and 0°C respectively for various durations

Chapter 9

General Discussion

Table 9.1	Summary of effects or likely effects on <i>LOL</i> ^e s and <i>LOL</i> ⁱ s of	
	environmental and fruit-related variables	278
Table 9.2	Coefficients standard errors (se) and r^2 values for the relationship	
	between ACP^{i} , ACP^{e} and temperature $[ACP = a b^{(0.17)}]$ for	
	'Cox's Orange Pippin' and 'Braeburn' apples in air at various	
	temperatures, and for fruit with high and low skin permeance to	
	O ₂	292

Appendix 4 Quantifying the Association between 'Braeburn Browning Disorder' with Mineral Composition and Skin Permeance to Gases of 'Braeburn' Apples

Table A4.1	Estimates of the initial fruit maturity of 'Braeburn' apples: fruit
	firmness, total soluble solids content; background fruit colour, and
	internal ethylene partial pressure, for fruit from five Central
	Hawkes Bay orchards
Table A4.2	Estimates of respiration rates and skin permeance to of 'Braeburn'
	apples at 20°C harvested from five Central Hawkes Bay orchards
	before cool storage in a controlled atmosphere
Table A4.3	Mineral content (N, P, K, Ca and Mg) of the cortex of 'Braeburn'
	apples from five Central Hawkes Bay orchards after storage at 0°C
	for 27 weeks in a controlled atmosphere (2 kPa O_2 and 5 kPa CO_2) 340

List of Figures

Chapter 1

General Introduction

Figure 1.1	Quantities of some New Zealand apple cultivars stored in	
	controlled atmospheres or in unsealed polymeric film carton liners	
	during 1995 by ENZA New Zealand (International).	2
Figure 1.2	Schematic model illustrating the interdependence of various	
	environmental and fruit variables resulting in the gradient	
	between external and internal atmospheres of apples	5
Figure 1.3	Relationship between internal partial pressure of O_2 and (a)	
	internal partial pressure of CO_2 from aerobic and anaerobic	
	respiration, (b) respiratory quotient and (c) internal concentration	
	of ethanol based on data for 'Cox's Orange Pippin' apples at	
	24°C	9

Chapter 2

Literature Review

Figure 2.1	Simplified pathways of glycolysis and the TCA cycle to show	
	their relationship to other synthetic processes	18
Figure 2.2	Reactions of glycolysis	19
Figure 2.3	Reactions of the TCA cycle, including enzymes and coenzymes	22
Figure 2.4	Fermentation of pyruvic acid to form ethanol or lactic acid	33
Figure 2.5	Regulation of anaerobic respiration of 'Hass' avocado in low O_2	
	atmospheres.	35

Chapter 3

General Materials and Methods

Figure 3.1	Cooling of (a) 'Cox's Orange Pippin' and (b) 'Braeburn' apples
	sealed in controlled atmosphere bags in a controlled temperature
	cabinet set at 0°C

Figure 3.2	Surface chambers with (a) plastic syringe and (b) metal	
	components8	7
Figure 3.3	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Cox's Orange Pippin' apples in air at 0°C9	1
Figure 3.4	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Braeburn' apples in air at 0°C9	2
Figure 3.5	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Cox's Orange Pippin' apples in 2 kPa O ₂ at 0°C9	3
Figure 3.6	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Braeburn' apples in 5 kPa O ₂ at 0°C	4
Figure 3.7	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Cox's Orange Pippin' apples in air at 20°C99	5
Figure 3.8	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Braeburn' apples in air at 20°C96	5
Figure 3.9	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Cox's Orange Pippin' apples in 2 kPa O ₂ at 20°C97	7
Figure 3.10	Equilibration of (a) p_{CO_2} and (b) p_{O_2} in surface chambers adhered	
	to five 'Braeburn' apples in 5 kPa O ₂ at 20°C98	3

Determination of Lower Oxygen Limits for Apple Fruit

Figure 4.1	Schematic diagram of a CA bag with container holding apples	
	with glass surface chambers adhered to the skin at an equatorial	
	position.	. 133
Figure 4.2	Relationship between $p_{CO_2}^{\prime}$ and (a) $p_{O_2}^{\prime}$ and (b) $p_{O_2}^{e}$ of individual	
	'Cox's Orange Pippin' apples after 86 to 90 hours at 24°C in $p_{O_2}^e$	
	ranging from 0.0 kPa to < 30.0 kPa	.139
Figure 4.3	Relationship between respiratory quotient and (a) $p_{O_2}^{\prime}$ and (b) $p_{O_2}^{e}$	
	of individual 'Cox's Orange Pippin' apples after 86 to 90 hours at	
	24°C in $p_{\bullet_2}^e$ ranging from 0.0 kPa to < 30.0 kPa	141

Figure 4.4	Relationship between internal ethanol concentration and (a) $p_{0_2}^i$
	and (b) $p_{O_2}^{e}$ of individual 'Cox's Orange Pippin' apples after 86 to
	90 hours at 24°C in $p_{O_2}^{e}$ ranging from 0.0 kPa to < 30.0 kPa143
Figure 4.5	Relationship between p'_{CO_2} , RQ_{ie} and $p_{(i-e)}$ as a function of p'_{O_2} 149
Figure 4.6	Mathematical estimation of the Fermentation Threshold based on
	the relationship between $p_{(i-e)}$ as a function of $p_{O_2}^i$ using (a) a
	numerical, and (b) a statistical method
Figure 4.7	The relationship between the respiratory quotient of apples based
	on internal atmospheres and p'_{O_2} for various levels of (a) skin
	permeance to O_2 for fruit with the same respiration rate in air and
	(b) $r_{O_2}^{iair}$ for fruit with the same $P_{O_2}^{iair}$

Temperature Effects on Lower Internal Oxygen Limits of Apple Fruit

Figure 5.1	Cortical tissue density as a function of porosity for 'Cox's Orange
	Pippin' and 'Braeburn' apples from a Hawkes Bay orchard stored
	at 0°C and 2°C respectively for periods up to 24 weeks, and held
	at 20°C for 24 h before estimation
Figure 5.2	Respiration rate [a] and ethylene production [b] as a function of
	fruit temperature for 'Cox's Orange Pippin' and 'Braeburn'
	apples from a Hawkes Bay orchard stored at 0°C and 2°C
	respectively for periods up to 24 weeks172
Figure 5.3	Steady-state model 1 (Eq. 5.6) and model 2 (Eq. 5.8) predictions
	of $p_{O_2}^{e}$ calculated from p_{O_2}' and experimental data for (a) 'Cox's
	Orange Pippin' and (b) 'Braeburn' apples at 0 and 24°C174
Figure 5.4	Bootstrap estimates of steady-state internal lower oxygen limits
	$(ACP^{i}, FT^{i}_{RQ}, \text{ and } FT^{i}_{EtOH})$ based on partial pressures of surface
	chambers and equivalent dissolved oxygen concentrations for
	'Cox's Orange Pippin' apples as a function of fruit temperature178

Figure 5.5	Bootstrap estimates of steady-state internal lower oxygen limits
	$(ACP^{i} \text{ and } FT_{RQ}^{i})$ based on partial pressures in the core cavity and
	equivalent dissolved oxygen concentrations for 'Cox's Orange
	Pippin' apples as a function of fruit temperature
Figure 5.6	Bootstrap estimates of steady-state internal lower oxygen limits
	$(ACP^{i}, FT^{i}_{RQ}, \text{and } FT^{i}_{EtOH})$ based on partial pressures in surface
	chambers and dissolved oxygen concentrations for 'Braeburn'
	apples as a function of fruit temperature180
Figure 5.7	Bootstrap estimates of steady-state internal lower oxygen limits
	$(ACP^{i} \text{ and } FT'_{RQ})$ based on partial pressures in the core cavity and
	equivalent dissolved oxygen concentrations for 'Braeburn' apples
	as a function of fruit temperature181
Figure 5.8	Bootstrap estimates of steady-state internal and external lower
	oxygen limits $(ACP^{i} \text{ and } ACP^{e})$ of 'Braeburn' apples as a
	function of fruit temperature, based on combined chamber and
	core partial pressure data

Chapter 6 Effect of Elevated Carbon Dioxide on the Lower Internal Oxygen Limits of Apple Fruit

Figure 6.1	Cortical tissue density as a function of porosity for 'Cox's Orange	
	Pippin' and 'Braeburn' apples from a Hawkes Bay orchard stored	
	at 2°C and 0°C respectively for periods up to 23 weeks	. 204
Figure 6.2	Bootstrap estimates of steady state internal lower oxygen limits	
	$(ACP', FT'_{RQ}, \text{ and } FT'_{EtOH})$ based on partial pressures of surface	
	chambers for 'Cox's Orange Pippin' apples as a function of	
	external partial pressure of CO ₂	.208
Figure 6.3	Bootstrap estimates of steady state internal lower oxygen limits	
	$(ACP^{i}, FT_{RQ}^{i}, \text{and } FT_{EtOH}^{i})$ based on partial of surface chambers	
	for 'Braeburn' apples as a function of external partial pressure of	
	CO ₂	209

Figure 6.4	Difference between external and internal (chamber) steady-state
	partial pressure of O_2 as an estimate of differences in respiration
	rate in 'Cox's Orange Pippin' and 'Braeburn' apples at 20°C,
	stored in various external partial pressures of O_2 and either 0, 2,
	4, 6, or 8 kPa external partial pressures of CO_2 , balance N_2 210
Figure 6.5	Difference between external and internal (chamber) steady-state
	partial pressure of O_2 as an estimate of differences in respiration
	rate in 'Cox's Orange Pippin' and 'Braeburn' apples at 0°C,
	stored in various external partial pressures of O_2 and either 0 and
	8 kPa external partial pressures of CO_2 , balance N_2 211
Figure 6.6	Respiratory quotient as a function of the internal (chamber)
	steady-state partial pressure of O_2 for 'Cox's Orange Pippin' and
	'Braeburn' apples at 20°C, stored in 0, 2, 4, 6 or 8 kPa external
	partial pressure of CO ₂ , balance N ₂
Figure 6.7	Respiratory quotient as a function of the internal (chamber)
	steady-state partial pressure of O_2 for 'Cox's Orange Pippin' and

Chapter 7 Effect of Physiological Age on the Lower Internal Oxygen Limits of Apple Fruit

Figure 7.1	Cortical tissue density as a function of porosity for 'Cox's Orange	
	Pippin' and 'Braeburn' apples of different physiological stages	234
Figure 7.2	Bootstrap estimates of steady state internal lower oxygen limits	
	$(ACP^{i} \text{ and } FT_{RQ}^{i})$ based on partial pressures of O ₂ and CO ₂ of	
	surface chambers and core cavities for 'Cox's Orange Pippin' and	
	'Braeburn' apples at 0° and 20°C for preclimacteric, climacteric	
	and postclimacteric stages.	236

Chapter 8Cannulation as a Technique for MonitoringChanges in Apple Internal Atmospheres

Figure 8.1	'Braeburn' apple with (a) a cannula inserted and sealed into the
	core cavity and glass chambers adhered to the surface in an
	equatorial region, and (b) 'Braeburn' apple with cannulae inserted
	and sealed into the core cavity, mid-cortex region at the stem-end
	shoulder, equatorial region and blossom-end shoulder250
Figure 8.2	Respiration rate of (a) preclimacteric/climacteric and (b)
	postclimacteric 'Braeburn' apples at 20°C252
Figure 8.3	Number of fruit with internal ethylene partial pressure ≥ 0.01 Pa
	for preclimacteric/climacteric 'Braeburn' apples over 9 days at
	20°C253
Figure 8.4	Ethylene production rate of postclimacteric 'Braeburn' apples at
	20°C254
Figure 8.5	Internal partial pressures of carbon dioxide and oxygen of (a and
	b) preclimacteric/climacteric and (c and d) postclimacteric
	'Braeburn' apples at 20°C256
Figure 8.6	Respiration rate and ethylene production rate for postclimacteric
	'Cox's Orange Pippin' (a and b) and 'Braeburn' (c and d) apples
	at 20°C

xxvii

Chapter 9

General Discussion

Figure 9.1	Relationship between the difference in partial pressures of O_2 and	
	CO_2 and fruit permeance to O_2 and CO_2 respectively for a) 'Cox's	
	Orange Pippin' and, b) 'Braeburn' apples at 20°C in air269	
Figure 9.2	Relationship between fruit permeance to CO_2 and O_2 for a)	
	'Cox's Orange Pippin' and, b) 'Braeburn' apples at 0° and 20°C	
	in air	
Figure 9.3	Relationship between the difference in partial pressures of O_2 and	
	CO ₂ and respiration rate for a) 'Cox's Orange Pippin' and, b)	
	'Braeburn' apples at 20°C in air	
Figure 9.4	Relationship between respiration rate and fruit permeance to O_2	
	for 'Cox's Orange Pippin' and 'Braeburn' apples at different	
	physiological stages in air at a) 20°C and, b) 0°C289	
Figure 9.5	Relationship between respiration rate and fruit permeance to CO_2	
	for 'Cox's Orange Pippin' and 'Braeburn' apples at different	
	physiological stages in air at a) 20°C and, b) 0°C290	
Figure 9.6	Estimates of steady-state ACP^{i} and ACP^{e} for 'Cox's Orange	
	Pippin' and 'Braeburn' apples as a function of fruit temperature291	
Figure 9.7	Range of estimates of fruit permeance to ethane and respiration	
	rate at 20°C for a selection of preclimacteric New Zealand apple	
	cultivars	
Figure 9.8	Schematic diagramme of a system for internal atmosphere	
	modulation of CA storage atmospheres for apples (IAMCA)297	

Appendix 4

Quantifying the Association between 'Braeburn Browning Disorder' with Mineral Composition and Skin Permeance to Gases of 'Braeburn' Apples

Figure A4.1	Incidence and severity of internal disorders, (A) internal BBD and			
	(B) cavities, in 'Braeburn' apples harvested from five Hawkes Bay			
	orchards and stored at 0°C for 27 weeks in a controlled atmosphere			
	$(2 \text{ kPa O}_2 \text{ and } 5 \text{ kPa CO}_2)$.	. 341		
Figure A4.2	Incidence of external disorders, (A) external BBD and (B) CO_2			
	injury, in 'Braeburn' apples harvested from five Hawkes Bay			
	orchards and stored at 0°C for 27 weeks in a controlled atmosphere			
	$(2 \text{ kPa O}_2 \text{ and } 5 \text{ kPa CO}_2)$.	342		
Figure A4.3	Skin permeance to ethane and the severity of (A) internal BBD and			
	(B) cavities for 'Braeburn' apples harvested from five Hawkes Bay			
	orchards and stored at 0°C for 27 weeks in a controlled atmosphere			
	(2 kPa O ₂ and 5 kPa CO ₂).	343		

Appendix 5 Regional Differences in Gas Exchange Characteristics of 'Braeburn' Apples in relation to the Incidence of 'Braeburn Browning Disorder'

Figure A5.1	Respiration rates of 'Braeburn' apples from eight growers in two	
	regions	351
Figure A5.2	Respiration rates of 'Braeburn' apples from (A) Hawkes Bay and	
	(B) Central Otago.	352
Figure A5.3	Skin permeance to carbon dioxide of 'Braeburn' apples from eight	
	growers in two regions	353
Figure A5.4	Skin permeance to oxygen of 'Braeburn' apples from eight growers	
	in two regions.	354

Figure A5.5	Skin permeance to carbon dioxide of 'Braeburn' apples from (A)
	Hawkes Bay and (B) Central Otago
Figure A5.6	Skin permeance to oxygen of 'Braeburn' apples from (A) Hawkes
	Bay and (B) Central Otago
Figure A5.7	Internal partial pressure of carbon dioxide of 'Braeburn' apples
	from eight growers in two regions
Figure A5.8	Internal partial pressure of oxygen of 'Braeburn' apples from eight
	growers in two regions
Figure A5.9	Internal partial pressure of carbon dioxide of 'Braeburn' apples
	from (A) Hawkes Bay and (B) Central Otago
Figure A5.10	Internal partial pressure of oxygen of 'Braeburn' apples from (A)
	Hawkes Bay and (B) Central Otago
Figure A5.11	Relationship between skin permeance to (A) carbon dioxide and
	(B) oxygen and internal partial pressures of carbon dioxide and
	oxygen in 'Braeburn' apples for Hawkes Bay and Central Otago
	growers
Figure A5.12	Relationship between internal oxygen partial pressure of
	'Braeburn' apples and (A) sum of internal atmosphere pressure,
	(B) internal carbon dioxide partial pressure for all harvests of
	Hawkes Bay growers
Figure A5.13	Relationship between internal oxygen partial pressure of
	'Braeburn' apples and (A) sum of internal atmosphere pressure,
	(B) internal carbon dioxide partial pressure for all harvests of
	Central Otago growers
Figure A5.14	Relationship between internal oxygen partial pressure of
	'Braeburn'apples and (A) sum of internal atmosphere pressure,
	(B) internal carbon dioxide partial pressure for late harvested apples
	from Central Otago growers

List of Symbols and Abbreviations

A	=	fruit surface area (m ²)
AAT	=	alcohol acyltransferase
ACC	=	l-aminocyclopropane-l-carboxylic acid
Acet	=	acetaldehyde
ACP	=	anaerobic compensation point
ACP^{e}	=	external anaerobic compensation point
ACP^{i}	accordin uteretan	internal anaerobic compensation point
ADP	=	adenosine diphosphate
ADH	=	alcohol dehydrogenase
AMP	=	adenosine monophosphate
ANOVA	=	analysis of variance
ATP	=	adenosine triphosphate
ATP-PFK		ATP phosphofructokinase
b	=	number of bootstrap samples
BBD	=	'Braeburn' browning disorder
BBD ⁱ	=	internal 'Braeburn' browning disorder
BCa	-	bootstrap bias corrected 95% confidence interval
Ca	=	calcium
CA	=	controlled-atmosphere
cDNA	=	complementary deoxyribonucleic acid
C_2H_4	=	ethylene
C_2H_6	=	ethane
CI	=	confidence interval
CN ⁻	4444005 404669	cyanide ion
CO_2	=	carbon dioxide
$c_{\mathrm{O}_2,\mathrm{H}_2\mathrm{O}}^{i}$	=	concentration of O_2 in water (mol m ⁻³)
$\mathcal{C}_{j,\mathrm{H}_{2}\mathrm{O}}^{T}$	=	concentration of gas j in water at temperature $T \pmod{m^{-3}}$
C_{O_2,H_2O}^T	=	concentration of O_2 in H_2O at a given temperature, T
		$(\text{mol } \text{m}^{-3})$

CoA	=	coenzyme A
'COP'	=	'Cox's Orange Pippin'
CV	40000 00079	coefficient of variation
$dp_{C_2H_6}/dt$		rate of change of ethane partial pressure (Pa s^{-1})
$\Delta p_{C_2H_4}^{\Delta t}$		difference in partial pressure of C ₂ H ₄ between
		initial and final measurements over time Δt (Pa)
$\Delta p_{\rm CO_2}^{\Delta t}$		difference in partial pressure of CO ₂ between
		initial and final measurements over time Δt (Pa)
Δp_j	antenite aparate	difference in partial pressures of gas j between internal and
		external atmospheres (Pa)
$\Delta p_{\mathrm{O}_2}^{\scriptscriptstyle{\Delta t}}$	Ξ	difference in partial pressure of O ₂ between initial and final
		measurements over time Δt (Pa)
Δt		difference in time between initial and final sampling (s)
ε	, and a second sec	cortical tissue porosity $(m^3 m^{-3})$
EC	=	energy charge
EFE	=	ethylene forming enzyme
EP	=	extinction point
sat,T error _{wvp}	=	percentage error (%) due to the dilution effect of
		water vapour pressure at temperature T
EtAc	=	ethyl acetate
EtOH	=	ethanol
ETS	=	electron transport system
Eq(s).		equation(s)
F	=	fruit firmness (N)
F1,6-P ₂	=	fructose 1,6-bisphosphate
F2,6-P ₂	=	fructose 2,6-bisphosphate
F6P	=	fructose 6-phosphate
$f_{\rm CO_2}$	=	flow rate of $CO_2 (mm^3 s^{-1})$
FF		fruit firmness (N)
Fig(s).	=	figure(s)
f_{N_2}	=	flow rate of N ₂ (mm ³ s ⁻¹)

fo ₂		flow rate of $O_2 (mm^3 s^{-1})$
FT	=	fermentation threshold
FT^e	=	external fermentation threshold
FT'	=	internal fermentation threshold
FT _{Acet}	=	fermentation threshold based on acetaldehyde accumulation
$FT_{\rm EtAc}$	=	fermentation threshold based on ethyl acetate accumulation
FT _{EtOH}	=	fermentation threshold based on ethanol accumulation
FT_{EtOH}^{e}	=	external fermentation threshold based on ethanol
		accumulation
$FT_{\rm EtOH}^{\iota}$	Converse Augusta	internal fermentation threshold based on ethanol
		accumulation
FT_{RQ}	=	fermentation threshold based on respiratory quotient
FT^{e}_{RQ}		external fermentation threshold based on respiratory quotient
FT_{RQ}^{\prime}		internal fermentation threshold based on respiratory quotient
gas	-	gas phase
g	=	gram
init $p_{C_2H_6}$	=	initial partial pressure of ethane in the fruit's
		internal atmosphere (Pa)
		hour
h	=	lioui
h H°	=	background skin colour hue angle
h H° H ₂ O ₂	=	background skin colour hue angle hydrogen peroxide
h H° H ₂ O ₂ IA	= = =	background skin colour hue angle hydrogen peroxide internal atmosphere
h H° H ₂ O ₂ IA K	= = =	background skin colour hue angle hydrogen peroxide internal atmosphere potassium
h H° H ₂ O ₂ IA K k_1		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^i$ at which $r_{O_2}^T$ is half maximal (Pa)
h H° H ₂ O ₂ IA K k_1 k_f		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^{t}$ at which $r_{O_2}^{T}$ is half maximal (Pa) a fruit constant (mol kg ⁻¹ s ⁻¹ Pa ⁻¹)
h H° H_2O_2 IA K k_1 k_f k_x		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^{t}$ at which $r_{O_2}^{T}$ is half maximal (Pa) a fruit constant (mol kg ⁻¹ s ⁻¹ Pa ⁻¹) constant with number x
h H° H_2O_2 IA K k_1 k_f k_x kg		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^{t}$ at which $r_{O_2}^{T}$ is half maximal (Pa) a fruit constant (mol kg ⁻¹ s ⁻¹ Pa ⁻¹) constant with number x kilogram
h H° H_2O_2 IA K k_1 k_f k_x kg kgf		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^{t}$ at which $r_{O_2}^{T}$ is half maximal (Pa) a fruit constant (mol kg ⁻¹ s ⁻¹ Pa ⁻¹) constant with number x kilogram kilogram force
h H° H_2O_2 IA K k_I k_f k_x kg kgf K_m		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^{t}$ at which $r_{O_2}^{T}$ is half maximal (Pa) a fruit constant (mol kg ⁻¹ s ⁻¹ Pa ⁻¹) constant with number x kilogram kilogram force Michaelis-Menten constant (units of substrate eg. Pa)
h H° H_2O_2 IA K k_I k_f k_g kg kgf K_m kPa		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^{t}$ at which $r_{O_2}^{T}$ is half maximal (Pa) a fruit constant (mol kg ⁻¹ s ⁻¹ Pa ⁻¹) constant with number x kilogram kilogram force Michaelis-Menten constant (units of substrate eg. Pa) kilopascal
h H° H_2O_2 IA K k_1 k_f k_g kgf K_m kPa L		background skin colour hue angle hydrogen peroxide internal atmosphere potassium $p_{O_2}^t$ at which $r_{O_2}^T$ is half maximal (Pa) a fruit constant (mol kg ⁻¹ s ⁻¹ Pa ⁻¹) constant with number x kilogram kilogram force Michaelis-Menten constant (units of substrate eg. Pa) kilopascal background skin colour lightness

LDH	0000044 402.004	lactate dehydrogenase
liq	=	liquid phase
LOLs		lower oxygen limits
$LOL^{e}s$	=	external lower oxygen limits
$LOL^{t}s$	=	internal lower oxygen limits
М	=	fruit mass (kg)
m	dimension American	metre
M_a	=	mass of non-infiltrated wedge in air (kg)
MA		modified-atmosphere
MAP		modified-atmosphere packaging
Mg	=	magnesium
M_i	-	apparent mass of infiltrated wedge submerged in water
		(kg)
μl	=	microliter
μmol	=	micromole
mm	=	millimetre
mmol	=	millimole
M_n	=	apparent mass of non-infiltrated wedge submerged in water
		(kg)
mol	=	mole
M_R	=	relative molecular mass
mRNA		messenger ribonucleic acid
n	=	number of fruit or items in a sample
Ν	=	newton
N ₂	44076- 44000	nitrogen
N ₃ ⁻	_	azide ion
NAD^+	annan Sanan	adenine dinucleotde (oxidised form)
NADH	=	adenine dinucleotide (reduced form)
NADPH	=	nicotinamide adenine dinucleotide phosphate
nmol		nanomole
N_j	=	mole fraction of gas species j (%, mol mol ⁻¹ , μ l l ⁻¹)
N _{CO2}	energian analogian	mole fraction of CO_2 (mol mol ⁻¹)

$N_{\rm CO_2}$,core	=	mole fraction of CO_2 in the core cavity
		(mol mol^{-1})
$N_{\rm CO_2}$,room	=	mole fraction of CO_2 in the room (mol mol ⁻¹)
<i>N</i> _{O2}	=	mole fraction of O_2 required (mol mol ⁻¹)
N_{O_2} ,core	=	mole fraction of O_2 in the core cavity (mol mol ⁻¹)
$N_{\rm O_2}$,room	=	mole fraction of O_2 in the room (mol mol ⁻¹)
NR	=	nitrogen respiration
NS	=	not significant
N _{sta}		mole fraction of gas or vapour in the standard (μ l l ⁻¹)
Nstock	=	mole fraction of stock standard ($\mu l l^{-1}$)
O ₂	=	oxygen
O_2^{-}	=	super oxide free-radicals
р	=	probability or level of significance of a statistical test
Р	NUMBER OF	phosphorus
Pa	=	pascal
РСК	=	pyruvate carboxykinase
PDC	=	pyruvate decarboxylase
PEPC	=	phosphoenol pyruvate carboxylase
PDH	=	pyruvate dehydrogenase
рН		measure of a solutions concentration of hydrogen ions
P _i	=	inorganic orthophosphate
РК	=	pyruvate kinase
PPi	=	inorganic pyrophosphate
sat, T PH ₂ O		saturated water vapour partial pressure at temperature T
		(Pa)
p_j^e	=	partial pressure of gas j in the external atmosphere (Pa)
$\dot{P_{C_2H_6}}$	=	fruit permeance to ethane (mol $s^{-1} m^{-2} Pa^{-1}$)
$\dot{P_{\rm CO_2}}$	=	fruit permeance to CO_2 (mol s ⁻¹ m ⁻² Pa ⁻¹)
<i>p</i> co ₂		partial pressure of CO ₂ (Pa)
$p_{\rm CO_2}^e$	=	external (or package) partial pressure of CO_2 (Pa)
$p_{\rm CO_2}^i$	=	internal partial pressure of CO ₂ (Pa)

P_{j}	=	skin or fruit permeability to gas j (mol s ⁻¹ m m ⁻² Pa ⁻¹)
P_j^{\dagger}	=	skin or fruit permeance to gas $j \pmod{s^{-1} m^{-2} Pa^{-1}}$
<i>P</i> 0 ₂	=	partial pressure of O_2 in the intercellular air space (Pa)
$p_{O_2}^e$	=	external (or package) partial pressure of O2 (Pa)
$p_{O_2}^i$	=	internal partial pressure of O2 (Pa)
p_{tot}	=	total system partial pressure (Pa)
$\dot{P_{O_2}}$	=	fruit permeance to O_2 (mol s ⁻¹ m ⁻² Pa ⁻¹)
PPi-PFK	=	pyrophosphate phosphofructokinase
Q_{10}	=	temperature coefficient (= [rate of O ₂ uptake
		at $(T+10^{\circ}C)$] / [rate of O ₂ uptake at <i>T</i>])
r^2	=	square of the correlation coefficient (r) , or proportion of the
		total variability in the y-values that can be accounted for by
		the independent variable x.
R	Ξ	gas constant (8.3143 m ³ Pa mol ⁻¹ K ⁻¹)
$r_{\rm CO_2}$		specific rate of transfer of CO ₂ between internal and
		external atmospheres (mol $kg^{-1} s^{-1}$)
$r_{\rm C_2H_4}$	=	specific rate of transfer of C_2H_4 between internal and
		external atmospheres (mol kg ⁻¹ s ⁻¹)
20 Pjuice	=	density of fruit juice at 20°C (kg m ⁻³)
20 Pfruit	-	density of cortical tissue of fruit at 20°C (kg m ⁻³)
$\rho_{H_2O}^{\ 20}$	=	density of water at 20°C (kg m ⁻³)
r_j	=	specific rate of transfer of gas j between internal and external
		atmospheres (mol kg ⁻¹ s ⁻¹)
r_{O_2}	=	specific rate of transfer of O_2 between internal and external
		atmospheres (mol kg ⁻¹ s ⁻¹)
$r_{O_2}^{ACP^i}$	=	rate of transfer of O_2 for the system at the ACP^i (mol s ⁻¹)
$r_{O_2}^{air, T}$	=	specific rate of transfer of O_2 in air at temperature
		$T \pmod{\mathrm{kg}^{-1} \mathrm{s}^{-1}}$
$r_{\mathrm{O}_2}^{air,0}$	=	specific rate of transfer of O_2 in fruit in air at
		0° C (mol kg ⁻¹ s ⁻¹)

$r_{O_2}^{iair}$	=	rate of transfer of O_2 for the system in air (mol s ⁻¹)
r_{O_2}	=	rate of transfer of O_2 for the system at temperature T
		$(mol s^{-1})$
$r_{O_2}^T$	=	specific rate of transfer of O_2 at temperature T (mol kg ⁻¹ s ⁻¹)
$r_{O_2}^{max,T}$	=	specific maximum rate of O_2 uptake when $p_{O_2}^i$ is non-
2		limiting, at temperature T (mol kg ⁻¹ s ⁻¹)
r_{O_2}	=	rate of transfer of O ₂ for the system when $p_{O_2}^{l}$ is non-
2		limiting at temperature T (mol s ⁻¹)
RQ	=	respiratory quotient
RQB	=	respiratory quotient breakpoint
RQ_{ia}		respiratory quotient based on internal atmospheres
S	=	second
SAM	=	S-adenosylmethionine
SDH	=	succinate dehydrogenase
se	=	standard error
sed	=	standard error of the difference between means
sem	=	standard error of the mean
s_{O_2,H_2O}^T	=	solubility of O_2 in H_2O at a given temperature, T
		$(mol m^{-3} Pa^{-1})$
SSC	=	total soluble solids content (%, ° Brix)
t		time (s)
Т	400000 100000	fruit temperature (°C)
TCA	=	tricarboxylic acid cycle or Krebs cycle
V_h	=	volume of submerged portion of hook (m ³)
V_{jar}	=	volume of respiration jar (m ³)
V _{net}	=	net volume, [jar volume - fruit volume] (m ³)
Vstock		volume of stock gas (m ³)
V _{std}	-	total volume of combined standard (m^3)
V_w	=	volume of wedge (m ³)