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ABSTRACT 
 

This thesis examines contemporary approaches to live computer music, and the 

impact they have on the evolution of the composer performer. How do online 

resources and communities impact the design and creation of new musical 

interfaces used for live computer music? Can we use machine learning to 

augment and extend the expressive potential of a single live musician? How can 

these tools be integrated into ensembles of computer musicians? Given these 

tools, can we understand the computer musician within the traditional context of 

acoustic instrumentalists, or do we require new concepts and taxonomies? Lastly, 

how do audiences perceive and understand these new technologies, and what 

does this mean for the connection between musician and audience? 

The focus of the research presented in this dissertation examines the application 

of current computing technology towards furthering the field of live computer 

music. This field is diverse and rich, with individual live computer musicians 

developing custom instruments and unique modes of performance. This 

diversity leads to the development of new models of performance, and the 

evolution of established approaches to live instrumental music.  

This research was conducted in several parts. The first section examines how 

online communities are iteratively developing interfaces for computer music. 

Several case studies are presented as examples of how online communities are 

helping to drive new developments in musical interface design. 

This thesis also presents research into designing real-time interactive systems 

capable of creating a virtual model of an existing performer, that then allows the 

model’s output to be contextualized by a second performer’s live input. These 

systems allow for a solo live musician’s single action to be multiplied into many 

different, but contextually dependent, actions. 
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Additionally, this thesis looks at contemporary approaches to local networked 

ensembles, the concept of shared social instruments, and the ways in which the 

previously described research can be used in these ensembles.  

The primary contributions of these efforts include (1) the development of 

several new open-source interfaces for live computer music, and the examination 

of the effect that online communities have on the evolution of musical 

interfaces; (2) the development of a novel approach to search based interactive 

musical agents; (3) examining how networked music ensembles can provided 

new forms of shared social instruments. 
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Chapter 1  

INTRODUCTION 
 

“… although the actions of the traditional acoustic musician are familiar to 

an audience, the attribution of human agency to a computer may be more 

problematic. Schloss (2003) fears an excess of ‘magic’; however, the 

enculturation of electronic music may automatically make new processes 

acceptable (Nick Collins 2003). Ultimately, the balance between innovation 

and tradition might be best served by a conception of ‘the possibility of a 

music of technology with the clear imprint of the human will rather than the 

human presence’ (Emmerson 2000).” 

       — Nick Collins (2006)   

 

Live music is a social art that allows humans to come together and share a 

collective experience. This experience is not only comprised of the sounds we 

hear at these events, but also elements as diverse as: a performer’s virtuosity, and 

compositional skill; social interaction between the musicians performing, and 

between the musicians and the audience; the social identity that a specific event 

can imply about an individual; and the potential to experience something both 

exceptional, and ephemeral. The gestalt of this experience is a complex socio-

musical interaction between musicians and the audience, made all the more 

complex by individual musical styles placing emphasis on different elements of 

these experiences.  

While live computer music adheres to some of these existing expectations, it also 

provides the opportunity to create entirely new elements, and re-evaluate the 
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importance of others. For example, a computer’s ability to automate and 

endlessly repeat a task creates an opportunity to expand the expressive potential 

of a single musician. The computer’s ability to automate tasks enables a musician 

to simultaneously control more than one instrument; however, this “out-

sourcing” of musical control may make the human agency within a performance 

difficult for an audience to discern.  

So, what then is the role of human musicians in live computer music? Are we to 

be conductors, or informed musical selectors, who merely point our computers 

in a musical direction, leaving the details of the sound to the machines? 

Alternatively, are we required to adhere to existing expectations of live acoustic 

music, and only play those sounds that we can physically produce or actuate?  

This thesis proposes that neither of these extremes are the answer. Instead, live 

computer music has revolutionized what it means to be a performer composer 

by providing a unique opportunity for performing musicians to simultaneously 

exist in many different roles. In order to realize live computer music in this way, 

current research is examining the augmentation of the computer as an 

instrument. How do we interface with our computers during performance? How 

do we musically leverage their computational power to expand what we can do 

as individual musicians? How do we perform with these systems as groups, or 

ensembles?  

1.1 INTERACTION CONTEXTS 

The different roles that live computer music affords performers is key to 

understanding these questions, and to understanding why live computer music is 

an evolution of the performer composer. This section examines existing 

attempts to understand and describe the different roles that musicians play 

during a performance. The aim of this section is to derive a taxonomy that will 

describe these different performance roles, and allow for comparison and 

contrast between live acoustic music and live computer music. 
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Some of these questions have been addressed when the field of live computer 

music crosses paths with human computer interaction (HCI) research. Serji Joda 

makes the case that music performance’s high bandwidth makes it a fertile 

ground for examining the way in which humans interface with computers (Jordà 

et al. 2007). He describes how music requires “a very precise temporal control 

over several multi-dimensional and continuous parameters, sometimes even over 

simultaneous parallel processes”. He goes on to describe that while traditional 

instruments require the performer to physically control these many different 

parameters, digital instruments allow for the human to instead “direct and 

supervise the computer processes which control these details”. A system like this 

allows a human musician to perform in several different contexts: playing low-

level details like notes and timbre control, or higher-level control such as effects 

or score-level events. 

Research has also looked at how musicians control these complex instruments 

within the context of cybernetics, i.e., the study of control and communication 

(Pressing 1990). A cybernetic view of traditional instruments would show the 

transfer of information between the human musician and the acoustic 

instrument as being dependent on the energy within a physical gesture. Pressing 

shows this dependency as a closed loop with the body actuating an instrument’s 

interface, the instrument producing sound, and finally the ears feeding the sound 

back to the human performer. He describes this as a “one-to-one response 

between actions of the performer and the resulting sound”, calling it a stimulus-

response model.  Pressing then describes how electronic instruments provide a 

different model that focus on the processing, shaping or effecting of either the 

sound or control source. This implies a distancing, or more diffuse mapping 

between a musician’s physical actions and the sound being produced by the 

instrument. This model of instrument interaction relies on the idea of human 

musicians supervising or influencing a musical system.  

Musical interfaces that afford these types of models are described as “composed 

instruments” (Schnell and Battier 2002). The composed instrument is defined by 

the decoupling of the “sound producing part, and the gestural performance 
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part”. Schnell suggests that this creates a representational system, which links the 

human performer to a set of complex algorithms in the computer. He states, 

“composers use the representational nature of the system to define events, write 

scores and specify the computational and algorithmic layers while performers 

can apply gestural controls and adjust parameters”. This thesis argues that the 

contemporary computer composer is also increasingly the performer. This would 

imply that contemporary computer musicians define a musical system, write a 

piece of music, and perform all aspects of that music both at the lower event 

level, as well as at higher representational levels.  

These different levels of control can be seen as a taxonomy of interaction 

contexts, with modern computers affording musicians the ability to fluidly shift 

between them, creating a rich and expressive improvisation space. Wanderley 

and Orio describe seven of these interaction contexts, with the first three having 

relevance to the performance spaces discussed so far: 

“1. Note-level control, or musical instrument manipulation (performer-

instrument interaction), i.e., the real-time gestural control of sound synthesis 

parameters, which may affect basic sound features as pitch, loudness and 

timbre. 

2. Score-level control, for instance, a conductor’s baton used to control 

features to be applied to a previously defined—possibly computer 

generated—sequence. 

3. Sound processing control, or post-production activities, where digital 

audio effects or sound spatialization of a live performance are controlled in 

real time, typically with live-electronics (Wanderley and Orio 2002).” 

These levels of control provide a coarse description of the different contexts in 

which a computer musician performs, with the potential for computer musicians 

to occupy all three of these interaction contexts simultaneously. Indeed, 

combinations of these states can be seen in other live computer music 

taxonomies (Croft 2007).  A computer musician may be playing an instrument, 

note-for-note, while also allowing a program to generatively process input of the 
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sound from a microphone. Finally, through the push of a single button the 

computer musician can load a new representational system, and instantly change 

sounds, instruments, and generative processes. This would be similar to every 

member of an orchestra playing their instrument, while being able to conduct 

their own small section of the ensemble, and simultaneously effecting the sound 

reinforcement within the performance space. 

1.2 PERSONAL MOTIVATIONS 

The following section presents my motivations for undertaking this research, and 

provides some context for the work that follows. This thesis argues that while 

live computer music is related to existing forms of live acoustic music, its unique 

use of interaction contexts constitutes an evolution of the performer composer. 

This argument has emerged over the course of my own experiences in 

performing live computer music, as well through conducting the various research 

projects described in this thesis.  

While my background in composing electronic music started around 1998, it 

wasn’t until I attend CalArts in 2005 that my first attempts at live computer 

performance were made. The aim of these early attempts was to perform live 

computer music with as much detail and complexity as my fixed compositions or 

tape music pieces, while simultaneously allowing for the kinds of improvisation 

and musical dialogues that I experienced in acoustic instrumental performance. 

This goal has proven to be extremely challenging, and remains the focus of much 

of my work.  

My initial attempts at performing improvisational live computer music strived to 

achieve the same level of complexity and density as my fixed media pieces. It 

soon became clear that it was unrealistic to improvise music using only the note-

level context, and expect it to be as detailed as a fully realized, multi-part 

composition that took hours, days, months, or even years to compose. That level 

of complexity required many parts, and would necessitate an ensemble of 

musicians to perform using acoustic instruments. However, even an acoustic 



Chapter 1 - Introduction 

 

6 

ensemble would find it difficult to improvise multi-part music without knowing 

each of the other performers extremely well. This familiarity with each other as 

musicians and performers, equates to being aware of the basic ideas and musical 

styles that might be performed. In other words, successful ensemble 

improvisation in part relies on having a prior understanding of the potential 

musical space, and not on the immaculate conception of a fully formed piece of 

music.  

With this in mind, I began to develop tools that used prerecorded material as the 

musical space, and enabled improvisation in not only the note-level context, but 

also the sound processing, and score-level contexts. This essentially allowed note 

level interactions on score level musical material, in the sense that the 

prerecorded material could be thought of as sections of a composition. This 

process feels very different from re-ordering a written score in that it alters both 

time and timbre, and is capable of creating wholly new musical ideas through the 

reuse of existing musical material. This ability to use existing music to create new 

music is similar to the DJ remix, except that the process is happening live and 

can therefore allow for improvisation. Performing in this way enabled me to 

explore musical ideas that had not been possible when I played acoustic 

instruments, and I began to see an evolution of the performer composer.  
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1.3 THESIS OVERVIEW 

 
Figure 1: Tools used in the evolving roles of the performer composer 

The following chapters discuss the development of tools for live computer 

music that are key components in the evolution of the performer composer, and 

discuss how these tools enable new ways of navigating the previously mentioned 

interaction contexts. These Chapters present the primary contributions of this 

thesis, and are presented as separate projects (see Figure 2). Although these 

projects are related, and together form the basis of the argument that live 

computer music has caused the performer composer to evolve into something 

new, they are separate enough to warrant being dealt with individually. With this 

in mind, the following chapters each contain a separate history section. As the 

topics covered by this thesis are broad, it is my hope that by organizing the thesis 

in this way, the information presented will be relevant to each section and 

increase the overall readability of the thesis. 

The Evolution of  The Performer Composer

Hardware 
Development

Agent-Based 
Software 

Development

Networked Music 
Ensembles

Online communities and 
resources help to drive 
innovation in interface 
development.

These developments provide 
new tools for computer 
musicians.

Each computer musician 
then uses these tools to 
forge their own link between 
the physical interface and the 
computer mediated 
instruments.

Each computer musician 
creates their own custom 
instrument.

Interactive musical agents 
hold the potential for 
musical dialogues between 
the musician and the 
machine. 

This interaction transforms 
physical gestures into a 
distribution of  the 
performer’s musical intent.

These systems represent an 
extension of  the performer, 
and turn the instrument into 
a system with two way 
interaction.

Network music utilizes all 
the tools available to 
computer musicians, and 
allows for new forms of  
interconnected musical 
performance.

This can be seen in the use 
of  shared robotic 
instruments, and the 
communication of  musical 
data over the network.

These ensembles allow 
performer’s to be in multiple 
interaction contexts, while 
sharing musical dialogues 
between musicians and 
machines.  
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Figure 2: Overview of the thesis layout 

Musical interfaces represent the bridge between a human musician and the 

virtual computer instrument. Each computer musicians is capable of creating a 

unique mapping for their interface that defines how they will use the different 

interaction contexts. Chapter 2 examines the iterative development of new 

interfaces for live computer music, and the impact that online communities who 

share information about these interfaces has on innovation and the spread new 

ideas. The Monome is presented as an example of this process. 

Chapter 3 discusses the development of systems that can help extend the 

influence of single actions from a computer musician. These systems can help to 

distribute the performer’s musical intent into the computer along multiple paths, 

creating new forms of improvisation, and furthering the evolution of the 

performer composer. These types of systems are described as interactive musical 

agents, and hold the potential to act as extensions of computer musicians, or 

1. Introduction

Interaction
Contexts

Thesis 
Overview

Personal 
Motivations

5. Conclusion

Summary Contributions The New Performer 
Composer

Future Work

2. Community Based 
Iterative Interface 

Design

Background of  
Musical Interface 

Design

Case study of
Monome

Arduinome, and 
Chronome

3. Interactive 
Musical Agents
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Implementation of  
S2MP VST

IMA 
Architecture

4. Networked Music

Background of  
Networked Music

Shared Social
Instruments

Review of  Machine 
Orchestra pieces



Chapter 1 - Introduction 

 

9 

virtual representations of their personas. This chapter also presents a novel 

approach to search based interactive musical agents by extending existing work 

with similarity-matching algorithms.  

Chapter 4 examines performing as a local networked music ensemble, and the 

use of shared social robotic instruments. Several pieces by The Machine 

Orchestra (A. Kapur et al. 2011) are described, and illustrate how these 

ensembles afford both the more traditional socio-musical interaction found in 

acoustic ensembles, and the use of interaction contexts presented earlier.  

This is followed by a concluding chapter that presents a summery of this thesis’ 

main contributions, examines the new performer composer and what it means to 

improvise as a live computer musician, and discusses the relationship between 

the performer and the audience. 
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Chapter 2  

COMMUNITY BASED DESIGN: 

ITERATIVE MUSICAL INTERFACE 

DEVELOPMENT 
 

“The controller is the first component of the digital instrument chain. 

Controllers constitute the interface between the performer and the music 

system inside the computer, and they do so by sensing and converting 

continuous and discrete analog control signals coming from the exterior into 

digital messages or data understandable by the digital system.”  

       —Serji Jorda (2005) 

 

Like their acoustic instrument counterparts, interfaces are the physical 

component of the live computer music instrument; however, interfaces are also 

fundamentally different from acoustic instruments in that they are not the 

sound-producing agent themselves, but rather the translator between the physical 

action of the musician and the sounds generated by the computer. This 

decoupled relationship between sound actuator, and sound generator, allows 

musicians to map a physical gesture to any sound they wish to control. These 

custom mappings are an essential component of live computer music, enabling 

the performer to have control over a multitude of virtual instruments, and play 

an integral role in the evolution of the performer composer. In order to further 

this exploration of custom mappings between interface and computer, it is 

important that computer musicians have resources available to them for 

developing and customizing their interfaces; the advent of online communities 



Chapter 2 - Community based design: Iterative musical interface development 

 

12 

such as Arduino (Banzi 2008) and Monome1 has now made such resources 

available. 

This chapter discusses how online communities have changed the way in which 

interfaces for live computer music are designed and developed, and how this 

change has led to an iterative development process that adds new functionality to 

existing interfaces. The chapter begins by describing the evolution of hardware 

interface design for computer music, and how the emergence of online 

communities has altered the development cycle of these types of interfaces. The 

idea that public access to information at these websites has lead to a community 

driven iterative approach to interface design is then presented in a case study of 

community-based design which examines the Monome interface and derivative 

interfaces, its design cycles, and the different roles that people take on within the 

online Monome community. Following these examples will be the presentation 

of two new interfaces: the Arduinome, created by the author in collaboration 

with Jordan Hochenbaum, Brad Hill, and Ben Southall; and the Chronome, 

created by the author. Both of these interfaces are themselves derivatives of the 

Monome, and are examples of iterative interface development stemming from 

online communities. Finally, a comparison between the Monome and the 

Tenori-On will be presented to explore the differences between interfaces tied to 

online communities, and interfaces developed by commercial vendors.  

2.1 GOALS AND MOTIVATION 

In my own practice of live computer music, it has been necessary to develop 

custom iterations of existing interface controllers in order to achieve specific 

musical interactions. Basing the design of these interfaces on existing devices 

expedites the implementation of the technology, in turn allowing for a greater 

focus on musical performance practice. Additionally, making the modifications 

available online allows other individuals to further modify or re-contextualize 

these instruments. This process of modifying an interface, and then providing 

                                                
1 Monome - http://monome.org/ 
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online technical information about the changes, has greatly impacted my own 

implementation of musical interfaces for live computer music, often presenting 

surprising new modes of use.  

The aim of the following research is to examine online communities, and the 

impact these have on the development of new interfaces for live computer 

music. 

2.2 INTERFACE DEVELOPMENT PRIOR TO ONLINE 

COMMUNITIES 

Performing live computer music requires an interface between the human 

musician and the computer that is creating the sound. Even the act of playing 

back an audio file requires the use of a number of physical and virtual interfaces. 

These interfaces represent an opportunity to explore new mappings between 

physical actuators and sound engines. These mappings can be realized in many 

different ways, including live-coding (N. Collins et al. 2003; Wang and Cook 

2004), extended laptop instruments such as Hans Koch’s piece bandoneonbook2 

and the framework Small Musically Expressive Laptop Toolkit (SMELT) 

(Fiebrink et al. 2007), performing with an external interface (Cook 1992; 

Mathews and Schloss 1989), or using the computer solely as a sound generating 

device, or data router to external musical robotics (Kapur 2008). Although the 

computer itself provides an existing interface in the form of a screen, a keyboard, 

and a mouse, it certainly does not represent the ideal tool for leveraging the 

human body in live computer music performance. New media artist Golan Levin 

even went so far as to say that, “the mouse is an extremely narrow straw through 

which to suck all of expressive human movement”(Levin 1999). Computer 

musicians such as Max Matthews, with the Radio Baton (Mathews and Schloss 

1989), Nicolas Collins in his work with the Trombone Controller (Nicolas 

Collins 1991), Michel Waisvisz with the Hands (Krefeld and Waisvisz 1990), Dan 

Trueman with the BoSSA (Trueman and Cook 2000), Perry Cook with the 

                                                
2 Hans Koch - http://hans-w-koch.net/performances/bandoneonbook.html 
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SqueezeVox (Cook and Leider 2000), Curtis Bahn with the sBass (Bahn and 

Trueman 2001), Joe Paradiso with gestural sensors (J. Paradiso 2004; J. A. 

Paradiso 1999), and Sergi Jorda with the Reactable (Jorda et al. 2005), all have 

created musical instruments that explore the different ways in which a physical 

interface can be map human actions to computers. Through these mappings 

interfaces may extend the creative potential of existing instruments, and/or 

provide entirely new forms of physical interaction with sound. 

Traditionally, these experiments in interface design and parameter mapping were 

shared at institutions such as MIT’s Responsive Environments Group, 3 

Amsterdam’s Studio for Electro Instrumental Music (STEIM), 4  Stanford’s 

Center for Computer Research in Music and Acoustics (CCRMA),5 UC Berkley’s 

The Center for New Music and Audio Technologies (CNMAT),6 Princeton’s 

Soundlab7 and France’s IRCAM8. In an effort to provide a common space for 

these separate research institutions to come together, The International 

Conference on New Interfaces for Musical Expression (NIME)9 was founded on 

1 April 2001. With the establishment of NIME, research into new musical 

interfaces coalesced into a global community focused not only on building new 

interfaces but also on examining how to make better ones (Cook 2001; Cook 

2009; Arfib, Couturier, and Kessous 2005; Van Nort 2009), as well as how to 

evaluate their effectiveness and potential (Kiefer, Collins, and Fitzpatrick 2008). 

The NIME community built off well-established methodologies developed in 

design fields such as human-computer interaction (HCI) (Drummond 2009; 

Fiebrink et al. 2010), design theory (Birnbaum et al. 2005; Malloch et al. 2006) 

and tactile feedback for performers also known as haptics (Berdahl, Steiner, and 

Oldham 2008). While the research conducted at these institutions and 

                                                
3 MIT - http://media.mit.edu/resenv/ 
4 STEIM - http://steim.org/steim/ 
5 CCRMA - https://ccrma.stanford.edu/ 

6 CNMAT - http://cnmat.berkeley.edu/ 
7 SOUNDLAB - http://soundlab.cs.princeton.edu/ 
8 IRCAM - http://ircam.fr/ 

9 NIME - http://nime.org/ 
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conferences of interface design is extensive, prior to the emergence of online 

communities, publicly available information was primarily static, and artists 

outside of these academic circles had no global space in which to easily interact 

and discuss these ideas. However, all of this has changed with the advent of 

online communities. Both the ways in which musical interfaces are developed, 

and the ways in which individuals participate in the development process, are 

now intertwined with online access to information. 

2.3 COMMUNITY BASED DESIGN 

Online communities accelerate the development cycle of new musical interfaces, 

allowing an interface to rapidly evolve over a number of iterations. These 

iterative development cycles are made possible through public forums, and 

access to information.  

Community forums provide a space for artists to share design ideas, and to 

discuss the different ways in which they use the interfaces. This public 

interaction provides important feedback to developers, and allows for the way in 

which the interface is being used during performances to influence the 

development of future iterations. Forums also provide a space for novices and 

experts to come together. This allows novices to learn from the accumulated 

wealth of knowledge provided by community experts, acting as a public 

educational resource. 

Communities also provide educational resources through public access to 

technical information. Websites provide a centralized repository of information 

in the form of source code, wikis, and through searching archived forum threads. 

All of these resources provide access to current technical information, as well as 

an archived history of the development of the interfaces. New developers can 

use this information to create and modify existing interfaces, thereby introducing 

new ideas and functionality back into the community. 
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2.4 ITERATIVE DEVELOPMENT 

Computer science ideas such as open-source development and version-control 

systems provide public access to a code repository. These repositories allow 

individuals to learn from the information, or change the information to alter the 

functionality of the software. With the maturity of microcontroller platforms 

such as Arduino, analogous ideas within hardware development have become a 

reality and can now be applied to the development of new musical interfaces.  

These ideas have allowed for the iterative design of musical interfaces to take 

place. Online access to schematics, firmware and software provides the 

information necessary for a group of individuals to augment a device. These new 

devices can be shared with the online community, and other community 

developers can in turn use the altered interface as the basis for further 

augmentations. This iterative process may fork into separate and unique 

development streams as new functionalities are explored. These divergent 

iterations may also converge later, combining functionality into new devices that 

represent a hybrid of components from previous generations.  

This development is driven by a small number of “seed” artists who contribute 

alternate versions of an interface through iteratively modifying the functionality; 

at the same time, a larger group of artists access information about these 

interfaces in order to build, customize and implement existing versions in their 

own projects.10 

2.5 BACKGROUND CASE STUDIES ON THE MONOME 

This section examines the development of the Monome, and Monome derivative 

interfaces. Each of the interfaces discussed in this section have benefitted from 

                                                
10 For more technically detailed information regarding the iterations of the Monome see 

<http://flipmu.com>; Owen Vallis, Jordan Hochenbaum and Ajay Kapur, “A Shift Towards 

Iterative and Open-Source Design for Musical Interfaces,” In Proceedings of NIME (Sydney, 

Australia: 2010). 
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an online community providing information regarding design, development, 

construction, and use. The results of this have been not only new interfaces with 

additional functionality, but also new mappings between the performer’s physical 

actions and the computer mediated instruments. These changes afford live 

computer musicians with greater control, enable new methods of simultaneously 

performing in multiple interaction contexts, and provide tools that further evolve 

the role of the performer composer.  

2.5.1 MONOME 

The original Monome serves as a great example of online community-based 

iterative design. Members of the online Monome community have led the 

development of numerous clones and derivative devices such as the Arduinome, 

the Lumi, the Octinct and the Chronome (See Figure 3). These derivative 

interfaces have added new functionalities to the original Monome interface, and 

are shared with the online community to provide the basis for future 

modifications. The following section briefly describes the development history 

of these iterations. 

 

Figure 3: Iterations of the Monome  

2.5.1.1 MONOME 40H 

Created in 2005 by Brian Crabtree, the original Monome is a two-layer NxN 

device consisting of a matrix of silicon buttons situated over a matrix of Light 

Emitting Diodes (LEDs). The Monome’s minimal interface allows a user to 

quickly gain an understanding of how it works. This immediate understanding 

leads to greater exploration as users begin to augment the Monome’s 
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functionality and thereby increasingly customize their connection---through the 

interface---to various software instruments.  

Upon releasing the original interface, Monome created an online community 

providing users with a place to discuss and share their custom software 

programs, and provided open-source access to technical documentation, 

firmware, and schematics. Monome’s decision to provide public access to the 

original firmware source code, allowed an early user of the Monome 40h to add 

support for LED brightness control.11 This change in the firmware represents 

one of the earliest community modifications to the original Monome, with this 

feature being officially added to the interface in later versions. Soon after the 

original Monome was released, the author and collaborators ported the firmware 

to the open source hardware platform Arduino, providing a new platform on 

which to modify and hack the interface. This iteration of the Monome was called 

the Arduinome, and will be discussed in detail in section 2.6.1.1. Other Monome 

derivative devices such as the LUMI have used the Arduinome as the bases for 

their own development.  

2.5.1.2 LUMI 

The LUMI (Gao and Hanson 2009) is an interface consisting of 32 pressure 

buttons combined with custom software and a touch screen. With the added 

functionality of pressure data from the 32 buttons, the LUMI constitutes a major 

change to the original Monome interface. Created at Stanford in 2009, the 

pressure sensitivity was added by modifying the ArduinomeSerial to OSC 

convertor, and by implementing a variable pressure sensor using conductive 

fabric (Freed 2008). In addition, several continuous input devices were added, 

such as potentiometers, infrared (IR) sensors, and a touch screen. Although this 

work represents a substantial extension of the Monome’s functionality, the 

project is not fully integrated into the larger Monome community. This could be 

due to several factors, including custom firmware, custom serial protocols, 

                                                
11 “Monome - Per Led Intensity, Video” - 

http://post.monome.org/comments.php?DiscussionID=913. 
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unreleased build information or the larger Monome community’s unfamiliarity 

with the work. It is possible that because of these reasons the LUMI’s significant 

modifications have not yet had as broad an impact on the iterative design 

process as they potentially could. One of the aims of the inclusion of these ideas 

into the Author’s Chronome iteration is to make these modifications more 

readily available to the larger Monome community. 

The LUMI exemplifies the idea of iterative online community based interface 

design. The developers modified the Arduinome Serial-to-OSC application, 

which in turn was a modification of the original Monome software. Furthermore, 

the LUMI developers describe how access to information on both the 

Arduinome and Adrian Freed’s work made, “…it possible to rapidly prototype 

the interface in the short span of a month” (Gao and Hanson 2009).  

2.5.1.3 OCTINCT 

Almost as soon as the original Monome 40h interface was released, members of 

the Monome community began to contemplate the possibility of adding RGB 

(multi-color) LEDs to the device. The addition of color mapping to individual 

buttons would create an additional dimension of visual information, allowing 

performers to map a richer cognitive connection to the controller. One of the 

first successful iterations to include this was the Octinct, developed by Brad Hill, 

Jonathan Guberman and Devon Jones. The Octinct information was not initially 

shared with the Monome community. This stalled the progress of the project, as 

community developers did not have access to the information needed to build 

their own Octinct interfaces. In 2008 Jonathan Guberman, who developed the 

original Octinct firmware, gave Brad Hill permission to make all the code 

publicly available. Brad Hill has since posted the technical information on his 

own blog and announced its availability to the Monome community, including 

making several updates to the firmware and hardware. Most recently, a group of 
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artists from the Monome community12 have been collating all related Octinct 

information and begun to further refine the original design.  

Again, the development of the Octinct shows the effect of online communities 

on interface design. The original Octinct was developed by a small group of 

talented artists but had no way of reaching a larger user base. Once information 

about the interface was shared, interested members of the Monome community 

used it as the basis for further interface development, in turn sharing their own 

modifications back with the community. Both the original Octinct, and these 

later modifications, were used as resources by the author during the development 

of the Chronome (see section 2.6.1.2).  

2.5.1.4 COMMERCIAL ITERATIONS 

While the creation of the previously described Monome, and Monome derivative 

interfaces have all been related to the online community, there has also been 

development of button matrix interfaces from commercial manufacturers. A 

famous example is the Tenori-on developed in 2005 by Yamaha and artist 

Toshio Iwai (Nishibori and Iwai 2006). This device is discussed in greater detail 

in section 2.7. In 2009, Novation released the Launchpad13 interface, and Akai 

released the APC 40,14 both of which featured Monome style grids of push 

buttons, and have since seen wide spread support from commercial music 

software such as Ableton. More recently, Native Instruments has added RGB 

color support to its Maschine interface,15 and Ableton has released an RGB 

button matrix interface called the PUSH16 (see Figure 4).  

                                                
12 Start:octint [lab] - http://hangar.org/wikis/lab/doku.php?id=start:octint. 
13 Novation Launchpad - http://novationmusic.com/products/midi_controllers/launchpad 

14 Akai APC40 - http://akaipro.com/apc40 
15 NI Maschine - http://native-instruments.com/en/products/maschine/production-

systems/maschine 

16 Ableton PUSH - http://ableton.com/en/push 
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Figure 4: Commercially developed Native Instruments Maschine, Akai APC 40, Novation 

Launchpad, and Ableton PUSH 

While it is difficult to confirm that the devices developed by the Monome 

community have directly inspired these commercial interfaces, it is hard to 

believe that it is merely coincidence that several companies would spontaneously 

begin to make these Monome style grid controllers. This is not to sound negative 

about the commercial availability of these devices, in fact, quite the opposite. 

The development of these devices has not only made these interfaces more 

readily available to musicians, but has also added new functionality such as dual 

color LEDs from the Launchpad and the APC40, RGB LEDs from the 

Maschine and PUSH, and continuous control sources from almost every 

interface. Additionally, members of the Monome community have made 

translator software, enabling these devices to be used with software developed 

for the original Monome. This process allows musicians who use these 
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commercial interfaces to participate in the Monome community, sharing their 

ideas, opinions, and experiences with others. 

2.5.2 THE COMPUTER MUSICAN AS DIGITAL LUTHIER 

This section has presented the Monome grid style interface, and the Monome 

derivative interfaces developed by members of the online community. Each new 

iteration serves to extend the functionality afforded by existing versions of the 

interface, thereby expanding what musicians can do with these instruments. 

Members of the Monome community drive this development by participating in 

a cycle of musical performance, group discussion, development of ideas, and 

creation of new instruments. This cycle allows community members to develop 

new iterations of the Monome built off the shared information found online.  

The instruments developed by these online communities represent physical 

connections to virtual instruments inside of computers. It is up to each 

individual musician to create their own unique mapping between the physical 

interaction with their interface, and the way in which that action becomes a 

distribution of musical intention inside their computer. Through the use of 

physical interfaces and computer software, this process of customizing the 

computer instrument furthers the evolution of the performer composer by 

making every computer musician a digital luthier. 

2.6 NEW WORK: ARDUINOME AND CHRONOME 

This section presents two new interfaces developed either solely by the author, 

or by the author in collaboration with Jordan Hochenbaum, Brad Hill, and Ben 

Southall. The first interface is the Arduinome, a port of the Monome to the 

open-source hardware platform Arduino. The Arduinome has had a major 

impact on the Monome community, providing increased access to the interface, 

a platform on which to further modify and augment the original Monome 

concept, and has become a pedagogical resource for those interested in interface 

design. The second interface presented is the Chronome, an RGB and pressure 

sensitive Arduino based Monome clone. This interface was an attempt to add 
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completely new functionality to the original Monome concept by adding 

pressure sensitive buttons, and multi-color LEDs. These new features open up 

the potential for new mappings between the continuous data supplied by the 

Chronome and Monome compatible music software. Lastly, this section will 

present the author’s work with Bricktable multi-touch interface as an additional 

example of the impact that online communities have on interfaces for musical 

expression. 

2.6.1.1 ARDUINOME 

Monome is a small boutique company that builds limited quantities of their 

interfaces. Each interface is hand made at Monome, and all parts are locally 

sourced.17 This can make it challenging and expensive to purchase an interface 

when compared to the pricing and availability of devices made by larger 

companies. One solution to this challenge of obtaining a Monome is to build a 

clone of the interface using the online technical documents shared at their 

website; however, taking the provided files from information to an actual 

physical interface requires knowledge and skills not generally associated with 

musicians. So is it possible to make a clone of the Monome that is both available 

to everyone, and could be assembled with little to no technical knowledge, 

thereby expanding access to the Monome interface? 

                                                
17 About Monome - http://monome.org/ 
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Figure 5: The first Arduinome. Built using Monome 40h buttons 

This question was a central motivation for a community-based project Jordan 

Hochenbaum and I started with the help of Monome/Arduino community 

members Brad Hill and Ben Southall in the summer of 2008. This project, now 

the Arduinome (see Figure 5), was an effort to port the original Monome 

firmware from a custom circuit to the readily available and affordable Arduino 

microcontroller platform. In addition to being an affordable and easy to find 

microcontroller, the Arduino’s large online community, extensive 

documentation, and additional I/O ports provided new potential for expansion 

and exploration of the Monome as an interface. This potential has resulted in 

members of the Monome community modifying the Arduinome with 

components as complex as fully featured LCD displays and multiplexed rows of 

continuous controllers. Monome has fully embraced this modification and 

exploration by including the Arduinome on its website wiki.18 The support 

Monome has shown for this Arduino based clone has yielded many benefits for 

                                                
18 Monome::Arduinome - http://monome.org/docs/tech:ports:arduino 
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Monome, including individuals creating new hardware modifications to the 

original interface concept, and creating new Monome-compatible software 

applications. These new hardware ideas and musical applications developed by 

Arduinome users further extends both the Arduinome’s and the Monome’s 

functionality, and represents an example of community driven interface design. 

Since the project’s initial release to the Monome community, significant 

Arduinome activity around the clone has warranted a separate and dedicated 

Arduinome category in the Monome user forums. This has provided a space for 

Arduinome users to share their ideas with other Arduinome users, as well as the 

larger Monome community. This sharing of information has provided a learning 

resource for people interested in working with the Monome firmware, and has 

seen the development of a plethora of new firmware modifications and Monome 

derivative projects.  

One remaining challenge of the project is the extensibility in the original 

Monome 40h serial protocol. The serial protocol describes the transmission of 

interface data to and from the computer. The original Monome 40h protocol 

supported on/off states for buttons, on/off states for the LEDs, and 

transmitting a handful of continuous values. This protocol made it difficult to 

add completely new or novel functionality such as continuous pressure from all 

of the 64 buttons, variable LED intensity, or LED color support. A community 

project called serialOSC has been developed that can potentially address these 

challenges by providing a prototype description of a generic Monome style 

interface. By creating a prototype description, an interface can transmit 

additional custom data messages while still being compatible with existing 

Monome applications. This feature was used in the development of the 

Chronome interface. 
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2.6.1.2 CHRONOME 

 
Figure 6: Chronome prototype 

Designed by the author, the Chronome represents a new iteration of the 

Arduinome that takes inspiration from both the RGB LED support of the 

Octinct and the pressure sensitivity of the LUMI. A key goal of the new device 

was to bring both the RGB LEDs and button pressure functionality into the 

existing Monome application framework while at the same time continuing to 

use the Arduino platform as the microcontroller. The additional functionality the 

Chronome provides allows for a continuous spectrum of data and opens up new 

expressive ground for musical performance with a Monome style interface. The 

original Monome design was a discrete-event controller, and lent itself well to 

both percussive material and triggering time-sensitive events; however, the 

Chronome’s focus on continuous data now allows for musical control to vary in 

gradations as opposed to the binary interactions of the original Monome. The 

aim of this project is similar to the Arduinome in that all information pertaining 

to building the interface is provided to the Monome user community in hope 
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that it will spur a growth in applications that take advantage of this new 

functionality.  

The Chronome is an example of community-based design as it is inspired by two 

Monome derivative interfaces, the LUMI and the Octinct. Additionally, the new 

serialOSC software being developed by members of the Monome community 

provides a way to extend and modify the types of data sent to Monome 

compatible applications. This extension allows the Chronome project to bring 

color support to the existing serial protocol of the Monome. With multiple 

Chronomes already being built around the world, it will be exciting to see what 

new ideas and software will be given back to the Monome community. 

2.6.1.3 THE BRICKTABLE 

 

Figure 7: BrickTable version I, II, and III 

The BrickTable (Hochenbaum and Vallis 2009) is a large multi-touch interface 

built by the author in collaboration with Jordan Hochenbaum. The interface was 

inspired by the Reactable (Jorda et al. 2005; Jordà et al. 2007) and originally used 

the open-source software ReacTIVision (Kaltenbrunner and Bencina 2007) for 

prototyping. Three versions of the BrickTable were built between 2008 and 2009 

(see Figure 7), with all three of these versions being based off of resources and 

software found at the online Natural User Interface Group (NUI Group) 

community. Like Monome, NUI Group represents an online community of 

interface users and developers, and the resources provided by the community 
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have similarly facilitated the development and modification of an interface. The 

NUI Group provided technical information on building the physical interface, 

community developed software for vision tracking, and answers to development 

questions in the online forum. The BrickTable and its several iterations were 

made possible by using the resources provided by NUI group, and benefited 

greatly from iterative community based design. 

2.7 MONOME, TENORI-ON COMPARISON 

 

Figure 8: Monome left and Tenori-On right 

Both the Monome and multi-touch interfaces represent an interesting, subtle and 

significant shift in how a community of users can approach interface design. The 

previous sections have shown how online repositories of information have 

enabled users with access to the Internet to learn, build, and augment musical 

interfaces. Contrasting the Monome with the Yamaha Tenori-On shows how an 

online community-driven iterative design approach, compared to a closed-box 

design approach, can lead to greater versatility in use.   

The Tenori-On was introduced by Yamaha in 2008 and, like the Monome, 

contains a two-layer, NxN device consisting of a matrix of buttons situated over 

a matrix of LEDs. Unlike the Monome however, the Tenori-On’s firmware is 

locked, its design specs are not made public and the device does not easily 

support hardware modifications. When compared with the Monome, the Tenori-

On has not seen the same community of users, library of applications or variety 
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of uses develop. Even though these two devices share a very similar form, the 

history and function of the two interfaces are very divergent. The Monome has 

spawned a wealth of custom applications, a thriving user community and several 

community developed derivative interfaces, while the Tenori-On, in spite of 

being an interesting and exceptionally well-conceived instrument, has remained 

unchanged in its design and fixed in its functions.  

2.8 DISCUSSION 

This chapter has presented an online community-based iterative model of 

interface design in which expert users, making up a small percentage of the 

community, develop new and innovative functionalities. These extended 

functionalities are then made available to the larger user community without 

requiring the community to learn the technical details of the interface. This 

process allows computer musicians to perform using custom interaction between 

their physical interfaces and the sounds produced by the computer. While an 

acoustic instrument may be played in different ways, it will still be constrained to 

the physical interactions and the sounds resulting from those actions. In contrast, 

through the use of customizations and software, an interface and computer can 

become entirely different instruments performed in entirely different ways. The 

majority of users do not create these new functionalities, but instead use these 

developments and in return share their experiences with the rest of the 

community, contributing novel application and modification ideas. By allowing 

for an online community to develop, modify and re-envision an interface 

through an iterative process, a new model for interface design has been created; a 

model that encompasses both basic users and advanced developers alike. 

Online communities have not only democratized the hardware development of 

musical interfaces; they have also similarly democratized the process of software 

development for musical interfaces. Community software developers actively 

listen to requests from users and regularly implement these ideas in new 

applications for the interfaces. This process creates a feedback loop inside the 

community forums; real-world use of the interfaces informs the development of 
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software. Conversely, software design requirements can drive the development 

of new functionality for an interface. In this way, software informs the design of 

new hardware, and hardware informs the design of new software. 

An example of this is the Monome community’s large repository of free and 

open-source custom software. Specifically, in an iterative process similar to the 

hardware development, an application known as MLR,19 a program that allows 

for the chopping of buffered loops of audio using the Monome, has seen users 

take an existing open-source application and create custom versions that are then 

shared back with the larger community. This process helps drive new hardware 

ideas, including the desire to display visual information from the application on 

the Monome’s LEDs using multiple colors. Implementing this multi-color 

support was a central motivating factor in developing the Chronome. 

While open-source software is not a new idea, coupling it with open-source 

hardware creates a powerful combination that allows users to explore new ideas 

and helps drive development. Software such as reacTIVision and the NUI 

Group’s Community Core Vision 20  (CCV) finger-tracking program were 

developed as open-source projects that required most users to build custom 

hardware devices in order to use them. Without access to the online community 

resources regarding hardware designs, the software programs would not have 

had the physical interfaces needed for people to implement their ideas. As an 

example of projects that benefit from this “completed loop” of hardware and 

software, the Argos project (Diakopoulos and Kapur 2010) built off the 

resources found at the openFrameworks community, implementing an 

application that simplified the designing of GUIs and extended the usability of 

CCV and the multi-touch hardware interfaces.  

The sharing of technical resources for live computer music can even be seen in 

the development and evolution of the laptop orchestra. Early versions of the 

server that connected PLork and SLork were built using ChucK, and made 

                                                
19 App:mlr [monome] - http://docs.monome.org/doku.php?id=app:mlr. 

20 CCV - http://ccv.nuigroup.com/ 



Chapter 2 - Community based design: Iterative musical interface development 

 

31 

available to other laptop orchestras following in their footsteps. This original 

ChucK server has since lead The Machine Orchestra to develop several new 

iterations for use in our own concerts, and has even led to derivative applications 

being developed in other languages. This sharing of ideas and resources is a 

positive influence on the development and refinement of not only the interfaces 

used by computer musicians, but on tools in general for live computer music. 

Access to these tools allows a computer musician, using a single physical 

interface, to become an entire ensemble of unique instruments in a way that has 

not been possible using acoustic instruments. Each computer musician takes the 

functionality afforded by the interface, and then creates their own custom 

mapping to the computer instruments. This turns the computer musician into 

the creator of his or her own custom instruments, and represents an evolution of 

the performer-composer.  
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Chapter 3  

ARMY OF ME: AUTONOMOUS AGENTS 

AND THE SOLO PERFORMER 
 

“Eventually it should be possible to develop a synthetic performer that 

would not require priming with a written score of what initially to listen for. 

Chamber music players typically perform from single part-books, building 

their sense of the full score strictly from the experience of rehearsal. In that 

this appears to be a prime route by which those players inform their overall 

performance, we would eventually like to understand a little of how that 

works.”  

     —Barry Vercoe & Miller Puckette (1985) 

 

Computers enable the development of autonomous agents for solo live 

performance. Through these systems, new modes of improvisation may be 

explored where musicians have musical dialogues with virtual versions of 

themselves. These avatars are not so much separate identities as they are 

extensions of the performer’s musical will. By listening to the performance of the 

human, the computer agents are able to output new musical ideas that in turn 

influence the musician’s actions, creating a feedback system of computer-

mediated improvisation. These systems create the opportunity for the performer 

composer to express one musical idea while having a computer generate other 

contextually related music. This in effect makes the computer musician 

simultaneously conductor and performer, and represents an evolution of the 

performer composer. 
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The following chapter begins by providing a historical overview of algorithmic 

composition, how these ideas are applied to automated musical systems, and 

finally an examination of current attempts to develop autonomous agent systems 

for live computer music performance. A novel search based plugin is presented 

for modeling two performers that are using continuous control data. Lastly, the 

chapter presents several different architectures for autonomous agents, and 

discusses the idea that agent systems can allow a solo performer to create 

concurrent virtual personas, and use these virtual musicians to turn single actions 

into multiple events.  

3.1 GOALS AND MOTIVATION 

The aim of this research is to examine the potential of interactive musical agents 

to expand the musical control of a single musician. These interactive systems 

listen to incoming musical data in order to generate models of the performers. 

These models then generate new material in the style of one performer given a 

context provided by another performer and the output of the interactive musical 

agent (see Figure 9). Arnie Eigenfeldt states that “Such performance systems can 

be considered as complex instruments, in that multiple gestures are generated 

that proceed and interact in complex ways, yet under the direction of a single 

performer/operator” (Eigenfeldt 2006). In a similar manner to how piano pedals 

expanded expressive potential by allowing pianists to sustain notes, the 

development of interactive musical agents expands the level of control in live 

computer music by increasing the number of simultaneous actions a performer 

can control or influence. 
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Figure 9: Interactive musical agent for modeling continuous control data from musical interfaces 

The design of these systems draw heavily from the fields of statistics, AI, and 

Machine Learning, in which models are built to describe complex mappings 

between inputs and outputs. These systems are built using a variety of 

approaches, including statistical modeling, sub-symbolic networks, genetic 

algorithms, or search based systems. Through the application of these various 

approaches, models can be learned by presenting the computer with examples of 

input and output pairs, and in this way build a system that addresses Vercoe and 

Puckette’s desire for an interactive instrument that would learn from rehearsals. 

The development of interactive agents represents an evolution of the performer 

composer as they afford musicians the ability to perform and improve with 

multiple versions of themselves. This creates the opportunity for the instrument 

to become a new musical tool in which the ideas of the performer composer are 

used as contextual input to generate parallel streams of musical material from a 

single idea, and in the process inform the musician’s future decisions.  

3.2 BACKGROUND 

The interactive musical systems discussed in this chapter can be seen as evolving 

out of a long history of algorithmic composition. Gerhard Nierhaus defines 

algorithmic composition as “a formalizable and abstracting procedure which – 

applied to the generation of musical structure – determines the field of 



Chapter 3 - Army of me: Autonomous agents and the solo performer 

 

36 

application of algorithmic composition” (Nierhaus 2009, pg. 11). Three 

composers are frequently presented as early examples of algorithmic 

composition. Guido of Arezzo’s treatise “micrologus” was written around AD 

1026 (Nierhaus 2009, pg. 30), and lays out a set of rules for the writing of early 

polyphonic music called organum. Johannes Ockeghem’s 15th century work Missa 

Prolationum consists of prolation canons in which two contrapuntal melodies are 

split between four voices each at a different speed, with the interval of imitation 

becoming larger with each piece in the work (Groot 1997). And finally, Mozart’s 

Musikalisches Würfelspiel is a famous example of the use of dice to choose from a 

predetermined set of compositional ideas (Nierhaus 2009). Mozart’s use of dice 

can be seen as a precursor to aleatoric compositional approaches applied in the 

20th century. The attempt to formalize an approach to composition has carried 

on to the present, with composers exploring increasingly complex algorithms. 

With the advent of the computer age a new world of possibilities has now 

opened up, enabling composers to explore algorithms that would have 

previously been prohibitively complex.  

3.2.1 TWENTIETH CENTURY COMPOSERS 

The twentieth century was witness to an expanded exploration of algorithmic 

compositions by composers such as Arnold Schoenberg, John Cage, Steve Reich, 

Iannis Xenakis, and many others. These composers experimented with 

formalizations outside of tonal music, the application of chance procedures to 

composition and of procedures in general, as well as the potential application of 

advanced mathematics to music. The work of these composers represents a 

transition period from hand written to computer-mediated algorithmic 

composition, ultimately leading to the current development of agent-based 

systems. 

The early part of the twentieth century was witness to the rise of atonal music by 

such composers as Alban Berg and Anton Webern. This music aimed to avoid a 

single tonal center in a piece of music. As early as 1921, Arnold Schoenberg 

began exploring a compositional system for formalizing the avoidance of a tonal 
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center by evenly distributing all twelve notes of the chromatic scale within a 

composition. The rules governing this even distribution of tones represent a 

formalized approach to composition. The twelve-tone system evolved into the 

broader genre of Serialism, which included the development of derivative 

systems such as integral serialism, total serialism, general serialism, and multiple 

serialism.  

In his 1971 book Formalized Music (Xenakis 1971), Iannis Xenakis contested that 

the complexity inherent in serialist compositions is not discernable by the 

listener, and instead is perceived as a random collection of notes. Xenakis aimed 

to remedy this with his “stochastic music”, which attempted to create systems 

that would avoid a tonal center while still providing a cohesive form 

ascertainable by the listener. These systems were derived from various fields of 

mathematics such as probability theory, Markovian processes, set theory, and 

others. Xenakis’ stochastic music can be seen as an early attempt to model a 

system with a finite domain and a deterministic nature, preserving larger scale 

structures while probabilistically deriving the details. 

Xenakis’ criticism of indeterminacy was not limited to serialism, and extended to 

the work of John Cage, with Xenakis saying that “complete freedom, as is the 

case of Cage, says in effect ‘do what you like, at any moment, no matter how’” 

(Bois 1967). While John Cage’s use of the I Ching to compose his music through 

chance procedures does represent a more random approach to algorithmic 

composition, it still requires that certain basic assumptions—or boot strapping—

be made about the musical domain prior to composing. Decisions such as what 

musical elements the I Ching will decide, and how these elements interact with 

each other, place a set of constraints on the musical domain that inevitably end 

up defining the final composition.  

Xenakis may be right in questioning if the listener would be able to discern the 

complex relationships within either Serialism or chance based music, but 

unforeseen events within the compositional complexity may give rise to an 

emergent music. This idea of an emergent music became very important to 
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network computer music ensembles of the 1980’s (see Chapter 4), and provides 

a fertile ground for the exploration of algorithmic composition as it accounts for 

the idea of unplanned structure emerging from a chaotic system. 

Another solution to Xenakis’ criticism of indeterminacy is seen in the process 

music of composers such as Steve Reich and Terry Riley. Steve Reich’s tape 

phasing and Terry Riley’s In C represent the algorithm as a procedural approach 

to composition; procedural in the sense that the music takes the compositional 

algorithm and makes it the central aesthetic element during both the creation and 

the performance of the pieces. As an example, Reich’s phase pieces allow for the 

music to emerge through the process of phasing two identical melodies, allowing 

for a multitude of different musical ideas to come out of a single melody. A 

more contemporary example of form emerging from process would be William 

Basinski’s Disintegration Loops. In these pieces a loop of music is played back 

on old decaying tape. Each time the loop plays, a little more of the tape 

recording disintegrates, creating a clear aural link between the process and the 

music.  These procedural approaches to composition constitute algorithmic 

composition in that they are formalized, and are unique in that the composition 

and performance are linked together through the procedure. 

3.2.2 COMPUTER AIDED ALGORITHIMIC COMPOSITION 

As computers continued to increase in processing power, composers began to 

explore algorithmic approaches to composition that would have previously been 

too laborious and time consuming to undertake by hand. As an example, the 

computer enabled Xenakis to create programs that would automate the 

calculation of probabilities, allowing him to continue exploring ever more 

complex musical ideas. 

In Charles Ames’ review of automated composition (1987), he describes the 

1956 efforts of Klien and Bolitho’s Push Button Bertha as one of the first 

computer assisted automated compositions. He goes on to discuss other seminal 

pieces such as Hiller and Issacson’s 1959 Illiac Suite in which Markovian 

processes were used to compose the music, James Tenney’s 1963 work Stochastic 
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String Quartet which used Max Matthew’s musical programming language MUSIC 

4, as well as Xenakis’ use of computers for his 1962 work Morsima-Amorsima. All 

of these pieces leveraged the ability of a computer to perfectly execute 

instructions, opening a new world for algorithmic composers. 

As computer automated composition developed, computing languages dedicated 

to algorithmic composition began to develop. Paul Lansky created the MIX 

language, and Larry Polansky, Phil Burk, and David Rosenboom developed the 

language Hierarchical Music Specification Language (HMSL) (Polansky 1994). 

These languages, and many others like them were designed to aid in 

algorithmically composing music using computers, and created building blocks 

from which ever more complex algorithmic compositional systems could be 

built.  

While the frameworks above allowed for the creation of complex algorithmic 

compositions, they were not built to “learn” or imitate a style or genre of music. 

David Cope created a system called Experiments in Musical Intelligence (EMI) 

that could be trained with a corpus of example music, and then generate new 

compositions in that musical style or genre (Cope 2005). Cope proposes that a 

musician’s style is related to the re-occurrence of themes and ideas, and that 

probabilistic modeling of a musician’s corpus of work will reveal these themes. 

EMI is important to the development of an interactive agent system as it shows 

that a musician’s style or musical personality can be modeled by examining their 

performances. 

This research has also found its way into commercial products such as PG 

Music’s Band-in-a Box,21 and Steinberg’s Groove Agent.22 These advances can be 

seen as an evolution of composition from hand-written ideas to computer-

mediated algorithms; whoever, it was not until computers became fast enough to 

support interactive systems that an evolution of the performer composer began. 

                                                
21 PG Music - http://pgmusic.com 

22 Groove Agent - http://steinberg.net/en/products/vst/groove_agent/groove_agent.html 
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3.2.3 INTERACTIVE MUSICAL AGENTS 

The 1970’s saw the beginnings of efforts to use computers to not only automate 

composition, but also to interact with, and influence algorithms in real time. 

Systems such as GROOVE enabled composer Emmanuel Ghent to write his 

1974 piece Lustrum by influencing a probabilistic compositional program while it 

was running (Ames 1987).  

As computers became faster, and real time interaction becoming a reality, 

composers began to look beyond simply automating algorithmic composition. 

Research looked into more complex methods of interaction between human 

performers and computers. Programs were developed that allowed for 

automated accompaniment systems capable of listening to human performers, 

and determining their position within a musical score (Dannenberg 1984), as well 

as systems complex enough to model, and act as a synthetic performer within an 

ensemble (Vercoe 1984). These systems represent a major step forward in the 

evolution of the performer composer as they allowed for the performance of the 

human to contextualize the musical output of the computer. Although these 

systems were able to process live input, they weren’t capable of increasing the 

quality of their performance through rehearsals. With this in mind, researchers 

began to examine ways in which systems could learn, and then later reference 

this past performance data (Vercoe and Puckette 1985).  

These early systems used optimized search algorithms to compared performer’s 

inputs against a fixed score that provided a context for the automatic 

accompaniment. While this was an effective approach, it does not work for more 

improvisatory situations. Improvisation focused performance has a less defined 

form, making it challenging to provide a context from which the computer can 

generate music. Research into utilizing machine learning techniques allowed 

systems to no longer simply accompany a score, but instead be able to “learn” 

and recognize different styles of music (Dannenberg, Thom, and Watson 1997). 

In order to recognize the more diffuse connections defining musical styles, 
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systems increasingly began to use sub-symbolic systems that learned from 

inference, rather then symbolic systems that learned from a set of rules.  

Armed with this new ability to learn and emulate performance styles, 

“intelligent” auto-accompaniment systems were developed that allowed for 

improvisational interaction. Examples of these systems are George Lewis’ 

Voyager, a nonhierarchical improvisation instrument that listens to performance 

and improvise with the musician (Lewis 2000); Francois Pachet’s use of Markov 

Models to design The Continuator, an interactive musical system that generates 

music in the style of the performer using call and response (Pachet 2002); and an 

interactive improvisation system for generating rhythms in the style of North 

Indian Tal (Wright and Wessel 1998). These interactive systems no longer 

needed to follow a fixed score, and the ideas of Interactive Music Systems, 

Agents, or Machine Musicianship was defined (Rowe 2001).  

3.2.4 CONTEMPORARY SYSTEMS 

There has been considerable growth in the development of interactive musical 

agents since the publication of Rowe’s Machine Musicianship. Major conferences 

such as the International Symposium on Music Information Retrieval (ISMIR) 

(Downie, Byrd, and Crawford 2009), and the international conference on New 

Interfaces for Musical Expression (NIME) (Cook 2001), have provided a forum 

for the development and  application of interactive musical agents. New 

interactive systems have been developed which listen to input from musicians, 

learn from the performance, and then generate improvised, contextually relevant 

material in response to the incoming data. Some examples of these systems 

include: A jam session system capable of simultaneously listening two three 

guitarists and generating a “personality model” of each player (Hamanaka et al. 

2003), with these models then being used to substitute the musicians with virtual 

performers; Haile, an anthropomorphic drum robot that is able to listen to a 

musician and synchronize its drumming with the performance of the human 

(Weinberg, Driscoll, and Parry 2005); Kinetik Engine, a drumming ensemble 

system consisting of four agents that generate rhythms by listening to each other 
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and the input of a human “conductor” (Eigenfeldt 2006); and the work of Nick 

Collins towards the creation of autonomous agents for live computer music 

(Nick Collins 2006), and his development of an improvisational system that 

provides contrary musical improvisation in opposition to a musician’s 

performance (Nick Collins 2010).  

3.3 DEFINE THE CHALLENGE 

Existing research into creating interactive musical agents has shown promise in 

developing systems that can learn from a musician, and then interact with them 

in real-time during a performance. However, it would be difficult to imagine a 

“one-size-fits-all” solution to the creation of these interactive agents. The reason 

for this is linked to the fact that musical styles are defined using a wide variety of 

parameters, e.g., pitch, rhythm, timbre, tempo, duration, polyphony, harmony, 

dynamics, cultural influences, etc. Additionally, the parameters that define one 

genre may be meaningless in another.  

Even exceptional human musicians are unlikely to be virtuosic in every musical 

style that exists. The subtleties of each type of musical style are not necessarily 

linked to each other in any meaningful way, and are often tied to cultural 

influences. One could imagine that someone’s mastery of baroque figured bass 

would not necessarily make them a virtuosic classical north Indian musician. 

Similarly, it seems unrealistic to create an interactive musical agent that is capable 

of accompanying in all styles. Nick Collins explains how the rules described in 

the Generative Tonal Theory of Music (GTTM) (Lerdahl and Jackendoff 1996) 

do not apply well to the music of Bolivian campesinos (Stobart and Cross 2000). 

He goes on to say that, “the great variety of metrical structures in the world’s 

music (Temperley 2004; Clayton 2001; College 2004), the lack of any ‘universal’ 

musician conversant with all musics, let alone the notorious difficulties in 

ascribing musical meaning, all suggest that cultural factors are essential in 

obtaining musical competency” (Nick Collins 2006). This would imply that not 

only is it unlikely that an interactive musical agent would be effective at all 
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musical styles, but that such a homogenous approach to modeling music is not 

desirable. 

The research presented in this chapter is interested in developing a custom 

interactive system that will be focused on the live performance of beat-based 

electronic music such as techno or electronica. This interactive system will 

leverage specific features found in these genres, such as traditionally adhering to 

a single tempo, and frequent use of a 4/4 beat structure. Additionally, the 

control parameters currently used by the author are based around custom 

mappings between the Chronome described in Chapter 3, and Ableton Live.23 

These mappings tend not to control note or pitch based instruments, but instead 

focus on controlling timbre using effects and re-sequencing sampled material to 

create new arrangements. This makes leveraging rules regarding tonality difficult 

to use. For example, data reduction techniques such as reducing pitch to interval 

relationships do not apply to a knob that controls the cutoff of a filter, or a 

button that bypasses an effect. 

3.4 IMPLEMENTATION: LIVE PERFORMANCE 

SYSTEMS 

During the course of this research several approaches to designing interactive 

musical agents were explored in an effort to gain a better understanding of the 

possible solutions, and challenges (see Appendix D, Appendix E, Appendix F 

and Appendix G). This research led to several requirements for the interactive 

system: 

1. The system is a plugin, allowing for integration with the 

Chronome/Ableton performance system. 

2. The system is able to continue to perform with or without input from 

the musician. 

                                                
23 Ableton - http://ableton.com 
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3.  The system is able to learn from rehearsal instead of being presented 

with a score. 

4. The system is based off of a concatantive synthesis approach, where 

incoming performance data is used to search a database for an 

appropriate response. 

Taking these requirements into account, the following system is built using a 

search approach to interactive musical systems, based off a similarity algorithm 

called S2MP (Martin et al. 2011). 

3.4.1 SEARCH BASED SYSTEMS 

Search based systems are algorithms that take an input as a key, and find a 

matching value in a stored database of examples. These examples can be single 

states such as notes, or longer sequences of states that each store many different 

pieces of information. An example of this type of sequence might be a melody 

line, where each state in the sequence stores the pitch, velocity, and duration of 

the note.  

Search algorithms have been used in the development of auto accompaniment 

systems (Dannenberg 1984), improvisation systems (Rowe 2001), and more 

recent interactive musical agents that attempt to model the relationship between 

two performers (Martin et al. 2011). While the basic concept behind search based 

systems is a simple key-value database, musical implementations of the approach 

require special considerations. The system must decide how to handle matching 

the real-time input to the database states, what state information is to be 

returned once a match is found, and how to do all this fast enough for live 

musical performance. 

This section will (1) discuss the considerations when adapting the auto 

accompaniment systems for improvisational interactive agents; (2) present 

developments and modifications of the S2MP algorithm originally described in 



Chapter 3 - Army of me: Autonomous agents and the solo performer 

 

45 

(Martin et al. 2011); (3) and discuss the challenges with designing interactive 

musical agents using search-based algorithms. 

3.4.2 CONSIDERATIONS FOR USE WITH IMPROVISATION 

While the approach described in Appendix E allows for a faster search by only 

comparing neighboring sequence events, improvisational systems do not closely 

follow a pre-determined score, and therefore require additional constraints 

(Rowe 2001). However, while the progression of sequences may not be tied to a 

score, they may represent phrasing, and allow for segmentation to provide a 

similar form of constraints. Certain styles of beat based live computer music 

such as techno are closely associated with grid based rhythmic structures such as 

strong beats and bars, and it is possible to segment or group sequences along 

these rhythmic divisions. 

With this in mind three assumptions can be made. First it can be assumed that 

the neighbor of the previous best matching sequence within a database is likely 

to provide a high scoring match, although not necessarily the highest score. 

Secondly, it is also reasonable to assume that a high matching sequence is more 

likely to be found at similar beat locations within in a bar versus other positions 

within the bar. Finally, if the database in use is a collection of sequences that 

represent performances (see Figure 12), then it can be assumed that related 

improvisational ideas will be explored closer to each other rather then randomly 

spread out. While these assumptions cannot be guaranteed, they will allow for 

constraints to be applied to the search in a similar manner to Dannenberg’s 

system (Dannenberg 1984). 

Additionally, searching algorithms require training a database of good examples 

to find and match during performance. Describing the examples as “good” is 

important because a search algorithm looks for the closest matching input, and 

will return a poorly played matching performance just as easily as a well played 

matching performance. While lots of training may help to mitigate this issue of 

“bad example” data for probability or regression based systems, search based 

systems have no statistical inference for preferred input states versus aberrant 
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state examples. One solution to these challenges could be a pruning or approval 

of the data before submitting it to the search database. 

3.4.3 S2MP: A SIMILARITY MATCHING ALGORITHM 

To explore the potential of search-based approaches for improvisational systems, 

the following research implemented a similarity-matching algorithm called S2MP 

(Martin et al. 2011; Saneifar et al. 2008). Martin’s research shows the potential of 

this algorithm in developing interactive musical agents that perform alongside a 

human musician in the style of another performer. His original system is based 

around binary state buttons that switch on or off ten algorithmic musical 

instruments. The system described here aims to expand this algorithm for use 

with continuous control data from musical interfaces, and to implement it as a 

plugin for integration in modern Digital Audio Workstations (DAW) such as 

Ableton Live. 

A brief description of the algorithm follows, but the reader should refer to 

(Saneifar et al. 2008) for a more details. The original algorithm uses an input 

sequence as a key to search for a match within a much larger stored sequence. 

This is achieved by comparing the input sequence against all sub-sequences of 

the same size from a database of past performances. The algorithm considers a 

sequence to be made up of a collection of item sets. Item sets can be thought of 

as a chord, while a sequence would be the order of chords as they are played in a 

performance. This algorithm is well suited to finding generalized sequence 

matches by calculating both a mapping score for the union of the items within two 

sequences, and an order score for how well the matching item sets maintain a 

similar order. These two scores are then combined to provide a general similarity 

score for the two sequences.  For the system described here, the item sets are 

samples of continuous controls used by two computer musicians, stored as a 

single sorted set, while the sequences would be these samples stored to disk as a 

performance. 
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3.4.4 TRAINING THE SYSTEM, AND LINKING CONTROLLER 

DATA 

Creating these item sets requires converting the controller ID and value for the 

two performers into a single 1-dimensional array, and is achieved for the first 

performer by multiplying the controller ID by 128 and adding the product to the 

controller value. The second performer is concatenated to first performer by 

adding 128 to the controller ID, then multiplying by 128, and finally adding the 

controller value (see  Figure 10 and Figure 12). This essentially flattens the matrix 

of controller IDs and controller values, and converts it to a 32,896-position 

array, allowing for synchronous samples of the state of both performers’ 

controllers. However, the S2MP algorithm allows for some optimizations in 

storing the array. The order of events within an item set does not matter; 

therefore there is no need to store duplicate events. Additionally, the interactive 

agent should only update a controller when the value has changed; therefore the 

item sets only need to store events that have changed since the last item set was 

created. Lastly, the mapping score can be efficiently calculated using the 

intersection of two sets. For these reasons, the flattened array is best stored as a 

sorted set. 

 Figure 10: Controller data from both performers stored as 2-D and flattened 1-D collections 
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Figure 11 Search algorithm training algorithm. The two performers are sampled by the plugin, and 

performer B’s current item set is linked with Performer A’s previous item set. 

During training, the incoming data from both performers A and B are sampled 

at a constant rate. Each sample is used to create a sorted set that contains the 

control data from both performers, and a MIDI buffer containing the time 

stamped control data from performer B. The MIDI buffer is then paired with 

the previous sorted set in a key/value struct, and this struct is then appended to 

a database, extending the recorded performance. This process creates a long 

sequence of item sets and linked MIDI buffers, representing synchronous 

samples of both performers’ controllers for a particular performance. Additional 

rehearsals or performances can be stored as separate sequences, allowing for 

different “takes” on the piece (see Figure 12).  
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Figure 12: Stored performances for S2MP algorithm. Sequential item sets for a performance are 

stored as Seq2(n). Each jth item set represents both Performer A and B, and has a MIDI buffer 

associated with it. 

3.4.5 IMPLEMENTATION OF THE SYSTEM FOR USE IN 

PERFORMANCE 

During performance, a sequence is built using both Performer A’s current input 

and the virtual Performer B’s current output from the system. The input 

sequence, which will henceforth be referred to as Seq1, is a fixed size buffer. 

Once Seq1 is initially filled with item sets, it is then compared against the 

sequences from the database, which will henceforth be referred to as Seq2(n) 

where n refers to a specific stored performance. As described in section 3.4.2, an 

exhaustive search of the database is not only slow, but also not necessary if the 

comparison between Seq1 and the database leverages the current position within 

the bar. Seq1 can be compared against all sub-sequences in Seq2(n) that end at the 

current position since the start of the last bar (see Figure 13). If the samples are 

taken at 96th notes, then an exhaustive search of a bar will require a total of 384 

comparisons, while this location-based approach will only require one. 

Additionally, this can be taken further if it is assumed that the last matching 

location in the database will likely provide a good match for the next search. The 

current location can be thought of as highly likely to yield similar musical ideas, 



Chapter 3 - Army of me: Autonomous agents and the solo performer 

 

50 

with good matches dropping off as the search distance increases. This can be 

used to increase the distance between searches, i.e., the search would look at the 

neighboring bars, then two bars form that, then four again, and so forth. While 

this distribution of musical matches is not strictly true of all music,24 it represents 

a good compromise between speed and search.  

Finally, Martin’s paper discusses the tendency of the search results to jump 

around the database, and consequently create undesirable discontinuities in the 

output. Testing of the algorithm confirms this, and my proposed solution is a 

bias towards the compares closer to the previous compare location using weights 

on the similarity scores. This should help mitigate the issue of jumping around 

without adversely affecting performance, as it’s likely that a gestural phrase or 

segment will be continuous and not jump between different bars. These weights 

re-enforce the idea of imposing a Gaussian distribution to searching the recorded 

sequences. 

 

Figure 13: Constraining the S2MP search to current position within a bar. This represents a good 

compromise between efficiency and search as it cuts the number of compares and is likely to 

return good matches. 

The actual comparison between Seq1 and sub-sequences of Seq2(n) first requires 

taking the intersection of the item sets between the two sequences. This creates a 

matrix of similarity mappings of items between item sets by assigning a score for 

the ith item set in Seq1 for every jth item set in Seq2(n) (see Figure 14).  Once the 
                                                
24 One could imagine a pop song that has several choruses with similar musical material for sub-

sequence matches, but are separated into chunks within the recorded sequence.  
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matrix is complete, the highest mapping score for each ith item set in Seq1 is 

stored, and any conflicts where two item sets from Seq1 are mapped to the same 

jth item set in Seq2(n) are resolved to unique mappings if possible. This process 

places a preference for mappings that maintain the temporal order of the stored 

item sets within Seq1. For example, in Figure 14 item sets 1 and 2 of Seq1 would 

both be mapped to item set 1 of Seq2(n). In this case it would be preferable to 

remap item set 2 of Seq1 to item set 2 of Seq2(n). Once all mapping conflicts have 

been resolved, a final single mapping score is calculated by taking the average of 

the individual mapping scores for all item sets in Seq1.  

      

Figure 14: Mapping score matrix. The intersection is taken between every ith item set in Seq1 and 

the jth item set in the current sub-sequence from Seq2(n). 

The algorithm then compares how well this mapping maintains a similar 

temporal order between the input sequence and the sub-sequence, similarly 

assigning an order score. This is achieved by comparing the order of the mapped 

item sets from Seq2(n). A perfect temporal match would see the highest mapping 

scores create a diagonal from the top left, down through the mapping matrix. 

Conversely, any mapping where the position of the jth item set from Seq2(n) is less 

then the previously mapped item set from Seq2(n) equals a break in the order of 

the sequence. The most extreme example of this breaking of the temporal order 
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would see the highest mapping scores create the reverse diagonal through the 

matrix starting at the top right and moving to the bottom left. This is similar to 

Rowe’s explanation of sequence order tests described in Appendix E and Figure 

48. 

Lastly, a weighted sum of the mapping score and the order score is then 

returned. The weight allows for the algorithm to bias the amount that the 

matching score, or the ordering score contributes to the final similarity score. 

This process is repeated for each sub-sequence returned by the database. The 

MIDI buffer from the sub-sequence within Seq2(n) with the highest similarity 

score is then used as the output for the virtual performer B. In effect, this system 

takes a concatantive synthesis approach to creating the output of Performer B.  
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Figure 15: Performance diagram of search algorithm. Sampling Performer A along with the current 

agent output generates the input sequence. This is then compared against sub-sequences within 

the database, providing similarity scores. The MIDI buffer is taken from the sub-sequence with the 

highest similarity score, and then appended to the plugin’s MIDI output.  

3.4.6 PLUGIN DESIGN 

The system is implemented as a plugin using the JUCE C++ audio library,25 and 

is run inside Ableton Live. Developing a plugin allows the system to synchronize 

the sampling of MIDI data with Ableton’s global sample clock, and allows for 

integration with a popular live computer music platform. 

During training, the plugin samples the MIDI data of two musicians with 

Performer A being sent on MIDI Channel 1, and Performer B being sent on 

MIDI Channel 2 (see Figure 16). This allows the plugin to simultaneously sample 

both performers, for a total of 256 different control sources.  

                                                
25 JUCE - http://rawmaterialsoftware.com/juce.php 
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Figure 16: Continuous Control S2MP plugin 

The plugin is passed a MIDI buffer for each process block, and parses the buffer 

into before or after the start of the next sample window (see Figure 17). If the 

MIDI buffer is within the current sample window then the MIDI event is added 

to a sorted set based on the associated MIDI Channel (see 3.4.4), and the MIDI 

from performer B is stored in a separate sample window length MIDI buffer. If 

a MIDI buffer straddles a sample window, then the MIDI events that occur after 

the sample window are parsed into an overflow sorted set which will be used as 

the first events of the next sample window. Sample windows can be set at a 

1/384th note or higher using the Window Length parameter, with a window of a 

1/16th note performing well in tests (see the following section). At the end of a 

Sample window, the sorted set and the MIDI buffer are added to a database 

representing key/value pairs (see section 3.4.5).  

    

Figure 17: Parsing MIDI buffers into sample windows 

Once the plugin has recorded the MIDI data from the two musicians, the system 

can then be set into Performance mode. This mode samples incoming data from 

performer A in the same way as before, but also adds the current output of the 

system to the sorted set as well. This set is then concatenated to a sequence of 

sorted sets, and used as the input sequence to the S2MP algorithm. The length of 

Sample Window A

MIDI Buffer MIDI Buffer MIDI Buffer MIDI Buffer MIDI Buffer

Sample Window B
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this input sequence is determined by the S2MP algorithm’s sub-sequence length 

parameter, which is set via the plugin. Lastly, the Mapping / Order parameter 

controls the weighting of the similarity score for a given sequence, which the 

user can also set from the plugin interface. Weighting more strongly towards 

“Mapping” places a greater emphasis on the similarity of events within the item 

sets of two sequences regardless of their order, while weighting more strongly 

towards “Order” places greater emphasis on the similarity of order between the 

mappings of the two sequences (see section 3.4.5). The settings in Figure 16 

would create even weightings of 0.5 and 0.5 for the Mapping / Order parameter, 

with a new item set being created every 1/16th note, ultimately creating a 

sequence of sixteen sorted sets that represent one bar of performance data.  

3.4.7 ANALYSIS 

The S2MP algorithm was tested using Ableton Live, and eight bars of CC data 

representing two performers (Performer A - Human, and Performer B – Agent) 

setup in pairs. Each bar of MIDI data contained two different CC curves, with 

the Human channel using CC numbers 14 and 15, and the Agent channel using 

CC numbers 16 and 17 (see Figure 18). Each bar of CC data was created to be 

unique and “simple” in order to easily differentiate bars of MIDI in the output 

sequences. The training consisted of routing this CC data into two different 

MIDI channels, with the Human channel being sent to S2MP channel 1 and the 

Agent channel being sent to S2MP channel 2. The initial training provided a 

single transition between each bar of MIDI, i.e., A leads to B, which leads to C, 

which leads to D, which finally leads back to A. Later tests were trained using the 

sequence ABCDACBDBADCA that provided three transitions for each bar of 

MIDI.  
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Figure 18: Routing setup for S2MP training in Ableton Live, and MIDI CC training data 

The following tests consist of training the plugin using musical sequences of 

increasing length, and then measuring the ability of the S2MP algorithm to 

match a target sequence. The Target sequence is what the algorithm believed 

Performer B would play in response to an input sequence from Performer A, 

based on the initial training data. This is then compared against the actual Ouput 

sequence generated but the plugin (see Figure 19). 

 

Figure 19: Target CC sequence (top) vs. Output sequence (bottom). The output sequence didn't 

match the target sequence in the first bar, but otherwise was a perfect match. 

3.4.7.1 INITIAL TESTS 

The first four tests show whether or not the S2MP plugin is capable of finding 

“correct” matches within the training database. Each test appends one additional 

bar of CC data to the training sequence, with the first test using sequence AA 

Performer A CC# 14/16

Performer B CC# 15/17

A B C D
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and the last test using sequence ABCDA. These training sequences provide the 

plugin with one transition for each bar of MIDI. A transition in this case 

represents the end of a bar of MIDI, and may require the algorithm to jump to 

another section of the database to continue creating an output sequence.  

Once training is complete, the S2MP algorithm generates an output sequence of 

eight bars for Performer B, using Performer B's previously trained data. These 

test then compare the output sequence against a target sequence, e.g., the first 

target sequence consists of eight bars of A, the second target is then alternating 

bars of AB, the third consists of ABC, and finally the fourth is eight bars of 

ABCD. For the tests, equal weighting is given to the Mapping / Order 

parameter, the window length is set to one item set every 1/16th note, and the 

input sequence length is set to sixteen item sets. These settings mean that the 

plugin creates an item set every 1/16th using the performance data from the last 

window. These stored item sets are then used during performance by the search 

algorithm in blocks of sixteen, creating one bar sequences for the search.  

 
Figure 20: Initial S2MP plugin test - The training sequence length was increased from one to four 

bars. 

The x-axis in Figure 20 represents the number of item sets in the output 

sequence created by the plugin during performance. The y-axis represents the 

item set positions within the training database, e.g., bar A of MIDI CC training 
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data is stored in item sets 0-15, while bar B is stored in item sets 16-31. In this 

case, if the algorithm was in performance mode and presented with an input 

sequence of AAAAAAAA, the target output sequence would cycle through item 

sets 0-15 in the training database, and would create a repeating ramp in the 

graph. 

The results in Figure 20 show exactly this, and illustrate that the S2MP plugin 

was able to reproduce the target sequences for all four tests. As the length of the 

training sequence increased from one unique bar of MIDI to four, the number 

of item sets in the output sequence also increased. This is not surprising as the 

test input sequences were in the same order as the training sequences, thus 

making the S2MP search a matter of stepping through the stored examples, and 

creating an output of sequential item sets form the training database; however, it 

does show that the algorithm is satisfactorily outputting the proper sequences for 

Performer B given an input sequence from Performer A. Additionally, the graph 

also shows an initial empty bar in the output sequence from item sets 0-16. This 

is where the algorithm uses the input sequence to create the initial sequence of 

item sets used during the search. After this first bar has been created, the search 

sequence is complete and the algorithm will begin to return matches from the 

database. 

3.4.7.2 MAPPING VS ORDER 

The second set of tests explores the impact of the Mapping / Order weighting 

parameter. The parameter has eleven settings, biasing the algorithm to either rely 

more on the intersection of Item Sets or the order of the sequence. The plugin is 

trained on the same four bars of CC data used in the previous set of tests, and is 

shown only the single transition sequence of ABCDA. Once trained, the four 

bars of CC data are arranged into a new target sequence of BACADABA. This 

target sequence includes transitions not seen in the training database, and 

requires the S2MP algorithm to find generalized matches. Each test incremented 

the Mapping / Order weighting parameter, starting at 100% Mapping, and 
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ending at 100% Order. The window length is kept at one item set every 1/16th 

note, and the input sequence length is kept to sixteen item sets. 

 

Figure 21: Similarity percentage between output sequence and target sequence based on Mapping 

/ Order weighting 

The results of the test revealed that 0.6/0.4 and 0.5/0.5 Mapping / Order 

settings returned the highest percentage target matching with 43.2%, while 

0.2/0.8 scored the lowest target sequence matching percentage with 36.8% (see 

Figure 21). In general, the tests show stronger performance for matching target 

sequences using mapping of item sets compared with sequence order. This may 

be due to the introduction of untrained transitions in the target sequence. These 

untrained transitions force the algorithm to find a best match from new and 

unseen sequences in the target. While a setting that is biased towards the order of 

item sets will not handle these unseen sequences well, a setting biased towards 

mapping will fair better as it will be able to recognize similar groupings of CC 

data regardless of the order. In a musical scenario this ability to find matches that 

are similar in content but possibly different in order is important, as real world 

performance data will rarely look exactly like the training data. 

As described in section 3.4.5, the search looks at the current beat within a bar, 

relative to the DAW timeline, and searches only that beat within every bar stored 

0.32 

0.34 

0.36 

0.38 

0.4 

0.42 

0.44 
T

ar
ge

t/
O

u
tp

u
t 

Si
m

ila
rt

y 

Mapping / Order 



Chapter 3 - Army of me: Autonomous agents and the solo performer 

 

60 

in the database. These tests were trained on four bars of performance data; 

meaning that there are four possible values for every search, with a search being 

performed every 1/16th note. This gives a 1 in 4 chance of getting a target match, 

meaning that the 0.6/0.4 and 0.5/0.5 Mapping / Order settings performed 

21.2% better then chance alone.  

 
Figure 22: Mapping / Order - Average distance of output sequence from the target sequence 

While the previous figure shows the overall similarity between the output and 

the target, Figure 22 shows the average distance between the two sequences. The 

average distance shows how close the output sequence was to the target 

sequence on average. This is an important addition to the similarity percentage 

between the two sequences as it gives an impression of how close the output 

sequence actually was to the target. An output sequence could have a 30% match 

with the target sequence, but on average be returning item sets from the training 

database that are 2-3 bars away from the target sequence. This would become a 

bigger issue as the size of the training database became larger. However, all 

settings of the Mapping / Order showed that the output sequence was on 

average one bar away from the target sequence, with a small bias towards the 

target. This is significant as it shows that when the algorithm did not accurately 

match the target, on average resulted in a sequence that was close to the target 

bar.  
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Figure 23: Factor increase of discontinuities between output and target sequence 

Lastly, the output sequence was evaluated for the total number of discontinuities 

relative to the target sequence. A discontinuity is a break in the sequence of item 

sets produced by the algorithm. These breaks are usually found at the end of a 

bar when the target sequence jumps using a transition not present in the training 

sequences, e.g., the target sequence jumps from MIDI bar B to MIDI bar D. The 

target sequence used in the test contained a total of 12 discontinuities, thus a 

perfect matching output sequence having the same number. Up until this point, 

both the 0.6/0.4 and 0.5/0.5 Mapping / Order settings have shown the same 

performance; however, Figure 23 shows that a setting of 0.6/0.4 has slightly 

fewer discontinuities then 0.5/0.5. In practice the reduced discontinuities in the 

sequences amount to fewer jumps, and longer musical phrases from the plugin. 

Additionally, a factor slightly greater then one is to be expected as the algorithm

cannot foresee the bar transition ahead of time, and may quickly attempt to 

modify an output sequence with a better matching sequence shortly into the new 

bar. This would lead to two discontinuities for every transition, with more than 

two implying that the algorithm is having difficulty creating longer phrases. 

3.4.7.3 NUMBER OF ITEM SETS IN SEQUENCE 

With the previous results in mind, a final set of tests evaluated the effect of 

changing the input sequence length, and the number of trained transitions 
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between MIDI bars. The tests were in two parts, first training using only one 

transition between MIDI bars and then training using three possible transitions. 

For each of these parts the number of item sets in the input sequence is set at 4, 

8, 16, 24, 32, 40, and finally 48. The algorithm was trained on the same four bars 

of CC data used in the previous two tests. However, the algorithm was trained 

using only the single transition sequence of ABCDA for the first part of the test, 

and then later trained using the sequence ABCDACBDADCA for the second 

part. Once trained, the four bars of CC data were arranged in a similar manner as 

before, this time creating an even more complex target sequence of 

BACADABACDBACDBA. For the first part of the tests this target sequence 

included transitions not seen in the training database, and required the S2MP 

algorithm to find generalized matches, while for the second part of the tests the 

transitions were from the training database and should provide improved 

performance. The window length was kept at one item set every 1/16th note, and 

a Mapping / Order value of 0.6/0.4 was chosen based off the results of the 

previous tests. 

 
Figure 24: Similarity percentage between output sequence and target sequence based on number 

of item sets in the input sequence, and number of trained transitions 

The results of the tests revealed that an input sequence of 16 item sets created an 

output sequence that best matched the target sequence. In general, the higher the 

bar along the y-axis, the better the output sequence actually matched the target 
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sequence. There was a 30.8% match for the single transition training set, and a 

56% match for the training set with three possible transitions. These tests had 

the same 1 in 4 chance of matching the target sequence as the previous tests, this 

means that the three transition, 16 item set input sequence performed 31% 

better then chance. 

Additionally, Figure 24 reveals that item set sequences that are not multiples of 

one bar returned near zero matches with the target sequence. This is due in part 

to the quantizing of the search to a distance of one bar. The effect of this causes 

item sequences of size 4, 8, 24, and 40 to have jumps that include fractional bar 

amounts, causing the sequence to flip flop between phrases. Lastly, input 

sequence lengths greater then the phrase length of one bar used during training 

seemed to perform poorly. This may be another side effect of quantizing the 

search to one bar jumps, or it may imply that S2MP is sensitive to the phrasing 

length during training. 

 
Figure 25: Increasing numbers of item sets - average distance of output sequence from the target 

sequence for input sequences 

The tests also revealed a large drop in the average distance from the target for 

the three transition, 16 item set input sequence (see Figure 25). An Item set of 16 

and 3 transitions resulted in a distance of twelve 1/16th notes away from the 

target on average, and showed that the output sequence was less then one bar 
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away on average, meaning that not only did target matching increase but the 

output sequence was closer overall.  

 
Figure 26: Factor increase of number of discontinuous matches by sequence size 

Lastly, while the increase in transitions present during training improved the 

target matching for the 16 item set input sequence, it also increased the number 

of discontinuities. This can be seen as an increase in noise, and can be seen as an 

indication of the length of phrases created by the plugin. A factor of 1x could 

mean that there is a discontinuity (or a transitional jump) at the end of every bar, 

while a factor of 8x for a 32 item set input sequence (seen in Figure 26) would 

represent a discontinuity every 1/8th note within the bar. This is not to say that 

there would be an output sequence of only 1/8th notes, as some of the 

discontinuities may cluster together.  

3.4.8 CHALLENGES WITH USING SEARCH BASED SYSTEMS 

Search based approaches to designing interactive musical agents will always face 

a paradoxical issue. The issue being that as the amount of training data collected 

increases the model becomes more accurate; however, inversely as the number 

of searches increases the search performance becomes slower. As mentioned in 

Appendix E, systems that attempt to perform automatic accompaniment handle 

this challenge by restricting the search area to just before or after the assumed 

position with the fixed score. While this chapter has presented a similar solution 
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for improvisational systems that have access to a transport or tempo clock (see 

section 3.4.5), this solution requires assumptions that amount to compromises 

within the search. Essentially, in order to ensure the system is fast enough for 

use in real-time constraints are placed on the search, meaning that the algorithm 

may not return the overall “best” match from the database. This may be an 

acceptable compromise however, as a match that is “good enough” may provide 

a solid base for interaction between the human and the interactive musical agent.  

3.5 DISCUSSION 

The search based interactive musical system presented above represents only a 

single approach to designing interactive musical agents, with many other 

approaches to configuring the system existing. The following sections discuss 

several different methods for linking the input values to provide context for the 

system; the requirements for building an interactive musical agent within the 

context of each of the three approaches; and how these systems help to further 

the evolution of the performer composer. 

3.5.1 ARCHITECTURE OF AN INTERACTIVE MUSICAL AGENT 

In section 3.1, designing an interactive musical agent was framed as an attempt 

to use control change data from two performers, and then generate new material 

in the style of performer B given a context provided by both performer A and 

the output of the interactive musical agent (see Figure 9). Over the course of 

researching the design of interactive musical agents, there emerged several 

approaches to linking the inputs of the system in order to provide this 

contextualization of the model, each with advantages and challenges (see Figure 

27). Three of these design architectures are presented.  

The first, and most complex relationship is one in which the state of every 

control from both performer A and the virtual model of performer B influence 

the future state of every control in the model. A second approach allows the 

virtual model to be independent of performer A’s state, and instead use 

performer A’s input to apply a fitness function to the model’s output. Lastly, 
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each control can be modeled independently, allowing for greatly simplified 

models; however, while statistically over time these separate models may 

individually show behavior indicative of Performer B, there is no guarantee that 

this behavior will emerge for these models as a group.  

                                

  

 

Figure 27: Different design approaches for interactive musical agents. Clockwise from top: (A) All 

inputs affecting the model’s output; (B) The model is only affected by itself, and live input is 

applied as a fitness function; (C) Inputs are split into simpler individual models, all acting 

independent of each other 

The first approach combines input from performer A with the previous output 

of the model (see Figure 27 A). This approach is inspired by the way human 

musicians listen to each other during improvisation. In order to decide what to 

play next during improvisation, a musician must listen to both what they have 

previously played, and what other musicians are currently playing. Implementing 
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an interactive musical agent that models this kind of listening can become 

challenging with large numbers of controllers being modeled, and increasing 

numbers of musicians within the ensemble. These situations can have large 

numbers of input parameters, and lead to models that require prohibitively large 

amounts of data during training. 

The second approach to contextualizing the model is to only feed the model’s 

output back into itself, and then apply a fitness function to the output using data 

from Performer A. This effectively eliminates the input parameters provided by 

performer A, shrinking the state space and simplifying the model (see Figure 27 

B). While this approach simplifies the model, there are also complications. By 

applying a fitness function to the output of a probabilistic model, the likelihood 

of a getting a given sequence becomes altered, effectively changing the model 

itself (Pachet and Roy 2011; Pachet, Roy, and Barbieri 2011). Similarly, the 

fitness function may not accurately represent the complex interaction between 

two human performers; however, an accurate model may not ultimately be the 

most important factor, but rather the quality of interaction, or new modes of 

performance afforded by the model may be most desirable. If this is the case, 

then experimentation with parameters for a fitness function may be an effective 

solution. 

Lastly, a third approach allows for the most simplified models, as the domain 

only needs to describe the relationship of a single control to its prior state (see 

Figure 27 C). This model is not capable of capturing the inter-dependencies of 

controller states on the state of other controllers, e.g., the value of a filter’s 

resonance may be dependent on the value of the filter cutoff. In the end, it may 

be that the models will statistically perform in the style of performer B, and the 

complex inter-dependencies between different controllers will simply emerge. 

3.5.2 THE ARMY OF ME 

This chapter has presented a new similarity search algorithm for continuous 

control, based off of work done by Martin (Martin et al. 2011), shown this 

algorithm in use as a plugin within Ableton Live, and presented architectures for 
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defining relationships between inputs and the model. Through the development 

and use of these kinds of systems, computer musicians are able to extend their 

expressive potential using virtual personas. This extension represents the 

evolution of the composer performer as it creates an instrument that performs 

with the musician, creating an improvisational feedback loop between the human 

and the system, and allowing a single physical action to become multiple, 

distributed musical events.  

While these interactive agents afford the performer composer the ability to 

further distribute their musical intent into the machine, they also have the 

potential to create an increasingly disembodied performance. Audiences may not 

currently be comfortable with this disconnect between the musician’s physical 

actions and the interaction with the musical agents, and a more embodied 

approach may help to bridge this gap. The following chapter examines 

networked music ensembles, and how they provide computer musicians the 

opportunity to create this sense of embodied performance through interaction 

with other human musicians and the use of shared social robotic instruments. 
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Chapter 4  

THE ART OF COMMUNICATION: 

SHARED INSTRUMENTS AND 

NETWORKED MUSICAL ENSEMBLES 
 

“The concept of a musical instrument designed to be played simultaneously 

by more than one person is not new, but there are very few examples in the 

history of western music, other than the piano. With local high-speed 

computer and sensor technology, a new universe of possibilities has been 

unveiled…”  

      —Alvaro Barbosa (2003) 

 

 

Computer networks facilitate the exchange of information between computer 

musicians, creating new forms of musical communication. This information can 

be in the form of sensor readings, algorithms, text, or whole programs. 

Exchanging data allows computer musicians to share control of their 

instruments with every other member of the ensemble, essentially making the 

musicians a part of the larger network instrument. The data passed over the 

network can be manipulated by other musicians, or used as input for creating an 

emergent music from network algorithms. This model of networking musical 

information represents an evolution of the performer composer, and creates 

entirely new worlds of musical performance. 
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The aim of this research is to explore this potential for networked musical 

ensembles to become shared social instruments in the hope of developing new 

modes of interaction for live computer music. Specifically, this chapter will look 

at how The KarmetiK Machine Orchestra has created a shared social instrument 

using networked musical robotics. These robotic instruments are accessible to 

every member of the ensemble, and provide a way to directly embody the actions 

of the computer musicians through the physical movements of the robotic 

actuators (A. Kapur et al. 2011). Analogous to several performers playing on a 

single piano, the shared instrument allows multiple performers to express 

themselves independently within a social context (Barbosa 2003). Through the 

use of a central server, the musicians are able to control the shared robotic 

instruments both at the note-level using hardware interfaces for musical 

expression, and simultaneously at the score-level through software sequencers 

communicating over the network (see Figure 28). 

     

 

Figure 28: Network topology of The Machine Orchestra ensemble 
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The previous chapter explored the challenge of simultaneously controlling many 

musical parts by developing autonomous accompaniment systems that react to a 

human musician; this chapter approaches the challenge through networked 

music ensembles and shared social robotic instruments. Networked musical 

ensembles provide a solution to controlling many parts by dividing the 

performance among several different musicians. This reduces the scope of 

musical control that a single performer is responsible for, while also helping the 

audience to connect with the performance through the embodied interactions 

between musicians. These interactions between musicians amount to 

externalizing parts of the performance, thereby helping the musicians to more 

effectively communicate with the audience. Additionally, the use of shared 

robotic instruments provides a physical point for this musical interaction 

between performers. Physicality in performance has historically been a challenge 

for electronic music (Bahn, Hahn, and Trueman 2001), but combining network 

ensembles with musical robotics creates a new social instrument with which to 

address these issues.  

This chapter examines these issues through the work of The Machine Orchestra, 

and begins by presenting a historical review of networked computer music 

performance. This review examines the precedence of networked musical 

ensembles as social instruments, and serves to illustrate how The Machine 

Orchestra stands on the shoulders of historic network ensembles. The chapter 

then examines The Machine Orchestra’s extension of the shared social 

instrument to include musical robotics, and the use of this shared instrument 

within the context of several The Machine Orchestra compositions. 
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4.1 BACKGROUND 

 
Figure 29: The League of Automatic Composers 1980 

Over the past 35 years, network music ensembles have evolved into a rich and 

diverse field of research and exploration for computer musicians. The idea of a 

musical network has grown to encompass a wide range of topologies and 

configurations, from small local networks of performers sharing data between 

each other (Bischoff, Gold, and Horton 1978; Gresham-Lancaster 1998; 

Smallwood et al. 2008), to large ensembles of computer musicians half a world 

apart (Cáceres et al. 2008). During this same time, research has also explored 

systems designed to overcome the challenges inherent in high latency, low-

bandwidth communication (Lazzaro and Wawrzynek 2001; Chafe and Gurevich 

2004; Barbosa, Cardoso, and Geiger 2005; Cáceres and Chafe 2010; Driessen, 

Darcie, and Pillay 2011). 

Founding network computer musicians were interested in the potential of 

networks to connect and share data. Early experiments by The League of 

Automatic Composers (Bischoff, Gold, and Horton 1978) involved three 

networked microcomputers (KIM-1), each with its own custom software 

instrument, all sharing control data. This process of allowing the performers to 

control each other’s instruments created an ensemble that had never before been 
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possible, and led to the creation of a shared and social instrument, diffusing the 

absolute control a musician traditionally had over his or her own instrument. The 

members of The League named this new style of music “Network Computer 

Music”, and continued to explore the possibilities of this new style until 1986. 

The Hub formed out of the pioneering efforts of The League, and expanded on 

existing research using the newly developed MIDI protocol. In his 1998 article 

on the aesthetics and history of The Hub, Scot Gresham-Lancaster explains how 

“the advent of both the microprocessor and the affordable, multi-parameter, 

controllable MIDI synthesizer made possible a new type of network-based 

performance” (Gresham-Lancaster 1998). He goes on to suggest a link between 

this new type of network-based performance and the process music of 

composers such as John Cage, David Tudor, and Pauline Oliveros. The 

processes that Lancaster alludes to are a product of the rules governing the ways 

in which performers share data through various network topologies and 

algorithms. 

This potential for performers to share musical data through networks has 

become one of the central focuses of networked computer music, with Brian 

Kane going so far as to say “Any aesthetics of Net music would, 

correspondingly, imply a set of musical practices that exploit these (and other) 

specific affordances of networks” (Kane 2007). Additionally, while developing a 

classification framework for describing the multitude of possible network 

ensemble interconnections, Gil Weinberg states that he attempted “… to map 

the field based on what [he sees] as the central innovative concept of the 

medium: the level of interconnectivity among players and the role of the 

computer in enhancing the interdependent social relations” (Weinberg 2005). In 

developing his framework, Weinberg renamed Network Computer Music to 

Interconnected Music Networks, reflecting this focus on interconnectivity. 

This focus on interconnectivity can be found in many different networked music 

compositions. The Hub’s 1991 piece waxlips (Tim Perkis,) is based around a rule 

regarding the way a client requested notes from the master machine. Lancaster 
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describes waxlips as “an attempt to find the simplest Hub piece possible, to 

minimize the amount of musical structure planned in advance, in order to allow 

any emergent structure out of the group interaction to be revealed clearly” 

(Gresham-Lancaster 1998). This “emergent” behavior results from sharing of 

musical data between performers, ultimately providing each individual musician’s 

contribution as musical source material for the entire group.  

More recent pieces by Princeton’s Laptop Orchestra PLOrk (Smallwood et al. 

2008) examine the way in which data can be passed around a network using a 

wireless router and topologies as complex as peer-to-peer interconnectivity. Ge 

Wang’ composition Clix explores the use of the network to quantize all musical 

output to a common pulse rate, thereby tightly synchronizing the musical output 

of a large ensemble. Dan Trueman’s The PLOrk Tree explores using a tree 

structure to propagate musical ideas throughout an ensemble. Much like a game 

of telephone, the musical information received by performers at the edge of the 

tree is a modified version of the original idea performed by the conducting 

computer at the root of the tree. The concept of sharing musical data with other 

members of a network ensemble, and allowing them to alter or modify it, is 

central to many network compositions as far back as the League of Automatic 

Composers. These pieces share a common algorithmic approach to composition, 

where rules govern the way in which an interconnected ensemble of musicians 

share and manipulate performance data. These rules for sharing data turn the 

network itself into a shared social instrument. 

4.2 PHYSICALITY IN COMPUTER MUSIC 

PEFORMANCE, AND EXTENDING SHARED 

CONTROL TO MUSICAL ROBOTICS 

As described in the previous section, existing network ensembles afford 

computer musicians unique ways to share control over each other’s instruments. 

This democratic approach to performance creates opportunities for new modes 

of interaction, such as social games and algorithms requiring input from the 
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entire group. These approaches can lead to emergent behavior from the 

ensemble, and create music that is not a direct result of any one performers 

actions, but truly dependent on the sum of all the actions of the musicians.  

As the ensemble’s musical control becomes more diffuse, the connection 

between the music and the listeners—both ensemble participants and audience 

members—potentially becomes unfocused and difficult to ascertain (Gresham-

Lancaster 1998). Weinberg describes this as one of, “the field’s main drawbacks, 

in [his] opinion, stem[ming] from the focus that was put on complex 

interdependent connections which forced participants and audiences to 

concentrate on low-level analytical elements in order to follow the interaction” 

(Weinberg 2002). He goes on to say in a later article, “these networks posed high 

entrance barriers for players by requiring specialized musical skills and theoretical 

knowledge in order to take part in and follow the interaction in a meaningful 

manner” (Weinberg 2005). One of the original members of The Hub also 

expresses a similar idea stating, “the audience was often mystified by what they 

heard in relation to what they saw the performers doing” (Gresham-Lancaster 

1998). 

Weinberg suggests that, “the design of expressive gesture-based interconnected 

instruments… [would provide] participants with an expressive as well as 

coherent access to complex interdependent network topologies, which will allow 

them to focus on the artistic aspects of the experiences” (Weinberg 2002). The 

instruments proposed by Weinberg would provide a strongly embodied link 

between the performers’ actions and the music created. The Machine Orchestra’s 

implementation of this idea is a shared social instrument comprising an array of 

custom built electro-mechanical instruments.  
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4.3 MUSICAL ROBOTICS AND THE KARMETIK 

MACHINE ORCHESTRA 

Since 2009, The Machine Orchestra has been performing as a music ensemble

using a local network, exploring the concept of shared musical robotic 

instruments. The creation of The Machine Orchestra came out of the thesis 

work of Ajay Kapur (A. Kapur 2007) which in part explored the mechanization 

of classical North Indian instruments. This led to a class at CalArts in 2008 

where students designed and built a set of robotic instruments based off the 

technology used in Kapur’s original work (A. Kapur et al. 2011). During this 

class, the author built a musical robot named Tammy, in collaboration with 

Jordan Hochenbaum, Carl Burgin, Steve Rusch, and Jeff Lufkin (see Figure 30). 

Tammy consisted of hand carved marimba bars, metal bells, and a metal string 

resonator (A. Kapur et al. 2011).  

 

Figure 30: View of the marimbas from the musical robot Tammy 

Shortly after this class, the original Machine Orchestra developed as a 

combination of laptop orchestra and musical robotics (Aj. Kapur, Darling, and 

Kapur 2012). Each of the musicians in the ensemble connects through a central 
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server, to all the other musicians and to the shared robotic instruments (see 

Figure 28). This configuration allows for the traditional interconnected network 

topologies, as well as configurations where the musicians are unlinked and only 

share musical control over the robotic instruments. Initially, the actuators of the 

drums were divided up during composing, with performers often sharing control 

over the same mechanized instrument. This division of control was utilized in a 

composition called Mechanique, where members of the ensemble wove a 

polyrhythmic texture using the robotic drums.  As many as three or four players 

could be sharing the same robotic instrument during certain section of the piece.  

As The Machine Orchestra evolved over the years, several new modes of control 

were explored. One notable approach involved using research from the previous 

chapter to write an algorithmic drum sequence for the robots. At the appropriate 

section of the song, the robots took a “solo” which increased in in intensity until 

suddenly changing back to shared control at the following section. The solo was 

not pre-programmed, and instead was an algorithm that allowed the robots to 

increase their playing intensity with the human performers during the specific 

section. This system represents an effort to integrate the ideas from Chapter 3 

into networked music ensembles. 

Lastly, the use of shared robotic instruments in The Machine Orchestra has 

provided a means to realize embodied performance. The physical actuators of 

the musical robotics act as a bridge between action and sound. Although the 

mappings may still remain complex and diffuse, the audience has responded 

positively to the physical movements of the robots when compared to a 

performance using computers only. This may be attributed to enculturation of 

the audience, with the physical robots providing a link between the physicality of 

an acoustic ensemble and the distributed mappings of a computer only 

ensemble. Additionally, from a performance perspective, the spatialization of the 

robotic instruments, and shared control over them leads to an ensemble 

experience that is uniquely different from performing with computers alone. 
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4.4 COMPOSITIONS AND PERFORMANCES 

The following section presents several concerts that the author performed in 

over the course of this thesis, and illustrates how members of The Machine 

Orchestra: 

 Compose and perform using the musical robotics as a shared social 

instrument. 

 Embody and communicate musical interactions to the audience via the 

use of custom musical controllers and the musical robotics. 

 Perform in multiple interaction contexts. 

These concerts were performed with several different configurations of The 

Machine Orchestra, and as such provided an opportunity to experience 

networked ensembles of various sizes. Additionally, the musicians of The 

Machine Orchestra come from diverse musical backgrounds. These factors 

created the opportunity to learn, compare, and contrast performing both solo 

computer music, and within networked ensembles. A survey of the musicians 

involved in the following concerts is discussed in Appendix C, and looks at some 

of their thoughts and ideas regarding solo live computer music versus networked 

computer music ensembles.  

4.4.1 JANUARY 27, 2010 REDCAT - THE MACHINE 

ORCHESTRA  

The 2010 REDCAT show represented the premier of the full KarmetiK 

Machine Orchestra ensemble, comprising of Ajay Kapur, Perry Cook, Curtis 

Bahn, Jordan Hochenbaum, Jim Murphy, Carl Burgin, Maeson Wiley, Dimitri 

Diakopolous, and the author. This production represents a fusion of networked 

computer music, musical robotics, and world music; allowing for solo and group 

improvisation, as well as performance using a shared robotic instrument. This 

concert also presented the opportunity to test network MIDI clock sync for 
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more than two performers, providing an opportunity to compose rhythmically 

based music with the parts distributed among the ensemble (see Figure 28). 

 Figure 31: The Machine Orchestra at REDCAT 2010 

4.4.1.1 COMPOSITIONS 

The concert consisted of a number of pieces, and was made of three main 

sections. The first part of the concert consisted of the networked computer 

ensemble and the musical robotics; this was followed by a performance with the 

Machine Orchestra and the renowned classical north Indian musician Aashish 

Kahn; lastly, The Machine Orchestra ensemble left the stage and a piece by a 

Gamelan ensemble with a robotic Reyong was performed. 

The first piece to have the entire ensemble use the musical robotics was called 

Mechanique (briefly described in section 4.3). Mechanique explored the idea of 

the shared social instrument by creating a many-to-many relationship between 

the performers and the robotic instruments. Musicians were not assigned to a 

single robotic instrument, but rather each musician was assigned several 

actuators across multiple robots; as a result, the network afforded the musicians 

the ability to perform simultaneously on all of the physically separated robotic 

instruments. This is a unique feature of working with the shared social 
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instrument that would be difficult to achieve for traditional acoustic ensembles. 

The ability to divide a single musical instrument across multiple performers 

enables complex musical interactions, e.g., each performer plays a simple rhythm 

on their controller, which are then summed together at the robot to create 

complex interlocking beats. This idea is similar to styles of Indonesian music, 

where instruments in the gamelan such as the Reyong are situated amongst 2-4 

players in order to achieve extremely fast polyrhythm.  

Although Mechanique is an improvisatory piece that encourages performer 

spontaneity (A. Kapur et al. 2011), there is a higher-level structure dictating when 

musicians enter the piece, as well as the dynamics. Mechanique begins by 

sparsely introducing the various robotic instruments, and then growing denser as 

the ensemble begins to play more of the actuators. The piece gradually 

crescendos until the performers all simultaneously play a final abrupt note. 

Additionally, the physically separated, percussive robotic instruments are given a 

sense of spatial coherency using instrumental drones and synthesized textures 

provided by several of the performers. These ideas are central in providing the 

piece with a simple core against which the complex robotic improvisations can 

contrast. 

A key goal of Mechanique was to bring in the robotics slowly, thereby 

introducing the audience to the robotic instruments and the performer's various 

custom interfaces and controllers. This process allowed the audience to identify 

individual performer’s actions with the physical sound producing actuators of the 

robots, and in doing so, reinforced the potential for embodiment represented by 

the robotic instruments. Additionally, the piece was highly rhythmic and 

improvisatory in nature, requiring accurate timing and sync between the 

musicians and robotic instruments. This timing allowed for both pre-composed 

rhythms, while also providing the opportunity for more improvisational 

explorations. Syncing computers to a master MIDI clock allowed for triggered 

MIDI sequences to be in rhythmic time with the rest of the ensemble. These 

sequences were controlled through various interfaces such as the Arduinome 

(Vallis and Kapur 2011), the Helio (Murphy, Kapur, and Burgin 2010), and the 
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Multi-Laser Gestural Interface (MLGI) (Wiley and Kapur 2009) which provide 

visual feedback to the audience through physical interaction and LEDs. At the 

same time that these sequences were being triggered, it was also possible to 

manually play individual actuators on the robots. This was achieved by mapping 

the controllers to both sequences, and individual actuators. 

The second section of the concert consisted of the pieces Sitka, Moksha, and 

Twilight. Although all performers were locked to a synchronized clock, in these 

three pieces they had the ability to move freely through the arrangement by 

launching different groupings of loops. This is similar to Terry Riley’s In C 

(1964) in that the loops can be thought of as cells that represent different 

sections of the song. In a similar manner to Barbosa’s description of non-

improvisational music (Barbosa 2003), the pre-composed pieces dictated what 

grouping of loops all performers should be playing at a given point in the piece, 

but there remained the flexibility to vary or manipulate the arrangement by 

moving within the small group of currently available loops.  

The main ensemble was split into three distinct groups: group A performed 

harmonic and melodic material; group B added more timbre and gesture based 

sound material to the pieces; Group C was responsible for all the drum and 

percussion parts within the pieces, providing these elements while performing in 

several different interaction contexts. These contexts consisted of a combination 

of audio loops sent to the speakers, MIDI loops sent to the robots, manipulation 

of the audio material through custom Reaktor software, and note for note 

performance of samples and/or the robotic instruments. Much of the percussion 

material composed for the piece was polyrhythmic, with the perceived groove of 

these parts being highly dependent on the synchronous timing between two of 

the performers. This proved challenging as the network seemed to incur clock 

jitter, smearing the timing relationship between the rhythmic parts.  

Lastly, control over the robots was split between several musicians. These 

musicians were able to send pre-recorded sequences to the robots, while also 

having note-level control over individual actuators. This would be similar to a 
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player piano having two or three people playing along with the automated paper 

score. Additionally, the individual note-level control over the robots allowed for 

a single robot to be used for call and response sections between musicians in the 

ensemble. This interaction and performance used the same musical interfaces as 

Mechanique, but utilized completely different mappings. This flexibility in 

interface mapping is one of the main evolutions of the performer composer, 

allowing a physical interface to become virtually any instrument. 

4.4.1.2 OUTCOMES 

This concert was the debut of The Machine Orchestra, and represented the first 

public opportunity to perform in a networked ensemble using interfaces such as 

the Arduinome, the Helio, the Multi-Laser Gestural Interface (MLGI), and 

musical robotics. The concert resulted in a unique opportunity to improvise as a 

solo live computer musician, using all of the interaction contexts previously 

described in this thesis, while also engaging in musical dialogues between 

computer musicians. Interestingly, when these musical dialogues were between 

the author and another performer, the improvisation felt like two distinct voices; 

however, when more then three members of the ensemble simultaneously 

performed on the shared robotic instruments, there was a very different 

connection to the musical dialogues. The improvisational ideas became less 

driven by call and response interaction, and increasingly driven by a desire to 

become a part of a texture or system. This appeared to be a product of the 

network having the potential to merge multiple musicians’ musical intent into a 

single instrument, relocating the actuations of the performers to a single physical 

location. 

4.4.2 AUGUST 14, 2010 – KARMETIK COLLECTIVE  

A Machine Orchestra ensemble, consisting of Ajay Kapur, Curtis Bahn, Jordan 

Hochenbaum, Jim Murphy, and the author, performed in Auckland New 

Zealand on the 14th of August 2010. The piece Tarana was composed for the 

Auckland performance, and is notable for its use of the algorithmic 

improvisation section described in section 4.3. Composed in a similar manner to 
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Sitka Chant, Moksha, and Twilight, the piece was a combination of pre-

composed loops and improvised material.  

4.4.2.1 COMPOSITION  

The performance opened with an alap, a traditional North Indian classical 

improvisation that introduces the melodic ideas used in the composition. As this 

introduction came to an end, all the performers and robots simultaneously 

entered the piece. This entrance marked the start of the common clock shared 

between the robots and the human performers, and set up the piece to move 

towards an improvised middle section. Once this middle section was reached, 

the robots were signaled to begin a generative improvisation program, with the 

human musicians responding to the robot’s performance. The generative drum 

section was incorporated directly into a ChucK (Wang and Cook 2003) based 

client server application. At the appropriate moment in the score, a message 

from an Arduinome interface was sent to the server and activated the generative 

process. The section began with the robots playing sparsely, and then slowly 

crescendoed to a flurry of rhythmic activity on the drums. Finally at the end of 

the improvised section, all performers and robots simultaneously move back to 

the main theme introduced in the alap, effectively ending the robots’ autonomy.  

Tarana is unique among the Machine Orchestra compositions in that it contains 

a role reversal between the human musicians and the robotic instruments. For 

one small section of the music, the robots are leading the performance, with the 

humans responding to the musical ideas being generated. This creates an 

interesting example of computer musicians performing in multiple interaction 

contexts, where they are not only playing individual notes, and effecting the 

sound from their computers, but also simultaneously responding to semi-

autonomous musical robotics.  

Additionally, several of the pieces from the original 2010 REDCAT production 

were performed in this concert, but required new arrangements in order to work 

with the smaller ensemble. This process of creating new arrangements began 

with a discussion regarding the new roles each of the musicians would play. This 
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discussion resulted in an increase in parts for each musician, completely re-

imagining the original compositions for performance by the smaller ensemble. 

This re-imagining of the works is interesting in that it illustrated the versatility 

and flexibility of the computer as an instrument. 

4.4.2.2 OUTCOMES 

This concert explored the use of generative approaches for controlling robotic 

percussion. The system provided the opportunity for control of the robots on a 

score-level, while simultaneously allowing them to generate new musical material 

on top of which the ensemble could improvise. Tarana represents a clear 

example of the unique interactions that live computer music affords, and the way 

in which this leads to an evolution of the performer composer. This interaction 

can be seen as a simpler version of the systems described in Chapter 3. While it 

was interesting to respond to the generative material played by the robots, it is 

my hope that future development of interactive musical agents will lead to a full 

two way musical dialogue between human and machine. 

4.4.3 APRIL 12, 2012 REDCAT – SAMSARA THE MACHINE 

ORCHESTRA 

The Samsara concert is the biggest Machine Orchestra production to date. 

Bringing together music, technology, animation, production, and dance. The 

development and production was the work of Ajay Kapur, Michael Darling, and 

Raakhi Kapur (Aj. Kapur, Darling, and Kapur 2012). The bulk of the concert 

consisted of several networked ensemble pieces that heavily utilized the shared 

social robotic instruments, and aimed to build off of ideas from previous 

Machine Orchestra perfromances. In addition to these pieces were works by 

visiting artists Trimpin, Curtis Bahn, Tomie Hahn, and Jeff Aaron Bryant.  



Chapter 4 - The art of communication: Shared instruments and networked music ensembles 

 

85 

 

Figure 32: The Machine Orchestra performing Samsara 2012 

4.4.3.1 COMPOSITION  

Seminya was the opening piece, and was a reconceptualization of contemporary 

Bhangra music and Bollywood themes for the Machine Orchestra. This piece 

was composed in a similar style to earlier machine orchestra pieces. The pre-

composed loops were used to move through a loosely defined arrangement, 

while the musical robotics and computer generated sounds were improvised over 

top. For the closing of the concert, the pre-composed material for Seminya was 

used as source material for a new completely improvised piece. This resulted in 

each musician selecting several loops from the original composition and then 

creating an entirely new piece of music by modifying and manipulating the 

source material in real time. Similar to re-mixing and sampling techniques, the 

manipulation of the original musical material became the instrument the 

ensemble played. In this way, prerecorded material can be thought of as the 

written score, and manipulating that material can be thought of as the 

improvisational space, becoming an instrument in its own right. The Seminya 

reprise is an important piece for The Machine Orchestra as it illustrates how a 

networked ensemble can have musical dialogues as acoustic ensembles do, but 

can also leverage different interaction contexts to create entirely new 

interpretations of the musical material.  
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4.4.3.2 OUTCOMES 

This concert represents a fusion of the ideas presented in this thesis. While many 

of the pieces used all three interaction contexts–with concepts and ideas learned 

from previous performances of The Machine Orchestra–the final piece illustrates 

these in a special way. The aim of this final piece was to take the material used in 

the opening number of Samsara, and then improvise an entirely new piece of 

music. This could be described as a reprise as it brought back the musical ideas at 

the opening of the concert, but it also represents a uniquely computer music 

approach to this process. Several rehearsals were spent without any fixed 

compositional requirements or ideas, and instead focused on improvising and 

reworking the material to find new sounds and ideas. While many forms of live 

music reinterpret songs in this way, The Machine Orchestra’s approach actually 

built the new interpretation using the audio from the original as the instrument. 

The result of this is that the reprise is actually built from the opening piece; not 

just the musical ideas, but also the musical material itself. 

The reprise stands out as a moment where all three interaction contexts were in 

use by the members of the Machine Orchestra. Each musician took the original 

material as their starting point and played new notes (Note-Level), processed the 

audio to create entirely new sounds (Effect-Level), and rearranged the scored 

material down to the very beat level (Score-Level). The result of these 

interactions allowed the ensemble to perform the original composition as the 

instrument itself. 

4.5 DISCUSSION 

This chapter has presented a historical overview of networked music ensembles, 

and their exploration of interconnectivity. The field of networked music has lead 

to new forms of live performance that include the use of social configurations 

enabling music through games, and algorithms utilizing the multiple streams of 

input data coming across a network. The Machine Orchestra was presented as a 

contemporary example of networked music ensembles, and the development of 



Chapter 4 - The art of communication: Shared instruments and networked music ensembles 

 

87 

a shared social instrument in the form of musical robotics was presented as a 

new contribution to the field. The use of this shared instrument, and the types of 

interactions within the ensemble were presented in the description of several 

pieces performed by The Machine Orchestra. These pieces illustrated how pre 

composed music, with the parts being distributed among the ensemble, enables 

musicians to improvise with greater detail and focus then is possible as solo 

performers. Additionally, the pieces also showed how these larger ensembles can 

help issues of embodiment, by using the multiple performers to bridge the gap 

between the audience’s perceptions of the performer actions, and the actual 

sounds being produced. Lastly, the use of shared social instruments leverages the 

networks ability to share information between computers. This allows the 

musical robotics to act as a physical point at which all members of the ensemble 

can perform and control musical expression. The use and interaction of this 

shared instruments creates new modes of interaction within an ensemble, and 

opens new worlds of performance. 





 

89 

Chapter 5  

CONCLUSION 
 

“No people could live without first valuing; if a people will maintain itself, 

however, it must not value as its neighbour valueth. 

Much that passed for good with one people was regarded with scorn and 

contempt by another: thus I found it. Much found I here called bad, which 

was there decked with purple honours.” 

—Friedrich Wilhelm Nietzsche (1896) 

 

This chapter presents a summary of the ideas explored in this thesis, tying them 

together to make the case that live computer music is an evolution of the 

performer composer. Additionally, this chapter presents the main contributions 

from the previous three chapters. Finally, an overview is presented of my 

philosophy of live performance that has developed as a result of this research, 

and the future work it will lead to. 

1 SUMMARY 

Much of this thesis has presented interaction contexts (see section 1.1) as the 

basis for understanding how live computer music has lead to an evolution of the 

performer composer. These interaction contexts describe different modes of 

performance; including note level, effect level, and score level interactions. Live 

computer music’s ability to automate tasks has now enabled musicians to 

simultaneously perform in more than one context. This simultaneous use of 

interaction contexts amounts to the propagation of the performers will, 

stemming from a single physical action, and disseminating through a system into 
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multiple musical events. As the move from monophony to polyphony was an 

evolution of melodic composition, so is the move from acoustic performance to 

computer-mediated performance an evolution of the performer composer. This 

thesis explores this evolution in three key areas of live computer music: interface 

design, interactive musical systems, and networked computer music ensembles.  

 
 

Figure 33: The Monome can be both highly programmable or immediately usable 

This thesis has shown how online communities have impacted the process of 

designing new interfaces for musical expression, providing technical resources, 

musical software, and iteratively modifying devices to allow for new mappings 

between the hardware and software. The development and use of these 

interfaces speaks to the decoupling of physical action and sound actuation. Even 

if a computer musician does not design their own custom controller, they still 

map the physical device to virtual controls inside the computer. These mappings 

allow a single device to potentially control an orchestra of virtual instruments. 

This process of mapping makes every computer musician a digital luthier, both 

crafting the instrument and performing with it. This represents an evolution of 

the performer composer, as virtuosic computer musicians now master both 

performing and mapping of their physical interfaces.  

However, there is a downside to this highly customizable approach (Cook 2001). 

The increase in modularity requires an initial investment in order to set up the 
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desired functionality, such as learning the technical languages and skills required 

to understand the system behind the controller. This allows the user to create a 

custom interface but also creates an initial decrease in “plug-n-play” productivity; 

however, this decrease in productivity can be mitigated to some extent by access 

to information and experts within online communities such as Monome and 

Arduino. In contrast, fixed functionality provides immediate productivity but 

often prevents the interface from communicating in exactly the way the user 

desires, thereby imposing a particular interaction between the musician and the 

sound generation. Customization and immediate usability can be thought of as 

extremities of a spectrum (See Figure 33). At one end can be placed sensors, 

microcontrollers and software development, while the opposite end holds 

volume controls, panning knobs, filter knobs or any input or output device 

permanently assigned to only a single task. Interfaces such as the Monome 

effectively sit over a very large area of this spectrum, allowing for both complete 

hardware customization and immediate use. This broad usage is due to several 

factors stemming from an online community-based design approach, including 

open-source hardware/software, and a strong community involvement in the 

device’s application development.  

While interfaces enable the physical interaction between musician and computer, 

the systems to which those interfaces are mapped define the complexity of 

sound generation. Basic mappings between an actuator and a single sound 

provides note level interaction, however more complex mappings are possible 

through the use of interactive musical systems. These systems take single actions 

from performers, and use this information to contextualize the output of a 

virtual performer. These virtual performers are trained up during rehearsals, and 

emulate the relationship between the human musician and other members of an 

ensemble. In doing so, the system allows for a computer musician to 

simultaneously perform in the note level context, while influencing the output of 

other virtual performers on a score level context, in essence influencing an entire 

ensemble as a conductor. This ability for a computer musician to have direct 

focus on a one aspect of a musical performance, while simultaneously 
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influencing semi-autonomous systems, contributes further to the evolution of 

the performer composer. 

While the development and use of interactive musical systems may help to 

distribute the performer’s will, allowing a musician to simultaneously perform in 

multiple interaction contexts, there are potential challenges. To start, the 

complexity of the interaction may become difficult to manage during a 

performance, with the musician becoming unsure of a consistent response from 

their actions. However, this can be mitigated in part by adding score level 

controls into a system to ensure that large compositional events are 

synchronized. Even with this sort of functionality implemented into the system, 

a performer must still be careful to insure that the increased diffusion of a 

musician’s actions do not lead to an unwanted increase in the audience’s 

perception of a disembodied performance. Combining these systems with 

networked computer music ensembles provides an opportunity to balance the 

perceived embodied and disembodied aspects of live computer music. 

Networked computer music ensembles enable new social modes of performance, 

as well as opportunities for building on top of the ways in which traditional 

ensembles have performed. Computer musicians in these ensembles are capable 

of utilizing the same interaction contexts as solo computer musicians, but must 

design their systems/instruments with different constraints in mind. The solo 

computer musician seeks to expand the expressive potential of their actions by 

automating musical parts, developing complex mapping schemes between 

controls and sound, and implementing interactive systems like those described in 

Chapter 3. Networked computer music however, in part alleviates the need for 

this type of broad control by sharing the parts of a composition among many 

different talented computer musicians. As previously mentioned, this decreases 

the number of simultaneous parts that each musician is responsible for, and 

allows them to focus more on the parts they do have. This increased focus 

potentially leads to more detailed improvisation, and allows for social interaction 

between performers or using shared social instruments such as musical robotics. 

This social interaction between musicians provides an embodied component to 
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the performance, creating an avenue for audiences to connect with the actions of 

the ensemble.  

However, musicians in these types of ensembles have different performance 

considerations then solo computer musicians. Issues such as over-playing 

become a serious concern. For solo computer musicians who are used to 

attempting to play all the parts by themselves, stepping back and playing less may 

be a challenge at first, but also presents new opportunities for musical dialogues 

with other computer musicians. These musical dialogues may happen in a similar 

manner to acoustic ensembles, through an exchange of note-level musical ideas, 

or they may happen through new social instruments such as the network itself, 

or musical robotics. This concept of shared social instruments is unique to 

networked music, and provides yet another example of the evolution of the 

performer composer brought on by live computer music. 

Together, these ideas provide the computer musician with new tools to share 

their musical expression using real, robotic, and synthetic ensembles. The 

emergence of online communities has created a space to share, modify, and 

develop new interfaces for musical expression. Computer musicians map these 

interfaces in individual ways, allowing a single device to control note-level, 

effects-level, and score-level interaction contexts. This control can be further 

extended by the creation of interactive musical systems and autonomous agents. 

These systems allow a single physical action from the musician to control 

multiple independent lines of musical performance. Lastly, these tools can be 

integrated in networked musical ensembles where this performance data can be 

shared between performers, creating social instruments. Such shared social 

instruments can even take the form of musical robotics, providing a physical 

instrument that is played by the entire ensemble. These tools extend the ability of 

a single performer composer beyond the limitations of physical agency, and 

instead allow for the musical intentions of a performer to be realized. This 

distribution of musical will into a system represents the evolution of the 

performer composer. 
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5.1.2 IMPROVISATION IN LIVE COMPUTER MUSIC 

This thesis has made the case that live computer music represents an evolution 

of the performer composer, and has also presented my research into developing 

tools to further enable this evolution. How then are these tools to be used in an 

improvisational context? This section will present a general description of several 

approaches to improvisation, and how these use the different interaction 

contexts, and differ from acoustic music. These approaches are often combined 

into hybrid versions or variations during performances, and so do not represent 

an exhaustive taxonomy. 

One approach is to start from nothing, and then create layered loops by 

performing all the notes or sounds on each layer. This has the benefit of allowing 

the audience to correlate the creation of each layer to specific sounds within the 

composition. Additionally, the performer is usually only modifying or playing a 

single sound per layer, making the connection between physical action and 

sound more obvious to the audience. Improvising in this way constitutes using 

the note-level context to play or perform the layers, possibly using the sound 

processing-level context if the layers are affected, and lastly using the score-level 

context to keep all the loops going, muting them or creating new ones. While 

this approach does satisfy the audience’s desire for an embodied performance, it 

can also lead to compositionally limiting situations. By requiring all the music to 

be made one layer at a time, dramatic vertical shifts in composition, where 

multiple layers simultaneously change, can be difficult to achieve. Muting of 

layers is certainly possible, but dramatic shifts in harmonic content can be 

difficult without first building those layers as well. 

A second approach is the use of musical material that is prepared prior to the 

performance. This material can be manipulated, effected, and re-arranged in real-

time during a performance, and can be comprised of audio loops or MIDI loops. 

This approach allows for score-level control of the music as a performer moves 

from one loop to another, sound processing-level control if the audio is 

processed or effected, and not-level control if the musical material re-arranged 
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enough as to be perceived as completely new musical ideas. An example of this 

might be the chopping and re-arranging of a melodic line, where the result is an 

entirely new melody. This essentially uses the loops as an instrument, with slices 

of the sound equating to the notes. While his approach has the benefit of 

allowing major shifts in the composition, as the previously prepared ideas make 

moving from one piece of musical material to another feasible, the use of 

prepared material means that the audience does not see the musician play every 

note. This can potentially dilute the audience’s sense of embodiment, and make 

understanding and connecting to the performance more difficult. 

Finally, a third approach is to improvise with the computer as a system or circuit. 

These systems are semi-autonomous, and create the opportunity, in varying 

degrees, for a musical dialogue between the human musician and the machine. 

This approach may afford score-level control by allowing the musician explicit 

control over the system or algorithmic process, essentially enabling them to force 

the system into a different state. Sound processing-level control of the audio is 

possible through processing or affecting either the output of the system, or the 

input to the system. Lastly, the note-level context is dependent on the design of 

the system. Strictly inputting to a semi-autonomous system or algorithm 

amounts to influence, and as such not explicit control; however, systems such as 

the interactive musical agents described in this thesis may be only listening to the 

notes being played into another instrument, and then reacting to that 

information. This approach to improvising during performance can prove to be 

the most difficult for audiences to follow as an action from the human musician 

may cause many different reactions from the system. Furthermore, the level of 

influence imparted on the system may not be easy to discern. 

The three approaches described here all leverage the computers ability to 

automate tasks in the background while a musician’s focus is on something else. 

Whether it is looping layers of audio, providing random access to prerecorded 

material, or running a complex algorithmic system, computers enable the 

musician to extend their control over a live composition. 
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5.2 CONTRIBUTIONS 

The following section provides a summary of the work and presents the main 

contributions of the thesis. These contributions are as follows: 

1. The description of online community driven iterative interface design, 

and several new interfaces resulting from this process. This approach to 

interface design is shown to help drive innovation, and create new tools 

for the computer musician.  

2. The description of a search algorithm for modeling multiple streams of 

continuous control data from two performers. The algorithm was 

implemented as a plugin for use inside modern digital audio 

workstations. 

3. The description of a shared social robotic instrument.  

5.2.1 ONLINE COMMUNITY BASED ITERATIVE DESIGN AND 

THE CHRONOME 

The diffusion of action afford by live computer music is initially enabled through 

the use of a physical interface. As the mappings between physical actions and 

sound production can be unique to each performer, developing interfaces 

without any predefined relationship between physical actuator and sound 

generator is crucial to allowing live computer musicians to create custom 

complex performance systems. Information regarding these interfaces has 

previously been shared at academic or research institutes and communities; 

however, the advent of online communities has also allowed the broader public 

to participate in the development of these devices.  A small number of 

community members modify and add new functionality to existing interfaces, 

and these modifications then become integrated into the use of the larger 

community over time. Once integrated, the ability to discuss and share 

information about the way in which these interfaces are being used helps to drive 

innovation and spur new ideas. 
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This thesis also presented the Arduinome and the Chronome as examples of 

interfaces developed by the author through interaction with the online Monome 

community. The Arduinome was a collaborative project that ported the 

Monome to the Arduino platform, increasing the potential for modifications and 

development. The Chronome built off this work, adding RGB LEDs and 

pressure sensitivity to the original design. All the technical information regarding 

these two interfaces has been shared with the online community, and has led to 

modifications and re-imaginings of the musical uses of these interfaces. 

5.2.2 S2MP AND AN INTERACTIVE SYSTEM FOR 

CONTINUOUS CONTROL 

This thesis presented a novel approach to creating an interactive system for 

modeling continuous control data, based off work using a search algorithm 

called S2MP (Martin et al. 2011). The algorithm uses a weighting between 

similarity of events, and similarity of sequence, and allows the system to match 

against new sequences not seen in the training database.  

This system was implemented as a plugin, and was shown to be able to train 

through rehearsals, and reproduce continuous control data in the style of one 

performer given an input stream from another. The thesis also presented an 

approach for simultaneously sampling multiple sources of continuous control 

data from two different performers. This approach collapses a total of 128 

controller inputs into a single 1-dimensional vector, and only stores events as 

they change, allowing for a sparse collection. 

This system represents a step towards creating virtual versions of a single 

performer, with the goal being to eventually allow computer musicians to control 

and influence autonomous computer generated ensembles. 
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5.2.3 SHARED SOCIAL MUSICAL ROBOTICS 

This thesis also presented the concept of a shared social robotic instrument. 

These instruments are unique in that a network of computer musicians are 

virtually linked through a shared physical instrument. The shared use of a 

physical instrument places constraints on what sounds can be simultaneously 

played by the ensemble, provides a physical location for group musical 

interaction, and creates a point of physical action that an audience may associate 

with increased embodied performance. Most interestingly, the shared social 

robotic instruments provide a new space in which to explore group musical 

performance and improvisation. 

5.3 FUTURE WORK AND PHILOSOPHY 

This thesis has presented tools and ideas that have lead to an evolution of the 

performer composer. These tools are now being used to create new forms of 

music, new interactions between performers and their instruments, and new 

relationships between musicians and the audience. Future work will focus on 

taking these ideas, as well as the new modes of interaction afforded by them, and 

working towards integrating it all into a new live performance aesthetic. One that 

is based not just on physical interaction, but also on the distribution of the 

musician’s intent. Future areas of research will: 

 Explore ways in which the knowledge and work shared in online 

communities can be integrated or leveraged in teaching interface design 

to students.  

 Look at leveraging machine learning systems such as the Wekinator 

(Fiebrink 2011) to rapidly prototype interactive systems and qualitatively 

compare different approaches for use in performance, and examine the 

relationship between performer, agent, and audience.  
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 Explore the potential to develop robotic instruments that are designed to 

facilitate shared control, possibly creating mechanisms with behaviors 

that only manifest through shared control.  

5.3.1 BRIDGING THE GAP BETWEEN PERFORMER AND 

AUDIENCE 

Whether performing as a solo computer musician, or within a networked 

ensemble, the relationship between the musician and the audience is complex. A 

great strength of live computer music is the ability for each performer to create 

unique and individual mappings between their physical interfaces, and the 

systems that generate the sound; however, this individualistic approach to 

interacting with the computer as an instrument can present a challenge for 

audiences. That challenge is one of understanding the interaction and intents of 

the performer. What sounds are the results of the musician’s actions? How much 

of the music is generated during the performance? How much of the music is 

prepared before hand? What is the level of skill involved to perform the music? 

What is an audience to expect from live computer music? These questions are all 

central to understanding live computer music and the musical space in which it is 

growing and maturing. 

I have found, in my own performances that a small dilution of an embodied 

note-level connection, can lead to confusion from certain members of the 

audience, while other audience members are more comfortable with the plurality 

of roles a live computer musician plays. So how then are computer musicians to 

navigate these interaction contexts while performing live? John Croft writes: 

“It is a question of the specificity of the relation: if many perceptibly 

different inputs generate outputs with no pertinent differences (in other 

words, if the aesthetically pertinent mapping is many to one), then the 

liveness is merely procedural and not aesthetic – pre-recorded sounds would 

do the job as well or better. At the other extreme, if the mapping is too 

explicit, too transparently one-to-one, the result is not only tedious but may 

have the effect of shifting the procedural into the foreground, turning the 
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piece into a lamentable ‘showcase’ of the technology. (‘Look – I do this, and 

the computer does that!’)” (Croft 2007)  

The three interaction contexts described in this thesis span the two extremes 

described by Croft: the many-to-one, and the one-to-one. The evolution of the 

performer composer represents the ability to perform across this continuum, 

using the performer’s physical actions to disseminate their musical intent. This 

diffusion of physical action can be difficult for audiences to follow, and can lead 

to confusion or the audience feeling as though the performance is disembodied. 

It has been suggested that an audience’s desire for an embodied performance 

may be a form of nostalgia (Croft 2007; d’ Escriván 2006), and that as audiences’ 

stereotypes and performance expectations mature and grow, live computer music 

may see less of this type of criticism.  

This process of maturation is similar to the ideas of decentering, technological 

mediation, and recentering presented by Kockelkoren (Kockelkoren 2003). Live 

computer music’s technology has an initial decentering effect as it alters the roles 

traditionally possible in live music. Technological mediation is where live 

computer music currently is, and is described by Kockelkoren as, “the cultural 

process in which technology extends our ability to perceive, redistributes social 

relations, and thereby elicits new visual language and conferral of meanings.”  

Once audiences undergo this process they will reach a recentering, and a new 

understanding of how a performer composer is able to play live music. This 

process of technological mediation is not solely the responsibility of the audience 

alone. The musicians must also develop tools and methods for bridging the gap 

between performers and the audience, and in doing so find a space in which live 

computer music may flourish.  

So can the actions of live computer music be understood by using the same 

values and aesthetics as live acoustic music? To be sure, the two share many 

similarities: they both strive to present interesting musical ideas to an audience; 

they both strive to allow a musician to express their musical ideas through real 

time interaction with a sound producing instrument; they both create an 

interaction between the audience and the performers; as well as many other 
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commonalities between the two. The similarities presented here are very general 

and broad, but nonetheless illustrate that live computer music is certainly related 

to live acoustic music, and as such many of the criteria by which a live acoustic 

performance is judged will also apply to judging computer music. However, the 

subtle and important differences between live acoustic music and live computer 

music are great enough to warrant a separate, or at least derivative, set of 

aesthetics.  

The computer musician is different from their acoustic counterpart in that they 

can turn their physical action into a multitude of simultaneous actions that carry 

the performers intent rather then merely the physical energy. This intent can be 

used to control instruments that are themselves systems, producing emergent 

behavior and semi-autonomous music. These types of distributed interactions 

often happen inside the computers, and are not easily perceivable by the 

audience. Without the perceived physical agency of the human musician, 

audiences may lose faith in the authenticity of the performance.  

The use of the word faith is important, because the question of critically 

understanding live computer music can be framed as a question of faith. In a live 

acoustic music performance, an audience member may not know how to play 

any of the instruments they are seeing on stage, but they assume that what they 

see and hear is authentic, i.e., they have faith that the performance is actually 

happening as they perceive it. Conversely, the faith that audiences have in the 

authenticity of performing musicians is challenged when an artist is caught lip-

syncing or faking a performance. Until the moment the backing track skips, or 

the wrong music plays, the audience believes the performance to be real. This 

illustrates that although the audience believes that the physical actions they see 

are crucial parts of the validation of the musical performance, they take much 

more of that connection on faith then would at first seem obvious.  

In light of this unspoken faithful pact between audience and musician, it can 

now be understood why applying the aesthetics of live acoustic music to live 

computer music will not work. The faith that an audience has in an acoustic 
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performance is predicated on the physical actions of the musicians creating clear 

relationships with the sounds being heard. The evolution of the performer 

composer afforded by live computer music enables the diffusion of physical 

action into many separate and not necessarily related musical events.  This then 

would seem to work against the reinforcement of the current faith that an 

audience accustomed to acoustic music would have.  

One solution is to attempt to address this issue by embodying the diffusion of 

the musician’s intent. In essence manifesting the multiple virtual actions into 

physical forms that are understandable and relatable to an audience. This is good 

start, and does help to bridge the computer musician and the audience, but it 

also places the responsibility on the performer, and if taken too far may subvert 

musical and artistic intents in order to provide a technological demonstration of 

the link between action and sound. I argue that in addition to this embodied 

approach that a new audience will emerge, willing to take a leap of faith and 

embrace both the musician’s physical actions and intent. An audience that 

understands this marks the coming of age of a new musicianship, comprised of 

both performers and audience members that are growing increasingly familiar 

with the agency of computer music. 

5.3.2 FINAL THOUGHTS 

This thesis has argued that live computer music represents an evolution of the 

performer composer; empowered by the ability of the computer to distribute the 

musical will of the performer into a system. This distribution of intent extends 

the existing mapping between physical action and sound generation, and allows a 

single performer to simultaneously control multiple sonic events, across several 

different instruments.  

This shift in mappings, from the physical to the virtual, parallels many of the 

current shifts happening in our world today. Just as the interaction with a 

physical instrument can now be connected to a network of virtual instruments, 

so does our interaction with people shift from the physical world into a 

distributed network of virtual social connections. Social networking, global video 
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chats, and even forms of entertainment such as online role-playing games like 

World of Warcraft 26  or second life, 27  all point to a disembodied set of 

interactions. We may very well be on the verge of a shift in our perception of 

what constitutes reality, with an acceptance of purely abstracted interactions. If 

this is true, then live computer music can be seen as part of this abstracted 

connection to reality. 

It is my hope that this evolution is seen as an expansion of what is possible for 

musicians, and not as a division between them. This chapter begins with a quote 

that describes the process of creating values in order to define our identities, and 

in a way, that is what this thesis has done. Live computer music has a different 

set of values from acoustic music, and therefore is a different and separate entity. 

Ultimately, in order to understand live computer music, a new set of values must 

be used. However, the irony in Nietzsche’s quote should not be lost. That irony 

is that the very values we need to define us are merely fabrications created by us. 

The values presented in this thesis define and create a shape and description of 

what live computer music can be, but those same values can soon become walls 

that create an “other” with different musics, and at their worst serve to exclude 

new ideas. In light of this, it is my hope that the evolution of the performer 

composer, mediated through the use of the computer, is seen as an evolution in 

live music that expands what is possible to all performer composers. With this in 

mind, I am excited to hear and see what interactions the musicians of tomorrow 

will explore. 

                                                
26 World of Warcraft - http://us.battle.net/wow/en/ 

27 Second Life - http://secondlife.com/ 
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Appendix B  

CHRONOME TECHNICAL FILES 
The following section contains the technical files shared online regarding 

building a Chronome. More detailed information can be found online at: 

 http://flipmu.com/work/chronome 

1 MAIN PCB AND SCHEMATIC 
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2 ARDUINO MEGA SHIELD PCB AND SCHEMATIC 
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3 SERIAL PROTOCOL 

chronome serial protocol  
owen vallis – contact@flipmu.com  
//based off of the monome serial protocol series 256/128/64  
//by brian crabtree 
  
revision: 004 
 
from device:   
 
message id: (1) pressure  
bytes:  3  
format:  iiii.xxx .yyy..dd dddddddd 
   i (message id) = 1  
   x (x value) = 0-7 (three bits)  
   y (y value) = 0-7 (three bits) 
   d (data value) =  0 – 1024 (ten bits) 
  
decode:  id match: byte 0 & 0xf0 == 16  
   x: byte 0 & 0x0f  
   y: byte 1 >> 4 
     d: uint16_t val = ((byte 1 & 0x0f) << 8) | byte 2 
 
 
to device:   
 
message id: (1) rgb_led_on  
bytes:  2  
format:  1...iiii 0xxx0yyy     
   i (message id) = 1     
   x (x value) = 0-7 (three bits)     
   y (y value) = 0-7 (three bits)  
encode:  byte 0 = id | 0x80 = 129 
    byte 1 = ((x << 4) | y) & 0x7f 
 
 
message id: (2) rgb_led_off  
bytes:  2  
format:  1...iiii xxxxyyyy     
   i (message id) = 2     
   x (x value) = 0-7 (three bits)     
   y (y value) = 0-7 (three bits)  
encode:  byte 0 = id | 0x80  = 130 
    byte 1 = ((x << 4) | y) & 0x7f 
 
 
message id: (3) rgb_led_color  
bytes:  5  
format:  1...iiii 0xxx0yyy 0rrrrrrr 0ggggggg 0bbbbbbb 
    i (message id) = 3  
   x (x value) = 0-7 (three bits) 
    y (y value) = 0-7 (three bits) 
   r (red value) = 0 - 127 (7 bits)  
   g (green value) = 0 - 127 (7 bits) 
   b (blue value) = 0 - 127 (7 bits) 
encode:  byte 0 = id | 0x80  = 131 
   byte 1 = ((x << 4) | y) & 0x7f   
  
   byte 2 = (r & 0x7f)  
   byte 3 = (g & 0x7f) 
   byte 4 = (b & 0x7f) 
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message id: (4) rgb_led_all_state  
bytes:  1  
format:  1..siiii  
    i (message id) = 4 
   s (test state) = 0-1 
encode:  byte 0 = id | 0x80 | (s << 4) = 132 | (s << 4) 
 
 
 
message id: (5) rgb_row  
bytes:  2  
format:  1yyyiiii aaaaaaaa     
   i (message id) = 5     
   y (row to update) = 0-7 (three bits)  
   a (row data 0-7) = 0-255 (eight bits) 
encode:  byte 0 = id | 0x80 | (y << 4) = 133 | (y << 4) 
    byte 1 = a (row data 0-7) 
 
 
 
message id: (6) rgb_col  
bytes:  2  
format:  1xxxiiii aaaaaaaa    
   i (message id) = 6     
   x (col to update) = 0-7 (three bits)   
  
   a (row data 0-7) = 0-255 (eight bits) 
encode:  byte 0 = id | 0x80 | (x << 4) = 134 | (x << 4) 
    byte 1 = a (row data 0-7) 
 
 
 
 

4 FIRMWARE FOR THE ARDUINO MEGA 

/* 
 * "ChronomeFirmware" - Arduino Based RGB Pressure Sensitive  
 * Monome Clone by Owen Vallis 09/23/2010 
 * 
 * -------------------------------------------------------------- 
 * This program is free software; you can redistribute it and/or  
 * modify it under the terms of the GNU General Public License as     
 * published by the Free Software Foundation; either version 2 of  
 * the License, or (at your option) any later version. 
 * 
 * This program is distributed in the hope that it will be  
 * useful, but WITHOUT ANY WARRANTY; without even the implied  
 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR  
 * PURPOSE.  See the GNU General Public License for more details. 
 * -------------------------------------------------------------- 
 * 
 * Parts of this code is based on Matthew T. Pandina's excellent  
 * TLC5940 C Library, with pins updated to work with the Arduino  
 * MEGA. For those portions, he asked that his copyright be added  
 * to the code. 
 * 
 * Copyright 2010 Matthew T. Pandina. All rights reserved. 
 * Redistribution and use in source and binary forms, with or  
 * without modification, are permitted provided that the  
 * following conditions are met: 
 * 
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 * 1. Redistributions of source code must retain the above  
 *    copyright notice, this list of conditions and the following  
 * disclaimer. 
 * 2. Redistributions in binary form must reproduce the above  
 * copyright notice, this list of conditions and the following  
 * disclaimer in the documentation and/or other materials  
 * provided with the distribution. 
 * 
 * Thanks to Brad Hill, Martijn Zwartjes, Jordan Hochenbaum,  
 * Johnny McClymont, Tim Exley, and Jason Edwards for answering  
 * my questions along the way. 
 *  
 * Please DO NOT email monome with technical questions and/or  
 * help regarding this code or clone. They are in NO WAY  
 * responsible or affiliated with this project other than they  
 * were our inspiration and we used many of their methods and  
 * pulled from their code. 
 *  
 * Additionally, while we are availble and willing to help as  
 * much as possible, we too CANNOT be held responsible for  
 * anything you do with this code.  Please feel free to report  
 * any bugs, suggestions or improvements to us as they are all  
 * welcome.  Again, we cannot be held responsible for any damages  
 * or harm caused by the use or misuse of this code or our  
 * instructions.  Thank you for understanding. 
 * 
 * Links: 
 * http://www.flipmu.com - Our website - Click "Chronome Project"  
 * on the Navigation Menu under Work. 
 * www.monome.org - the "original" monome and our inspiration 
 */ 
 
// supports uint8_t and uint16_t 
#include <stdint.h> 
// Definition of interrupt names 
#include <avr/interrupt.h> 
// ISR interrupt service routine 
#include <avr/io.h> 
 
//******************** TLC5940 pin definitions ****************** 
// MEGA PWM PIN 11 
#define GSCLK 11 
#define GSCLK_DDR DDRB 
#define GSCLK_PORT PORTB 
#define GSCLK_PIN PB5 
// MEGA MOSI PIN 51 
#define SIN 51 
#define SIN_DDR DDRB 
#define SIN_PORT PORTB 
#define SIN_PIN PB2 
// MEGA SCK PIN 52 
#define SCLK 52 
#define SCLK_DDR DDRB 
#define SCLK_PORT PORTB 
#define SCLK_PIN PB1 
// MEGA PIN 41  
#define BLANK 41 
#define BLANK_DDR DDRG 
#define BLANK_PORT PORTG 
#define BLANK_PIN PG0 
// MEGA PIN 40 
#define XLAT 40 
#define XLAT_DDR DDRG 
#define XLAT_PORT PORTG 
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#define XLAT_PIN PC1 
// MEGA PIN 39 
#define VPRG 39 
#define VPRG_DDR DDRG 
#define VPRG_PORT PORTG 
#define VPRG_PIN PG2 
// MEGA PIN 22 
#define REDTR 22 
// MEGA PIN 23 
#define GREENTR 23 
// MEGA PIN 24 
#define BLUETR 24 
 
// MEGA PINS 49-42 ROWS are on PORTL  
#define ROWS PORTL  
 
// Additional SPI PIN defs (Not used but set) 
// MEGA MISO PIN 50 
#define DATAIN 50  
// MEGA SS PIN 53 
#define SLAVESELECT 53   
 
//******************** Variables ******************************** 
//********************** Macros  ******************************** 
#define TLC5940_N 4 
#define numColors (uint8_t)3 
 
#define setLow(port, pin) ((port) &= ~(1 << (pin))) 
#define setHigh(port, pin) ((port) |= (1 << (pin))) 
 
#if (16 * TLC5940_N > 255) 
#define channel_t uint16_t 
#else 
#define channel_t uint8_t 
#endif 
#define numChannels ((channel_t)16 * TLC5940_N) 
 
#if (24 * TLC5940_N > 255) 
#define gsData_t uint16_t 
#else 
#define gsData_t uint8_t 
#endif 
 
#define gsDataSize ((gsData_t)24 * TLC5940_N) 
#define numChannels ((channel_t)16 * TLC5940_N) 
 
 
uint8_t gsData[numColors][gsDataSize]; 
uint8_t gsStateData[numColors][gsDataSize]; 
uint16_t previousButtonValue[8][8]; 
 
boolean led13; 
 
//******************* Serail Functions setup ******************* 
uint8_t tolerance = 7; 
 
void sendSerial(uint8_t Data) 
{ 
  while (!(UCSR0A & (1 << UDRE0))); 
  UDR0 = Data; 
} 
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//************** Serail Functions From the Octinct ************** 
//Debugging definitions: uncomment the line to turn it on 
//Draw colour is forced to red if the serial receive buffer has  
//more than the specified number of characters in it 
#define REDALERT 100 
 
/* Size of the serial buffer before the chronome is forced to parse 
it continually. The buffer size is 128 bytes, and if it gets there 
the chronome can (and will) crash. The largest command size is 9 
bytes, so 119 is an absolute maximum value. Set it lower than this to 
be safe. 
If the chronome hits this limit, it will start to flicker, and might 
miss commands, but it won't crash… Probably. 
*/ 
#define TOOFULL 100 
 
//Variables for interpreting the serial commands 
uint8_t address, state, x, y, pos; 
uint16_t r, g, b; 
uint8_t ready = true; 
 
//For interrupt timing; only to do intermediate clock speeds 
/* Divide interrupt frequency by a factor of FREQ. It is preferable 
to keep FREQ as small as possible, and control the frequency of the 
interrupts using the hardware clock. Setting it to 1 disables this 
entirely, which, if it works, is ideal; this should be the same as 
commenting out the "#define FREQ" statement entirely. 
*/ 
 
//How many interrupts occur before the serial commands are read 
#define FREQ 1 
#if FREQ > 1 
  byte int_counter = 0; 
#endif 
 
//The timer interrupt routine, which periodically interprets the 
//serial commands 
ISR(TIMER2_OVF_vect) { 
  //Reenable global interrupts, otherwise serial commands will  
  //get dropped 
  sei(); 
 
#if FREQ > 1 
  if(++int_counter == FREQ){  
//Only do this once every FREQ-th interrupt 
    int_counter = 0; 
#endif //FREQ 
    do{  
//This do ensures that the data is always parsed at least once  //per 
cycle 
      if(Serial.available()){ 
#ifdef REDALERT  
//if REDALERT is defined, draw colour turns red when the buffer  
//is getting dangerously full 
        if(Serial.available() > REDALERT){ 
          for(int x = 0; x < 64; x++) 
          { 
            TLC5940_SetGS(x, 4095, 0); 
            TLC5940_SetGS(x, 0, 1); 
            TLC5940_SetGS(x, 0, 2);            
          } 
        } 
#endif //REDALERT 
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        if(ready){  
//If the last command has finished executing, read in the next  
//command and reset the command flag 
          address = Serial.read(); 
          ready = false; 
        } 
         
//if the MSB doesn't equal 1, then we are missing our address  
//message. Trash byte and read again. 
        if((address & 0x80) != 0x80){ 
          ready=true; 
          break; 
        } 
      
        switch (address & 0xf) {  
//Execute the appropriate command, but only if we have received 
//enough bytes to complete it. We might one day add "partial  
//completion" for long command strings. 
        case 2: //rgb_led_on 
          if( Serial.available()) { 
            int byte1 = Serial.read(); 
            x = byte1 >> 4; 
            y = byte1 & 0xf; 
            pos = (x)+(y*8); 
             
            TLC5940_SetGSState(pos, true); 
            ready=true; 
          } 
          break; 
        case 3: // rgb_led_off 
          if( Serial.available()) { 
            int byte1 = Serial.read(); 
            x = byte1 >> 4; 
            y = byte1 & 0xf; 
            pos = (x)+(y*8); 
             
            TLC5940_SetGSState(pos, false); 
            ready=true; 
          } 
          break; 
         case 4: // rgb_led_color 
          if( Serial.available() > 3 ) { 
            uint8_t pos = Serial.read(); 
            x = (pos >> 4); 
            y = (pos & 0x0F); 
            pos = (x)+(y*8); 
            r = (uint16_t)(Serial.read() * 32); 
            if(r > y * 35) { 
              r = r - (y * 35); 
            } 
            g = (uint16_t)(Serial.read() * 32); 
            if(g > y * 35) { 
              g = g - (y * 35); 
            } 
            b = (uint16_t)(Serial.read() * 32); 
            if(b > y * 35) { 
              b = b - (y * 35); 
            } 
            TLC5940_SetGS(pos, r, 0); 
            TLC5940_SetGS(pos, g, 1); 
            TLC5940_SetGS(pos, b, 2); 
            ready=true; 
          } 
          break; 



Appendix B – Chronome technical files 

 

116 

        case 5: //rgb_led_all_on 
          { 
            boolean state = (address >> 4) & 0x01; 
            for (int pos = 0; pos < 64; pos++) {                
                TLC5940_SetGSState(pos, state); 
            } 
            ready=true; 
          } 
          break; 
        case 6: //rgb_led_row 
          { 
            if( Serial.available()) { 
              uint8_t ledRow = (address >> 4) & 0x07; 
              uint8_t rowState = Serial.read(); 
             
              for (uint8_t col = 0; col < 8; col++) {    
                  uint8_t state = (rowState >> col) & 0x01;             
                  TLC5940_SetGSState((ledRow * 8) + col, state); 
              } 
              ready=true; 
            } 
          } 
          break; 
        case 7: //rgb_led_col 
          { 
            if( Serial.available()) { 
              uint8_t ledCol = (address >> 4) & 0x07; 
              uint8_t colState = Serial.read(); 
             
              for (uint8_t row = 0; row < 8; row++) {    
                  uint8_t state = (colState >> row) & 0x01;             
                  TLC5940_SetGSState(ledCol + (row * 8), state); 
              } 
              ready=true; 
            } 
          } 
          break; 
         default: 
           break; 
        } 
      } 
    } 
 
//If the serial buffer is getting too close to full, keep  
//executing the parsing until it falls below a given level 
//This might cause flicker, or even dropped messages, but it  
//should prevent a crash. 
    while (Serial.available() > TOOFULL); 
#if FREQ > 1 
  } 
#endif //FREQ 
} 
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//*********************** RGB Function ************************ 
//set all GrayScale Color 
void TLC5940_SetAllGS(uint16_t value) { 
  uint8_t tmp1 = (value >> 4); 
  uint8_t tmp2 = (uint8_t)(value << 4) | (tmp1 >> 4); 
  for (uint8_t i = 0; i < numColors; i++){ 
    gsData_t j = 0; 
    do { 
      gsData[i][j++] = tmp1; // bits: 11 10 09 08 07 06 05 04 
      gsData[i][j++] = tmp2; // bits: 03 02 01 00 11 10 09 08 
      gsData[i][j++] = (uint8_t)value; // bits: 07 06 05 04 03 02   
                                              //01 00 
    }  
    while (j < gsDataSize); 
  } 
} 
 
//set a single GrayScale Color 
void TLC5940_SetGS(channel_t channel, uint16_t value, uint8_t color) 
{ 
  channel = numChannels - 1 - channel; 
  uint16_t i = (uint16_t)channel * 3 / 2; 
  switch (channel % 2) { 
  case 0: 
    gsData[color][i++] = (value >> 4); 
    gsData[color][i++] = (gsData[color][i] & 0x0F) |  
                         (uint8_t)(value << 4); 
    break; 
  default: // case 1: 
    gsData[color][i++] = (gsData[color][i] & 0xF0) |  
                         (value >> 8); 
    gsData[color][i++] = (uint8_t)value; 
    break; 
  } 
} 
 
//turn on or off an LED 
void TLC5940_SetGSState(channel_t channel, boolean state) { 
 channel = numChannels - 1 - channel; 
 for (uint8_t n = 0; n < numColors; n++){ 
  uint16_t i = (uint16_t)channel * 3 / 2; 
  switch (channel % 2) { 
  case 0: 
    gsStateData[n][i++] = gsData[n][i] * state; 
    gsStateData[n][i++] = (gsStateData[n][i] & 0x0F) |  
                          ((gsData[n][i] & 0xF0) * state); 
    break; 
  default: // case 1: 
    gsStateData[n][i++] = (gsStateData[n][i] & 0xF0) |  
                          ((gsData[n][i] & 0x0F) * state); 
    gsStateData[n][i++] = gsData[n][i] * state; 
    break; 
  } 
 } 
} 
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//ISR for clocking in the next Color's GSData.  
ISR(TIMER3_COMPA_vect) {  
  static uint8_t color = 0; 
 
  PORTA = 0x07; 
 
  setHigh(BLANK_PORT, BLANK_PIN); 
  setHigh(XLAT_PORT, XLAT_PIN); 
  setLow(XLAT_PORT, XLAT_PIN); 
  setLow(BLANK_PORT, BLANK_PIN); 
 
  PORTA &= ~(1 << color); 
   
//Below this we have 4096 cycles to shift in the data for the  
//next cycle 
  for (gsData_t i = 0; i < gsDataSize; i++) { 
    SPDR = gsStateData[color][i]; 
    while (!(SPSR & (1 << SPIF))); 
  } 
   
  color = (color + 1) % numColors; 
} 
 
//******************** Button Functions ************************* 
void readADC() {  
  for( uint8_t row = 0; row < 8; row++){ 
    // incrment and set row high 
    ROWS = (1 << row);  
    
    // let the board settle after we shift a row 
    delayMicroseconds(100);  
     
    //check each column's value   
    for( uint8_t col = 0; col < 8; col++) 
    { 
      uint16_t currentButtonValue = analogRead(col); 
       
      //if we have changed then send it out 
      if(abs(previousButtonValue[row][col] - currentButtonValue)  
         > tolerance || (previousButtonValue[row][col] != 0  
         && currentButtonValue == 0)) 
      { 
        //This is to avoid the noise near zero 
        if(currentButtonValue > 10 || currentButtonValue == 0) {    
           sendSerial(0x10 | ((col) & 0x0F)); 
           sendSerial((row << 4) | (uint8_t)(currentButtonValue  
                                             >> 8)); 
           sendSerial((uint8_t)currentButtonValue);   
        } 
      } 
       
      //store current value 
      previousButtonValue[row][col] = currentButtonValue;    
       
      delayMicroseconds(10);     
    } 
  } 
} 
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//*********************** Arduino Loops ************************* 
//Setup Device 
void setup(){ 
  Serial.begin(57600);  
 
 
  //************** SETUP PINS ************** 
  pinMode(GSCLK, OUTPUT); 
  pinMode(SCLK, OUTPUT); 
  pinMode(VPRG, OUTPUT); 
  pinMode(XLAT, OUTPUT); 
  pinMode(BLANK, OUTPUT); 
  pinMode(SIN, OUTPUT); 
  pinMode(DATAIN, INPUT); 
  pinMode(SLAVESELECT,OUTPUT); 
  pinMode(REDTR,OUTPUT); 
  pinMode(GREENTR,OUTPUT); 
  pinMode(BLUETR,OUTPUT); 
  pinMode(13, OUTPUT); 
 
  for( int i = 0; i < 8; i++){ 
    pinMode(42+i, OUTPUT); 
  } 
 
  digitalWrite(SLAVESELECT,HIGH); //disable device 
  setLow(GSCLK_PORT, GSCLK_PIN); 
  setLow(SCLK_PORT, SCLK_PIN); 
  setHigh(VPRG_PORT, VPRG_PIN); 
  setLow(XLAT_PORT, XLAT_PIN); 
 
  //************** SET ADC ************** 
  ROWS = (1 << 0); //Set the first Chronome Row High 
 
  //************** SET SPI ************** 
  //Enable SPI, Master, set clock rate fck/2 
  SPCR = (1 << SPE) | (1 << MSTR); 
  SPSR = (1 << SPI2X); 
 
  //Clear SPI data Registers 
  byte clr; 
  clr=SPSR; 
  clr=SPDR; 
 
  //************** SET TIMERS ************** 
  //Dont need to call sei(); because Arduino already does this 
  //Clear TIMER1 Reg back to default 
  TCCR1A = 0x00; 
  TCCR1B = 0x00; 
  //Enable timer 1 Compare Output channel A in toggle mode 
  TCCR1A |= (1 << COM1A0); 
  //Configure timer 1 for CTC mode 
  TCCR1B |= (1 << WGM12); 
  //Set up timer to fCPU (no Prescale) = 16Mhz/8 = 2Mhz 
  //Set CTC compare value to pulse PIN at 2Mhz 
  //(1 / Target Frequency) / (1 / Timer Clock Frequency) - 1 
  TCCR1B |= (1 << CS11); 
  //Full period of PIN 11 pulse requires 2 ticks (HIGH, LOW)  
  //So PIN 11 @ 2Mhz = (2 ticks (HIGH, LOW)) = 1Mhz 
  OCR1A = 0; 
 
  //Clear TIMER3 Reg back to default   
  TCCR3A = 0x00; 
  TCCR3B = 0x00; 
  //Configure timer 3 for CTC mode 
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  TCCR3B |= (1 << WGM32); 
  //Set up timer to fCPU (no prescale) = 16Mhz/8 = 2Mhz  
  TCCR3B |= (1 << CS31); 
  //Set CTC compare value to 4096 @ half TIMER1 frequency  
  //So (4096*2) @ 2Mhz = 4096 @ 1Mhz 
  OCR3A = (4096*2) - 1; 
  //Enable Timer/Counter3 Compare Match A interrupt 
  TIMSK3 |= (1 << OCIE3A); 
   
  //Setup the timer interrupt for Serial 
  TCCR2A = 0; 
  TCCR2B = 0<<CS22 | 1<<CS21 | 1<<CS20; 
 
  //Timer2 Overflow Interrupt Enable 
  TIMSK2 = 1<<TOIE2; 
 
  //************** SET FirstCycle ************** 
  //Default all channels to all white 
  TLC5940_SetAllGS(4095); 
  //Default all LED states to off 
  for(int pos = 0; pos < 64; pos++) { 
    /*uncomment for setting a default color other than white 
      TLC5940_SetGS(pos, 2000, 0); 
      TLC5940_SetGS(pos, 0, 1); 
      TLC5940_SetGS(pos, 4095, 2); 
      */ 
      TLC5940_SetGSState(pos, false); 
  } 
 
  PORTA = 0x07; 
 
  setHigh(BLANK_PORT, BLANK_PIN); 
  setLow(VPRG_PORT, VPRG_PIN);       
  setHigh(XLAT_PORT, XLAT_PIN); 
  setLow(XLAT_PORT, XLAT_PIN);     
  setHigh(SCLK_PORT, SCLK_PIN); 
  setLow(SCLK_PORT, SCLK_PIN); 
  setLow(BLANK_PORT, BLANK_PIN); 
 
  PORTA = 0x03; 
} 
 
//Run 
void loop() {   
  //read the buttons 
  readADC(); 
} 
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Appendix C  

COMPARATIVE SURVEY OF LOCAL 

NETWORK ENSEMBLES AND SOLO 

LIVE COMPUTER MUSIC 
 

The following section presents a survey of the members of The Machine 

Orchestra, and their thoughts on performing as part of an ensemble versus 

performing as a solo computer musician. A public survey was made available to 

all the existing and previous members of The Machine Orchestra, with a total of 

14 participants replying to the survey. The musicians were asked to rate their 

familiarity with both live computer music and networked music ensembles on a 

scale of 1-10, with 1 indicating that they have never heard of the topic and 10 

indicating that they would consider themselves experts. The familiarity with 

performing live computer music was fairly high with an average response of 7.4, 

while the familiarity with performing networked music was a slightly lower with 

an average of 5.4 out of 10. Additionally, the average size of computer music 

ensembles that respondents had performed with was two musicians, while the 

largest was 40 performers.  

The following survey focuses on comparing and contrasting performing solo live 

computer music, and networked ensemble performance: which of the two 

approaches to live computer music do members of the Machine Orchestra 

prefer; what rolls do they see themselves playing as part of an ensemble; do 

ensembles afford any new modes of performance; and what are the challenges of 

performing computer music in an ensemble? 
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1 DO YOU PREFER PERFORMING SOLO, OR AS PART 

OF AN ENSEMBLE?  

Every participant in the survey is currently, or has been a past member of The 

Machine Orchestra. With this in mind, each musician was asked if they preferred 

to perform as a solo computer musician or as part of a network ensemble. While 

50% of the musicians preferred performing solo, only 28.6% preferred to 

perform in networked ensembles, with 21.4% not expressing a preference for 

either style of performance. 

 
Figure 34 Preference performing solo computer music vs. networked ensembles 

The musicians that preferred performing solo offered two main reasons for their 

choice: singular control over the performance, and simplified technical 

requirements. The musicians stated that they felt solo performance offered 

greater control over the composition, and sound design of the piece, while 

eliminating the chance of miscommunication or mistakes from other performers. 

With this mindset, the computer seems to be an ideal instrument for these 

control minded solo performers, allowing for musicians to extend their 

expressive potential through leveraging process such as automation.  
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The musicians that preferred performing in networked ensembles also gave 

several different reasons for their choice, with their responses centering on the 

interaction between performers. One reply stated that the distribution of parts 

among the ensemble afforded each individual musician more time to “react, 

improvise, and come up with original content…” This sharing of parts makes 

every musician responsible for only a few elements of the piece, and leads to 

increased improvisations complexity as all performers begin to modify their parts 

and musically communicate with each other. The same level of complex 

improvisation would be difficult for a solo computer musician to perform, 

although interactive musical systems like the ones discussed in Chapter 3 may be 

able to help close this gap. Other musicians stated that their prior experience 

playing in acoustic ensembles translated more to networked ensembles then it 

did to solo computer music, and that computer music groups allowed for 

“intense inter-performer collaboration” during performances. 

Interestingly, several musicians did not have a preference for either solo or 

networked performance, and stated that both approaches to live computer music 

were interesting for same reasons mentioned above. One reply commented, “… 

both [are] fun for different reasons. Solo, everything can happen exactly the way 

you envision; [while] with a group you can trust, you can feed off new ideas that 

you would never manifest by yourself!” 
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Table 1 Reasons for solo or group performance preference 

Preference Response 

Solo I feel I don’t’ have to sacrifice my compositions as much when I do solo performances 

versus group 

Solo Less variables to control 

Solo More control over the composition process. 

Solo Playing solo would cut a lot of complications 

No Preference They are both fun for different reasons. Solo, everything can happen exactly the way you 

envision; with a group you can trust, you can feed off new ideas that you would never 

manifest by yourself! 

Group I prefer small group computer music performance. I define small groups as ensembles with 

fewer than four players. Ensembles of this size allow for intense inter-performer 

collaboration. 

Solo Clocking is not accurate enough to reproduce the exacting rhythmic qualities of my work 

on multiple computers. 

Group Groups provide a more even distribution of responsibility, allowing each individual to have 

more time to react, improvise, and come up with original content than a solo performer. 

Ideally I prefer the computer to be a part of an ensemble rather than the entire ensemble. 

Group Combining the social contexts and interactions of musics from differing cultures with new 

technologies is very interesting and challenging. 

Solo I have full control over every aspect of the arrangement and sound design without having 

to worry if someone else will be making any mistakes or changes that I'm not comfortable 

with. 

No Preference I equally enjoy performing in groups and solo, although I have more experience and am 

more adept at performing solo. 

Group I find playing in an electronic ensemble is much like playing in a band. Most of my 

experience as a musician has been in playing with other musicians. It makes the most since 

to me and I find it far more interesting and enjoyable than my solo electronic efforts. 

Solo Less chance of something going wrong during live performance, more convenient as a 

performer to be in total control of the whole setup, don't have to worry about 

miscommunication while performing 

No preference Both have their benefits and drawbacks. Performing solo allows for the most freedom in 

performance decisions while lacking the sense of camaraderie inherent in a group 

performance. Performing in groups allows for greater creativity and variety in approaching 

the performance but can be limiting and risky in terms of sync, overall mix, etc. 
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2 DESCRIBE YOUR ROLL WITHIN THE ENSEMBLE? 

The participants of the survey were asked to describe the musical roles they 

performed within their ensembles. Most musicians described themselves as 

playing a section of the ensemble such as bass, melody, or rhythm. However, 

Several musicians described themselves as co-composer/producer/performer. 

This is interesting as it points the multiple roles that computer musicians see 

themselves in, and would position them to take advantage of performing at the 

note level, sound processing level, and the score level interactions contexts.  

Table 2 Descriptions of each musician's roll within the ensemble 

Response 

Acoustic musician, string section leader. 

Co-composer / Producer / Performer. 

Generally I usually focus on the live arrangement. 

I provided rhythmic elements, drone sounds, and soundscape elements. 

I usually played the melody. 

Live electronic music through laptop. 

Time keeper/melodicist. 

Composer /performer. 

Mostly bass/bass synth in the large one; completely varies in smaller ones. 

Sample triggering/processing. Live processing of signals from other member's instruments. 

I generally take a roll of combining audio aspects with visual aspects. In the primary performance I have 

done as an ensemble, I performed all video aspects and no audio. 

One of my electronic music projects, "Dead Waiter", started as a hybrid ensemble with multiple musicians. I 

basically wrote the songs and then had musicians help me perform them live. I played laptop, electric piano, 

and organ. The hybrid approach is always the most enjoyable to me because of the mixture of electronic 

and organic elements.  

I was usually playing a specific type of instrumentation for whatever the song called for. Usually I'm most 

comfortable with drums and groove. 

Performing with robotic instruments via network. Performing melodic and rhythmic material using 

controllers. 
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3 DOES BEING PART OF AN ENSEMBLE ENABLE NEW 

MODES OF PERFORMANCE THAT YOU DON'T 

EXPERIENCE WHEN PLAYING SOLO, AND IF SO 

PLEASE DESCRIBE THEM?  

Every musican interviewed responeded yes when asked if new modes of 

performance were enabled by networked music ensembles. The reasons given 

varied from the enabling of call and response interaction between musicians, to 

the manipluation of material that is not self-generated.  With this in mind, the 

new modes described by the musicans seemed to center on group 

communication, and interaction with material outside of one’s own direct 

control. These modes of interaction can be viewed as social, and seem to be in 

line with network music’s historical focus on interconnectivy between 

performers. 

Interestingly, most replies did not describe new modes of performance; rather, 

the musician’s felt that the distribution of parts among the ensemble enabled 

each musican to “focus on minutiae which would be impossible were they the 

only performer on stage”. One musican replied that although this might not 

qualify as a new mode of performance, that “there is less to be done by one 

person in an ensemble, so that one person can hone more on elaborating on 

particular modes to explore new ideas winthin those modes.” In general, most of 

the musicans replied that being able to split up the parts enabled more 

opportunities for improvisation than a solo performer with only two hands.  
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Table 3 Description of new performance modes afforded by computer ensembles 

Response 

More control over different parameters of the music. 

Multiple layers of interactivity. 

Being an aspect of a texture instead of driving the full sound. 

Call/response more degrees of improvisation. 

The human difference. 

Being able to split up parts mainly, i.e. someone on drums, the other guy on basses or vice versa. Essentially 

anything 4 hands can do that 2 cannot. Same with feet if Softsteps, et al are involved. 

First of all, the anxiety of live performance can be equally dispersed! As far as the music itself, the two 

things that are most obvious to me are the ability to have much more interesting dynamics and timbre. In an 

ensemble, you can actually NOT play and let parts evolve and change with more fluidity. That's much 

harder when you're the only one creating the music live.  

It allows the musicians to take on different responsibilities for performing, such as delegating 

"instrumentation" as well as, considering audiovisual performance, the jobs of visual performer and audio 

performer, be they combined or separate. 

Because I'm not physically capable of controlling all aspects of a song, being able to focus on certain 

elements of the song allows me to have a lot more control and musical depth (usually of drums). 

By performing in an ensemble, individual electronic musicians can focus on minutiae that would be 

impossible were they the only performer on stage.  

Gives the opportunity for manipulation of material that's not self-generated. Also allows for forms of 

"behind the scenes" preparation since you're not always obliged to be outputting signal. 

Puts more focus on listening to each other as well as the music, thinking for more than one person while 

playing live. 

Maybe not new "modes." There is less to be done by one person in an ensemble, so that one person can 

hone more one elaborating on particular modes to explore new ideas within those modes. 

Even though I don’t feel like the compositions are as tight, there are exponentially more options for things 

we can do as I am working with two more hands. Also, its nice to split the audio/visual control. 
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4 WHAT ARE THE CHALLENGES OF PERFORMING IN 

A NETWORKED ENSEMBLE? 

The musicians were asked to describe any challenges they perceived with 

performing in networked ensembles. The responses fell into two main criticisms: 

networking issues such as maintaining a stable sync signal, or losing network 

connection; and musical complications in dealing with other performers, such as 

lack of communication, performance issues like over playing, and handling 

aesthetic differences.  

The issue of working with multiple musicians within an ensemble is not unique 

to computer music; however, computer musicians, who usually compose and 

perform as individuals, may initially have difficulty adapting to these communal 

performance situations. This adaptation may be exacerbated by the fact that 

computer musicians are often working on developing solo live performance 

systems that are capable of broad control over all aspects of a composition. 

Once these types of systems have been developed, and learned as instruments, it 

may be challenging to “unlearn” this broad control, and instead learn to play a 

more focused part of the composition.  
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Table 4 Descriptions of the challenges of performing in computer ensembles 

Response 

Getting synced always seems to be the hardest issue to handle, although generally possible. 

Relying on other’s musicianship. 

Sometimes the challenge is syncing up and depending on your partner. 

With more options come more problems to troubleshoot. 

Aligning focus, releasing control. 

Decision-making is usually more democratic, which can lead to minor disagreements.  

The human difference. 

Losing network connection syncing difficulties. 

The inevitable challenge of getting two or more performers to be in sync, not just literally but artistically as 

well. 

When something unexpected happens during a performance, performers need to be able to quickly come 

up with a solution together. 

A unified aesthetic can be hard to come by. Complexity in simplicity, especially when performing with live 

musicians, a lot of the time without specific direction, they'll overplay things instead of sitting back and 

becoming part of the texture. 

Absolutely! If more than one computer is being used, the networking issues can be a huge pain. Additionally 

with electronic music, you have to create your sounds from scratch, sometimes even the instruments you 

are going to use. It's not like showing up with your violin and knowing your limitations or exactly what you 

can or cannot contribute. With traditional ensembles, your instrument usually dictates your role in the 

performance. With electronic music, unless the roles are decided upon in advance, you have to create your 

role and make sure that your contribution works with everything else that's going on. This becomes even 

more complicated when the ensemble is writing the music. However, as complex as the process can get, 

when it works, it can be far more interesting and enjoyable than a solo performance.  

Timing has always been a challenge. The usual challenges associated with any group performance also exist: 

knowing when to step to the forefront of the sound and when to sit back and let others fill the space. With 

a laptop capable of creating an orchestra's worth of sound sitting in front of each performer, knowing when 

not to play becomes critical. 

Technical computer issues is the biggest problem like syncing, sounds not sounding correct like how they 

were mixed at home. Coming to firm decisions or goals are harder with people that are very open-minded 

but it can also be annoying if a person in the group basically leads every aspect of the performance without 

any input from the other members. 
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5 HUMAN ETHICS APPROVAL OF THE SURVEY 

This anonymous survey was conducted with the approval of Dr. Allison 

Kirkman, Chair of the Victoria University Human Ethics Committee, and Dr. 

Greer Garden, Associate Professor of music at NZSM. Final approval was given 

in the form of the following email received Thursday, 3 May 2012. 

Dear Owen 

Thank you for your applications. The three that involve anonymous 

surveys have been signed off by Associate Professor Greer Garden (as Head 

of School) and you can commence these now. The 4th one, the survey of 

contemporary approaches to live computer music, is not marked as 

anonymous. Is this because you are going to personally ask people the 

questions or is it because you will know each of the people who are 

answering the survey? Once I know more about the method of delivery I can 

assess the application. 

Could you consider these points and respond to me please. 

Best wishes,  

Allison Kirkman 

The survey included here is one of the three anonymous surveys approved by 

Dr. Greer Garden, with the other surveys mentioned in the email ultimately 

being removed from the final thesis. 
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Appendix D  

PROBABILITIES AND MARKOV 

MODELS 
Probability has a long history of use in musical composition. The simplest 

example of probability-based composition is the use of chance procedures, with 

a famous example of this approach being John Cage’s use of the I Ching. Chance 

procedures require the assignment of musical values to the outputs of a random 

process, such as rolling a die, with the value of each role being used to create a 

composition. John cage described his use of chance as a means of removing the 

self or the artist’s “ego” from the compositional process (Reynolds 1979); 

however, the composer is still required to create the mappings between musical 

events and the random values the process generates, with Cage himself 

describing his role as consisting of choosing what questions to ask (Cage 1991). 

This would imply that it is impossible for the artist to ever fully remove 

themselves, or their ego, from the act of creation. They can only ever create 

distance between their aesthetic choices, and the influence that those choices 

impart upon the art itself. This is an extremely important consideration as the 

development of an interactive musical agent is pursued. As human artists will be 

designing these systems, it may be beneficial to think of these systems, as 

extensions of our own creative will through the application of algorithms, rather 

than the attempt to create an entirely autonomous agent. 

With this in mind, another example of probability-based composition can be 

seen in the work of Iannis Xenakis. Xenakis was opposed to the idea of pure 

“chance” being used for composition, as he felt it abolished the role of the 

composer (Bois 1967). Chance procedures can lead to arbitrary relations between 

musical events, leaving the listener unable to discern a form or shape to the 
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composition. Xenakis developed compositional approaches drawing from 

mathematical fields such set theory, stochastic processes, and game theory. 

Through the use of these ideas, he was able to impart form and structure on the 

algorithmic processes. One such piece called Analogiques, used the probabilistic 

system known as a Markov Model (Ames 1989).  

A Markov Model was originally created in 1906 by a mathematician named Andrei 

Andreevich Markov, and is a way of representing the likelihood of moving to 

one of many possible sates, given a current state. Musically, this is the likelihood 

of moving from a current note to other notes, where each transition between 

notes has its own probability associated with it. More specifically, a Markov 

Model describes the domain of a problem as a matrix of finite transition 

probabilities, where the destination state is dependent only on the current source state, 

and not on any previous states further in the past. This dependency on the 

current state is known as the Markov Property, and sequences generated by a 

Markov Model that satisfy this condition are known as a Markov Chains.  

To see how this differs from a chance procedure, imagine there is a six-sided die, 

and we want to know the probability of seeing a given number. Assuming the die 

is not loaded, or biased in any way, we should have 1 in 6 chance of seeing any 

of the numbers, regardless of any previous numbers we’ve seen before. If we 

assign each number from the die to a note value within a diatonic scale—say 1 is 

equal to C, and 6 is equal to A—then we may compose a piece of music by 

rolling the die to decide each subsequent note. However, each note would have 

no particular relation to any of the notes preceding it, including the current note 

being played. In composing tonal music, it may be preferable to impose a 

hierarchy based upon a scale, with a preference for moving between certain 

notes. These preferences can be expressed as probabilities. For example, we may 

say that when in the key of C, a note of G will move to C 80% of the time, and 

move to A 20% of the time. A random roll of the die does not allow us to impart 

such relationships between the values returned by the process, whereas a Markov 

Model will. In fact, a Markov Chain can allow us to represent the probability of 
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transitioning from a particular note, to all other possible notes in the given scale 

(see Figure 35).                       

                                

Figure 35: A Markov Model representing the transition probabilities for the set of notes C through 

A. The notes on the left represent the source states, and the notes along the top are destination 

states. The values in the matrix are the transition probabilities for moving from a source state to a 

destination state. 

1 MOVING IN A MARKOV MODEL 

A Markov Model describes a transition matrix that can be used to create 

sequences of states known as Markov Chains. These chains are created in steps 

(see Figure 36), where each step matches an input state presented to the model 

with one of the available source states. This match determines the row of 

transition probabilities, which are then used to find the next destination state. It 

is crucial that the sum of all transition probabilities within the row does not 

exceed 100%; therefore all values must be normalized.  

The following will give a description of the process of obtaining new destination 

states. The current state is used as the key and compared against all the source 

states in the transition matrix. A match between the current state and one of the 

source states is then used to determine the row of the transition matrix–

henceforth referred to as the ith row of the transition matrix–which will provide 

the transition probabilities. Once the ith row has been determined, a random 

number between 0 and 1 is generated and then compared against the probability 
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stored in every column of the row–henceforth referred to as the jth column of 

the transition matrix. If the random number is greater then the transition 

probability currently being compared against, then the value of the probability is 

subtracted from the random number, and the result is then used as the updated 

random number in the next comparison (see line 7 of Figure 36). This process is 

repeated until the random number becomes less then the jth transition probability 

being compared, at which point the destination state associated with the jth 

column is returned (see line 4 of Figure 36).   

 

Figure 36: Algorithm for determining the next destination state in a Markov Model given a row of 

transition probabilities 

2 N-TH ORDER MARKOV MODELS 

Using the previously played note to provide a context for deciding which note to 

play next allows for a statistical model of movement between two notes. 

However, since musical phrases are rarely made up of only two notes, it would 

be better if the model could provide a larger context, consisting of more notes. 

One approach to this is to look at the current, one-note Markov Model as a 1st 

order model, since it only has one note to provide the context. Adding another 

note, creating a source state of two notes, creates a 2nd order model. This 2nd 

order model would have a complete 1st order model for every 2nd order source 

state. As shown in Figure 37, this would look like a cube. 
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Figure 37: 2nd order Markov Model 

 As the length of the source state sequence increases, the order of the model gets 

higher, and visualizing the model as a shape becomes impossible. Fortunately, 

every Nth order model has an equivalent 1st order formulation. This type of 

Markov Model can be represented as a matrix whose source states are sequences, 

with the number of source states in the matrix increasing as the order increases, 

while the number of destination states will remain the same (see Figure 38).  

       
Figure 38: 2nd order Markov Model shown as 1st order Markov Model 

While the source states in these models are described by sequences of states–

therefore providing a larger context for determining the next destination state–

they only describe a change in pitch. Additional information can be added to 

each state within these source state sequences, effectively transforming them into 

sequences of vectors. For example, the first source state in Figure 38 is made up 
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the notes C and C. For each of these notes, it is also possible to add additional 

information about the velocity and note duration. However, each added piece of 

information increases the complexity of the Markov Model. 

3 TRAINING THE MARKOV MODEL 

As the Markov Models become more complex, the transition matrices also 

become larger in size. This increase in size can make the matrix prohibitively 

difficult to fill in by hand, and the increased complexity can make the 

relationships between each transition more complex to understand. Additionally, 

manually deriving the statistical values of the matrix that represent the complex 

relationships of a particular system requires the evaluation of a large amount of 

data. An alternate approach to populating the matrix by hand is to enable the 

Markov Model to automatically learn the transition probabilities through 

training.  

When training the model, it is only required to store a sparse collection of non-

zero transition probabilities. If a transition has a probability of 0% then it has 

never occurred, and therefore does not need to be stored as part of the model. 

Each transition probability greater than 0% can be stored as the source state, the 

destination state, and the transition probability, with the transition probability 

represented as the number of times that particular transition has been seen by 

the Markov Model during training (see Figure 39). This allows for a much 

smaller amount of data to be stored when representing the model, and also 

speeds up the search time when attempting to match source states. When using 

the model, all stored transition probabilities that share the same source state are 

returned, effectively making up the row of all the destination states that have 

non-zero transition probability. Lastly, the values for transition probabilities are 

stored as positive whole numbers representing the number of times that 

particular transition has been seen. These values need to be normalized before 

the destination state can be chosen.  
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Figure 39: The description of a transition probability, containing the Source State, Destination 

State, and the number of times the transition has been observed during training 

Although storing the Markov Model as a sparse collection reduces the amount of 

data required to describe the model, and increases the speed of use, there are 

data structures that are more efficient. 

 
Figure 40: Markov source states stored as tree structure. This allows for searching variable length 

source state sequences. 

One such data structure is a tree (Pachet 2002), where each node in the tree 

points to the destination states that are the associated with the sequence built 

from the root of the tree. In Figure 40 the root notes C, D, F, and G all 

represent a 1st order source state, from which previously seen sequences of 

source states can be built. During use, the system can attempt to match an input 

sequence with the longest matching sources state sequence stored in the trees. 

Once a match has been found, the last node in the sequence holds the transition 

probabilities for all destination states attributed to that source state sequence. 



Appendix D - Probabilities and Markov models 

 

138 

For example, if the Markov Model tree in Figure 40 is presented with the input 

sequence F G D C, then the tree would return all the transition probabilities and 

destination states associated with the sequence terminating at the left most G in 

the first tree (see Figure 41). However, if the same Markov Model were 

presented with the input sequence G A D C, then the tree would return all the 

transition probabilities and destination states associated with the sequence 

terminating at the D in the first tree (see Figure 42) 

 

 
Figure 41: Longest matching source state sequence for input sequence F G D C 

 
Figure 42: Longest matching source state sequence for input sequence G A D C 
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4 MARKOV MODELS FOR INTERACTIVE MUSICAL 

AGENTS 

In order for Markov Models to be suitable for creating interactive musical 

agents, they must be able to react to real-time input provided by a human 

performer. Markov Models are capable of describing a domain and producing 

sequences that are statistically consistent with the modeled system. However, the 

models are traditionally set up to take the previous destination state as the next 

source state for the next iteration through the matrix. Setup in this way, it is not 

possible to allow for external inputs to influence the system.  

One possible solution during training is to include in the source state both the 

performer to be modeled, and the performer that will be the live input. Although 

this will allow for the inclusion of the live input during performance, it also 

increases the complexity of the source states, and decreases the likelihood of 

finding a matching source state during performance. An alternate approach was 

proposed for the Continuator system (Pachet 2002) that applies a fitness 

function to the output of the model. This function takes the destination state 

provided by the model as the inputs, and a context provided by the human 

performer. Additionally, the fitness function can be weighted to impart greater or 

lesser influence over the output. This could be roughly equated to the amount of 

influence the band28 is having on the musical choices of the virtual musician. 

Although this technique allows for a live performer to influence the output of 

the Markov Model, it also modifies the probability that the model will produce 

the resulting Markov Chain.  Essentially, applying a fitness function to the 

output of the Markov Model changes the model itself.  

An additional approach to contextualizing the Markov Model is the use of 

constraint satisfaction problems. This approach takes a set of constraints, and 

then applies them to a set of domains for a set of variables (Anders 2007). In 

                                                
28 A band in this context could be a solo live computer musician, or an ensemble of computer 

musicians. 
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Pachet’s recent work with variable-order Markov Models (Pachet and Roy 2011; 

Pachet, Roy, and Barbieri 2011), he explores this approach for creating new 

matrices, from a master trained matrix, using constraints. In this case, the 

performing musician would provide the constraints, the domain would be the 

Markov Matrix, and the variables would be all the possible transition 

probabilities. The constraints would negate the likelihood of certain transition 

probabilities, in effect creating a new matrix from the existing master matrix, 

where constrained transition probabilities have been set to 0. Pachet goes on to 

discuss the difficulty in adjusting the matrix transition probabilities to ensure that 

the likelihood of returning a given sequence, relative to some other possible 

sequence, is the same as in the original matrix. Simply re-normalizing the rows 

would effectively alter these relationships, therefore effectively altering the 

modeled system. Pachet’s earlier versions of the continuator avoided this re-

normalization issue by applying a fitness test to the sequences once they were 

generated. Although this worked, it meant that the system either needed to 

generate sequences until one passed the fitness test, or that the system needed to 

alter the output of the Markov Model, which would again lead to changes in the 

model. 

5 IMPLEMENTATION 

In practice, a simple first order Markov Model proved to be very easy to train up 

and run in real-time; however, the model was only built to control the values of a 

single knob. In order to expand the model to control multiple knobs, two 

options were considered: creating a sources state that contains each controller’s 

value; or creating a separate Markov Model for each Controller. Both solutions 

presented possible issues.  

The first approach creates a very large domain, meaning most of the time there 

will not be a match between the input state and a non-zero source state, and a 

solution such as quantization to the closest matching source state will be needed 

(see the following section for a discussion on this issue). The second approach is 

to have a model for each controller, which simplifies the domain of each model, 
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but also makes the different controllers independent of each other. This is a 

possible issue as during performance, several controls are used together to get 

more complex processing, and these relationships are a critical part of the 

interaction. 

 
Figure 43: Training diagram of Markov Model 

A plugin Markov Model was built for testing, with the incoming value of the 

controllers being sampled at 200 Hz. With the source state only consisting of the 

previous value, a match was usually found; however, as the context provided by 

the source state was very short, the resulting sequences tended to be erratic. As 

the length of the source state was increased, the number of matches went down, 

and the quantization to the nearest Markov Chain also introduced erratic output.  
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Figure 44: Performance diagram of Markov Model 

While Markov Models are relatively simple to train, and efficient to run in real-

time, they prove challenging to control using an external context, and difficult to 

find methods for handling the case of not finding a match without altering the 

probabilistic distribution. Even with these challenges, Markov Models look like a 

promising approach to developing interactive musical agents for use with control 

change data. Combining a variable length Markov Model, like the one described 

by Pachet, with other techniques learned from search and regression approaches 

may yield a working system.  

6 CHALLENGES WITH USING MARKOV MODELS 

One of the most difficult limitations of using a Markov Model is that they are 

not capable of handling input states for which it has no statistical information. 

For example, if a Markov Model is trained to produce melodic lines, and a note 

is input that has not previously been seen by the model, then there is no way of 

handling the unseen input state (see Figure 45). The unseen state effectively has a 

row of 0% transition probabilities associated with it, resulting in no paths from 

the source state to any of the destination states.  This situation becomes 

increasingly likely as the complexity and number of source states increases, and 
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leads to a paradoxical case where increasingly detailed source states provide more 

“accurate” statistical models of the system, but also increase the potential 

number of source states with 0% transition probabilities. 

 

Figure 45: Input to Markov Model that does not match any previously seen source state 

While different solutions to this challenge exist, many of them have drawbacks. 

Several of these solutions are as follows:  

1. The system may choose a random source state in the model; however, 

this would alter the statistical likelihood of the Markov Model producing 

the resulting Markov Chain, effectively altering the model itself.   

2. The system may choose the destination state with the highest 

probability.29 However, the resulting Markov Chain will exhibit the same 

issue as described in the first solution. 

3. The system may choose the nearest source state to the input state. This 

will help preserve the statistical relationship between the model and the 

Markov Chain, but it also implies that the model does not completely 

represent the domain. 

                                                
29 Taking the sum of the probabilities in a column, and then dividing the result by the sum of the 

probabilities of the entire matrix can determine this destination state. 
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4. The system may have multiple models that describe the domain, with 

each model reducing the amount of data used to describe the states 

(Pachet 2002). If a more specific model fails to find a match for the 

input source, then the next most complex model is tested. This process 

is continued until a match is found for the input source. However, as the 

models become more general, they also become a less accurate 

representation of the system. 

These solutions provide various methods for handling unseen input states, and 

allow for Markov Models to be a robust approach to statistically modeling the 

change in musical parameter values over time. However, it may be that through 

the application of other approaches, such as search algorithms, that more elegant 

solutions for handling these unseen input states will appear.
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SEARCH-BASED ALGORITHMS 
In the simplest implementations, search systems will take in a state, or sequence 

of states, and attempt to find a matching state or sequence within the database. 

Assuming that states in the database are stored in the order they originally 

happened, then the states can be described as a list of sequential events. The 

search can then compare the input sequence against all subsequences of the same 

size in the database. This type of exhaustive search can become slow as the 

number of states stored in the database increases. This leads to a situation where 

increased data collection creates a more accurate model, but also increase the 

number of compares required to find a match. This can increase the search 

times, and render the system too slow for live performance use. Dannenberg 

suggested constraining the search by associating the current position within a 

score with a location in the database, and limiting the search to just before and 

after that position; however, Rowe argues that improvisational music does not 

have a fixed score, and therefore does not benefit from such constraints.  

Even if computers become fast enough, that the time it takes to perform an 

exhaustive search is not an issue, then there is still the complication of finding a 

perfect key-value match between the input and the database. When playing from 

a score, part of the perceived musicality of the performance is the minute 

variation imparted upon the written notes. Additionally, musicians occasionally 

miss or drop a note, or often embellish a score with additional ones. This implies 

that every performance will be subtly different, and makes it unlikely that an 

exact match of the input sequences will be found in the database. This problem 

becomes even more challenging with improvisation, as there is no scored 

material to constrain what notes might be played. While this issue is similar to 
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matching input states to source states within Markov Models, the solutions we 

will discuss are very different.30  

Lastly, search algorithms must ultimately produce an output sequence of states. 

These sequences can be built by concatenating the next state in the database 

after the end of the matching sequence (see Figure 46). In the figure below, the 

sequence CDFGADG is matched in the database. Once the match is found, the 

algorithm returns the next value stored in the database that occurs after the 

sequence. In the figure below the value returned is C, and this value is then used 

as the next output from the system. 

 

Figure 46: Matching sequences return the next stored state form the database 

While this approach works for creating melodies, or other generative 

compositional tasks, an alternate method must be used when designing 

interactive musical agent systems. The aim of an interactive musical agent is to 

take input, and then return contextually related output such as auto 

accompaniment from a score, or sequences from other performers. In Figure 47, 

the database is designed such that it samples and links two sequences during 

training. This key/value linking is similar to a dictionary, or hash map, and allows 

for the search to return values representing a second performer, by using live 

input as a key. In the figure below, the live input sequence CDFGADG is used 

as the key to find a match in the database; however, unlike the previous example, 

upon finding the match the system uses the next state C to find and return the 

second performer’s value E. With this approach, it is possible to take input from 

a live performer, and use it to find sequences representing another performer. 

                                                
30 Exploration of the similarity between the search algorithms evaluated here and the Markov 

Models discussed in Appendix D may lead to interesting hybrid systems; specifically regarding 

approaches to handling the matching of sequences. 
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Figure 47: Matching sequences return values from a second linked sequence 

1 AUTO ACCOMPANIMENT 

One of the earliest implementation of search algorithms for interactive musical 

agents was Dannenberg’s (1984) use in developing an auto accompaniment 

system. This system attempts to listen to input from a performer, use this input 

to determine the current location of the performance within a fixed score, and 

then provide the appropriate accompaniment. Additionally, the system 

attempted to handle any deviation of the human performer from the written 

score.  

If the actual performance and the written score can be seen as two sequences of 

states, then Dannenberg’s system is attempting to find the best match between 

these two sequences. With Dannenberg defining ‘best’ as: “The best match is the 

longest common subsequence of the two streams (Dannenberg 1984).” The 

challenge is in allowing for extra notes that are not in the written score, or to 

recognize when the musician has left a note out of the performance. We will 

describe an overview of the system in order to provide a context for discussing 

the challenges of constraining a search for improvisational systems. A full 

description of the system can be found in (Dannenberg 1984). 

The system uses a matrix to compare the live input against the written score. The 

score is represented as rows, while the live input is added as columns. When a 

new note arrives at the computer, it is appended to the column sequence, and 

then the two sequences along each axis are compared. A perfect performance 

would create a match along the diagonal of the matrix, beginning from the 

corner where the two sequences start. For every note that is a match, the number 



Appendix E - Search-based algorithms 

 

148 

in that cell is increased, however, if the note does not match then the cell is filled 

with the previous value (see Figure 48).  

             

Figure 48: Matrix with ideal rating scores comparing input sequence along the columns, and 

scored sequence down the rows 

This matrix compares the live input to be against a fixed score, while allowing 

for deviations in performance. In reviewing Dannenberg’s approach Rowe 

describes four alterations to the fixed score that the matrix can test for (Rowe 

2001). 
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Figure 49: Insertion test: this tests for notes 

played by the performer that are not in the 

original score 

 

   

 

Figure 50: Deletion test: this tests for notes from 

the score that are skipped over by the performer 

   

 
Figure 51: Substitution test: this tests for notes 

substituted by the performer 

   

 
Figure 52: Repetition test: this looks for notes 

from the score that are repeated by the 

performer 

   

   

With these four matrix tests, the system is able to determine the correct position 

within the score, regardless of performer deviation or embellishments, and 
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generate contextualized accompaniment. Additionally, the search is limited to the 

scored note before and after the current position within the score (see Figure 

53). This constraint increase the search speed, and can be applied as it is assumed 

that a performer will not deviate from the score by more than one or two notes 

at a time. 

   

Figure 53: Constrained search to speed up sequence comparison 
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Appendix F  

REGRESSION SYSTEMS  
A third approach to designing interactive musical agents is the use of regression 

algorithms. Regression is a process by which a function is fit to a dataset in such 

a way, that for new inputs, the function will return the average value for that 

input (see Figure 54). Additionally, once the function is fit, the system is capable 

of handling inputs it has not previously seen. The function essentially 

interpolates between the data it has been presented with during the training 

phase, and is able to make an informed “guess” at an output value. This could be 

very useful for musical situations, where new combinations of a performance 

might lead the system to output new ideas. A thorough overview of regression 

can be found in (Fiebrink 2011).  
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Figure 54: Basic linear regression 

The simplest example of regression is fitting a straight line to a 2D scatter plot of 

data (see Figure 54) through a process such as least squares.31 These functions 

can also be extended to handle mapping multiple inputs to a single output. Each 

parameter can be represented by a function that is plot on its own 2D graph. 

These functions can then be combined in such a way as to solve for complex 

multi-dimensional mappings. 

Artificial neural networks, or ANNs, can be thought of as an advanced method 

of implementing these more complex linear regression32 models (see Figure 55).  

 

Figure 55 Similarity between linear regression and basic sequential ANN 

Not all data will best be described using a linear function, and fitting a nonlinear 

function using basic regression requires greatly increasing the number of input 

parameters in order to accommodate the higher order polynomial functions. 

ANNs are capable of automatically fitting these nonlinear functions through the 

                                                
31 Least squares attempts to minimize the average squared error between the value produced by 

the function, and the actual value from the training set. 
32 Depending on the activation function used, such as a sigmoid function, ANNs can also be 

classifiers. 
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use of Hidden Layers. These layers are placed between the inputs and outputs of 

the system, and can be thought of interconnected stages of several regression 

systems. Through the use of these hidden layers, an ANN is capable of fitting 

more complex nonlinear functions then would be feasible using basic regression. 

1 MULTI-VARIATE LINEAR REGRESSION 

There are many ways to implement regression systems, from basic linear 

regression to more complex Artificial Neural Nets (ANNs) with multiple hidden 

layers. Basic linear systems represent straight line functions through the data, and 

are easy to build, simple to train, but may not be able to fit more complex, non-

linear relationships; conversely ANNs are powerful models capable of fitting 

complex, non-linear functions, but they can be harder to build, and may require a 

large amount of training to get the functions to closely represent the data. As a 

starting point, the research presented here built a network of linear regression 

systems, with each one modeling a different controller, and is described as multi-

variate linear regression.  
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Figure 56 Diagram of multi-variate linear regression model 

A basic linear regression system can be thought of as a simplified ANN, with no 

hidden layers. Viewing the system in this way allows for the design to be 

visualized in terms of an ANN. One of the reasons for describing the system in 

this way is that it affords the ability to conceptualize the system as different but 

related networks of connections between multiple input and output parameters 

(see Figure 56). Essentially, each output can be thought of as an independent 

network of connections to all of the input parameters. This view of a connected 

network has become critical to my understanding of the development of 

interactive musical agents, and helped to inform my research and design using 

other approaches, such as the S2MP algorithm described in section 3.4.4. 

With this interconnected architecture, each output in the system can be thought 

of as an independent system, and therefore the entire system can be thought of 

as a collection of independent regression systems. Multi-variate linear regression 

then fits a regression function for every output. These individual linear 
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regression problems represent a supervised learning problem, and as such are 

normally solved through an iterative process such as gradient descent. These 

approaches attempt to minimize the error between the function and all the data 

points. However, a shortcut closed-form solution known as the normal equation 

can be used to derive these functions directly (see Equation 1). The system uses 

this normal equation to then solve the linear regression problem for each output 

separately, effectively creating a matrix of linear regression functions. 

 

Equation 1 Normal Equation 

Once the model is complete, the system takes new inputs from performer A and 

the previously calculated outputs for the virtual performer B, and uses these to 

generate new output. The models will return continuous values however, 

requiring the output to be quantized into the discrete steps used by the system. 

For musical applications this would be equivalent to “tuning” each output to the 

nearest semi-tone. Additionally, this continuous output can be looked at as the 

strength of belief in a particular value being the output.   

2 CHALLENGES WITH USING REGRESSION BASED 

SYSTEMS 

While the approach that was just described allows for all the inputs to influence 

the output, there still remains an issue of providing a temporal context to the 

system. Unlike the Markov Models or the search algorithms, the inputs to the 

regression system only ever see one state of the performance at a time. Each 

single state during a musical performance can lead to many different notes, e.g., 

C# could perhaps equally lead to G or F. With the averaging potential of a 

regression system, C# would end up returning G# instead of one of the two 

notes. In order to know which of the two notes the system should output, a 

greater context of what has previously been played must be presented to the 

system.  
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One solution to this issue is to contextualize the inputs by providing memory of 

the previous states. This can be achieved by applying a low pass filter to the 

inputs, effectively feeding a decaying amount of previous states into the current 

state. Rowe describes the early work on these types of systems, and labels the 

process as Sequential Neural Networks (Rowe 2001). 
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Appendix G  

COMPARISONS AND REQUIREMENTS 
Over the course of this research it has become clear that designing an effective 

interactive musical agent for use with control change messages has several 

requirements: it must be able to learn or train from previous performances; it 

must be able to link, or infer relationships between different controls; in a 

manner similar to a musician listening and responding to the rest of the band, it 

must be able to take external input in to contextualize, or influence the output of 

the system; it must be fast enough to work in real time; and finally, it should have 

enough memory of past events as to provide a context allowing for a musical 

dialogue between the human performer and the system. The following sections 

will evaluate these requirements for each of the three approaches described in 

the previous appendices. 

1 TRAINING 

In order for an interactive system to adapt and become better at improvising, 

there needs to be a method for learning from previous rehearsals (Vercoe and 

Puckette 1985). Through training, a model can begin to develop a picture of 

what a performer might do during a piece, and what responses are appropriate. 

This training can happen either offline, with the system analyzing the data after 

the performance, or in real-time, allowing the model to adapt during an actual 

performance of a piece.  

A Markov Model allows for real-time learning by using the source and 

destination state pairs to update the transition probabilities. Real-time training of 

a Markov Model is relatively easy as it can take new inputs and alter the 

transition matrix, allowing the model to change during a performance. This can 
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allow the system to respond to new information and change its behavior during a 

performance. One potential issue with this process would be influencing a model 

whose transition probabilities are based on large numbers of previously seen 

data. Adding a small number of events to a model like this would not alter the 

transition probabilities very much. Inversely, a transition matrix that had only 

seen a small amount of data may exhibit large changes in transition probabilities 

during a performance.  

Search algorithms can be trained in real-time, adding new Key/Value pairs 

during a performance. However, as mentioned in section 3.4.2 the pruning of 

“bad examples” may be needed to prevent the system from finding and 

matching poorly played material. Additionally, training a search system can create 

large databases, with much of the data being very similar. Using data structures 

like KD trees may be a good solution to reducing the amount of training data 

stored to represent the model. This would also help to increase the search speed 

of the systems. 

Regression models take input training data and build a function to describe the 

model instead of attempting to find a match. This function will interpolate 

between the data presented during training, and allows the system to return 

values for inputs it has never seen before. However, with small amounts of 

training data, the interpolation can be very coarse, while larger amounts of data 

can create a more accurate model.  Additionally, unlike the large databases 

created by the search approach, the training output of a regression system results 

in a matrix of functions. As the amount of training data increases, the functions 

themselves change, but the total number of functions stays the same. Lastly, 

these systems will most likely be trained off-line as they usually require an 

iterative approach to building the model. It may be possible to build the models 

in real-time as separate processes in the system, but this makes training more 

complex then probability or search based systems.  
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2 INFERRING RELATIONSHIPS 

As shown in Figure 27, there are several different configurations of inputs to 

outputs. The complexity of training a model is dependent on these 

configurations, with the most complex configuration being a system that listens 

to all inputs from both the human performer and the model, and then relates all 

inputs to each output. Additionally, the ability of the model to generate output in 

the style of a particular performer is also related to these configurations, as some 

of the performer’s behaviors may be the result of the relationship between 

several input parameters. 

The Markov Model is the most challenging of the three approaches for linking 

relationships between multiple controllers. When linking multiple inputs, each 

source state in the Markov Model can be thought of as a snapshot of the inputs, 

and as discussed in Appendix D as the number of inputs described by the source 

state increases complexity also increases. This creates challenges with finding a 

matching source without altering the probability of the resulting Markov Chain. 

However, the variable length Markov Model designed by Pachet (Pachet 2002) 

has shown that there are graceful compromises for handling these situations.  

Searching algorithms such as S2MP (see section 3.4.3) are capable of handling 

complex state descriptions due to their ability to generalize during the matching 

process. S2MP does not need to find an exact match, but rather returns a 

similarity score based on item set members and order. This thesis presents a 

novel technique for linking these complex relationships between controller states 

using sorted sets, sparse sampling, and single vectors that represent the 2D 

controller number/controller value relationship (see section 3.4.4). The use of 

this kind of generalized searching combined with the complex input 

representation, may also be useful in Markov Models for matching source states. 

With regression based approaches, linking multiple inputs to multiple outputs is 

possible through the interconnected networks created by approaches like multi-

variate linear regression (see Figure 56); however, as the number of inputs 
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increases, the resulting functions may require greater amounts in training data to 

allow for musically usable outputs. 

3 EXTERNAL CONTROL 

With all three approaches the output of the model is fed back into inputs during 

performance. This allows for the system to play along without any outside input, 

essentially remaining self-contained and autonomous. However, in order for the 

systems described in the previous appendices to be interactive, they must not 

only autonomously generate new material with which a human musician can 

react, but also similarly allow external input to contextualize or influence the 

model. There are several different ways that this external influence can be 

imparted on the model (see Figure 27).  

Applying external control to a Markov Model has been discussed in Pachet’s 

work (Pachet 2002; Pachet and Roy 2011). The methods presented in Pachet’s 

work are either influencing the output of the model through the use of a fitness 

function, or by applying constraints to the transition matrix itself. A fitness 

function ultimately amounts to altering or influencing the underlying 

probabilities, and therefore the model itself. Pachet’s 2011 paper presents an 

alternative Constraints Based Programming approach that attempts to 

compensate for this change in probabilities, and thereby maintains the original 

probabilities of the Markov Chains. However, neither the fitness function nor 

the constraints approach is clear on exactly what data from the musician’s input 

is to be used to contextualize the model. One possible fitness function could 

take in an “activity level” from the human performer, basically acting as a 

damper to restrict the output value range. Regardless of what is chosen, it seems 

that these fitness functions must be explicitly decided by the developers of the 

system, rather then inferred by the connections or relationships between inputs 

and outputs. One exception could be to use inputs from both the human and the 

interactive agent as source states, but this creates the ballooning of source sates 

mentioned earlier in Appendix D. 
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With search algorithms it is possible to represent all relationships between inputs 

and outputs by collapsing the controller numbers and values into a single vector 

and sampling the state at a regular interval (see section 3.4.4). The complexity 

brought on by representing all the controllers can be managed by only storing 

the controller values that have changed since the last sample. Additionally, no 

other information, such as probabilities, is required to be stored with the 

database. This is because the regular sample rate implies time, and the returned 

value is then simply the next value in the database. Regression based systems are 

similar in that the interconnected relationships described in Appendix F also 

allow for all inputs from both the human and the virtual performer.  

4 SPEED 

While all three approaches discussed in the previous appendices are capable of 

being used to model a virtual performer, they must be able to run in real-time in 

order to be useful as an interactive musical agent.  

Using a trained Markov Model is essentially a two-step process consisting of a 

search, and the returning of a probabilistically derived result. The speed of the 

system depends largely on the search portion of the system, and suffers from 

similar speed issues as the search based approaches. However, Markov Models 

will only store one version of any given source state, while a search based system 

may store many different examples of the same, or almost exactly the same 

sequence. This means Markov models may be able to represent the same model 

as a search based system while using far less data. 

As mentioned above, search based systems may store multiple examples of the 

same sequence of data. This leads to the situation described in 3.4.5, where the 

size of the database grows as more training data it is presented to it. Effectively, 

as the model learns more, and becomes more accurate, the database grows and 

the search time increases. While placing constraints on the searches results in far 

fewer searches being carried out, this only puts the problem off. At some point 

the database will become large enough that the system will again become too 
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slow to use in real-time. However, with clever segmentation, and possible offline 

data clustering, it might be possible to push that point far enough away so as to 

not be a concern. 

Regression based systems use a fixed number of functions, and as such the speed 

of the system is tied to how fast the computer can solve the functions. Assuming 

the computer can complete all the calculations in time, any new training data 

should not significantly increase the time it takes to calculate new outputs.  

5 CONTEXT AND MEMORY 

Music happens in time, and musicians performing together decide what they will 

play in the future based off of what they have played in the past. Any attempt to 

design an effective interactive musical agent must take this musical memory into 

account when deciding what events will be played next.  

Context can be added to Markov Models through the use of sequences of source 

states, but the longer the sequence is, the harder it will be to find a matching 

source state. Variable length Markov models are a nice solution to the problem, 

as they allow the longest sequence available to be used. This will ensure the 

largest context available is used to generate new events, but the approach still 

requires a way to handle the case of not finding any matching source states 

during performance. Pachet solves for this by storing multiple representations of 

the model, with each one being a data reduced version of the previous one. This 

increasing coarseness of description allows the system to start with the greatest 

detail possible, and then work towards more general descriptions of the state. 

This process increases the likelihood that a match will eventually be found, while 

providing the largest possible context. 

The S2MP algorithm presented in this thesis requires the samples to be provided 

at a regular rate. These samples then represent a sequential record of the history 

of a performance. Increasing the context for the next event is a simple matter of 

increasing the size of the sequence of samples searched for. However, increasing 

the size of the sequence also increases the search time, and therefore slows down 
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the algorithm. Part of designing an effective search algorithm requires balancing 

these two requirements, i.e., using large enough sequences so as to provide a 

meaningful context, and optimizing the algorithm so it is fast enough to use in 

real-time. 

Providing a regression system with memory of past events is achieved through 

low pass filtering the inputs as described in Appendix F. These types of systems 

are known as sequential neural nets, although they can apply to simple linear 

regression systems as well. The lower the cutoff frequency applied to the input, 

the more influence that previous states will have on generating output.  
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Table 5 Overview of algorithms for designing interactive musical agents 

 Probability Search Regression 

Training Training can 
happen in real-
time. 

Over time, it may 
become difficult 
to alter the 
probabilities with 
new training data 

 

Training can 
happen in real-
time. 

Size of database 
continues to grow 
when presented 
with new training 
data. 

Training is usually 
done offline. 

Can interpolate 
between known 
and unknown data, 
but requires a lot 
of varied data to 
accurately describe 
the model 

 
Inferring 

relationships 

Can be 
challenging to link 
multiple 
parameters 
together. 

Able to handle 
multiple 
simultaneous 
controls 

Good 
generalization 
possible in finding 
a match 

 

 

Able to handle 
multiple 
simultaneous 
controls 

Able to handle 
matching new and 
unseen input 
sequences 

External 

control 

Constraint 
satisfaction 
problems can be 
used to influence 
the transition 
matrix without 
altering the overall 
probabilities. 

Relationships 
between external 
controls and the 
model must be 
explicitly set. 

 

 

Can simultaneously 
take all inputs to 
the system. Both 
internal and 
external. 

Can simultaneously 
take all inputs to 
the system. Both 
internal and 
external. 
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 Probability Search Regression 

Speed Once the model is 
trained, and 
assuming the 
performance only 
uses previously 
seen data, then 
this system is fast 

 

 

As model holds 
more data it 
becomes more 
accurate; however 
the search also 
becomes slower 

Assuming the 
computer can 
handle solving all 
the functions in the 
model, this system 
is fast. 

Context and 

Memory 

Musical context is 
provided through 
sequences of 
source states. 

Using Variable 
Length Markov 
Models, these 
systems can 
ensure the longest 
possible sequence 
is used during 
performance. 

 

 

Sampling at a 
regular rate creates 
a sequence of 
samples that have 
time implied by the 
order. 

Providing loner 
context requires 
using larger 
numbers of 
samples during the 
search. 

Sequential Neural 
networks that low 
pass the inputs 
enable past events 
to influence the 
output of the 
system. 
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