
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

CONTEMPORARY APPROACHES TO LIVE COMPUTER MUSIC:

THE EVOLUTION OF THE PERFORMER COMPOSER

BY

OWEN SKIPPER VALLIS

A thesis

submitted to the Victoria University of

Wellington

in fulfillment of the requirements for the degree

of

Doctor of Philosophy

Victoria University of Wellington

2013

 ii

Supervisory Committee

Dr. Ajay Kapur (New Zealand School of Music)

Supervisor

Dr. Dugal McKinnon (New Zealand School of Music)

Co-Supervisor

© OWEN VALLIS, 2013

NEW ZEALAND SCHOOL OF MUSIC

 iii

ABSTRACT

This thesis examines contemporary approaches to live computer music, and the

impact they have on the evolution of the composer performer. How do online

resources and communities impact the design and creation of new musical

interfaces used for live computer music? Can we use machine learning to

augment and extend the expressive potential of a single live musician? How can

these tools be integrated into ensembles of computer musicians? Given these

tools, can we understand the computer musician within the traditional context of

acoustic instrumentalists, or do we require new concepts and taxonomies? Lastly,

how do audiences perceive and understand these new technologies, and what

does this mean for the connection between musician and audience?

The focus of the research presented in this dissertation examines the application

of current computing technology towards furthering the field of live computer

music. This field is diverse and rich, with individual live computer musicians

developing custom instruments and unique modes of performance. This

diversity leads to the development of new models of performance, and the

evolution of established approaches to live instrumental music.

This research was conducted in several parts. The first section examines how

online communities are iteratively developing interfaces for computer music.

Several case studies are presented as examples of how online communities are

helping to drive new developments in musical interface design.

This thesis also presents research into designing real-time interactive systems

capable of creating a virtual model of an existing performer, that then allows the

model’s output to be contextualized by a second performer’s live input. These

systems allow for a solo live musician’s single action to be multiplied into many

different, but contextually dependent, actions.

 iv

Additionally, this thesis looks at contemporary approaches to local networked

ensembles, the concept of shared social instruments, and the ways in which the

previously described research can be used in these ensembles.

The primary contributions of these efforts include (1) the development of

several new open-source interfaces for live computer music, and the examination

of the effect that online communities have on the evolution of musical

interfaces; (2) the development of a novel approach to search based interactive

musical agents; (3) examining how networked music ensembles can provided

new forms of shared social instruments.

 v

ACKNOWLEDGEMENTS

The author wishes to express sincere appreciation to all those who have helped

with the realization of this thesis. The work that follows is the culmination of the

last ten years of my life, and was made possible by the many artists, colleagues,

and friends who have inspired and helped me along the way.

Ajay Kapur, thank you first and foremost for your exceptional tutelage in not

only my research, but also my life. I would not be here today if it was not for

your insight, advice, mentorship, and motivation. You have the amazing gift of

seeing the potential in those around you, and the genius to help us realize that

potential.

Jordan Hochenbaum, thank you for all the projects, music, and art that we have

worked on over the last few years, for all the incredible projects we will work on

in the coming years, and most of all for being an incredible friend. Our work as

Flipmu has been a source of many of the ideas in this thesis, and I look forward

to all the coding, installation, music, and general madness that are to come. You

are an incredible musician, amazing artist, and constant source of inspiration.

Many thanks to Dugal McKinnon, Nick Collins, Michael Norris, Martijn

Zwartjes, Jim Murphy, Brad Hill, Tim Exley, Jason Edwards, Michael Darling,

and Johnny McClymont for their help, ideas, and advice along the way. I would

not have been able to complete this thesis without you sharing your expertise

and thoughts.

Much of this thesis is the direct result of my experiences performing with other

musicians in live computer music ensembles. Thank you to The KarmetiK

Machine Orchestra; whom’s broad musical vision allowed me to perform both

with incredible musicians, and a shared robotic instrument. Thank you to

Trimpin, Curtis Bahn, and Tomie Hahn for sharing your incredible work. Your

vi

ideas have helped to inspire my own efforts. Thank you to Jeffery Lufkin for

being a part of the genesis for many of the ideas found in this thesis.

Lastly, thank you to my family for their support throughout this journey. To my

parents for their encouragement and support; to my incredible and loving wife

Liv, for being my source of strength and my muse; and to Rory, for being an

inspiration for my writing, and helping me through many challenging

discussions, thoughts, and edits.

For any of my friends who I have most regrettably left out of these

acknowledgments, please know that you have my deepest gratitude for your help.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 INTERACTION CONTEXTS .. 2

1.2 PERSONAL MOTIVATIONS .. 5

1.3 THESIS OVERVIEW ... 7

CHAPTER 2 COMMUNITY BASED DESIGN: ITERATIVE MUSICAL INTERFACE

DEVELOPMENT .. 11

2.1 GOALS AND MOTIVATION .. 12

2.2 INTERFACE DEVELOPMENT PRIOR TO ONLINE COMMUNITIES 13

2.3 COMMUNITY BASED DESIGN ... 15

2.4 ITERATIVE DEVELOPMENT .. 16

2.5 BACKGROUND CASE STUDIES ON THE MONOME ... 16

2.5.1 Monome .. 17

2.5.2 The computer musican as digital luthier ... 22

2.6 NEW WORK: ARDUINOME AND CHRONOME ... 22

2.7 MONOME, TENORI-ON COMPARISON ... 28

2.8 DISCUSSION .. 29

CHAPTER 3 ARMY OF ME: AUTONOMOUS AGENTS AND THE SOLO PERFORMER 33

3.1 GOALS AND MOTIVATION .. 34

3.2 BACKGROUND .. 35

3.2.1 Twentieth century composers .. 36

3.2.2 Computer aided algorithimic composition .. 38

3.2.3 Interactive musical agents ... 40

3.2.4 Contemporary systems .. 41

3.3 DEFINE THE CHALLENGE .. 42

3.4 IMPLEMENTATION: LIVE PERFORMANCE SYSTEMS .. 43

3.4.1 Search based systems ... 44

3.4.2 Considerations for use with improvisation .. 45

3.4.3 S2MP: a similarity matching algorithm ... 46

3.4.4 Training the system, and linking controller data 47

3.4.5 Implementation of the system for use in performance 49

3.4.6 Plugin design ... 53

Table of Contents

viii

3.4.7 Analysis .. 55

3.4.8 Challenges with using search based systems .. 64

3.5 DISCUSSION ... 65

3.5.1 Architecture of an interactive musical agent .. 65

3.5.2 The army of me .. 67

CHAPTER 4 THE ART OF COMMUNICATION: SHARED INSTRUMENTS AND

NETWORKED MUSICAL ENSEMBLES ... 69

4.1 BACKGROUND .. 72

4.2 PHYSICALITY IN COMPUTER MUSIC PEFORMANCE, AND EXTENDING

SHARED CONTROL TO MUSICAL ROBOTICS ... 74

4.3 MUSICAL ROBOTICS AND THE KARMETIK MACHINE ORCHESTRA 76

4.4 COMPOSITIONS AND PERFORMANCES ... 78

4.4.1 January 27, 2010 REDCAT - The Machine Orchestra 78

4.4.2 August 14, 2010 – Karmetik Collective .. 82

4.4.3 April 12, 2012 REDCAT – Samsara The Machine Orchestra 84

4.5 DISCUSSION ... 86

CHAPTER 5 CONCLUSION .. 89

5.1.2 Improvisation in live computer music .. 94

5.2 CONTRIBUTIONS .. 96

5.2.1 Online Community based iterative design and the Chronome 96

5.2.2 S2MP and an interactive system for continuous control 97

5.2.3 Shared social musical robotics .. 98

5.3 FUTURE WORK AND PHILOSOPHY .. 98

5.3.1 Bridging the gap between performer and audience 99

5.3.2 Final thoughts ... 102

APPENDIX A RELATED PUBLICATIONS .. 105

APPENDIX B CHRONOME TECHNICAL FILES ... 107

APPENDIX C COMPARATIVE SURVEY OF LOCAL NETWORK ENSEMBLES AND SOLO

LIVE COMPUTER MUSIC .. 121

APPENDIX D PROBABILITIES AND MARKOV MODELS .. 131

APPENDIX E SEARCH-BASED ALGORITHMS ... 145

APPENDIX F REGRESSION SYSTEMS .. 151

APPENDIX G COMPARISONS AND REQUIREMENTS ... 157

Table of Contents

ix

BIBLIOGRAPHY .. 167

xi

LIST OF FIGURES

Figure 1: Tools used in the evolving roles of the performer composer 7

Figure 2: Overview of the thesis layout ... 8

Figure 3: Iterations of the Monome ... 17

Figure 4: Commercially developed Native Instruments Maschine, Akai APC 40,

Novation Launchpad, and Ableton PUSH ... 21

Figure 5: The first Arduinome. Built using Monome 40h buttons 24

Figure 6: Chronome prototype .. 26

Figure 7: BrickTable version I, II, and III ... 27

Figure 8: Monome left and Tenori-On right ... 28

Figure 9: Interactive musical agent for modeling continuous control data from

musical interfaces ... 35

 Figure 10: Controller data from both performers stored as 2-D and flattened 1-D

collections ... 47

Figure 11 Search algorithm training algorithm. The two performers are sampled by

the plugin, and performer B’s current item set is linked with Performer A’s

previous item set. ... 48

Figure 12: Stored performances for S2MP algorithm. Sequential item sets for a

performance are stored as Seq2(n). Each jth item set represents both Performer A

and B, and has a MIDI buffer associated with it. ... 49

Figure 13: Constraining the S2MP search to current position within a bar. This

represents a good compromise between efficiency and search as it cuts the

number of compares and is likely to return good matches. 50

Figure 14: Mapping score matrix. The intersection is taken between every ith item set

in Seq1 and the jth item set in the current sub-sequence from Seq2(n). 51

Figure 15: Performance diagram of search algorithm. Sampling Performer A along

with the current agent output generates the input sequence. This is then

compared against sub-sequences within the database, providing similarity

scores. The MIDI buffer is taken from the sub-sequence with the highest

similarity score, and then appended to the plugin’s MIDI output. 53

Figure 16: Continuous Control S2MP plugin ... 54

Figure 17: Parsing MIDI buffers into sample windows .. 54

List of Figures

xii

Figure 18: Routing setup for S2MP training in Ableton Live, and MIDI CC training

data ... 56

Figure 19: Target CC sequence (top) vs. Output sequence (bottom). The output

sequence didn't match the target sequence in the first bar, but otherwise was a

perfect match. ... 56

Figure 20: Initial S2MP plugin test - The training sequence length was increased from

one to four bars. ... 57

Figure 21: Similarity percentage between output sequence and target sequence based

on Mapping / Order weighting ... 59

Figure 22: Mapping / Order - Average distance of output sequence from the target

sequence .. 60

Figure 23: Factor increase of discontinuities between output and target sequence 61

Figure 24: Similarity percentage between output sequence and target sequence based

on number of item sets in the input sequence, and number of trained transitions

 .. 62

Figure 25: Increasing numbers of item sets - average distance of output sequence

from the target sequence for input sequences .. 63

Figure 26: Factor increase of number of discontinuous matches by sequence size 64

Figure 27: Different design approaches for interactive musical agents. Clockwise

from top: (A) All inputs affecting the model’s output; (B) The model is only

affected by itself, and live input is applied as a fitness function; (C) Inputs are

split into simpler individual models, all acting independent of each other 66

Figure 28: Network topology of The Machine Orchestra ensemble 70

Figure 29: The League of Automatic Composers 1980 ... 72

Figure 30: View of the marimbas from the musical robot Tammy 76

 Figure 31: The Machine Orchestra at REDCAT 2010 ... 79

Figure 32: The Machine Orchestra performing Samsara 2012 85

Figure 33: The Monome can be both highly programmable or immediately usable .. 90

Figure 34 Preference performing solo computer music vs. networked ensembles .. 122

Figure 35: A Markov Model representing the transition probabilities for the set of

notes C through A. The notes on the left represent the source states, and the

notes along the top are destination states. The values in the matrix are the

transition probabilities for moving from a source state to a destination state. 133

Figure 36: Algorithm for determining the next destination state in a Markov Model

given a row of transition probabilities .. 134

List of Figures

xi

Figure 37: 2nd order Markov Model .. 135

Figure 38: 2nd order Markov Model shown as 1st order Markov Model 135

Figure 39: The description of a transition probability, containing the Source State,

Destination State, and the number of times the transition has been observed

during training .. 137

Figure 40: Markov source states stored as tree structure. This allows for searching

variable length source state sequences. .. 137

Figure 41: Longest matching source state sequence for input sequence F G D C ... 138

Figure 42: Longest matching source state sequence for input sequence G A D C .. 138

Figure 43: Training diagram of Markov Model .. 141

Figure 44: Performance diagram of Markov Model .. 142

Figure 45: Input to Markov Model that does not match any previously seen source

state .. 143

Figure 46: Matching sequences return the next stored state form the database 146

Figure 47: Matching sequences return values from a second linked sequence 147

Figure 48: Matrix with ideal rating scores comparing input sequence along the

columns, and scored sequence down the rows ... 148

Figure 49: Insertion test: this tests for notes played by the performer that are not in

the original score .. 149

Figure 50: Deletion test: this tests for notes from the score that are skipped over by

the performer ... 149

Figure 51: Substitution test: this tests for notes substituted by the performer 149

Figure 52: Repetition test: this looks for notes from the score that are repeated by the

performer .. 149

Figure 53: Constrained search to speed up sequence comparison 150

Figure 54: Basic linear regression .. 152

Figure 55 Similarity between linear regression and basic sequential ANN 152

Figure 56 Diagram of multi-variate linear regression model .. 154

xv

LIST OF TABLES
Table 1 Reasons for solo or group performance preference .. 124

Table 2 Descriptions of each musician's roll within the ensemble 125

Table 3 Description of new performance modes afforded by computer ensembles 127

Table 4 Descriptions of the challenges of performing in computer ensembles 129

Table 5 Overview of algorithms for designing interactive musical agents 164

1

Chapter 1

INTRODUCTION

“… although the actions of the traditional acoustic musician are familiar to

an audience, the attribution of human agency to a computer may be more

problematic. Schloss (2003) fears an excess of ‘magic’; however, the

enculturation of electronic music may automatically make new processes

acceptable (Nick Collins 2003). Ultimately, the balance between innovation

and tradition might be best served by a conception of ‘the possibility of a

music of technology with the clear imprint of the human will rather than the

human presence’ (Emmerson 2000).”

 — Nick Collins (2006)

Live music is a social art that allows humans to come together and share a

collective experience. This experience is not only comprised of the sounds we

hear at these events, but also elements as diverse as: a performer’s virtuosity, and

compositional skill; social interaction between the musicians performing, and

between the musicians and the audience; the social identity that a specific event

can imply about an individual; and the potential to experience something both

exceptional, and ephemeral. The gestalt of this experience is a complex socio-

musical interaction between musicians and the audience, made all the more

complex by individual musical styles placing emphasis on different elements of

these experiences.

While live computer music adheres to some of these existing expectations, it also

provides the opportunity to create entirely new elements, and re-evaluate the

Chapter 1 - Introduction

2

importance of others. For example, a computer’s ability to automate and

endlessly repeat a task creates an opportunity to expand the expressive potential

of a single musician. The computer’s ability to automate tasks enables a musician

to simultaneously control more than one instrument; however, this “out-

sourcing” of musical control may make the human agency within a performance

difficult for an audience to discern.

So, what then is the role of human musicians in live computer music? Are we to

be conductors, or informed musical selectors, who merely point our computers

in a musical direction, leaving the details of the sound to the machines?

Alternatively, are we required to adhere to existing expectations of live acoustic

music, and only play those sounds that we can physically produce or actuate?

This thesis proposes that neither of these extremes are the answer. Instead, live

computer music has revolutionized what it means to be a performer composer

by providing a unique opportunity for performing musicians to simultaneously

exist in many different roles. In order to realize live computer music in this way,

current research is examining the augmentation of the computer as an

instrument. How do we interface with our computers during performance? How

do we musically leverage their computational power to expand what we can do

as individual musicians? How do we perform with these systems as groups, or

ensembles?

1.1 INTERACTION CONTEXTS

The different roles that live computer music affords performers is key to

understanding these questions, and to understanding why live computer music is

an evolution of the performer composer. This section examines existing

attempts to understand and describe the different roles that musicians play

during a performance. The aim of this section is to derive a taxonomy that will

describe these different performance roles, and allow for comparison and

contrast between live acoustic music and live computer music.

Chapter 1 - Introduction

3

Some of these questions have been addressed when the field of live computer

music crosses paths with human computer interaction (HCI) research. Serji Joda

makes the case that music performance’s high bandwidth makes it a fertile

ground for examining the way in which humans interface with computers (Jordà

et al. 2007). He describes how music requires “a very precise temporal control

over several multi-dimensional and continuous parameters, sometimes even over

simultaneous parallel processes”. He goes on to describe that while traditional

instruments require the performer to physically control these many different

parameters, digital instruments allow for the human to instead “direct and

supervise the computer processes which control these details”. A system like this

allows a human musician to perform in several different contexts: playing low-

level details like notes and timbre control, or higher-level control such as effects

or score-level events.

Research has also looked at how musicians control these complex instruments

within the context of cybernetics, i.e., the study of control and communication

(Pressing 1990). A cybernetic view of traditional instruments would show the

transfer of information between the human musician and the acoustic

instrument as being dependent on the energy within a physical gesture. Pressing

shows this dependency as a closed loop with the body actuating an instrument’s

interface, the instrument producing sound, and finally the ears feeding the sound

back to the human performer. He describes this as a “one-to-one response

between actions of the performer and the resulting sound”, calling it a stimulus-

response model. Pressing then describes how electronic instruments provide a

different model that focus on the processing, shaping or effecting of either the

sound or control source. This implies a distancing, or more diffuse mapping

between a musician’s physical actions and the sound being produced by the

instrument. This model of instrument interaction relies on the idea of human

musicians supervising or influencing a musical system.

Musical interfaces that afford these types of models are described as “composed

instruments” (Schnell and Battier 2002). The composed instrument is defined by

the decoupling of the “sound producing part, and the gestural performance

Chapter 1 - Introduction

4

part”. Schnell suggests that this creates a representational system, which links the

human performer to a set of complex algorithms in the computer. He states,

“composers use the representational nature of the system to define events, write

scores and specify the computational and algorithmic layers while performers

can apply gestural controls and adjust parameters”. This thesis argues that the

contemporary computer composer is also increasingly the performer. This would

imply that contemporary computer musicians define a musical system, write a

piece of music, and perform all aspects of that music both at the lower event

level, as well as at higher representational levels.

These different levels of control can be seen as a taxonomy of interaction

contexts, with modern computers affording musicians the ability to fluidly shift

between them, creating a rich and expressive improvisation space. Wanderley

and Orio describe seven of these interaction contexts, with the first three having

relevance to the performance spaces discussed so far:

“1. Note-level control, or musical instrument manipulation (performer-

instrument interaction), i.e., the real-time gestural control of sound synthesis

parameters, which may affect basic sound features as pitch, loudness and

timbre.

2. Score-level control, for instance, a conductor’s baton used to control

features to be applied to a previously defined—possibly computer

generated—sequence.

3. Sound processing control, or post-production activities, where digital

audio effects or sound spatialization of a live performance are controlled in

real time, typically with live-electronics (Wanderley and Orio 2002).”

These levels of control provide a coarse description of the different contexts in

which a computer musician performs, with the potential for computer musicians

to occupy all three of these interaction contexts simultaneously. Indeed,

combinations of these states can be seen in other live computer music

taxonomies (Croft 2007). A computer musician may be playing an instrument,

note-for-note, while also allowing a program to generatively process input of the

Chapter 1 - Introduction

5

sound from a microphone. Finally, through the push of a single button the

computer musician can load a new representational system, and instantly change

sounds, instruments, and generative processes. This would be similar to every

member of an orchestra playing their instrument, while being able to conduct

their own small section of the ensemble, and simultaneously effecting the sound

reinforcement within the performance space.

1.2 PERSONAL MOTIVATIONS

The following section presents my motivations for undertaking this research, and

provides some context for the work that follows. This thesis argues that while

live computer music is related to existing forms of live acoustic music, its unique

use of interaction contexts constitutes an evolution of the performer composer.

This argument has emerged over the course of my own experiences in

performing live computer music, as well through conducting the various research

projects described in this thesis.

While my background in composing electronic music started around 1998, it

wasn’t until I attend CalArts in 2005 that my first attempts at live computer

performance were made. The aim of these early attempts was to perform live

computer music with as much detail and complexity as my fixed compositions or

tape music pieces, while simultaneously allowing for the kinds of improvisation

and musical dialogues that I experienced in acoustic instrumental performance.

This goal has proven to be extremely challenging, and remains the focus of much

of my work.

My initial attempts at performing improvisational live computer music strived to

achieve the same level of complexity and density as my fixed media pieces. It

soon became clear that it was unrealistic to improvise music using only the note-

level context, and expect it to be as detailed as a fully realized, multi-part

composition that took hours, days, months, or even years to compose. That level

of complexity required many parts, and would necessitate an ensemble of

musicians to perform using acoustic instruments. However, even an acoustic

Chapter 1 - Introduction

6

ensemble would find it difficult to improvise multi-part music without knowing

each of the other performers extremely well. This familiarity with each other as

musicians and performers, equates to being aware of the basic ideas and musical

styles that might be performed. In other words, successful ensemble

improvisation in part relies on having a prior understanding of the potential

musical space, and not on the immaculate conception of a fully formed piece of

music.

With this in mind, I began to develop tools that used prerecorded material as the

musical space, and enabled improvisation in not only the note-level context, but

also the sound processing, and score-level contexts. This essentially allowed note

level interactions on score level musical material, in the sense that the

prerecorded material could be thought of as sections of a composition. This

process feels very different from re-ordering a written score in that it alters both

time and timbre, and is capable of creating wholly new musical ideas through the

reuse of existing musical material. This ability to use existing music to create new

music is similar to the DJ remix, except that the process is happening live and

can therefore allow for improvisation. Performing in this way enabled me to

explore musical ideas that had not been possible when I played acoustic

instruments, and I began to see an evolution of the performer composer.

Chapter 1 - Introduction

7

1.3 THESIS OVERVIEW

Figure 1: Tools used in the evolving roles of the performer composer

The following chapters discuss the development of tools for live computer

music that are key components in the evolution of the performer composer, and

discuss how these tools enable new ways of navigating the previously mentioned

interaction contexts. These Chapters present the primary contributions of this

thesis, and are presented as separate projects (see Figure 2). Although these

projects are related, and together form the basis of the argument that live

computer music has caused the performer composer to evolve into something

new, they are separate enough to warrant being dealt with individually. With this

in mind, the following chapters each contain a separate history section. As the

topics covered by this thesis are broad, it is my hope that by organizing the thesis

in this way, the information presented will be relevant to each section and

increase the overall readability of the thesis.

The Evolution of The Performer Composer

Hardware
Development

Agent-Based
Software

Development

Networked Music
Ensembles

Online communities and
resources help to drive
innovation in interface
development.

These developments provide
new tools for computer
musicians.

Each computer musician
then uses these tools to
forge their own link between
the physical interface and the
computer mediated
instruments.

Each computer musician
creates their own custom
instrument.

Interactive musical agents
hold the potential for
musical dialogues between
the musician and the
machine.

This interaction transforms
physical gestures into a
distribution of the
performer’s musical intent.

These systems represent an
extension of the performer,
and turn the instrument into
a system with two way
interaction.

Network music utilizes all
the tools available to
computer musicians, and
allows for new forms of
interconnected musical
performance.

This can be seen in the use
of shared robotic
instruments, and the
communication of musical
data over the network.

These ensembles allow
performer’s to be in multiple
interaction contexts, while
sharing musical dialogues
between musicians and
machines.

Chapter 1 - Introduction

8

Figure 2: Overview of the thesis layout

Musical interfaces represent the bridge between a human musician and the

virtual computer instrument. Each computer musicians is capable of creating a

unique mapping for their interface that defines how they will use the different

interaction contexts. Chapter 2 examines the iterative development of new

interfaces for live computer music, and the impact that online communities who

share information about these interfaces has on innovation and the spread new

ideas. The Monome is presented as an example of this process.

Chapter 3 discusses the development of systems that can help extend the

influence of single actions from a computer musician. These systems can help to

distribute the performer’s musical intent into the computer along multiple paths,

creating new forms of improvisation, and furthering the evolution of the

performer composer. These types of systems are described as interactive musical

agents, and hold the potential to act as extensions of computer musicians, or

1. Introduction

Interaction
Contexts

Thesis
Overview

Personal
Motivations

5. Conclusion

Summary Contributions The New Performer
Composer

Future Work

2. Community Based
Iterative Interface

Design

Background of
Musical Interface

Design

Case study of
Monome

Arduinome, and
Chronome

3. Interactive
Musical Agents

Background of
Algorithms in Music

Implementation of
S2MP VST

IMA
Architecture

4. Networked Music

Background of
Networked Music

Shared Social
Instruments

Review of Machine
Orchestra pieces

Chapter 1 - Introduction

9

virtual representations of their personas. This chapter also presents a novel

approach to search based interactive musical agents by extending existing work

with similarity-matching algorithms.

Chapter 4 examines performing as a local networked music ensemble, and the

use of shared social robotic instruments. Several pieces by The Machine

Orchestra (A. Kapur et al. 2011) are described, and illustrate how these

ensembles afford both the more traditional socio-musical interaction found in

acoustic ensembles, and the use of interaction contexts presented earlier.

This is followed by a concluding chapter that presents a summery of this thesis’

main contributions, examines the new performer composer and what it means to

improvise as a live computer musician, and discusses the relationship between

the performer and the audience.

11

Chapter 2

COMMUNITY BASED DESIGN:

ITERATIVE MUSICAL INTERFACE

DEVELOPMENT

“The controller is the first component of the digital instrument chain.

Controllers constitute the interface between the performer and the music

system inside the computer, and they do so by sensing and converting

continuous and discrete analog control signals coming from the exterior into

digital messages or data understandable by the digital system.”

 —Serji Jorda (2005)

Like their acoustic instrument counterparts, interfaces are the physical

component of the live computer music instrument; however, interfaces are also

fundamentally different from acoustic instruments in that they are not the

sound-producing agent themselves, but rather the translator between the physical

action of the musician and the sounds generated by the computer. This

decoupled relationship between sound actuator, and sound generator, allows

musicians to map a physical gesture to any sound they wish to control. These

custom mappings are an essential component of live computer music, enabling

the performer to have control over a multitude of virtual instruments, and play

an integral role in the evolution of the performer composer. In order to further

this exploration of custom mappings between interface and computer, it is

important that computer musicians have resources available to them for

developing and customizing their interfaces; the advent of online communities

Chapter 2 - Community based design: Iterative musical interface development

12

such as Arduino (Banzi 2008) and Monome1 has now made such resources

available.

This chapter discusses how online communities have changed the way in which

interfaces for live computer music are designed and developed, and how this

change has led to an iterative development process that adds new functionality to

existing interfaces. The chapter begins by describing the evolution of hardware

interface design for computer music, and how the emergence of online

communities has altered the development cycle of these types of interfaces. The

idea that public access to information at these websites has lead to a community

driven iterative approach to interface design is then presented in a case study of

community-based design which examines the Monome interface and derivative

interfaces, its design cycles, and the different roles that people take on within the

online Monome community. Following these examples will be the presentation

of two new interfaces: the Arduinome, created by the author in collaboration

with Jordan Hochenbaum, Brad Hill, and Ben Southall; and the Chronome,

created by the author. Both of these interfaces are themselves derivatives of the

Monome, and are examples of iterative interface development stemming from

online communities. Finally, a comparison between the Monome and the

Tenori-On will be presented to explore the differences between interfaces tied to

online communities, and interfaces developed by commercial vendors.

2.1 GOALS AND MOTIVATION

In my own practice of live computer music, it has been necessary to develop

custom iterations of existing interface controllers in order to achieve specific

musical interactions. Basing the design of these interfaces on existing devices

expedites the implementation of the technology, in turn allowing for a greater

focus on musical performance practice. Additionally, making the modifications

available online allows other individuals to further modify or re-contextualize

these instruments. This process of modifying an interface, and then providing

1 Monome - http://monome.org/

Chapter 2 - Community based design: Iterative musical interface development

13

online technical information about the changes, has greatly impacted my own

implementation of musical interfaces for live computer music, often presenting

surprising new modes of use.

The aim of the following research is to examine online communities, and the

impact these have on the development of new interfaces for live computer

music.

2.2 INTERFACE DEVELOPMENT PRIOR TO ONLINE

COMMUNITIES

Performing live computer music requires an interface between the human

musician and the computer that is creating the sound. Even the act of playing

back an audio file requires the use of a number of physical and virtual interfaces.

These interfaces represent an opportunity to explore new mappings between

physical actuators and sound engines. These mappings can be realized in many

different ways, including live-coding (N. Collins et al. 2003; Wang and Cook

2004), extended laptop instruments such as Hans Koch’s piece bandoneonbook2

and the framework Small Musically Expressive Laptop Toolkit (SMELT)

(Fiebrink et al. 2007), performing with an external interface (Cook 1992;

Mathews and Schloss 1989), or using the computer solely as a sound generating

device, or data router to external musical robotics (Kapur 2008). Although the

computer itself provides an existing interface in the form of a screen, a keyboard,

and a mouse, it certainly does not represent the ideal tool for leveraging the

human body in live computer music performance. New media artist Golan Levin

even went so far as to say that, “the mouse is an extremely narrow straw through

which to suck all of expressive human movement”(Levin 1999). Computer

musicians such as Max Matthews, with the Radio Baton (Mathews and Schloss

1989), Nicolas Collins in his work with the Trombone Controller (Nicolas

Collins 1991), Michel Waisvisz with the Hands (Krefeld and Waisvisz 1990), Dan

Trueman with the BoSSA (Trueman and Cook 2000), Perry Cook with the

2 Hans Koch - http://hans-w-koch.net/performances/bandoneonbook.html

Chapter 2 - Community based design: Iterative musical interface development

14

SqueezeVox (Cook and Leider 2000), Curtis Bahn with the sBass (Bahn and

Trueman 2001), Joe Paradiso with gestural sensors (J. Paradiso 2004; J. A.

Paradiso 1999), and Sergi Jorda with the Reactable (Jorda et al. 2005), all have

created musical instruments that explore the different ways in which a physical

interface can be map human actions to computers. Through these mappings

interfaces may extend the creative potential of existing instruments, and/or

provide entirely new forms of physical interaction with sound.

Traditionally, these experiments in interface design and parameter mapping were

shared at institutions such as MIT’s Responsive Environments Group, 3

Amsterdam’s Studio for Electro Instrumental Music (STEIM), 4 Stanford’s

Center for Computer Research in Music and Acoustics (CCRMA),5 UC Berkley’s

The Center for New Music and Audio Technologies (CNMAT),6 Princeton’s

Soundlab7 and France’s IRCAM8. In an effort to provide a common space for

these separate research institutions to come together, The International

Conference on New Interfaces for Musical Expression (NIME)9 was founded on

1 April 2001. With the establishment of NIME, research into new musical

interfaces coalesced into a global community focused not only on building new

interfaces but also on examining how to make better ones (Cook 2001; Cook

2009; Arfib, Couturier, and Kessous 2005; Van Nort 2009), as well as how to

evaluate their effectiveness and potential (Kiefer, Collins, and Fitzpatrick 2008).

The NIME community built off well-established methodologies developed in

design fields such as human-computer interaction (HCI) (Drummond 2009;

Fiebrink et al. 2010), design theory (Birnbaum et al. 2005; Malloch et al. 2006)

and tactile feedback for performers also known as haptics (Berdahl, Steiner, and

Oldham 2008). While the research conducted at these institutions and

3 MIT - http://media.mit.edu/resenv/
4 STEIM - http://steim.org/steim/
5 CCRMA - https://ccrma.stanford.edu/

6 CNMAT - http://cnmat.berkeley.edu/
7 SOUNDLAB - http://soundlab.cs.princeton.edu/
8 IRCAM - http://ircam.fr/

9 NIME - http://nime.org/

Chapter 2 - Community based design: Iterative musical interface development

15

conferences of interface design is extensive, prior to the emergence of online

communities, publicly available information was primarily static, and artists

outside of these academic circles had no global space in which to easily interact

and discuss these ideas. However, all of this has changed with the advent of

online communities. Both the ways in which musical interfaces are developed,

and the ways in which individuals participate in the development process, are

now intertwined with online access to information.

2.3 COMMUNITY BASED DESIGN

Online communities accelerate the development cycle of new musical interfaces,

allowing an interface to rapidly evolve over a number of iterations. These

iterative development cycles are made possible through public forums, and

access to information.

Community forums provide a space for artists to share design ideas, and to

discuss the different ways in which they use the interfaces. This public

interaction provides important feedback to developers, and allows for the way in

which the interface is being used during performances to influence the

development of future iterations. Forums also provide a space for novices and

experts to come together. This allows novices to learn from the accumulated

wealth of knowledge provided by community experts, acting as a public

educational resource.

Communities also provide educational resources through public access to

technical information. Websites provide a centralized repository of information

in the form of source code, wikis, and through searching archived forum threads.

All of these resources provide access to current technical information, as well as

an archived history of the development of the interfaces. New developers can

use this information to create and modify existing interfaces, thereby introducing

new ideas and functionality back into the community.

Chapter 2 - Community based design: Iterative musical interface development

16

2.4 ITERATIVE DEVELOPMENT

Computer science ideas such as open-source development and version-control

systems provide public access to a code repository. These repositories allow

individuals to learn from the information, or change the information to alter the

functionality of the software. With the maturity of microcontroller platforms

such as Arduino, analogous ideas within hardware development have become a

reality and can now be applied to the development of new musical interfaces.

These ideas have allowed for the iterative design of musical interfaces to take

place. Online access to schematics, firmware and software provides the

information necessary for a group of individuals to augment a device. These new

devices can be shared with the online community, and other community

developers can in turn use the altered interface as the basis for further

augmentations. This iterative process may fork into separate and unique

development streams as new functionalities are explored. These divergent

iterations may also converge later, combining functionality into new devices that

represent a hybrid of components from previous generations.

This development is driven by a small number of “seed” artists who contribute

alternate versions of an interface through iteratively modifying the functionality;

at the same time, a larger group of artists access information about these

interfaces in order to build, customize and implement existing versions in their

own projects.10

2.5 BACKGROUND CASE STUDIES ON THE MONOME

This section examines the development of the Monome, and Monome derivative

interfaces. Each of the interfaces discussed in this section have benefitted from

10 For more technically detailed information regarding the iterations of the Monome see

<http://flipmu.com>; Owen Vallis, Jordan Hochenbaum and Ajay Kapur, “A Shift Towards

Iterative and Open-Source Design for Musical Interfaces,” In Proceedings of NIME (Sydney,

Australia: 2010).

Chapter 2 - Community based design: Iterative musical interface development

17

an online community providing information regarding design, development,

construction, and use. The results of this have been not only new interfaces with

additional functionality, but also new mappings between the performer’s physical

actions and the computer mediated instruments. These changes afford live

computer musicians with greater control, enable new methods of simultaneously

performing in multiple interaction contexts, and provide tools that further evolve

the role of the performer composer.

2.5.1 MONOME

The original Monome serves as a great example of online community-based

iterative design. Members of the online Monome community have led the

development of numerous clones and derivative devices such as the Arduinome,

the Lumi, the Octinct and the Chronome (See Figure 3). These derivative

interfaces have added new functionalities to the original Monome interface, and

are shared with the online community to provide the basis for future

modifications. The following section briefly describes the development history

of these iterations.

Figure 3: Iterations of the Monome

2.5.1.1 MONOME 40H

Created in 2005 by Brian Crabtree, the original Monome is a two-layer NxN

device consisting of a matrix of silicon buttons situated over a matrix of Light

Emitting Diodes (LEDs). The Monome’s minimal interface allows a user to

quickly gain an understanding of how it works. This immediate understanding

leads to greater exploration as users begin to augment the Monome’s

Chapter 2 - Community based design: Iterative musical interface development

18

functionality and thereby increasingly customize their connection---through the

interface---to various software instruments.

Upon releasing the original interface, Monome created an online community

providing users with a place to discuss and share their custom software

programs, and provided open-source access to technical documentation,

firmware, and schematics. Monome’s decision to provide public access to the

original firmware source code, allowed an early user of the Monome 40h to add

support for LED brightness control.11 This change in the firmware represents

one of the earliest community modifications to the original Monome, with this

feature being officially added to the interface in later versions. Soon after the

original Monome was released, the author and collaborators ported the firmware

to the open source hardware platform Arduino, providing a new platform on

which to modify and hack the interface. This iteration of the Monome was called

the Arduinome, and will be discussed in detail in section 2.6.1.1. Other Monome

derivative devices such as the LUMI have used the Arduinome as the bases for

their own development.

2.5.1.2 LUMI

The LUMI (Gao and Hanson 2009) is an interface consisting of 32 pressure

buttons combined with custom software and a touch screen. With the added

functionality of pressure data from the 32 buttons, the LUMI constitutes a major

change to the original Monome interface. Created at Stanford in 2009, the

pressure sensitivity was added by modifying the ArduinomeSerial to OSC

convertor, and by implementing a variable pressure sensor using conductive

fabric (Freed 2008). In addition, several continuous input devices were added,

such as potentiometers, infrared (IR) sensors, and a touch screen. Although this

work represents a substantial extension of the Monome’s functionality, the

project is not fully integrated into the larger Monome community. This could be

due to several factors, including custom firmware, custom serial protocols,

11 “Monome - Per Led Intensity, Video” -

http://post.monome.org/comments.php?DiscussionID=913.

Chapter 2 - Community based design: Iterative musical interface development

19

unreleased build information or the larger Monome community’s unfamiliarity

with the work. It is possible that because of these reasons the LUMI’s significant

modifications have not yet had as broad an impact on the iterative design

process as they potentially could. One of the aims of the inclusion of these ideas

into the Author’s Chronome iteration is to make these modifications more

readily available to the larger Monome community.

The LUMI exemplifies the idea of iterative online community based interface

design. The developers modified the Arduinome Serial-to-OSC application,

which in turn was a modification of the original Monome software. Furthermore,

the LUMI developers describe how access to information on both the

Arduinome and Adrian Freed’s work made, “…it possible to rapidly prototype

the interface in the short span of a month” (Gao and Hanson 2009).

2.5.1.3 OCTINCT

Almost as soon as the original Monome 40h interface was released, members of

the Monome community began to contemplate the possibility of adding RGB

(multi-color) LEDs to the device. The addition of color mapping to individual

buttons would create an additional dimension of visual information, allowing

performers to map a richer cognitive connection to the controller. One of the

first successful iterations to include this was the Octinct, developed by Brad Hill,

Jonathan Guberman and Devon Jones. The Octinct information was not initially

shared with the Monome community. This stalled the progress of the project, as

community developers did not have access to the information needed to build

their own Octinct interfaces. In 2008 Jonathan Guberman, who developed the

original Octinct firmware, gave Brad Hill permission to make all the code

publicly available. Brad Hill has since posted the technical information on his

own blog and announced its availability to the Monome community, including

making several updates to the firmware and hardware. Most recently, a group of

Chapter 2 - Community based design: Iterative musical interface development

20

artists from the Monome community12 have been collating all related Octinct

information and begun to further refine the original design.

Again, the development of the Octinct shows the effect of online communities

on interface design. The original Octinct was developed by a small group of

talented artists but had no way of reaching a larger user base. Once information

about the interface was shared, interested members of the Monome community

used it as the basis for further interface development, in turn sharing their own

modifications back with the community. Both the original Octinct, and these

later modifications, were used as resources by the author during the development

of the Chronome (see section 2.6.1.2).

2.5.1.4 COMMERCIAL ITERATIONS

While the creation of the previously described Monome, and Monome derivative

interfaces have all been related to the online community, there has also been

development of button matrix interfaces from commercial manufacturers. A

famous example is the Tenori-on developed in 2005 by Yamaha and artist

Toshio Iwai (Nishibori and Iwai 2006). This device is discussed in greater detail

in section 2.7. In 2009, Novation released the Launchpad13 interface, and Akai

released the APC 40,14 both of which featured Monome style grids of push

buttons, and have since seen wide spread support from commercial music

software such as Ableton. More recently, Native Instruments has added RGB

color support to its Maschine interface,15 and Ableton has released an RGB

button matrix interface called the PUSH16 (see Figure 4).

12 Start:octint [lab] - http://hangar.org/wikis/lab/doku.php?id=start:octint.
13 Novation Launchpad - http://novationmusic.com/products/midi_controllers/launchpad

14 Akai APC40 - http://akaipro.com/apc40
15 NI Maschine - http://native-instruments.com/en/products/maschine/production-

systems/maschine

16 Ableton PUSH - http://ableton.com/en/push

Chapter 2 - Community based design: Iterative musical interface development

21

Figure 4: Commercially developed Native Instruments Maschine, Akai APC 40, Novation

Launchpad, and Ableton PUSH

While it is difficult to confirm that the devices developed by the Monome

community have directly inspired these commercial interfaces, it is hard to

believe that it is merely coincidence that several companies would spontaneously

begin to make these Monome style grid controllers. This is not to sound negative

about the commercial availability of these devices, in fact, quite the opposite.

The development of these devices has not only made these interfaces more

readily available to musicians, but has also added new functionality such as dual

color LEDs from the Launchpad and the APC40, RGB LEDs from the

Maschine and PUSH, and continuous control sources from almost every

interface. Additionally, members of the Monome community have made

translator software, enabling these devices to be used with software developed

for the original Monome. This process allows musicians who use these

Chapter 2 - Community based design: Iterative musical interface development

22

commercial interfaces to participate in the Monome community, sharing their

ideas, opinions, and experiences with others.

2.5.2 THE COMPUTER MUSICAN AS DIGITAL LUTHIER

This section has presented the Monome grid style interface, and the Monome

derivative interfaces developed by members of the online community. Each new

iteration serves to extend the functionality afforded by existing versions of the

interface, thereby expanding what musicians can do with these instruments.

Members of the Monome community drive this development by participating in

a cycle of musical performance, group discussion, development of ideas, and

creation of new instruments. This cycle allows community members to develop

new iterations of the Monome built off the shared information found online.

The instruments developed by these online communities represent physical

connections to virtual instruments inside of computers. It is up to each

individual musician to create their own unique mapping between the physical

interaction with their interface, and the way in which that action becomes a

distribution of musical intention inside their computer. Through the use of

physical interfaces and computer software, this process of customizing the

computer instrument furthers the evolution of the performer composer by

making every computer musician a digital luthier.

2.6 NEW WORK: ARDUINOME AND CHRONOME

This section presents two new interfaces developed either solely by the author,

or by the author in collaboration with Jordan Hochenbaum, Brad Hill, and Ben

Southall. The first interface is the Arduinome, a port of the Monome to the

open-source hardware platform Arduino. The Arduinome has had a major

impact on the Monome community, providing increased access to the interface,

a platform on which to further modify and augment the original Monome

concept, and has become a pedagogical resource for those interested in interface

design. The second interface presented is the Chronome, an RGB and pressure

sensitive Arduino based Monome clone. This interface was an attempt to add

Chapter 2 - Community based design: Iterative musical interface development

23

completely new functionality to the original Monome concept by adding

pressure sensitive buttons, and multi-color LEDs. These new features open up

the potential for new mappings between the continuous data supplied by the

Chronome and Monome compatible music software. Lastly, this section will

present the author’s work with Bricktable multi-touch interface as an additional

example of the impact that online communities have on interfaces for musical

expression.

2.6.1.1 ARDUINOME

Monome is a small boutique company that builds limited quantities of their

interfaces. Each interface is hand made at Monome, and all parts are locally

sourced.17 This can make it challenging and expensive to purchase an interface

when compared to the pricing and availability of devices made by larger

companies. One solution to this challenge of obtaining a Monome is to build a

clone of the interface using the online technical documents shared at their

website; however, taking the provided files from information to an actual

physical interface requires knowledge and skills not generally associated with

musicians. So is it possible to make a clone of the Monome that is both available

to everyone, and could be assembled with little to no technical knowledge,

thereby expanding access to the Monome interface?

17 About Monome - http://monome.org/

Chapter 2 - Community based design: Iterative musical interface development

24

Figure 5: The first Arduinome. Built using Monome 40h buttons

This question was a central motivation for a community-based project Jordan

Hochenbaum and I started with the help of Monome/Arduino community

members Brad Hill and Ben Southall in the summer of 2008. This project, now

the Arduinome (see Figure 5), was an effort to port the original Monome

firmware from a custom circuit to the readily available and affordable Arduino

microcontroller platform. In addition to being an affordable and easy to find

microcontroller, the Arduino’s large online community, extensive

documentation, and additional I/O ports provided new potential for expansion

and exploration of the Monome as an interface. This potential has resulted in

members of the Monome community modifying the Arduinome with

components as complex as fully featured LCD displays and multiplexed rows of

continuous controllers. Monome has fully embraced this modification and

exploration by including the Arduinome on its website wiki.18 The support

Monome has shown for this Arduino based clone has yielded many benefits for

18 Monome::Arduinome - http://monome.org/docs/tech:ports:arduino

Chapter 2 - Community based design: Iterative musical interface development

25

Monome, including individuals creating new hardware modifications to the

original interface concept, and creating new Monome-compatible software

applications. These new hardware ideas and musical applications developed by

Arduinome users further extends both the Arduinome’s and the Monome’s

functionality, and represents an example of community driven interface design.

Since the project’s initial release to the Monome community, significant

Arduinome activity around the clone has warranted a separate and dedicated

Arduinome category in the Monome user forums. This has provided a space for

Arduinome users to share their ideas with other Arduinome users, as well as the

larger Monome community. This sharing of information has provided a learning

resource for people interested in working with the Monome firmware, and has

seen the development of a plethora of new firmware modifications and Monome

derivative projects.

One remaining challenge of the project is the extensibility in the original

Monome 40h serial protocol. The serial protocol describes the transmission of

interface data to and from the computer. The original Monome 40h protocol

supported on/off states for buttons, on/off states for the LEDs, and

transmitting a handful of continuous values. This protocol made it difficult to

add completely new or novel functionality such as continuous pressure from all

of the 64 buttons, variable LED intensity, or LED color support. A community

project called serialOSC has been developed that can potentially address these

challenges by providing a prototype description of a generic Monome style

interface. By creating a prototype description, an interface can transmit

additional custom data messages while still being compatible with existing

Monome applications. This feature was used in the development of the

Chronome interface.

Chapter 2 - Community based design: Iterative musical interface development

26

2.6.1.2 CHRONOME

Figure 6: Chronome prototype

Designed by the author, the Chronome represents a new iteration of the

Arduinome that takes inspiration from both the RGB LED support of the

Octinct and the pressure sensitivity of the LUMI. A key goal of the new device

was to bring both the RGB LEDs and button pressure functionality into the

existing Monome application framework while at the same time continuing to

use the Arduino platform as the microcontroller. The additional functionality the

Chronome provides allows for a continuous spectrum of data and opens up new

expressive ground for musical performance with a Monome style interface. The

original Monome design was a discrete-event controller, and lent itself well to

both percussive material and triggering time-sensitive events; however, the

Chronome’s focus on continuous data now allows for musical control to vary in

gradations as opposed to the binary interactions of the original Monome. The

aim of this project is similar to the Arduinome in that all information pertaining

to building the interface is provided to the Monome user community in hope

Chapter 2 - Community based design: Iterative musical interface development

27

that it will spur a growth in applications that take advantage of this new

functionality.

The Chronome is an example of community-based design as it is inspired by two

Monome derivative interfaces, the LUMI and the Octinct. Additionally, the new

serialOSC software being developed by members of the Monome community

provides a way to extend and modify the types of data sent to Monome

compatible applications. This extension allows the Chronome project to bring

color support to the existing serial protocol of the Monome. With multiple

Chronomes already being built around the world, it will be exciting to see what

new ideas and software will be given back to the Monome community.

2.6.1.3 THE BRICKTABLE

Figure 7: BrickTable version I, II, and III

The BrickTable (Hochenbaum and Vallis 2009) is a large multi-touch interface

built by the author in collaboration with Jordan Hochenbaum. The interface was

inspired by the Reactable (Jorda et al. 2005; Jordà et al. 2007) and originally used

the open-source software ReacTIVision (Kaltenbrunner and Bencina 2007) for

prototyping. Three versions of the BrickTable were built between 2008 and 2009

(see Figure 7), with all three of these versions being based off of resources and

software found at the online Natural User Interface Group (NUI Group)

community. Like Monome, NUI Group represents an online community of

interface users and developers, and the resources provided by the community

Chapter 2 - Community based design: Iterative musical interface development

28

have similarly facilitated the development and modification of an interface. The

NUI Group provided technical information on building the physical interface,

community developed software for vision tracking, and answers to development

questions in the online forum. The BrickTable and its several iterations were

made possible by using the resources provided by NUI group, and benefited

greatly from iterative community based design.

2.7 MONOME, TENORI-ON COMPARISON

Figure 8: Monome left and Tenori-On right

Both the Monome and multi-touch interfaces represent an interesting, subtle and

significant shift in how a community of users can approach interface design. The

previous sections have shown how online repositories of information have

enabled users with access to the Internet to learn, build, and augment musical

interfaces. Contrasting the Monome with the Yamaha Tenori-On shows how an

online community-driven iterative design approach, compared to a closed-box

design approach, can lead to greater versatility in use.

The Tenori-On was introduced by Yamaha in 2008 and, like the Monome,

contains a two-layer, NxN device consisting of a matrix of buttons situated over

a matrix of LEDs. Unlike the Monome however, the Tenori-On’s firmware is

locked, its design specs are not made public and the device does not easily

support hardware modifications. When compared with the Monome, the Tenori-

On has not seen the same community of users, library of applications or variety

Chapter 2 - Community based design: Iterative musical interface development

29

of uses develop. Even though these two devices share a very similar form, the

history and function of the two interfaces are very divergent. The Monome has

spawned a wealth of custom applications, a thriving user community and several

community developed derivative interfaces, while the Tenori-On, in spite of

being an interesting and exceptionally well-conceived instrument, has remained

unchanged in its design and fixed in its functions.

2.8 DISCUSSION

This chapter has presented an online community-based iterative model of

interface design in which expert users, making up a small percentage of the

community, develop new and innovative functionalities. These extended

functionalities are then made available to the larger user community without

requiring the community to learn the technical details of the interface. This

process allows computer musicians to perform using custom interaction between

their physical interfaces and the sounds produced by the computer. While an

acoustic instrument may be played in different ways, it will still be constrained to

the physical interactions and the sounds resulting from those actions. In contrast,

through the use of customizations and software, an interface and computer can

become entirely different instruments performed in entirely different ways. The

majority of users do not create these new functionalities, but instead use these

developments and in return share their experiences with the rest of the

community, contributing novel application and modification ideas. By allowing

for an online community to develop, modify and re-envision an interface

through an iterative process, a new model for interface design has been created; a

model that encompasses both basic users and advanced developers alike.

Online communities have not only democratized the hardware development of

musical interfaces; they have also similarly democratized the process of software

development for musical interfaces. Community software developers actively

listen to requests from users and regularly implement these ideas in new

applications for the interfaces. This process creates a feedback loop inside the

community forums; real-world use of the interfaces informs the development of

Chapter 2 - Community based design: Iterative musical interface development

30

software. Conversely, software design requirements can drive the development

of new functionality for an interface. In this way, software informs the design of

new hardware, and hardware informs the design of new software.

An example of this is the Monome community’s large repository of free and

open-source custom software. Specifically, in an iterative process similar to the

hardware development, an application known as MLR,19 a program that allows

for the chopping of buffered loops of audio using the Monome, has seen users

take an existing open-source application and create custom versions that are then

shared back with the larger community. This process helps drive new hardware

ideas, including the desire to display visual information from the application on

the Monome’s LEDs using multiple colors. Implementing this multi-color

support was a central motivating factor in developing the Chronome.

While open-source software is not a new idea, coupling it with open-source

hardware creates a powerful combination that allows users to explore new ideas

and helps drive development. Software such as reacTIVision and the NUI

Group’s Community Core Vision 20 (CCV) finger-tracking program were

developed as open-source projects that required most users to build custom

hardware devices in order to use them. Without access to the online community

resources regarding hardware designs, the software programs would not have

had the physical interfaces needed for people to implement their ideas. As an

example of projects that benefit from this “completed loop” of hardware and

software, the Argos project (Diakopoulos and Kapur 2010) built off the

resources found at the openFrameworks community, implementing an

application that simplified the designing of GUIs and extended the usability of

CCV and the multi-touch hardware interfaces.

The sharing of technical resources for live computer music can even be seen in

the development and evolution of the laptop orchestra. Early versions of the

server that connected PLork and SLork were built using ChucK, and made

19 App:mlr [monome] - http://docs.monome.org/doku.php?id=app:mlr.

20 CCV - http://ccv.nuigroup.com/

Chapter 2 - Community based design: Iterative musical interface development

31

available to other laptop orchestras following in their footsteps. This original

ChucK server has since lead The Machine Orchestra to develop several new

iterations for use in our own concerts, and has even led to derivative applications

being developed in other languages. This sharing of ideas and resources is a

positive influence on the development and refinement of not only the interfaces

used by computer musicians, but on tools in general for live computer music.

Access to these tools allows a computer musician, using a single physical

interface, to become an entire ensemble of unique instruments in a way that has

not been possible using acoustic instruments. Each computer musician takes the

functionality afforded by the interface, and then creates their own custom

mapping to the computer instruments. This turns the computer musician into

the creator of his or her own custom instruments, and represents an evolution of

the performer-composer.

33

Chapter 3

ARMY OF ME: AUTONOMOUS AGENTS

AND THE SOLO PERFORMER

“Eventually it should be possible to develop a synthetic performer that

would not require priming with a written score of what initially to listen for.

Chamber music players typically perform from single part-books, building

their sense of the full score strictly from the experience of rehearsal. In that

this appears to be a prime route by which those players inform their overall

performance, we would eventually like to understand a little of how that

works.”

 —Barry Vercoe & Miller Puckette (1985)

Computers enable the development of autonomous agents for solo live

performance. Through these systems, new modes of improvisation may be

explored where musicians have musical dialogues with virtual versions of

themselves. These avatars are not so much separate identities as they are

extensions of the performer’s musical will. By listening to the performance of the

human, the computer agents are able to output new musical ideas that in turn

influence the musician’s actions, creating a feedback system of computer-

mediated improvisation. These systems create the opportunity for the performer

composer to express one musical idea while having a computer generate other

contextually related music. This in effect makes the computer musician

simultaneously conductor and performer, and represents an evolution of the

performer composer.

Chapter 3 - Army of me: Autonomous agents and the solo performer

34

The following chapter begins by providing a historical overview of algorithmic

composition, how these ideas are applied to automated musical systems, and

finally an examination of current attempts to develop autonomous agent systems

for live computer music performance. A novel search based plugin is presented

for modeling two performers that are using continuous control data. Lastly, the

chapter presents several different architectures for autonomous agents, and

discusses the idea that agent systems can allow a solo performer to create

concurrent virtual personas, and use these virtual musicians to turn single actions

into multiple events.

3.1 GOALS AND MOTIVATION

The aim of this research is to examine the potential of interactive musical agents

to expand the musical control of a single musician. These interactive systems

listen to incoming musical data in order to generate models of the performers.

These models then generate new material in the style of one performer given a

context provided by another performer and the output of the interactive musical

agent (see Figure 9). Arnie Eigenfeldt states that “Such performance systems can

be considered as complex instruments, in that multiple gestures are generated

that proceed and interact in complex ways, yet under the direction of a single

performer/operator” (Eigenfeldt 2006). In a similar manner to how piano pedals

expanded expressive potential by allowing pianists to sustain notes, the

development of interactive musical agents expands the level of control in live

computer music by increasing the number of simultaneous actions a performer

can control or influence.

Chapter 3 - Army of me: Autonomous agents and the solo performer

35

Figure 9: Interactive musical agent for modeling continuous control data from musical interfaces

The design of these systems draw heavily from the fields of statistics, AI, and

Machine Learning, in which models are built to describe complex mappings

between inputs and outputs. These systems are built using a variety of

approaches, including statistical modeling, sub-symbolic networks, genetic

algorithms, or search based systems. Through the application of these various

approaches, models can be learned by presenting the computer with examples of

input and output pairs, and in this way build a system that addresses Vercoe and

Puckette’s desire for an interactive instrument that would learn from rehearsals.

The development of interactive agents represents an evolution of the performer

composer as they afford musicians the ability to perform and improve with

multiple versions of themselves. This creates the opportunity for the instrument

to become a new musical tool in which the ideas of the performer composer are

used as contextual input to generate parallel streams of musical material from a

single idea, and in the process inform the musician’s future decisions.

3.2 BACKGROUND

The interactive musical systems discussed in this chapter can be seen as evolving

out of a long history of algorithmic composition. Gerhard Nierhaus defines

algorithmic composition as “a formalizable and abstracting procedure which –

applied to the generation of musical structure – determines the field of

Chapter 3 - Army of me: Autonomous agents and the solo performer

36

application of algorithmic composition” (Nierhaus 2009, pg. 11). Three

composers are frequently presented as early examples of algorithmic

composition. Guido of Arezzo’s treatise “micrologus” was written around AD

1026 (Nierhaus 2009, pg. 30), and lays out a set of rules for the writing of early

polyphonic music called organum. Johannes Ockeghem’s 15th century work Missa

Prolationum consists of prolation canons in which two contrapuntal melodies are

split between four voices each at a different speed, with the interval of imitation

becoming larger with each piece in the work (Groot 1997). And finally, Mozart’s

Musikalisches Würfelspiel is a famous example of the use of dice to choose from a

predetermined set of compositional ideas (Nierhaus 2009). Mozart’s use of dice

can be seen as a precursor to aleatoric compositional approaches applied in the

20th century. The attempt to formalize an approach to composition has carried

on to the present, with composers exploring increasingly complex algorithms.

With the advent of the computer age a new world of possibilities has now

opened up, enabling composers to explore algorithms that would have

previously been prohibitively complex.

3.2.1 TWENTIETH CENTURY COMPOSERS

The twentieth century was witness to an expanded exploration of algorithmic

compositions by composers such as Arnold Schoenberg, John Cage, Steve Reich,

Iannis Xenakis, and many others. These composers experimented with

formalizations outside of tonal music, the application of chance procedures to

composition and of procedures in general, as well as the potential application of

advanced mathematics to music. The work of these composers represents a

transition period from hand written to computer-mediated algorithmic

composition, ultimately leading to the current development of agent-based

systems.

The early part of the twentieth century was witness to the rise of atonal music by

such composers as Alban Berg and Anton Webern. This music aimed to avoid a

single tonal center in a piece of music. As early as 1921, Arnold Schoenberg

began exploring a compositional system for formalizing the avoidance of a tonal

Chapter 3 - Army of me: Autonomous agents and the solo performer

37

center by evenly distributing all twelve notes of the chromatic scale within a

composition. The rules governing this even distribution of tones represent a

formalized approach to composition. The twelve-tone system evolved into the

broader genre of Serialism, which included the development of derivative

systems such as integral serialism, total serialism, general serialism, and multiple

serialism.

In his 1971 book Formalized Music (Xenakis 1971), Iannis Xenakis contested that

the complexity inherent in serialist compositions is not discernable by the

listener, and instead is perceived as a random collection of notes. Xenakis aimed

to remedy this with his “stochastic music”, which attempted to create systems

that would avoid a tonal center while still providing a cohesive form

ascertainable by the listener. These systems were derived from various fields of

mathematics such as probability theory, Markovian processes, set theory, and

others. Xenakis’ stochastic music can be seen as an early attempt to model a

system with a finite domain and a deterministic nature, preserving larger scale

structures while probabilistically deriving the details.

Xenakis’ criticism of indeterminacy was not limited to serialism, and extended to

the work of John Cage, with Xenakis saying that “complete freedom, as is the

case of Cage, says in effect ‘do what you like, at any moment, no matter how’”

(Bois 1967). While John Cage’s use of the I Ching to compose his music through

chance procedures does represent a more random approach to algorithmic

composition, it still requires that certain basic assumptions—or boot strapping—

be made about the musical domain prior to composing. Decisions such as what

musical elements the I Ching will decide, and how these elements interact with

each other, place a set of constraints on the musical domain that inevitably end

up defining the final composition.

Xenakis may be right in questioning if the listener would be able to discern the

complex relationships within either Serialism or chance based music, but

unforeseen events within the compositional complexity may give rise to an

emergent music. This idea of an emergent music became very important to

Chapter 3 - Army of me: Autonomous agents and the solo performer

38

network computer music ensembles of the 1980’s (see Chapter 4), and provides

a fertile ground for the exploration of algorithmic composition as it accounts for

the idea of unplanned structure emerging from a chaotic system.

Another solution to Xenakis’ criticism of indeterminacy is seen in the process

music of composers such as Steve Reich and Terry Riley. Steve Reich’s tape

phasing and Terry Riley’s In C represent the algorithm as a procedural approach

to composition; procedural in the sense that the music takes the compositional

algorithm and makes it the central aesthetic element during both the creation and

the performance of the pieces. As an example, Reich’s phase pieces allow for the

music to emerge through the process of phasing two identical melodies, allowing

for a multitude of different musical ideas to come out of a single melody. A

more contemporary example of form emerging from process would be William

Basinski’s Disintegration Loops. In these pieces a loop of music is played back

on old decaying tape. Each time the loop plays, a little more of the tape

recording disintegrates, creating a clear aural link between the process and the

music. These procedural approaches to composition constitute algorithmic

composition in that they are formalized, and are unique in that the composition

and performance are linked together through the procedure.

3.2.2 COMPUTER AIDED ALGORITHIMIC COMPOSITION

As computers continued to increase in processing power, composers began to

explore algorithmic approaches to composition that would have previously been

too laborious and time consuming to undertake by hand. As an example, the

computer enabled Xenakis to create programs that would automate the

calculation of probabilities, allowing him to continue exploring ever more

complex musical ideas.

In Charles Ames’ review of automated composition (1987), he describes the

1956 efforts of Klien and Bolitho’s Push Button Bertha as one of the first

computer assisted automated compositions. He goes on to discuss other seminal

pieces such as Hiller and Issacson’s 1959 Illiac Suite in which Markovian

processes were used to compose the music, James Tenney’s 1963 work Stochastic

Chapter 3 - Army of me: Autonomous agents and the solo performer

39

String Quartet which used Max Matthew’s musical programming language MUSIC

4, as well as Xenakis’ use of computers for his 1962 work Morsima-Amorsima. All

of these pieces leveraged the ability of a computer to perfectly execute

instructions, opening a new world for algorithmic composers.

As computer automated composition developed, computing languages dedicated

to algorithmic composition began to develop. Paul Lansky created the MIX

language, and Larry Polansky, Phil Burk, and David Rosenboom developed the

language Hierarchical Music Specification Language (HMSL) (Polansky 1994).

These languages, and many others like them were designed to aid in

algorithmically composing music using computers, and created building blocks

from which ever more complex algorithmic compositional systems could be

built.

While the frameworks above allowed for the creation of complex algorithmic

compositions, they were not built to “learn” or imitate a style or genre of music.

David Cope created a system called Experiments in Musical Intelligence (EMI)

that could be trained with a corpus of example music, and then generate new

compositions in that musical style or genre (Cope 2005). Cope proposes that a

musician’s style is related to the re-occurrence of themes and ideas, and that

probabilistic modeling of a musician’s corpus of work will reveal these themes.

EMI is important to the development of an interactive agent system as it shows

that a musician’s style or musical personality can be modeled by examining their

performances.

This research has also found its way into commercial products such as PG

Music’s Band-in-a Box,21 and Steinberg’s Groove Agent.22 These advances can be

seen as an evolution of composition from hand-written ideas to computer-

mediated algorithms; whoever, it was not until computers became fast enough to

support interactive systems that an evolution of the performer composer began.

21 PG Music - http://pgmusic.com

22 Groove Agent - http://steinberg.net/en/products/vst/groove_agent/groove_agent.html

Chapter 3 - Army of me: Autonomous agents and the solo performer

40

3.2.3 INTERACTIVE MUSICAL AGENTS

The 1970’s saw the beginnings of efforts to use computers to not only automate

composition, but also to interact with, and influence algorithms in real time.

Systems such as GROOVE enabled composer Emmanuel Ghent to write his

1974 piece Lustrum by influencing a probabilistic compositional program while it

was running (Ames 1987).

As computers became faster, and real time interaction becoming a reality,

composers began to look beyond simply automating algorithmic composition.

Research looked into more complex methods of interaction between human

performers and computers. Programs were developed that allowed for

automated accompaniment systems capable of listening to human performers,

and determining their position within a musical score (Dannenberg 1984), as well

as systems complex enough to model, and act as a synthetic performer within an

ensemble (Vercoe 1984). These systems represent a major step forward in the

evolution of the performer composer as they allowed for the performance of the

human to contextualize the musical output of the computer. Although these

systems were able to process live input, they weren’t capable of increasing the

quality of their performance through rehearsals. With this in mind, researchers

began to examine ways in which systems could learn, and then later reference

this past performance data (Vercoe and Puckette 1985).

These early systems used optimized search algorithms to compared performer’s

inputs against a fixed score that provided a context for the automatic

accompaniment. While this was an effective approach, it does not work for more

improvisatory situations. Improvisation focused performance has a less defined

form, making it challenging to provide a context from which the computer can

generate music. Research into utilizing machine learning techniques allowed

systems to no longer simply accompany a score, but instead be able to “learn”

and recognize different styles of music (Dannenberg, Thom, and Watson 1997).

In order to recognize the more diffuse connections defining musical styles,

Chapter 3 - Army of me: Autonomous agents and the solo performer

41

systems increasingly began to use sub-symbolic systems that learned from

inference, rather then symbolic systems that learned from a set of rules.

Armed with this new ability to learn and emulate performance styles,

“intelligent” auto-accompaniment systems were developed that allowed for

improvisational interaction. Examples of these systems are George Lewis’

Voyager, a nonhierarchical improvisation instrument that listens to performance

and improvise with the musician (Lewis 2000); Francois Pachet’s use of Markov

Models to design The Continuator, an interactive musical system that generates

music in the style of the performer using call and response (Pachet 2002); and an

interactive improvisation system for generating rhythms in the style of North

Indian Tal (Wright and Wessel 1998). These interactive systems no longer

needed to follow a fixed score, and the ideas of Interactive Music Systems,

Agents, or Machine Musicianship was defined (Rowe 2001).

3.2.4 CONTEMPORARY SYSTEMS

There has been considerable growth in the development of interactive musical

agents since the publication of Rowe’s Machine Musicianship. Major conferences

such as the International Symposium on Music Information Retrieval (ISMIR)

(Downie, Byrd, and Crawford 2009), and the international conference on New

Interfaces for Musical Expression (NIME) (Cook 2001), have provided a forum

for the development and application of interactive musical agents. New

interactive systems have been developed which listen to input from musicians,

learn from the performance, and then generate improvised, contextually relevant

material in response to the incoming data. Some examples of these systems

include: A jam session system capable of simultaneously listening two three

guitarists and generating a “personality model” of each player (Hamanaka et al.

2003), with these models then being used to substitute the musicians with virtual

performers; Haile, an anthropomorphic drum robot that is able to listen to a

musician and synchronize its drumming with the performance of the human

(Weinberg, Driscoll, and Parry 2005); Kinetik Engine, a drumming ensemble

system consisting of four agents that generate rhythms by listening to each other

Chapter 3 - Army of me: Autonomous agents and the solo performer

42

and the input of a human “conductor” (Eigenfeldt 2006); and the work of Nick

Collins towards the creation of autonomous agents for live computer music

(Nick Collins 2006), and his development of an improvisational system that

provides contrary musical improvisation in opposition to a musician’s

performance (Nick Collins 2010).

3.3 DEFINE THE CHALLENGE

Existing research into creating interactive musical agents has shown promise in

developing systems that can learn from a musician, and then interact with them

in real-time during a performance. However, it would be difficult to imagine a

“one-size-fits-all” solution to the creation of these interactive agents. The reason

for this is linked to the fact that musical styles are defined using a wide variety of

parameters, e.g., pitch, rhythm, timbre, tempo, duration, polyphony, harmony,

dynamics, cultural influences, etc. Additionally, the parameters that define one

genre may be meaningless in another.

Even exceptional human musicians are unlikely to be virtuosic in every musical

style that exists. The subtleties of each type of musical style are not necessarily

linked to each other in any meaningful way, and are often tied to cultural

influences. One could imagine that someone’s mastery of baroque figured bass

would not necessarily make them a virtuosic classical north Indian musician.

Similarly, it seems unrealistic to create an interactive musical agent that is capable

of accompanying in all styles. Nick Collins explains how the rules described in

the Generative Tonal Theory of Music (GTTM) (Lerdahl and Jackendoff 1996)

do not apply well to the music of Bolivian campesinos (Stobart and Cross 2000).

He goes on to say that, “the great variety of metrical structures in the world’s

music (Temperley 2004; Clayton 2001; College 2004), the lack of any ‘universal’

musician conversant with all musics, let alone the notorious difficulties in

ascribing musical meaning, all suggest that cultural factors are essential in

obtaining musical competency” (Nick Collins 2006). This would imply that not

only is it unlikely that an interactive musical agent would be effective at all

Chapter 3 - Army of me: Autonomous agents and the solo performer

43

musical styles, but that such a homogenous approach to modeling music is not

desirable.

The research presented in this chapter is interested in developing a custom

interactive system that will be focused on the live performance of beat-based

electronic music such as techno or electronica. This interactive system will

leverage specific features found in these genres, such as traditionally adhering to

a single tempo, and frequent use of a 4/4 beat structure. Additionally, the

control parameters currently used by the author are based around custom

mappings between the Chronome described in Chapter 3, and Ableton Live.23

These mappings tend not to control note or pitch based instruments, but instead

focus on controlling timbre using effects and re-sequencing sampled material to

create new arrangements. This makes leveraging rules regarding tonality difficult

to use. For example, data reduction techniques such as reducing pitch to interval

relationships do not apply to a knob that controls the cutoff of a filter, or a

button that bypasses an effect.

3.4 IMPLEMENTATION: LIVE PERFORMANCE

SYSTEMS

During the course of this research several approaches to designing interactive

musical agents were explored in an effort to gain a better understanding of the

possible solutions, and challenges (see Appendix D, Appendix E, Appendix F

and Appendix G). This research led to several requirements for the interactive

system:

1. The system is a plugin, allowing for integration with the

Chronome/Ableton performance system.

2. The system is able to continue to perform with or without input from

the musician.

23 Ableton - http://ableton.com

Chapter 3 - Army of me: Autonomous agents and the solo performer

44

3. The system is able to learn from rehearsal instead of being presented

with a score.

4. The system is based off of a concatantive synthesis approach, where

incoming performance data is used to search a database for an

appropriate response.

Taking these requirements into account, the following system is built using a

search approach to interactive musical systems, based off a similarity algorithm

called S2MP (Martin et al. 2011).

3.4.1 SEARCH BASED SYSTEMS

Search based systems are algorithms that take an input as a key, and find a

matching value in a stored database of examples. These examples can be single

states such as notes, or longer sequences of states that each store many different

pieces of information. An example of this type of sequence might be a melody

line, where each state in the sequence stores the pitch, velocity, and duration of

the note.

Search algorithms have been used in the development of auto accompaniment

systems (Dannenberg 1984), improvisation systems (Rowe 2001), and more

recent interactive musical agents that attempt to model the relationship between

two performers (Martin et al. 2011). While the basic concept behind search based

systems is a simple key-value database, musical implementations of the approach

require special considerations. The system must decide how to handle matching

the real-time input to the database states, what state information is to be

returned once a match is found, and how to do all this fast enough for live

musical performance.

This section will (1) discuss the considerations when adapting the auto

accompaniment systems for improvisational interactive agents; (2) present

developments and modifications of the S2MP algorithm originally described in

Chapter 3 - Army of me: Autonomous agents and the solo performer

45

(Martin et al. 2011); (3) and discuss the challenges with designing interactive

musical agents using search-based algorithms.

3.4.2 CONSIDERATIONS FOR USE WITH IMPROVISATION

While the approach described in Appendix E allows for a faster search by only

comparing neighboring sequence events, improvisational systems do not closely

follow a pre-determined score, and therefore require additional constraints

(Rowe 2001). However, while the progression of sequences may not be tied to a

score, they may represent phrasing, and allow for segmentation to provide a

similar form of constraints. Certain styles of beat based live computer music

such as techno are closely associated with grid based rhythmic structures such as

strong beats and bars, and it is possible to segment or group sequences along

these rhythmic divisions.

With this in mind three assumptions can be made. First it can be assumed that

the neighbor of the previous best matching sequence within a database is likely

to provide a high scoring match, although not necessarily the highest score.

Secondly, it is also reasonable to assume that a high matching sequence is more

likely to be found at similar beat locations within in a bar versus other positions

within the bar. Finally, if the database in use is a collection of sequences that

represent performances (see Figure 12), then it can be assumed that related

improvisational ideas will be explored closer to each other rather then randomly

spread out. While these assumptions cannot be guaranteed, they will allow for

constraints to be applied to the search in a similar manner to Dannenberg’s

system (Dannenberg 1984).

Additionally, searching algorithms require training a database of good examples

to find and match during performance. Describing the examples as “good” is

important because a search algorithm looks for the closest matching input, and

will return a poorly played matching performance just as easily as a well played

matching performance. While lots of training may help to mitigate this issue of

“bad example” data for probability or regression based systems, search based

systems have no statistical inference for preferred input states versus aberrant

Chapter 3 - Army of me: Autonomous agents and the solo performer

46

state examples. One solution to these challenges could be a pruning or approval

of the data before submitting it to the search database.

3.4.3 S2MP: A SIMILARITY MATCHING ALGORITHM

To explore the potential of search-based approaches for improvisational systems,

the following research implemented a similarity-matching algorithm called S2MP

(Martin et al. 2011; Saneifar et al. 2008). Martin’s research shows the potential of

this algorithm in developing interactive musical agents that perform alongside a

human musician in the style of another performer. His original system is based

around binary state buttons that switch on or off ten algorithmic musical

instruments. The system described here aims to expand this algorithm for use

with continuous control data from musical interfaces, and to implement it as a

plugin for integration in modern Digital Audio Workstations (DAW) such as

Ableton Live.

A brief description of the algorithm follows, but the reader should refer to

(Saneifar et al. 2008) for a more details. The original algorithm uses an input

sequence as a key to search for a match within a much larger stored sequence.

This is achieved by comparing the input sequence against all sub-sequences of

the same size from a database of past performances. The algorithm considers a

sequence to be made up of a collection of item sets. Item sets can be thought of

as a chord, while a sequence would be the order of chords as they are played in a

performance. This algorithm is well suited to finding generalized sequence

matches by calculating both a mapping score for the union of the items within two

sequences, and an order score for how well the matching item sets maintain a

similar order. These two scores are then combined to provide a general similarity

score for the two sequences. For the system described here, the item sets are

samples of continuous controls used by two computer musicians, stored as a

single sorted set, while the sequences would be these samples stored to disk as a

performance.

Chapter 3 - Army of me: Autonomous agents and the solo performer

47

3.4.4 TRAINING THE SYSTEM, AND LINKING CONTROLLER

DATA

Creating these item sets requires converting the controller ID and value for the

two performers into a single 1-dimensional array, and is achieved for the first

performer by multiplying the controller ID by 128 and adding the product to the

controller value. The second performer is concatenated to first performer by

adding 128 to the controller ID, then multiplying by 128, and finally adding the

controller value (see Figure 10 and Figure 12). This essentially flattens the matrix

of controller IDs and controller values, and converts it to a 32,896-position

array, allowing for synchronous samples of the state of both performers’

controllers. However, the S2MP algorithm allows for some optimizations in

storing the array. The order of events within an item set does not matter;

therefore there is no need to store duplicate events. Additionally, the interactive

agent should only update a controller when the value has changed; therefore the

item sets only need to store events that have changed since the last item set was

created. Lastly, the mapping score can be efficiently calculated using the

intersection of two sets. For these reasons, the flattened array is best stored as a

sorted set.

 Figure 10: Controller data from both performers stored as 2-D and flattened 1-D collections

Chapter 3 - Army of me: Autonomous agents and the solo performer

48

Figure 11 Search algorithm training algorithm. The two performers are sampled by the plugin, and

performer B’s current item set is linked with Performer A’s previous item set.

During training, the incoming data from both performers A and B are sampled

at a constant rate. Each sample is used to create a sorted set that contains the

control data from both performers, and a MIDI buffer containing the time

stamped control data from performer B. The MIDI buffer is then paired with

the previous sorted set in a key/value struct, and this struct is then appended to

a database, extending the recorded performance. This process creates a long

sequence of item sets and linked MIDI buffers, representing synchronous

samples of both performers’ controllers for a particular performance. Additional

rehearsals or performances can be stored as separate sequences, allowing for

different “takes” on the piece (see Figure 12).

Chapter 3 - Army of me: Autonomous agents and the solo performer

49

Figure 12: Stored performances for S2MP algorithm. Sequential item sets for a performance are

stored as Seq2(n). Each jth item set represents both Performer A and B, and has a MIDI buffer

associated with it.

3.4.5 IMPLEMENTATION OF THE SYSTEM FOR USE IN

PERFORMANCE

During performance, a sequence is built using both Performer A’s current input

and the virtual Performer B’s current output from the system. The input

sequence, which will henceforth be referred to as Seq1, is a fixed size buffer.

Once Seq1 is initially filled with item sets, it is then compared against the

sequences from the database, which will henceforth be referred to as Seq2(n)

where n refers to a specific stored performance. As described in section 3.4.2, an

exhaustive search of the database is not only slow, but also not necessary if the

comparison between Seq1 and the database leverages the current position within

the bar. Seq1 can be compared against all sub-sequences in Seq2(n) that end at the

current position since the start of the last bar (see Figure 13). If the samples are

taken at 96th notes, then an exhaustive search of a bar will require a total of 384

comparisons, while this location-based approach will only require one.

Additionally, this can be taken further if it is assumed that the last matching

location in the database will likely provide a good match for the next search. The

current location can be thought of as highly likely to yield similar musical ideas,

Chapter 3 - Army of me: Autonomous agents and the solo performer

50

with good matches dropping off as the search distance increases. This can be

used to increase the distance between searches, i.e., the search would look at the

neighboring bars, then two bars form that, then four again, and so forth. While

this distribution of musical matches is not strictly true of all music,24 it represents

a good compromise between speed and search.

Finally, Martin’s paper discusses the tendency of the search results to jump

around the database, and consequently create undesirable discontinuities in the

output. Testing of the algorithm confirms this, and my proposed solution is a

bias towards the compares closer to the previous compare location using weights

on the similarity scores. This should help mitigate the issue of jumping around

without adversely affecting performance, as it’s likely that a gestural phrase or

segment will be continuous and not jump between different bars. These weights

re-enforce the idea of imposing a Gaussian distribution to searching the recorded

sequences.

Figure 13: Constraining the S2MP search to current position within a bar. This represents a good

compromise between efficiency and search as it cuts the number of compares and is likely to

return good matches.

The actual comparison between Seq1 and sub-sequences of Seq2(n) first requires

taking the intersection of the item sets between the two sequences. This creates a

matrix of similarity mappings of items between item sets by assigning a score for

the ith item set in Seq1 for every jth item set in Seq2(n) (see Figure 14). Once the

24 One could imagine a pop song that has several choruses with similar musical material for sub-

sequence matches, but are separated into chunks within the recorded sequence.

Chapter 3 - Army of me: Autonomous agents and the solo performer

51

matrix is complete, the highest mapping score for each ith item set in Seq1 is

stored, and any conflicts where two item sets from Seq1 are mapped to the same

jth item set in Seq2(n) are resolved to unique mappings if possible. This process

places a preference for mappings that maintain the temporal order of the stored

item sets within Seq1. For example, in Figure 14 item sets 1 and 2 of Seq1 would

both be mapped to item set 1 of Seq2(n). In this case it would be preferable to

remap item set 2 of Seq1 to item set 2 of Seq2(n). Once all mapping conflicts have

been resolved, a final single mapping score is calculated by taking the average of

the individual mapping scores for all item sets in Seq1.

Figure 14: Mapping score matrix. The intersection is taken between every ith item set in Seq1 and

the jth item set in the current sub-sequence from Seq2(n).

The algorithm then compares how well this mapping maintains a similar

temporal order between the input sequence and the sub-sequence, similarly

assigning an order score. This is achieved by comparing the order of the mapped

item sets from Seq2(n). A perfect temporal match would see the highest mapping

scores create a diagonal from the top left, down through the mapping matrix.

Conversely, any mapping where the position of the jth item set from Seq2(n) is less

then the previously mapped item set from Seq2(n) equals a break in the order of

the sequence. The most extreme example of this breaking of the temporal order

Chapter 3 - Army of me: Autonomous agents and the solo performer

52

would see the highest mapping scores create the reverse diagonal through the

matrix starting at the top right and moving to the bottom left. This is similar to

Rowe’s explanation of sequence order tests described in Appendix E and Figure

48.

Lastly, a weighted sum of the mapping score and the order score is then

returned. The weight allows for the algorithm to bias the amount that the

matching score, or the ordering score contributes to the final similarity score.

This process is repeated for each sub-sequence returned by the database. The

MIDI buffer from the sub-sequence within Seq2(n) with the highest similarity

score is then used as the output for the virtual performer B. In effect, this system

takes a concatantive synthesis approach to creating the output of Performer B.

Chapter 3 - Army of me: Autonomous agents and the solo performer

53

Figure 15: Performance diagram of search algorithm. Sampling Performer A along with the current

agent output generates the input sequence. This is then compared against sub-sequences within

the database, providing similarity scores. The MIDI buffer is taken from the sub-sequence with the

highest similarity score, and then appended to the plugin’s MIDI output.

3.4.6 PLUGIN DESIGN

The system is implemented as a plugin using the JUCE C++ audio library,25 and

is run inside Ableton Live. Developing a plugin allows the system to synchronize

the sampling of MIDI data with Ableton’s global sample clock, and allows for

integration with a popular live computer music platform.

During training, the plugin samples the MIDI data of two musicians with

Performer A being sent on MIDI Channel 1, and Performer B being sent on

MIDI Channel 2 (see Figure 16). This allows the plugin to simultaneously sample

both performers, for a total of 256 different control sources.

25 JUCE - http://rawmaterialsoftware.com/juce.php

Chapter 3 - Army of me: Autonomous agents and the solo performer

54

Figure 16: Continuous Control S2MP plugin

The plugin is passed a MIDI buffer for each process block, and parses the buffer

into before or after the start of the next sample window (see Figure 17). If the

MIDI buffer is within the current sample window then the MIDI event is added

to a sorted set based on the associated MIDI Channel (see 3.4.4), and the MIDI

from performer B is stored in a separate sample window length MIDI buffer. If

a MIDI buffer straddles a sample window, then the MIDI events that occur after

the sample window are parsed into an overflow sorted set which will be used as

the first events of the next sample window. Sample windows can be set at a

1/384th note or higher using the Window Length parameter, with a window of a

1/16th note performing well in tests (see the following section). At the end of a

Sample window, the sorted set and the MIDI buffer are added to a database

representing key/value pairs (see section 3.4.5).

Figure 17: Parsing MIDI buffers into sample windows

Once the plugin has recorded the MIDI data from the two musicians, the system

can then be set into Performance mode. This mode samples incoming data from

performer A in the same way as before, but also adds the current output of the

system to the sorted set as well. This set is then concatenated to a sequence of

sorted sets, and used as the input sequence to the S2MP algorithm. The length of

Sample Window A

MIDI Buffer MIDI Buffer MIDI Buffer MIDI Buffer MIDI Buffer

Sample Window B

Chapter 3 - Army of me: Autonomous agents and the solo performer

55

this input sequence is determined by the S2MP algorithm’s sub-sequence length

parameter, which is set via the plugin. Lastly, the Mapping / Order parameter

controls the weighting of the similarity score for a given sequence, which the

user can also set from the plugin interface. Weighting more strongly towards

“Mapping” places a greater emphasis on the similarity of events within the item

sets of two sequences regardless of their order, while weighting more strongly

towards “Order” places greater emphasis on the similarity of order between the

mappings of the two sequences (see section 3.4.5). The settings in Figure 16

would create even weightings of 0.5 and 0.5 for the Mapping / Order parameter,

with a new item set being created every 1/16th note, ultimately creating a

sequence of sixteen sorted sets that represent one bar of performance data.

3.4.7 ANALYSIS

The S2MP algorithm was tested using Ableton Live, and eight bars of CC data

representing two performers (Performer A - Human, and Performer B – Agent)

setup in pairs. Each bar of MIDI data contained two different CC curves, with

the Human channel using CC numbers 14 and 15, and the Agent channel using

CC numbers 16 and 17 (see Figure 18). Each bar of CC data was created to be

unique and “simple” in order to easily differentiate bars of MIDI in the output

sequences. The training consisted of routing this CC data into two different

MIDI channels, with the Human channel being sent to S2MP channel 1 and the

Agent channel being sent to S2MP channel 2. The initial training provided a

single transition between each bar of MIDI, i.e., A leads to B, which leads to C,

which leads to D, which finally leads back to A. Later tests were trained using the

sequence ABCDACBDBADCA that provided three transitions for each bar of

MIDI.

Chapter 3 - Army of me: Autonomous agents and the solo performer

56

Figure 18: Routing setup for S2MP training in Ableton Live, and MIDI CC training data

The following tests consist of training the plugin using musical sequences of

increasing length, and then measuring the ability of the S2MP algorithm to

match a target sequence. The Target sequence is what the algorithm believed

Performer B would play in response to an input sequence from Performer A,

based on the initial training data. This is then compared against the actual Ouput

sequence generated but the plugin (see Figure 19).

Figure 19: Target CC sequence (top) vs. Output sequence (bottom). The output sequence didn't

match the target sequence in the first bar, but otherwise was a perfect match.

3.4.7.1 INITIAL TESTS

The first four tests show whether or not the S2MP plugin is capable of finding

“correct” matches within the training database. Each test appends one additional

bar of CC data to the training sequence, with the first test using sequence AA

Performer A CC# 14/16

Performer B CC# 15/17

A B C D

Chapter 3 - Army of me: Autonomous agents and the solo performer

57

and the last test using sequence ABCDA. These training sequences provide the

plugin with one transition for each bar of MIDI. A transition in this case

represents the end of a bar of MIDI, and may require the algorithm to jump to

another section of the database to continue creating an output sequence.

Once training is complete, the S2MP algorithm generates an output sequence of

eight bars for Performer B, using Performer B's previously trained data. These

test then compare the output sequence against a target sequence, e.g., the first

target sequence consists of eight bars of A, the second target is then alternating

bars of AB, the third consists of ABC, and finally the fourth is eight bars of

ABCD. For the tests, equal weighting is given to the Mapping / Order

parameter, the window length is set to one item set every 1/16th note, and the

input sequence length is set to sixteen item sets. These settings mean that the

plugin creates an item set every 1/16th using the performance data from the last

window. These stored item sets are then used during performance by the search

algorithm in blocks of sixteen, creating one bar sequences for the search.

Figure 20: Initial S2MP plugin test - The training sequence length was increased from one to four

bars.

The x-axis in Figure 20 represents the number of item sets in the output

sequence created by the plugin during performance. The y-axis represents the

item set positions within the training database, e.g., bar A of MIDI CC training

0

16

32

48

64

0 16 32 48 64 80 96 112

D

C

B

A

Number of Item Sets in Output Sequence

4 Bars

3 Bars

2 Bars

1 Bar

Chapter 3 - Army of me: Autonomous agents and the solo performer

58

data is stored in item sets 0-15, while bar B is stored in item sets 16-31. In this

case, if the algorithm was in performance mode and presented with an input

sequence of AAAAAAAA, the target output sequence would cycle through item

sets 0-15 in the training database, and would create a repeating ramp in the

graph.

The results in Figure 20 show exactly this, and illustrate that the S2MP plugin

was able to reproduce the target sequences for all four tests. As the length of the

training sequence increased from one unique bar of MIDI to four, the number

of item sets in the output sequence also increased. This is not surprising as the

test input sequences were in the same order as the training sequences, thus

making the S2MP search a matter of stepping through the stored examples, and

creating an output of sequential item sets form the training database; however, it

does show that the algorithm is satisfactorily outputting the proper sequences for

Performer B given an input sequence from Performer A. Additionally, the graph

also shows an initial empty bar in the output sequence from item sets 0-16. This

is where the algorithm uses the input sequence to create the initial sequence of

item sets used during the search. After this first bar has been created, the search

sequence is complete and the algorithm will begin to return matches from the

database.

3.4.7.2 MAPPING VS ORDER

The second set of tests explores the impact of the Mapping / Order weighting

parameter. The parameter has eleven settings, biasing the algorithm to either rely

more on the intersection of Item Sets or the order of the sequence. The plugin is

trained on the same four bars of CC data used in the previous set of tests, and is

shown only the single transition sequence of ABCDA. Once trained, the four

bars of CC data are arranged into a new target sequence of BACADABA. This

target sequence includes transitions not seen in the training database, and

requires the S2MP algorithm to find generalized matches. Each test incremented

the Mapping / Order weighting parameter, starting at 100% Mapping, and

Chapter 3 - Army of me: Autonomous agents and the solo performer

59

ending at 100% Order. The window length is kept at one item set every 1/16th

note, and the input sequence length is kept to sixteen item sets.

Figure 21: Similarity percentage between output sequence and target sequence based on Mapping

/ Order weighting

The results of the test revealed that 0.6/0.4 and 0.5/0.5 Mapping / Order

settings returned the highest percentage target matching with 43.2%, while

0.2/0.8 scored the lowest target sequence matching percentage with 36.8% (see

Figure 21). In general, the tests show stronger performance for matching target

sequences using mapping of item sets compared with sequence order. This may

be due to the introduction of untrained transitions in the target sequence. These

untrained transitions force the algorithm to find a best match from new and

unseen sequences in the target. While a setting that is biased towards the order of

item sets will not handle these unseen sequences well, a setting biased towards

mapping will fair better as it will be able to recognize similar groupings of CC

data regardless of the order. In a musical scenario this ability to find matches that

are similar in content but possibly different in order is important, as real world

performance data will rarely look exactly like the training data.

As described in section 3.4.5, the search looks at the current beat within a bar,

relative to the DAW timeline, and searches only that beat within every bar stored

0.32

0.34

0.36

0.38

0.4

0.42

0.44
T

ar
ge

t/
O

u
tp

u
t

Si
m

ila
rt

y

Mapping / Order

Chapter 3 - Army of me: Autonomous agents and the solo performer

60

in the database. These tests were trained on four bars of performance data;

meaning that there are four possible values for every search, with a search being

performed every 1/16th note. This gives a 1 in 4 chance of getting a target match,

meaning that the 0.6/0.4 and 0.5/0.5 Mapping / Order settings performed

21.2% better then chance alone.

Figure 22: Mapping / Order - Average distance of output sequence from the target sequence

While the previous figure shows the overall similarity between the output and

the target, Figure 22 shows the average distance between the two sequences. The

average distance shows how close the output sequence was to the target

sequence on average. This is an important addition to the similarity percentage

between the two sequences as it gives an impression of how close the output

sequence actually was to the target. An output sequence could have a 30% match

with the target sequence, but on average be returning item sets from the training

database that are 2-3 bars away from the target sequence. This would become a

bigger issue as the size of the training database became larger. However, all

settings of the Mapping / Order showed that the output sequence was on

average one bar away from the target sequence, with a small bias towards the

target. This is significant as it shows that when the algorithm did not accurately

match the target, on average resulted in a sequence that was close to the target

bar.

0

8

16

24

32

D
is

ta
n

ce
 F

ro
m

 T
ar

ge
t

in

1/
16

th
 N

ot
es

Mapping / Order

Chapter 3 - Army of me: Autonomous agents and the solo performer

61

Figure 23: Factor increase of discontinuities between output and target sequence

Lastly, the output sequence was evaluated for the total number of discontinuities

relative to the target sequence. A discontinuity is a break in the sequence of item

sets produced by the algorithm. These breaks are usually found at the end of a

bar when the target sequence jumps using a transition not present in the training

sequences, e.g., the target sequence jumps from MIDI bar B to MIDI bar D. The

target sequence used in the test contained a total of 12 discontinuities, thus a

perfect matching output sequence having the same number. Up until this point,

both the 0.6/0.4 and 0.5/0.5 Mapping / Order settings have shown the same

performance; however, Figure 23 shows that a setting of 0.6/0.4 has slightly

fewer discontinuities then 0.5/0.5. In practice the reduced discontinuities in the

sequences amount to fewer jumps, and longer musical phrases from the plugin.

Additionally, a factor slightly greater then one is to be expected as the algorithm

cannot foresee the bar transition ahead of time, and may quickly attempt to

modify an output sequence with a better matching sequence shortly into the new

bar. This would lead to two discontinuities for every transition, with more than

two implying that the algorithm is having difficulty creating longer phrases.

3.4.7.3 NUMBER OF ITEM SETS IN SEQUENCE

With the previous results in mind, a final set of tests evaluated the effect of

changing the input sequence length, and the number of trained transitions

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

F
ac

or
 o

f
D

is
co

n
ti

nu
it

ie
s

Mapping / Order

Chapter 3 - Army of me: Autonomous agents and the solo performer

62

between MIDI bars. The tests were in two parts, first training using only one

transition between MIDI bars and then training using three possible transitions.

For each of these parts the number of item sets in the input sequence is set at 4,

8, 16, 24, 32, 40, and finally 48. The algorithm was trained on the same four bars

of CC data used in the previous two tests. However, the algorithm was trained

using only the single transition sequence of ABCDA for the first part of the test,

and then later trained using the sequence ABCDACBDADCA for the second

part. Once trained, the four bars of CC data were arranged in a similar manner as

before, this time creating an even more complex target sequence of

BACADABACDBACDBA. For the first part of the tests this target sequence

included transitions not seen in the training database, and required the S2MP

algorithm to find generalized matches, while for the second part of the tests the

transitions were from the training database and should provide improved

performance. The window length was kept at one item set every 1/16th note, and

a Mapping / Order value of 0.6/0.4 was chosen based off the results of the

previous tests.

Figure 24: Similarity percentage between output sequence and target sequence based on number

of item sets in the input sequence, and number of trained transitions

The results of the tests revealed that an input sequence of 16 item sets created an

output sequence that best matched the target sequence. In general, the higher the

bar along the y-axis, the better the output sequence actually matched the target

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 16 24 32 40 48

T
ar

ge
t/

O
u

tp
u

t
Si

m
ila

rt
y

Item Sets in Input Sequence

1 Transition

3 Transitions

Chapter 3 - Army of me: Autonomous agents and the solo performer

63

sequence. There was a 30.8% match for the single transition training set, and a

56% match for the training set with three possible transitions. These tests had

the same 1 in 4 chance of matching the target sequence as the previous tests, this

means that the three transition, 16 item set input sequence performed 31%

better then chance.

Additionally, Figure 24 reveals that item set sequences that are not multiples of

one bar returned near zero matches with the target sequence. This is due in part

to the quantizing of the search to a distance of one bar. The effect of this causes

item sequences of size 4, 8, 24, and 40 to have jumps that include fractional bar

amounts, causing the sequence to flip flop between phrases. Lastly, input

sequence lengths greater then the phrase length of one bar used during training

seemed to perform poorly. This may be another side effect of quantizing the

search to one bar jumps, or it may imply that S2MP is sensitive to the phrasing

length during training.

Figure 25: Increasing numbers of item sets - average distance of output sequence from the target

sequence for input sequences

The tests also revealed a large drop in the average distance from the target for

the three transition, 16 item set input sequence (see Figure 25). An Item set of 16

and 3 transitions resulted in a distance of twelve 1/16th notes away from the

target on average, and showed that the output sequence was less then one bar

0
4
8

12
16
20
24
28
32

4 8 16 24 32 40 48

D
is

ta
n

ce
 F

ro
m

 T
ar

ge
t

Item Sets in Input Sequence

1 Transition

3 Transitions

Chapter 3 - Army of me: Autonomous agents and the solo performer

64

away on average, meaning that not only did target matching increase but the

output sequence was closer overall.

Figure 26: Factor increase of number of discontinuous matches by sequence size

Lastly, while the increase in transitions present during training improved the

target matching for the 16 item set input sequence, it also increased the number

of discontinuities. This can be seen as an increase in noise, and can be seen as an

indication of the length of phrases created by the plugin. A factor of 1x could

mean that there is a discontinuity (or a transitional jump) at the end of every bar,

while a factor of 8x for a 32 item set input sequence (seen in Figure 26) would

represent a discontinuity every 1/8th note within the bar. This is not to say that

there would be an output sequence of only 1/8th notes, as some of the

discontinuities may cluster together.

3.4.8 CHALLENGES WITH USING SEARCH BASED SYSTEMS

Search based approaches to designing interactive musical agents will always face

a paradoxical issue. The issue being that as the amount of training data collected

increases the model becomes more accurate; however, inversely as the number

of searches increases the search performance becomes slower. As mentioned in

Appendix E, systems that attempt to perform automatic accompaniment handle

this challenge by restricting the search area to just before or after the assumed

position with the fixed score. While this chapter has presented a similar solution

0

2

4

6

8

4 8 16 24 32 40 48

F
ac

or
 o

f
D

is
co

n
ti

nu
it

ie
s

Item Sets in Input Sequence

1 Transition

3 Transitions

Chapter 3 - Army of me: Autonomous agents and the solo performer

65

for improvisational systems that have access to a transport or tempo clock (see

section 3.4.5), this solution requires assumptions that amount to compromises

within the search. Essentially, in order to ensure the system is fast enough for

use in real-time constraints are placed on the search, meaning that the algorithm

may not return the overall “best” match from the database. This may be an

acceptable compromise however, as a match that is “good enough” may provide

a solid base for interaction between the human and the interactive musical agent.

3.5 DISCUSSION

The search based interactive musical system presented above represents only a

single approach to designing interactive musical agents, with many other

approaches to configuring the system existing. The following sections discuss

several different methods for linking the input values to provide context for the

system; the requirements for building an interactive musical agent within the

context of each of the three approaches; and how these systems help to further

the evolution of the performer composer.

3.5.1 ARCHITECTURE OF AN INTERACTIVE MUSICAL AGENT

In section 3.1, designing an interactive musical agent was framed as an attempt

to use control change data from two performers, and then generate new material

in the style of performer B given a context provided by both performer A and

the output of the interactive musical agent (see Figure 9). Over the course of

researching the design of interactive musical agents, there emerged several

approaches to linking the inputs of the system in order to provide this

contextualization of the model, each with advantages and challenges (see Figure

27). Three of these design architectures are presented.

The first, and most complex relationship is one in which the state of every

control from both performer A and the virtual model of performer B influence

the future state of every control in the model. A second approach allows the

virtual model to be independent of performer A’s state, and instead use

performer A’s input to apply a fitness function to the model’s output. Lastly,

Chapter 3 - Army of me: Autonomous agents and the solo performer

66

each control can be modeled independently, allowing for greatly simplified

models; however, while statistically over time these separate models may

individually show behavior indicative of Performer B, there is no guarantee that

this behavior will emerge for these models as a group.

Figure 27: Different design approaches for interactive musical agents. Clockwise from top: (A) All

inputs affecting the model’s output; (B) The model is only affected by itself, and live input is

applied as a fitness function; (C) Inputs are split into simpler individual models, all acting

independent of each other

The first approach combines input from performer A with the previous output

of the model (see Figure 27 A). This approach is inspired by the way human

musicians listen to each other during improvisation. In order to decide what to

play next during improvisation, a musician must listen to both what they have

previously played, and what other musicians are currently playing. Implementing

Chapter 3 - Army of me: Autonomous agents and the solo performer

67

an interactive musical agent that models this kind of listening can become

challenging with large numbers of controllers being modeled, and increasing

numbers of musicians within the ensemble. These situations can have large

numbers of input parameters, and lead to models that require prohibitively large

amounts of data during training.

The second approach to contextualizing the model is to only feed the model’s

output back into itself, and then apply a fitness function to the output using data

from Performer A. This effectively eliminates the input parameters provided by

performer A, shrinking the state space and simplifying the model (see Figure 27

B). While this approach simplifies the model, there are also complications. By

applying a fitness function to the output of a probabilistic model, the likelihood

of a getting a given sequence becomes altered, effectively changing the model

itself (Pachet and Roy 2011; Pachet, Roy, and Barbieri 2011). Similarly, the

fitness function may not accurately represent the complex interaction between

two human performers; however, an accurate model may not ultimately be the

most important factor, but rather the quality of interaction, or new modes of

performance afforded by the model may be most desirable. If this is the case,

then experimentation with parameters for a fitness function may be an effective

solution.

Lastly, a third approach allows for the most simplified models, as the domain

only needs to describe the relationship of a single control to its prior state (see

Figure 27 C). This model is not capable of capturing the inter-dependencies of

controller states on the state of other controllers, e.g., the value of a filter’s

resonance may be dependent on the value of the filter cutoff. In the end, it may

be that the models will statistically perform in the style of performer B, and the

complex inter-dependencies between different controllers will simply emerge.

3.5.2 THE ARMY OF ME

This chapter has presented a new similarity search algorithm for continuous

control, based off of work done by Martin (Martin et al. 2011), shown this

algorithm in use as a plugin within Ableton Live, and presented architectures for

Chapter 3 - Army of me: Autonomous agents and the solo performer

68

defining relationships between inputs and the model. Through the development

and use of these kinds of systems, computer musicians are able to extend their

expressive potential using virtual personas. This extension represents the

evolution of the composer performer as it creates an instrument that performs

with the musician, creating an improvisational feedback loop between the human

and the system, and allowing a single physical action to become multiple,

distributed musical events.

While these interactive agents afford the performer composer the ability to

further distribute their musical intent into the machine, they also have the

potential to create an increasingly disembodied performance. Audiences may not

currently be comfortable with this disconnect between the musician’s physical

actions and the interaction with the musical agents, and a more embodied

approach may help to bridge this gap. The following chapter examines

networked music ensembles, and how they provide computer musicians the

opportunity to create this sense of embodied performance through interaction

with other human musicians and the use of shared social robotic instruments.

69

Chapter 4

THE ART OF COMMUNICATION:

SHARED INSTRUMENTS AND

NETWORKED MUSICAL ENSEMBLES

“The concept of a musical instrument designed to be played simultaneously

by more than one person is not new, but there are very few examples in the

history of western music, other than the piano. With local high-speed

computer and sensor technology, a new universe of possibilities has been

unveiled…”

 —Alvaro Barbosa (2003)

Computer networks facilitate the exchange of information between computer

musicians, creating new forms of musical communication. This information can

be in the form of sensor readings, algorithms, text, or whole programs.

Exchanging data allows computer musicians to share control of their

instruments with every other member of the ensemble, essentially making the

musicians a part of the larger network instrument. The data passed over the

network can be manipulated by other musicians, or used as input for creating an

emergent music from network algorithms. This model of networking musical

information represents an evolution of the performer composer, and creates

entirely new worlds of musical performance.

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

70

The aim of this research is to explore this potential for networked musical

ensembles to become shared social instruments in the hope of developing new

modes of interaction for live computer music. Specifically, this chapter will look

at how The KarmetiK Machine Orchestra has created a shared social instrument

using networked musical robotics. These robotic instruments are accessible to

every member of the ensemble, and provide a way to directly embody the actions

of the computer musicians through the physical movements of the robotic

actuators (A. Kapur et al. 2011). Analogous to several performers playing on a

single piano, the shared instrument allows multiple performers to express

themselves independently within a social context (Barbosa 2003). Through the

use of a central server, the musicians are able to control the shared robotic

instruments both at the note-level using hardware interfaces for musical

expression, and simultaneously at the score-level through software sequencers

communicating over the network (see Figure 28).

Figure 28: Network topology of The Machine Orchestra ensemble

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

71

The previous chapter explored the challenge of simultaneously controlling many

musical parts by developing autonomous accompaniment systems that react to a

human musician; this chapter approaches the challenge through networked

music ensembles and shared social robotic instruments. Networked musical

ensembles provide a solution to controlling many parts by dividing the

performance among several different musicians. This reduces the scope of

musical control that a single performer is responsible for, while also helping the

audience to connect with the performance through the embodied interactions

between musicians. These interactions between musicians amount to

externalizing parts of the performance, thereby helping the musicians to more

effectively communicate with the audience. Additionally, the use of shared

robotic instruments provides a physical point for this musical interaction

between performers. Physicality in performance has historically been a challenge

for electronic music (Bahn, Hahn, and Trueman 2001), but combining network

ensembles with musical robotics creates a new social instrument with which to

address these issues.

This chapter examines these issues through the work of The Machine Orchestra,

and begins by presenting a historical review of networked computer music

performance. This review examines the precedence of networked musical

ensembles as social instruments, and serves to illustrate how The Machine

Orchestra stands on the shoulders of historic network ensembles. The chapter

then examines The Machine Orchestra’s extension of the shared social

instrument to include musical robotics, and the use of this shared instrument

within the context of several The Machine Orchestra compositions.

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

72

4.1 BACKGROUND

Figure 29: The League of Automatic Composers 1980

Over the past 35 years, network music ensembles have evolved into a rich and

diverse field of research and exploration for computer musicians. The idea of a

musical network has grown to encompass a wide range of topologies and

configurations, from small local networks of performers sharing data between

each other (Bischoff, Gold, and Horton 1978; Gresham-Lancaster 1998;

Smallwood et al. 2008), to large ensembles of computer musicians half a world

apart (Cáceres et al. 2008). During this same time, research has also explored

systems designed to overcome the challenges inherent in high latency, low-

bandwidth communication (Lazzaro and Wawrzynek 2001; Chafe and Gurevich

2004; Barbosa, Cardoso, and Geiger 2005; Cáceres and Chafe 2010; Driessen,

Darcie, and Pillay 2011).

Founding network computer musicians were interested in the potential of

networks to connect and share data. Early experiments by The League of

Automatic Composers (Bischoff, Gold, and Horton 1978) involved three

networked microcomputers (KIM-1), each with its own custom software

instrument, all sharing control data. This process of allowing the performers to

control each other’s instruments created an ensemble that had never before been

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

73

possible, and led to the creation of a shared and social instrument, diffusing the

absolute control a musician traditionally had over his or her own instrument. The

members of The League named this new style of music “Network Computer

Music”, and continued to explore the possibilities of this new style until 1986.

The Hub formed out of the pioneering efforts of The League, and expanded on

existing research using the newly developed MIDI protocol. In his 1998 article

on the aesthetics and history of The Hub, Scot Gresham-Lancaster explains how

“the advent of both the microprocessor and the affordable, multi-parameter,

controllable MIDI synthesizer made possible a new type of network-based

performance” (Gresham-Lancaster 1998). He goes on to suggest a link between

this new type of network-based performance and the process music of

composers such as John Cage, David Tudor, and Pauline Oliveros. The

processes that Lancaster alludes to are a product of the rules governing the ways

in which performers share data through various network topologies and

algorithms.

This potential for performers to share musical data through networks has

become one of the central focuses of networked computer music, with Brian

Kane going so far as to say “Any aesthetics of Net music would,

correspondingly, imply a set of musical practices that exploit these (and other)

specific affordances of networks” (Kane 2007). Additionally, while developing a

classification framework for describing the multitude of possible network

ensemble interconnections, Gil Weinberg states that he attempted “… to map

the field based on what [he sees] as the central innovative concept of the

medium: the level of interconnectivity among players and the role of the

computer in enhancing the interdependent social relations” (Weinberg 2005). In

developing his framework, Weinberg renamed Network Computer Music to

Interconnected Music Networks, reflecting this focus on interconnectivity.

This focus on interconnectivity can be found in many different networked music

compositions. The Hub’s 1991 piece waxlips (Tim Perkis,) is based around a rule

regarding the way a client requested notes from the master machine. Lancaster

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

74

describes waxlips as “an attempt to find the simplest Hub piece possible, to

minimize the amount of musical structure planned in advance, in order to allow

any emergent structure out of the group interaction to be revealed clearly”

(Gresham-Lancaster 1998). This “emergent” behavior results from sharing of

musical data between performers, ultimately providing each individual musician’s

contribution as musical source material for the entire group.

More recent pieces by Princeton’s Laptop Orchestra PLOrk (Smallwood et al.

2008) examine the way in which data can be passed around a network using a

wireless router and topologies as complex as peer-to-peer interconnectivity. Ge

Wang’ composition Clix explores the use of the network to quantize all musical

output to a common pulse rate, thereby tightly synchronizing the musical output

of a large ensemble. Dan Trueman’s The PLOrk Tree explores using a tree

structure to propagate musical ideas throughout an ensemble. Much like a game

of telephone, the musical information received by performers at the edge of the

tree is a modified version of the original idea performed by the conducting

computer at the root of the tree. The concept of sharing musical data with other

members of a network ensemble, and allowing them to alter or modify it, is

central to many network compositions as far back as the League of Automatic

Composers. These pieces share a common algorithmic approach to composition,

where rules govern the way in which an interconnected ensemble of musicians

share and manipulate performance data. These rules for sharing data turn the

network itself into a shared social instrument.

4.2 PHYSICALITY IN COMPUTER MUSIC

PEFORMANCE, AND EXTENDING SHARED

CONTROL TO MUSICAL ROBOTICS

As described in the previous section, existing network ensembles afford

computer musicians unique ways to share control over each other’s instruments.

This democratic approach to performance creates opportunities for new modes

of interaction, such as social games and algorithms requiring input from the

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

75

entire group. These approaches can lead to emergent behavior from the

ensemble, and create music that is not a direct result of any one performers

actions, but truly dependent on the sum of all the actions of the musicians.

As the ensemble’s musical control becomes more diffuse, the connection

between the music and the listeners—both ensemble participants and audience

members—potentially becomes unfocused and difficult to ascertain (Gresham-

Lancaster 1998). Weinberg describes this as one of, “the field’s main drawbacks,

in [his] opinion, stem[ming] from the focus that was put on complex

interdependent connections which forced participants and audiences to

concentrate on low-level analytical elements in order to follow the interaction”

(Weinberg 2002). He goes on to say in a later article, “these networks posed high

entrance barriers for players by requiring specialized musical skills and theoretical

knowledge in order to take part in and follow the interaction in a meaningful

manner” (Weinberg 2005). One of the original members of The Hub also

expresses a similar idea stating, “the audience was often mystified by what they

heard in relation to what they saw the performers doing” (Gresham-Lancaster

1998).

Weinberg suggests that, “the design of expressive gesture-based interconnected

instruments… [would provide] participants with an expressive as well as

coherent access to complex interdependent network topologies, which will allow

them to focus on the artistic aspects of the experiences” (Weinberg 2002). The

instruments proposed by Weinberg would provide a strongly embodied link

between the performers’ actions and the music created. The Machine Orchestra’s

implementation of this idea is a shared social instrument comprising an array of

custom built electro-mechanical instruments.

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

76

4.3 MUSICAL ROBOTICS AND THE KARMETIK

MACHINE ORCHESTRA

Since 2009, The Machine Orchestra has been performing as a music ensemble

using a local network, exploring the concept of shared musical robotic

instruments. The creation of The Machine Orchestra came out of the thesis

work of Ajay Kapur (A. Kapur 2007) which in part explored the mechanization

of classical North Indian instruments. This led to a class at CalArts in 2008

where students designed and built a set of robotic instruments based off the

technology used in Kapur’s original work (A. Kapur et al. 2011). During this

class, the author built a musical robot named Tammy, in collaboration with

Jordan Hochenbaum, Carl Burgin, Steve Rusch, and Jeff Lufkin (see Figure 30).

Tammy consisted of hand carved marimba bars, metal bells, and a metal string

resonator (A. Kapur et al. 2011).

Figure 30: View of the marimbas from the musical robot Tammy

Shortly after this class, the original Machine Orchestra developed as a

combination of laptop orchestra and musical robotics (Aj. Kapur, Darling, and

Kapur 2012). Each of the musicians in the ensemble connects through a central

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

77

server, to all the other musicians and to the shared robotic instruments (see

Figure 28). This configuration allows for the traditional interconnected network

topologies, as well as configurations where the musicians are unlinked and only

share musical control over the robotic instruments. Initially, the actuators of the

drums were divided up during composing, with performers often sharing control

over the same mechanized instrument. This division of control was utilized in a

composition called Mechanique, where members of the ensemble wove a

polyrhythmic texture using the robotic drums. As many as three or four players

could be sharing the same robotic instrument during certain section of the piece.

As The Machine Orchestra evolved over the years, several new modes of control

were explored. One notable approach involved using research from the previous

chapter to write an algorithmic drum sequence for the robots. At the appropriate

section of the song, the robots took a “solo” which increased in in intensity until

suddenly changing back to shared control at the following section. The solo was

not pre-programmed, and instead was an algorithm that allowed the robots to

increase their playing intensity with the human performers during the specific

section. This system represents an effort to integrate the ideas from Chapter 3

into networked music ensembles.

Lastly, the use of shared robotic instruments in The Machine Orchestra has

provided a means to realize embodied performance. The physical actuators of

the musical robotics act as a bridge between action and sound. Although the

mappings may still remain complex and diffuse, the audience has responded

positively to the physical movements of the robots when compared to a

performance using computers only. This may be attributed to enculturation of

the audience, with the physical robots providing a link between the physicality of

an acoustic ensemble and the distributed mappings of a computer only

ensemble. Additionally, from a performance perspective, the spatialization of the

robotic instruments, and shared control over them leads to an ensemble

experience that is uniquely different from performing with computers alone.

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

78

4.4 COMPOSITIONS AND PERFORMANCES

The following section presents several concerts that the author performed in

over the course of this thesis, and illustrates how members of The Machine

Orchestra:

 Compose and perform using the musical robotics as a shared social

instrument.

 Embody and communicate musical interactions to the audience via the

use of custom musical controllers and the musical robotics.

 Perform in multiple interaction contexts.

These concerts were performed with several different configurations of The

Machine Orchestra, and as such provided an opportunity to experience

networked ensembles of various sizes. Additionally, the musicians of The

Machine Orchestra come from diverse musical backgrounds. These factors

created the opportunity to learn, compare, and contrast performing both solo

computer music, and within networked ensembles. A survey of the musicians

involved in the following concerts is discussed in Appendix C, and looks at some

of their thoughts and ideas regarding solo live computer music versus networked

computer music ensembles.

4.4.1 JANUARY 27, 2010 REDCAT - THE MACHINE

ORCHESTRA

The 2010 REDCAT show represented the premier of the full KarmetiK

Machine Orchestra ensemble, comprising of Ajay Kapur, Perry Cook, Curtis

Bahn, Jordan Hochenbaum, Jim Murphy, Carl Burgin, Maeson Wiley, Dimitri

Diakopolous, and the author. This production represents a fusion of networked

computer music, musical robotics, and world music; allowing for solo and group

improvisation, as well as performance using a shared robotic instrument. This

concert also presented the opportunity to test network MIDI clock sync for

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

79

more than two performers, providing an opportunity to compose rhythmically

based music with the parts distributed among the ensemble (see Figure 28).

 Figure 31: The Machine Orchestra at REDCAT 2010

4.4.1.1 COMPOSITIONS

The concert consisted of a number of pieces, and was made of three main

sections. The first part of the concert consisted of the networked computer

ensemble and the musical robotics; this was followed by a performance with the

Machine Orchestra and the renowned classical north Indian musician Aashish

Kahn; lastly, The Machine Orchestra ensemble left the stage and a piece by a

Gamelan ensemble with a robotic Reyong was performed.

The first piece to have the entire ensemble use the musical robotics was called

Mechanique (briefly described in section 4.3). Mechanique explored the idea of

the shared social instrument by creating a many-to-many relationship between

the performers and the robotic instruments. Musicians were not assigned to a

single robotic instrument, but rather each musician was assigned several

actuators across multiple robots; as a result, the network afforded the musicians

the ability to perform simultaneously on all of the physically separated robotic

instruments. This is a unique feature of working with the shared social

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

80

instrument that would be difficult to achieve for traditional acoustic ensembles.

The ability to divide a single musical instrument across multiple performers

enables complex musical interactions, e.g., each performer plays a simple rhythm

on their controller, which are then summed together at the robot to create

complex interlocking beats. This idea is similar to styles of Indonesian music,

where instruments in the gamelan such as the Reyong are situated amongst 2-4

players in order to achieve extremely fast polyrhythm.

Although Mechanique is an improvisatory piece that encourages performer

spontaneity (A. Kapur et al. 2011), there is a higher-level structure dictating when

musicians enter the piece, as well as the dynamics. Mechanique begins by

sparsely introducing the various robotic instruments, and then growing denser as

the ensemble begins to play more of the actuators. The piece gradually

crescendos until the performers all simultaneously play a final abrupt note.

Additionally, the physically separated, percussive robotic instruments are given a

sense of spatial coherency using instrumental drones and synthesized textures

provided by several of the performers. These ideas are central in providing the

piece with a simple core against which the complex robotic improvisations can

contrast.

A key goal of Mechanique was to bring in the robotics slowly, thereby

introducing the audience to the robotic instruments and the performer's various

custom interfaces and controllers. This process allowed the audience to identify

individual performer’s actions with the physical sound producing actuators of the

robots, and in doing so, reinforced the potential for embodiment represented by

the robotic instruments. Additionally, the piece was highly rhythmic and

improvisatory in nature, requiring accurate timing and sync between the

musicians and robotic instruments. This timing allowed for both pre-composed

rhythms, while also providing the opportunity for more improvisational

explorations. Syncing computers to a master MIDI clock allowed for triggered

MIDI sequences to be in rhythmic time with the rest of the ensemble. These

sequences were controlled through various interfaces such as the Arduinome

(Vallis and Kapur 2011), the Helio (Murphy, Kapur, and Burgin 2010), and the

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

81

Multi-Laser Gestural Interface (MLGI) (Wiley and Kapur 2009) which provide

visual feedback to the audience through physical interaction and LEDs. At the

same time that these sequences were being triggered, it was also possible to

manually play individual actuators on the robots. This was achieved by mapping

the controllers to both sequences, and individual actuators.

The second section of the concert consisted of the pieces Sitka, Moksha, and

Twilight. Although all performers were locked to a synchronized clock, in these

three pieces they had the ability to move freely through the arrangement by

launching different groupings of loops. This is similar to Terry Riley’s In C

(1964) in that the loops can be thought of as cells that represent different

sections of the song. In a similar manner to Barbosa’s description of non-

improvisational music (Barbosa 2003), the pre-composed pieces dictated what

grouping of loops all performers should be playing at a given point in the piece,

but there remained the flexibility to vary or manipulate the arrangement by

moving within the small group of currently available loops.

The main ensemble was split into three distinct groups: group A performed

harmonic and melodic material; group B added more timbre and gesture based

sound material to the pieces; Group C was responsible for all the drum and

percussion parts within the pieces, providing these elements while performing in

several different interaction contexts. These contexts consisted of a combination

of audio loops sent to the speakers, MIDI loops sent to the robots, manipulation

of the audio material through custom Reaktor software, and note for note

performance of samples and/or the robotic instruments. Much of the percussion

material composed for the piece was polyrhythmic, with the perceived groove of

these parts being highly dependent on the synchronous timing between two of

the performers. This proved challenging as the network seemed to incur clock

jitter, smearing the timing relationship between the rhythmic parts.

Lastly, control over the robots was split between several musicians. These

musicians were able to send pre-recorded sequences to the robots, while also

having note-level control over individual actuators. This would be similar to a

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

82

player piano having two or three people playing along with the automated paper

score. Additionally, the individual note-level control over the robots allowed for

a single robot to be used for call and response sections between musicians in the

ensemble. This interaction and performance used the same musical interfaces as

Mechanique, but utilized completely different mappings. This flexibility in

interface mapping is one of the main evolutions of the performer composer,

allowing a physical interface to become virtually any instrument.

4.4.1.2 OUTCOMES

This concert was the debut of The Machine Orchestra, and represented the first

public opportunity to perform in a networked ensemble using interfaces such as

the Arduinome, the Helio, the Multi-Laser Gestural Interface (MLGI), and

musical robotics. The concert resulted in a unique opportunity to improvise as a

solo live computer musician, using all of the interaction contexts previously

described in this thesis, while also engaging in musical dialogues between

computer musicians. Interestingly, when these musical dialogues were between

the author and another performer, the improvisation felt like two distinct voices;

however, when more then three members of the ensemble simultaneously

performed on the shared robotic instruments, there was a very different

connection to the musical dialogues. The improvisational ideas became less

driven by call and response interaction, and increasingly driven by a desire to

become a part of a texture or system. This appeared to be a product of the

network having the potential to merge multiple musicians’ musical intent into a

single instrument, relocating the actuations of the performers to a single physical

location.

4.4.2 AUGUST 14, 2010 – KARMETIK COLLECTIVE

A Machine Orchestra ensemble, consisting of Ajay Kapur, Curtis Bahn, Jordan

Hochenbaum, Jim Murphy, and the author, performed in Auckland New

Zealand on the 14th of August 2010. The piece Tarana was composed for the

Auckland performance, and is notable for its use of the algorithmic

improvisation section described in section 4.3. Composed in a similar manner to

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

83

Sitka Chant, Moksha, and Twilight, the piece was a combination of pre-

composed loops and improvised material.

4.4.2.1 COMPOSITION

The performance opened with an alap, a traditional North Indian classical

improvisation that introduces the melodic ideas used in the composition. As this

introduction came to an end, all the performers and robots simultaneously

entered the piece. This entrance marked the start of the common clock shared

between the robots and the human performers, and set up the piece to move

towards an improvised middle section. Once this middle section was reached,

the robots were signaled to begin a generative improvisation program, with the

human musicians responding to the robot’s performance. The generative drum

section was incorporated directly into a ChucK (Wang and Cook 2003) based

client server application. At the appropriate moment in the score, a message

from an Arduinome interface was sent to the server and activated the generative

process. The section began with the robots playing sparsely, and then slowly

crescendoed to a flurry of rhythmic activity on the drums. Finally at the end of

the improvised section, all performers and robots simultaneously move back to

the main theme introduced in the alap, effectively ending the robots’ autonomy.

Tarana is unique among the Machine Orchestra compositions in that it contains

a role reversal between the human musicians and the robotic instruments. For

one small section of the music, the robots are leading the performance, with the

humans responding to the musical ideas being generated. This creates an

interesting example of computer musicians performing in multiple interaction

contexts, where they are not only playing individual notes, and effecting the

sound from their computers, but also simultaneously responding to semi-

autonomous musical robotics.

Additionally, several of the pieces from the original 2010 REDCAT production

were performed in this concert, but required new arrangements in order to work

with the smaller ensemble. This process of creating new arrangements began

with a discussion regarding the new roles each of the musicians would play. This

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

84

discussion resulted in an increase in parts for each musician, completely re-

imagining the original compositions for performance by the smaller ensemble.

This re-imagining of the works is interesting in that it illustrated the versatility

and flexibility of the computer as an instrument.

4.4.2.2 OUTCOMES

This concert explored the use of generative approaches for controlling robotic

percussion. The system provided the opportunity for control of the robots on a

score-level, while simultaneously allowing them to generate new musical material

on top of which the ensemble could improvise. Tarana represents a clear

example of the unique interactions that live computer music affords, and the way

in which this leads to an evolution of the performer composer. This interaction

can be seen as a simpler version of the systems described in Chapter 3. While it

was interesting to respond to the generative material played by the robots, it is

my hope that future development of interactive musical agents will lead to a full

two way musical dialogue between human and machine.

4.4.3 APRIL 12, 2012 REDCAT – SAMSARA THE MACHINE

ORCHESTRA

The Samsara concert is the biggest Machine Orchestra production to date.

Bringing together music, technology, animation, production, and dance. The

development and production was the work of Ajay Kapur, Michael Darling, and

Raakhi Kapur (Aj. Kapur, Darling, and Kapur 2012). The bulk of the concert

consisted of several networked ensemble pieces that heavily utilized the shared

social robotic instruments, and aimed to build off of ideas from previous

Machine Orchestra perfromances. In addition to these pieces were works by

visiting artists Trimpin, Curtis Bahn, Tomie Hahn, and Jeff Aaron Bryant.

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

85

Figure 32: The Machine Orchestra performing Samsara 2012

4.4.3.1 COMPOSITION

Seminya was the opening piece, and was a reconceptualization of contemporary

Bhangra music and Bollywood themes for the Machine Orchestra. This piece

was composed in a similar style to earlier machine orchestra pieces. The pre-

composed loops were used to move through a loosely defined arrangement,

while the musical robotics and computer generated sounds were improvised over

top. For the closing of the concert, the pre-composed material for Seminya was

used as source material for a new completely improvised piece. This resulted in

each musician selecting several loops from the original composition and then

creating an entirely new piece of music by modifying and manipulating the

source material in real time. Similar to re-mixing and sampling techniques, the

manipulation of the original musical material became the instrument the

ensemble played. In this way, prerecorded material can be thought of as the

written score, and manipulating that material can be thought of as the

improvisational space, becoming an instrument in its own right. The Seminya

reprise is an important piece for The Machine Orchestra as it illustrates how a

networked ensemble can have musical dialogues as acoustic ensembles do, but

can also leverage different interaction contexts to create entirely new

interpretations of the musical material.

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

86

4.4.3.2 OUTCOMES

This concert represents a fusion of the ideas presented in this thesis. While many

of the pieces used all three interaction contexts–with concepts and ideas learned

from previous performances of The Machine Orchestra–the final piece illustrates

these in a special way. The aim of this final piece was to take the material used in

the opening number of Samsara, and then improvise an entirely new piece of

music. This could be described as a reprise as it brought back the musical ideas at

the opening of the concert, but it also represents a uniquely computer music

approach to this process. Several rehearsals were spent without any fixed

compositional requirements or ideas, and instead focused on improvising and

reworking the material to find new sounds and ideas. While many forms of live

music reinterpret songs in this way, The Machine Orchestra’s approach actually

built the new interpretation using the audio from the original as the instrument.

The result of this is that the reprise is actually built from the opening piece; not

just the musical ideas, but also the musical material itself.

The reprise stands out as a moment where all three interaction contexts were in

use by the members of the Machine Orchestra. Each musician took the original

material as their starting point and played new notes (Note-Level), processed the

audio to create entirely new sounds (Effect-Level), and rearranged the scored

material down to the very beat level (Score-Level). The result of these

interactions allowed the ensemble to perform the original composition as the

instrument itself.

4.5 DISCUSSION

This chapter has presented a historical overview of networked music ensembles,

and their exploration of interconnectivity. The field of networked music has lead

to new forms of live performance that include the use of social configurations

enabling music through games, and algorithms utilizing the multiple streams of

input data coming across a network. The Machine Orchestra was presented as a

contemporary example of networked music ensembles, and the development of

Chapter 4 - The art of communication: Shared instruments and networked music ensembles

87

a shared social instrument in the form of musical robotics was presented as a

new contribution to the field. The use of this shared instrument, and the types of

interactions within the ensemble were presented in the description of several

pieces performed by The Machine Orchestra. These pieces illustrated how pre

composed music, with the parts being distributed among the ensemble, enables

musicians to improvise with greater detail and focus then is possible as solo

performers. Additionally, the pieces also showed how these larger ensembles can

help issues of embodiment, by using the multiple performers to bridge the gap

between the audience’s perceptions of the performer actions, and the actual

sounds being produced. Lastly, the use of shared social instruments leverages the

networks ability to share information between computers. This allows the

musical robotics to act as a physical point at which all members of the ensemble

can perform and control musical expression. The use and interaction of this

shared instruments creates new modes of interaction within an ensemble, and

opens new worlds of performance.

89

Chapter 5

CONCLUSION

“No people could live without first valuing; if a people will maintain itself,

however, it must not value as its neighbour valueth.

Much that passed for good with one people was regarded with scorn and

contempt by another: thus I found it. Much found I here called bad, which

was there decked with purple honours.”

—Friedrich Wilhelm Nietzsche (1896)

This chapter presents a summary of the ideas explored in this thesis, tying them

together to make the case that live computer music is an evolution of the

performer composer. Additionally, this chapter presents the main contributions

from the previous three chapters. Finally, an overview is presented of my

philosophy of live performance that has developed as a result of this research,

and the future work it will lead to.

1 SUMMARY

Much of this thesis has presented interaction contexts (see section 1.1) as the

basis for understanding how live computer music has lead to an evolution of the

performer composer. These interaction contexts describe different modes of

performance; including note level, effect level, and score level interactions. Live

computer music’s ability to automate tasks has now enabled musicians to

simultaneously perform in more than one context. This simultaneous use of

interaction contexts amounts to the propagation of the performers will,

stemming from a single physical action, and disseminating through a system into

Chapter 5 - Conclusion

90

multiple musical events. As the move from monophony to polyphony was an

evolution of melodic composition, so is the move from acoustic performance to

computer-mediated performance an evolution of the performer composer. This

thesis explores this evolution in three key areas of live computer music: interface

design, interactive musical systems, and networked computer music ensembles.

Figure 33: The Monome can be both highly programmable or immediately usable

This thesis has shown how online communities have impacted the process of

designing new interfaces for musical expression, providing technical resources,

musical software, and iteratively modifying devices to allow for new mappings

between the hardware and software. The development and use of these

interfaces speaks to the decoupling of physical action and sound actuation. Even

if a computer musician does not design their own custom controller, they still

map the physical device to virtual controls inside the computer. These mappings

allow a single device to potentially control an orchestra of virtual instruments.

This process of mapping makes every computer musician a digital luthier, both

crafting the instrument and performing with it. This represents an evolution of

the performer composer, as virtuosic computer musicians now master both

performing and mapping of their physical interfaces.

However, there is a downside to this highly customizable approach (Cook 2001).

The increase in modularity requires an initial investment in order to set up the

PROGRAMABILITY Monome

Sensors

Arduino I-CubeX Lemur Keyboard
Controllers

DAW
Controller

USABILITY

Chapter 5 - Conclusion

91

desired functionality, such as learning the technical languages and skills required

to understand the system behind the controller. This allows the user to create a

custom interface but also creates an initial decrease in “plug-n-play” productivity;

however, this decrease in productivity can be mitigated to some extent by access

to information and experts within online communities such as Monome and

Arduino. In contrast, fixed functionality provides immediate productivity but

often prevents the interface from communicating in exactly the way the user

desires, thereby imposing a particular interaction between the musician and the

sound generation. Customization and immediate usability can be thought of as

extremities of a spectrum (See Figure 33). At one end can be placed sensors,

microcontrollers and software development, while the opposite end holds

volume controls, panning knobs, filter knobs or any input or output device

permanently assigned to only a single task. Interfaces such as the Monome

effectively sit over a very large area of this spectrum, allowing for both complete

hardware customization and immediate use. This broad usage is due to several

factors stemming from an online community-based design approach, including

open-source hardware/software, and a strong community involvement in the

device’s application development.

While interfaces enable the physical interaction between musician and computer,

the systems to which those interfaces are mapped define the complexity of

sound generation. Basic mappings between an actuator and a single sound

provides note level interaction, however more complex mappings are possible

through the use of interactive musical systems. These systems take single actions

from performers, and use this information to contextualize the output of a

virtual performer. These virtual performers are trained up during rehearsals, and

emulate the relationship between the human musician and other members of an

ensemble. In doing so, the system allows for a computer musician to

simultaneously perform in the note level context, while influencing the output of

other virtual performers on a score level context, in essence influencing an entire

ensemble as a conductor. This ability for a computer musician to have direct

focus on a one aspect of a musical performance, while simultaneously

Chapter 5 - Conclusion

92

influencing semi-autonomous systems, contributes further to the evolution of

the performer composer.

While the development and use of interactive musical systems may help to

distribute the performer’s will, allowing a musician to simultaneously perform in

multiple interaction contexts, there are potential challenges. To start, the

complexity of the interaction may become difficult to manage during a

performance, with the musician becoming unsure of a consistent response from

their actions. However, this can be mitigated in part by adding score level

controls into a system to ensure that large compositional events are

synchronized. Even with this sort of functionality implemented into the system,

a performer must still be careful to insure that the increased diffusion of a

musician’s actions do not lead to an unwanted increase in the audience’s

perception of a disembodied performance. Combining these systems with

networked computer music ensembles provides an opportunity to balance the

perceived embodied and disembodied aspects of live computer music.

Networked computer music ensembles enable new social modes of performance,

as well as opportunities for building on top of the ways in which traditional

ensembles have performed. Computer musicians in these ensembles are capable

of utilizing the same interaction contexts as solo computer musicians, but must

design their systems/instruments with different constraints in mind. The solo

computer musician seeks to expand the expressive potential of their actions by

automating musical parts, developing complex mapping schemes between

controls and sound, and implementing interactive systems like those described in

Chapter 3. Networked computer music however, in part alleviates the need for

this type of broad control by sharing the parts of a composition among many

different talented computer musicians. As previously mentioned, this decreases

the number of simultaneous parts that each musician is responsible for, and

allows them to focus more on the parts they do have. This increased focus

potentially leads to more detailed improvisation, and allows for social interaction

between performers or using shared social instruments such as musical robotics.

This social interaction between musicians provides an embodied component to

Chapter 5 - Conclusion

93

the performance, creating an avenue for audiences to connect with the actions of

the ensemble.

However, musicians in these types of ensembles have different performance

considerations then solo computer musicians. Issues such as over-playing

become a serious concern. For solo computer musicians who are used to

attempting to play all the parts by themselves, stepping back and playing less may

be a challenge at first, but also presents new opportunities for musical dialogues

with other computer musicians. These musical dialogues may happen in a similar

manner to acoustic ensembles, through an exchange of note-level musical ideas,

or they may happen through new social instruments such as the network itself,

or musical robotics. This concept of shared social instruments is unique to

networked music, and provides yet another example of the evolution of the

performer composer brought on by live computer music.

Together, these ideas provide the computer musician with new tools to share

their musical expression using real, robotic, and synthetic ensembles. The

emergence of online communities has created a space to share, modify, and

develop new interfaces for musical expression. Computer musicians map these

interfaces in individual ways, allowing a single device to control note-level,

effects-level, and score-level interaction contexts. This control can be further

extended by the creation of interactive musical systems and autonomous agents.

These systems allow a single physical action from the musician to control

multiple independent lines of musical performance. Lastly, these tools can be

integrated in networked musical ensembles where this performance data can be

shared between performers, creating social instruments. Such shared social

instruments can even take the form of musical robotics, providing a physical

instrument that is played by the entire ensemble. These tools extend the ability of

a single performer composer beyond the limitations of physical agency, and

instead allow for the musical intentions of a performer to be realized. This

distribution of musical will into a system represents the evolution of the

performer composer.

Chapter 5 - Conclusion

94

5.1.2 IMPROVISATION IN LIVE COMPUTER MUSIC

This thesis has made the case that live computer music represents an evolution

of the performer composer, and has also presented my research into developing

tools to further enable this evolution. How then are these tools to be used in an

improvisational context? This section will present a general description of several

approaches to improvisation, and how these use the different interaction

contexts, and differ from acoustic music. These approaches are often combined

into hybrid versions or variations during performances, and so do not represent

an exhaustive taxonomy.

One approach is to start from nothing, and then create layered loops by

performing all the notes or sounds on each layer. This has the benefit of allowing

the audience to correlate the creation of each layer to specific sounds within the

composition. Additionally, the performer is usually only modifying or playing a

single sound per layer, making the connection between physical action and

sound more obvious to the audience. Improvising in this way constitutes using

the note-level context to play or perform the layers, possibly using the sound

processing-level context if the layers are affected, and lastly using the score-level

context to keep all the loops going, muting them or creating new ones. While

this approach does satisfy the audience’s desire for an embodied performance, it

can also lead to compositionally limiting situations. By requiring all the music to

be made one layer at a time, dramatic vertical shifts in composition, where

multiple layers simultaneously change, can be difficult to achieve. Muting of

layers is certainly possible, but dramatic shifts in harmonic content can be

difficult without first building those layers as well.

A second approach is the use of musical material that is prepared prior to the

performance. This material can be manipulated, effected, and re-arranged in real-

time during a performance, and can be comprised of audio loops or MIDI loops.

This approach allows for score-level control of the music as a performer moves

from one loop to another, sound processing-level control if the audio is

processed or effected, and not-level control if the musical material re-arranged

Chapter 5 - Conclusion

95

enough as to be perceived as completely new musical ideas. An example of this

might be the chopping and re-arranging of a melodic line, where the result is an

entirely new melody. This essentially uses the loops as an instrument, with slices

of the sound equating to the notes. While his approach has the benefit of

allowing major shifts in the composition, as the previously prepared ideas make

moving from one piece of musical material to another feasible, the use of

prepared material means that the audience does not see the musician play every

note. This can potentially dilute the audience’s sense of embodiment, and make

understanding and connecting to the performance more difficult.

Finally, a third approach is to improvise with the computer as a system or circuit.

These systems are semi-autonomous, and create the opportunity, in varying

degrees, for a musical dialogue between the human musician and the machine.

This approach may afford score-level control by allowing the musician explicit

control over the system or algorithmic process, essentially enabling them to force

the system into a different state. Sound processing-level control of the audio is

possible through processing or affecting either the output of the system, or the

input to the system. Lastly, the note-level context is dependent on the design of

the system. Strictly inputting to a semi-autonomous system or algorithm

amounts to influence, and as such not explicit control; however, systems such as

the interactive musical agents described in this thesis may be only listening to the

notes being played into another instrument, and then reacting to that

information. This approach to improvising during performance can prove to be

the most difficult for audiences to follow as an action from the human musician

may cause many different reactions from the system. Furthermore, the level of

influence imparted on the system may not be easy to discern.

The three approaches described here all leverage the computers ability to

automate tasks in the background while a musician’s focus is on something else.

Whether it is looping layers of audio, providing random access to prerecorded

material, or running a complex algorithmic system, computers enable the

musician to extend their control over a live composition.

Chapter 5 - Conclusion

96

5.2 CONTRIBUTIONS

The following section provides a summary of the work and presents the main

contributions of the thesis. These contributions are as follows:

1. The description of online community driven iterative interface design,

and several new interfaces resulting from this process. This approach to

interface design is shown to help drive innovation, and create new tools

for the computer musician.

2. The description of a search algorithm for modeling multiple streams of

continuous control data from two performers. The algorithm was

implemented as a plugin for use inside modern digital audio

workstations.

3. The description of a shared social robotic instrument.

5.2.1 ONLINE COMMUNITY BASED ITERATIVE DESIGN AND

THE CHRONOME

The diffusion of action afford by live computer music is initially enabled through

the use of a physical interface. As the mappings between physical actions and

sound production can be unique to each performer, developing interfaces

without any predefined relationship between physical actuator and sound

generator is crucial to allowing live computer musicians to create custom

complex performance systems. Information regarding these interfaces has

previously been shared at academic or research institutes and communities;

however, the advent of online communities has also allowed the broader public

to participate in the development of these devices. A small number of

community members modify and add new functionality to existing interfaces,

and these modifications then become integrated into the use of the larger

community over time. Once integrated, the ability to discuss and share

information about the way in which these interfaces are being used helps to drive

innovation and spur new ideas.

Chapter 5 - Conclusion

97

This thesis also presented the Arduinome and the Chronome as examples of

interfaces developed by the author through interaction with the online Monome

community. The Arduinome was a collaborative project that ported the

Monome to the Arduino platform, increasing the potential for modifications and

development. The Chronome built off this work, adding RGB LEDs and

pressure sensitivity to the original design. All the technical information regarding

these two interfaces has been shared with the online community, and has led to

modifications and re-imaginings of the musical uses of these interfaces.

5.2.2 S2MP AND AN INTERACTIVE SYSTEM FOR

CONTINUOUS CONTROL

This thesis presented a novel approach to creating an interactive system for

modeling continuous control data, based off work using a search algorithm

called S2MP (Martin et al. 2011). The algorithm uses a weighting between

similarity of events, and similarity of sequence, and allows the system to match

against new sequences not seen in the training database.

This system was implemented as a plugin, and was shown to be able to train

through rehearsals, and reproduce continuous control data in the style of one

performer given an input stream from another. The thesis also presented an

approach for simultaneously sampling multiple sources of continuous control

data from two different performers. This approach collapses a total of 128

controller inputs into a single 1-dimensional vector, and only stores events as

they change, allowing for a sparse collection.

This system represents a step towards creating virtual versions of a single

performer, with the goal being to eventually allow computer musicians to control

and influence autonomous computer generated ensembles.

Chapter 5 - Conclusion

98

5.2.3 SHARED SOCIAL MUSICAL ROBOTICS

This thesis also presented the concept of a shared social robotic instrument.

These instruments are unique in that a network of computer musicians are

virtually linked through a shared physical instrument. The shared use of a

physical instrument places constraints on what sounds can be simultaneously

played by the ensemble, provides a physical location for group musical

interaction, and creates a point of physical action that an audience may associate

with increased embodied performance. Most interestingly, the shared social

robotic instruments provide a new space in which to explore group musical

performance and improvisation.

5.3 FUTURE WORK AND PHILOSOPHY

This thesis has presented tools and ideas that have lead to an evolution of the

performer composer. These tools are now being used to create new forms of

music, new interactions between performers and their instruments, and new

relationships between musicians and the audience. Future work will focus on

taking these ideas, as well as the new modes of interaction afforded by them, and

working towards integrating it all into a new live performance aesthetic. One that

is based not just on physical interaction, but also on the distribution of the

musician’s intent. Future areas of research will:

 Explore ways in which the knowledge and work shared in online

communities can be integrated or leveraged in teaching interface design

to students.

 Look at leveraging machine learning systems such as the Wekinator

(Fiebrink 2011) to rapidly prototype interactive systems and qualitatively

compare different approaches for use in performance, and examine the

relationship between performer, agent, and audience.

Chapter 5 - Conclusion

99

 Explore the potential to develop robotic instruments that are designed to

facilitate shared control, possibly creating mechanisms with behaviors

that only manifest through shared control.

5.3.1 BRIDGING THE GAP BETWEEN PERFORMER AND

AUDIENCE

Whether performing as a solo computer musician, or within a networked

ensemble, the relationship between the musician and the audience is complex. A

great strength of live computer music is the ability for each performer to create

unique and individual mappings between their physical interfaces, and the

systems that generate the sound; however, this individualistic approach to

interacting with the computer as an instrument can present a challenge for

audiences. That challenge is one of understanding the interaction and intents of

the performer. What sounds are the results of the musician’s actions? How much

of the music is generated during the performance? How much of the music is

prepared before hand? What is the level of skill involved to perform the music?

What is an audience to expect from live computer music? These questions are all

central to understanding live computer music and the musical space in which it is

growing and maturing.

I have found, in my own performances that a small dilution of an embodied

note-level connection, can lead to confusion from certain members of the

audience, while other audience members are more comfortable with the plurality

of roles a live computer musician plays. So how then are computer musicians to

navigate these interaction contexts while performing live? John Croft writes:

“It is a question of the specificity of the relation: if many perceptibly

different inputs generate outputs with no pertinent differences (in other

words, if the aesthetically pertinent mapping is many to one), then the

liveness is merely procedural and not aesthetic – pre-recorded sounds would

do the job as well or better. At the other extreme, if the mapping is too

explicit, too transparently one-to-one, the result is not only tedious but may

have the effect of shifting the procedural into the foreground, turning the

Chapter 5 - Conclusion

100

piece into a lamentable ‘showcase’ of the technology. (‘Look – I do this, and

the computer does that!’)” (Croft 2007)

The three interaction contexts described in this thesis span the two extremes

described by Croft: the many-to-one, and the one-to-one. The evolution of the

performer composer represents the ability to perform across this continuum,

using the performer’s physical actions to disseminate their musical intent. This

diffusion of physical action can be difficult for audiences to follow, and can lead

to confusion or the audience feeling as though the performance is disembodied.

It has been suggested that an audience’s desire for an embodied performance

may be a form of nostalgia (Croft 2007; d’ Escriván 2006), and that as audiences’

stereotypes and performance expectations mature and grow, live computer music

may see less of this type of criticism.

This process of maturation is similar to the ideas of decentering, technological

mediation, and recentering presented by Kockelkoren (Kockelkoren 2003). Live

computer music’s technology has an initial decentering effect as it alters the roles

traditionally possible in live music. Technological mediation is where live

computer music currently is, and is described by Kockelkoren as, “the cultural

process in which technology extends our ability to perceive, redistributes social

relations, and thereby elicits new visual language and conferral of meanings.”

Once audiences undergo this process they will reach a recentering, and a new

understanding of how a performer composer is able to play live music. This

process of technological mediation is not solely the responsibility of the audience

alone. The musicians must also develop tools and methods for bridging the gap

between performers and the audience, and in doing so find a space in which live

computer music may flourish.

So can the actions of live computer music be understood by using the same

values and aesthetics as live acoustic music? To be sure, the two share many

similarities: they both strive to present interesting musical ideas to an audience;

they both strive to allow a musician to express their musical ideas through real

time interaction with a sound producing instrument; they both create an

interaction between the audience and the performers; as well as many other

Chapter 5 - Conclusion

101

commonalities between the two. The similarities presented here are very general

and broad, but nonetheless illustrate that live computer music is certainly related

to live acoustic music, and as such many of the criteria by which a live acoustic

performance is judged will also apply to judging computer music. However, the

subtle and important differences between live acoustic music and live computer

music are great enough to warrant a separate, or at least derivative, set of

aesthetics.

The computer musician is different from their acoustic counterpart in that they

can turn their physical action into a multitude of simultaneous actions that carry

the performers intent rather then merely the physical energy. This intent can be

used to control instruments that are themselves systems, producing emergent

behavior and semi-autonomous music. These types of distributed interactions

often happen inside the computers, and are not easily perceivable by the

audience. Without the perceived physical agency of the human musician,

audiences may lose faith in the authenticity of the performance.

The use of the word faith is important, because the question of critically

understanding live computer music can be framed as a question of faith. In a live

acoustic music performance, an audience member may not know how to play

any of the instruments they are seeing on stage, but they assume that what they

see and hear is authentic, i.e., they have faith that the performance is actually

happening as they perceive it. Conversely, the faith that audiences have in the

authenticity of performing musicians is challenged when an artist is caught lip-

syncing or faking a performance. Until the moment the backing track skips, or

the wrong music plays, the audience believes the performance to be real. This

illustrates that although the audience believes that the physical actions they see

are crucial parts of the validation of the musical performance, they take much

more of that connection on faith then would at first seem obvious.

In light of this unspoken faithful pact between audience and musician, it can

now be understood why applying the aesthetics of live acoustic music to live

computer music will not work. The faith that an audience has in an acoustic

Chapter 5 - Conclusion

102

performance is predicated on the physical actions of the musicians creating clear

relationships with the sounds being heard. The evolution of the performer

composer afforded by live computer music enables the diffusion of physical

action into many separate and not necessarily related musical events. This then

would seem to work against the reinforcement of the current faith that an

audience accustomed to acoustic music would have.

One solution is to attempt to address this issue by embodying the diffusion of

the musician’s intent. In essence manifesting the multiple virtual actions into

physical forms that are understandable and relatable to an audience. This is good

start, and does help to bridge the computer musician and the audience, but it

also places the responsibility on the performer, and if taken too far may subvert

musical and artistic intents in order to provide a technological demonstration of

the link between action and sound. I argue that in addition to this embodied

approach that a new audience will emerge, willing to take a leap of faith and

embrace both the musician’s physical actions and intent. An audience that

understands this marks the coming of age of a new musicianship, comprised of

both performers and audience members that are growing increasingly familiar

with the agency of computer music.

5.3.2 FINAL THOUGHTS

This thesis has argued that live computer music represents an evolution of the

performer composer; empowered by the ability of the computer to distribute the

musical will of the performer into a system. This distribution of intent extends

the existing mapping between physical action and sound generation, and allows a

single performer to simultaneously control multiple sonic events, across several

different instruments.

This shift in mappings, from the physical to the virtual, parallels many of the

current shifts happening in our world today. Just as the interaction with a

physical instrument can now be connected to a network of virtual instruments,

so does our interaction with people shift from the physical world into a

distributed network of virtual social connections. Social networking, global video

Chapter 5 - Conclusion

103

chats, and even forms of entertainment such as online role-playing games like

World of Warcraft 26 or second life, 27 all point to a disembodied set of

interactions. We may very well be on the verge of a shift in our perception of

what constitutes reality, with an acceptance of purely abstracted interactions. If

this is true, then live computer music can be seen as part of this abstracted

connection to reality.

It is my hope that this evolution is seen as an expansion of what is possible for

musicians, and not as a division between them. This chapter begins with a quote

that describes the process of creating values in order to define our identities, and

in a way, that is what this thesis has done. Live computer music has a different

set of values from acoustic music, and therefore is a different and separate entity.

Ultimately, in order to understand live computer music, a new set of values must

be used. However, the irony in Nietzsche’s quote should not be lost. That irony

is that the very values we need to define us are merely fabrications created by us.

The values presented in this thesis define and create a shape and description of

what live computer music can be, but those same values can soon become walls

that create an “other” with different musics, and at their worst serve to exclude

new ideas. In light of this, it is my hope that the evolution of the performer

composer, mediated through the use of the computer, is seen as an evolution in

live music that expands what is possible to all performer composers. With this in

mind, I am excited to hear and see what interactions the musicians of tomorrow

will explore.

26 World of Warcraft - http://us.battle.net/wow/en/

27 Second Life - http://secondlife.com/

105

Appendix A

RELATED PUBLICATIONS
Portions of the work completed over the course of this thesis is contained in the

following publications.

1 JOURNAL PUBLICATIONS

Vallis, O., Diakopoulos, D., Hochenbaum, J., Kapur, A. 2012 “Building on the

Foundations of Network Music: Exploring Interaction Contexts and Shared

Robotic Instruments.”

Organised Sound, 17(1).

Vallis, O., Kapur, A. 2011 “Community-Based Design: The Democratization of

Musical Interface Construction.” Leonardo Music Journal, 21.

Kapur, A., Darling, M., Diakopoulos, D., Murphy, J., Hochenbaum, J., Vallis, O.,

Bahn, C. 2011 “The Machine Orchestra: An Ensemble of Human Laptop

Performers and Robotic Musical Instruments.” Computer Music Journal, 35(4).

2 INTERNATIONAL REFEREED CONFERENCES

Vallis, O.,Hochenbaum, J., Murphy, J., Kapur, A. 2011 “The Chronome: A Case

Study in Designing New Continuously Expressive Musical Instruments.”

Proceedings of the Australasian Computer Music Conference (ACMC). Auckland, New

Zealand.

Appendix A – Related publications

106

Vallis, O., Hochenbaum, J., Kapur, A. 2010 “A Shift Towards Iterative and

Open-Source Design For Musical Interfaces.” Proceedings of the 2010 International

Conference on New Interfaces for Musical Expression. Sydney, Australia.

Kapur, A., Darling, M., Wiley, M., Vallis, O., Hochenbaum, et al., 2010 “The

Machine Orchestra.” Proceedings of the International Computer Music Conference. New

York City, New York.

Hochenbaum, J., Vallis, O., Diakopoulos, D., Murphy, J., Kapur, A. 2010

“Designing Expressive Musical Interfaces For Tabletop Surfaces.” Proceedings of

the 2010 International Conference on New Interfaces for Musical Expression. Sydney,

Australia.

Diakopoulos, D., Vallis O., Hochenbaum J., Murphy, J., Kapur, A. 2009 “21st

Century Electronica: MIR Techniques for Classification and Performance”

Proceedings of the 2009 International Society on Music Information Retrieval Conference.

Kobe, Japan.

Hochenbaum, J., Vallis, O. 2009 “Bricktable: A Musical Tangible Multi-Touch

Interface”

Proceedings of Berlin Open Conference ’09. Berlin, Germany.

Hochenbaum, J., Vallis, O., Akten, M., Diakopoulos, D., Kapur, A. 2009

“Musical Applications for Multi-Touch Surfaces” 1st Workshop on Media Arts,

Science, and Technology. Santa Barbara, USA.

107

Appendix B

CHRONOME TECHNICAL FILES
The following section contains the technical files shared online regarding

building a Chronome. More detailed information can be found online at:

 http://flipmu.com/work/chronome

1 MAIN PCB AND SCHEMATIC

Appendix B – Chronome technical files

108

Appendix B - Chronome technical files

109

2 ARDUINO MEGA SHIELD PCB AND SCHEMATIC

Appendix B – Chronome technical files

110

3 SERIAL PROTOCOL

chronome serial protocol
owen vallis – contact@flipmu.com
//based off of the monome serial protocol series 256/128/64
//by brian crabtree

revision: 004

from device:

message id: (1) pressure
bytes: 3
format: iiii.xxx .yyy..dd dddddddd
 i (message id) = 1
 x (x value) = 0-7 (three bits)
 y (y value) = 0-7 (three bits)
 d (data value) = 0 – 1024 (ten bits)

decode: id match: byte 0 & 0xf0 == 16
 x: byte 0 & 0x0f
 y: byte 1 >> 4
 d: uint16_t val = ((byte 1 & 0x0f) << 8) | byte 2

to device:

message id: (1) rgb_led_on
bytes: 2
format: 1...iiii 0xxx0yyy
 i (message id) = 1
 x (x value) = 0-7 (three bits)
 y (y value) = 0-7 (three bits)
encode: byte 0 = id | 0x80 = 129
 byte 1 = ((x << 4) | y) & 0x7f

message id: (2) rgb_led_off
bytes: 2
format: 1...iiii xxxxyyyy
 i (message id) = 2
 x (x value) = 0-7 (three bits)
 y (y value) = 0-7 (three bits)
encode: byte 0 = id | 0x80 = 130
 byte 1 = ((x << 4) | y) & 0x7f

message id: (3) rgb_led_color
bytes: 5
format: 1...iiii 0xxx0yyy 0rrrrrrr 0ggggggg 0bbbbbbb
 i (message id) = 3
 x (x value) = 0-7 (three bits)
 y (y value) = 0-7 (three bits)
 r (red value) = 0 - 127 (7 bits)
 g (green value) = 0 - 127 (7 bits)
 b (blue value) = 0 - 127 (7 bits)
encode: byte 0 = id | 0x80 = 131
 byte 1 = ((x << 4) | y) & 0x7f

 byte 2 = (r & 0x7f)
 byte 3 = (g & 0x7f)
 byte 4 = (b & 0x7f)

Appendix B - Chronome technical files

111

message id: (4) rgb_led_all_state
bytes: 1
format: 1..siiii
 i (message id) = 4
 s (test state) = 0-1
encode: byte 0 = id | 0x80 | (s << 4) = 132 | (s << 4)

message id: (5) rgb_row
bytes: 2
format: 1yyyiiii aaaaaaaa
 i (message id) = 5
 y (row to update) = 0-7 (three bits)
 a (row data 0-7) = 0-255 (eight bits)
encode: byte 0 = id | 0x80 | (y << 4) = 133 | (y << 4)
 byte 1 = a (row data 0-7)

message id: (6) rgb_col
bytes: 2
format: 1xxxiiii aaaaaaaa
 i (message id) = 6
 x (col to update) = 0-7 (three bits)

 a (row data 0-7) = 0-255 (eight bits)
encode: byte 0 = id | 0x80 | (x << 4) = 134 | (x << 4)
 byte 1 = a (row data 0-7)

4 FIRMWARE FOR THE ARDUINO MEGA

/*
 * "ChronomeFirmware" - Arduino Based RGB Pressure Sensitive
 * Monome Clone by Owen Vallis 09/23/2010
 *
 * --
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be
 * useful, but WITHOUT ANY WARRANTY; without even the implied
 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 * PURPOSE. See the GNU General Public License for more details.
 * --
 *
 * Parts of this code is based on Matthew T. Pandina's excellent
 * TLC5940 C Library, with pins updated to work with the Arduino
 * MEGA. For those portions, he asked that his copyright be added
 * to the code.
 *
 * Copyright 2010 Matthew T. Pandina. All rights reserved.
 * Redistribution and use in source and binary forms, with or
 * without modification, are permitted provided that the
 * following conditions are met:
 *

Appendix B – Chronome technical files

112

 * 1. Redistributions of source code must retain the above
 * copyright notice, this list of conditions and the following
 * disclaimer.
 * 2. Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials
 * provided with the distribution.
 *
 * Thanks to Brad Hill, Martijn Zwartjes, Jordan Hochenbaum,
 * Johnny McClymont, Tim Exley, and Jason Edwards for answering
 * my questions along the way.
 *
 * Please DO NOT email monome with technical questions and/or
 * help regarding this code or clone. They are in NO WAY
 * responsible or affiliated with this project other than they
 * were our inspiration and we used many of their methods and
 * pulled from their code.
 *
 * Additionally, while we are availble and willing to help as
 * much as possible, we too CANNOT be held responsible for
 * anything you do with this code. Please feel free to report
 * any bugs, suggestions or improvements to us as they are all
 * welcome. Again, we cannot be held responsible for any damages
 * or harm caused by the use or misuse of this code or our
 * instructions. Thank you for understanding.
 *
 * Links:
 * http://www.flipmu.com - Our website - Click "Chronome Project"
 * on the Navigation Menu under Work.
 * www.monome.org - the "original" monome and our inspiration
 */

// supports uint8_t and uint16_t
#include <stdint.h>
// Definition of interrupt names
#include <avr/interrupt.h>
// ISR interrupt service routine
#include <avr/io.h>

//******************** TLC5940 pin definitions ******************
// MEGA PWM PIN 11
#define GSCLK 11
#define GSCLK_DDR DDRB
#define GSCLK_PORT PORTB
#define GSCLK_PIN PB5
// MEGA MOSI PIN 51
#define SIN 51
#define SIN_DDR DDRB
#define SIN_PORT PORTB
#define SIN_PIN PB2
// MEGA SCK PIN 52
#define SCLK 52
#define SCLK_DDR DDRB
#define SCLK_PORT PORTB
#define SCLK_PIN PB1
// MEGA PIN 41
#define BLANK 41
#define BLANK_DDR DDRG
#define BLANK_PORT PORTG
#define BLANK_PIN PG0
// MEGA PIN 40
#define XLAT 40
#define XLAT_DDR DDRG
#define XLAT_PORT PORTG

Appendix B - Chronome technical files

113

#define XLAT_PIN PC1
// MEGA PIN 39
#define VPRG 39
#define VPRG_DDR DDRG
#define VPRG_PORT PORTG
#define VPRG_PIN PG2
// MEGA PIN 22
#define REDTR 22
// MEGA PIN 23
#define GREENTR 23
// MEGA PIN 24
#define BLUETR 24

// MEGA PINS 49-42 ROWS are on PORTL
#define ROWS PORTL

// Additional SPI PIN defs (Not used but set)
// MEGA MISO PIN 50
#define DATAIN 50
// MEGA SS PIN 53
#define SLAVESELECT 53

//******************** Variables ********************************
//********************** Macros ********************************
#define TLC5940_N 4
#define numColors (uint8_t)3

#define setLow(port, pin) ((port) &= ~(1 << (pin)))
#define setHigh(port, pin) ((port) |= (1 << (pin)))

#if (16 * TLC5940_N > 255)
#define channel_t uint16_t
#else
#define channel_t uint8_t
#endif
#define numChannels ((channel_t)16 * TLC5940_N)

#if (24 * TLC5940_N > 255)
#define gsData_t uint16_t
#else
#define gsData_t uint8_t
#endif

#define gsDataSize ((gsData_t)24 * TLC5940_N)
#define numChannels ((channel_t)16 * TLC5940_N)

uint8_t gsData[numColors][gsDataSize];
uint8_t gsStateData[numColors][gsDataSize];
uint16_t previousButtonValue[8][8];

boolean led13;

//******************* Serail Functions setup *******************
uint8_t tolerance = 7;

void sendSerial(uint8_t Data)
{
 while (!(UCSR0A & (1 << UDRE0)));
 UDR0 = Data;
}

Appendix B – Chronome technical files

114

//************** Serail Functions From the Octinct **************
//Debugging definitions: uncomment the line to turn it on
//Draw colour is forced to red if the serial receive buffer has
//more than the specified number of characters in it
#define REDALERT 100

/* Size of the serial buffer before the chronome is forced to parse
it continually. The buffer size is 128 bytes, and if it gets there
the chronome can (and will) crash. The largest command size is 9
bytes, so 119 is an absolute maximum value. Set it lower than this to
be safe.
If the chronome hits this limit, it will start to flicker, and might
miss commands, but it won't crash… Probably.
*/
#define TOOFULL 100

//Variables for interpreting the serial commands
uint8_t address, state, x, y, pos;
uint16_t r, g, b;
uint8_t ready = true;

//For interrupt timing; only to do intermediate clock speeds
/* Divide interrupt frequency by a factor of FREQ. It is preferable
to keep FREQ as small as possible, and control the frequency of the
interrupts using the hardware clock. Setting it to 1 disables this
entirely, which, if it works, is ideal; this should be the same as
commenting out the "#define FREQ" statement entirely.
*/

//How many interrupts occur before the serial commands are read
#define FREQ 1
#if FREQ > 1
 byte int_counter = 0;
#endif

//The timer interrupt routine, which periodically interprets the
//serial commands
ISR(TIMER2_OVF_vect) {
 //Reenable global interrupts, otherwise serial commands will
 //get dropped
 sei();

#if FREQ > 1
 if(++int_counter == FREQ){
//Only do this once every FREQ-th interrupt
 int_counter = 0;
#endif //FREQ
 do{
//This do ensures that the data is always parsed at least once //per
cycle
 if(Serial.available()){
#ifdef REDALERT
//if REDALERT is defined, draw colour turns red when the buffer
//is getting dangerously full
 if(Serial.available() > REDALERT){
 for(int x = 0; x < 64; x++)
 {
 TLC5940_SetGS(x, 4095, 0);
 TLC5940_SetGS(x, 0, 1);
 TLC5940_SetGS(x, 0, 2);
 }
 }
#endif //REDALERT

Appendix B - Chronome technical files

115

 if(ready){
//If the last command has finished executing, read in the next
//command and reset the command flag
 address = Serial.read();
 ready = false;
 }

//if the MSB doesn't equal 1, then we are missing our address
//message. Trash byte and read again.
 if((address & 0x80) != 0x80){
 ready=true;
 break;
 }

 switch (address & 0xf) {
//Execute the appropriate command, but only if we have received
//enough bytes to complete it. We might one day add "partial
//completion" for long command strings.
 case 2: //rgb_led_on
 if(Serial.available()) {
 int byte1 = Serial.read();
 x = byte1 >> 4;
 y = byte1 & 0xf;
 pos = (x)+(y*8);

 TLC5940_SetGSState(pos, true);
 ready=true;
 }
 break;
 case 3: // rgb_led_off
 if(Serial.available()) {
 int byte1 = Serial.read();
 x = byte1 >> 4;
 y = byte1 & 0xf;
 pos = (x)+(y*8);

 TLC5940_SetGSState(pos, false);
 ready=true;
 }
 break;
 case 4: // rgb_led_color
 if(Serial.available() > 3) {
 uint8_t pos = Serial.read();
 x = (pos >> 4);
 y = (pos & 0x0F);
 pos = (x)+(y*8);
 r = (uint16_t)(Serial.read() * 32);
 if(r > y * 35) {
 r = r - (y * 35);
 }
 g = (uint16_t)(Serial.read() * 32);
 if(g > y * 35) {
 g = g - (y * 35);
 }
 b = (uint16_t)(Serial.read() * 32);
 if(b > y * 35) {
 b = b - (y * 35);
 }
 TLC5940_SetGS(pos, r, 0);
 TLC5940_SetGS(pos, g, 1);
 TLC5940_SetGS(pos, b, 2);
 ready=true;
 }
 break;

Appendix B – Chronome technical files

116

 case 5: //rgb_led_all_on
 {
 boolean state = (address >> 4) & 0x01;
 for (int pos = 0; pos < 64; pos++) {
 TLC5940_SetGSState(pos, state);
 }
 ready=true;
 }
 break;
 case 6: //rgb_led_row
 {
 if(Serial.available()) {
 uint8_t ledRow = (address >> 4) & 0x07;
 uint8_t rowState = Serial.read();

 for (uint8_t col = 0; col < 8; col++) {
 uint8_t state = (rowState >> col) & 0x01;
 TLC5940_SetGSState((ledRow * 8) + col, state);
 }
 ready=true;
 }
 }
 break;
 case 7: //rgb_led_col
 {
 if(Serial.available()) {
 uint8_t ledCol = (address >> 4) & 0x07;
 uint8_t colState = Serial.read();

 for (uint8_t row = 0; row < 8; row++) {
 uint8_t state = (colState >> row) & 0x01;
 TLC5940_SetGSState(ledCol + (row * 8), state);
 }
 ready=true;
 }
 }
 break;
 default:
 break;
 }
 }
 }

//If the serial buffer is getting too close to full, keep
//executing the parsing until it falls below a given level
//This might cause flicker, or even dropped messages, but it
//should prevent a crash.
 while (Serial.available() > TOOFULL);
#if FREQ > 1
 }
#endif //FREQ
}

Appendix B - Chronome technical files

117

//*********************** RGB Function ************************
//set all GrayScale Color
void TLC5940_SetAllGS(uint16_t value) {
 uint8_t tmp1 = (value >> 4);
 uint8_t tmp2 = (uint8_t)(value << 4) | (tmp1 >> 4);
 for (uint8_t i = 0; i < numColors; i++){
 gsData_t j = 0;
 do {
 gsData[i][j++] = tmp1; // bits: 11 10 09 08 07 06 05 04
 gsData[i][j++] = tmp2; // bits: 03 02 01 00 11 10 09 08
 gsData[i][j++] = (uint8_t)value; // bits: 07 06 05 04 03 02
 //01 00
 }
 while (j < gsDataSize);
 }
}

//set a single GrayScale Color
void TLC5940_SetGS(channel_t channel, uint16_t value, uint8_t color)
{
 channel = numChannels - 1 - channel;
 uint16_t i = (uint16_t)channel * 3 / 2;
 switch (channel % 2) {
 case 0:
 gsData[color][i++] = (value >> 4);
 gsData[color][i++] = (gsData[color][i] & 0x0F) |
 (uint8_t)(value << 4);
 break;
 default: // case 1:
 gsData[color][i++] = (gsData[color][i] & 0xF0) |
 (value >> 8);
 gsData[color][i++] = (uint8_t)value;
 break;
 }
}

//turn on or off an LED
void TLC5940_SetGSState(channel_t channel, boolean state) {
 channel = numChannels - 1 - channel;
 for (uint8_t n = 0; n < numColors; n++){
 uint16_t i = (uint16_t)channel * 3 / 2;
 switch (channel % 2) {
 case 0:
 gsStateData[n][i++] = gsData[n][i] * state;
 gsStateData[n][i++] = (gsStateData[n][i] & 0x0F) |
 ((gsData[n][i] & 0xF0) * state);
 break;
 default: // case 1:
 gsStateData[n][i++] = (gsStateData[n][i] & 0xF0) |
 ((gsData[n][i] & 0x0F) * state);
 gsStateData[n][i++] = gsData[n][i] * state;
 break;
 }
 }
}

Appendix B – Chronome technical files

118

//ISR for clocking in the next Color's GSData.
ISR(TIMER3_COMPA_vect) {
 static uint8_t color = 0;

 PORTA = 0x07;

 setHigh(BLANK_PORT, BLANK_PIN);
 setHigh(XLAT_PORT, XLAT_PIN);
 setLow(XLAT_PORT, XLAT_PIN);
 setLow(BLANK_PORT, BLANK_PIN);

 PORTA &= ~(1 << color);

//Below this we have 4096 cycles to shift in the data for the
//next cycle
 for (gsData_t i = 0; i < gsDataSize; i++) {
 SPDR = gsStateData[color][i];
 while (!(SPSR & (1 << SPIF)));
 }

 color = (color + 1) % numColors;
}

//******************** Button Functions *************************
void readADC() {
 for(uint8_t row = 0; row < 8; row++){
 // incrment and set row high
 ROWS = (1 << row);

 // let the board settle after we shift a row
 delayMicroseconds(100);

 //check each column's value
 for(uint8_t col = 0; col < 8; col++)
 {
 uint16_t currentButtonValue = analogRead(col);

 //if we have changed then send it out
 if(abs(previousButtonValue[row][col] - currentButtonValue)
 > tolerance || (previousButtonValue[row][col] != 0
 && currentButtonValue == 0))
 {
 //This is to avoid the noise near zero
 if(currentButtonValue > 10 || currentButtonValue == 0) {
 sendSerial(0x10 | ((col) & 0x0F));
 sendSerial((row << 4) | (uint8_t)(currentButtonValue
 >> 8));
 sendSerial((uint8_t)currentButtonValue);
 }
 }

 //store current value
 previousButtonValue[row][col] = currentButtonValue;

 delayMicroseconds(10);
 }
 }
}

Appendix B - Chronome technical files

119

//*********************** Arduino Loops *************************
//Setup Device
void setup(){
 Serial.begin(57600);

 //************** SETUP PINS **************
 pinMode(GSCLK, OUTPUT);
 pinMode(SCLK, OUTPUT);
 pinMode(VPRG, OUTPUT);
 pinMode(XLAT, OUTPUT);
 pinMode(BLANK, OUTPUT);
 pinMode(SIN, OUTPUT);
 pinMode(DATAIN, INPUT);
 pinMode(SLAVESELECT,OUTPUT);
 pinMode(REDTR,OUTPUT);
 pinMode(GREENTR,OUTPUT);
 pinMode(BLUETR,OUTPUT);
 pinMode(13, OUTPUT);

 for(int i = 0; i < 8; i++){
 pinMode(42+i, OUTPUT);
 }

 digitalWrite(SLAVESELECT,HIGH); //disable device
 setLow(GSCLK_PORT, GSCLK_PIN);
 setLow(SCLK_PORT, SCLK_PIN);
 setHigh(VPRG_PORT, VPRG_PIN);
 setLow(XLAT_PORT, XLAT_PIN);

 //************** SET ADC **************
 ROWS = (1 << 0); //Set the first Chronome Row High

 //************** SET SPI **************
 //Enable SPI, Master, set clock rate fck/2
 SPCR = (1 << SPE) | (1 << MSTR);
 SPSR = (1 << SPI2X);

 //Clear SPI data Registers
 byte clr;
 clr=SPSR;
 clr=SPDR;

 //************** SET TIMERS **************
 //Dont need to call sei(); because Arduino already does this
 //Clear TIMER1 Reg back to default
 TCCR1A = 0x00;
 TCCR1B = 0x00;
 //Enable timer 1 Compare Output channel A in toggle mode
 TCCR1A |= (1 << COM1A0);
 //Configure timer 1 for CTC mode
 TCCR1B |= (1 << WGM12);
 //Set up timer to fCPU (no Prescale) = 16Mhz/8 = 2Mhz
 //Set CTC compare value to pulse PIN at 2Mhz
 //(1 / Target Frequency) / (1 / Timer Clock Frequency) - 1
 TCCR1B |= (1 << CS11);
 //Full period of PIN 11 pulse requires 2 ticks (HIGH, LOW)
 //So PIN 11 @ 2Mhz = (2 ticks (HIGH, LOW)) = 1Mhz
 OCR1A = 0;

 //Clear TIMER3 Reg back to default
 TCCR3A = 0x00;
 TCCR3B = 0x00;
 //Configure timer 3 for CTC mode

Appendix B – Chronome technical files

120

 TCCR3B |= (1 << WGM32);
 //Set up timer to fCPU (no prescale) = 16Mhz/8 = 2Mhz
 TCCR3B |= (1 << CS31);
 //Set CTC compare value to 4096 @ half TIMER1 frequency
 //So (4096*2) @ 2Mhz = 4096 @ 1Mhz
 OCR3A = (4096*2) - 1;
 //Enable Timer/Counter3 Compare Match A interrupt
 TIMSK3 |= (1 << OCIE3A);

 //Setup the timer interrupt for Serial
 TCCR2A = 0;
 TCCR2B = 0<<CS22 | 1<<CS21 | 1<<CS20;

 //Timer2 Overflow Interrupt Enable
 TIMSK2 = 1<<TOIE2;

 //************** SET FirstCycle **************
 //Default all channels to all white
 TLC5940_SetAllGS(4095);
 //Default all LED states to off
 for(int pos = 0; pos < 64; pos++) {
 /*uncomment for setting a default color other than white
 TLC5940_SetGS(pos, 2000, 0);
 TLC5940_SetGS(pos, 0, 1);
 TLC5940_SetGS(pos, 4095, 2);
 */
 TLC5940_SetGSState(pos, false);
 }

 PORTA = 0x07;

 setHigh(BLANK_PORT, BLANK_PIN);
 setLow(VPRG_PORT, VPRG_PIN);
 setHigh(XLAT_PORT, XLAT_PIN);
 setLow(XLAT_PORT, XLAT_PIN);
 setHigh(SCLK_PORT, SCLK_PIN);
 setLow(SCLK_PORT, SCLK_PIN);
 setLow(BLANK_PORT, BLANK_PIN);

 PORTA = 0x03;
}

//Run
void loop() {
 //read the buttons
 readADC();
}

121

Appendix C

COMPARATIVE SURVEY OF LOCAL

NETWORK ENSEMBLES AND SOLO

LIVE COMPUTER MUSIC

The following section presents a survey of the members of The Machine

Orchestra, and their thoughts on performing as part of an ensemble versus

performing as a solo computer musician. A public survey was made available to

all the existing and previous members of The Machine Orchestra, with a total of

14 participants replying to the survey. The musicians were asked to rate their

familiarity with both live computer music and networked music ensembles on a

scale of 1-10, with 1 indicating that they have never heard of the topic and 10

indicating that they would consider themselves experts. The familiarity with

performing live computer music was fairly high with an average response of 7.4,

while the familiarity with performing networked music was a slightly lower with

an average of 5.4 out of 10. Additionally, the average size of computer music

ensembles that respondents had performed with was two musicians, while the

largest was 40 performers.

The following survey focuses on comparing and contrasting performing solo live

computer music, and networked ensemble performance: which of the two

approaches to live computer music do members of the Machine Orchestra

prefer; what rolls do they see themselves playing as part of an ensemble; do

ensembles afford any new modes of performance; and what are the challenges of

performing computer music in an ensemble?

Appendix C - Comparative survey of local network ensembles and solo live computer music

122

1 DO YOU PREFER PERFORMING SOLO, OR AS PART

OF AN ENSEMBLE?

Every participant in the survey is currently, or has been a past member of The

Machine Orchestra. With this in mind, each musician was asked if they preferred

to perform as a solo computer musician or as part of a network ensemble. While

50% of the musicians preferred performing solo, only 28.6% preferred to

perform in networked ensembles, with 21.4% not expressing a preference for

either style of performance.

Figure 34 Preference performing solo computer music vs. networked ensembles

The musicians that preferred performing solo offered two main reasons for their

choice: singular control over the performance, and simplified technical

requirements. The musicians stated that they felt solo performance offered

greater control over the composition, and sound design of the piece, while

eliminating the chance of miscommunication or mistakes from other performers.

With this mindset, the computer seems to be an ideal instrument for these

control minded solo performers, allowing for musicians to extend their

expressive potential through leveraging process such as automation.

Appendix C- Comparative survey of local network ensembles and solo live computer music

123

The musicians that preferred performing in networked ensembles also gave

several different reasons for their choice, with their responses centering on the

interaction between performers. One reply stated that the distribution of parts

among the ensemble afforded each individual musician more time to “react,

improvise, and come up with original content…” This sharing of parts makes

every musician responsible for only a few elements of the piece, and leads to

increased improvisations complexity as all performers begin to modify their parts

and musically communicate with each other. The same level of complex

improvisation would be difficult for a solo computer musician to perform,

although interactive musical systems like the ones discussed in Chapter 3 may be

able to help close this gap. Other musicians stated that their prior experience

playing in acoustic ensembles translated more to networked ensembles then it

did to solo computer music, and that computer music groups allowed for

“intense inter-performer collaboration” during performances.

Interestingly, several musicians did not have a preference for either solo or

networked performance, and stated that both approaches to live computer music

were interesting for same reasons mentioned above. One reply commented, “…

both [are] fun for different reasons. Solo, everything can happen exactly the way

you envision; [while] with a group you can trust, you can feed off new ideas that

you would never manifest by yourself!”

Appendix C - Comparative survey of local network ensembles and solo live computer music

124

Table 1 Reasons for solo or group performance preference

Preference Response

Solo I feel I don’t’ have to sacrifice my compositions as much when I do solo performances

versus group

Solo Less variables to control

Solo More control over the composition process.

Solo Playing solo would cut a lot of complications

No Preference They are both fun for different reasons. Solo, everything can happen exactly the way you

envision; with a group you can trust, you can feed off new ideas that you would never

manifest by yourself!

Group I prefer small group computer music performance. I define small groups as ensembles with

fewer than four players. Ensembles of this size allow for intense inter-performer

collaboration.

Solo Clocking is not accurate enough to reproduce the exacting rhythmic qualities of my work

on multiple computers.

Group Groups provide a more even distribution of responsibility, allowing each individual to have

more time to react, improvise, and come up with original content than a solo performer.

Ideally I prefer the computer to be a part of an ensemble rather than the entire ensemble.

Group Combining the social contexts and interactions of musics from differing cultures with new

technologies is very interesting and challenging.

Solo I have full control over every aspect of the arrangement and sound design without having

to worry if someone else will be making any mistakes or changes that I'm not comfortable

with.

No Preference I equally enjoy performing in groups and solo, although I have more experience and am

more adept at performing solo.

Group I find playing in an electronic ensemble is much like playing in a band. Most of my

experience as a musician has been in playing with other musicians. It makes the most since

to me and I find it far more interesting and enjoyable than my solo electronic efforts.

Solo Less chance of something going wrong during live performance, more convenient as a

performer to be in total control of the whole setup, don't have to worry about

miscommunication while performing

No preference Both have their benefits and drawbacks. Performing solo allows for the most freedom in

performance decisions while lacking the sense of camaraderie inherent in a group

performance. Performing in groups allows for greater creativity and variety in approaching

the performance but can be limiting and risky in terms of sync, overall mix, etc.

Appendix C- Comparative survey of local network ensembles and solo live computer music

125

2 DESCRIBE YOUR ROLL WITHIN THE ENSEMBLE?

The participants of the survey were asked to describe the musical roles they

performed within their ensembles. Most musicians described themselves as

playing a section of the ensemble such as bass, melody, or rhythm. However,

Several musicians described themselves as co-composer/producer/performer.

This is interesting as it points the multiple roles that computer musicians see

themselves in, and would position them to take advantage of performing at the

note level, sound processing level, and the score level interactions contexts.

Table 2 Descriptions of each musician's roll within the ensemble

Response

Acoustic musician, string section leader.

Co-composer / Producer / Performer.

Generally I usually focus on the live arrangement.

I provided rhythmic elements, drone sounds, and soundscape elements.

I usually played the melody.

Live electronic music through laptop.

Time keeper/melodicist.

Composer /performer.

Mostly bass/bass synth in the large one; completely varies in smaller ones.

Sample triggering/processing. Live processing of signals from other member's instruments.

I generally take a roll of combining audio aspects with visual aspects. In the primary performance I have

done as an ensemble, I performed all video aspects and no audio.

One of my electronic music projects, "Dead Waiter", started as a hybrid ensemble with multiple musicians. I

basically wrote the songs and then had musicians help me perform them live. I played laptop, electric piano,

and organ. The hybrid approach is always the most enjoyable to me because of the mixture of electronic

and organic elements.

I was usually playing a specific type of instrumentation for whatever the song called for. Usually I'm most

comfortable with drums and groove.

Performing with robotic instruments via network. Performing melodic and rhythmic material using

controllers.

Appendix C - Comparative survey of local network ensembles and solo live computer music

126

3 DOES BEING PART OF AN ENSEMBLE ENABLE NEW

MODES OF PERFORMANCE THAT YOU DON'T

EXPERIENCE WHEN PLAYING SOLO, AND IF SO

PLEASE DESCRIBE THEM?

Every musican interviewed responeded yes when asked if new modes of

performance were enabled by networked music ensembles. The reasons given

varied from the enabling of call and response interaction between musicians, to

the manipluation of material that is not self-generated. With this in mind, the

new modes described by the musicans seemed to center on group

communication, and interaction with material outside of one’s own direct

control. These modes of interaction can be viewed as social, and seem to be in

line with network music’s historical focus on interconnectivy between

performers.

Interestingly, most replies did not describe new modes of performance; rather,

the musician’s felt that the distribution of parts among the ensemble enabled

each musican to “focus on minutiae which would be impossible were they the

only performer on stage”. One musican replied that although this might not

qualify as a new mode of performance, that “there is less to be done by one

person in an ensemble, so that one person can hone more on elaborating on

particular modes to explore new ideas winthin those modes.” In general, most of

the musicans replied that being able to split up the parts enabled more

opportunities for improvisation than a solo performer with only two hands.

Appendix C- Comparative survey of local network ensembles and solo live computer music

127

Table 3 Description of new performance modes afforded by computer ensembles

Response

More control over different parameters of the music.

Multiple layers of interactivity.

Being an aspect of a texture instead of driving the full sound.

Call/response more degrees of improvisation.

The human difference.

Being able to split up parts mainly, i.e. someone on drums, the other guy on basses or vice versa. Essentially

anything 4 hands can do that 2 cannot. Same with feet if Softsteps, et al are involved.

First of all, the anxiety of live performance can be equally dispersed! As far as the music itself, the two

things that are most obvious to me are the ability to have much more interesting dynamics and timbre. In an

ensemble, you can actually NOT play and let parts evolve and change with more fluidity. That's much

harder when you're the only one creating the music live.

It allows the musicians to take on different responsibilities for performing, such as delegating

"instrumentation" as well as, considering audiovisual performance, the jobs of visual performer and audio

performer, be they combined or separate.

Because I'm not physically capable of controlling all aspects of a song, being able to focus on certain

elements of the song allows me to have a lot more control and musical depth (usually of drums).

By performing in an ensemble, individual electronic musicians can focus on minutiae that would be

impossible were they the only performer on stage.

Gives the opportunity for manipulation of material that's not self-generated. Also allows for forms of

"behind the scenes" preparation since you're not always obliged to be outputting signal.

Puts more focus on listening to each other as well as the music, thinking for more than one person while

playing live.

Maybe not new "modes." There is less to be done by one person in an ensemble, so that one person can

hone more one elaborating on particular modes to explore new ideas within those modes.

Even though I don’t feel like the compositions are as tight, there are exponentially more options for things

we can do as I am working with two more hands. Also, its nice to split the audio/visual control.

Appendix C - Comparative survey of local network ensembles and solo live computer music

128

4 WHAT ARE THE CHALLENGES OF PERFORMING IN

A NETWORKED ENSEMBLE?

The musicians were asked to describe any challenges they perceived with

performing in networked ensembles. The responses fell into two main criticisms:

networking issues such as maintaining a stable sync signal, or losing network

connection; and musical complications in dealing with other performers, such as

lack of communication, performance issues like over playing, and handling

aesthetic differences.

The issue of working with multiple musicians within an ensemble is not unique

to computer music; however, computer musicians, who usually compose and

perform as individuals, may initially have difficulty adapting to these communal

performance situations. This adaptation may be exacerbated by the fact that

computer musicians are often working on developing solo live performance

systems that are capable of broad control over all aspects of a composition.

Once these types of systems have been developed, and learned as instruments, it

may be challenging to “unlearn” this broad control, and instead learn to play a

more focused part of the composition.

Appendix C- Comparative survey of local network ensembles and solo live computer music

129

Table 4 Descriptions of the challenges of performing in computer ensembles

Response

Getting synced always seems to be the hardest issue to handle, although generally possible.

Relying on other’s musicianship.

Sometimes the challenge is syncing up and depending on your partner.

With more options come more problems to troubleshoot.

Aligning focus, releasing control.

Decision-making is usually more democratic, which can lead to minor disagreements.

The human difference.

Losing network connection syncing difficulties.

The inevitable challenge of getting two or more performers to be in sync, not just literally but artistically as

well.

When something unexpected happens during a performance, performers need to be able to quickly come

up with a solution together.

A unified aesthetic can be hard to come by. Complexity in simplicity, especially when performing with live

musicians, a lot of the time without specific direction, they'll overplay things instead of sitting back and

becoming part of the texture.

Absolutely! If more than one computer is being used, the networking issues can be a huge pain. Additionally

with electronic music, you have to create your sounds from scratch, sometimes even the instruments you

are going to use. It's not like showing up with your violin and knowing your limitations or exactly what you

can or cannot contribute. With traditional ensembles, your instrument usually dictates your role in the

performance. With electronic music, unless the roles are decided upon in advance, you have to create your

role and make sure that your contribution works with everything else that's going on. This becomes even

more complicated when the ensemble is writing the music. However, as complex as the process can get,

when it works, it can be far more interesting and enjoyable than a solo performance.

Timing has always been a challenge. The usual challenges associated with any group performance also exist:

knowing when to step to the forefront of the sound and when to sit back and let others fill the space. With

a laptop capable of creating an orchestra's worth of sound sitting in front of each performer, knowing when

not to play becomes critical.

Technical computer issues is the biggest problem like syncing, sounds not sounding correct like how they

were mixed at home. Coming to firm decisions or goals are harder with people that are very open-minded

but it can also be annoying if a person in the group basically leads every aspect of the performance without

any input from the other members.

Appendix C - Comparative survey of local network ensembles and solo live computer music

130

5 HUMAN ETHICS APPROVAL OF THE SURVEY

This anonymous survey was conducted with the approval of Dr. Allison

Kirkman, Chair of the Victoria University Human Ethics Committee, and Dr.

Greer Garden, Associate Professor of music at NZSM. Final approval was given

in the form of the following email received Thursday, 3 May 2012.

Dear Owen

Thank you for your applications. The three that involve anonymous

surveys have been signed off by Associate Professor Greer Garden (as Head

of School) and you can commence these now. The 4th one, the survey of

contemporary approaches to live computer music, is not marked as

anonymous. Is this because you are going to personally ask people the

questions or is it because you will know each of the people who are

answering the survey? Once I know more about the method of delivery I can

assess the application.

Could you consider these points and respond to me please.

Best wishes,

Allison Kirkman

The survey included here is one of the three anonymous surveys approved by

Dr. Greer Garden, with the other surveys mentioned in the email ultimately

being removed from the final thesis.

131

Appendix D

PROBABILITIES AND MARKOV

MODELS
Probability has a long history of use in musical composition. The simplest

example of probability-based composition is the use of chance procedures, with

a famous example of this approach being John Cage’s use of the I Ching. Chance

procedures require the assignment of musical values to the outputs of a random

process, such as rolling a die, with the value of each role being used to create a

composition. John cage described his use of chance as a means of removing the

self or the artist’s “ego” from the compositional process (Reynolds 1979);

however, the composer is still required to create the mappings between musical

events and the random values the process generates, with Cage himself

describing his role as consisting of choosing what questions to ask (Cage 1991).

This would imply that it is impossible for the artist to ever fully remove

themselves, or their ego, from the act of creation. They can only ever create

distance between their aesthetic choices, and the influence that those choices

impart upon the art itself. This is an extremely important consideration as the

development of an interactive musical agent is pursued. As human artists will be

designing these systems, it may be beneficial to think of these systems, as

extensions of our own creative will through the application of algorithms, rather

than the attempt to create an entirely autonomous agent.

With this in mind, another example of probability-based composition can be

seen in the work of Iannis Xenakis. Xenakis was opposed to the idea of pure

“chance” being used for composition, as he felt it abolished the role of the

composer (Bois 1967). Chance procedures can lead to arbitrary relations between

musical events, leaving the listener unable to discern a form or shape to the

Appendix D - Probabilities and Markov models

132

composition. Xenakis developed compositional approaches drawing from

mathematical fields such set theory, stochastic processes, and game theory.

Through the use of these ideas, he was able to impart form and structure on the

algorithmic processes. One such piece called Analogiques, used the probabilistic

system known as a Markov Model (Ames 1989).

A Markov Model was originally created in 1906 by a mathematician named Andrei

Andreevich Markov, and is a way of representing the likelihood of moving to

one of many possible sates, given a current state. Musically, this is the likelihood

of moving from a current note to other notes, where each transition between

notes has its own probability associated with it. More specifically, a Markov

Model describes the domain of a problem as a matrix of finite transition

probabilities, where the destination state is dependent only on the current source state,

and not on any previous states further in the past. This dependency on the

current state is known as the Markov Property, and sequences generated by a

Markov Model that satisfy this condition are known as a Markov Chains.

To see how this differs from a chance procedure, imagine there is a six-sided die,

and we want to know the probability of seeing a given number. Assuming the die

is not loaded, or biased in any way, we should have 1 in 6 chance of seeing any

of the numbers, regardless of any previous numbers we’ve seen before. If we

assign each number from the die to a note value within a diatonic scale—say 1 is

equal to C, and 6 is equal to A—then we may compose a piece of music by

rolling the die to decide each subsequent note. However, each note would have

no particular relation to any of the notes preceding it, including the current note

being played. In composing tonal music, it may be preferable to impose a

hierarchy based upon a scale, with a preference for moving between certain

notes. These preferences can be expressed as probabilities. For example, we may

say that when in the key of C, a note of G will move to C 80% of the time, and

move to A 20% of the time. A random roll of the die does not allow us to impart

such relationships between the values returned by the process, whereas a Markov

Model will. In fact, a Markov Chain can allow us to represent the probability of

Appendix D - Probabilities and Markov models

133

transitioning from a particular note, to all other possible notes in the given scale

(see Figure 35).

Figure 35: A Markov Model representing the transition probabilities for the set of notes C through

A. The notes on the left represent the source states, and the notes along the top are destination

states. The values in the matrix are the transition probabilities for moving from a source state to a

destination state.

1 MOVING IN A MARKOV MODEL

A Markov Model describes a transition matrix that can be used to create

sequences of states known as Markov Chains. These chains are created in steps

(see Figure 36), where each step matches an input state presented to the model

with one of the available source states. This match determines the row of

transition probabilities, which are then used to find the next destination state. It

is crucial that the sum of all transition probabilities within the row does not

exceed 100%; therefore all values must be normalized.

The following will give a description of the process of obtaining new destination

states. The current state is used as the key and compared against all the source

states in the transition matrix. A match between the current state and one of the

source states is then used to determine the row of the transition matrix–

henceforth referred to as the ith row of the transition matrix–which will provide

the transition probabilities. Once the ith row has been determined, a random

number between 0 and 1 is generated and then compared against the probability

Appendix D - Probabilities and Markov models

134

stored in every column of the row–henceforth referred to as the jth column of

the transition matrix. If the random number is greater then the transition

probability currently being compared against, then the value of the probability is

subtracted from the random number, and the result is then used as the updated

random number in the next comparison (see line 7 of Figure 36). This process is

repeated until the random number becomes less then the jth transition probability

being compared, at which point the destination state associated with the jth

column is returned (see line 4 of Figure 36).

Figure 36: Algorithm for determining the next destination state in a Markov Model given a row of

transition probabilities

2 N-TH ORDER MARKOV MODELS

Using the previously played note to provide a context for deciding which note to

play next allows for a statistical model of movement between two notes.

However, since musical phrases are rarely made up of only two notes, it would

be better if the model could provide a larger context, consisting of more notes.

One approach to this is to look at the current, one-note Markov Model as a 1st

order model, since it only has one note to provide the context. Adding another

note, creating a source state of two notes, creates a 2nd order model. This 2nd

order model would have a complete 1st order model for every 2nd order source

state. As shown in Figure 37, this would look like a cube.

Appendix D - Probabilities and Markov models

135

Figure 37: 2nd order Markov Model

 As the length of the source state sequence increases, the order of the model gets

higher, and visualizing the model as a shape becomes impossible. Fortunately,

every Nth order model has an equivalent 1st order formulation. This type of

Markov Model can be represented as a matrix whose source states are sequences,

with the number of source states in the matrix increasing as the order increases,

while the number of destination states will remain the same (see Figure 38).

Figure 38: 2nd order Markov Model shown as 1st order Markov Model

While the source states in these models are described by sequences of states–

therefore providing a larger context for determining the next destination state–

they only describe a change in pitch. Additional information can be added to

each state within these source state sequences, effectively transforming them into

sequences of vectors. For example, the first source state in Figure 38 is made up

Appendix D - Probabilities and Markov models

136

the notes C and C. For each of these notes, it is also possible to add additional

information about the velocity and note duration. However, each added piece of

information increases the complexity of the Markov Model.

3 TRAINING THE MARKOV MODEL

As the Markov Models become more complex, the transition matrices also

become larger in size. This increase in size can make the matrix prohibitively

difficult to fill in by hand, and the increased complexity can make the

relationships between each transition more complex to understand. Additionally,

manually deriving the statistical values of the matrix that represent the complex

relationships of a particular system requires the evaluation of a large amount of

data. An alternate approach to populating the matrix by hand is to enable the

Markov Model to automatically learn the transition probabilities through

training.

When training the model, it is only required to store a sparse collection of non-

zero transition probabilities. If a transition has a probability of 0% then it has

never occurred, and therefore does not need to be stored as part of the model.

Each transition probability greater than 0% can be stored as the source state, the

destination state, and the transition probability, with the transition probability

represented as the number of times that particular transition has been seen by

the Markov Model during training (see Figure 39). This allows for a much

smaller amount of data to be stored when representing the model, and also

speeds up the search time when attempting to match source states. When using

the model, all stored transition probabilities that share the same source state are

returned, effectively making up the row of all the destination states that have

non-zero transition probability. Lastly, the values for transition probabilities are

stored as positive whole numbers representing the number of times that

particular transition has been seen. These values need to be normalized before

the destination state can be chosen.

Appendix D - Probabilities and Markov models

137

Figure 39: The description of a transition probability, containing the Source State, Destination

State, and the number of times the transition has been observed during training

Although storing the Markov Model as a sparse collection reduces the amount of

data required to describe the model, and increases the speed of use, there are

data structures that are more efficient.

Figure 40: Markov source states stored as tree structure. This allows for searching variable length

source state sequences.

One such data structure is a tree (Pachet 2002), where each node in the tree

points to the destination states that are the associated with the sequence built

from the root of the tree. In Figure 40 the root notes C, D, F, and G all

represent a 1st order source state, from which previously seen sequences of

source states can be built. During use, the system can attempt to match an input

sequence with the longest matching sources state sequence stored in the trees.

Once a match has been found, the last node in the sequence holds the transition

probabilities for all destination states attributed to that source state sequence.

Appendix D - Probabilities and Markov models

138

For example, if the Markov Model tree in Figure 40 is presented with the input

sequence F G D C, then the tree would return all the transition probabilities and

destination states associated with the sequence terminating at the left most G in

the first tree (see Figure 41). However, if the same Markov Model were

presented with the input sequence G A D C, then the tree would return all the

transition probabilities and destination states associated with the sequence

terminating at the D in the first tree (see Figure 42)

Figure 41: Longest matching source state sequence for input sequence F G D C

Figure 42: Longest matching source state sequence for input sequence G A D C

Appendix D - Probabilities and Markov models

139

4 MARKOV MODELS FOR INTERACTIVE MUSICAL

AGENTS

In order for Markov Models to be suitable for creating interactive musical

agents, they must be able to react to real-time input provided by a human

performer. Markov Models are capable of describing a domain and producing

sequences that are statistically consistent with the modeled system. However, the

models are traditionally set up to take the previous destination state as the next

source state for the next iteration through the matrix. Setup in this way, it is not

possible to allow for external inputs to influence the system.

One possible solution during training is to include in the source state both the

performer to be modeled, and the performer that will be the live input. Although

this will allow for the inclusion of the live input during performance, it also

increases the complexity of the source states, and decreases the likelihood of

finding a matching source state during performance. An alternate approach was

proposed for the Continuator system (Pachet 2002) that applies a fitness

function to the output of the model. This function takes the destination state

provided by the model as the inputs, and a context provided by the human

performer. Additionally, the fitness function can be weighted to impart greater or

lesser influence over the output. This could be roughly equated to the amount of

influence the band28 is having on the musical choices of the virtual musician.

Although this technique allows for a live performer to influence the output of

the Markov Model, it also modifies the probability that the model will produce

the resulting Markov Chain. Essentially, applying a fitness function to the

output of the Markov Model changes the model itself.

An additional approach to contextualizing the Markov Model is the use of

constraint satisfaction problems. This approach takes a set of constraints, and

then applies them to a set of domains for a set of variables (Anders 2007). In

28 A band in this context could be a solo live computer musician, or an ensemble of computer

musicians.

Appendix D - Probabilities and Markov models

140

Pachet’s recent work with variable-order Markov Models (Pachet and Roy 2011;

Pachet, Roy, and Barbieri 2011), he explores this approach for creating new

matrices, from a master trained matrix, using constraints. In this case, the

performing musician would provide the constraints, the domain would be the

Markov Matrix, and the variables would be all the possible transition

probabilities. The constraints would negate the likelihood of certain transition

probabilities, in effect creating a new matrix from the existing master matrix,

where constrained transition probabilities have been set to 0. Pachet goes on to

discuss the difficulty in adjusting the matrix transition probabilities to ensure that

the likelihood of returning a given sequence, relative to some other possible

sequence, is the same as in the original matrix. Simply re-normalizing the rows

would effectively alter these relationships, therefore effectively altering the

modeled system. Pachet’s earlier versions of the continuator avoided this re-

normalization issue by applying a fitness test to the sequences once they were

generated. Although this worked, it meant that the system either needed to

generate sequences until one passed the fitness test, or that the system needed to

alter the output of the Markov Model, which would again lead to changes in the

model.

5 IMPLEMENTATION

In practice, a simple first order Markov Model proved to be very easy to train up

and run in real-time; however, the model was only built to control the values of a

single knob. In order to expand the model to control multiple knobs, two

options were considered: creating a sources state that contains each controller’s

value; or creating a separate Markov Model for each Controller. Both solutions

presented possible issues.

The first approach creates a very large domain, meaning most of the time there

will not be a match between the input state and a non-zero source state, and a

solution such as quantization to the closest matching source state will be needed

(see the following section for a discussion on this issue). The second approach is

to have a model for each controller, which simplifies the domain of each model,

Appendix D - Probabilities and Markov models

141

but also makes the different controllers independent of each other. This is a

possible issue as during performance, several controls are used together to get

more complex processing, and these relationships are a critical part of the

interaction.

Figure 43: Training diagram of Markov Model

A plugin Markov Model was built for testing, with the incoming value of the

controllers being sampled at 200 Hz. With the source state only consisting of the

previous value, a match was usually found; however, as the context provided by

the source state was very short, the resulting sequences tended to be erratic. As

the length of the source state was increased, the number of matches went down,

and the quantization to the nearest Markov Chain also introduced erratic output.

Appendix D - Probabilities and Markov models

142

Figure 44: Performance diagram of Markov Model

While Markov Models are relatively simple to train, and efficient to run in real-

time, they prove challenging to control using an external context, and difficult to

find methods for handling the case of not finding a match without altering the

probabilistic distribution. Even with these challenges, Markov Models look like a

promising approach to developing interactive musical agents for use with control

change data. Combining a variable length Markov Model, like the one described

by Pachet, with other techniques learned from search and regression approaches

may yield a working system.

6 CHALLENGES WITH USING MARKOV MODELS

One of the most difficult limitations of using a Markov Model is that they are

not capable of handling input states for which it has no statistical information.

For example, if a Markov Model is trained to produce melodic lines, and a note

is input that has not previously been seen by the model, then there is no way of

handling the unseen input state (see Figure 45). The unseen state effectively has a

row of 0% transition probabilities associated with it, resulting in no paths from

the source state to any of the destination states. This situation becomes

increasingly likely as the complexity and number of source states increases, and

Appendix D - Probabilities and Markov models

143

leads to a paradoxical case where increasingly detailed source states provide more

“accurate” statistical models of the system, but also increase the potential

number of source states with 0% transition probabilities.

Figure 45: Input to Markov Model that does not match any previously seen source state

While different solutions to this challenge exist, many of them have drawbacks.

Several of these solutions are as follows:

1. The system may choose a random source state in the model; however,

this would alter the statistical likelihood of the Markov Model producing

the resulting Markov Chain, effectively altering the model itself.

2. The system may choose the destination state with the highest

probability.29 However, the resulting Markov Chain will exhibit the same

issue as described in the first solution.

3. The system may choose the nearest source state to the input state. This

will help preserve the statistical relationship between the model and the

Markov Chain, but it also implies that the model does not completely

represent the domain.

29 Taking the sum of the probabilities in a column, and then dividing the result by the sum of the

probabilities of the entire matrix can determine this destination state.

Appendix D - Probabilities and Markov models

144

4. The system may have multiple models that describe the domain, with

each model reducing the amount of data used to describe the states

(Pachet 2002). If a more specific model fails to find a match for the

input source, then the next most complex model is tested. This process

is continued until a match is found for the input source. However, as the

models become more general, they also become a less accurate

representation of the system.

These solutions provide various methods for handling unseen input states, and

allow for Markov Models to be a robust approach to statistically modeling the

change in musical parameter values over time. However, it may be that through

the application of other approaches, such as search algorithms, that more elegant

solutions for handling these unseen input states will appear.

145

Appendix E

SEARCH-BASED ALGORITHMS
In the simplest implementations, search systems will take in a state, or sequence

of states, and attempt to find a matching state or sequence within the database.

Assuming that states in the database are stored in the order they originally

happened, then the states can be described as a list of sequential events. The

search can then compare the input sequence against all subsequences of the same

size in the database. This type of exhaustive search can become slow as the

number of states stored in the database increases. This leads to a situation where

increased data collection creates a more accurate model, but also increase the

number of compares required to find a match. This can increase the search

times, and render the system too slow for live performance use. Dannenberg

suggested constraining the search by associating the current position within a

score with a location in the database, and limiting the search to just before and

after that position; however, Rowe argues that improvisational music does not

have a fixed score, and therefore does not benefit from such constraints.

Even if computers become fast enough, that the time it takes to perform an

exhaustive search is not an issue, then there is still the complication of finding a

perfect key-value match between the input and the database. When playing from

a score, part of the perceived musicality of the performance is the minute

variation imparted upon the written notes. Additionally, musicians occasionally

miss or drop a note, or often embellish a score with additional ones. This implies

that every performance will be subtly different, and makes it unlikely that an

exact match of the input sequences will be found in the database. This problem

becomes even more challenging with improvisation, as there is no scored

material to constrain what notes might be played. While this issue is similar to

Appendix E - Search-based algorithms

146

matching input states to source states within Markov Models, the solutions we

will discuss are very different.30

Lastly, search algorithms must ultimately produce an output sequence of states.

These sequences can be built by concatenating the next state in the database

after the end of the matching sequence (see Figure 46). In the figure below, the

sequence CDFGADG is matched in the database. Once the match is found, the

algorithm returns the next value stored in the database that occurs after the

sequence. In the figure below the value returned is C, and this value is then used

as the next output from the system.

Figure 46: Matching sequences return the next stored state form the database

While this approach works for creating melodies, or other generative

compositional tasks, an alternate method must be used when designing

interactive musical agent systems. The aim of an interactive musical agent is to

take input, and then return contextually related output such as auto

accompaniment from a score, or sequences from other performers. In Figure 47,

the database is designed such that it samples and links two sequences during

training. This key/value linking is similar to a dictionary, or hash map, and allows

for the search to return values representing a second performer, by using live

input as a key. In the figure below, the live input sequence CDFGADG is used

as the key to find a match in the database; however, unlike the previous example,

upon finding the match the system uses the next state C to find and return the

second performer’s value E. With this approach, it is possible to take input from

a live performer, and use it to find sequences representing another performer.

30 Exploration of the similarity between the search algorithms evaluated here and the Markov

Models discussed in Appendix D may lead to interesting hybrid systems; specifically regarding

approaches to handling the matching of sequences.

Appendix E - Search-based algorithms

147

Figure 47: Matching sequences return values from a second linked sequence

1 AUTO ACCOMPANIMENT

One of the earliest implementation of search algorithms for interactive musical

agents was Dannenberg’s (1984) use in developing an auto accompaniment

system. This system attempts to listen to input from a performer, use this input

to determine the current location of the performance within a fixed score, and

then provide the appropriate accompaniment. Additionally, the system

attempted to handle any deviation of the human performer from the written

score.

If the actual performance and the written score can be seen as two sequences of

states, then Dannenberg’s system is attempting to find the best match between

these two sequences. With Dannenberg defining ‘best’ as: “The best match is the

longest common subsequence of the two streams (Dannenberg 1984).” The

challenge is in allowing for extra notes that are not in the written score, or to

recognize when the musician has left a note out of the performance. We will

describe an overview of the system in order to provide a context for discussing

the challenges of constraining a search for improvisational systems. A full

description of the system can be found in (Dannenberg 1984).

The system uses a matrix to compare the live input against the written score. The

score is represented as rows, while the live input is added as columns. When a

new note arrives at the computer, it is appended to the column sequence, and

then the two sequences along each axis are compared. A perfect performance

would create a match along the diagonal of the matrix, beginning from the

corner where the two sequences start. For every note that is a match, the number

Appendix E - Search-based algorithms

148

in that cell is increased, however, if the note does not match then the cell is filled

with the previous value (see Figure 48).

Figure 48: Matrix with ideal rating scores comparing input sequence along the columns, and

scored sequence down the rows

This matrix compares the live input to be against a fixed score, while allowing

for deviations in performance. In reviewing Dannenberg’s approach Rowe

describes four alterations to the fixed score that the matrix can test for (Rowe

2001).

Appendix E - Search-based algorithms

149

Figure 49: Insertion test: this tests for notes

played by the performer that are not in the

original score

Figure 50: Deletion test: this tests for notes from

the score that are skipped over by the performer

Figure 51: Substitution test: this tests for notes

substituted by the performer

Figure 52: Repetition test: this looks for notes

from the score that are repeated by the

performer

With these four matrix tests, the system is able to determine the correct position

within the score, regardless of performer deviation or embellishments, and

Appendix E - Search-based algorithms

150

generate contextualized accompaniment. Additionally, the search is limited to the

scored note before and after the current position within the score (see Figure

53). This constraint increase the search speed, and can be applied as it is assumed

that a performer will not deviate from the score by more than one or two notes

at a time.

Figure 53: Constrained search to speed up sequence comparison

151

Appendix F

REGRESSION SYSTEMS
A third approach to designing interactive musical agents is the use of regression

algorithms. Regression is a process by which a function is fit to a dataset in such

a way, that for new inputs, the function will return the average value for that

input (see Figure 54). Additionally, once the function is fit, the system is capable

of handling inputs it has not previously seen. The function essentially

interpolates between the data it has been presented with during the training

phase, and is able to make an informed “guess” at an output value. This could be

very useful for musical situations, where new combinations of a performance

might lead the system to output new ideas. A thorough overview of regression

can be found in (Fiebrink 2011).

Appendix F - Regression systems

152

Figure 54: Basic linear regression

The simplest example of regression is fitting a straight line to a 2D scatter plot of

data (see Figure 54) through a process such as least squares.31 These functions

can also be extended to handle mapping multiple inputs to a single output. Each

parameter can be represented by a function that is plot on its own 2D graph.

These functions can then be combined in such a way as to solve for complex

multi-dimensional mappings.

Artificial neural networks, or ANNs, can be thought of as an advanced method

of implementing these more complex linear regression32 models (see Figure 55).

Figure 55 Similarity between linear regression and basic sequential ANN

Not all data will best be described using a linear function, and fitting a nonlinear

function using basic regression requires greatly increasing the number of input

parameters in order to accommodate the higher order polynomial functions.

ANNs are capable of automatically fitting these nonlinear functions through the

31 Least squares attempts to minimize the average squared error between the value produced by

the function, and the actual value from the training set.
32 Depending on the activation function used, such as a sigmoid function, ANNs can also be

classifiers.

Appendix F - Regression systems

153

use of Hidden Layers. These layers are placed between the inputs and outputs of

the system, and can be thought of interconnected stages of several regression

systems. Through the use of these hidden layers, an ANN is capable of fitting

more complex nonlinear functions then would be feasible using basic regression.

1 MULTI-VARIATE LINEAR REGRESSION

There are many ways to implement regression systems, from basic linear

regression to more complex Artificial Neural Nets (ANNs) with multiple hidden

layers. Basic linear systems represent straight line functions through the data, and

are easy to build, simple to train, but may not be able to fit more complex, non-

linear relationships; conversely ANNs are powerful models capable of fitting

complex, non-linear functions, but they can be harder to build, and may require a

large amount of training to get the functions to closely represent the data. As a

starting point, the research presented here built a network of linear regression

systems, with each one modeling a different controller, and is described as multi-

variate linear regression.

Appendix F - Regression systems

154

Figure 56 Diagram of multi-variate linear regression model

A basic linear regression system can be thought of as a simplified ANN, with no

hidden layers. Viewing the system in this way allows for the design to be

visualized in terms of an ANN. One of the reasons for describing the system in

this way is that it affords the ability to conceptualize the system as different but

related networks of connections between multiple input and output parameters

(see Figure 56). Essentially, each output can be thought of as an independent

network of connections to all of the input parameters. This view of a connected

network has become critical to my understanding of the development of

interactive musical agents, and helped to inform my research and design using

other approaches, such as the S2MP algorithm described in section 3.4.4.

With this interconnected architecture, each output in the system can be thought

of as an independent system, and therefore the entire system can be thought of

as a collection of independent regression systems. Multi-variate linear regression

then fits a regression function for every output. These individual linear

Appendix F - Regression systems

155

regression problems represent a supervised learning problem, and as such are

normally solved through an iterative process such as gradient descent. These

approaches attempt to minimize the error between the function and all the data

points. However, a shortcut closed-form solution known as the normal equation

can be used to derive these functions directly (see Equation 1). The system uses

this normal equation to then solve the linear regression problem for each output

separately, effectively creating a matrix of linear regression functions.

Equation 1 Normal Equation

Once the model is complete, the system takes new inputs from performer A and

the previously calculated outputs for the virtual performer B, and uses these to

generate new output. The models will return continuous values however,

requiring the output to be quantized into the discrete steps used by the system.

For musical applications this would be equivalent to “tuning” each output to the

nearest semi-tone. Additionally, this continuous output can be looked at as the

strength of belief in a particular value being the output.

2 CHALLENGES WITH USING REGRESSION BASED

SYSTEMS

While the approach that was just described allows for all the inputs to influence

the output, there still remains an issue of providing a temporal context to the

system. Unlike the Markov Models or the search algorithms, the inputs to the

regression system only ever see one state of the performance at a time. Each

single state during a musical performance can lead to many different notes, e.g.,

C# could perhaps equally lead to G or F. With the averaging potential of a

regression system, C# would end up returning G# instead of one of the two

notes. In order to know which of the two notes the system should output, a

greater context of what has previously been played must be presented to the

system.

Appendix F - Regression systems

156

One solution to this issue is to contextualize the inputs by providing memory of

the previous states. This can be achieved by applying a low pass filter to the

inputs, effectively feeding a decaying amount of previous states into the current

state. Rowe describes the early work on these types of systems, and labels the

process as Sequential Neural Networks (Rowe 2001).

157

Appendix G

COMPARISONS AND REQUIREMENTS
Over the course of this research it has become clear that designing an effective

interactive musical agent for use with control change messages has several

requirements: it must be able to learn or train from previous performances; it

must be able to link, or infer relationships between different controls; in a

manner similar to a musician listening and responding to the rest of the band, it

must be able to take external input in to contextualize, or influence the output of

the system; it must be fast enough to work in real time; and finally, it should have

enough memory of past events as to provide a context allowing for a musical

dialogue between the human performer and the system. The following sections

will evaluate these requirements for each of the three approaches described in

the previous appendices.

1 TRAINING

In order for an interactive system to adapt and become better at improvising,

there needs to be a method for learning from previous rehearsals (Vercoe and

Puckette 1985). Through training, a model can begin to develop a picture of

what a performer might do during a piece, and what responses are appropriate.

This training can happen either offline, with the system analyzing the data after

the performance, or in real-time, allowing the model to adapt during an actual

performance of a piece.

A Markov Model allows for real-time learning by using the source and

destination state pairs to update the transition probabilities. Real-time training of

a Markov Model is relatively easy as it can take new inputs and alter the

transition matrix, allowing the model to change during a performance. This can

Appendix G - Comparisons and requirements

158

allow the system to respond to new information and change its behavior during a

performance. One potential issue with this process would be influencing a model

whose transition probabilities are based on large numbers of previously seen

data. Adding a small number of events to a model like this would not alter the

transition probabilities very much. Inversely, a transition matrix that had only

seen a small amount of data may exhibit large changes in transition probabilities

during a performance.

Search algorithms can be trained in real-time, adding new Key/Value pairs

during a performance. However, as mentioned in section 3.4.2 the pruning of

“bad examples” may be needed to prevent the system from finding and

matching poorly played material. Additionally, training a search system can create

large databases, with much of the data being very similar. Using data structures

like KD trees may be a good solution to reducing the amount of training data

stored to represent the model. This would also help to increase the search speed

of the systems.

Regression models take input training data and build a function to describe the

model instead of attempting to find a match. This function will interpolate

between the data presented during training, and allows the system to return

values for inputs it has never seen before. However, with small amounts of

training data, the interpolation can be very coarse, while larger amounts of data

can create a more accurate model. Additionally, unlike the large databases

created by the search approach, the training output of a regression system results

in a matrix of functions. As the amount of training data increases, the functions

themselves change, but the total number of functions stays the same. Lastly,

these systems will most likely be trained off-line as they usually require an

iterative approach to building the model. It may be possible to build the models

in real-time as separate processes in the system, but this makes training more

complex then probability or search based systems.

Appendix G - Comparisons and requirements

159

2 INFERRING RELATIONSHIPS

As shown in Figure 27, there are several different configurations of inputs to

outputs. The complexity of training a model is dependent on these

configurations, with the most complex configuration being a system that listens

to all inputs from both the human performer and the model, and then relates all

inputs to each output. Additionally, the ability of the model to generate output in

the style of a particular performer is also related to these configurations, as some

of the performer’s behaviors may be the result of the relationship between

several input parameters.

The Markov Model is the most challenging of the three approaches for linking

relationships between multiple controllers. When linking multiple inputs, each

source state in the Markov Model can be thought of as a snapshot of the inputs,

and as discussed in Appendix D as the number of inputs described by the source

state increases complexity also increases. This creates challenges with finding a

matching source without altering the probability of the resulting Markov Chain.

However, the variable length Markov Model designed by Pachet (Pachet 2002)

has shown that there are graceful compromises for handling these situations.

Searching algorithms such as S2MP (see section 3.4.3) are capable of handling

complex state descriptions due to their ability to generalize during the matching

process. S2MP does not need to find an exact match, but rather returns a

similarity score based on item set members and order. This thesis presents a

novel technique for linking these complex relationships between controller states

using sorted sets, sparse sampling, and single vectors that represent the 2D

controller number/controller value relationship (see section 3.4.4). The use of

this kind of generalized searching combined with the complex input

representation, may also be useful in Markov Models for matching source states.

With regression based approaches, linking multiple inputs to multiple outputs is

possible through the interconnected networks created by approaches like multi-

variate linear regression (see Figure 56); however, as the number of inputs

Appendix G - Comparisons and requirements

160

increases, the resulting functions may require greater amounts in training data to

allow for musically usable outputs.

3 EXTERNAL CONTROL

With all three approaches the output of the model is fed back into inputs during

performance. This allows for the system to play along without any outside input,

essentially remaining self-contained and autonomous. However, in order for the

systems described in the previous appendices to be interactive, they must not

only autonomously generate new material with which a human musician can

react, but also similarly allow external input to contextualize or influence the

model. There are several different ways that this external influence can be

imparted on the model (see Figure 27).

Applying external control to a Markov Model has been discussed in Pachet’s

work (Pachet 2002; Pachet and Roy 2011). The methods presented in Pachet’s

work are either influencing the output of the model through the use of a fitness

function, or by applying constraints to the transition matrix itself. A fitness

function ultimately amounts to altering or influencing the underlying

probabilities, and therefore the model itself. Pachet’s 2011 paper presents an

alternative Constraints Based Programming approach that attempts to

compensate for this change in probabilities, and thereby maintains the original

probabilities of the Markov Chains. However, neither the fitness function nor

the constraints approach is clear on exactly what data from the musician’s input

is to be used to contextualize the model. One possible fitness function could

take in an “activity level” from the human performer, basically acting as a

damper to restrict the output value range. Regardless of what is chosen, it seems

that these fitness functions must be explicitly decided by the developers of the

system, rather then inferred by the connections or relationships between inputs

and outputs. One exception could be to use inputs from both the human and the

interactive agent as source states, but this creates the ballooning of source sates

mentioned earlier in Appendix D.

Appendix G - Comparisons and requirements

161

With search algorithms it is possible to represent all relationships between inputs

and outputs by collapsing the controller numbers and values into a single vector

and sampling the state at a regular interval (see section 3.4.4). The complexity

brought on by representing all the controllers can be managed by only storing

the controller values that have changed since the last sample. Additionally, no

other information, such as probabilities, is required to be stored with the

database. This is because the regular sample rate implies time, and the returned

value is then simply the next value in the database. Regression based systems are

similar in that the interconnected relationships described in Appendix F also

allow for all inputs from both the human and the virtual performer.

4 SPEED

While all three approaches discussed in the previous appendices are capable of

being used to model a virtual performer, they must be able to run in real-time in

order to be useful as an interactive musical agent.

Using a trained Markov Model is essentially a two-step process consisting of a

search, and the returning of a probabilistically derived result. The speed of the

system depends largely on the search portion of the system, and suffers from

similar speed issues as the search based approaches. However, Markov Models

will only store one version of any given source state, while a search based system

may store many different examples of the same, or almost exactly the same

sequence. This means Markov models may be able to represent the same model

as a search based system while using far less data.

As mentioned above, search based systems may store multiple examples of the

same sequence of data. This leads to the situation described in 3.4.5, where the

size of the database grows as more training data it is presented to it. Effectively,

as the model learns more, and becomes more accurate, the database grows and

the search time increases. While placing constraints on the searches results in far

fewer searches being carried out, this only puts the problem off. At some point

the database will become large enough that the system will again become too

Appendix G - Comparisons and requirements

162

slow to use in real-time. However, with clever segmentation, and possible offline

data clustering, it might be possible to push that point far enough away so as to

not be a concern.

Regression based systems use a fixed number of functions, and as such the speed

of the system is tied to how fast the computer can solve the functions. Assuming

the computer can complete all the calculations in time, any new training data

should not significantly increase the time it takes to calculate new outputs.

5 CONTEXT AND MEMORY

Music happens in time, and musicians performing together decide what they will

play in the future based off of what they have played in the past. Any attempt to

design an effective interactive musical agent must take this musical memory into

account when deciding what events will be played next.

Context can be added to Markov Models through the use of sequences of source

states, but the longer the sequence is, the harder it will be to find a matching

source state. Variable length Markov models are a nice solution to the problem,

as they allow the longest sequence available to be used. This will ensure the

largest context available is used to generate new events, but the approach still

requires a way to handle the case of not finding any matching source states

during performance. Pachet solves for this by storing multiple representations of

the model, with each one being a data reduced version of the previous one. This

increasing coarseness of description allows the system to start with the greatest

detail possible, and then work towards more general descriptions of the state.

This process increases the likelihood that a match will eventually be found, while

providing the largest possible context.

The S2MP algorithm presented in this thesis requires the samples to be provided

at a regular rate. These samples then represent a sequential record of the history

of a performance. Increasing the context for the next event is a simple matter of

increasing the size of the sequence of samples searched for. However, increasing

the size of the sequence also increases the search time, and therefore slows down

Appendix G - Comparisons and requirements

163

the algorithm. Part of designing an effective search algorithm requires balancing

these two requirements, i.e., using large enough sequences so as to provide a

meaningful context, and optimizing the algorithm so it is fast enough to use in

real-time.

Providing a regression system with memory of past events is achieved through

low pass filtering the inputs as described in Appendix F. These types of systems

are known as sequential neural nets, although they can apply to simple linear

regression systems as well. The lower the cutoff frequency applied to the input,

the more influence that previous states will have on generating output.

Appendix G - Comparisons and requirements

164

Table 5 Overview of algorithms for designing interactive musical agents

 Probability Search Regression

Training Training can
happen in real-
time.

Over time, it may
become difficult
to alter the
probabilities with
new training data

Training can
happen in real-
time.

Size of database
continues to grow
when presented
with new training
data.

Training is usually
done offline.

Can interpolate
between known
and unknown data,
but requires a lot
of varied data to
accurately describe
the model

Inferring

relationships

Can be
challenging to link
multiple
parameters
together.

Able to handle
multiple
simultaneous
controls

Good
generalization
possible in finding
a match

Able to handle
multiple
simultaneous
controls

Able to handle
matching new and
unseen input
sequences

External

control

Constraint
satisfaction
problems can be
used to influence
the transition
matrix without
altering the overall
probabilities.

Relationships
between external
controls and the
model must be
explicitly set.

Can simultaneously
take all inputs to
the system. Both
internal and
external.

Can simultaneously
take all inputs to
the system. Both
internal and
external.

Appendix G - Comparisons and requirements

165

 Probability Search Regression

Speed Once the model is
trained, and
assuming the
performance only
uses previously
seen data, then
this system is fast

As model holds
more data it
becomes more
accurate; however
the search also
becomes slower

Assuming the
computer can
handle solving all
the functions in the
model, this system
is fast.

Context and

Memory

Musical context is
provided through
sequences of
source states.

Using Variable
Length Markov
Models, these
systems can
ensure the longest
possible sequence
is used during
performance.

Sampling at a
regular rate creates
a sequence of
samples that have
time implied by the
order.

Providing loner
context requires
using larger
numbers of
samples during the
search.

Sequential Neural
networks that low
pass the inputs
enable past events
to influence the
output of the
system.

167

BIBLIOGRAPHY

Ames, Charles. 1987. “Automated Composition in Retrospect: 1956-1986.”

Leonardo 20 (2) (January 1): 169–185.

———. 1989. “The Markov Process as a Compositional Model: a Survey and

Tutorial.” Leonardo: 175–187.

Anders, Torsten. 2007. “Composing Music by Composing Rules: Design and

Usage of a Generic Music Constraint System”. Belfast: Queen’s

University.

Arfib, Daniel, Jean-Michel Couturier, and Loic Kessous. 2005. “Expressiveness

and Digital Musical Instrument Design.” Journal of New Music Research 34

(1): 125–136.

Bahn, Curtis, Tomie Hahn, and Dan Trueman. 2001. “Physicality and Feedback:

a Focus on the Body in the Performance of Electronic Music.” In

Proceedings of the International Computer Music Conference, 44–51.

Bahn, Curtis, and Dan Trueman. 2001. “Interface: Electronic Chamber

Ensemble.” In The Conference on New Interfaces for Musical Expression, 1–5.

Banzi, Massimo. 2008. Getting Started with Arduino. O’Reilly Media / Make.

Barbosa, Alvaro. 2003. “Displaced Soundscapes: A Survey of Network Systems

for Music and Sonic Art Creation.” Leonardo Music Journal 13: 53–59.

Barbosa, Alvaro, Jorge Cardoso, and Gunter Geiger. 2005. “Network Latency

Adaptive Tempo in the Public Sound Objects System.” In The Conference

on New Interfaces for Musical Expression, 184–187.

Berdahl, Edgar, Hans-Christoph Steiner, and Colin Oldham. 2008. “Practical

Hardware and Algorithms for Creating Haptic Musical Instruments.” In

The Conference on New Interfaces for Musical Expression. Genova, Italy.

Birnbaum, David, Rebecca Fiebrink, Joseph Malloch, and Marcelo M.

Wanderley. 2005. “Towards a Dimension Space for Musical Devices.” In

The Conference on New Interfaces for Musical Expression, 192–195.

Bischoff, John, Rich Gold, and Jim Horton. 1978. “Music for an Interactive

Network of Microcomputers.” Computer Music Journal 2 (3): 24–29.

Bibliography

168

Bois, Mario. 1967. Iannis Xenakis, the Man and His Music; a Conversation with the

Composer and a Description of His Works. London: Boosey & Hawkes Music

Publishers.

Cáceres, Juan-Pablo, and Chris Chafe. 2010. “JackTrip: Under the Hood of an

Engine for Network Audio.” Journal of New Music Research 39 (3)

(September): 183.

Cáceres, Juan-Pablo, Robert Hamilton, Deepak Iyer, Chris Chafe, and Ge Wang.

2008. “To the Edge with China: Explorations in Network Performance.”

In The 4th International Conference on Digital Arts.

Cage, John. 1991. “An Autobiographical Statement.” Southwest Review 76 (1): 59.

Chafe, Chris, and Michael Gurevich. 2004. “Network Time Delay and Ensemble

Accuracy: Effects of Latency, Asymmetry.” In The AES 117th Convention,

6208.

Clayton, Martin. 2001. Time in Indian Music : Rhythm, Metre, and Form in North

Indian Rag Performance: Rhythm, Metre, and Form in North Indian Rag

Performance. Oxford University Press.

College, Minnesota Justin London Professor of Music Carleton. 2004. Hearing in

Time : Psychological Aspects of Musical Meter: Psychological Aspects of Musical

Meter. Oxford University Press.

Collins, Nick. 2003. “Generative Music and Laptop Performance.” Contemporary

Music Review 22 (4): 67–79.

———. 2006. “Towards Autonomous Agents for Live Computer Music:

Realtime Machine Listening and Interactive Music Systems.” Edited by

Alan Blackwell. Cambridge, Music and Science.

———. 2010. “Contrary Motion: An Oppositional Interactive Music System.”

In The Conference on New Interfaces for Musical Expression. Sydney, Australia.

Collins, Nicolas. 1991. “Low Brass: The Evolution of Trombone-propelled

Electronics.” Leonardo Music Journal: Journal of the International Society for the

Arts, Sciences and Technology 1 (1) (January 1): 41–44.

Cook, Perry R. 1992. “A Meta-wind-instrument Physical Model, and a Meta-

controller for Real-time Performance Control.” In The International

Bibliography

169

Computer Music Conference, 273–276. Ann Arbor, MI: MPublishing,

University of Michigan Library.

———. 2001. “Principles for Designing Computer Music Controllers.” In The

Conference on New Interfaces for Musical Expression, 1–4.

———. 2009. “Re-Designing Principles for Computer Music Controllers: A

Case Study of SqueezeVox Maggie.” In The Conference on New Interfaces for

Musical Expression, 303–307.

Cook, Perry R., and Colby N. Leider. 2000. “SqueezeVox: a New Controller for

Vocal Synthesis Models.” In The International Computer Music Conference.

Cope, David. 2005. Computer Models of Musical Creativity. The MIT Press.

Croft, John. 2007. “Theses on Liveness.” Organised Sound 12 (1): 59–66.

D’ Escriván, Julio. 2006. “To Sing the Body Electric: Instruments and Effort in

the Performance of Electronic Music.” Contemporary Music Review 25 (1-2):

183–191.

Dannenberg, Roger B. 1984. “An On-line Algorithm for Real-time

Accompaniment.” In Proceedings of the 1984 International Computer Music

Conference, 193–198.

Dannenberg, Roger B., Belinda Thom, and David Watson. 1997. “A Machine

Learning Approach to Musical Style Recognition.”

Diakopoulos, Dimitri, and Ajay Kapur. 2010. “Argos: An Opensource

Application for Building Multi-Touch Musical Interfaces.” In The

International Computer Music Conference.

Downie, J. Stephen, Donald Byrd, and Tim Crawford. 2009. “Ten Years of

ISMIR: Reflections on Challenges and Opportunities.” In Proceedings of the

10th International Society for Music Information Retrieval Conference, 13–18.

Driessen, Peter F., Thomas E. Darcie, and Bipin Pillay. 2011. “The Effects of

Network Delay on Tempo in Musical Performance.” Computer Music

Journal 35 (1) (March 1): 76–89.

Drummond, Jon. 2009. “Understanding Interactive Systems.” Organised Sound 14

(02): 124–133.

Bibliography

170

Eigenfeldt, Arne. 2006. “Kinetic Engine: Toward an Intelligent Improvising

Instrument.” In Proceedings of the Sound and Music Computing Conference, 97–

100.

Emmerson, Simon. 2000. “’Losing Touch?’: The Human Performer and

Electronics.” Music, Electronic Media and Culture: 194–216.

Fiebrink, Rebecca. 2011. “Real-time Human Interaction with Supervised

Learning Algorithms for Music Composition and Performance”.

Princeton, NJ, USA: Princeton University, Computer Science.

Fiebrink, Rebecca, Dan Trueman, Cameron Britt, Michelle Nagai, Konrad

Kaczmarek, Michael Early, MR Daniel, Anne Hege, and Perry R. Cook.

2010. “Toward Understanding Human-computer Interaction in

Composing the Instrument.” In The International Computer Music Conference.

Freed, Adrian. 2008. “Application of New Fiber and Malleable Materials for

Agile Development of Augmented Instruments and Controllers.” In The

Conference on New Interfaces for Musical Expression.

Gao, Mike, and Craig Hanson. 2009. “LUMI: Live Performance Paradigms

Utilizing Software Integrated Touch Screen and Pressure Sensitive

Button Matrix.” In The Conference on New Interfaces for Musical Expression.

Gresham-Lancaster, Scot. 1998. “The Aesthetics and History of the Hub: The

Effects of Changing Technology on Network Computer Music.”

Leonardo Music Journal 8: 39–44.

Groot, Rokus de. 1997. “Ockeghem and New Music in the Twentieth Century.”

Tijdschrift Van De Koninklijke Vereniging Voor Nederlandse Muziekgeschiedenis

47 (1/2) (January 1): 201–220.

Hamanaka, Masatoshi, Masataka Goto, Hideki Asoh, and Nobuyuki Otsu. 2003.

“A Learning-based Jam Session System That Imitates a Player’s

Personality Model.” In International Joint Conference on Artificial Intelligence,

18:51–58.

Hochenbaum, Jordan, and Owen Vallis. 2009. “Bricktable: A Musical Tangible

Multi-touch Interface.” In The Berlin Open Conference. Berlin, Germany.

Jordà, Sergi, Gunter Geiger, Marcos Alonso, and Martin Kaltenbrunner. 2007.

“The reacTable: Exploring the Synergy Between Live Music Performance

Bibliography

171

and Tabletop Tangible Interfaces.” In Proceedings of the 1st International

Conference on Tangible and Embedded Interaction, 139–146.

Jorda, Sergi, Martin Kaltenbrunner, Gunter Geiger, and Ross Bencina. 2005.

“The Reactable*.” In The International Computer Music Conference, 579–582.

Kaltenbrunner, Martin, and Ross Bencina. 2007. “reacTIVision: a Computer-

vision Framework for Table-based Tangible Interaction.” In The 1st

International Conference on Tangible and Embedded Interaction, 69–74.

Kane, Brian. 2007. “Aesthetic Problems of Net Music.” In . Spark Festival.

University of Minnesota. internal-pdf://Kane_2007-

1008294145/Kane_2007.pdf.

Kapur, Ajay. 2007. “Digitizing North Indian Music: Preservation and Extension

Using Multimodal Sensor Systems, Machine Learning and Robotics.”

Kapur, Ajay, Michael Darling, Dimitri Diakopoulos, Jim Murphy, Jordan

Hochenbaum, Owen Vallis, and Curtis Bahn. 2011. “The Machine

Orchestra: An Ensemble of Human Laptop Performers and Robotic

Musical Instruments.” Computer Music Journal 35 (4): 49–63.

Kapur, Ajay, Michael Darling, and Raahki Kapur. 2012. “Don’t Forget the

Machines: Orchestra of Humans, Laptops, and Robots.” In 1st Symposium

on Laptop Ensembles & Orchestras, 80–81. Baton Rouge, Louisiana.

Kiefer, Chris, Nick Collins, and Geraldine Fitzpatrick. 2008. “HCI Methodology

for Evaluating Musical Controllers: A Case Study.” In The Conference on

New Interfaces for Musical Expression.

Kockelkoren, Petran. 2003. Technology: Art, Fairground and Theatre. NAi Publishers.

Krefeld, Volker, and Michel Waisvisz. 1990. “The Hand in the Web: An

Interview with Michel Waisvisz.” Computer Music Journal 14 (2) (July 1):

28–33.

Lazzaro, John, and John Wawrzynek. 2001. “A Case for Network Musical

Performance.” In The International Workshop on Network and Operating

Systems Support for Digital Audio and Video, 157–166. NOSSDAV ’01. New

York, NY, USA: ACM.

Lerdahl, Fred, and Ray Jackendoff. 1996. A Generative Theory of Tonal Music. The

MIT Press.

Bibliography

172

Levin, Golan. 1999. “Interface Metaphors and Signal Representation for

Audiovisual Performance Systems”. MIT.

http://www.flong.com/texts/essays/thesis_proposal/.

Lewis, George E. 2000. “Too Many Notes: Computers, Complexity and Culture

in Voyager.” Leonardo Music Journal 10 (January 1): 33.

Malloch, Joseph, David Birnbaum, Elliot Sinyor, and Marcelo M. Wanderley.

2006. “Towards a New Conceptual Framework for Digital Musical

Instruments.” In The 9th International Conference on Digital Audio Effects, 49–

52.

Martin, Aengus, Craig T. Jin, Alistair McEwan, and William L. Martens. 2011. “A

Similarity Algorithm for Interactive Style Imitation.” In ICMC.

Huddersfield, UK.

Mathews, Max, and Andrew Schloss. 1989. “The Radio Drum as a Synthesizer

Controller.” In The International Computer Music Conference.

Murphy, Jim, Ajay Kapur, and Carl Burgin. 2010. “The Helio: A Study of

Membrane Potentiometers and Long Force Sensing Resistors for Musical

Interfaces.” In Proceedings of the International Conference on New Interfaces for

Musical Expression, 459–462.

Nierhaus, Gerhard. 2009. Algorithmic Composition: Paradigms of Automated Music

Generation. Springer.

Nietzsche, Friedrich Wilhelm. 1896. Thus Spoke Zarathustra: A Book for Everyone

and No One. New York and London: Macmillan.

Nishibori, Yu, and Toshio Iwai. 2006. “Tenori-on.” In The Conference on New

Interfaces for Musical Expression, 172–175. Paris, France: IRCAM.

Pachet, François. 2002. “The Continuator: Musical Interaction With Style.”

Journal of New Music Research 31 (1).

Pachet, François, and Pierre Roy. 2011. “Markov Constraints: Steerable

Generation of Markov Sequences.” Constraints 2 (16): 148–172.

Pachet, François, Pierre Roy, and Gabriele Barbieri. 2011. “Finite-Length

Markov Processes with Constraints.” In Proceedings of the 22nd International

Joint Conference on Artificial Intelligence, 635–642. Barcelona, Spain.

Bibliography

173

Paradiso, Joe. 2004. “Wearable Wireless Sensing for Interactive Media.” In First

International Workshop on Wearable and Implantable Body Sensor Networks.

Paradiso, Joseph A. 1999. “The Brain Opera Technology: New Instruments and

Gestural Sensors for Musical Interaction and Performance.” Journal of

New Music Research 28 (2) (June 1): 130.

Polansky, Larry. 1994. “Live Interactive Computer Music in HMSL, 1984-1992.”

Computer Music Journal 18 (2): 59–77.

Pressing, Jeff. 1990. “Cybernetic Issues in Interactive Performance Systems.”

Computer Music Journal 14 (1): 12.

Reynolds, Roger. 1979. “John Cage and Roger Reynolds: A Conversation.” The

Musical Quarterly LXV (4) (October): 573–594.

Rowe, Robert. 2001. Machine Musicianship. MIT Press.

Saneifar, Hassan, Sandra Bringay, Anne Laurent, and Maguelonne Teisseire.

2008. “S2mp: Similarity Measure for Sequential Patterns.”

Schloss, Andrew. 2003. “Using Contemporary Technology in Live Performance:

The Dilemma of the Performer.” Journal of New Music Research 32 (3):

239–242.

Schnell, Norbert, and Marc Battier. 2002. “Introducing Composed Instruments,

Technical and Musicological Implications.” In Proceedings of the 2002

Conference on New Interfaces for Musical Expression, 1–5.

Sergi, Jordà Puig. 2005. “Digital Lutherie - Crafting Musical Computers for New

Musics’ Performance and Improvisation”. Universitat Pompeu Fabra.

Smallwood, Scott, Dan Trueman, Perry R. Cook, and Ge Wang. 2008.

“Composing for Laptop Orchestra.” Computer Music Journal 32 (1) (April

1): 9–25.

Stobart, Henry, and Ian Cross. 2000. “The Andean Anacrusis? Rhythmic

Structure and Perception in Easter Songs of Northern Potosí, Bolivia.”

British Journal of Ethnomusicology 9 (2): 63–92.

Temperley, David. 2004. The Cognition of Basic Musical Structures. The MIT Press.

Trueman, Dan, and Perry R. Cook. 2000. “BoSSA: The Deconstructed Violin

Reconstructed.” Journal of New Music Research 29 (2): 121–130.

Bibliography

174

Vallis, Owen, and Ajay Kapur. 2011. “Community-Based Design: The

Democratization of Musical Interface Construction.” Leonardo Music

Journal 21.

Van Nort, Doug. 2009. “Instrumental Listening: Sonic Gesture as Design

Principle.” Organised Sound 14 (2): 177–187.

Vercoe, Barry. 1984. “The Synthetic Performer in the Context of Live

Performance.” In Proceedings of the International Computer Music Conference,

189–191.

Vercoe, Barry, and Miller S. Puckette. 1985. “Synthetic Rehearsal: Training the

Synthetic Performer.” In Proceedings of ICMC, 275–278.

Wanderley, Marcelo M., and Nicola Orio. 2002. “Evaluation of Input Devices

for Musical Expression: Borrowing Tools from Hci.” Computer Music

Journal 26 (3): 62–76.

Wang, Ge, and Perry R. Cook. 2003. “ChucK: A Concurrent, On-the-fly Audio

Programming Language.” In The International Computer Music Conference,

219–226.

Weinberg, Gil. 2002. “The Aesthetics, History, and Future Challenges of

Interconnected Music Networks.” In The International Computer Music

Conference, 349–356.

———. 2005. “Interconnected Musical Networks: Toward a Theoretical

Framework.” Computer Music Journal 29 (2) (June 1): 23–39.

Weinberg, Gil, Scott Driscoll, and Mitchell Parry. 2005. “Musical Interactions

with a Perceptual Robotic Percussionist.” In Robot and Human Interactive

Communication, 2005. ROMAN 2005. IEEE International Workshop On,

456–461.

Wiley, Meason, and Ajay Kapur. 2009. “Multi-Laser Gestural Interface—

Solutions for Cost-Effective and Open Source Controllers.” In The

Conference on New Interfaces for Musical Expression.

Wright, Matthew, and David Wessel. 1998. “An Improvisation Environment for

Generating Rhythmic Structures Based on North Indian ‘Tal’ Patterns.”

Xenakis, Iannis. 1971. Formalized Music. Bloomington: Indiana University Press

(IN) Bloomington, IN.

