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ABSTRACT 

Dirichlet 's theorem describes the structure of the group 

of units of the ring of algebraic integers of any algebraic number 

field. This theorem shows that any unit can be written in terms of a 

fundamental system of units . However Dirichlet 's theorem does not 

suggest a ny method by which such a fundamental system of units 

(or indeed any units) can be obtained. 

This thesis looks at three types of algebrai c number fields 

for which a fundamental sys tem of units contains one unit, the so 

called fundamental unit. rn · each cas e properties of units and the 

problem of obtaining a fundamental unit are discussed, 

Chapter one i s an introductory chapter which summar i ses the 

basic theory relevant to algebraic number fields of arbitrary degree . 

Basic properties of units and Dirichlet's theorem are also given. 

Chapter two looks at units of Quadratic fields, Q(Jd). Units 

of imaginary quadratic fields are mentioned briefly but the chapter 

is mainly concerned with the more complicated problem of obtaining 

real quadratic units. The relevant theory of simple continued 

fractions is presented and the way in which units can be obtained from 

the simple continued fraction expansion of Jd is outlined. The 

chapter then also looks at some recent papers dealing with the length 

of the period of Jd and concludes by showing how units can be obtained 

from the simple continued fraction expansion of (1 + Jd)/2 when 

d = 1(mod 4). 



Chapter three looks at units of pure cubi c fie'ids, The 

basic properties of pure cubic units are developed and reference is 

made to various algorithms which can be used to obtain pure cubi c 

units . The main purpose of this chpater is to present the results 

of the paper ' Determining the Fundamental Unit of a Pure Cubic Field 

Given any Unit' (J eans and Hendy [1 97?]) . However in this thesis a 

different approach to that of the paper is used and for two of the 

results sharper bounds have been obtained, Several examples are 

given using the algorithm which is developed from these results, 

Chapter four, which is original work, investigates the 
1 

quartic fields, Q(d~), where dis a square-free negative integer, 

iii 

Similarities between these quartic fields and the pure cubic and real 

quadratic fields are developed of which the main one is a quartic 

analogue of the results given in the paper mentioned above, 

The examples given in chapter three required multiprecision 

computer programs and these programs have been listed in appendix one, 
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1 INTRODUCTION 

This chapter gives a short summary of the basic theory which 

is relevant to this thesis. While the contents of this chapter have 

not been derived from any particular source, texts such as Richman 

[1971], Adams and Goldstein [1976], Clark [1971], Maxfield and 

Maxfield [1971], Cohn [196?], Niven and Zuckerman [1972], and 

Samuel [1970] give varying degrees of coverage of the material to be 

summarised in this chapter. 

Notation 

The symbols defined below will have the same meaning 

through out the thesis. 

z+ 

z 

Q 

R 

Z[a.' p). 

( a,b) 

[ ) 

i 

the set {1, 2, 3, 4, ... } 

the set of rational integers 

the set of rational numbers 

the set of real numbers 

the module {a
1
a. + a

2
f3la

1
,a

2 
E Z] 

the greatest common divisor of the integers a, b. 

the greatest integer function 

the square root of minus one, 

In general, Greek letters will denote algebraic numbers and letters 

of the Roman alphabet will denote rational integers. 

Algebraic Fields 

Let F be a number field, that is Fis a subfield of the 

field of complex numbers. The polynomial 



p(x) n . n-1 
= a X + a 

1
x + . . . . + a

1
x + ao n n-

a "f r O, a. E F, 
n J. 

is called a polynomial over F and the set of all such polynomials 

forms an integral domain denoted by F[ x] . . · p is said to be of degree 

n, written deg (p) = n. A manic polynomial is one in which the 

leading coefficient, a, is unity. 
n 

A number, a, is algebraic over F if it is the zero of some 

polynomial f E F( x] . _. 

Theorem 1.1 

If a is algebraic over F, there exists a unique polynomial 

f E F(a,) such that 

i) f(a) = 0 
f 

ii) f is manic 

iii) if g E F(x] -and g(a) = 0 then fjg 

f is called the minimal polynomial for a and the degree of a is 

defined to be equal to deg(f). 

Theorem 1.2 

n = deg (a)} forms a number field which is a simple extension of F. 

It is the smallest field that contains both a and F. 

n-1 
If f3 = b 0 + b1a + . • + bn-i a E F(a) then 

b0 , b1 , ... , bn_ 1 are called the coefficients of f3. 

2 

I ,' 

II 



Theorem 1,3 

F(a.) is·a vector space over F with basis 1, a, , , , n-1 
' a.. 

Consequently any BE F(a) is algebraic over F and deg(~)~ deg (a), 

3 

F(a.) is an algebraic extension of F. II 

The minimal polynomial for a can be factored as n distinct 

linear factors in C, 

Then - 1 numbers a.
1

, a.
2 . . . ' a. 1 are called the conjugates of a.. 

n-

Theorem 1.4 

Let ~ E F(a.). Then B n-1 = b
0 

+ b
1
a. + ... + b -- a. - where 

n-1 

n = deg (a) and b. E F. Let g be the minimal polynomial for B. Define 
J 

where the a. are the conjugates of a.. 
J 

Let h ( x) = ( x - ~ )( x - B 1 ) . • . ( x - ~ n _ 1 ) 

Then i) 

ii) 

iii) 

iv) 

v) 

each ~- is either equal to ~ or is a conjugate of ~. 
J ... 

h is a monic polynomial and h E F[x]" 

h =~ where deg (g) X p = deg (a.)' P E z+ 

N(B) = ~~1~2 ~n-1' called the norm function 

(with respect to F(a.)) is a multiplicative 

homomorphism from F(a.) into F 

n -
N(~) = (-1) a, where a is the constant term of the 

0 0 

polynomial h. 

* i) and ii) follow from consideration of the automorphisms of 
F(a., a.

1
, ••• , a.n_

1
), the splitting field for f over F. 

II 



Algebraic Numbers, Number Fields and Integers 

If we take F =Qin the previous section then any a 

algebraic over Q is called an algebraic number, Q(a) is . called an 

algebraic number field, and for any~ E Q(a) N(~) is necessarily a 

rational number. 

Example 1.1 

As an illustration of theorem 1.4, consider~= 3 + sJ2, 

whose minimal polynomial over Q is 

f(x) 2 = X - 6x ~ 41 

If we consider~ to be an element of Q(J2) ,then 

~1 = 3 - sJ2 ' 

h
1
(x) 2 

6x 41 f(x) = X - - = 
' 

and N1(~) = -41 

¼ If we consider~ to be an element of Q(2) then 

~1 = 3 sJ2 
' 

~2 = 3 + sJ2 = ~ 

~3 = 3 - sJ2 = ~1' 

h
2
(x) 4 3 

46x
2 + 492x + 1681 = X - 12x 

= (f(x)) 2 

and N/~) = 1681 = (N1(~))2 

An algebraic integer is •an algebraic number whose minimal 

polynomial has integer coefficients. Consequently the norm of an 

algebraic integer is a rational integer. 

II 



Theorem 1. 5. 

The algebraic integers of qn algebraic number field, Q(a), 

form an integral domain (denoted by Z(a)). Z(a) is often referred to 

5 

as the ring of algebraic integers of Q(a), // 

Recalling has defined in theorem 1.4 we have that for 

~EQ(a), 

~ E Z(a) ~ h has integer coefficients. 

This fact is used when we determine the form of the algebraic integers 

of a particular Q(a). 

The only rational numbers which are also algebraic integers 

are the rational integers, Z, and for any ring of algebraic integers, 

Z(a), we have Z c Z(a). 

An integral basis of Q(a) is a set of elements 

. , 0k E Z(a) such that every SE Z(a) can be written 

uniquely in the form S = m101 + m202 + ... + ~0k where 

m
1

, m
2

, ... , ~ E Z. Every Z(a) has an integral basis and an 

integral basis of Z(a) is also a basis of Q(a). 

If 0
1

, 

. 0(1) conJugates . , 
J 

0 2' . . 

0~2)' • 
J 

basis is the determinant, 

, 0 is a basis of Q(a) and if 0. has 
n J 

0~n-i) then the discriminant of the , J 



= 

e(n-1) 
1 

e(n-1) 
2 

e(n-1) 
3 • 

9 
2 

n 

The discriminant of a basis of Q(a) is a rational number. If the 

basis is also an integral basis of Q(a) then the discriminant of the 

basis is a rational integer. Each integral basis of Q(a) has the 

same discriminant. Thus the discriminant of .any integral basis of 

Q(a) is also called the discriminant of the field Q(a). 

Example 1.2 

Let a = ✓a, d a square-free integer. In chapter two we 

will see that 

i) 1, ✓d forms an integral basis when d = 2, 3(mod 4) 

6 

ii) 1, (1 + Jd)/2 forms an integral basis when d = 1(mod 4) 

Thus when d = 2, 3(mod 4) 

= 

and when d - 1(mod 4) 

= 

2 
1 

1 -✓d 

1 

1 

(1+✓d)/2\ 
2 

( 1-Jd)/2 

= 4d 

= d 



Units of- the Ring of Algebraic Integers of Q(a.) 

. -1 
If~ E Z(a.) and~ 1 0 then~ E Q(a.), If we also have 

that ~-
1 

E Z(a.), then~ is called a unit of Z(a.), 

Theorem 1. 6 

~ E Z(a.) is a unit ~ N(~) = ± 1. 

Proof 

Let the minimal polynomial for~ be 

m m-1 
f(x) = x + a X · + ... + a

1
x + a , a. E Z 

m-1 0 J 

Then a 0 1 0 (otherwise f would not be minimal) and f(~) = 0. Thus 

we have 

The polynomial 

-1 1 
is the minimal polynomial for~ and clearly~- E Z(a.) precisely 

when a
0 

= ± 1. The theorem now follows since N( ~) is a power of a
0 

multiplied by± 1. (Theorem 1.4 v)). 

The inverse of~ is given by 

where the~- are as defined in (1). 
J 

If~ and y are algebraic integers of Q(a.) and (~ly) is a 

unit then we say that~ and y are associates. 

7 
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The units of Z(a.) form a multiplicative group whose 

structure is described in the following theorem due to Dirichlet, 

Theorem 1.7 

Let a be an algebraic number and f its minimal polynomial. 

Suppose that f has r real roots and 2s non- r eal roots, that is 

deg(a) = r + 2s. Then there exist units D
1

, ~
2

, ... , Dt, where 

t = r + s - 1, such that every unit, D, of Z(a) may be written as 

E Z 

wheres is some root of unity contained in Z(a). 

Proof 

8 

[ Samyel , 1970, p60], [Delqne and Faddeev, 1964 , p28] // 

The number of possible values for sis finite and in the 

case that a is real or a has real conjugates the only values for s 
are ± 1. 

The set of units D
1

, D2 , ..• , Dt is referred to as a 

fundamental system of units of Z(a). Such a system is not unique 

since if D
1

, D
2

, ... , ~tis a fundamental system then so is 

a1 
When t = 1, we can write any unit of Z(a) as sD

1 
for some 

unit D
1 

E Z(a). In such a case we call D
1 

a fundamental unit. It 

is easily shown that ~
1 

must be such that there is no unit whose 

magnitude lies between 1 and ID
1

1, and that the only other fundamental 

±1 
units are of the form sD

1 
• Consequently there are only a finite 



number of fundamental units when t = 1, (If a is real or has a real 

conjugate then there are four hmdamental uni ts), It is usual to 

define precisely one of these units as the fundam~ntal unit of Z(a). 

Example 1. 3 

Let a be a real quadratic irrational, then t = 1 and there 

is one unit in any fundamental system. Let ~
1 

E Z(a) be the smallest 

unit greater than unity. 

-1 -1 
Then each of ~1 , D1 , -D1 and -~

1 
is a fundamental unit. 

9 

We take ~
1 

as the fundamental unit. II 

When tis greater than one, the situation i s more complex. 

Firstly , there are always units whose magnitudes are arbitrarily close 

to unity and, secondly, from any given fundamental system of units it 

i s possible to derive an infinite number of distinct fundamental 

systems. For example , the set ~
1

, D
2

, . , ~t give rise to the 

p 
systems D

1
D

2
, D

2
, ... , Dt, where pis any integer. Consequently, 

a fundamental system cannot be characterised when t > 1 in a manner 

similar to the case when t = 1. 

In the following three chapters we shall confine our 

attention to cases where t = O, 1. 

The problem of finding all the units of Z(a) is effectively 

solved by finding a fundamental system of units. Dirichlet's 

theorem offers no help in this area and we have to look to other 

areas of mathematics (for example, continued fractions) to find 

algorithms which can be used to calculate units in algebraic number 



fields and theory which enables us to determine whether or not a 

system of units is fundamental. 

10 




