Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

FUNDAMENTAL RHEOLOGICAL PROPERTIES

6057

OF PROCESSED CHEESE SLICES

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF TECHNOLOGY IN FOOD TECHNOLOGY AT MASSEY UNIVERSITY

FRANCIS MELKIOR FARAAY

1995

To my wife, Rebeccah, and my daughter, Dorothy

ABSTRACT

Fundamental rheological properties of two types of processed cheese slices, Individually Wrapped Slices (IWS) and Slice On Slice (SOS), produced under different process conditions, were determined. Shear creep, shear stress relaxation, dynamic impulse measurements and confocal laser scanning microscopy were used to determine the rheological properties and the texture of processed cheese slices. The shear creep, the shear stress relaxation and the dynamic impulse halfsquare measurements were carried out using an Instron Universal Testing Machine. A Texture Analyser TA.HD was used for the shear stress relaxation measurements. Comparison of shear stress relaxation results between the two instruments showed agreement.

The shear creep compliance of IWS cheese show higher values than that of SOS cheese at 21°C. On the other hand, the shear stress relaxation moduli indicated lower values for IWS cheese than SOS cheese at 21°C. This indicated that IWS cheese was more liquidlike than SOS cheese though there are no significant compositional differences. Higher shear creep compliance is related to less resistance of the cheese to deformation while lower shear stress relaxation modulus indicates less resistance to deformation. These results are also in agreement.

The melting properties of the two types of slices were studied with dynamic impulse measurements. IWS cheese melted at a lower temperature (50° C) than SOS cheese (60° C). Microscopic structure indicates more protein-protein interaction in SOS cheese than IWS cheese, which had smaller fat globules evenly distributed within the protein network, thereby reducing the protein-protein interaction and making the network integrity weak, thus confirming the shear creep and shear stress relaxation findings.

The rheological and textural differences between the two cheeses were attributed to different process conditions used during the cheese manufacture. These different process conditions are the heating temperature and time combination and the cooling rate. The comparison of static measurements, the dynamic measurements using small deformations

i

and the microstructure to determine the properties of processed cheese is a useful tool to determine the effects of different process conditions. It might enable the choice of those desired process parameters such as temperature-time combination and cooling rate for various processed cheese types.

ACKNOWLEDGEMENTS

I wish to express my appreciation and deep sense of gratitude to my supervisors Dr. Osvaldo H. Campanella, Dr. Owen J. McCarthy and Mr. Rod Bennett for their guidance and assistance in all aspect of this work. Their patience during long discussions in the preparation of this manuscript was invaluable.

I acknowledge and thank all the members of staff and postgraduate students in the department of Food Technology who provided valuable support during the experimental work of this project and the preparation of this manuscript.

I wish to express my gratitude to Professor Peter A. Munro for his support and advice especially in the choice of this project. The constant advice he gave me whenever I confronted him even with my personal problems was very valuable.

I am grateful to Tanzania Dairies Limited and the Tanzania Government for allowing me pursue my studies.

Thanks to the New Zealand Government for providing me with study fees through the Ministry of External Relation and Trade. The New Zealand Dairy Research Institute for funding this project. Particular thanks to Mr. Anthony Fayerman, Dr. Philip Watkinson, Mr. Anthony B. McKenna and Mrs. Katherine Bryce for their coordination and support of this project. And to Dr. Paul A. Deuritz and Dr. Siew Kim Lee for the discussion on certain aspects of this work.

Finally, I feel deeply grateful and indebted to my wife, Rebecca for so much patience, understanding, endless love and encouragement. Her moral support enabled me complete this task.

> Francis Melkior Faraay. March, 1995

TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES
LIST OF TABLES xii

CHAPTER

INTE	RODUCTION 1
1.1	Rheology 1
1.2	Natural Cheese
1.3	Principles of Processed Cheese Manufacture 3
	1.3.1 Classification of Processed Cheeses 5
	1.3.2 Processed Cheese Evaluation
1.4	Objectives
	INTE 1.1 1.2 1.3

CHAPTER

.

2	LITE	RATURE REVIEW
	2.1	Introduction
	2.2	The Effects of emulsifier salts on
		Processed Cheese Texture
	2.3	Effects of Composition on Microstructure
	- F.	Rheology and Texture of Natural Cheese 11
	2.4	Effects of Processing Conditions on
		Structure and Texture of Processed Cheese 12
	2.5	Relationship Between Instrumental and Sensory
		(Subjective) Texture Evaluation of Cheese
		2.5.1 Firmness 17
		2.5.2 Springiness (Elasticity) 18
		2.5.3 Cheese Hardness 18

	-		
2.6	Test 1	Methods in Rh	eological
	Evalu	ation of Chees	e
	2.6.1	Tensile Test	
	2.6.2	Compression	Test 21
	2.6.3	Simple Shear	Test
	2.6.4	Static Measu	rements
		2.6.4.1	Creep Measurements 24
		2.6.4.2	Stress Relaxation
	2.6.5	Dynamic Me	asurements
		2.6.5.1	Application of Dynamic Measurements
		-	in Evaluation of Rheological Properties
			of Cheese and Related Foods 35
2.7	Factor	s Affecting the	e Instrumental Evaluation of Cheese 39
	2.7.1	Effects of Wa	all Slip 39
	2.7.2	Effects of Str	uctural Defects
	2.7.3	Effects of Sau	mpling Methods 41
	2.7.4	Effects Relate	ed to Sample Shape and Dimensions 41
	2.7.5	Effects of Ter	mperature
	2.7.6	Effects of Te	st Methods 44
2.8	Evalua	ation of Meltin	g Properties of Cheese 45
	2.8.1	The Oven Me	ethod
	2.8.2	Dropping and	Softening Points 47
	2.8.3	Squeezing Flo	w Rheometry 48
	2.8.4	Rotational Rh	eometry
	2.8.5	Cappilary Rh	eometry
	2.8.6	Differential S	canning Calorimetry 52
	2.8.7	Dynamic Vis	coelasticity
		2.8.7.1	Gouda Cheese 54
		2.8.7.2	Cheddar Cheese 55
		2.8.7.3	Processed Cheese 56
		2.8.7.4	General Discussion 57
	2.8.8	Impulse Halfs	square Small Amplitude Deformation 57
			-

v

CHAPTER

3	MAT	MALS AND METHODS 60	
	3.1	ntroduction	
	3.2	Processed Cheese Slices 60	
		2.1 Slice On Slice (SOS) 60	
		.2.2 Individually Wrapped Slices (IWS) 61	
		.2.3 Other Materials	
	3.3	Equipment	
		.3.1 The Instron Universal Testing Machine	
		.3.2 The Texture Analyser TA.HD	
		.3.3 The Confocal Laser Scanning Microscope	
	3.4	Methods	
		.4.1 Sample Preparation 69	
	3.5	Experimental Procedure	
		.5.1 Shear Creep Experiments	
		.5.2 Shear Stress Relaxation Experiments	
		3.5.2.1 Instron Shear Stress Relaxation Experiments . 75	
		3.5.2.2 TA.HD Shear Stress Relaxation Experiments . 75	
		.5.3 Dynamic Impulse Halfsquare Experiments	
		.5.4 The Confocal Laser Scanning Microscopy	

CHAPTER

79
79
80
84
94
99

CHAPTER

5	DISCUSSION				
	5.1	Introduction	104		

vi

5.2	Shear	Creep	105
	5.2.1	Establishment of Linear Viscoelastic Region	
		and the Instantaneous Speed	105
	5.2.2	The Stress-strain Relationship	106
	5.2.3	Shear Creep Compliance	106
5.3	Shear	Stress Relaxation	107
	5.3.1	The Establishment of Linear Viscoelastic Region	
		and the Instantaneous Speed	107
	5.3.2	Shear Stress Relaxation Modulus	108
	5.3.3	Fitted Shear Stress Relaxation Modulus	109
5.4	The D	ynamic Viscoelasticity and Melting Characteristics	110
	5.4.1	The Dynamic Impulse Linear Viscoelastic Region	110
	5.4.2	Comparison of Storage and Loss Moduli of IWS and	
		SOS Cheese	112
	5.4.3	The Dynamic Loss Tangent (δ) for IWS and SOS Cheese $% \beta$.	112
	5.4.4	The Relationship Between the Storage and Loss Moduli	
		and the Frequency of Impulse Halfsquare	113
5.5 Th	e Confe	ocal Laser Scanning Microscopy	114
5.6 Ge	eneral D	Discusion	115

vii

CHAPTER

6	CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	118
	6.1 Conclusions	118
	6.2 Recommendations for Future Work	119
REF	TERENCES	120

LIST OF FIGURES

Fig. 2.1a & b	Microstructure of Hard Processed Cheese Examined by
	Scanning Electron Microscope 14
Fig. 2.2	The Application of Simple Shear to a Rectangular Block 22
Fig. 2.3	Maxwell Body 24
Fig. 2.4	Kelvin/Voigt Body 24
Fig. 2.5a & b	Typical Creep Curves for a Viscoelastic Material 26
Fig. 2.6	Typical Stress Relaxation Curves for Different Materials 27
Fig. 2.7	Maxwell Body Connected in Parallel with a Spring 29
Fig. 2.8	Reciprocal Baseline Normalized Stress Relaxation 30
Fig. 2.9	Influence of Deformation Level on Stress Relaxation
	Behaviour of Galbanino Cheese 31
Fig. 2.10	Effect of Strain on Instantaneous Stress for Relaxation
	Experiments for Galbanino Cheese
Fig. 2.11	Shear Stress Responses of a Viscous Material
	Under Oscillatory Shear Stress 35
Fig. 2.12	Comparison of the Shear Stress Response of an Elastic
	Solid and Viscous Fluid Under an Oscillatory Shear Strain 36
Fig. 2.13	Schematic View of the Geometry of Lubricated Squeezing
	Flow, Only on the Absence of Friction will the Flow Front
	be Flat (plug flow) otherwise the Flow Front will be
	Parabolic and the Forces Much Higher 49
Fig. 2.14	Elongation Viscosity v's Strain Rate of Processed
	American Cheese at Various Temperatures
Fig. 2.15	Apparent Viscosity v's Shear Rate of Mozzarella
	Cheese at Various Temperatures
Fig. 2.16a, b &	& c. The Effect of Maturation Time on Dynamic
	Storage Modulus, Loss Modulus and Loss Tangent
	of Gouda Cheese
Fig. 2.17a, b &	k c. The Effect of Maturation Period on
	Dynamic Storage Modulus Loss Modulus and Loss

	Tangent of Cheddar Cheese 55
Fig 2.18a, b	& c. The Effect of Temperature on Dynamic
	Storage Modulus, Loss Modulus and Loss Tangent of
	Soft and Hard Processed Cheese 56
Fig. 2.19a	Sample Dimensions 58
Fig. 2.19b	Typical Displacement/Force v's Time Responses 58
Fig. 3.1a	Table Mounted Frame Showing Components 62
Fig.3.1b	Microprocessor and the Control Console
Fig. 3.2a	Texture Analyser TA.HD Showing Components
Fig. 3.2b	The Control Console Showing Available Commands
Fig. 3.3a	The Principles of Confocal Laser Scanning Microscope 66
Fig. 3.3b	The CLSM System Setup 67
Fig. 3.4	A Thin Piano Wire Cutter 69
Fig. 3.5a	A Sketch Diagram of the Instron Sample Holding Cell 70
Fig. 3.5b	A Photograph of TA.HD Sample Holding Cell
Fig. 3.6	A Double Sandwich Sample/Platen Interface
Fig. 4.1a	Shear Creep Responses Showing Displacement v's Time
	for IWS Measured at Different Initial Applied Force
Fig. 4.1b	Shear Creep Responses Showing Displacement v's Time
	for SOS at Different Initial Applied Force
Fig. 4.2a	Shear Creep Compliance of IWS v's Time Measured at
	Different Initial Applied Force
Fig.4.2b	Shear Creep Compliance of SOS v's Time Measured at
	Different Initial Applied Force
Fig. 4.3a	Comparison of Shear Creep for IWS and SOS
	at the Same Applied Force
Fig. 4.3b	Curve Fitted Shear Creep Compliance v's Time
	for IWS at Various Applied Force
Fig. 4.3c	Curve Fitted Shear Creep Compliance v's Time
	for SOS at Various Applied Force
Fig. 4.4a	Shear Stress Relaxation Curves Showing Forces
	v's Time for IWS at Different Initial Strain Using the Instron 85

ix

Fig. 4.4b	Shear Stress Relaxation Curves Showing Forces v's
	Time for IWS at Different Initial Strain Using TA.HD
Fig. 4.4c	Shear Stress Relaxation Curves Showing Forces v's Time
	for SOS Measured at Different Initial Strain using the Instron 86
Fig. 4.4d	Shear Stress Relaxation Curves Showing Forces v's Time
	for SOS Measured at Different Initial Strain Using TA.HD 86
Fig. 4.5a	Shear Stress Relaxation Modulus v's Time for IWS
	Measured at Different Initial Strain Using the Instron
Fig. 4.5b	Shear Stress Relaxation Modulus v's Time for SOS
	Measured at Different Initial Strain Using TA.HD 87
Fig. 4.5c	Shear Stress Relaxation Modulus v's Time for IWS
	Measured at Different Initial Strain Using the Instron
Fig. 4.5d	Shear Stress Relaxation Modulus v's Time
	for SOS Measured at Different Initial Strain Using TA.HD 88
Fig 4.6	Comparison of Shear Stress Relaxation Moduli of IWS and SOS
	Measured at Similar Strain Using the Instron and the TA.HD 89
Fig. 4.7a	Fitted Shear Relaxation Modulus for IWS Measured at
	Different Initial Strain Using the Instron
Fig. 4.7b	Fitted Shear Relaxation Modulus for IWS Measured at
	Different Initial Strain Using the TA.HD
Fig. 4.7c	Fitted Shear Relaxation Modulus for SOS Measured at
	Different Initial Strain Using the Instron
Fig. 4.7d	Fitted Shear Relaxation Modulus for SOS Measured at
	Different Initial Strain Using the TA.HD
Fig. 4.8	Comparison of Fitted Shear Relaxation Moduli for IWS and SOS
	Measured at Similar Strain Using the Instron and the TA.HD 92
Fig. 4.9a	The Dynamic Storage Modulus and Loss
	Modulus of IWS v's Shear Strain
Fig. 4.9b	The Dynamic Storage Modulus and Loss
	Modulus of SOS v's Shear Strain 95
Fig. 4.10a	The Effect of Temperature on Dynamic
	Storage and Loss Moduli of IWS 95

x

1.1

Fig. 4.10b	The Effect of Temperature on Dynamic
7-	Storage and Loss Moduli of SOS 96
Fig. 4.11a	Comparison of Dynamic Storage Moduli of IWS
	and SOS as Shear Strain is Varied
Fig. 4.11b	Comparison of Dynamic Loss Moduli of IWS
	and SOS as Shear Strain is Varied
Fig. 4.12a	The Effect of Temperature on Dynamic Loss
	Tangent for IWS at Different Strain
Fig. 4.12b	The Effect of Temperature on Dynamic Loss
	Tangent for SOS at Different Strain
Fig. 4.13	Comparison of Temperature Effects on Dynamic Loss
	Tangent Measured at two Similar Strain for IWS and SOS 98
Fig. 4.14	Dynamic Storage and Loss Moduli for IWS
	and SOS v's Frequency Sweep 99
Fig. 4.15	A Confocal Laser Scanning Micrograph for IWS Showing
	Fat as Dark areas and Protein as Light areas
Fig. 4.16a	A Confocal Laser Scanning Micrograph for SOS
	Showing Fat as Dark areas and Protein as Light Mass 100
Fig. 4.16b	A Confocal Laser Scanning Micrograph for SOS
	Showing Fat as Lighter areas and Protein as Dark Mass 101
Fig. 4.17a	A Confocal Laser Scanning Micrograph for IWS Showing
	Fat Crystals at about 15 µm Below the Sample Surface 101
Fig. 4.17b	A Confocal Laser Scanning Micrograph of IWS Showing Fat
5	Crystals at about 120 µm Below the Sample Surface 102
Fig. 4.17c	A Confocal Laser Scanning Micrograph for SOS Showing Fat
	Crystals at about 15 µm Below the Sample Surface
Fig. 4.18	A Three Dimensional Micrograph of SOS Showing Fat
	Globules as Spherical Structures 103

LIST OF TABLES

Table 2.1	Values of Complex Viscosity of Cheese at Various Ages	38
Table 2.2	Shear Moduli of Natural and Imitation Mozzarella at 20°C	38
Table 3.1	The Chemical Composition of Processed Cheese Slices	61
Table 4.1	Calculated Instantaneous Compliance J ₀ , Retardation	
	Time (λ_{ret}) and the correlation Coefficient (r^2)	84
Table 4.2	Calculated λ_{rel} , G ₁ , G _e for IWS and SOS at Different	
	Initial Strain Using the Instron and the TA.HD	93

xii