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Abstract 

The perspective afforded by Euclidean geometry led to the rapid development of 

linear models in the early stages of the twentieth century: Fisher saw the data as 

a point in finite-dimensional Euclidean space, the model as a subspace and least 

squares fitting as projection of the observation vector onto the model space . From 

the late 1960s to early 1970s, Fienberg revealed geometry underlying loglinear models 

for two-way tables, while Haberman discussed geometry for the log-transformed case. 

Generalized linear models, however, have largely eluded geometers until recently. In 

1997 an extension of Fisher's view to generalized linear models was given by Kass 

and Vos ,  using the language of differential geometry. 

The aim of this work is to develop a simple, general geometric framework for 

generalized linear models, closely related to the thinking of Fienberg and Haberman. 

Whereas Kass and Vos developed a geometric view which leads to the usual scoring 

method, we develop geometry which leads to a new algorithm. A linearization of this 

new algorithm yields the scoring method. The geometry discussed by Kass and Vos 

is based on the log-likelihood function whereas the geometry developed here depends 

on sufficiency. 

In the geometry of generalized linear models, developed through chapters 1 to 

3, an observation with n values is viewed as a vector in Euclidian space Rn. This 

Euclidian space Rn is partitioned into two orthogonal spaces, the sufficiency space 

S and the auxiliary space A, with respect to a new basis. We focus on two mean 

sets relating to generalized linear models, one for the untransformed model space and 

another for the link-transformed model space. There are two critical properties of the 
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maximum likelihood estimate of the parameters of a generalized linear model with 

canonical link. The first property is that the coefficients of the basis of the sufficiency 

space, the sufficient statistics , are preserved in the untransformed model space in 

the fitting process. The second property is that the coefficients of the basis of the 

auxiliary space are zeroed in the link-transformed model space in the fitting process. 

Linear models and loglinear models serve as special cases of generalized linear models 

with identity and log link respectively. 

Based on the geometric framework discussed in the thesis, a new algorithm is 

constructed for fitting generalized linear models with canonical link in Chapter 4. This 

algorithm, which relies on sufficient statistics for the parameters in the model rather 

than the likelihood function, takes two projections alternately, orthogonal projection 

onto a sufficiency affine plane and non-orthogonal projection onto the transformed 

model space. In the process, we match the model space and sufficient statistics 

iteratively until convergence. Linearization of the new algorithm induces the scoring 

method. 

In Chapter 5 we pay special attention to a subset of loglinear models, graphical 

loglinear models, those which are the intersection of a finite set of conditional inde­

pendence statements. The model space of one conditional independence statement is 

described through the notions of "corresponding point convex hull" and "set convex 

hull" . The fitting of one conditional independence statement is considered geomet­

rically using a direct fitting method and the familiar iterative proportional fitting 

method. 
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Chapter 1 

Introduction 

Stat istical models are generally described algebraically, but often they can also be 

described geometrically. There are two geometric points of view taken with respect 

to statistical models in the literature: Euclidean geometry and its extension, differ­

ential geometry. Euclidean geometry provides an elegant and unified framework for 

description of linear models (Saville and Wood, 1991) and for multivariate analysis 

(Dempster, 1969) . Differential geometry has initiated crucial advances in a variety of 

fields of statistics, including the development of new geometries for statistical models 

(Barndorff-Nielsen, 1987) , higher order asymptotic theory (Amari, 1982) , invariant 

asymptotic expansions and inference in nonlinear regression and curved exponential 

families (Kass and Vos, 1997). 

R.A. Fisher's 1915  paper on the distribution of the correlation coefficient was 

the initial paper placing a statistical model in a Euclidean framework. Following 

Fisher's ideas, Bartlett ( 1933- 1934) discussed the geometry of a Latin square design, 

Durbin and Kendall ( 1951 )  studied the geometry of finding the estimator for one­

way ANOVA, and Kruskal ( 1 961 )  Zyskind ( 1967) and Watson ( 1967) described least 

squares estimation of linear models geometrically. Box, Hunter and Hunter ( 1978) 

1 



2 

presented geometry for specific types of experimental designs. A treatment of the 

geometry of linear models was given in Christensen (2002) and separately in Saville 

and Wood (1991). 
According to Box (1978), Fisher (1925) had seen the data as a point in finite­

dimensional Euclidean space, the linear model as a subspace and least squares fitting 

as projection of the observation vector onto the model space. Unfortunately, Fisher 

found his geometric approach was not generally easily understood ,  so the geometric 

results were expressed in algebraic form. Saville and Wood (1991), amongst many 

others , retrieve Fisher's lost insight using simple linear algebra. For example, an 

ANOVA table is an account of an orthogonal breakup of a vector ,  with degrees of 

freedom the dimension of a subspace and sum of squares the squared length of a 

projected vector. 

On the other hand, the history of setting statistical models in a differential ge­

ometric framework can be traced back to research by C.R. Rao (1945) and Harold 

Jeffreys (1948). They used the Fisher information matrix to define a Riemannian 

metric on a statistical manifold. It was Efron (1975) who defined the statistical 

curvature of a statistical model so drawing substantial attention to the role of differ­

ential geometry in statistics. Furthermore , Efron (1978) discussed the geometry of 

exponential families ,  the distributions that generalized linear models follow, using the 

concept of statistical curvature. Under the strong influence of Efron's paper Amari 

(1990) constructed a very elegant representation and elaboration of Fisher 's theory of 

information loss. Recently, Kass and Vos (1997) summarized the Fisher-Efron-Amari 

theory and the Jeffrey-Rao Riemannian geometry using Fisher information to con­

struct the geometry of curved exponential families . In this context they discuss the 
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geometry of generalized linear models. 

The geometry of generalized linear models described by Kass and Vos (1977) uses 

differential geometry based on the log-likelihood function. This geometric framework 

leads to  the scoring method. In this thesis, we develop a simple, general geometric 

framework for generalized linear models using only Euclidean geometry. This new ge­

ometric framework, which depends on sufficiency, leads to a new algorithm for fitting 

generalized linear models with canonical link. A linearization of the new algorithm 

yields the scoring method.  Our work closely relates to the thinking evident in the de­

velopment of a geometric framework for loglinear models, a special case of generalized 

linear models, by Fienberg (1968) and Haberman (1974). 
In 1968 Fienberg represented a two-way table with n cells and entries in the form 

of probabilities, as a point within an n -1 dimensional simplex Sn_1 in Rn. There are 

several types of two-way tables characterized as subsets of the simplex Sn_1 , including 

tables whose rows and columns are independent , tables with a given interaction struc­

ture, and tables with a fixed set of margins. On the other hand , Haberman (1974) 
viewed a log-transformed table (not necessarily two-way) with n cells and entries in 

the form of counts as a vector in Euclidean space R n and the model space of a loglin­

ear model as a subset in Rn. Fitting a loglinear model maps the observation vector 

to a q-dimensional ( q :S n) model space contained in R n (where q is the number of 

parameters of the loglinear model) . Here, we combine these two geometric views of 

loglinear models ,  which we term "Fienberg geometry" and "Haberman geometry" , 

and link them in  a commutative diagram. As with linear the space Rn is 

partitioned into two orthogonal subspaces, S (called the sufficiency space) and A 

(called the auxiliary space) . Two important geometric properties, then, are 
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on the sufficiency and auxiliary spaces. Further it is shown that all results for log­

linear models can be extended to a geometry of generalized linear models , where the 

new algorithm is constructed. 

Recently a subset of loglinear models, graphical loglinear models, have been ex­

tensively studied. Those models are the intersection of a finite set of conditional 

independence statements (Darroch et al. ,  1980) . In this thesis ,  we describes a condi­

tional independence model space through the notions of "corresponding point convex 

hull" and "set convex hull". The workings of iterative proportional fitting, and also 

a direct fitting method for finding the maximum likelihood estimate of a conditional 

independence model , are described in this geometric framework. 

In order to lay a foundation for the geometric framework constructed m this 

thesis, we will now review the geometry of linear models from Fisher's point of view, 

including the traditional fitting methods for linear models, namely the least squares 

method and the maximum likelihood method. Two geometric properties related to 

the geometry to be described later are emphasized and demonstrated by an example. 

Finally, the structure of the whole thesis is outlined. 

Consider a linear model with dependent variable Y and the design matrix X. The 

linear model has matrix form 

y = X{J+E ( 1 . 1 )  

where {3 i s  a parameter vector [{31, {32, . . . , {Jq]T (where "T" denotes transpose) to  be 



estimated, c is an error vector [c:1 , c:2 , ... , en V, and the design matrix X has form 

Xnl Xnz Xnq 

5 

where Xj = [x1j , x2j , ... , Xnj]T for j = 1, 2, ... , q. Note that in ANOVA models the 

column vectors of the design matrix are contrasts of interest. If realized values of Y 

are y1 , y2 , . . . , Yn ( n > q), then these realized values can be represented by a vector y 

in the Euclidean vector space Rn. The vector y has the coordinates (y1 , y2 , • . .  , Yn) 

with respect to the standard basis { e1 , e2 , . . .  , en } in Rn. 

We assume that there is no collinearity here , so the column vectors of X are 

linearly independent . After applying a variation of the Gram-Schmidt process we can 

construct a new basis { x1 , x2 , . . .  , Xq, Xq+l , . . .  , Xn} instead of the standard basis in 

Rn such that x i · Xj = 0 for i 1, 2, ... , q and j = q + 1 ,  q + 2, . . . , n. Now the whole 

space Rn can be partitioned into two orthogonal spaces , specifically 

where M= span{x1 , x2 , . . .  , xq} , called the model space, and IE = span{xq+1 , xq+2 , 

. . .  , xn} ,  called the error space, with lE Mj_. Later (in Chapter 3) ,  the model space 

M becomes the sufficiency space S, and the error space lE becomes the auxiliary space 

A. 

For linear models , an estimate of the parameter f3 can be found by the least squares 

method or maximum likelihood method. The least squares method was discovered 

independently by Adrien Marie Legendre and Carl Friedrich Gauss (Draper and Smith 
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1998, p.45). The estimate /3 of /3 is found by minimizing the residual sum of squares 

Following Herr (1980), Q is the squared distance of y from the model space M. 

Minimizing Q corresponds, then, to finding the point in M closest toy. The answer 

is readily visualized as the "point in M directly below y," the orthogonal projection 

of y on M, so X /3 is unique and satisfies 

y = X /3 + z, z where is perpendicular to M 

Multiplying both sides by xr we have 

since xr z = 0. Thus 

since the column vectors of X are linear independent and hence xr X is invertible. 

It can be shown that a least squares estimator is an unbiased and minimum variance 

estimator (George and Roger 1990, p.564). 

On the other hand, we can estimate /3 by maximizing likelihood. For a given 

observation vector y [y1, y2, . . . , YnJT, the likelihood function for the linear model 

( 1.1) is 

l(f3Jy) = 
(27r�2) 

This likelihood function depends on f] solely through the distance Q = I IY- Xf3!!2, so 

the maximum likelihood is achieved by minimizing the distance Q. Thus for a linear 

model the estimate of f3 is the same for both maximum likelihood and least squares 
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methods. Note that from the form of the likelihood function the contours, defined by 

l(j3J y) c where c is a constant, are spherically symmetrical about X;J, a vector in 

the model space M. VVe illustrate these ideas now with a simple example. 

The very simple model Y = JL + c; with two observations has model form 

[ � ] � [ � 
l 

4- [ :: ] 
Here we have Y = [Yi, Y2jY, x1 = [1, 1jY and parameter M, so the model space is 

lE = span { x1} ,  the equiangular line in R 2 . The least squares estimate fl of JL is 

formed by projecting y = [y1 ,  y2]T onto [1, 1jY where 

where f) = (Yl + Y2) /2, so fj = f). 

Now we consider estimation of M using maximum likelihood. The estimate fl of 

JL is determined by searching along the equiangular direction (the model space 

For a given data vector y, the maximum likelihood estimate is obtained when fj = f), 

[ Y
1 - f) 

] [ 
Y1 - M l since the length of 

_ 
is less than the length for any JL :::/:- f) and 

� y �-JL 
[JL, JLJT EM (see Figure 1.1) . Thus the maximum likelihood estimate of JL is the same 

as the least squares estimate of JL· 

There are two geometric properties for linear models we want to emphasize here. 

Property 1 .  The observation vector y and its fitted vector y same pro jec-

tion onto the model space. 
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Figure 1 . 1 :  The maximum likelihood estimate is the same as the least squares estimate 
for fJ, in the model Y = fJ, + c. 

XTy xTxs 

xT x(xT x)-1 xT y 

Thus y. Xj = y. Xj for j = 1 ,  2, ... , q. 

Property 2. The fitted vector y has zero projection onto the error space. 

0 

A A A A A A A AT Proof. Since y = X{J = {31x1 + {32x1 + . . .  + {JqXq where {3 = [{31, {32, . . .  , {Jq] , we 

have yE M. Now lE= M.L so we obtain f;. Xj = 0 for j = q+ 1,q+2, . .. , n .  0 

Therefore with respect to the new basis {x1, x2, . . .  , Xq, Xq+1, . . .  , xn} the first prop­

erty shows that the first q coordinates of the observation y will be 
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The second property indicates that the last (n- q) coordinates of the fitted value f) 

are zeros. 

Now in order to estimate the parameters f3 geometrically, we only need change 

the coordinates system in Rn from the standard basis to the new basis; the estimate 

f3 is just the coordinates of the observation y with respect to the new basis of the 

model space. Later (in Chapter 3) ,  we will see that these coordinates are sufficient 

statistics for the parameter /3; the sufficient statistics play a key role in the geometry 

developed in this thesis. Coordinates with respect to the standard basis are mapped 

to coordinates with respect to the new basis by the transformation 

A [ l-1 = X1 X2 ... Xq Xq+1 ... Xn 

where A is called the change of basis matrix. 

These geometric properties of linear models can be illustrated by the following 

example. 

Example: Suppose we have an observation vector y = [1 , 2 ,  3JT and independent 

variables have values x1 = [ 1 ,  1 ,  1 ]T and x2 = [2 .5 ,  1 ,  3 JT. We now calculate the 

estimates of parameters {30 and /31 for the model 

Step 1 Construct a new basis for R3 by extending {x1, x2 } to {x1, x2, x3} where x3 = 

[-0.7845, 0 . 1962, 0 .5883]T (using the variation of the Gram-Schmidt process ). 

Step 2 Partition the whole space R3 into two orthogonal spaces as 



where the model space M!= span{x1,x2} and the error space lE= span{x3}. 

Step 3 Find the coordinates of the observation vector y on the new basis as 

I 1 2 . 5  -0 .7845 1 -1 I 1 I I 1 .4998 ] 
1 1 0 . 1962 2 = 0.2309 

1 3 0 .5883 3 1 .3728 

10 

Step 4 Estimate the parameters /30 and /31 as the coordinates of the observation 
A A 

vector y on the model space basis x1 and x2, so /30 = 1 .4998 and /31 = 0.2309. 

Thus the fitted value of the observation vector y is 

A [ 1 2 •5 ] [ 1 .4998 ] [ 2•0770 l 
y = 1 1 = 1 .  7307 

0.2309 
1 3 2 . 1925 

The fitting process for the above example is illustrated in Figure 1 .2 .  

In  the next chapter, the geometry of categorical data models (representable by 

loglinear models ) will be discussed and the two geometric properties revealed here will 

be extended. Two geometric approaches to categorical data models, one by Fienberg 

and the other by Haberman, are embedded in a unified geometric framework in which 

the whole space is split into a sufficiency space and an auxiliary space. We find that, in 

the fitting process, the coordinates of the basis of the sufficiency space are preserved in 

Fienberg geometry, while the coordinates of the basis of the auxiliary space are zeroed 

in Haberman geometry. The relationship between the two geometries is highlighted 

by a commutative diagram. 

Chapter 3 reveals a geometric framework for generalized linear models. Here an 

existing geometry of generalized linear models, discussed by Kass and Vos, is reviewed 

with an example. As in Chapter 2 ,  the whole space is split into a sufficiency space 
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Figure 1 .2 :  This graphic shows how to estimate parameter (3 for the linear model 
Y = Xf3+c: with given data y = [1 , 2 ,  3]T and independent variables XI = [ 1 ,  1 ,  1]T and 
x2 = [2 . 5 ,  1 ,  3 jT geometrically. Here we simply change the standard basis { ei, e2, e3} 
to the new basis {xi, x2, x3} . Then y has coordi:1ates [ 1 .4998, 0 .23Q9 ,  1 .3728jT with 
respect to the new basis, so the estimates are (30 = 1 .4998 and f3I = 0.2309, the 
coordinates of y with respect to XI and x2 respectively. 

and an auxiliary space. Again we find that in the Fienberg geometry the coefficients 

of the basis of the sufficiency space are preserved during model fitting, while in the 

Haberman geometry the coefficients of the basis of the auxiliary space are zeroed. 

A new algorithm is constructed for fitting generalized linear models with canon-

ical link in Chapter 4 .  This algorithm depends on sufficient statistics, and uses two 

projections alternately, orthogonal projection onto the sufficiency affine plane and 

non-orthogonal projection onto the transformed model space. In the process, we 

match sufficient statistics and the model space iteratively until convergence. A lin-

earization of the new algorithm yields the scoring method. The geometry of the 

scoring method is given using Kass and Vos' approach. 
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The geometry of graphical loglinear models, a subset of loglinear models, is con­

sidered in Chapter 5 .  Graphical loglinear models occur as intersections of finite sets 

of conditional independence models. The model space of a conditional independence 

model with categorical variables is a highly structured subset within a simplex. Here 

we describe a conditional independence model space using the concepts of "corre­

sponding point convex hull" and "set convex hull". In this geometric framework, two 

methods (the iterative proportional fitting method and the direct fitting method) for 

finding the maximum likelihood estimate of a conditional independence model are 

described. 

Chapter 6 summarizes the main results of the whole thesis and highlights direc­

tions for further research. 



Chapter 2 

The geometry of categorical data 
models 

2 .1 Introduction 

Probabilistic models for measurement variables are commonly based on the normal 

distribution and modelling interest centres on an additive decomposition of the obser­

vation mean J.L. Linear models, developed by Cosset and Fisher early last century, have 

become the workhorses of statistical analysis in handling such situations. Probabilis­

tic models for categorical variables, however, focus on a multiplicative decomposition 

of a probability 1r. Such models capture the conditional independence structure of 

the variables under study and so-called "loglinear,, models have become a standard 

tool in this area. The basis for these models first appeared in Ray and Kastenbaum 

( 1956 ) ,  with prominent later exposition and development by Bishop, F ienberg and 

Holland ( 1975) and Agresti ( 1990) . 

From Chapter 1 ,  we see that geometry made a significant contribution to the de­

velopment of linear models. For loglinear models, cell probabilities 1r are transformed 

by a logarithm. Thus, two apparently quite distinct approaches to the underlying 

13 
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geometry exist in the literature, a description of the untransformed 1r, as described 

by Fienberg ( 1 968, 1970) and a description of the transformed log 1r, as described 

by Haberman ( 1974). Ideas, which motivate the general work in Chapter 3, will be 

established for loglinear models in this chapter. 

In the next section we set the scene for categorical data models by working through 

the simplest case, a 2 x 2 contingency table, using an Australia survey data set . In 

Section 2 .3  we turn to loglinear models and sufficient statistics, the foundations of 

the geometry of loglinear models. Section 2.4 builds a geometry for categorical data 

models by linking the Fienberg and Haberman geometries. Here we describe a new 

basis for an associated Euclidean space, motivated by the sufficient statistics of the 

saturated categorical data model,' then illustrate the partitioning of Euclidean space 

associated with any unsaturated model . We draw the two geometries together and 

describe the way in which they are linked. The chapter concludes with a summary. 

2.2 Categorical data models 

In order to illustrate the essential ideas behind categorical data models we consider 

the very simple case of a 2 x 2 contingency table. An example of such a table, together 

with the underlying model parameters, is given in Figure 2 . 1 ,  using data from a recent 

Australian survey of attitudes to genetic engineering ( orton et al . ,  1998). The total 

number of respondents was 894 which is distributed among four categories defined by 

income level and attitude. The question of interest is whether the attitude to genetic 

engineering is influenced by the income level. 

Three common distributional assumptions are made depending on the sample 
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Attitude 
For Against 

Low 258 222 1!12 
Income 

High 263 151 

(a) (b) 

Figure 2.1: In (a) is shown a cross-tabulation of income level against acceptance of 
genetic engineering, with data drawn from a recent Australia-wide survey. In (b) 
notation for the underlying cell probabilities is presented. 

scheme: cell counts are either Poisson, multinomial, or product multinomial. We 

illustrate each of these sampling schemes by reference to the Australia survey data. 

( i )  Nothing fixed by design. 

In reality, 2500 survey letters were posted out and a return date specified. After 

this date, information was recorded on income level and attitude towards genetic 

engineering from the returned surveys. The number of people who would reply 

was unknown at the start of the survey, so the observed counts in each cell are 

considered as independent Poisson random variables with means N 'Trij for all i 

and j ,  where N is the total sample size, here the number of respondents. 

(ii) Total sample size fixed. 

If it were possible to fix the total response of the 894 in advance, then 894 

observations would be distributed among the four categories with probabilities 

1rij for all i and j .  Then the appropriate distributional model is a multinornial 

distribution. 

( iii) One or more margins fixed. 
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Such a scheme would arise if we decided to  investigate attitude towards genetic 

engineering within two groups of people (Low income and High income) and 

stop the mail checking when we have received say 480 letters from the low 

income group and 414  letters from the high income group. Thus, the margin 

of Income is fixed in advance. The cells are now divided into two sets, each set 

having an independent multinomial distribution for a given margin of Income. 

Jointly the whole table follows a product multinomial distribution. 

Fortunately, the multinomial and Poisson sampling schemes have the same maxi­

mum likelihood estimates of the cell probabilities for a given categorical data model. 

These will, however, equal the maximum likelihood estimates for the product multi­

nomial only when the terms associated with the fixed margins are included in the 

model. Otherwise, there is a contradiction with the product multinomial sampling 

scheme. For example, in the Australian survey data if the margin of Attitude was 

assumed fixed, the term representing the main effect of Attitude must be included 

the model. 

The variables in categorical data models can be classified as response and ex­

planatory variables as with the traditional linear models , but they can also be all 

jointly regarded as responses, modelling the cell probabilities to reveal the relation­

ship among the variables. We will denote an observed relative frequency table as 

{Pij}, and the underlying true probability table as {nij} for i =  1 ,  2 and j = 1 ,  2 (as 

shown in Figure 2 . 1 (b) ) .  In the Australian survey data we have two response vari­

ables, Income (denoted X1 ) and Attitude (denoted X2). Our interest is in whether 

xl and x2 are independent , written xl Jl x2, i . e .  in the dependence structure of 

the joint distribution n = [n1 1, n12, n21, n22]T. Four multiplicative decompositions of 



1r now are discussed. 

1. Constant model 

1rij = t-t for all i, j 

17  

This model indicates that all cells in the table have the same probability Jk, so for 

any 2 x 2 table we have an ML estimate P, = 0.25 as shown in Figure 2 . 2  (Note that 

an ML estimator of a parameter is denoted by adding a '1\' sign over the associated 

parameter . )  It is clear that the variables X1 and X2 have no effects here. Since the 

model includes the constant term only, it is written symbolically as ( 1 ) .  

0.2500 0.2500 

0.2500 0.2500 

Figure 2 .2 :  This table shows the constant model for a 2 x 2 table. 

2. One-way model 

for all i, j 

where e;l represents the xl effect at level i with constraint ni e;l = 1 to  achieve 

identifiability. 

This model indicates that cell probabilities in the table are the same within each 

row but may vary between rows. A fitted table for the Australia survey data is shown 

in Figure 2.3 ( 1 )  with estimates P, = 0.2493, fJ{1 = 1 . 0768, and e;1 = 0 .9287. Since 

the model includes the constant term and the X 1 effect term, it is represented by the 
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model symbol ( 1 ,  X1 ) . 
Alternatively, we could have 

for all i ,  j 

where Bf2 represents the X2 effect at level j with constraint Ilj Bf2 = 1 .  

This model indicates that cell probabilities in  the table are the same within each 

column but may vary between columns. A fitted table for the Australia survey data is 

shown in Figure 2.3 (2)  with estimates it =  0. 2466, e?2 = 1 . 1819 ,  and e:z = 0.8461 ,  

where Bf2 represents the X2 effect at level j .  Since the model includes the constant 

term and X2 effect term, it is represented by the model symbol ( 1 ,  X2 ) . 

0.2685 0.2685 0.2914 0.2086 

0.2315 0.2315 0.2914 0.2086 

(1) (2) 
Figure 2 . 3: In the case of 2 x 2 table , ( 1 )  shows a fitted table with X1 effects and 
(2 )  a fitted table with X2 effects for the Australia survey data employing a one-way 
model. 

3. Two-way model 

for all i, j 

where 0{1 and e? represent the ith level of X1 and jth level of X2 effects respectively 

with constraints Ili e;l = Ilj Bf2 = 1 .  
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This model indicates that the cross-product ratio of the cell probabilities (the 

odds ratio) equals one in the table , the model where X1 lL X2 . A fitted table for 

the Australia survey data is shown in Figure 2 .4  with estimates {1 = 0.2459 ,  B�1 = 

1 .0768, e:1 = 0 .9287, fj�z = 1 . 1818 ,  and e:z = 0.8461 .  Since the model includes the 

constant , X1 and X2 effect terms, it is represented by the model symbol ( 1 ,  X1, X2) .  

0.3129 0.2240 

0.2699 0.1932 

Figure 2 .4 :  This figure shows a fitted table for the Australia survey data using a 
two-way model. 

4. Saturated model 

for all i, j 

where o;l and Of2 represent the xl and x2 effects respectively, while ot1
x
2 models 

the dependence between X1 and X2. The model has constraints Ili Of1 = Ili Of2 = 1 ,  

Ili 0D1X2 = 1 for j fixed, and Ilj 0D1X2 = 1 for i fixed. 

This model is sufficiently rich that each cell probability in the table is the same 

as the observed relative frequency. For the Australia survey data, the associated 
Ax Ax Ax Ax estimates are jl = 0.2443, 01 1 = 1 .0959, 02 1 = 0 .9125, 01 2 = 1 . 1 928, 02 2 = 

0 .8384, B�1x2 = B!J]X2 = 0 .9038,  and e?.lx2 = e�JXz = 1 . 1064. Since the model 
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model G2 df 
Constant 38.26 3 0.000 
(1 ,  X1 ) 33.38 2 0.000 
( 1 ,  X2) 13.65 2 0 .001 
(1 ,  x1 , X2) 8 .77 1 0.003 
Saturated 0 0 

Table 2 . 1 :  Goodness-of-fit tests for categorical data models relating to the Australia 
survey data. 

includes the constant term, the xl and x2 effect terms and interaction effect be-

tween X1 and X2 , it is represented by the model symbol (1 ,  X1 , X2 , X1X2 ) .  

To test goodness of fit of the above models, for the Australia survey data, the 

likelihood-ratio statistic G2 and p-value are shown in Table 2 . 1 .  For two-way tables, 

the likelihood-ratio statistic is calculated by 

G2 = 2 L L Pij log ( ��J ) 
i j y 

where {Pij }  is the observed table and { irij } the associated fitted table for a given 

model. When the model is suitable, G2 has large-sample chi-squared distribution 

with degrees of freedom equalling the difference between the number of cells and the 

number of parameters in the model. For given degree of freedom, larger G2 values 

indicate smaller right-tail probabilities (p-values) , and represent poorer fits. Table 

2 . 1  indicates that none of the unsaturated models fit the data well, hence the attitude 

towards genetic engineering is not independent of the level of income. 

We can summarize the dependence in the table using an odds ratio. For the low 

income group, the odds of attitude "For" are 1 . 16 which means there were 1 16 "For" 

responses for every 100 "Against" response. For the high income group, the odds of 

attitude "For" are 1 .  7 4 which means there were 1 7  4 "For" responses for every 100 
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"Against" response. Hence the table's odds ratio i s  0 .667 which indicates that the 

odds for the attitude "For" towards genetic engineering in the low income group is 

0 .667 times the odds in the high group. 

In general , suppose an m-way observed relative frequency table {pi} where i = 

( i1 , i2 , . . .  , im ) has true probability table { 1ri }  with categorical variables X1 , X2 , . . .  , Xm , 

which have n1 , n2 , . . .  , nm levels indexed respectively by i1 , i2 , . . .  , im . Then in the 

saturated model the joint probability distribution of the table has a multiplicative 

decomposition as 

1fi = IT e� 
A<;;;T 

Here the product is over all possible subsets A of T =  {X1 , X2 , . . •  , Xm } ,  ()� represents 

the interaction effect among variables in A and depends on i only through i A where 

iA is the corresponding sub m-tuple of i for A. Note that et = f-t when A = 0. To 

achieve identifiability the model is constrained by requiring that the product of the 

parameter (}� for any index in iA equals one. Thus, for categorical data models , we 

have a multiplicative decomposition of a probability 1fi . Traditional linear models , 

however, are based on an additive decomposition of the observation mean. By using 

a log-transformation a familiar additive decomposition is constructed for log 1fi· This 

leads to the loglinear model , a standard tool for dealing with categorical data. 

2 .3 Loglinear models and sufficient statistics 

In this section, we will discuss the form of loglinear models, and sufficient statistics 

for parameters in a loglinear model. These provide the foundations on which we 

construct the geometry of loglinear models . 
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After log-transformation, the saturated model for categorical variables X1 ,  X2, 

. . .  , Xm with cell index i = (i1 , i2 , . . .  , im) has form 

log1ri = L >-t 
A<;;;S 

( 2 . 1 )  

where ).A = log ()A i s  the interaction effect among variables in A and depends on tA tA 

i only through iA , the sub-tuple of i corresponding to A. Conventionally we write 

>.� = JL when A = 0. To achieve identifiability the model has the constraints that 

the sum of the parameter>.� for any index in iA equals zero. Here we call form (2.1 ) 

the symbolic form of a loglinear model. 

For example, the saturated loglinear model for a 2 x 2 table has symbolic form 

fori fixed. We still denote this model using the model symbol ( 1 ,  X1 , X2 , X1X2) .  

However, considering those constraints the loglinear model has an alternative ex-

pression 

log 1r1 1  1 1 1 1 fL 
log 1r12 1 1 - 1 - 1 ,\X1 1 

(2 .2 )  -

log 1r21 1 -1 1 - 1 AXz 1 

log 1r22 1 -1 -1 1 >,XrXz 1 1  

Note that columns of the matrix in the model are contrasts in a 2 x 2 factorial design. 

These contrasts correspond to the effects in the model symbol ( 1 ,  X1 , X2 , X1X2) 

respectively. 

In general, if we let the table {1ri} where i = (i 1 , i2 , . . . , im )  have vector form 

1r = [1r1 , 1r2, ... , 7rn]T where n = n1n2 . . .  nm , then under the constraints that the sum 
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of the parameters for any index associated with the variables in iA equals zero, the 

saturated loglinear model (2.1 ) has form 

log1r = X/3 ( 2 . 3) 

where X is the design matrix with size n x n containing the constraints constructed 

using the full factorial design involving variables X1, X2, ... , Xm, and f3 is a column 

vector of parameters of size n. Hence, loglinear models have an analogous form to 

linear models, but parameters in f3 are not totally free as they are in linear models, 

since the parameters are constrained by 2::::: 7fi = 1. The form (2 .3) is called the matrix 

form of a loglinear model. 

The discussion above is about saturated loglinear models, but results are easy to 

apply to unsaturated loglinear models by eliminating some terms (or columns of the 

design matrix) in the saturated model. The design matrix X then has size n x q 

( q < n) where q is the size of the parameter vector f3. For instance, the independence 

model of a 2 x 2 table with variables X1 and X2 requires the absence of the interaction 

between X1 and X2, so the model has symbolic form 

with constraints Li >.-;1 = L::j >.f2 = 0 ,  denoted by a model symbol ( 1 ,  X1, X2). 

Correspondingly, the model also has matrix form 

log 7f11 

log 1r12 

log 7rzl 

log 7rzz 

1 1 1 

1 1 - 1 

1 - 1 1 

1 - 1 - 1 

(2 . 4) 
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Sufficient statistics 

A sufficient statistic for a parameter e is a statistic that contains all the informa-

tion about e in the sample. Thus any inference about e depends on the sample only 

through the sufficient statistic. The sufficient statistic provides a form of data reduc-

tion or data summary for the parameter e. A sufficient statistic is formally defined 

as follows. 

Definition 2 . 3 .1. A statistic T(X) is a sufficient statistic for 0 if the conditional 

distribution of the sample X given the value of T(X) does not depend on e. 

For example, if a population follows a normal distribution with known variance, 

then the sample mean is a sufficient statistic for the population mean. Note that a 

sufficient statistic for a parameter may not be unique; any one-to-one function of a 

sufficient statistic is also a sufficient statistic. 

A loglinear model can be represented in symbolic form or matrix form. Corre-

spondingly, we have two ways to find sufficient statistics for parameters in the model. 

When a loglinear model is represented in the symbolic form, Bishop , Fienberg and 

Holland (1995) showed that for the Poisson or multinomial sampling scheme , suffi-

cient statistics for the parameter ,\ are simply the marginal tables corresponding to 

the terms in the model symbol. 

Recall that for a 2 x 2 observed relative frequency table {PiJ} ,  the saturated model 

has model symbol (1,X1,X2,X1X2), so we have sufficient statistics {Pi+} {P+j} and 

{PiJ} (where denotes the summation over the associated index) for parameters 

,\x1 .:\x2 and .:\JC1x2 respectively. Thus there is no reduction of the data for t ' J t] 

saturated model. 
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For the independence model with the model symbol (1, X1, X2) ,  the marginal 

tables {Pi+} and {P+j } are sufficient statistics for parameters >.."f1, and >..f2 respec­

tively. 

When a loglinear model is represented in the matrix form (2 . 3) , Haberman (1973) 

showed that for an observed table {pi} where i = (i1 , i2 , .. . , im) with vector form 

p = [p1 , P2 , ... , PnJT where n = n1 n2 . . .  nm , we have a sufficient statistic vector xr p 

for the parameter vector /3. Since column vectors in X are factorial contrasts, the 

sufficient statistics in xr p are some marginal tables. Note that for each parameter 

in /3, the sufficient statistic is the associated component in xr p. 

From the matrix form (2 .2) , the saturated model of a 2 x 2 table has sufficient 

statistic vector 
T 

1 1 1 1 Pn 1 

1 1 -1 -1 P12 PH - P2+ 

1 -1 1 -1 P21  P+1 -P+2 

1 - 1 -1 1 P22 Pu - P12 - P21 + P22 

for parameter vector [" )..x1 )..x2 )..x1x2]T Then sufficient statistics for the parame-,.. , 1 ) 1 ) ll . 

t ,xl ,x2 d ,x1x2 d + ers A1 , A1 , an An are PH -P2+ , P+1 - P+2 , an p11 - p12 -P21 P22 respec-

tively. We know that the parameters in the model, however, have sufficient statistics 

{Pi+} {P+j} and {Pij} from the symbolic form of the model. There is no contradiction 

here, because PH - P2+ , P+l - P+2 , and Pn - P12 - P21 + Pn are one-to-one functions 

of {Pi+} {P+j} and {Pij} respectively. 

The independence model of a 2 x 2 table with matrix form (2 .4) has sufficient 



statistic vector T 
1 1 1 Pn 

1 1 -1 P12 [ Pl+ � Pz+ ] 
1 1 P21 

1 -1 -1 
P+1 P+2 

P22 

for the parameter vector [,u, >."f1, >."f2]Y. Again PH-P2+ and P+I 

functions of {Pi+} and {P+j} respectively. 
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P+2 are one-to-one 

Once a set of sufficient statistics is determined, Birch (1963) showed that the like-

lihood equations for loglinear models match sufficient statistics to their expected val­

ues. Specifically, suppose an observed table {Pi} with vector form p = (p1, P2, ... , PnY 

has a maximum likelihood estimate { ni} with vector form 7T = [7i-1, 7i-2, . .
. , nnJY for a 

loglinear model log 1f = X  /3. Then Birch's result determines that 

Note that this equation plays an important role in the geometry of loglinear models. 

It will be interpreted geometrically in the next section. 

To summarize, loglinear models provide an additive decomposition of log-transformed 

cell probabilities . A loglinear model has a symbolic form and a matrix form, and cor-

respondingly sufficient statistics for parameters in the model are determined by the 

associated model symbol or the design matrix and the observation vector. According 

to Birch's result , the sufficient statistics for parameters in a loglinear model will be 

preserved in the fitting process. 
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Since cell probabilities 1r are transformed by a logarithm for loglinear models, the 

geometry of loglinear models has been described in two distinct ways. Fienberg 

(1968, 1970) described the untransformed 1r using a simplex, while Haberman (1974) 

represented the transformed log 1r using a subset in Euclidean space. 

In Fienberg geometry (Fienberg, 1968) , all possible r x c probability tables corre­

spond to the points within an (re-1)-dimensional simplex in Rn where n =re. Then 

the loci of three types of two-way table are described by Fienberg in the simplex: 

(a) all points corresponding to tables whose rows and columns are independent, 

(b) all points corresponding to tables with a given interaction structure, 

(c) all points corresponding to a table with a fixed set of margins. 

All results are illustrated explicitly by 2 x 2 tables using a three dimensional simplex 

(a tetrahedron). For example, the model space of the saturated model of a 2 x 2 table 

is the whole tetrahedron in R 4, while the model space of the independence model is 

a portion of a hyperbolic paraboloid in the tetrahedron (see Figure 2 .5) .  

On the other hand, Haberman (1974) viewed a log-transformed probability table 

with n cells as a vector in Euclidean space Rn and the model space of a loglinear 

model as a subset in Rn. Fitting a loglinear model maps the observation vector to 

a q-dimensional (q � n) model space contained in Rn (where q is the number of 

parameters in the loglinear model). Thus the whole space Rn is partitioned into 

a q-dimensional model space and its orthogonal complement. For r x e tables, all 

possible log-transformed probability tables { log Kij} form a subset of re-dimensional 

Euclidean space. This is the model space of the saturated model. Unsaturated models 
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(0, 0, 0, 1) 

(1, 0, 0, 0) 

(0, 1, 0, 0) 

Figure 2 .5 :  For a 2 x 2 contingency table, the saturated model space is a tetrahedron 
in R4, while the model space of the independence model is a portion of a hyperbolic 
paraboloid in the tetrahedron. 

constrain { log 1rij }  to a t-dimensional linear manifold in that subset, with t < re. For 

the independence model, t = r + c - 1. 

Shortly we will relate Fienberg and Haberman geometries as we construct a ge-

ometric framework for loglinear models; here probability tables will be used in the 

discussion. The results about probability tables are easily applied to frequency tables. 

We begin with the simplest case, a 2 x 2 table, and then illustrate the general result 

using examples in a 2 x 2 x 2 table. 

2.4.1 Geometry of a 2 x 2 table 

In this section, the geometry of a 2 x 2 table is discussed for the saturated model 

and the independence model. In the saturated model, a new basis is constructed for 
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the associated Euclidean space, motivated by sufficient statistics for parameters in 

the saturated model. In the independence model, the associated Euclidean space is 

partitioned into two orthogonal parts, each part spanned by a subset of the new basis . 

The saturated model 

The saturated model of a 2 x 2 table will be presented in four stages: a new basis in 

Rn, Fienberg geometry, Haberman geometry and the link between the two geometries . 

A new basis in R n 

A 2 x 2 probability table { 1fij} with variables X1 and X2 corresponds to a point (or 

vector) in R4. Fienberg ( 1970) considered the point (or vector) 7f = [7rn , 1r12 , 1r21 ,  1r22}T 

with respect to the standard basis, so the saturated model for the untransformed j oint 

distribution can be expressed as 

7fn 1 0 0 0 

7f12 0 1 0 0 
= 7fn + 7fl2 + 7rzl + 7f22 

7f21 0 0 1 0 

7rzz 0 0 0 1 

with 1r11 + 1r12 + 7rz1 + 1r22 = 1 . This distribution can thus be thought of as a point in 

a regular tetrahedron (a 3-dimensional simplex) with vertices 

e 1 = [ 1 , 0, 0, OV, Cz = [0, 1 , 0, O]T ,  C3 = [0 , 0, 1 , O)T ,  and C4 = (0 , 0, 0 ,  1f 

the standard basis in R4. This saturated model space is shown in Figure 2 .6 .  Thus, 

a 2 x 2 observed relative frequency table {Pij} can be represented by a vector p = 

[vu , P12 , P21 ,  P22f in the tetrahedron. 
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Figure 2.6: The saturated model space for a 2 x 2 contingency table is a tetrahedron 
in R4 . Orthogonal vectors x2 , x3 and x4 form a new basis for the tetrahedron, while 
the shaded quadrilateral ABC D represents joint distributions with fixed X1 margin. 

From the last section we know that the sufficient statistics vector for the param­

eters vector (3 = [f.L , A�1 , .\�2 , .\}i1x2jT in the saturated loglinear model (2 .2 )  is the 

vector 
T 

1 1 1 1 Pn p. x1 

1 1 - 1  - 1  P12 p . X2 
-

1 - 1  1 - 1  P21 p. x3 

1 1 - 1  1 P22 p. x4 

where x1 ,  X2, x3 and x4 are the column vectors in the design matrix (see ( 2. 2) ) . 

Specifically 

Since p. xi is a sufficient statistic for the ith element of (3 for all i, then p. xdl !xi ! !  
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also i s  a sufficient statistic for the ith element of  j3 due to the one-to-one relationship 

between p. Xi and p. xd \ \xi \ 1  for all i. Thus, in Euclidean space Rn, the sufficient 

statistics for j3 in the model are the lengths (ignoring the sign) of projection of the 

observation vector p onto the directions specified by the column vectors of the design 

matrix. Furthermore, the column vectors x 1 ,  x2 ,  x3 and x4 are linearly independent , 

so {x1 , x2 , x3 , x4 } (the vectors x2 , x3 and x4 are illustrated in Figure 2 .6 )  is chosen 

as a new basis in R4 motivated by sufficient statistics. Now, projecting the vector p 

onto the new basis, we obtain a coordinate vector for p with respect to the new basis 

[� PH - P2+ P+I - P+2 Pn - P12 - P21 + P22 ] T 
4 '  4 ' 4 ' 4 

which are sufficient statistics for parameters in the saturated model. 

Finally, note that coordinates with respect to the new basis are the image of 

coordinates with respect to the standard basis in R4 under the linear transformation 
-1 

1 1 1 1 

A= 
1 1 -1 -1 

1 -1 1 -1 

1 -1 -1 1 

which is the inverse design matrix in the saturated model. 

Fienberg geometry - the saturated model 

Fienberg geometry provides a description of the geometry of an untransformed ta-

ble. We illustrate this initially using a two-way table { 1rij } with vector form 1r = 

[rr1 1 ,  1r12 , rr21 ,  1r22V· The saturated model can be expressed as an additive decomposi-

tion of the joint probability 1r with respect to the new basis 



Specifically, this is 

1 

1 1 7TH - 7rz+ -
+ 4 4 1 

1 

7rn - 1r1 2  - 7rzi + 7rzz + 
4 

1 

1 

- 1  

- 1  

1 

-1 

- 1  

1 
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1 

1T+l - 1T+2 - 1  
+ ' 

4 1 

- 1  

(2 .5) 

Parallel to  the linear model, we define the "effect" of a model term to  be the projection 

coefficient onto the associated contrast vector in the new basis . Hence the constant 

term is 114,  the projection coefficient for the equiangular vector x 1 .  The main effect 

of X1 is ( 1r1+  - 1r2+ )  I 4 ,  the projection coefficient for x2 and similarly the main effect 

of X2 is ( 1r +l - 1r +2) I 4 ,  the projection coefficient for x3 .  Finally the interaction effect 

of X1X2 is (7ru - 1T1 2 - 1T21 + 1Tzz )l4 ,  the projection coefficient for X4 . 

With respect to the new basis, the entire tetrahedron lies in the hyperplane whose 

value along x1 is 1 14. Evidently all tables with a given X1 margin will lie in a 

hyperplane orthogonal to x2 , while all tables with a given X2 margin will lie in a 

hyperplane orthogonal to  x3 , since the coordinates of x2 and x3 are 

(1r+1 - n+2 )14 respectively. A slice ABCD of the first type is illustrated in Figure 

2 .6. 

Haberman geometry - the saturated model 

Haberman geometry provides a description of the geometry of a log-transformed ta­

ble. We illustrate this initially using a two-way table {log 1t"ij} with vector form 
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log 1r = [ log 7fn, log 7f12, log 7f21 , log 7f22]T. Expressed with respect to the new basis 

{ x1 , x2, x3 , x4}, the saturated model for log 7f is 

In vector form this becomes 

log 7fn 
log 1r12 
log 1r21 
log 1r22 

1 4 log( 7r117f121f211l'22) 

1 1 (1fn1f21 ) +- og 4 
7fl21l'22 

1 
1 
1 
1 

1 
- 1  

1 

- 1 

1 1 (ll 7fl2 ) + - og 4 
7f211l'22 

1 1 ( 1ru1r22 ) + - og --
4 7f217fl2 

1 
1 

- 1  
- 1 

1 
- 1  
- 1  

(2 .6) 

1 

Again, a log-transformed 2 x 2 observed relative frequency table {logpij} can 

be represented by a vector log p = [ log Pn, log p12, log P21 , log p22]T in the extended 

tetrahedron with vertices lying at infinity (discussed in the next section). Then the 

coordinate vector of log p with respect to the new basis is 

[ 1 1 
(PnP12 ) 

1 
(PnP21 ) 

1 
(PnP22 ) J T 

-4 
log(PnP12P21Pn ), -4 log -- , -4 log -- , -4 log --

P21P22 P12P22 P21P12 

The link between the two geometries - the saturated model 

In order to link the Fienberg and Haberman geometries, it is necessary to study them 

with respect to the same basis. Here, we consider the two geometries with respect 

to the standard basis. In Fienberg geometry, the saturated model space for a 2 x 2 

probability table is a tetrahedron with vertices 

e1 = [1 , 0, 0, O]T, e2 = [0, 1 , 0, Of, e3 = [0, 0, 1 , Of, e4 = [0, 0, 0, 1]T 
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The componentwise logarithm transformation maps the tetrahedron into an extended 

tetrahedron with vertices 

e1 = [0 ,  -oo, -oo, -oo]r , e2 = [-oo, 0, -oo, -oo]T 

C3 = [- oo ,  - oo ,  0 ,  - oo]T , e4 = (- oo ,  - 00 ,  - oo ,  Of 

in the negative orthant in extended R4. The extended tetrahedron is the saturated 

model space for a 2 x 2 probability table in Haberman geometry. Hence, with respect 

to the standard basis , for the saturated model of a 2 x 2 table, the regular tetrahedron 

of Fienberg geometry is mapped to the extended tetrahedron of Haberman geometry, 

with vertices at the limits of diagonals on the planar faces of the negative orthants, 

as indicated schematically in Figure 2.7. 

The independence model 

Now we follow the same pattern as used in the discussion of the saturated model to 

display the geometry of the independence model for a 2 x 2 probability table { 1fij }  

with variables X1 and X2 . Here the whole space R4 will be partitioned into two parts 

to reveal geometric properties. 

Fienberg geometry - the independence model 

In Fienberg geometry, imposition of independence of X1 and X2 will restrict 1r to a 

subset of the tetrahedron. Independence does not constrain the one-way margins, so 

on the new basis the coordinates of x1 , x2 and x3 will not alter. Since 7rij must now 

equal 1fi+7r+j for all i and j ,  in (2 .5) the coefficient (1r1 1 - 1r12 - 1r21 + 7r22) /4 of x4 can 

be checked to be (1r1+ - 1r2+ ) (1r+1 - 7r+2) /4 ,  so the independence model space is the 
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untransformed 

{1 , 0, 0, 0) 

{0, 0, 0, 1 )  
(0, 1 ,  0, 0) 

(0, 0,  1 ,  0) 

Figure 2 .  7: The saturated model space for a 2 x 2 contingency table is a tetrahedron 
with vertices the standard basis in R4, while after log-transformation the saturated 
model becomes an extended tetrahedron in the negative orthant in extended R4. 
subset of the tetrahedron with points having form 

nu 

1fl2 

1f21 

1f22 

1 1 

1 1 1fl + - 1f2+ 1 
- + 4 4 1 - 1  

1 - 1 

(nl+ - 1r2+ ) (1r+1 - 7r+2 ) + 
4 

1 

1f+l - 1f+2 -1 
+ 

4 1 

- 1 

1 

-1  

-1 
(2 .7) 

1 
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This is shaded in Figure 2.8 , a portion of a hyperbolic paraboloid in the tetrahedron, 

which we informally term the "butterfly" . 

Figure 2 .8 :  The Fienberg independence model space (double-ruled) for a 2 x 2 con­
tingency table is a two-dimensional surface in the tetrahedral saturated model space. 

Hence for an observed table {Pij } (corresponding to a vector p on the tetrahe­

dron) the maximum likelihood fitted table { ?Tij } (corresponding to a vector 7T on the 

butterfly) for the model xl ll x2 has coordinate vector 

[� ?fl+ - ?f2+ ?f+l - ?f+2 (?fl+ - ?f2+) (7f+l - ?f+2) ]T 
4 '  4 ' 4 ' 4 

with respect to the new basis {x1 , x2 x3, x4 } .  

Recall that maximum likelihood model fitting, with either the Poisson or multino­

mial distributional assumption, preserves the ufficient statistics for the model (Birch 

1963). Thus we have 

for i = 1 ,  2 



Now the coordinate vector of it with respect to the new basis becomes 

[� PH - P2+ P+l - P+2 (PH - P2+) (P+I - P+2) ] T 
4 '  4 ' 4 ' 4 

Recall that the vector p with respect to the new basis has coordinate vector 

[� PH - P2+ P+l - P+2 Pn - P12 - P21 + P22 ] T 
4 '  4 ' 4 ' 4 
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Hence the coordinates of x1 , x2 and x3 are the same for vectors it and p, and these 

coordinates are sufficient statistics for parameters in the model X1 Jl X2. This 

property will be central in later chapters. 

Haberman geometry - the independence model 

In Haberman geometry, under the independence assumption 'Trij = ni+ 1r +j for all i 

and j ,  from (2.6) , the coordinates of log 7r with respect to the new basis can be shown 

to be 

0 



Thus after the log-transformation the independence model space becomes 

log 7ru 
log 1r12 1 = 2 log (7rH7r2+7r+I7r+2) 
log 1r21 
log 1r22 

1 
1 
1 
1 

1 ( 7rl+ ) +- log -
2 7r2+ 

1 
1 

- 1 
- 1  

1 ( 7r+l ) +- log -
2 7r+2 
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1 
- 1  

1 
- 1  

This independence surface is pictured schematically in Figure 2 .9 ,  and is informally 

termed the "jellyfish" . It is a locally two-dimensional surface in the hyperplane or­

thogonal to x4, but is necessarily pictured here in R3 . 

. . . . . . . . . . (0 , - oo, - oo, - oo) 

(- CXJ, Q , - oo , - oo} 
, , ' ' 

� 
� 

� 
� 

� 
� 

� 
� 

� 
� 

� 

(- oo, - oo, - oo, 0) 

1' ,  I ' 
I ' ... I ' � 

' ,  'i(x1 ' ... ' ' 
., I 

� ' X  X I ' ,2 31 ' ' I 
" 

(- oo - oo 0 - oo) ' ' ' 

Figure 2 .9 :  A schematic representation of the Haberman view of the independence 
model space. It lies entirely in a 3-dimensional subspace in the negative orthant of 
R4 and has its apex at (log i ,  log � � log i ,  log � ) with respect to the standard basis. 

Consider a log-transformed observation table {log pij } (corresponding to a vector 

log p in the extended tetrahedron) and the maximum likelihood fitted table { log Kij } 

(corresponding to a vector log -fi" on the jellyfish) for the model X1 lL X2. After 
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applying Birch ' s  results these two points have coordinate vectors with respect to the 

new basis of 

log p : 

log ir : 

[ 1 1 (PllP12 ) 1 (PllP2l ) 1 (PllP22 ) ] T 
-2

log (pnP12P21P22 ) , -2
log -- , -2

log -- , -2
log --

P2IP22 P12P22 P21P12 

[ log (PHP2+P+IP+2 ) , log (Pl+ ) , log (P+I ) , 0 ] T 
P2+ P+2 

We find that the coordinates relative to x1 , x2 and x3 are not preserved in the fitting 

process , but for log ir the coordinate relative to x4 is zeroed. This property also will 

be central in late r  chapters. 

The link between the two geometries the independence model 

To combine the two geometries , for the unsaturated model X1 Jl X2 with model 

symbol (1 , X1 , X2 ) , we split the new basis into two parts, one including elements 

corresponding t o  columns of the design matrix (i .e. {x1 , x2 , x3} ) , the other being 

the remaining element {x4 } . Then the whole space R4 can be partitioned into two 

subspaces as 

where s = span{ X} , X2 , xs } and A =  s..l span{x4 } · 

In Fienberg geometry, the coordinates of the observation p with respect to the basis 

of subspace S are sufficient statistics and will be preserved the fitting process, while 

in Haberman geometry the coordinate of the fitted vector log ir with respect to the 

basis of subspace A is zeroed in the fitting process. Thus we call S the "sufficiency 

space" and A the "auxiliary space" . Furthermore, in Fienberg geometry, the model 

space of xl X2 , the "butterfly" , straddles sufficiency space and auxiliary space. 

In Haberman geometry, the model space of X1 Jl X2 , "jellyfish" , lies entirely 

the sufficiency space. 
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With respect to the standard basis, for the unsaturated model xl Jl x2 of a 2 X 2 

table, the "butterfly" in Fienberg geometry is mapped to the "jellyfish" in Haberman 

geometry using the logarithmic link function. ote that the componentwise logarithm 

transformation is applied with respect to the standard basis. Figure 2 . 10 links the 

two geometric approaches schematically. The independence model space for Fienberg 

geometry is in the bounded tetrahedron, while for Haberman geometry it is in the 

negative orthant. We move from one to the other via the logarithmic link function. 

Fienberg 

Haberman 

Figure 2 . 10 :  The Fienberg and Haberman geometries for the independence model, 
the former in the bounded tetrahedron and the latter in the negative orthant. We 
move from one to the other via the logarithmic link function. 
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2 .4.2 The general case 

In general, we consider the geometry of an m-way table {1ri }  where i = (i1 , i2 , . . . , im) 

with categorical variables XI , x2 , . . .  1 Xm 1 which have nl , n2 , . . .  ' nm levels indexed by 

i 1 ,  i2 , . . . , im respectively. We denote the j oint probability mass function by a column 

vector 1r = [1r1 , 1r2 ,  . . .  , 7rnJT where n n1n2 . . .  nm. As with the geometry of the 2 x 2 

table , we first construct the new basis in R n motivated by the sufficient statistics 

for parameters in the saturated model. Then we discuss Fienberg and Haberman 

geometries for an saturated model and the unsaturated model respectively. Finally, 

the relationship between the two geometries is summarized in a commutative diagram, 

the core of this chapter. 

Sufficient statistics and the new basis 

For an observed relative frequency table {pi } with vector form p = [p1 , P2 , . . . 1 PnJT ,  

the sufficient statistics vector for the parameters vector in  the saturated model log 1r = 

X{3 is obtained by projecting p onto the column vectors of X. Specifically, the 

sufficient statistics vector is 

XTp = 

p . Xn 

where X is the design matrix of size n x n ,  and x1 , x2 , . . •  , Xn are the column vectors 

of the design matrix. Hence , if we denote the parameter vector (] as [/31 1 (32 , . . .  1 fJnV,  

a sufficient stat istic for Pi i s  p .  X i  and thus also p .  xd 1 1 ,  the length of projection 

of p onto Xi for i = 11 2, . . .  , n. Motivated by sufficient statistics and the linear 

independence of x1 ,  x2 , . . .  1 Xn , we select {x1 , x2 , . . .  , xn } as a new basis Rn. 
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The saturated model 

With respect to the standard basis, Fienberg (1968) pointed out that all possible j oint 

probability mass functions, denoted by a column vectors 11 = [111 , 112 , . . . , 11n ]T where 

n = n 1 n2 . . .  nm , can be represented by points within the (n - 1)-dimensional simplex 
n 

Sn-1 = { (pl , P2 ,  . . .  , pn )  I LPi = 1 and Pi ?: 0 for all i}  <;;; Rn 
i=l 

In Haberman geometry, however, all possible log-transformed joint probability mass 

functions {log 11i} ,  with vector form log 11, can be represented by points within an 

extended simplex 
n 

{ (logp1 , logp2 , . . . , log pn) / L Pi = 1 and Pi ?: 0 for all i }  
i=l 

Thus, on the standard basis , the saturated model spaces for the two geometries are 

linked by the componentwise logarithm transformation. 

With respect to the new basis { x1 , x2 , . . .  , Xn} ,  in Fienberg geometry, 11 is decom-

posed as 

while Haberman geometry, log 11 is decomposed as 

log 11. Xn 
+ . . .  + ---"--;::-

l l xn 

(2.8) 

(2 .9) 

Thus in the saturated model, for the two geometries , relationship between eo-

ordinates with respect to the new basis is clearly shown in Expressions (2.8) and 

(2 .9) . 
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The unsaturated model 

For an unsaturated model log 11 = X j3 where X is the design matrix of size n x q 

(q < n) and j3 the parameter vector of size q x 1 .  Note that the column vectors in the 

design matrix for the unsaturated model are just a subset of the column vectors in 

the design matrix for the saturated model. Now the whole space Rn can be divided 

into a sufficiency space and an auxiliary space, specifically 

where s = span{xl , x2 , . . .  , xq } and A =  s_j_ = span{xq+l , Xq+2 ,  . . .  , xn } · Here 

the new basis { x1 , x2 , . . .  , xn} is partitioned into the basis of the sufficiency space 

{ x1 , x2 , . . .  , Xq} ,  the column vectors in the design matrix, and the basis of the auxiliary 

space { Xq+l , Xq+2 ,  . . .  , Xn} ,  the remaining elements .  

Now we denote an observed table and its maximum likelihood fit , under the un­

saturated model, by column vectors p and ir respectively. In Fienberg geometry, 

according t o  Birch's ( 1963)  results, we have 

xT P = xT ir (2 . 10)  

Geometrically, (2. 10) indicates that the observation p and its fitted vector ir have the 

same projection onto the basis of the sufficiency space , and these projections are the 

elements of sufficient stat istics vector for 

is the estimated vector of then we have 

In Haberman geometry, suppose that � 

log ir = X/3 = t3lx1 + �2x2 . . . + bqxq 

Thus, log ir is a linear combination of 

log ir E S, so 

of t he sufficiency 

0 

in other words , 

( 2 . 1 1 )  
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where i = q + 1 ,  q + 2 ,  . . .  , n. Geometrically, ( 2 . 1 1) indicates that the fitted vector 

log 1!- has zero projection onto the auxiliary space. 

In summary, we have two critical properties: 

1. In Fienberg geometry, the observation vector p and its fitted vector 1!- have the 

same projection onto the sufficiency space , and this projection is sufficient for 

parameters in the modeL 

2 .  Haberman geometry, the fitted vector log 7f has zero projection onto the auxil­

iary space. 

The relationship between the two geometries 

From the above discussion, we find that the model space in Haberman geometry 

is the image of the model space in Fienberg geometry under the transformation of 

R n which takes the logarithm of each coordinate with respect to the standard basis. 

Denoting the table with n cells and its log-transformation by column vectors 1r and 

log 1r respectively, the coordinate vector xF of  1r with respect to the new basis 

Fienberg geometry is related to coordinate vector xH of log 1r respect to 

the same new basis in Haberman geometry as shown in the following commutative 

diagram: 

A 

log 

A 
log J'C ------
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where A maps coordinates with respect to the standard basis to  coordinates with 

respect to the new basis. 

When this commutative diagram is viewed vertically, the relationship between the 

two geometries is represented: the left side is with respect to the standard basis and 

the right side is with respect to the new basis. However, when viewed horizontally, 

the linkage between the two bases is revealed: the upper part is in Fienberg geometry 

and the lower part is Haberman geometry. 

For linear models , where the link function is the identity, the two geometries 

coalesce. This leads to fitting which combines the best of both worlds: the sufficient 

statistics preservation in the sufficiency space of Fienberg and the auxiliary space 

coefficient zeroing of Haberrnan. In Chapter 3 we will extend these ideas to generalized 

linear models, where in the commutative diagram the log link is replaced by the 

appropriate link function and A is determined by the design matrix. 

2.4.3 Some examples 

To illustrate the geometry of loglinear models, we study a three-way probability table 

{ 7Tijk} with binary variables X1 , X2 and X3 . The associated j oint probability can 

by a point (or vector) 7T = , 7Tn2 , 7Tl21 , 7T122 , 7T2n , 7T2l2 , 7T221 J 7T222JT 

within a ?-dimensional simplex S7 R8. The geometry can be discussed with respect 

to the standard basis and a new As with the geometry of a 2 x 2 table , a new 

basis { x1 , x2 , . . .  , x8 } should be constructed in R8 using the column vectors of the 

design matrix in the saturated model. design matrix is formed from the full 
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factorial contrasts involving three binary variables X1 , X2 , X3 , namely 

1 x1 x2 X1X2 x3 X1X3 X2X3 X1X2X3 

1 1 1 1 1 1 1 1 

1 1 1 1 - 1  - 1  - 1  - 1  

1 1 - 1  - 1  1 1 - 1  - 1  

1 1 - 1  1 - 1  1 1 1 
X =  ( 2 . 1 2) 

1 -1  1 1 1 - 1  1 - 1  

1 - 1  1 - 1  1 1 - 1  1 

1 -1  1 1 1 1 - 1  1 

1 - 1  - 1  1 - 1  1 1 1 

XI x2 X3 x4 Xs X6 X7 xs 

where the annotations x8 and X1X2X3 , for example, indicate that the corresponding 

column vector of X is element x8 in the new basis and the associated contrast of the 

t hree way interaction of X1 , X2 and X3 . 

The saturated model 

For the saturated model respect to the new basis , in Fienberg geometry, the 

vector 71 can be as the sum of projections onto the new basis elements 

71 = 

where 

71 . x1 1 
-

1 1 2 8 
71 . x2 

8 
71 . X3 - 71+2+ 

-1 1 2 8 
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K. Xs - 7r++2 
l l xs \ \ 2 8 
Jr . X6 
\ \x6 1 \

2 8 

8 
Kn1 - Kn2 - 1r121 + 1r122 1r2 1 1  + K212 + 1r221 - 1r222 

8 
(2.13) 

For an observed relative frequency table {PiJk} with a corresponding vector p on the 

simplex 87 in R8, we replace 1r by p (2.13). It is then clear that the coordinates 

of the vector p with respect t o  the new basis are sufficient statistics for parameters 

in the saturated model, namely the marginal tables {Pi++}, {P+J+} ,  {PiJ+ }, {P++k}, 

In Haberman geometry (after log-transformation) , on the standard basis the log­

transformed j oint probability mass function 

corresponds to a point on an extended simplex S7 in the negative orthant in R8 . The 

vector log 1r , however, can also be projected onto the new basis { x1 , x2 , . . . , x8} as 

where 

l 
log 1r. x1 OU 1f = --� 0 

l l x i i i 

1 s log (7rn1 7rl 127fl217rl227r2 1 1 1f2127r2217r222) 

1 

K2n 1f2121f221 7r222 ) 
- - loo-8 0 

log Jr. x3 1 1f l l l 7f l 12 7r 211 7r 212 - loo-
1 1 2 8 0 7rl217r 1 22 7r 2217r222 



log 1r. x4 
! lx4 

log 1r. x5 
l l x5 1 / 2 

log 1r. x6 
l lx6 1 1 2 

log 1r. x7 
J Jx7 

log 1r. x8 
l l xs l l 2 

The unsaturated model 
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(2 . 14) 

For a given unsaturated model ,  the whole space R8 can be partitioned into a suffi-

ciency space and an auxiliary space. The elements of the new basis corresponding 

to column vectors of the design matrix in the model span the sufficiency space, and 

the remaining elements in the new basis span the auxiliary space. Here we demon-

strate the geometry for the conditional independence model xl Jj_ x2 I X3, and then 

summarize the geometry for other commonly used models. 

the 

tables of the observation table {Pijd·  Cell probabilities of the model can be repre-

sented terms of { 1ri+k} and { 1r +jd as 

noting that 1r ++k = Li 1ri+k = Lj 

for all i ,  J ,  k 

associated with columns vector of the 

whole model space can 

(2 . 1 5 )  

in new 

partitioned as 
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where S = span { x1 , x 2 ,  x3 , x 5 ,  x6 , x7 } and A = Sj_ = span{ x4,  xs } . 

In Fienberg geometry, referring to  an observed table {Pijk} (corresponding to a 

vector p) and its maximum likelihood fitted table { Kijk } (corresponding to a vector 

1f) for the model, the coordinates of p with respect to the new basis can be obtained 

by substituting p for 11 (2 . 13 ) .  Similarly, the coordinates of 1f with respect to the new 

basis can be obtained by substituting ir for 1r in (2 . 13 ) , using probability relationship 

(2 . 15 ) .  The results are shown in the following table. 

p 
1 
8 

After applying Birch's results we 

Now we find that the coordinates of if are 

1 
8 

Pi+k = 1fi+k , and P+jk = ir +jk 

same as coordinates o f  p with 

these coordinates are 

the sufficient statistics for parameters in the model. 

Similarly, Haberman geometry, for the model , the log-transformed 

table {log Pijk } fitted table {log Kijk} (represented by 



log p  

2� log (Pn1P112P121P122P2nP212P221P222) xl 

21 log l21 1 121 1 2l21212122 X2 P211P2 12P221P222 

2� log l21112112l22ll22 1 2  X3 
P121Pl22P221P222 

21 log !21 1 12112!22212222 x4 
P121Pl22P211P212 

2� log Pll12121l22ll2221 Xs P1 12P122P2 12P222 

21 log l211 1[2121l2212l2222 X6 Pll2Pl22P2 11 P221  

2� log !21 1 12122[22 1 1[2222 X7 
P l 12P12 1 P212P221 

2� log El 1 12Izzt:zizezzJ Xs Pll2P121P2 l l P222 

log 7f 
Pl + l P+ llPl+2P+I2P2+lP+2lP2+2P+22 

P++lp++2 

_L loo �PH'"'+' � y0 ° P2+1P2+2 
locr P+nP+Iz 

0 P+21P+22 

0 
_L }OCY ( P�+z(PI+1P+l lP2+1P+21) ) 
v0 D P++l (PH2P+12P2+2P+22) 

lo• �P•+'P'+' � 
0 P2+ 1P1+2 

locr P+ I IP+zz 
0 P+IZP+21 

0 
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Now we find that the coordinates of log 1T with respect to  the basis of the auxiliary 

space {x4 , x8 } are zeros. 

Properties of the coordinates of the fitted vector for certain models, in the two 

geometries , are summarized in Table 2 . 2 .  

To interpret the results in  Table 1 ,  consider the model X1 

as (X1X3 ,  X2X3 ) in Agresti ( 1990) .  In the Fienberg geometry the fitted vector will 

have the same coordinates as the data vector with respect to the sufficiency basis 

{x1 , x2 , x3 , x5 , x6 , x7 } ,  while in the Haberman geometry the fitted vector will zero the 

coordinates with to the basis of auxiliary space {x4 ,  x8 } ,  as shown in Table 

2 . 2 .  

2 . 5  Conclusion 

We have described two geometric approaches to categorical data models (Fienberg 

and Haberman geometries) from case to the general case. with the 

geometry of linear models the whole space can be split into a sufficiency 
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Model x1 X2 X3 x4 Xs x6 X7 Xg 
Saturated F (cl C2 C3 c4 cs C6 c7 cs) 

(XrX2 , X1X3 , X2X3) F (er C2 C3 c4 C5 C6 C7 * ) 
H (* * * * * * * 0) 

(XrX3 , X2X3) F (er C2 C3 * cs c6 C7 *) 
or x1 li x2 I x3 H (* * * 0 * * * 0 )  

(X1 , X2X3 ) F (cl c2 C3 * cs * C7 * ) 
or x1 (X2 , X3) H (* * * 0 * 0 * 0) 

(X1 ,  X2 , X3 ) F (cl c2 C3 * cs * * *) 
or xl x2 Ji x3 H (* * * 0 * 0 0 0 )  

Table 2 .2 :  The coordinates o f  the fitted vector for five commonly seen models for 
variables X1 , X2 and X3 in each of the two geometries. Here ci (i = 1 ,  2 ,  . . .  , 8 )  
are the coordinates o f  the new basis in Fienberg geometry, "F" refers t o  Fienberg 
geometry, "H" refers to Haberman geometry, and an asterisk denotes a coordinate 
which cannot be obtained from the given data and model immediately. The sufficient 
statistics are in each case the marginal distributions of the terms occurring in the 
Agresti model symbol. We find that the fitting preserves the coordinates on the basis 
of the sufficiency space in Fienberg geometry, while zeroes the coordinates on the 
basis of the auxiliary space in Haberman geometry. 

an auxiliary space through a change of basis which is determined by the sufficient 

statistics. In Fienberg geometry the coordinates of the for the sufficiency space 

are preserved during maximum likelihood model fitting, while in Haberman geometry 

the coordinates of the basis for auxiliary space are zeroed. The relationship 

between two geometries is summarized by a commutative diagram. 



Chapter 3 

The geometry of G LMs 

3 . 1  Introduction 

Generalized linear models were introduced by Nelder and Wedderburn in 1972 and 

became popular gradually during the 1 980s. The response variable in a generalized 

linear model is allowed to follow a distribution from an exponential family, rather than 

specifically the normal distribution, as in a linear model. Furthermore, the mean 

of the response variable is linearly related to explanatory variables through a link 

function. The linear model and loglinear model are special cases of the generalized 

linear model with an identity link a log link respectively. In Chapter 1 

geometry of models was discussed from Fisher 's point view, while in Chapter 2 

the geometry of loglinear models was revealed by combining the two distinct geometric 

views contributed by Fienberg (1 968 , 1 970) and Haberman (1974) respectively. In 

1 997 the geometry of generalized linear models was described by Kass and Vos using 

the of differential geometry. 

In this chapter , however ,  we elucidate a geometry underlying generalized linear 

models by extending and melding two geometries developed for loglinear models. 
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In doing so we provide a succinct framework for conceptualizing such models , in 

which the geometries of linear models and loglinear models are seen as special cases . 

Sufficiency and linearity play key roles ,  with the general framework extending and 

linking the loglinear model-specific approaches of Fienberg and H aberman. 

This chapter is organized as follows. In the next section, generalized linear models 

are briefly described and key results about sufficient statistics are highlighted. Sec­

tion 3 then describes an existing geometric framework, contributed by Kass and Vos , 

underlying generalized linear models . In Section 4 an alternative geometry is ob­

tained by generalizing the geometry of categorical data models . Section 5 illustrates 

the alternative geometry using a logistic regression example. Finally, a conclusion 

completes this chapter. 

3 . 2  GLMs and sufficient stat istics 

A generalized linear model comprises three parts (McCullagh and Nelder, 1983 ) :  

i) random vector Y with a realized value y = , Y2 , . . . , Yn]T whose elements 

are assumed to be independent realizations from a single exponential family, so 

ith observation has density function 

where {Ji is called the natural parameter, and cjJ is called the dispersion param-

eter, given or estimated. 

ii) {3 = , (32 , . . . , and the n x q design matrix X [x1 x2 . . .  xq] 

Xj is the jth independent variable with . . .  , XnjJY for 

j = 1 ,  2 ,  . . . ' q. 
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iii) A monotone differentiable link function g for which '17i = g (JLi )  for all i ,  where 

JL = [JLl , [L 2 ,  . . .  , JLnJT = E(Y ) and 77 = [7Jl , '172 ,  . . .  , 7JnV = Xf]. A link func-

tion is termed canonical if g(JLi ) = ei for all i .  For convenience, we denote the 

link function in vector form as 7] = g (f-L) where g (f-L) = [g(JLl ) ,  g (f-L2 ) ,  . . .  , g(f-Ln) JT . 

To avoid later confusion, we point out now that, for the binomial distribution, the 

canonical link function has the form 

where JLi = E(1i ) and ni is number of observations associated with Yi outcome. 

Standard theory for this situation (Agresti 1990, p .446-447) expressions for 

the mean and variance of Y as 

and Var(Y) = b"(Bi )a(qy) 

Examples of generalized linear models include loglinear models , Poisson regression 

and logistic regression. Two properties of such models , pertinent t o  our geometric 

development in the next section, are presented in the next theorem .  

Theorem 3 . 1 .  For a generalized linear model with canonical link function, observa-

tion vector y and [l, the maximum likelihood estimator of the mean vector JL , 

i) y .  Xj is sufficient for and 

ii) [l. xj y . xj 

for j = 1 ,  2 ,  . . . , q .  



Proof. i) Since y = [y1 ,  Y2 ,  . . .  , Yn]T with 

for all i ,  the joint probability density function of Y1 , Y2 , . . . , Y;1 is 

n n 
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f (yl , . . .  ' Yn ;  el l . . . ' On , cp) = exp fl::)Yif)i - b(Gi) )/a(if:>) + L c(yi , cp) } (3 . 1 )  
i=l 

For a generalized linear model with canonical link we have 

q 
ei = g (Jl,i ) = L f3jxij 

j= l  
so the r ight hand side of  Expression (3 . 1) becomes 

i=l 

q n n q n 
exp { ( L ( L xijYi) PJ - L b(L PjXij) ] /a(if:>) + L c(yi , cp) }  

j=l i=l i=l j=l 
q n 

= h(y) d(f3) exp [ L  ( L XiJYi) Pj/a(4>)] 
j=l i=l 

i=l 

Thus, by the Factorization Theorem (George and Roger 1990, p .250) , a sufficient 

statistic for 1s 

n 
L XijYi = y. Xj 
i=l 

for j = 1 , 2 , . . .  , q  

ii) Recall that 'r/i = g(Mi ) , so with the canonical link we 

Furthermore 

(Agresti 1 990, 



likelihood function and Xij is the ijth entry in the design matrix. Thus 

which in vector form becomes 

[)£ xr(y - M) -
8{3 a(4J) 

where a( 4J) is known and identical for all observations. 
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The maximum likelihood estimate it of M is obtained by solving xr (y - M) = 0, 

hence we have that xr fl = xr y, as required. Thus 

for j = 1 , 2 , . . .  , q 

From Theorem 3.1 we know that it. Xj = y. Xj , so  

A Xj Xj M· l l xi l l = y. l lxj l l  for j = 1 , 2 , . . .  , q  

0 

Since y. Xj is a sufficient statistic for the parameter {3j for all j ,  then y. Xj / l lxj 1 1  
also is a sufficient statistic for {3j due to  the one-to-one relationship between y. Xj 
and y. xj / l lxj l l  for all j .  Thus, in Euclidean space Rn , the sufficient statistics for 

{3 in a generalized linear model are the lengths (ignoring the sign) of projection of 

the observation vector onto the directions specified by the column vectors of the 

design m atrix, and these sufficient statistics are preserved in the fitting process. The 

associated ideas are represented in Figure 3.1. 



0 

\ 
\ 
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Figure 3 . 1 :  For a generalized linear model with canonical link the observation vector 
y and its fitted vector jl have the same projection onto the direction specified by a 
column vector  of the design matrix Xj ,  for j = 1 ,  2 ,  . . . , q. 

3 . 3  Kass and Vos approach 

There is an existing geometric framework for generalized linear models , discussed 

by Kass and Vos, using differential geometry. Here we first review the main ideas 

considered by Kass and Vos, then construct an alternative geometric framework for 

generalized linear models by developing geometry of categorical data models. 

Differential geometry 

point of view, Kass and Vos ( 1 997) built a geometric 

framework for generalized linear models. this geometric framework an inner prod-

uct was defined to reveal an important property the maximum likelihood estimate. 

To develop an 

a 2 x 2 table is now illustrated. 
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Geometric structure 

Kass and Vos viewed a realized value of random variable Y, y = [y1 ,  y2 ,  . . . , Ynf, as a 

vector in the vector space Rn equipped with an inner product defined by the Fisher 

information matrix. There are two families of density functions, then, relating to 

generalized linear models. One is an n-dimensional exponential family distribution 

set 

:F = { ! : f(y; B , 1;) = exp { [yre - b(e) ] /a(1;) + c(y , 1;) } } 

where e = [81 ,  82 , . . . , Bnf is in the n-dimensional natural parameter space 8 of the 

exponential family, and 1; = [1;1 , 1;2 , . . . , c/Jnf is the dispersion parameter, assumed 

given or estimated. Another is a q-dimensional subset of :F determined by the design 

matrix X and the link function g via 

where p : f �---+ p(f) from :F to Rn provides the mean of j, g-1 is the inverse 

of the link function g ,  and (3 = [(31 , !3, . . . , /)q]T is in the q-dimensional parameter 

space B. Note that B specifies a set of n-dimensional exponential densities whose 

mean is determined by (3 and the design matrix X. Corresponding to these two 

families of density functions , there are two mean sets :FR = {{t(f) : f E :F} and 

M R  = {p(f) : f E M } ,  so MR c :FR. 

Since M C F, then any point f (a  density function) in M, is also in :F. When f 

is viewed as a point on :F, there is a tangent space of :F at f denoted by T1:F which 

is defined as the span of the score functions Ui with respect to the mean p, so 

ui = 
ae( e : Y) 

8pi 
for i = 1 , 2 ,  . . . , n  
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where 

f(B : Y) = [Yre - b(B)]ja(<;&) + c(Y, <;&) 

and e relates to f-1 through ei = b'-1 (f-li) for all i .  

When J ,  however, i s  viewed as a point in  M, the associated tangent space at J ,  

denoted by TfM ,  i s  spanned by the score functions with respect to the parameter (3 

v _ ae(e : Y) 
J - 8(3j 

for j = 1 ,  2 ,  . . .  , q 

here e relates to 11 through ei = b'- 1 (f-li ) for all i and f-1 relates to  (3 through f-1 = 

g-1 (X(3) .  Thus, it can be shown that T1M is a linear subspace of T1F using the 

chain rule (Kass and Vos 1997, p. 1 24) . 

Note that the mean sets FR and M R  are the image of the density sets F and M 
respectively under the map 11(!) : F �---+ Rn where 11 is the mean of a density f .  Since 

all of these sets may not be vector spaces for a generalized linear model, T1F and T1M 
are constructed as vector spaces approximating F and M at J E M locally. The 

relationship among the families of density functions , mean sets and tangent spaces is 

shown in Figure 3 . 2 .  

Geometric property of maximum likelihood estimate 

Suppose /'t = [P,1 , P,2 , . . .  , !ln]T is the maximum likelihood estimate for the mean of a 

generalized linear model with observation vector y = [Yl l Y2 , . . . , YnJT . The observation 

vector y, then, can be linked with the geometric structure discussed above by con­

structing vectors in T1F such as y - f-1 = "'E.i(Yi - f-li )Ui where f-1 = [J-11 , /-12 ,  . . . , flnJT E 

MR and Ui is the score functions with respect to the /1i for all i .  

Next , an inner product is defined in  T1F, and thus in T1M,  via 
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f-l(/) : :J' f-7 R n j E .M 

G 
Mean set Density functions  Tangent space 

Figure 3 .2 :  The graphic shows that the mean sets FR and MR are the image of the 
families of density functi ons F and M respectively under the map J-L(f) : F �----+ Rn 
where f.-L is the mean of a density f .  For each point f E M ,  there are tangent spaces 
T1 F and T1 M approximating F and M locally at f .  

Then for any a ,  b E T1 F we have 

L aibjE(Ui Uj )  = aT In (JJ) b 
i,j 

Lj bjUj and In( J.t) is an n x n matrix with ijth element 

E(UiUj ) ·  Note that In (f.-L) is the Fisher information matrix for the mean parameter 

at f.-L = J-L(f) (the detail see Kass and Vos ( 1997, p . 17-18) ) .  

Kass and Vos ( 1997, p . 127) shown that the maximum likelihood estimate fl f.-L(]) 
is obtained by satisfying 

y - fl E T1F under the inner product defined above. 
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Example 

For example, a 2 x 2 frequency table with data vector form y = [y1 , y2 ,  y3 , y4]T (where 

each Yi is a count) is observed from a Poisson sampling scheme. Suppose the underly­

ing mean of Y is J-L [JL1 ,  JL2 , JL3 , JL4f , and for the independence model the maximum 

likelihood estimate of JL is jl = 

mean of f, then 

A A A JT Th , J12 , J13 , J-L4 . en 

3 
M = { f  E :F : J-Li (f) = exp (LPjXij) , for i 1 , 2 , 3 , 4} 

j=l 

where xij is the ijth entry of the following matrix 

we obtain that 

and 

and it is clear 

1 

1 

1 

1 

1 

1 

1 - 1  1 

1 - 1  - 1  

Since the log likelihood function for y is 
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we obtain that 

(3 .2)  

Now, for any point f in M ,  and thus in :F, there is a tangent space of :F at f given 

by 

where 

for i =  1 , 2 , 3 , 4. 

Ui = 
Ol(�-C; Y) 

= 
Yi - /-li 

a 1-li 1-li 
for Yi E (O , oo) 

On the other hand, from (3 .2) and Pi = exp ( '2.:�=1 f]jXij) for all i we have 

Thus on M, the associated tangent space at f will be 

where 

for j = 1 , 2 , 3 

Specifically, we obtain 



In T1F, an inner product is defined by 

for a ,  b E  T1F 

where 14 (11) i s  a 4 x 4 matrix with ijth element E(UiUj) such as 

Let 

where 

_L 0 0 0 
1"1 

0 .1_ 0 0 
14 (!1) = Jl-2 

0 0 .1_ 0 Jl-3 
0 0 0 .1_ 

JL4 

l (M : y) = L Yi log JLi - L /1i 

Xi3/33 for i = 1 ,  2 ,  3 ,  4, then 

2.)Yi - l_ti)Xij 

- V{14 (M) (y - M) 

(y f-L, Yy) for j = 1 ,  2 ,  3 

Now the maximum likelihood estimate {l will be the point in M R such that 

for j = 1 , 2 , 3 

Thus, y - [t is orthogonal to  TjM at j with fl = 1-L(j) . 

3 . 4  An alternative geometric approach 

63 

In the geometry of categorical data models , Fienberg and Haberman geometries were 

embedded in a unified framework where the whole space was partitioned based on 
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the new basis constructed from sufficient statistics. In the general context , "Fienberg 

geometry" will now refer to the framework before canonical link transformation and 

"Haberman geometry" to the framework after canonical link transformation. The 

construction is detailed next . 

Geometric structure 

As in the Kass and Vos differential geometric approach to generalized linear models, 

in the alternative geometric structure we shall consider the two density sets :F, M 

and the associated mean sets :FR , MR. The density sets :F, M,  however, are not 

germane to our development. Here, what we are really concerned with is the mean 

sets :FR , MR in Rn. Note that :FR generalizes the tetrahedron discussed for a 2 x 2 

contingency table, and MR generalizes the "butterfly" of the independence model. 

Furthermore, after the link function transformation associated with :FR and MR 

we obtain two transformed mean sets g (:FR) = {g(fL) : fL E :FR} and g(MR) = 

{g (fL) : fi E MR} such that g (MR)  C g (:FR) C Rn. Note that g(:FR) generalizes the 

extended tetrahedron discussed for a 2 x 2 contingency table , and g (MR) generalizes 

the "jellyfish" for the independence model. Thus, the sets :FR and MR generalize 

Fienberg structures , while the sets g (:Frt) and g (MR) generalize Haberman structures 

for loglinear models. The relationship among these sets is shown in Figure 3 .3 .  

The partition of R n 

properties of maximum likelihood estimates for a generalized 

linear model, we consider a partition of the space Rn in which :FR, MR,  g (:FR) and 

g(MR) lie. Since column vectors of the design matrix x1 , x 2 ,  • . .  , Xq are linearly 
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g :  J.1 H Q(/1) 

G B 
Density functions Fienberg Haberrnan 

Figure 3 .3 :  The relationships among the sets :.F, M ,  :.FR, MR, g(:.FR) and g(MR) .  

independent (assuming non-collinearity) , the variation of the Gram-Schmidt process 

allows us to construct a basis in R n as 

for which each new basis vector is orthogonal to all column vectors in the design ma­

trix. Now the space Rn is split naturally into two orthogonal spaces , the "sufficiency 

space" S and the "auxiliary space" A, with 

S span {xl , · · · , xq } and A = Sl. span{xq+ 1 , . . . , xn } 
whence 

In traditional linear model geometry, the data enters Rn as a vector. In this 

more general situation, where iteration is needed in model fitting, it is appropri­

ate for the data to determine the "sufficiency" affine plane, T = s + A, where 



66 

s = {y. x1 , . . .  , y . Xq ,  0, . . .  , 0 } .  Thus 

T = { (y . X 1 , . . .  , Y· Xq ,  Zq+ l ,  . . .  , Zn) : Zq+ l ,  . . .  , Zn E R} 

The result which follows will determine the relationship between model and ob­

servations for the maximum likelihood fit P,. 

Theorem 3 .2 .  Let p be the maximum likelihood estimator of J-L. Then 

i) p E T, and 

ii) g (P) E S .  
Proof. Statement i )  follows immediately from the fact that 

{i. Xi = Y. Xi for i = 1 ,  . . .  , q (Theorem 3 . 1 )  

For ii) , simply note that 

g(fi) = x{J E s 

where {3 is the vector of fitted values of the parameters in {3. 0 

Geometric properties of the maximum likelihood estimate 

In Fienberg geometry, we consider the decomposition of a vector in the sets FR and 

MR with respect to the basis {x1 , x2 , . . .  , Xn} · Thus for a given generalized linear 

model, the observation vector y E FR and its fitted mean vector P E MR have the 

form 

y 
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and 

respectively. Theorem 3 . 2  indicates that y. Xi = ft. Xi for i = 1 ,  2 ,  . . .  , q, so the obser-

vation vector y and its fitted vector ft have the same coefficients when represented in 

terms of the sufficiency space basis { x1, x2 , . . .  , Xq} ;  these coefficients are the sufficient 

statistics for the components of the parameter vector (3. 

In Haberman geometry, on the other hand , we consider the decomposition of a 

vector in the sets g (FR) and g (MR) with respect to  the new basis. Thus for a given 

generalized linear model, the transformed observation vector g(y) E g (FR)  and its 

fitted vector g (ft) E g (MR) have the form 

and 

X1 X1 X2 X2 Xq Xq 
g (y) = (g (y) .  W )W + (g(y) . l l x2 l l

) l l x2 l l  + · · · + (g(y) .  l l xq l l
) l l xq l l 

g (ft) (g (ft) .  � ��� � � ) 1 1�� + (g(ft) .  � ��� � � ) � ��� � �  + . . .  + (g (ft) .  1 1�: 1 1 ) l l xq l l  

respectively. Theorem 3 . 2  indicates that g(ft) . Xi = 0 for i = q + 1 ,  . . .  , n ,  s o  the 

coefficients of the transformed fitted vector g (ft) are zeroed on the auxiliary space 



68 

basis { Xq+b Xq+2 , . . . , Xn} · This property holds for any element in g(MR) , which 

implies g(MR) C S. 

Figure 4.2 provides a schematic illustration of the geometric components of a 

generalized linear model. Both S and A need to be at least two-dimensional in order 

to avoid degeneracy, so they are pictured , necessarily in three-space, intersecting 

at the origin alone. The untransformed mean space MR in general cuts across all 

dimensions of the space, while the transformed mean space g(MR) lies in S.  

;. ' I  / ,  
/:;Tj ( ! 

I ! . I I . 
c._-..::-::.:::::=:l ><----:;, � 

I ,L2 !  I 
I 

./ . / I . . / y 

�g(fi-(l 

Figure 3 .4 :  The geometric components of a generalized linear model. For a sample 
of size n, Rn splits into an orthogonal direct sum of the sufficiency space S and 
the auxiliary space A.  The maximum likelihood estimator of the mean fl lies in the 
intersection of the sufficiency affine p lane T s + A and the untransformed model 
space MR.  The link transformed mean vector g (fl) lies in the transformed mean 
space g(MR) · 

Therefore in this geometric vww of generalized linear models, the columns of 



69 

the design matrix determine the sufficient statistics y. x1 , y. x2 , . . .  , y. Xq for f3 and 

hence p,. These values are preserved in maximum likelihood fitting, providing the 

first geometric result in Theorem 4 .3 . 1 :  y and jl have the same projection onto any 

direction in the sufficiency space. The columns of the design matrix determine the 

transformed model mean manifold (sometimes a linear space, but not necessarily so) , 

providing the second geometric result in Theorem 4 .3 . 1 :  g(fl) is orthogonal to every 

direction in the auxiliary space. 

In the geometry of generalized linear models, Fienberg geometry focuses on the 

untransformed model manifolds :FR and MR while Haberman geometry focuses on 

the transformed model manifolds g (:FR) and g(MR) · Let A be the n x n matrix 

which changes a vector from representation with respect to the standard basis in Rn 

to representation with respect to the new basis. Then 

Hence Ay is the untransformed observation vector with respect to the new basis, and 

Ag(y) is the transformed observation vector with respect to the new basis. Thus the 

untransformed and transformed views are related as shown in the following commu-

tative diagram: 

A PT y Ay PrAY 

g l  A 

1 AgA-1 

PS 
g(y) Ag(y) PsAg(y) 
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noting that g is the canonical link function, Pr is projection onto the sufficiency affine 

plane T, so, for a point expressed with respect to the new basis ,  

and P5 is non-orthogonal projection onto the transformed model space g (MR) (dis­

cussed in Section 4 .3 ) . 

The commutative diagram highlights that Fienberg and Haberman geometries are 

connected by the canonical link function g . Meanwhile ,  the results with respect to 

the standard basis and the new basis are related by the matrix A. In addition, the 

commutative diagram motivates a new algorithm, to be discussed in the next chapter , 

for fitting generalized linear models. 

For linear models, where the link function is the identity, the Fienberg and Haber­

man geometries coalesce. This leads to fitted value combining the best of both worlds: 

the minimal sufficient statistics are preserved on the basis of the sufficiency space, 

while the coefficients are zeroed on the basis of the auxiliary space. 

3. 5 Example 

To illustrate this alternative geometry of  generalized linear models we consider fitting 

a logistic regression for an artificial data set with three observations, shown in Table 

3 . 1 .  
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Yi (Response) ni (Total) Xi ( Covariate) log (�/ ( 1 - �))  

2 1  23 1 2 .3514 
10 45 2 - 1 . 2528 
8 1 2  3 0.6931 

Table 3 . 1 :  The artificial logistic regression data set , with three observations. 

Here we have the design matrix X [ �1 � ] , so the new basis in R3 is 

[ J x 2  = [ � ] and x3 = [ -� ] 
and the change of basis matrix is 

Now the whole space R3 can be split into sufficiency space 

and auxiliary space 

Fitting a logistic regression model 
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where xi2 is the i2th entry in the design matrix X for i = 1, 2, 3, we obtain the 

estimates sl = 1 .7757, s2 -0.9840 for the parameters /]1 and /]2 using the new 

algorithm (discussed in Section 4 .4) .  The associated fitted values are shown in Table 

3 .2 .  

fl (Response) 

15 .8285 
20.3430 
2 .8285 

log (�/ ( 1  �) )  
0 .79 17  

-0. 1923 
- 1 . 1 764 

Table 3 . 2 :  The fitted values for the logistic regression log (�/ ( 1  �) )  = /]1 + /]2xi2 
for i = 1 ,  2, 3 .  

In Fienberg geometry the given data y can be represented as 

hence y has coefficients with respect to the new basis of 

Ay = [26, -6 .5 ,  1 . 5]T 

Similarly, the corresponding fitted value fl has coefficients with respect to the new 

basis of 

or 

[ 15.8285 ] [ 1 l [ 1 l [ 1 ] 
20.3430 = 26 1 - 6 .5  2 - 3 .6715 

2 .8285 1 3 1 

Aft = (26 , -6 .5 ,  -3 .6715Y 
It is clear that Ay and Afl have the same projection onto the sufficiency space. Figure 

3 . 5  shows the result of fitting the logistic regression model with three observations in 

Fienberg geometry. 
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Figure 3.5: For the logistic regression model with three observations and Fienberg 
geometry, the saturated model space :FR is a cube. The unsaturated model space 
MR is a curved surface within the hexahedron. In this example, the observation y 
and its fitted value P, have the same projection onto each of the directions x1 and x2 . 

On the other hand, in the Haberman geometry, we consider the world trans-

formed by the link function. Thus, a logit link function is applied to the proportion 

yi/ni for logistic regres ion, so log (�/( 1 - � ) ) , and the corresponding fitted value 

log (�/( 1 - �) )  can be expressed with respect to the new basis as 

or 

[ 2.35 14 ] [ 1 l [ 1 l [ 
1 l - 1 .252 = 2.2555 1 - 0. 291 2 + 0.9250 -2 

0 .693 1 1 3 1 

Ag (y) = [2 .2555, -0.8291 ,  0.9250f 



and 

or 

[ 0. 7917 1 [ 
1 l [ 1 l [ 1 l -0. 1923 = 1.7757 1 - 0.9840 2 - 0 -2 

- 1 . 1 764 1 3 1 

Ag(p) = [ 1.7757, -0.9840, of 
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This confirms that in the Haberman geometry g ([i,) lies on the auxiliary space for 

all i .  Figure 3.6 shows the result of fitting the logistic regression model with three 

observations in Haberman geometry. 

,..... 
X 2 

I ', 
I ' 
I I I I I 

e2 � I I ----1 

* 
g(y) 

Figure 3 .6 :  For the logistic regression model with three observations and Haberman 
geometry, the saturated model space g(FR) is Euclidean space Rn . The unsaturated 
model space g(MR) is a plane in Rn . The fitted value g ([i,) has zero projection onto 
the direction x3 . 

In the example we show the untransformed model space M R  (see Figure 3.5 ) 
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and transformed model space g(MR) (see Figure 3.6) for the logistic regression (a 

generalized linear model with logistic link) . Using the same design matrix in the 

example above, the model spaces MR and g(MR) are drawn for a generalized linear 

model with other canonical links in Figure 3 . 7  to Figure 3 . 10. 

To summarize ,  the differential geometric approach to generalized linear models 

focuses on the families of density functions and relies on the likelihood function and 

the inner product defined by the Fisher information matrix in Rn . In the fitting 

process , the residual vector is perpendicular to the tangent plane spanned by the 

scores functions under the inner product defined by the Fisher information matrix. 

On the other hand, the alternative geometric approach to generalized linear models 

depends on sufficiency and a partition of R n using the new basis. Here all discussions 

are based on the mean sets .  In the fitting process, before link transformation the 

coefficients with respect to the basis of the sufficiency space are preserved and after 

link transformation the coefficients with respect to the basis of the auxiliary space 

are zeroed. 

3 . 6  Conclusion 

In this chapter we have set up a geometric framework for generalized linear models 

in three stages .  First , the statistical model is identified with a subset in Euclidean 

space. Two geometric objects relate to this subset: an untransformed one in the 

F ienberg geometry and a link transformed one in the Haberman geometry. Second, 

the observations are viewed as a vector in this space. Third, the whole space is 

split into a sufficiency space and an auxiliary space. In the Fienberg geometry the 

coefficients of the basis of the sufficiency space are preserved during model fitting, 
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while in the Haberman geometry the coefficients of the basis of the auxiliary space 

are zeroed . Now the geometries of linear models and loglinear models , discussed 

in Chapter 1 and Chapter 2, are special cases of the geometry of generalized linear 

models with identity link and log link respectively. 
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Figure 3 .7: This graphic shows the model spaces MR (the left panel) and g(MR) 
(the right panel) for the generalized linear model with identity link. Here elements of 
the observation vector Y independently follow a ormal distribution. 
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Figure 3 .8 :  Thi graphi shows the model paces MR (the left panel) and g (MR) 
(the right panel) for th generalized linear model with log link. Here elements of the 
observation vector Y independently follow a Pois on distribution. 
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Figure 3.9 : This graphic shows the model spaces MR (the left panel) and g (MR) 
(the right panel) for the generalized linear model with reciprocal link and positive 
parameters. Here elements of the observation vector Y independently follow a Gamma 
distribution. 
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Figure 3. 10: This graphic show the model spaces MR (the left panel) and g (MR) 
(the right panel) for the generalized linear model with squared reciprocal link and 
positive parameter . Here elements of the ob ervation vector Y independently follow 
a inverse Gaussian di tribution. 



Chapter 4 

A new algorithm for fitting GLMs 

4. 1 Introduction 

A geometrical view of statistical models can assist in providing an overall understand­

ing of statistical concepts, through allowing us to visualize a set of ideas. Geometry, 

however, can also catalyze the development of some new methodologies in statistics. 

In this chapter a new algorithm for fitting generalized linear models is constructed 

using the alternative geometry discussed in the last chapter. 

Estimation of parameters in a generalized linear model is usually performed by 

the method of maximum likelihood, effected by a modified Newton-Raphson method 

named the scoring method. The scoring method was first considered by Fisher ( 1 935) 

in the context of probit analysis and extended to find maximum likelihood estimation 

for generalized linear models by Nelder and Wedderburn in 1 972 .  In the scoring 

method the estimates have to be obtained numerically by an iterative procedure. 

Recently, this can be interpreted using differential geometry, as discussed by Kass 

and Vos ( 1 997) . 
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In this chapter a new algorithm for fitting generalized linear models will be con­

structed using the alternative geometry. We first , however, discuss the scoring method 

using differential geometry in Section 2, then in Section 3 construct a new algorithm 

using the alternative geometry with a detailed example in Section 4. Section 5 links 

the two algorithms and is followed by a numerical comparison between the two meth­

ods in Section 6. This chapter is concluded by Section 7. 

4 . 2  Geometry of the scoring method 

In Chapter 3 ,  we discussed the work of Kass and Vos ( 1997) in which they presented 

a geometry of generalized linear models using the language of differential geometry. 

This point of view leads to the scoring method.  Here we briefly review the main 

points of Section 3 . 3  and summarize the algorithm suggested by Kass and Vos ,  then 

show that this algorithm turns out to be the scoring method. 

In Section 3 . 3  we considered an n-dimensional set of exponential family density 

functions :F and its q-dimensional subset M determined by the link function g and 

the design matrix X.  The data y is inserted into the tangent space Tt :F, spanned by 

the score functions with respect to the mean parameter at fl = 11(!) (the mean of f) , 

by considering the vector with coordinates y fl· The maximum likelihood estimate 

jl of JL is then obtained by satisfying 

under the inner product defined by the Fisher information matrix Tj:F· Here TjM ,  
spanned by the score functions with respect t o  the parameter is the tangent space 

of M at J. Note that TjM is a subset of Tj:F· This leads to an algorithm for fitting 
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generalized linear models . 

The algorithm starts with the initial density function estimate fo E M .  We then 

obtain the initial mean estimate J-Lo = J-L(io) , the mean of j0, and initial parameter 

estimate f3o of (3 through f3o = (XT x)-l xr g (J-Lo) . Since fo E M ,  so fo E :F, there 

are two tangent spaces at j0 , namely T10M for M and TJ0:F for :F. We insert the 

data y by constructing a vector y - J-Lo E T10 :F, and then project y - J-Lo onto T10M 

orthogonally to  obtain the projection v0 E Tt0M .  Next , we map v0 E T10M into M 

using a mapping R : v �---+ R(v) , where v E T1M and R(v) E M ,  to provide a new 

estimate of f. The mapping R is made up of the following steps 

Step 1 Start with v0 E Tf M ,  and then find an estimate {31 of {3 using {31 = {30 v0, 

Step 2 Obtain the new estimate {t1 of J-L by tL1 = g- 1 (X(31 ) ,  

Step 3 Achieve the new estimate f1 E M of f through I-Ll · Here we first obtain an 

estimate el by el = b'-1 (J-Ll ) , and then gain 

where 4> is a dispersion parameter, assumed given or estimated. 

The algorithm is repeated , using ]I now instead of j0. The maximum likelihood 

estimate {L of fL will be found when (y  /J.) _l_ TfM ·  The process i s  shown in Figure 

4 . 1 .  

Formally, the algorithm can b e  presented as follows. 

Kass and Vos algorithm 

Step 1 Set k 0. Take an initial estimate fo of f in M ,  and the mean 

mate J-Lo by /Lo = J-L(io )  and the parameter estimate f3o by f3o = (XT X)-1XT g (J-L0 ) .  
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Figure 4 . 1 :  The graphic shows the process of fitting generalized linear models using 
the Kass and Vos algorithm. The algorithm starts with the initial estimate fo of j ,  
then projects y - J-Lo E Tt0:F (where J-L o  is the mean of  fo) onto the tangent space 
Tt0M orthogonally. The projection v0 is then taken back into M by the mapping R, 
giving fi . The algorithm is repeated using h instead of j0 . The maximum likelihood 
estimate fl of J-L is found when (y fl) TJM -

Step 2 Project y J.Lk E Ttk:F onto the tangent space TtkM orthogonally a t  fk under 

the inner product defined by the Fisher information matrix in T!kF- Map this 

projection vk back into M by the mapping R :  v t---+ R(v) to obtain fk+ l ·  

Step 3 I f  a stopping criterion i s  met , stop. Otherwise, increment k and return to  

Step 2 .  

This is now shown to provide scoring algorithm. 

For a generalized linear model with canonical link and a ( rjJ) 1, we have 

F {f : f (y ; e, rjJ) exp {yre - b(e) + c(y, rjJ) } for some (} E 8 } 
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where e is the n-dimensional natural parameter space, and 

M = {f E F : JL(f)  = g-1 (X{3) , {3 E B}  
where JL : f t---t JL(f) from F to Rn provides the mean of f ,  g is the canonical link 

function, and B is the q-dimensional parameter space. 

Then for any f E M the tangent space for F is given by 

where 

Ui -
az �; Y) (where l (JL; Y) = log f (JL ;  Y ) )  

/Li 
8 [YT g (JL) - b(g(JL) ) c(Y, </>)] 

aJLi 
[Yi - b' (g(JLi ) )] g'(JLi) 

for i =  1, 2 ,  . . .  , n. 

For any f E M the tangent space for M is given by 

where 

Vj - 8l ({3; Y) 
8{3j 

_ t az (JL; Y) aJLi aTJi 
i=l aJLi aTJi a{Jj 

(since JL = g-1 (ry) and TJ = X{3) 



Specifically, 

8/-11 8/-12 8 f-1n T Vj = [�x1j 1 �X2j , . . .  , �Xnj] 
V1J1 V1J2 V1Jn 

with respect to  the basis { U1 , U2 , . . .  , Un} for j = 1 ,  2 ,  . . . , q .  
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In other words,  T1M is spanned by the column vectors in the matrix F = W X where 

W is the diagonal matrix with elements Wi = 811d81Ji for i = 1, 2, . . .  , n on the main 

diagonal. It is clear that T1M C T1F. 

Next, in T1:F an inner product is defined by 

for a, b E  T1F 

where w-1 is the Fisher information matrix for the mean parameter at f-1 = J-1(!) .  

Now, the maximum likelihood estimate fl of f1 can be obtained in the following 

three steps. 

Step 1 Set k = 0. Take any f.Lo E MR, the mean set of any f E M ,  and define fo 

by f.Lo = J-1(Jo )  and f3o by f3o = (Xr X )-1 xr g (J-10) . 

Step 2 Project y - f.Lk onto the tangent space ThM at fk , spanned by the column 

vectors in the matrix F ,  orthogonally under the inner product defined by (a, b) = 

arW;1b for any a ,  b E  Tfk:F. Doing this we obtain the projection 

Update the estimate of (3 by 

and then obtain f-1k+l as the value of mean f-1 evaluated at (3 = f3k+l · 
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Step 3 If a stopping criterion is met , stop. Otherwise ,  increment k and return to 

Step 2. 

To summarize, the algorithm with respect to the parameter (3 is 

Pk+I Pk + (F[wk-1 Fk) -1 F[W;;1 (y - !Lk )  

f3k + ( xrwkx) -1xr (y  ILk) 

the familiar scoring method. Note that Fk and Wk are F and W estimated at j3 Pk 

respectively. 

4. 3 The new algorithm 

In this section, we establish a new algorithm for fitting generalized linear models 

with canonical link using the alternative geometry. Here, we first consider a theorem 

for characterizing maximum likelihood estimation for generalized linear models with 

canonical link. This theorem and the commutative diagram discussed in Chapter 3 

serve as motivation for the new algorithm which is ,  then, constructed in the alternative 

geometric framework. Next, a simplification of the new algorithm is given with its 

convergence discussed. 

Theorem 4 .1 .  For a generalized linear model with canonical link, the maximum 

likelihood estimate /i of the mean vector IL is uniquely determined by 

i) {t E Mn, 

ii} xr [i xr y . 
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Proof. The exponential family of distributions satisfy enough regularity conditions 

to ensure that the maximum likelihood estimate fl is unique for a generalized linear 

model (Cox and Hinkley 1974, p .245 ) .  This solution is determined by the following 

equation, for a generalized linear model with canonical link, 

ae 
8(3 

(see Theorem 3 . 1  i i ) )  (4. 1 )  

where a ( cjJ )  i s  known and identical for all observations. This equation is solved 

by the scoring method to obtain the maximum likelihood estimate S of (3, then 

fl = g-1 (XS) E MR, the model space. Thus i) holds .  

Furthermore, fl is  the solution of (4 . 1 ) ,  so fl should satisfy xr(y - J.L) = 0 .  The 

equation xr jl = xr y, then, is required . Thus ii) holds . 0 

Theorem 4 . 1  indicates that the maximum likelihood estimate for a generalized 

linear model with canonical link is unique and both satisfies the model and matches 

the observations in the sufficient stat istics. 

A new algorithm for fitting generalized linear models with canonical link is sug-

gested by Theorem 4 . 1 and the commutative diagram in Chapter 3. To find the 

estimate /l , the unique point which is the intersection of the model space M R  and 

the sufficiency affine plane T, the algorithm starts with an initial estimate /LO· To 

match sufficient statistics, we project /Lo onto the affine sufficiency plane T orthog-

onally to  obtain a point ILr which matches the observation vector y in the sufficient 

statistics but may not satisfy the model, that is, fLr may not be in M R  and thus g (J.Lr ) 

may not be in g(MR) · To satisfy the model, we move to the link transformed point 

g(J.Lr ) , then project g(f.lr ) onto the transformed model space g(MR) non-orthogonally 

(a weighted least squares) to obtain a point g (J.LM ) E g(MR) ·  We then inverse link 
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transform to obtain the point flM in MR. The point flM satisfies the model but may 

not match y in the sufficient statistics, that i s  JLM may not be in T. Let JL1 = jJM , 

then start again with jJ1 in the role of JLo · The process is shown in Figure 4.2 . 

;. , I I , 
/Jl 

( ! ' f.l,! I M R 

Figure 4 .2 :  The graphic shows the process of fitting a generalized linear model us­
ing the new algorithm. The algorithm starts with the initial estimate JLo of jJ, then 
projects flo E :FR onto the sufficiency affine plane T orthogonally to obtain point 
flT · After the link transformation we project the point g (JLT ) onto g(MR) non­
orthogonally to obtain the point g (JLM ) , and then find the point flM by back trans-
formation. The algorithm starts again using 111 flM instead of flo· 

Note that in the algorithm each projection is with respect to the new basis 

{x1 , x2, . . .  , xn} , while each canonical t ransformation is with respect to the stan-

dard basis. Informally, projection onto T improves the first q coordinates while pro­

jection onto g(MR) improves the last n - q  coordinates. For linear models, generalized 

linear models with identity link, MR and g (MR) fuse together, the non-orthogonal 
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projection onto S becomes an orthogonal projection. Thus both model space and 

sufficient statistics are satisfied by the estimate of p, in the first iteration of the al-

gorithm .  Here we should point out that initially projection onto S in the algorithm 

was performed orthogonally, but the algorithm then only worked for some cases of 

generalized linear models with non-identity link. After using non-orthogonal projec-

tion onto S, a weighted least squares with the weight chosen to be the variance of 

estimate of p,, the algorithm has been found to work for all cases. 

Denote the projection onto the sufficiency affine plane by Pr , the projection onto 

the sufficiency space by Ps and the change of basis matrix by A. The algorithm is 

now described. 

A new fitting algorithm 

Step 1 Set k = 0. Take Jlo y , the observation vector. 

Step 3 If a stopping criterion is met , stop. Otherwise ,  increment k and return to 

Step 1 .  

To consider the new algorithm more detail, we can represent it algebraically as 

where 

flok+1 - g-1 (X(Xrwkx)-1 xrwkzk) 

with z, g { A-1 [ ( � �n-J Ap, + ( �' � ) Ay] } (4 .2) 

the kth approximation for the maximum likelihood 
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W is the n x n diagonal matrix with wi = 8J.ld 8'T}i for all i on the main diagonal, 

and wk is w estimated at J.1 = J.lk ) 

g and g
- 1  represent the canonical link function and its inverse, 

A = [X xcrl is the change of basis matrix with size n X n generated by the 

design matrix X through the variation of the Gram-Schmidt process , so Xc is 

the complementary matrix of X in Rn , 

Iq and In-q are the identity matrixes of size q x q and (n-q) x (n-q)  respectively. 

The interpretation of the algebraic representation of the new algorithm is shown 

in the following table. 

Operation in Step 2 of the new algorithm 

A-1 PrA(J.Lk )  

gA-1 PrA(J.Lk ) 

PsAgA-1  PrA(J.Lk) 
A-1 PsAgA-1 PrA(J.Lk ) 

g- 1 A-1 P5AgA-1 PrA(J.Lk )  

Algebraic representation 

/-Lk 
AJ.Lk 

( � �n-q ) AJ.Lk + ( �q � ) Ay 

A - 1 [ ( � �n-q ) AJ.Lk + ( �q � ) Ay] 

Zk = g { A-1 [ ( � �n-q ) AJ.Lk + ( �q � ) Ay] }  
(xrwkx)-1 xrwkzk 

X(xrwkx)-1 xrwkzk 
g-1 (X(Xr wkx)-1 xrwkzk) 

This table just shows the operations of Step 2 in the new algorithm and the associated 

algebraic representation. To fully understand the contents in the table reader is 

referred to the next section, where a detailed example is given. 

In the event that the design matrix X is orthonormal, we now consider a simpler 

form of the new algorithm. Since X is orthonormal, then the matrix [X Xc] , extended 
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by X through the variation of the Gram-Schmidt process, is also orthonormal. Now 

the change of basis matrix is 

where 

and 

Then, ( 4 .2)  becomes 

g [[x Xc] ( 
0
0 0 ) [ xr l Mk + [X Xc] ( Iq 0 ) [ xr l v] 

In-q X'[ 0 0 X'[ 

g [XcX'[!lk + XXr y] 

g [ (In - XXT)Mk + xxr y] 

g [Mk + XXT(y - Mk) ]  

Thus , the algorithm simplifies to  

with Zk 

where column vectors in the design matrix X are orthonormalized. 

The change of basis in Rn has an influence on the coordinates of a vector in 

R n , but has no influence on the vector itself. Thus ,  geometrically, for the simplified 

algorithm and non-simplified algorithm, the fitting process will be the same, but the 

coordinates of a vector with respect to the new basis will be different. Since the 

fitted value {l is with respect to the standard basis ,  the simplified algorithm and 

non-simplified algorithm have the same result of fl. The estimate however, is with 

respect to the new basis, so the simplified algorithm and non-simplified algorithm 
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have a different result for �. Thus we can use the simplified algorithm to find � for 

a general case through the following steps . 

1 .  Orthonormalize the design matrix X 

2 .  Obtain the fitted value fl using the simplified algorithm 

3 .  Find the estimate {3 using weighted least squares method with the design matrix 

X and the weight estimated by {L. 

The maximum likelihood estimate jl of the mean vector is a fixed point of h = 

g-1 A-1 P5AgA-1 PrA. In the next result we describe conditions under which a fixed 

point exists . We give conditions which ensure that the the fixed point is unique and 

that the algorithm converges to the fixed point . 

Theorem 4 .2 .  Let h g-1 A-1 P5AgA-1 PrA . We have 

i) If the domain of h is homeomorphic to a sphere, then h has a fixed point. 

ii) If h is contractive (so \ \ h ( x) - h(y) j \  < r \ \ x  y j j  for some 0 < r < 1) then 

a) h has a unique fixed point z, 

b) limk hk (x) z for any x in the domain of h, and 

c) z JL 

Proof. Statement i) is an almost immediate consequence of Brouwer's Fixed Point 

Theorem (Simmons, p.338) . Statement a) follows from the lemma of Schauder's 

Fixed Point Theorem (Simmons, p .338) , while ii) b) follows from the proof of 

lemma. Since fl is a fixed point of h and the fixed point is unique, so ii) c) follows .  0 
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4.4  A detailed example 

To illustrate the new algorithm for fitting generalized linear models we consider the 

fitting process for the logistic regression example described in Chapter 3. The artificial 

data set , with three observations , is shown in Table 4 . 1 .  

Yi (Response) ni (Total) Xi ( Covariate) log ( � / ( 1 - �)) 
2 

20 
8 

23 
45 
12 

1 
2 
3 

-2 . 3514 
-0 .2231 
0.6931 

Table 4 . 1 :  The artificial logistic regression data set , with three observations. 

We fit the logistic regression model 

for i = 1 , 2 , 3  

to the data in Table 4 . 1  using the new algorithm. The first iteration of the algorithm 

is shown using eight steps in Table 4 . 2 .  Specifically, 

Step 1 Take the initial estimate of p to be the observation vector y. 

Step 2 Consider the p oint y with respect to the new basis, Ay .  

Step 3 Project the point Ay orthogonally onto the sufficiency affine plane T to give 

point Ap,T . 

Step 4 Consider ApT with respect to  the standard basis, so giving /LT (here JlT =y) . 

Step 5 Take the logistic transformation of f-LT to obtain the p oint g(pT ) .  

Step 6 Project the point g (pT ) non-orthogonally onto the transformed model space 

g (MR) using weighted least squares to obtain the point Ag(pM ) .  
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Step 7 Consider Ag(fLM ) with respect to the standard basis, giving g (fLM ) . 

Step 8 Take a back logistic transformation of g(fLM ) to obtain MM ' 

In the next iteration, the algorithm starts with the estimate p,M of fL · 

Iteration Item Coordinates 
1 1 y ( 2 1 . 0000 , 10 .0000, 8 .0000) 

2 Ay (26.0000, -6 .5000, 1 . 5000) 
3 A {LT (26 .0000, -6.5000, 1 . 5000) 
4 {LT ( 2 1 . 0000 , 10.0000, 8.0000) 
5 g (p,T ) (2 .3514 ,  . 2528 , 0.6931 )  
6 Ag(fLM ) (0 .73 19 ,  -0.4957, 0 .0000) 
7 g({LM ) (0.2362, -0.2595, -0.7553) 
8 ILM ( 1 2 .8518, 19 .5964, 3 .8360) 

Table 4 .2 :  The table shows all steps in the first iteration of the fitting process, for 
logistic regression with three observations , using the new algorithm. 

The whole fitting procedure is shown in Table 4 .3 ,  including coordinates for the 

point AfLT in the sufficiency affine plane T and the point Ag(ltM ) in the transformed 

model space g (MR) (with respect to the new basis) in each iteration. From Table 

4 .3  we see that the set of points AfLT has the same coordinates on the basis of the 

sufficiency space, while the set of points Ag(fLM ) has zero coordinate on the basis of 

auxiliary space. The locus of the fitting process is demonstrated in the untransformed 

context in Figure 4 .3 .  

4 . 5  Link b etween the two algorithms 

In the new algorithm, we use non-orthogonal projection (that weighted least 

squares) onto log-transformed model space g (MR) , which is the same as the 
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Iteration Ap,T Ag (p,M ) 
1 (26.0000, -6 .5000 , 1 . 5000) (0 .7319 ,  -0.4957, 0) 
2 (26.0000, -6 .5000, -9. 1876) ( 1 . 7754, -0 . 9839 , 0) 
3 (26.0000, -6.5000 , -8.9939) ( 1 .7757, -0.9840 , 0) 
4 (26 .0000, -6 .5000, -8.9933) ( 1 .7757, -0 . 9840, 0) 
5 (26.0000, -6 .5000, -8 .9933) ( 1 .  7757, -0. 9840, 0) 

Table 4 .3 :  The table shows the coordinates, with respect to the new basis , of points 
Ap;r in the sufficiency affine plane and points Ag(flM ) in the transformed model space 
g(MR) · 

scoring method. For this reason, there is a natural connection between the two alga-

rithms, summarized in the following theorem. 

Theorem 4.3.  For a generalized linear model with canonical link function and or-

thonormal design matrix1 the linearization of the new algorithm is the same as the 

scoring method. 

Proof. When the design matrix X is orthonormal, the new algorithm has the form 

with Zk 

g-1 (X(XTWkX(1 XTWkzk )  

g [rlk + xxr(y P:k) ] 
( 4 .3)  

( 4 .4)  

Approximate the right-hand-side of ( 4.4) with its first order Taylor series for g to give 

algorithm becomes 

which is the scoring method. Thus , the result holds . 0 



95 

Figure 4.3 :  The figure shows the locus of critical points induced in fitting the logistic 
regression with three observations in the untransformed context. There two sets of 
points on the locus, one on the model space MR and the other on the sufficiency 
affine plane T. Note that for showing clear effects we use the orthogonal projection 
instead of the non-orthogonal projection in the fitting process. 

4.6  Numerical comparison o f  the two algorithms 

To compare the two algorithms, we show some numerical results in Table 4.4. This 

table presents the number of iterations needed for convergence for a variety of models 

using the built-in function 'glmfit' in Matlab, the new algorithm (see Appendix A) 

and the 'Genmod' procedure in SAS. For all three methods convergence is achieved 

when the value of the norm of the difference between successive estimates of the 

parameter {3 is less than 10-6 . In the 'Models' column of the table, Xi indicates a 

covariate ,  fi represents a factor and fdj denotes the interaction between factors fi 

and fj . In the 'Link' column the associated link function is specified for each model. 
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Table 4.4 shows that there is not much difference among three methods for simple 

models, but for complex models (Model 5 and 12) the new algorithm seems to take 

more iterations to converge than do other methods. 

Models Link Matlab Geometric SAS 
1 y/N = x Logit 6 6 5 
2 y/N = x Logit 5 6 5 
3 y/N = h + h  Logit 5 5 4 
4 y/N = x Logit 6 7 5 
5 Y = Xl + X2 + fi + f2 + fih Logit 7 12  8 
6 Y = f + Xl + X2 Logit 6 5 4 
7 y IN = Xl + X2 + X3 Logit 7 8 6 
8 y = h + h + h  Log 7 5 6 
9 y = x Log 7 6 6 

10 y = x Log 6 5 5 
1 1  y = h + h  Log 7 6 6 
13 y = x + h + h  Log 5 5 4 
1 2  y = h + h + h + hh + hh Log 7 14 5 
14 y = x + f + xf Reciprocal 8 6 6 
1 5  y = h + h + h  Reciprocal 7 6 6 

Table 4.4 :  This table shows the number of iterations needed for convergence for 
various models using three methods: the built-in function cglmfit' in Matlab, the new 
algorithm and the cGenmod' procedure in SAS. 

To compare the scoring method and the new algorithm in more detail, in Table 

4 .5  we show the flops, an approximate number of floating point operations, needed 

for convergence for various models using Matlab functions Sglmfit and Nglmf it (see 

Appendix A) . It seems that the performance of the new algorithm is worse than the 

scoring method. 

The data sources for the models displayed in Table 4.4 and Table 4.5 are given in 

Appendix B. For example, Model 5 has the form 

Pain(y) = Age (x1 )  + Duration(x2 ) + Treatment (JI )  + Sex(h) 

+ Treatment*Sex(hh) 
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Models Link method Geometric 

1 y/N = x Logit 7649 10145 
2 yjN = x Logit 7219 10137 
3 y = h + h  Logit 3100 3820 
4 y/N = x Logit 1325800 1471684 
5 Y = XI + X2 + fi + f2 + hh Logit 1831736 2729886 
6 Y = f + XI + X2 Logit 1813484 201 1354 
7 Y = XI + X2 + X3 Logit 3876210 4414085 
8 y = h + h + h  Log 28524611 30326143 
9 y = x Log 1286880 1405419 

10 y = x Log 7259 8814 
1 1  y = h + h Log 30389 36664 
12 y = h + h + h + hh + hh Log 21243 45302 
13 y = x + h + h Log 87249 110289 
14 y = x + f + xf Reciprocal 293834 351018 
15 y = h + h + h Reciprocal 16589470 19400529 

Table 4. 5: This table shows the number of flops (an approximate number of floating 
point operations) needed for convergence for various models using two methods: the 
scoring method and the new algorithm. 

where Pain is a binary response variable . The data comes from "SAS Institute Inc. 

( 1999) . SAS OnlineDoc. Example 39.3" . 

4. 7 Conclusions 

In this chapter a new algorithm for fitting generalized linear models with canoni-

cal link is constructed using the alternative geometry. This algorithm depends on 

sufficiency rather than the likelihood function, and uses two projections alternately, 

orthogonal projection onto the sufficiency affine plane and non-orthogonal projection 

onto the transformed model space. In the process, we match sufficient statistics and 

the model space iteratively until convergence. A linearization of the new algorithm 

yields the scoring method. 



Chapter 5 

The geometry of conditional 

independence statement s  

5 . 1  Introduction 

In Chapter 2 the geometry of loglinear models for contingency tables has been dis-

cussed using two distinct approaches, the first contributed by Fienberg and the second 

by Haberman. A joint probability for a contingency table is decomposed additively 

with respect to the new basis before log-transformation ( in Fienberg geometry) and 

after log-transformation (in Haberman geometry). This leads us to ignore the special 

features of loglinear models relating to their interpretation in terms of conditional 

independence statements. In this chapter we describe a geometric setting for a subset 

of loglinear models, those which are the intersection of a finite set of conditional inde­

pendence ( C I) statements. This is of interest in itself and also provides a framework 

for understanding the workings of iterative proportional fitting approaches. 

For a given set of categorical variables S = {X1 , X2 , . . .  , Xm} with cell index 
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i = (i1 , i2 , . . .  , im) ,  the symbolic form of the saturated loglinear model is 

(5.1) 

where A� is the interaction effect among variables in A and depends on i only through 

iA , the sub-tuple of i corresponding to A. Conventionally we write A� = 11 when 

A = 0. To achieve identifiability the model has the constraints that the sum of the 

parameters A� for any index in iA equals zero. 

In practice, however, attention is usually restricted to hierarchical loglinear mod-

els. Such models have the property that whenever a particular A-term is constrained 

to zero then all higher A-terms containing the same set of superscripts are also set to 

zero, that is , if A� = 0 then Afv = 0 whenever A � D. For instance, the no three-way 

interaction model 

but the model 

with model symbol ( 1, X3, X1X2) is not a hierarchical loglinear model because Af2 = 0 

while A�1x2 is still present in the model. Clearly, a hierarchical loglinear model is 

specified in terms of the highest interaction terms which do not nest with each other 

in the model symbol. The collection of these interaction terms is called the generating 

class for such a loglinear model. For the no three-way interaction model the generating 

class is (X1X2 , X1X3 , X2X3) .  Thus a hierarchical model can be symbolized by its 

generating class. For more detail about hierarchical loglinear models we refer the 

reader to Bishop, Fienberg and Holland (1975). 
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On the other hand, any loglinear model has a graphical representation (Darroch, 

Lauritzen and Speed, 1980) . An independence graph g = (V, E) for a loglinear 

model consists of a finite set V of vertices, each vertex representing a variable in 

the model, and a finite set E of edges, each edge connecting vertices appearing as 

(or embedded in) a term in the model symbol. Thus there are as many vertices 

as dimensions of the contingency table and an edge represents a partial association 

between the corresponding two variables. For example, the independence graphs of 

the model ( 1 ,  X1 , X2 , X3 , X1X2 , X1X3 , X2X3) and ( 1 ,  X3 , X1X2) are shown in Figure 

5 . 1  ( 1 )  and (2)  respectively. Note that we call a graph complete if there is an edge 

• • 

(1) (2) 

Figure 5 . 1 :  ( 1 )  The independence graph for the model ( 1 , X1 , X2 , X3 , X1 X2 , X1 X3 ,  
X2X3) .  (2) The independence graph for the model ( 1 ,  X3 , X1X2 ) .  

between every pair of vertices. For instance, the graph in Figure 5 . 1  ( 1 )  i s  complete. 

Any subset U � V induces a subgraph of g, denoted Qu = (U , :F) , whose edge set 

:F consists of those edges in E for which both endpoints are in U. A subset U V 
is called complete if it induces a complete subgraph. A subset U V is called a 

clique if it is maximally complete. In other words, U is complete ,  and if U C W, then 

W is not complete. For example, the cliques in the graph shown in Figure 5 .2  are 
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Figure 5.2 :  An incomplete graph. 

Recently graph theory has been used to create a new type of statistical model , a 

graphical model, and we find that only some hierarchical loglinear models are graph­

ical models, identified by the property that the generating class is directly given 

by the cliques of the independence graph of a loglinear model (Darroch, Lauritzen 

and Speed , 1980) .  For example, for the hierarchical loglinear models (X1X2X3) and 

(X1X2 , X1X3 , X2X3) , the former model is a graphical loglinear model, but the lat­

ter one is not. These two models have the same independence graph as shown in 

Figure 5 . 1  ( 1 ) , but only the first model's generating class is induced by the clique 

of its independence graph. Thus any hierarchical model has an independence graph 

representation, but not all hierarchical models are graphical models. The relationship 

among loglinear models , hierarchical models and graphical models is highlighted in 

Figure 5 .3 .  

In this way we obtain a subset of  hierarchical loglinear models, graphical loglinear 

models ,  the models discussed in this chapter. Darroch, Lauritzen and Speed ( 1 980) 

showed that graphical loglinear models are always an intersection of a finite set of 

the following type of C I model, collectively denoted C I (G) . Such C I models are 

determined by a family of disjoint subsets A 1 , A2 , . • .  , At of S which are mutually 
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Loglinear Models 

Figure 5.3 :  The relationship among loglinear models, hierarchical models and graph­
ical models . 

independent given all other variables in S, or more formally 

Suppose that the disjoint subsets A1 , A2 ,  . . .  , At , C of S have the number of corn-

binations of levels of variables m1 , m2, . . .  , mt , m respectively, then we choose in the 

sequel to consider Ak as a single categorical variable with mk levels for k =  1, 2, . . . , t 

and C with m levels. The joint probability mass functions (or relative frequency 

tables) on the categorical variables A1 , A2 , . . .  , At , C correspond to ordered n-tuples 

in Rn where n = m1m2 . . .  mtm. Since the sum of elements of these n-tuples is one, 

each of these n-tuples corresponds to a point in an n - 1 dimensional simplex 

n 
Sn-1 = { (p1 , P2 ,  . . .  , pn) E Rn I L Pi = 1 and Pi 2: 0 for all i }  � Rn 

i=1 

Note that the vertices of Sn_1  are the unit vectors in Rn. Thus a point in Sn_ 1  can 

represent an ordered n-tuple with the sum of its elements equals to one, or a joint 

probability mass function, or a relative frequency table . These three representations 

are interchangeable throughout this chapter. 

The model space of a graphical loglinear model with categorical variables A1 , A2 , 
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. . .  , At , C is a subset within Sn-l · Our goal is to describe this model space through the 

geometry of C I statements and then to describe standard model fitting procedures 

within this framework .  The motivation to explore the geometry of C I statements 

has come from the desire to better understand graphical models and their fitting. 

Graphical models , as we have pointed out , occur as finite sets of C I statements. This 

work builds on earlier papers of Fienberg ( 1 968 and 1970) , where the geometry of the 

independence model space for two independent categorical variables was explored. 

Based on the geometrical setting of a C I statement , the geometry underlying the 

iterative proportional fitting method (Deming and Stephan , 1940) , a commonly used 

algorithm for finding the maximum likelihood estimate in loglinear models, will be 

constructed. 

This will be accomplished as follows. In Section 5 .2 we present the essential geo­

metric tools required to describe the model space. Section 5 .3  discusses the geometric 

setting for three kinds of distributions for a contingency table: the joint distribution, 

the marginal distribution and the conditional distribution. Section 5 .4  first develops 

the geometric framework for unconditional independence models and then develops 

the geometry of general conditional independence models. Section 5 .5  uses the ge­

ometric framework to illustrate with examples how the direct fitting method and 

the iterative proportional fitting method work for a conditional independence model. 

Finally, in Section 5 .6 ,  we summarize this chapter. 

5 .  2 Technical preliminaries 

In order to conveniently describe the geometric setting for CI(G) statements ,  we 

now review key concepts and establish some notation (all notation is presented to be 
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consistent with later usage) . 

a) Affine independence 

1. We say that P is an affine combination of Pi in RN, i = 1 ,  2, . . .  , n when 
n n 

P = L aiPi and 
i=l  

for real numbers Cti .  So all affine combinations of a set of vectors provide the 

line , plane etc. passing through them. 

2. A set S = { P1 , P2 , . . .  , Pn} <;;;; RN is affinely dependent provided at least one � 

for i = 1 ,  2 ,  . . .  , n is representable as an affine combination of the others. If a 

set S fails to be affinely dependent we call it affinely independent. So vectors 

are affinely independent if one of them does not lie in the smallest line, plane 

etc. passing through the other points. 

b) Convexity 

1 .  A set A <;;;; RN is convex if for any P1 , P2 E A and 0 ::; a ::; 1 we have 

aH + ( 1 - a) P2 E A 

2 .  The convex hull of a subset A of RN is the intersection of all the convex sets in 

RN which contain A .  It is denoted co(A) . 

c) Simplex 

A general n dimensional simplex Sn <;;;; RN ( n ::; N) is the convex hull of n + 1 affinely 

independent points in RN. Thus a two dimensional simplex is a triangle, a three 
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dimensional simplex is a tetrahedron and so on. 

d) Two ways of building sets 

1 .  Corresponding point convex hull 

We now define the m-fold corresponding point convex hull of a given compact 

set K S"; Rn. First we embed K into Rnm m times in the following natural way, 

m 

K X {0}  X . . .  X {0} 

{0} X /{ X . . .  X {0} 

{0} X {0} X . . .  X /{ 

where 0 is the origin in Rn. Consider the point in each of these m copies of 

K determined by k E K and denote the convex hull of these corresponding 

points by Ck · Then UkEKCk is the m-fold corresponding point convex hull of K,  

denoted coc{m , K} .  The corresponding points ,  m copies o f  k ,  are denoted by 

P1 , P2 , . . .  , Pm respectively in Rnm. 

For example, a trapezium ABCD is a corresponding point convex hull (see 

Figure 5.4 ( 1 ) ) ,  since it can be constructed as the corresponding point convex 

hull of two copies of K = {p : p E [a, b] } ,  a one-dimensional simplex, in R2 . 

On the other hand, a portion of a hyperbolic paraboloid within a tetrahedron 

ABC D is a corresponding point convex hull, constructed as the corresponding 

point convex hull of two copies of K = { (p ,  1 - p) : p E [0, 1] ) } ,  again a one­

dimensional simplex, in R4 (see Figure 5 .4 (2) ) .  Each point (for example, the 
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point P) on these corresponding point convex hulls is uniquely determined by 

its corresponding points (the point P1 and P2 ) . 

R 

c 

B R 

( 1 )  

D 
I I I 
1 1  
1 1  I I l l I 1 -p 
Il l I 1 
\I f / I 
V I / /  ' I I / // P, 

Ji�<-----
p 

p 4�;;�����-:_- c --�-�1fl l  A - - - - - -::. - ---, / / I I I I -- - - - :::.,....,.... // 11 I / I I \ 
" / / / I I f I I 

p / I I 1 I I 1 I I I I I 
f I I 

(2) 

I I I 
B 

Figure 5.4: ( 1 )  The corresponding point convex hull of two copies of a line segment 
K = {p :  p E [a, b] } in R2 . Here we hav AB = CD = K and the points P1 and 
P2 with coordinates (p 0)  and (0, p) in R2 re pectively. (2) The corresponding point 
convex hull of two copie of a line segment K = { (p, 1 - p) : p E [0, 1 ] ) } in R4 . Here 
we have AB = CD = K and the points P1 and P2 with coordinates (p, 1 - p, 0, 0) 
and (0 ,  0, p, 1 - p) in R4 respectively. 

2 .  Set convex hull 

The set convex hull of K1 , K2 . . .  , Km � RN is 
m 

{a1 k1 + a2k2 + · · · + cxmkm I ki E Ki ai 2:: 0 for each i and L ai = 1 } ,  
i=l 

denoted co5 {K1 , K2 , . . . , Km} ·  In the special case where ach Ki is a common 

compact set K in Rn naturally embedded, as described in (a) , we write the set 

convex hull as co5 {m, K } . 

For example a fac of a trapezium ABC D is also a set convex hull of two copies, 

AB and CD, of K = {p :  p E [a, b] } in R2 (see Figure 5 . 5  ( 1 ) ) . It occurs as the 
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union of all convex hulls of pairs of points, the points PI and P2 , one selected 

from each of a pair of line segments AB and CD. However, the set convex 

hull of two copies , AB and CD, of K = { (p ,  1 - p) : p E [0, 1 ] ) }  in R4 is the 

tetrahedron ABCD (see Figure 5 .5 (2) ) .  ote that a point (for example, the 

point P) in the set convex hull can arise in more than one way. 

R 

c 

D 

A � 

( 1 )  

D 

A 

B R 

(2) 

c 

B 

Figure 5 .5 :  ( 1 )  The set convex hull of two copies of a line segment K = {p : p E [a, b] } 
in R2 . Here we have AB = CD = K and the points PI and P2 with coordinates 
(PI , 0) and (0, p2 ) (where PI ,  p2 E [a, b] ) in R2 respectively. (2)  The set convex hull 
of two copies of a line segment K = { (p 1 - p) : p E [0, 1] ) }  in R4 . Here we have 
AB = CD = K and the points PI and P2 with coordinates (PI , 1 - PI , 0, 0) and 
(0, 0 ,  P2 , 1 - P2 ) (where PI ,  P2 E [0, 1 ] )  in R4 respectively. 

5 . 3  Geometric setting for distributions 

In this section we consider the geometry of three kinds of distribution for categor-

ical variables (AI , A2 , . • .  , At , C) :  the joint distribution, the marginal distributions 
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and the conditional distributions. Here we first reveal the relationship among three 

distributions, and then discuss the geometry of distributions with fixed margin. 

The relationship among three distributions 

Recall that the number of levels of variables A1 , A2 , . . •  , At and C are m1 , m2 , . . .  , mt 

and m respectively. Denote the distribution of Ak by PAk for k = 1, 2 ,  . . . , t and C 

by Pc. The main geometric results about distributions for (A1 1 A2 , . . .  At , C ) will be 

1 .  The joint distribution of  (A1 ,  A2 , . . •  At , C) ,  denoted by P(A1 7 • . •  , At , C) , cor­

responds to  a point P (named the global point ) in a simplex Sn-l (named the 

global simplex) where n = m1m2 . . .  mtm. 

2 .  The conditional distributions of (A1 1 A2 ,  . • •  , At) for given ith level o f  C,  denoted 

P(Ar , . . .  , At I C = ci ) , correspond to a point Pi in an r - 1  dimensional simplex 

s��l (where T = mlm2 . . .  mt) for i = 1 ,  2 ,  . . . ' m. Here � and s;�l are named 

the local point and the local simplex respectively. 

3 .  The marginal distribution of C corresponds to a point Pc (named the marginal 

point) in a simplex Bm-l (named the marginal simplex) . Any global point 

P E Sn-l can be mapped into a marginal point Pc E Sm-l by 

M =  

1 0 0 

0 1 0 

0 0 1 

with 0 =  [0, 0, . . .  , 0) ,  1 = [1 , 1 ,  . . .  , 1) E Rr . 

mxm 
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4. The global point P can be represented as a convex combination of the local points 

P1 , P2 , . . .  , Pm using as coefficients the marginal distribution of C. Specifically 

where Pc = { c1 , c2 , . . .  , cm} with ci 2 0 and I: ci = 1 for i =  1 , 2 . . .  , m. 

We turn now to demonstrate these results. 

A joint probability mass function for (A1 , A2 . . .  , At , C) corresponds an ordered 

n-tuple (p1 1 p2 ,  . .  · Pn) in Rn with Li Pi = 1 and Pi E [0,  1 ] for all i .  This n-tuple 

corresponds to a unique point P in the global simplex Sn_ 1 ,  the convex hull of the 

unit vectors in Rn. Regarding the marginal distribution of C, we rearrange the n­

tuple (p1 , p2 ,  . . .  Pn) as an m x r matrix, such that a row corresponds to the level of C, 

and a column corresponds to a combination of levels of variables in (AI ,  A2 ,  • • .  , At) ·  

Specifically, we consider 

Pu P12 

P21 P22 

Pml Pm2 

Plr 
P2r 

Pmr 

(5 .2 )  

where Pii is the j oint probability of the ith level of C and the jth level of combinations 

of (AI ,  A2 , . . . , At) · Thus Lij Pij = 1 where Pij 2 0 for all i ,  j and Lj Pij = ci for 

each i .  

From the definition of conditional probability (George and Roger 1990, p . 18) , we 

know that 

(5 .3)  



where Pc = { c1 , c2 , . . .  , cm} with ci 2: 0 and L Ci = 1 for i = 1 ,  2 . . . , m .  

Using (5 .3 ) , we can expand (5 .2) as 

Pn Plr Ell Cl 
1!.lJ:_ 

C) 0 0 0 
P21 P2r 0 0 Ell E2L 0 cz cz = Cl + cz + · . . + cm 

Pml Pmr 0 0 0 0 Em.l. Cm 

0 
0 

1 10  

(5.4) 

The left hand side of (5 .4) is the joint probability mass function for (A1 , A2 . . .  , At ,  

C) , corresponding to a global point P in the global simplex Sn-l (see Figure 5 .6) .  

Here Sn- l  has vertices 

where 

u(l) -1 -

1 

0 

0 

0 0 

0 0 

0 0 

u(l) _ ' 2 -

0 1 0 0 0 0 

0 0 0 
) . . .  ' u;m) = 

0 0 0 

0 0 0 0 0 1 

the unit vectors in Rn. Thus P can be uniquely represented as a convex combination 

of unit vectors as 

The ith matrix in the right hand side of ( 5 .4) is the conditional distribution of 

(A1 , A2 , . . .  , At) at the ith level of C; this corresponds to local point Pi in the local 
· 1 s<i) ' th · u(i) u:<i) u(i) c · - 1 2 Th s<i) b s1mp ex r- l  WI vert1ces 1 , 2 , . . .  , r 10r z - , , . . . , m . en r-l can e 

viewed as the ith boundary of the global simplex Sn-l (see Figure 5 .6) , and Pi as the 

convex combination of unit vectors uii) , u�i) , . . .  , uY) for an i given by 
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Therefore , Equation (5 .4 )  indicates that the global point P for the joint distribu­

tion of A1 , A2 , . . .  , At , C is a convex combination of the local points P1 , P2 , . • .  , Pm , 

the conditional distributions of (A1 , A2 , . . .  , At) for given level of C.  The coefficients 

of this convex combination together form the marginal distribution Pc (see Figure 

5 .6 ) .  Specifically, 

p = C]Pl + c2P2 + . . . + CmPm 

where Pc = {el l c2 , . . .  ' Cm} ,  p E Sn-1 and � E s;�l for i =  1 ,  2, . . .  l m .  

On the other hand, the sums of rows in the matrix ( 5 . 2) form the marginal distri­

bution of C as Pc = { c1 , c2 , . . . , cm} where ci = "f:.j Pij for all i. Thus any marginal 

distribution of C corresponds to a point Pc in an m - 1 dimensional simplex Sm_1 

such that 

Pc = cl Vi + c2 v2 . . .  + Cm V m 

where V1 , VZ,  . . .  , Vm are unit vectors in Rm (see Figure 5 .6) . Then the joint distribu­

tion P is related to the marginal distribution Pc by the mapping 

where P E Sn-1 ,  Pc E Sm-1  and 

M =  

1 0 0 

0 1 0 

0 0 1 mxm 

with 0 = [0 , 0, . . . , 0] , 1 = [ 1 ,  1, . . . , 1 )  E Rr . Note that this is a many-to-one mapping: 

for any point Pc E Sm-l its pre-image in Sn-l is all distributions with fixed margin 

Pc. 
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Now the relationship among the three kinds of distribution for categorical variables 

(A1 , A2 , . . .  , At ,  C) can be summarized by Figure 5 .6 .  

I 
I 

\ I 
/ \ I 

s;"' / \ I M ·1 / \ I 
/ \ I ..- - - - - - - -

/ \ I ,... ..... 
// 

p '-1 
� 
� 
1\ I 

\I 

u<l )  1 ' r ' -... , I \
\ I 

.........
......... __ --

\ 
� - \ I s,'"' 

' -...

..._ ..._ ..._ ..._ \ '!;n ·1 .................. v ' 
u<�> 

Sn-1 

u<m) r 

V I 

V 2 - - - - - - - - - - --- - - - - - - - - - - - -

Sm-1 
V m 

Figure 5.6 :  A joint distribution of (A1 , A2 ,  . . .  , At , C) corresponds to a point P in the 
global simplex Sn- l · A conditional distribution of (A1 ,  A2 ,  . . .  , At ) at the ith level of 
C corresponds to a point Pi on the local simplex S��1 , the ith boundary of the global 
simplex Sn_1 ,  for i = 1 ,  2, . . . , m. A marginal distribution of C is associated with a 
point Pc in an m - 1 dimensional simplex Sm-l ·  The joint distribution P and the 
marginal distribution Pc are linked through the mapping M. Meanwhile, the point 
P is a convex combination of the local points P1 , P2 , . . .  , Pm using as coefficients Pc. 

Geometry of distributions with fixed margin 

If we denote the ith row in the matrix M (see p. l l 1 )  by si for i = 1 ,  2, . . . , m, then 

the set of points F C Sn-l with fixed C margin Pc = { c1 , c2 , . . .  , cm} is 

F = { P E Sn-1 I Si . P = � for all i }  
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Geometrically, any point P with si · P = ci lies on an n - 1 dimensional slice (hyper­

plane) which is perpendicular to the vector si in Rn and has a projection of length 

cd l l si l l  onto si · Thus F is an intersection of m of these hyperplanes, so has dimension 

n - m in Sn_1 , and is perpendicular to s1 , s2 , . . .  , Sm simultaneously. In fact, from 

standard linear algebra results F is an affine transformation of the nullspace of the 

matrix M (Anton 1994, p.260) . 

Since s 1 , s2 , . . •  , sm are linearly independent , so the n - m dimensional hyperplane 

F is perpendicular to an m dimensional hyperplane G = span { s 1 , s2 ,  . . .  , Sm} .  The 

projection of any P E  F onto the hyperplane G is 

P' 

Since sl /r, s2/r, . . .  , sm/r are linearly independent, thus affinely independent , P' 

is in an m - 1 dimensional simplex with vertices sl /r, s2jr, . . .  , sm/r. This m - 1 

dimensional simplex is nested within the global simplex Sn_1 and has the same centre 

as the global simplex Sn-1 due to the facts that sdr E Sn-1 for all i (since the sum 

of components of sdr is one) and 

1 1 1 1 S1 1 S2 1 Sm 
( - , - , . . .  , -) = - - + - - + . . .  + --
n n n m r  m r  m r 

where n = mr. Thus we call this m - 1  dimensional simplex a central simplex denoted 
c by sm-1 · ow the marginal distributions of c correspond to points in the central 

simplex S�-u and for a given Pc the set F with fixed Pc is perpendicular to 5�_1 

at the point P' . 

Similarly, the set of points in Sn_1  with fixed Ak margin is found to be a hyperplane 

which is perpendicular to the central simplex s�:-1 for k =  1 ,  2 ,  . . . , t. Note that now 
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the n-tuple (p1 , p2 , . .  · Pn) is arranged as a two-way array such that its rows correspond 

to the level of Ak > and columns to a combination of levels of variables in S \ Ak where 

In summary, the distributions with fixed margin Pc correspond to points in the 

intersection between a hyperplane F (an affine transformation of the nullspace of 

matrix M) and the global simplex Sn- l ·  All marginal distributions of C associate 

with points in the central simplex 8�_1 whose vertices are the normalized row vectors 

in !vf. The hyperplane F is perpendicular to the central simplex 8�_1 at the point 

corresponding to Pc . 

The above results are illustrated in the following example. 

Example 1 Suppose an observed relative frequency table with binary variables X 1 

and x2 is 

(pu , P12 , P21 , Pn) = (0.4, 0 . 3 ,  0 .2 ,  0 . 1) 
This joint distribution of X1 and X2 corresponds to a point P in the tetrahedron 

ABCD, the global simplex 83 (see Figure 5.7) . Consider the marginal distribution 

of x1 , �yl = (0.7, 0 .3) , the 4-tuple (0 .4, 0 .3 ,  0 .2 ,  0 . 1) is laid out as 

[ 0.4 0.3 ] 0 .7 

0 .2  0 .1  0 .3  
(5 .5 )  

where the first and second rows of  the matrix (5 .5 )  are the joint probabilities of 

(X1 , X2) when X1 = 0 and X1 = 1 respectively. 

The definition of conditional probability gives that 

[ 0.4 0 .3 ] 
= 0. 7 

[ 0 .57 0.43 ] [ 0 0 l 
0 . 2  0 . 1  0 0 

°"3 
0.67 0 .33 

where (0 . 57, 0.43, 0, 0) is the conditional distribution of x2 for given xl = 0 ;  this 

corresponds to a local point g in the local simplex sP) , the line segment AB , while 
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(0, 0 ,  0.67, 0.33) is the conditional distribution of X2 when X1 = 1 ;  this corresponds 

to a local point Pz in the local simplex Si
2
) ,  the line segment CD (see Figure 5. 7) . 

Thus we obtain P = 0 . 7 P1 + 0.3Pz .  

Note that any conditional distribution of X2 when X1 = 0 corresponds to a point 

on the line segment AB, while any conditional distribution of X2 when X1 = 1 

corresponds to a point on the line segment CD. 

A given marginal distribution of X1, Px1 = (0 .7, 0 .3 ) ,  corresponds to a point P' 

in the central simplex 

s;l = { P = c1 (0 .5 , 0 .5 , 0, 0) + cz (0, 0 , 0 .5 , 0.5) I I.: ci = 1 and Ci > 0 for all i} 

the line segment EF. Any point in the global simplex S3 , the tetrahedron ABCD, 

with fixed Px1 = (0 .7 , 0 .3) is in the set 

K = {P E  s3 I s l ·  p = 0.7 and Sz. p = 0.3} 

where s 1 = [ 1 , 1 ,  0 , OJT and s2 = [0 , 0 ,  1 , l]T. The set K is the plane which is perpendic­

ular to the central simplex s;1 at the point P' = 0 .  7(0 .5 , 0 .5 , 0 ,  0 )  + 0.3(0 , 0 ,  0 .5 ,  0 .5) 

(see Figure 5 .7) . 

Symmetrically, any point in the global simplex S3 , the tetrahedron ABCD,  with 

fixed Px2 is in a plane which is perpendicular to the central simplex 

s;2 = {P = c; (0 .5 , 0 ,  0 .5 , 0) + c� (O, 0.5 , 0 ,  0 .5 ) I L c� = 1 and c� > 0 for all i }  

the line segment G H (see Figure 5. 7) . 

Therefore, the direction for preserving both the X1 and X2 margins in the tetra­

hedron ABCD is perpendicular to the central simplexes EF and GH simultaneously, 

namely the direction I J = ( -0 .5 , 0 .5, 0 .5 , -0 .5) ( see Figure 5 .7) . 
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D (0, 0, 0, 1) 

c (0, 0, 1, 0) 

8 (0, 1' 0, 0) 

Figure 5. 7: This figure shows the lines with constant margins for a relative frequency 
table involving binary variables X1 and X2. Any direction perpendicular to EF will 
preserve an X1 margin. For example, points on the quadrilateral K have X1 margin of 
(0.7 , 0 .3) .  On the other hand, a direction for preserving an X2 margin is perpendicular 
to CH. Thus along the direction I J both X1 and X2 margins are preserved, where 
I = (0 .5 , 0, 0, 0.5) and J = (0, 0 .5 ,  0 .5 ,  0 ) .  

5 .4 Geometric setting for C I models 

Our aim now is to describe the subset of Sn- l  providing the model space of 

Fienberg ( 1968) describes the geometry of a two-way contingency table with indepen­

dence between rows and columns, while Fienberg and Gilbert ( 1970) illustrate the 

associated results on a two by two contingency table. Here we start by building the 

model space for the unconditional independence statement A1 Jl A2 Jl . . .  Jl At in 

what we term the "local" simplex, and then extend this to describe the model space 
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for one CI(G) statement, A1 lL A2 lL . . . lL At I C, in the global simplex, formed as 

the convex hull of local simplexes. 

Model space for an unconditional independence statement 

Recall that the variables A1 , A2 , . . .  , At have the number of levels m1 , m2 , . . .  , mt 

respectively, and PAk denotes the marginal distribution of Ak.  an mk-tuple for k = 

1 ,  2 ,  . . .  , t .  We will show that the model space for A1 lL A2 ll . . .  ll At is a 

recursively defined corresponding point convex hull in the simplex Sr-l where r = 

m1m2 . . .  mt . We begin by discussing the case where t = 2 ,  then deal with the general 

situation, providing an illustrative example for each case. 

Model space for A1  ll A2 

The main result about the statement A1 ll A2 is: 

The model space of A1 ll A2 is the corresponding point convex hull of 

1n1 copies of Sm2-1 in Rm1rn2 , coc{ m1 , Smz-l } , or the corresponding point 

convex hull of mz copies of Srn1-l in Rrn1m2 , coc{m2 , Sm1-J } . 

The familiar joint probability mass function P for (A1 ,  A2)  can be represented 

as a 2-way array in which the ijth element of P is the joint probability associated 

with the ith level of A1 and jth level of A2 .  Letting PA1 = (o:1 , 0:2 , . . . , O:m1 ) and 

PA2 = (/31 , /3z ,  . . .  , /3m2) where I:Cl:i = 1 ,  o:i E [0 , 1] and "£ f3J = 1 ,  f3J E (0, 1] , then P 

is the m1 x m2 matrix 



1 18  

Geometrically, we view the joint probability mass function P for (A1 , A2) as an 

m1m2-tuple in the simplex Sm1mz-l  � Rm1m2 • Conventionally, we write this m1m2-

tuple lexicographically, laying out the rows in the above array sequentially as 

(5 .6)  

where 0 = [0, 0, . . .  , 0 ]  E Rm2 •  

Each possible value o f  the A2  margin PA2 corresponds to a point in  a simplex 

Smz - 1 > a compact convex set . Expression (5 .6)  represents a point in the model space 

of A1 Jl A2 as a convex combination of m1 points with the same margin PA2 in 

Rm1m2 • Hence the model space of A1 Jl A2 is a corresponding point convex hull of 

m1 copies of Sm2- r  in  Rm1m2 , coc{m1 , Smz-1 } .  These m1 corresponding points are 

linearly independent and thus affinely independent in Rm1m2 , so coc{ ml l Smz-l } is a 

union of m1 - 1  dimensional simplexes. Points in anyone of these simplexes correspond 

to joint probability mass functions with the same A2 margin. 

Symmetrically, the joint distribution can also be written as an (m2m1 )-tuple by 

laying out the columns in the above array sequentially as 

where 0 = [0, 0, . . .  , 0] E Rm1 • 
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Expression (5 .7) highlights that every point i n  the model space of A1 Jl A 2  

1s also a convex combination of m2 points with the same margin PA1 in Rm1m2 , 

a corresponding point convex hull of m2 copies of Sm1-1  in  Rm1m2 , coc{m2 , Sm1-I } . 

Again coc{ m2 , Sm1- 1 }  is a union of m2 - 1 dimensional simplexes, each simplex having 

fixed A1 margin. 

In summary, the model space for A1 Jl A2 can be thought of geometrically as a 

corresponding point convex hull embedded in the simplex Sm1mz-l · This correspond­

ing point convex hull can be constructed using either of two families of simplexes. One 

family of simplexes is indexed by the A1 margins, while the other family is indexed by 

the A2 margins. Furthermore, since A1 and A2 are independent the joint probability 

mass function P is determined by the marginal distributions PA1 and PA2 ,  so we have 

that 

1 )  Within each family the simplexes do not intersect , but between families each 

simplex will meet a simplex in another family at one point . 

2) Any point on the independence model space meets precisely one simplex in each 

family. 

vVe now illustrate the model space for A1 Jl A2 .  

Example 2 When m 1  = m2 = 2 ,  the model space of A1 JlA2 i s  a portion of a hy­

perbolic paraboloid within a tetrahedron (a 3-dimensional simplex S3) .  It is a doubly 

ruled surface and is completely determined by either family of lines (Fienberg and 

Gilbert , 1970) . These two families of lines correspond to the two ways of constructing 

the independence surface. For one of them we build the independence surface in the 

following steps: 
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Step 1 Determine the unrestricted model space to be the 3-dimensional simplex with 

unit vectors in R4 as vertices, a tetrahedron ABCD (see Figure 5 .8 ) .  

Step 2 Partition the vertices of the tetrahedron ABC D into m1 (two) lots of m2 

(two) vertices. 

Step 3 Embed m1 (two) copies of the simplex associated with the marginal distri­

bution of A2 , line segments AB = CD = { (,6, 1 - ,6) : ,6 E [0 , 1 ] } ,  in the 

tetrahedron ABCD. 

Step 4 Find the points ( ,6, 1 - ,6, 0 , 0) and (0, 0 , ,6, 1 - ,6) on AB and CD respectively 

corresponding to PA2 = (,6, 1 - ,6) . 

Step 5 Obtain the independence surface as the union of simplexes (the long dashed 

lines in Figure 5 .8)  with varying A1 margin, each simplex being the convex hull 

of points (,6, 1 - ,6 ,  0 , 0) and (0, 0, ,6 , 1 - ,6) .  The model space is 

UpE[O,lJ { a (,6 , 1 - ,6, 0 , 0) + ( 1 - a) (O, 0 , ,6, 1 - ,6) I a E (0 , 1] } = PA1 ® PA2 

where "®" denotes a tensor product and PA1 = (a , 1 - a) . This has a coc{2 ,  SI } 

structure. 

Note that the independence surface also can be generated by another family of 

simplexes (the short dashed lines in Figure 5 .8) , each with varying A2 margin, 

so that the model space is 

UaE[O,lj { ,6(a,  0 , 1 - a, 0) + ( 1 - ,6) (0 , a, 0 , 1 - a) I j3 E (0 , 1] } = PA2 ® PA1 • 

The above procedure is illustrated in Figure 5 .8. 
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D (0, 0 ,  0, 1 )  

A (1 , 0, 0, 0) 

B (0, 1 ,  0, 0) 

Figure 5 .8 :  The model space for A1 Jl A2 with m1 = m2 = 2 is part of a hyperbolic 
paraboloid within a tetrahedron ABCD. It can be generated by two families of 
simplexes, one with varying A1 margin (the long dashed lines) and another with 
varying A2 margin (the short dashed lines) .  

Example 3 When m1 = 3 and m2 = 4 the model space of A1  Jl A2 is a corresponding 

point convex hull coc{3 ,  83} within an 1 1-dimensional simplex 81 1 .  There are two ways 

of constructing the independence surface. For one of them we build the independence 

surface in the following steps: 

Step 1 Determine the unrestricted model space to be the 1 1-dimensional simplex 

Su with unit vectors in R12 as vertice . 

Step 2 Partition the vertices of Su into m1 (three) lots of m2 (four) vertices. 
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Step 3 Embed m1 (three) copies of the simplex associated with the marginal distri­

bution of A2 , tetrahedrons ABCD, A'B'C'D' , A"B"C"D" , in the simplex S11 . 

Step 4 Find the points E = (61 , b2 , b3 , b4 , 0 ,  0 ,  0, 0, 0, 0 ,  0, 0 ) ,  F = (0 ,  0 ,  0 ,  0, bl ? b2 , b3 , b4 , 

0, 0, 0 ,  0 )  and G = (0 ,  0, 0 ,  0, 0, 0, 0 ,  0 ,  b1 , b2 , b3 , b4) on ABCD, A' B'C' D', A" B"C" D" 

respectively corresponding to PA2 = (b1 , b2 , b3 , b4 )  where L, bj = 1 and bj E [0, 1] 

for all j .  

Step 5 Obtain the independence surface as the union o f  2-dimensional simplexes 

(the triangle in Figure 5 .9  ( 1 ) )  with varying A1 margin, each simplex being the 

convex hull of points E, F and G. The model space is 

U(b1 .b2 ,b3 ,b4)ES3 { a1E+ azF +a3G I L ai = 1 and ai E [0, 1) for all i }  = PA1 ® PA2 

where PA1 = (a1 , a2 , a3) .  This has a coc{3 ,  S3} structure. 

Note that the independence surface also can be generated by another family of 

simplexes (the tetrahedrons in Figure 5 .9  (2) ) ,  each with varying A2 margin ,  so 

that the model space is 

where 

A =  (a 1 ,  0, 0, 0, a2 ,  0, 0 ,  0, a3 , 0, 0, 0) 

B = (0 ,  a1 ,  0 ,  0 ,  0 ,  a2 , 0 ,  0 ,  0 ,  a3 , 0 ,  0 )  

C = (0 ,  0 ,  a 1 ,  0 ,  0, 0, a2 , 0 ,  0 ,  0 ,  a3 , 0) 

D = (0 ,  0 , 0 ,  a1 , 0 ,  0 ,  0, az , 0 ,  0 ,  0, a3) .  

The above procedures are illustrated i n  Figure 5 .9 .  
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Figure 5.9 :  The model space for A1 Jl A2 with m1 = 3, m2 = 4 can be constructed 
in two ways: ( 1 )  The union of 2-dimensional simplexes (triangles) with varying A1  
margin, or ( 2 )  The union of 3-dimensional simplexes (tetrahedrons) with varying A2 
margin. 

Model Space for A1 Jl A2 Jl . . . Jl At 

In this general case the main result about the model space of A1 Jl A2 Jl . . .  Jl At 

is: 

The model space of A1 Jl A2 Jl . . .  Jl At can be constructed as a 

corresponding point convex hull in R n ( n = m1 m2 . . .  mt ) in t distinct 

ways. A typical form is 

To construct the model space of A1 Jl A2 Jl . . . Jl At , we start with the model 

space of At-l Jl At,  namely coc{mt- 1 , Sm1-i } ,  a compact set. The model space of 

At-2 Jl (At-l Jl At) is then the union of ffit_z - 1  dimensional simplex Sm1_2- 1  whose 

vertices are the corresponding points in ffit-2 copies of coc{mt_ 1 ,  Sm1- 1 }  in Rn . That 

is , the corresponding point convex hull of mt-z copies of coc{mt- 1 > Sm1-d , which 
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we write as coc{ mt_2 , coc{ mt_1 ,  Smt-1 } } . Note that those corresponding points are 

determined by the joint margin of (At_1 , At) .  Recursively we obtain that the model 

space of A1 Jl A2 Jl . . . Jl At is the corresponding point convex hull 

where K = coc{ m2, . . . , coc{ ffit- 1 ,  Srnt-l } . . . } , named a sub-corresponding point con­

vex hull. 

We know that the corresponding point convex hull I is a union of simplexes Sm1_ 1  

whose vertices are the corresponding points on  m1 copies of  the sub-corresponding 

point convex hull K .  Each of these simplexes Sm1 -1 has varying A1 margin but keeps 

all other margins the same. Meanwhile we can permute the order of A1 Jl A2 Jl 

. . . Jl At to obtain the same corresponding point convex hull in R n in t !  distinct ways. 

This corresponding point convex hull however is only covered by each of t families of 

simplexes; a simplex in a family will have varying Ak margin but the same remaining 

margins. Specifically, 

where K, a sub-corresponding point convex hull ,  is the independence model space of 

all the subsets in S except Ak for k = 1 ,  2, . . .  , t .  

S ince A1  Jl A2  Jl . . . Jl At the joint probability mass function PA for (A1 , A2 , . . .  , At) 

is determined by the marginal distributions PA1 1  PA2 ,  • • •  , PA1 1 so we have that 

1 )  Within each family the simplexes do not intersect , but between families each 

simplex will meet all another family of simplexes in one point. 

2 )  Any point on the independence model space meets precisely t simplexes with 

different margins. 
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We now illustrate the model space for A1 lL A2 lL A3 . 

Example 4 When m1  = m2 = m3 = 2 ,  the model space of A 1  lL A2 lL A3 is a 

corresponding point convex hull in a simplex 57. There are 3 !  ways of constructing 

the independence surface. For example, we can build the independence surface in the 

following steps: 

Step 1 Determine the unrestricted model space , the simplex 57 whose vertices are 

the unit vectors in R 8 .  

Step 2 Partition the vertices of  57 into two (m1 ) lots of  four (m2m3) vertices. 

Step 3 Place a copy of the independence model space of A2 lL A3 , coc{2 ,  51 } ,  in 

each of the two ( m1 )  partition simplexes ABC D and A' B' C' D' (see Figure 

5 . 10 ) .  Here we have 

COc{2 ,  SI } = u'YE[O,lj {/3(1, ( 1 - {) ,  0, 0, [, ( 1 - {) ,  0, 0)  

+ ( 1 - /3) (0, 0 ,  [, (1  - {) ,  0 ,  0 ,  [, ( 1 - I) ) I !3 E [0 ,  1] } 

where PA2 = (/3, 1 - !3) and PA3 = (r ,  1 - [) . 

Step 4 Find the corresponding points (/31, ( 1 -f))r, /3( 1 - [) , ( 1 -/3) ( 1 -[) , 0 ,  0 ,  0 ,  0) , 

(0 , 0 ,  0, 0 ,  (3{, ( 1  - f))r, /3(1 - 1) , ( 1  - !3) ( 1  - 1)) for given PA2 and PA3 on the 

corresponding point convex hulls in ABCD and A' B'C' D' respectively. 

Step 5 Form a corresponding point convex hull of these two (m1 ) copies of coc{2 ,  51 } ,  
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that is, produce 

COc{2 ,  COc{2 ,  SI } }  

u11,,E[O, l J {a(,B/, ,8(1  - 1) ,  ( 1 - ,B)r, ( 1 - ,8) ( 1 - 1) , 0, 0, o, 0) 

+( 1 - a) (O, 0, 0 , 0, ,81, ,8 ( 1 - 1) ,  ( 1 - ,B)r ,  ( 1 - ,8) ( 1  - 1))  I a E [0 , 1] } 

where PA1 = (a ,  1 - a) .  

Here the model space coc{2 ,  coc{2 , SI } }  is a union of one-dimensional simplexes 

(that is, line segments) , and each of these line segments has varying A1 margin but 

fixed A2 and A3 margins. The above procedure is illustrated in Figure 5. 10 . 

B C' 

Figure 5 . 10: A 3-dimensional representation of the model space for A1 ll A2 ll A3 
with m1 = m2 = m3 = 2. The corresponding point convex hull coc{2 coc{2 ,  S1 } } ,  
is constructed as the union of corresponding point convex hulls of two copies of the 
independence model space of A2 and A3 , namely coc{2 ,  SI } ,  sketch as ABCD and 
A'B'C'D'. 
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Model space for a conditional independence statement 

Recall that the levels of variables A1 ,  A2 , . . .  , At and C are m1 , m2 , . . .  , mt and m 

respectively, the conditional distribution of (A1 , A2 ,  . . .  , At) for given ith level of C 

is denoted by Pi for i = 1 ,  2 ,  . . .  , m and the marginal distribution of C by Pc = 

{ c1 , c2 , . . .  , cm} ·  It is natural to reach conclusions about the model space of A1  Jl 

A2 . . . Jl At I C by extending the results of the geometric setting for distributions 

(Section 5 .3 )  and the unconditional independence statements. The main result is now 

described: 

The model space can be constructed geometrically as a set convex hull of 

m copies of I ,  the model space of A1 Jl A2 . . .  Jl At, in the global simplex 

Sn-1 where n = m1m2 · · · mtm ,  namely 

cos{ m ,  I} = {c1P1+c2P2+· · +cmPm I Pi E  h ci 2:: 0 and I: Ci = 1 for all i } 

where Ii is the ith copy of I in the local simplex s;�1 for i = 1 ,  2 ,  . . .  , m. 

From Section 5 .3  we know that the global point P for the joint distribution of 

A1 , A2 , . . .  , At , C is a convex combination of the local points P1 , P2 , . • .  , Pm, the con­

ditional distributions of (A1 , A2 , . . .  , At) for given level of C, using the marginal 

distribution Pc as coefficients. Specifically, 

where Pc = { C} ,  c2 , . . .  ' Cm } ,  p E Sn-1 and pi E s;�l for i =  1 ,  2 ,  . . .  ' m. 

Since A1 Jl A2 . . .  Jl At I C, for given level of C the distributions of (A1 , A2 , . . .  , At )  

is an unconditional independence statement. The local point Pi , then, i s  on the model 

space Ii for A1 Jl A2 . . . Jl At within the local simplex s;�1 for i = 1 , 2, . . .  , m (see 
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Figure 5 . 1 1 ) .  Thus, the model space of A1 Jl A2 . . .  Jl At I C can be regarded 

geometrically as a set convex hull in the global simplex Sn_ 1  determined by 

S(m) r·1 

- - -

S(1) r·1 

- - -

S(J) r·1 

Figure 5 . 1 1 :  The global point P on the model space of A1 Jl A2 . . .  Jl At I C is a 
convex combination of the local points P1 , P2 , . . .  , Pm where Pi is located on the ith 
copy of I, the model space of A1 Jl A2 . . .  Jl At , within the local simplex Sr-1 for 
all i .  

We now illustrate the model space for A1 Jl A2 I C .  

Example 5: When m1 = m2 = 2 and m =  4 ,  the model space of A1 Jl A2 I C is 

described as follows 

Step 1 Determine the unrestricted model space , the global simplex 815 � R 16 . 

Step 2 Partition the vertices of S15 into four (m) lots of four (m1m2) vertices . 
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Step 3 Place four (m) copies of the independence model space of A1 Jl A2, I = 

coc{2 ,  S1 } , in each of the partition simplexes ,  h ,  I2 ,  I3 , I4 . Here we have 

h = {coc{2 , SI} , O , O, O} 

I3 = {O , O, coc{2, Sl } , O} 

where 0 = [0, 0, 0 ,  0] . 

I2 = {0 ,  coc{2, SI } , 0, 0} 

!4 = {O , O, O , coc{2 , Sl } }  

Step 4 Take the four arbitrary points from four copies of I respectively and obtain 

the convex combination of these four points as c1P1 + c2P2 + c3P3 + c4P4 ,  where 

Pc = (c1 ,  c2 , c3 , c4 ) .  

Step 5 Let Pi vary on Ii for all i to form the model space of A 1  Jl A 2  I C 

5 . 5  The MLE o f  a distribution satisfying 

A1 lL A2 . . .  Jl At I c 
In Section 5 .4  we described the model space of A1 Jl A2 . . .  Jl At I C as a set convex 

hull co8 {m,  1} . Here we will consider the MLE of the parameters of this model for 

an observed relative frequency table P using geometry. Birch ( 1963) shown that the 

MLE of the parameters of the model A1 Jl A2 . . .  Jl At I C is the unique point on 

the model space which matches the observed relative frequency table P with minimal 

sufficient statistics. For the model A1 Jl A2 . . .  Jl At I C the minimal sufficient 

statistics are the entries in the marginal tables PA1c ,  PA2c, . . .  , PAtC (Bishop 1 995 ,  

p.83) where PAkc is the joint marginal table of Ak and C for all k. We have two ways 
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to obtain the MLE of the parameters of the model A1 JL A2 . • .  JL At I C, one from 

a closed formula (Bishop, 1995) named the direct fitting method and another from 

the iterative proportional fitting method. The later method, formulated by Deming 

and Stephan in 1940, is a commonly used algorithm for MLE in loglinear models . 

This section discusses the geometric fitting of a C I statement using the two methods. 

Here we start with the fitting of an unconditional independence model. 

Geometry of fitting of an unconditional independence model 

A table of (A1 , A2 , . . •  , At) is a t-way array indexed by l = ( l 1 , l2 . . .  , lt ) where lk is 

an index of levels of Ak for k = 1, 2, . . .  , t . For the model A1 JL A2 . . •  JL At with 

observed table {pJ, the MLE table {J\ } is directly found by the formula 

where '+' denotes summation over the remaining indices in l .  

Let the observed table {p1 } and its MLE table {p1 } correspond to points P and 

P in the simplex Sr_1 (where r = m1m2 . . . mt) respectively. From Birch ( 1963) P 

is on the model space of A1 JL A2 • • .  JL At and has the same Ak margin as P for 

k = 1 ,  2 . . .  , t. Thus from Section 5 . 3 ,  geometrically P is obtained by moving P to 

the model space of A1 JL A2 . . . JL At along the direction perpendicular to central 

. 1 SAl S
A2 SAt . 1 1 Slmp exes m-1 , m- l , . . .  1 m-1 SlmU taneous y. 

Alternatively, P also can be found by the iterative proportional fitting method. 

The procedure is shown below. 

Initial step 

Set k = 0. Take as an initial estimate the table {p�0) } which corresponds to the 



point 

Iterative step 

� (0) - � � � P - ( , , . . .  , ) E Sr-1 r r r 

Step 1 .  Scale {p;k) }  to have margin {p11 + }  giving 
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where the first superscript of p;k+1 ,1 l refers to the iteration number, and the 

second to the step number within iterations. Now let {ilik+l ,l ) } correspond 

to a point ft(ll E Sr- 1 · 

Step 2 .  Scale {p�k+1 ,1 l }  to have margin {p12+ }  giving 

and let {p�k+1,t- 1) } correspond to a point ftCt-1) E Sr-l · 

Step t .  Scale {p�k+1 ,t- 1) }  to have margin {p1t+ } giving 

Stopping rule Stop when the fitted margin of Ak and the observed margin of Ak 

are sufficiently close for k = 1 ,  2 ,  . . .  t .  Otherwise, increment k and return to 

the iterative step. 
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Note that the MLE of the parameters of model A1 Jl A2 . . •  Jl At can be obtained 

from a closed formula, the algorithm will converge at the first iteration (Haberman 

197 4, p. l97) 0 

Recall that any point in the model space A1 Jl A2 . . . Jl At meets precisely t 

simplexes with the kth simplex has varying margin of Ak while all other margins 

remain constant for all k. From Section 5 .4 ,  geometrically, P is obtained by starting 

with the central point pco) of the simplex Sn-l · The point pco) is in the model space 

A1 Jl A2 . . .  Jl At , so the point P(l) is found by moving p(o) on the simplex with 

varying A1 margin to meet the hyperplane with fixed margin PA1 in Sr-l · Note that 

P(l) has the same margin of A1 as P, but the remaining margins as pco) . Again P(l) is 

in the model space A1 Jl A2 • . .  Jl At , then the point P(2) is found by moving P(l) on 

the simplex with varying A2 margin to meet the hyperplane with fixed margin PA2 in 

Sr-l ·  Now pcz) has the same margins of A1 and A2 as P, but the remaining margins 

as pco) . Following this pattern, we find points F(3 ) ,  F(4) ,  • • .  , P(tl ,  where finally the 

point p(t) is on the model space of A1 Jl A2 . . .  Jl At and matches the data point P 

in the minimal sufficient statistics, the marginal tables PA3 , PA4 , • • •  , PAt . Thus PCt) 

is the fitted point P. 

Now we illustrate the fitting of the independence model of a 2 x 2 table using two 

methods just described. 

Example 6 Consider an observed table P with binary variables X 1 and X2 corre­

sponding to a 4-tuple in lexicographical order X1 , X2 of 

(pu ,  P12 ,  P21 l  P22 ) = (0. 2 , 0 .2 ,  0 . 1 ,  0.5) 

Suppose P = (fin ,  fYI2 ,  fiz1 , fizz) is the MLE of P for the model X1 Jl Xz . Then P 

can be found by the following two methods. 
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1. The maximum likelihood estimate P can be directly calculated by the formula 

Pij = Pi+P+j , where Pi+ = Pil + Pi2 and P+j = Plj + P2j for all i ,  j .  Then we have 

P = (fJn , P12 , P21 , P22 ) = (0. 12 ,  0 .28, 0 . 18, 0 .42) 

The fitted point P is a point on the model space of X1 ll X2 and has the same 

X1 and X2 margins as the observed point P. Thus geometrically (see Figure 

5 . 12) , the fitted point P can be found by sliding the observed point P down to 

the model space coc{2 ,  SI } ,  part of hyperbolic paraboloid , along the direction 

of I J which preserves the X1 and X2 margins in the tetrahedron ABCD (see 

Example 1 ) .  

Figure 5 . 12 :  The left panel shows that for a given data point P, the MLE P for 
model xl Jl x2 is found by sliding p down to the model space of xl ll x2 along 
the direction I J, the direction for preserving X1 and X2 margins. Alternatively, the 
right panel shows that P can be found by starting with the central point 0 ,  then 
moving along GH (the simplex with varying X1 margin) to point j>(l) with margin 
Px1 , then shifting j>(l) along M N (the simplex with varying X1 margin) to point f>C2l 
with margins Px1 and Px2 • Thus we find P = f>C2) . 

2 .  On the other hand, the fitted point P can be found by the following procedure: 

1 )  Start with an initial estimate j>(o) = (0 .25, 0.25, 0 .25, 0 .25) . 
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2) Scaling p(O) to match the xl margin of p giving p(l ,l ) = (0.2 ,  0 .2 ,  0 .3 ,  0 .3) 

using 

3 )  Scaling p(l , l) to match X2 margin of P we obtain P<1 ,2) = (0. 12 ,  0 .28 ,  0 . 18, 

0 .42) using 

A ( 1 , 2) - A( l , l) P+j f 11 . . PiJ - PiJ A ( l , l) or a z, J 
P+J 

The point P(l ,2) is on the model space xl lL x2 and matches p in the xl and 

X2 margins. Thus we obtain the fitted point P = p(1,2) . 

To interpret the above procedure geometrically (see Figure 5 . 1 2 ) ,  we can de-

scribe it alternatively as follows: 

1 )  Start from the central point 0 of the tetrahedron ABC D, the initial esti­

mate of P. 

2)  Move the point 0 along the simplex CH, whose points have varying X1 

margin (but fixed x2 margin) to the point p(l) which has xl margin of 

(0 .4 ,  0.6 ) .  

3 )  Move the point P(l) along the simplex M N, whose points have varying 

X2 margin (but fixed X1 margin) to obtain the point p(z) which has X2 

margin of (0 .3 ,  0 .7) . 

Now the point p(z) is on the model space X1 lL X2 and has the same X1 and 

X2 margins as the given point P. According to Birch's result ( 1963) ftC2l is the 

required fitted point P. 
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Geometry of fitting of a conditional independent statement 

As described in Section 5 .3 ,  an observed contingency table for the variable sets 

A1 ,  A2 , • . .  , At , C can be viewed as a point P in the global simplex Sn-l ·  The global 

point P is a convex combination of the local points H ,  P2 , . . .  , Pm , using as coefficients 

the marginal distribution of C.  Specifically 

where Pc = { c1 , Cz , . . .  , cm} with ci 2:: 0 and I: ci = 1 for i = 1 ,  2 . . .  , m. 

Let P be the MLE of P for the model A1 Jl A2 . . .  Jl At I C. Then the fitted 

point P is located on the set convex hull co8{ m, I} where I is the model space of 

A1 Jl Az . . . Jl At , and 

( 5 .8) 

where F1 , F2 , . . .  , Pm are the fitted local points located on m copies of I in Sn_1 ,  and 

{c1 , cz , . . .  , cm} ,  denoted by Pc , is the C margin of P. 
A A 

Denote the joint distribution of Ak and C for P and P by PAkc and PAkc respec-

tively for all k, and the conditional distribution of Ak for given level of C for P and 

P by PAk\C and PAk /C respectively for all k. From Birch's results ( 1963) we know 

that the fitted point P on the set convex hull cos{ m, I}  is uniquely determined by 

the observed point P with PAkc = PAkc which indicates Pc = Pc and PA�c /C = PAk /C ·  

Thus Equation (5 .8) becomes 

A A A A 

P = c1P1 + CzPz + . . .  + CmPm 

Recall that Pi (or Pi ) represents the conditional distribution of A 1 ,  A2 , • . .  , At for 

given ith level of C for all i .  From PA�c /C = PAk /C for all k we have that the fitted 
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local point Pi has the same A1 , A2 , • . .  , At margins as the given local point Pi in the 

local simplex s��l for i = 1 ,  2 ,  . . .  ' m. 

Therefore, to find the fitted point P we only need locate the fitted local points 

A for all i. Again a fitted local point A is uniquely determined by the given local 

point � in the model space Ii (the ith copy of I) in the local simplex s;�1 for all i .  

Thus, the problem of fitting a conditional independence model reduces to  fitting an 

independence modeL The fitting process of the model A1 lL A2 . . •  lL At I C then 

will be 

Step 1 Represent the data point P in the form P = c1g + c2P2 + . . .  + cmPm where 

P1 , P2 , . . .  , Pm are associated local points. 

Step 2 Find the local fitted point Pi in the model space A1 lL A2 . . .  lL At from the 

local point � in s;�l using the two methods discussed in the last section for 

i = 1 , 2, . . .  , m. 

Step 3 Obtain the MLE point P by the following convex combination 

where Pc = {cl , c2 , · · ·  , cm} ·  

The two methods for fitting the model A1  lL A2 . . . Jl At  I C are now discussed 

separately. Note that we only demonstrate the two methods geometrically here, so 

the numerical results in Example 7 and 8 are quoted from the algebraic representation 

of the two methods. 
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The direct fitting method 

Using the direct fitting method the MLE for the model A1 Jl A2 . . .  Jl At I C is 

obtained directly from a closed formula (Bishop et al. ,  1975 ) .  Here we describe the 

direct fitting method geometrically in three steps 

are associated local points. 

Step 2 Move each local point Pi to obtain A on Ii , the copy of the corresponding 

point convex hull I. The direction PiPi is perpendicular to t central simplexes 

· s(iJ r 11 · m r-1 or a � -

Step 3 Obtain the MLE point 

A _,.... A A 

P = c1P1 + c2P2 + . . .  + CmPm .  

We illustrate this procedure by  Figure 5 . 13  and Example 7 .  

Example 7:  To a given data set involving binary variables X1 , X2 , X3 and X4 , it 

corresponds a 16-tuple by lexicographical order X3 , X4 , X1 , X2 , which is 

(0.0167 0 .0067 0.0317 0 . 1083 0 .03 17  0 .0083 0 .0183 0.0100 

0 . 1300 0 .0417 0.0983 0.0150 0.2200 0 .0150 0.0867 0 . 1617) 

vVe find the MLE of xl Jl x2 I X3 , x4 in the following steps. 

Step 1 Represent the given point P as a convex combination of local points Pl l P2 ,  P3 ,  P4, 

such that 

p = 0. 1634g + 0 .0683P2 + 0 .285P3 + 0.4834P4 

with 

P2 = (0, P2 ,  0, 0) , 



5(m) 
r-1 

' 

,///:--: ' ' ' /J _ _  
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5(3) r-1 

5(2) r-1 
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Figure 5 . 13 :  The graphic shows, for a given data point P, how to find the MLE for the 
model A 1  Jl A2 . . .  Jl At I C. First we start with given local points P1 , g ,  . . . , Pm , 

then drop each local points along the direction preserving A 1 ,  A2 , . . .  , AtA m�rgins m; to 
the model space A1 Jl A2 . . . Jl At , to obtain the MLE local points P1 , P2 , . . .  , Pm . 

The MLE point P, then, is a convex combination of P1 , P2 , . . .  , Pm using as coefficients 
the marginal distribution Pc . 

P3 = (0, 0, p3 , 0) ,  

where {0 .1634 0 .0683, 0.285, 0 .4834} i the joint distribution of x3 and x4 

P1 (0. 1020 0.0408, 0 . 1939, 0.6633) , 

P2 (0.4634, 0 . 1220, 0 .2683, 0. 1463) ,  

P3 (0.4561 ,  0 . 1462, 0 .3450, 0.0526) , 

P4 = (0.4552 ,  0.0310, 0 . 1 793, 0 .3345) 

and 0 = [0, 0 ,  0, 0] . 

Step 2 Find the MLE local points Pi by moving Pi down to the model space of 



X1 Jl X2 along the direction for preserving X1 and X2 margins, we obtain 

pl = (pl , 0,  0 ,  0) , Fz = (0 ,  pz , 0, 0) , 

where 
P1 - (0 .0423 0. 1006 0.2536 

fiz (0.4283 0 . 1570 0 .3034 

P3 - (0 .4826 0 . 1 198 0 .3186 

P4 - (0 .3085 0 . 1777 0 .3260 

Step 3 Obtain the MLE point P by 

A "' A A 
p - 0 . 1634g + 0 .0683?2 + 0 .285?3 + 0 .4834?4 

0.6035) , 

0 . 1 112 ) , 

0.0791 ) ,  

0. 1878) 
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(0 .0069 0 .0164 0.0414 0 .0986 0.0293 0.0107 0.0207 0.0076 

0 . 1375 0 .0341 0.0908 0 .0225 0 . 1491 0.0859 0 . 1576 0 .0908) . 

The iterative proportional fitting method 

On the other hand, the MLE for the model A1 Jl A2 • • •  Jl At I C can be found 

by the iterative proportional fitting method which is described geometrically in the 

following steps. 

Step 1 Represent the data point P in the form P = c1P1 + c2P2 + . . . + cmPm where 

P1 , P2 , • . •  , Pm are associated local points. 

Step 2 A (D) A (O) A (O) Start with the local central points P1 , P2 , . • .  , Pm . 

Move the local point P/0) on the central simplex with varying A1 margin 

in Ji to find a point ?p) which has the same A1 margin as Pi for all i .  
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Move the local point PP) on the central simplex with varying A2 margin 

in Ii to find a point PP) which has the same margins AI ,  A2 as Pi for all i .  

Move the local point pp-I) on the simplex with varying At  margin in Ji to 

find a point PP) which has the same margins AI , A2 , . . .  , At as Pi for all i. 

Step 3 Obtain the fitted point 

Again, the MLE of the parameters of model AI JL A2 . . . JL At I C can be obtained 

from a closed formula, the algorithm will converge at the first iteration (Haberman 

1974, p . 197) . 

The procedure above is demonstrated in Figure 5 . 14  and Example 8 .  

Example 8:  We will perform the iterative proportional fitting method to find the 

MLE of XI JL x2 I x3, x4 for the data set given in Example 7. 

Step 0 Start with the local central points 

p_(o) = ( �(o) 0 0 0) I PI , , , , 

p_(o) = (0 0 �(o) 0) 3 , , P3 , , 

P.(o) = (0 �(o) 0 0) 2 , P2 , , , 

p(o) = (0 0 0 �(o) ) 4 , , , P4 

where p�o) = (0 .2500 0.2500 0 .2500 0.2500) for all i and 0 = [0 , 0 , 0 , 0] . 

Step 1 Move each Pi(o) on the associated copy of model space of XI JL X2 along 

varying XI margin direction to find point PP) which has the same XI margin 

as the data local point Pi for all i ,  which are 

P(I) = ( �(I) 0 0 0) I PI , , , , 



\���+!+ //
/

/
/ 

5(m) 
r-1 

"' 

S(1) r-1 

' 

__ p_! __________ _ 
� 

5(3) 
r-1 

5(2) 
r-1 

-

141 

Figure 5 . 14 :  The working of the iterative proportional fitting method :  we start with A (O) A (O) the local central point Pi , then move Pi on the copy of independence model 
space Ii step by step to meet pi(t) for all i. In each step match the sufficient statis­
tics PAk cummulatively for all k. The MLE point P is the convex combination of 
A (t) A (t) A (t) pl > P2 ' · · · ' Pm · 

where 

f>.(l ) = (0 0 A (l ) 0)  3 ' ' P3 , , 

A ( l) 
PI (0.0716 0.0716 
A( l ) 

P2 (0.2928 0.2928 
A( l ) P3 (0 .3012 0.3012 
A ( l) 

P4 (0.2431 0.2431 

p(l ) = (0  0 0 A (l ) ) 4 , , , P4 

0.4284 0.4284) ,  

0.2072 0.2072 ) ,  

0. 1 988 0. 1988) ,  

0 .2569 0.2569) 

Step 2 Move each .Pp) on the associated copy of model space of X1 Jl X2 along 

varying X2 margin direction to find point .Pp) who has the same X2 margin 

as the data local point Pi for all i ,  Now _pp) and Pi have the same X1 and X2 



margins. which are 

where 
�(2) (0.0423 P1 -

�(2) (0.4283 P2 -

�(2) (0.4826 P3 -

A(2) 
P4 (0.3085 

Step 3 Obtain the MLE point 

P.(2 ) = (0 �(2) 0 0) 2 ' P2 , , , 

0 . 1006 

0. 1570 

0. 1 198 

0 . 1777 

P(2) = (0 0 0 �(2) ) 4 , , , P4 

0. 2536 0 .6035) , 

0. 3034 0. 1 1 12) , 

0 .3186 0.0791 ) , 

0 . 3260 0. 1878) 

P - o. 1634P?l + o.o683Pi2) + o .285Pi2) + 0.4834?�2) 

(0 .0069 0 .0164 0.0414 0 .09860.0293 0.0107 0 .0207 

0. 1375 0.0341 0.0908 0 .02250. 1491 0 .0859 0 . 1576 

0.0076 

0 .0908) 
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where {0. 1 634, 0 .0683, 0 .285 ,  0 .4834} is the joint distribution of X3 and X4 . 

Both the direct fitting method and iterative proportional fitting method find the 

fitted point which matches the minimum sufficient statistics of the data point on 

the model space. The direct fitting method , however, moves the data point to the 

fitted point directly along the direction for preserving all minimum sufficient statistics 

simultaneously. On the other hand, the iterative proportional fitting method starts 

at the centre of the model space and then moves on the model space to match each 

minimum sufficient statistic cumulatively. 

5 . 6  Conclusion 

In this chapter we have considered the geometry of graphical loglinear models which 

are the intersection of a finite set of conditional independence statements .  The model 
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space of one conditional independence statement is described through the notions of 

"corresponding point convex hull" and "set convex hull" . The corresponding point 

convex hull is a union of simplexes defined by the corresponding points, while the set 

convex hull is union of convex hulls whose vertices are on the associated correspond­

ing point convex hulls. Meanwhile, we discussed the geometric framework for three 

kinds of distributions for categorical variables: the joint distribution, the marginal 

distribution and the conditional distribution. Based on the above geometric settings, 

we have illustrated the finding of the MLE for one C I statement geometrically using 

the direct fitting method and iterative proportional fitting method. 



Chapter 6 

Conclusions 

6 . 1  Thesis Contribution 

The geometry of generalized linear models has been discussed in this thesis. The 

main findings are now listed and briefly discussed. 

1 .  A geometric framework for generalized linear models 

An observation with n values is viewed as a vector in Euclidian space Rn , This 

space then is partitioned into two orthogonal spaces, the sufficiency space S 

and the auxiliary space A. Two mean sets are introduced in Rn , related to 

generalized linear models, namely MR, the untransformed model space and 

g (MR) , the link transformed model space. When a generalized linear model 

employs a canonical link there are two properties drawn out related to the max­

imum likelihood estimate of the parameters of the model. In the untransformed 

model space, the coefficients of the basis of the sufficiency space, the sufficient 

statistics, are preserved in the fitting process. In the link-transformed model 

space, the coefficients of the basis of the auxiliary space are zeroed in the fitting 

1 44 
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process. Linear models and loglinear models become special cases of general-

ized linear models with identity and log link respectively. The following tables 

summarize the main results for linear models (Chapter 1 ) ,  loglinear models 

(Chapter 2) and generalized linear models (Chapter 3) . 

Model Linear models 

Observation y E Rn 

Ma M =  {p, : p, = X(3, (3 E Rq }  

g(Ma) M =  {p, : fL = X(3, (3 E Rq }  

Rn Rn = M EB lE  
where M =  span{x1 , x2, . . .  , xq } and lE =  M_L 

MLE (p) fitting properties X p = X y and p E M 

Observation p E Sn-1 

where Sn-1 is an n - 1 dimensional simplex 

Ma {n : 1ri E [0, 1 ]  and I >i = 1 }  

g(Ma) {log 1r : log 1r = X  (3, (3 E Rq }  

R11 Rn = S EB A  
where S = span{x 1 ,  x2 , . . .  , xq } and A =  S_L 

MLE ( 1T) fitting properties X 1T = X p and log( 1T) E S 

Model Generalized linear models 

Observation y E R11 
Ma {JL(f) : f E M} 

g(Ma) 

MLE (p) fitting properties 

where M is a q-dimensional set of density functions 

{g(p,) : g(p) = X(3, (3 E Rq }  

R11 = S EB A  
where S = span{x 1 , x2, . . .  , xq } and A =  SJ_ 

Xp = Xy and g(/1) E S 
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2.  A new algorithm for fitting generalized linear models with canonical 

link 

This algorithm, discussed in Chapter 4, is based on the two properties of the 

maximum likelihood estimate of the parameters of the model. There are two 

projections performed alternately in the algorithm, orthogonal projection onto 

the sufficiency affine plane and non-orthogonal projection onto the transformed 

model space. In the process, we match the model space in the transformed world 

and sufficient statistics in the untransformed world iteratively until convergence. 

The new algorithm becomes the scoring method after linearization. 

3. A geometric description of the model space of a conditional indepen­

dence statement 

A geometric description of the model space for a conditional independence state­

ment was constructed in Chapter 5, using the concepts of "corresponding point 

convex hull" and "set convex hull" . In this geometric framework the fitting of 

one conditional independence statement was discussed using the direct fitting 

method and the iterative proportional fitting method. 

6 . 2  Further Research Directions 

Some further research directions suggested by the work of this thesis are now outlined 

as follows. 

1 .  The geometry of  generalized linear models developed here relies on the canonical 

link, so extension to generalized linear models with non-canonical link is needed. 
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2 .  In the thesis we only discussed the conditions under which a fixed point ex­

ist , when the fixed point is unique and how the algorithm converges to the 

fixed point . Thus it is required to prove that the new algorithm matches those 

conditions. 

3 .  The comparison of the new algorithm and the scoring method was made using 

numerical results. To understand the difference between the two methods, fur­

ther study is needed of the theoretical background. This depends heavily on 

the convergence proof for the new algorithm. 

4. The model space of one conditional independence statement is described geomet­

rically in the thesis. A graphical loglinear model, however, is an intersection of a 

finite set of conditional independence statements. A neat geometric description 

of the model space for an intersection of conditional independence statements 

is required for graphical loglinear models. 



Appendix A 

Matlab functions 

In this appendix we show Matlab functions Nglmfit and Sglmfit , coded by the au­

thor, for fitting a generalized linear model with canonical link using the new algorithm 

and the scoring method respectively. 

function [b , f it , iter , flop] =Nglmf it (x , y , distr) 

Nglmf it fits a generalized linear model with canonical link using the new algorithm. 

[b , Fit , iter , f lop] =Nglmf it (x , y ,  distr) fits a generalized linear model using the design 

matrix x, response y, and distribution distr. The result b is a vector of coefficient estimates. 

The result f it is a vector of fitted value of the response y. The result iter is the number 

of iterations needed for convergence. The result f lop is the approximate number of floating 

point operations when the algorithm converges. Acceptable values for distr are ' normal ' ,  

' binomial ' ,  ' poisson ' ,  ' gamma ' ,  and ' inverse gaussian ' .  The distribution parameter is 

fit as a function of the x columns using the canonical link. 

Example: 

b = Nglmf it (x ,  [y N] , ' binomial ' )  

This example fits a logistic regression model for y on x. Each y (i)  is the number of successes 

in N ( i) trials. 
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f lops ( O ) ; 

if (nargin< 2 ) , error ( ' At least two arguments are required ' ) ; end 

if (nargin<3 I isempt y ( distr) ) ,  distr = ' normal ' ;  end 

xx= [ones ( size (x , 1 ) , 1 ) x] ; 

[n p] =size (xx) ; 

%Drthonomaliz the des ign matrix x 

A=orth( [xx eye (n) ] ) ;  

x=A ( : , 1 : p) ; 

convcrit = 1 e - 6 ;  

b = zeros ( p , 1 ) ; 

bO = b+1 ; 

iter = 0 ;  

iterlim = 200 ; 

switch (distr) 

case ' normal ' 

yO y ;  

eta yO ; 

case ' binomial ' 

if ( size (y , 2) =2) , error ( ' Y must have two c olumns . ' ) ; end 

N y ( : , 2 ) ; 

y = y ( : , 1 ) . /  N ;  

yO = (N . *y + 0 . 5) . /  (N + 1 ) ; 

eta = log (y0 . / ( 1-yO) ) ; 

case ' poisson ' 

yO = y + 0 . 25 ;  

eta = log (yO ) ; 

149 



case ' gamma '  

i f  ( any (y ( : ) <=O) ) 

delta = min (abs ( y (y =0) ) )  * . 00 1 ; 

yO = max(delt a ,  y ) ; 

else 

yO=y ; 

end 

eta = 1 . /yO ; 

case ' inverse gauss ian ' 

if ( any (y ( : ) <=O) ) 

delta = min (abs (y ( y  =0) ) )  * . 00 1 ; 

yO = max (delta,  y) ; 

else 

yO=y ; 

end 

eta = 1 . / (y0 . A2) ; 

otherwis e ,  error ( ' Distribut ion name is invalid . ' ) ;  

end 

while ( 1 )  

iter = i t er+ 1 ;  

% Compute parameter by using inverse link function 

switch (distr) 

cas e  ' normal ' 

t = eta ; 

mu= (t+ (x*x ' ) * (y-t) ) ;  

case ' binomial ' 
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end 

p = 1 . /  ( 1  + exp ( - eta) ) ;  

t= ( p . *N+(x*x ' ) * (y . *N-p . *N ) ) ;  

mu=max ( eps ,min ( 1- eps , t . /N) ) ;  

case ' poiss on '  

t = exp (eta) ; 

mu= (t+ ( x*x ' ) * (y-t ) ) ;  

mu = max (eps ,mu) ; 

case ' gamma ' 

t = 1 .  /eta ; 

mu= (t+ ( x*x ' ) * (y-t ) ) ;  

mu = max (eps ,mu) ; 

case ' inverse gaussian ' 

t = 1 . / ( sqrt (eta) ) ;  

mu= (t+ (x*x ' ) * (y-t) ) ;  

mu = max (eps ,mu) ; 

% Compute adj usted dependent variable f o r  l e ast squares f it 

switch ( distr) 

case ' normal ' 

z = mu ; 

case ' binomial ' 

z=log (mu . /  ( 1-mu) ) ;  

case ' po is s on '  

z = l og (mu) ; 

case ' gamma ' 

z = 1 . /mu ; 

151  



end 

case ' invers e  gaussian ' 

z = 1 . / (mu . A2) ; 

end 

% Check stopping c onditions 

if (norm (b-bO) < convcrit) ,  break ; end 

if ( i ter>iterlim) , warning ( ' Iteration limit reached . ' ) ;  break ; end 

% Compute weight f unction as the inverse of the variance function 

switch ( distr) 

end 

case ' normal ' 

w =ones ( s ize (y , 1) , 1 ) ; 

case ' binomial ' 

w=N . * (mu · *  ( 1 -mu) ) ;  

case ' poisson '  

w =mu ; 

case ' gamma ' 

w =mu . /\2 ; 

case ' inverse gaussian ' 

w =mu . /\3 ; 

% Compute coef f ic i ent estimates for this iteration 

bO = b ;  

[b , R] = wf it (z , x ,  w) ; 

% Form current linear combination 

eta = x * b ;  

% Calculate the f itted value 

switch (distr) 
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case 'normal ' 

f it = X*b ; 

case ' binomial ' 

fit = N . /  ( 1  + exp ( -x*b) ) ;  

c ase ' poisson '  

f it = exp (x*b) ; 

case ' gamma ' 

f it = 1 .  /x*b ; 

case ' inverse gaussian ' 

f it = 1 . / sqrt ( x*b) ; 

end 

% Compute coeff icient estimate s  based on the unorthonomalized design matrix xx 

b=wfit (z , xx , w) ; 

f l op=flops ; 

% Perform a weighted least squares f it function 

[b , R] =wfit (y , x , w) 

sw = s qrt (w) ; 

[ r  c] = size (x) ; 

yw y · *  sw ; 

xw = x · *  sw ( : , ones ( 1 , c) ) ; 

[Q , R] =qr (xw , O) ; 

b = R\ (Q ' *yw) ; 
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funct ion [b , f it , iter , f lop] =Sglmfit (x , y , distr) 

Sglmf it fits a generalized linear model with canonical link using the scoring method. 

[b , Fit , iter , flop] =Sglmfit (x , y , distr) fits a generalized linear model using the design 

matrix x, response y, and distribution distr. The result b is a vector of coefficient estimates. 

The result f it is a vector of fitted value of the response y. The result iter is the number 

of iterations needed for convergence. The result flop is the approximate number of floating 

point operations when the algorithm converges. Acceptable values for distr are ' normal ' ,  

' binomial ' ,  ' poisson ' ,  ' gamma ' ,  and ' inverse gauss i an 1 •  The distribution parameter is 

fit as a function of the x columns using the canonical link. 

Example: 

b = Sglmfit (x ,  [y N] , ' binomial ' )  

This example fits a logistic regression model for y on x.  Each y (i )  is the number of successes 

in N ( i )  trials. 

f lops ( O ) ; 

if (nargin<2) , error ( ' At least two arguments are requ ired ' ) ; end 

if (nargin<3 I isempt y ( distr) ) ,  distr = ' normal ' ;  end 

xx= [one s ( size (x , 1 ) , 1 ) x] ; 

[n p] =size ( xx) ; 

% Orthonormalize the design matrix x 

A=orth( [xx eye (n) ] ) ;  

x=A ( : , 1 : p) ;  

convcrit = 1 e-6 ; 

b = zero s (p , 1 ) ; 

bO = b+1 ; 

iter = 0 ;  

iterlim = 200 ; 

switch (distr) 



case ' normal ' 

yO = y ;  

eta = yO ; 

case ' binomial ' 

if ( size (y , 2) =2) , error ( ' Y  must have two c olumns . ' ) ;  end 

N y ( : ,  2) ; 

y y ( : , 1 ) . / N ;  

y O  = (N . *y + 0 . 5) . / ( N  + 1 ) ; 

eta = log (y0 . / ( 1 -yO ) ) ;  

case ' poisson '  

yO = y + 0 . 25 ;  

eta = log (yO) ; 

case ' gamma ' 

if ( any (y ( : ) <=O) ) 

delta = min (abs ( y ( y  =0) ) )  * . 00 1 ; 

yO = max (delt a ,  y) ; 

else 

yO=y ; 

end 

eta = 1 . /yO ; 

case ' inverse gaussian ' 

if ( any ( y ( : ) <=O) ) 

delta = min (abs ( y ( y  =0) ) )  * . 00 1 ;  

yO = max ( delt a ,  y) ; 

else 

yO=y ; 
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end 

eta = 1 . / (y0 . A2 ) ; 

otherwise , error ( ' Distribut ion name is invalid . ' ) ;  

end 

while ( 1 )  

iter = iter+1 ;  

% Compute parameter by using inverse link f uncti on 

switch(distr) 

end 

case ' normal ' 

mu=eta ;  

case ' binomial ' 

mu 1 . /  ( 1  + exp ( -eta) ) ;  

mu max (eps , min( 1-eps , mu) ) ;  

case ' poisson '  

mu exp (eta) ; 

mu max (O , mu) ; 

case ' gamma ' 

mu 1 .  /et a ;  

mu max (O , mu) ; 

case ' inverse gaussian ' 

mu = 1 . /sqrt ( eta) ; 

mu = max ( O , mu) ; 

% Compute adjusted dependent variable f or l east squares f it 

switch ( distr) 
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case ' normal ' 

z = eta ;  

case ' binomial ' 

z = eta + (y - mu) . / (  mu · *  ( 1-mu) ) ;  

case ' poisson '  

z = eta + ( y - mu) . /mu ; 

case ' gamma ' 

z = eta - ( y - mu) . / (mu . A2 ) ; 

case ' inverse gaussian '  

z = eta - 2 * ( (y - mu) . / (mu . A3) ) ;  

end 

% Check stopping conditions 

if (norm (b-bO) < convcrit) , break ; end 

if ( iter>iterlim) , warning ( ' Iterati on limit reached . ' ) ;  break ; end 

% Compute weight fun ction as the inverse of the variance funct ion 

switch( di str) 

case ' normal ' 

w =ones ( s i ze (y , 1) , 1 ) ; 

case ' binomial ' 

w=N . * (mu · *  ( 1 -mu) ) ;  

case ' poisson' 

w =mu ; 

case ' gamma ' 

w =mu . A2 ;  

c ase ' inverse gaussian ' 
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end 

w =mu . !\3 ;  

end 

% Compute coef f ic ient estimates for this iteration 

bO = b ;  

[b , R] = wf it (z , x ,  w) ; 

% Form current linear combination 

eta = x * b ;  

% Calculate the f itted value 

switch (distr) 

case ' normal ' 

f it = X*b ; 

case ' binomial ' 

f it = N . /  ( 1  + exp (-x*b) ) ;  

case ' po i s son ' 

f it = exp (x*b) ; 

case ' gamma ' 

f it = 1 .  /X*b ; 

case ' inverse gaussian ' 

f it = 1 . /sqrt (x*b) ; 

end 

% Compute coefficient estimates based on the unorthonomalized design matrix xx 

b=wf it (z , xx , w) ; 

f lop=flops ; 
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% Perform a weighted least squares f it function 

[b , R] =wfit ( y , x , w) 

sw = sqrt (w) ; 

[r c] = s ize (x) ; 

yw = y · *  sw ; 

xw = x · *  sw ( : , ones ( 1 , c) ) ;  

[Q , R] =qr ( xw , O) ; 

b = R\ ( Q ' *yw) ; 
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Appendix B 

Dat a  sources 

In this appendix we show the data sources for the models displayed in Table 4 .4  and 

Table 4 .5 .  Here Xi indicates a covariate, fi represents a factor and fdj denotes the 

interaction between factors fi and fj for all i ,  j. 

1 Model 

Killed/Total(y/N) = Dose(x) 

Data from "Dobson, A. ( 1990) . An Introduction to Generalized Linear Models. 

p. l09" . 

2 Model 

s atell/ cases(y/ N) = width(x) 

Data from "Agresti , A. ( 1996 ) .  An Introduction to Categorical Data Analysis. 

p . 106" . 

3 Model 

yes/cases(y/N) = race (h)  + azt (h)  
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Data from "Agresti ,  A. ( 1 996) . An Introduction to Categorical Data Analysis. 

p . l 19" .  

4 Model 

y!n(y/N) = width(x) 

Data from "Agresti ,  A.  ( 1996) . An Introduction to Categorical Data Analysis. 

p.82" . 

5 Model 

Pain(y) - Age (x1 )  + Duration (x2) + Treatment (h ) + Sex(f2)  

+ Treatment*Sex(hh) 

Data from "SAS Institute Inc. ( 1999) . SAS OnlineDoc. Example 39.3" . 

6 Model 

wheeze(y) = city(!) + age (x1 )  + smoke(x2) 

Data from "Ware ,  J .H . ,  Dockery, Spiro A. III, Speizer, F .E. , and Ferris , B .G . ,  

Jr. ( 1984) . Passive smoking, gas cooking, and respiratory health of children 

living in six cities. American Review of Respiratory Diseases 129: 366-374" . 

7 Model 

Kyphosis/Total (y/N) = Age(xi ) + Number(x2) + Start(x3) 

Data from ''Hastie , T .  and Tibshirani , R. ( 1990) . Generalized Additive Models. 

p.301" . 



8 Model 

days(y) = sex(f1 )  + origin(h) + type(h) + grade(f4) 
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Data from "Der, G.  and Everitt , B. S. (2002) . A Handbook of Statistical 

Analyses Using SAS (2nd edition) . p . l 18" . 

9 Model 

satell (y) = width(x) 

Data from "Agresti , A. ( 1996) . An Introduction to Categorical Data Analysis. 

p .82" . 

10  Model 

satell (y)  = width(x) 

Data from "Agresti, A. ( 1 996) .  An Introduction to Categorical Data Analysis. 

p .90" . 

1 1  Model 

Count(y) = Gender(JI) + Type(h) 

Data from "Dunn, P. K. (2000) . glmlab Using MATLA B  for Analysing Gen­

eralised Linear Models. p.26" . 

12 Model 

count(y) Alcohol (fi )  + Cigarette(h) + Marijuana(h) 

+Alcohol*Marijuana(!I h) + Cigarette*Marijuana(hh) 

Data from "Agresti, A. ( 1 996) . An Introduction to Categorical Data Analysis. 

p . l52" . 



13 Model 

count (y) = assoc (x)  + premar(j1 ) + birth(h) 

163 

Data from "Agresti ,  A. ( 1996) . An Introduction to Categorical Data Analysis. 

p . l 81" . 

14 Model 

Time(y) = log (WBC) (x) + Age (!) + log (WBC) *Age(xf) 

Data from "Dunn, P. K. (2000) . glmlab Using MATLAB for Analysing Gen­

eralised Linear Models. p.32" . 

15 Model 

Costs (y)  = PolAge(fi )  + CarGroup(h) + VehicAge(h) 

Data from "McCullagh, P. and Nelder, J .A.  ( 1 989) . Generalized Linear Models 

(2nd edition) . p.298" . 
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