Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

PRODUCTION CHARACTERISTICS AND RESPONSES TO FEEDING BY FRIESIAN COWS FAT AND THIN AT CALVING OF HIGH AND LOW GENETIC MERIT

A thesis presented in partial fulfilment
of the requirements for the degree of
Master of Agricultural Science
in Animal Science
at Massey University

SUPACHAI NGARMSAK

1984

ABSTRACT

A review of literature is given on herbage intake achieved by grazing lactating dairy cows. The lactating cows have higher herbage intake than non-lactating cows. Condition at calving may have an effect on herbage intake by dairy cows. The theory of response, the response to feeding both before and after calving are also reviewed. The literature is reviewed which discusses responses to feeding in Europe (where diet of the cows are mainly concentrates) and in Australia and New Zealand where dairy cows graze mainly on pasture. The evidences of improving cows quality by selection are given with special emphasis on New Zealand dairy cows. Genetic merit of a New Zealand cow for milkfat production is measured by her breeding index (BI).

The main objective of the work was to study production characteristics and response to feeding in early lactation by Friesian cows, fat and thin at calving, of high and low genetic merit. lactation High BI cows produced more than Low BI cows. The differences between BI groups in milkfat production was in close agreement with the expected differences based on BI's. High BI cows had slightly higher herbage intake than Low BI cows but no significant differences were found. Low BI cows were fatter than High BI cows. No significant difference in fatty acid composition of milk between the BI groups found. Over lactation Fat cows produced more milkfat than Thin cows. Improving I condition score at calving was associated with an increase of 10.5 kg milkfat.

No significant differences in response to feeding in early lactation between High BI and Low BI cows nor between Fat and Thin cows were found. The response to moderate underfeeding during early lactation was mainly immediate response. The residual effects of underfeeding were small and confined to 2 weeks after returning to full feeding. Underfeeding significantly increased mole % of long chain fatty acids of milk and significantly decreased mole % of short chain fatty acids.

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Dr. C.W. Holmes for his valuable guidance.

I am grateful to the New Zealand Government and people for the assitance through the Bilateral Aid Programme enabled me to undertake this study.

I am grateful to the staff of the Animal Science Department (Dairy Hushbandry section) for their contributions to the work.

TABLE OF CONTENTS

ABSTRACTI
ACKNOWLEDGEMENTSII
TABLE OF CONTENTSIII
LIST OF TABLESVIII
LIST OF FIGURESX
LIST OF APPENDICESXII
CHAPTER 1
1 LITERATURE REVIEW
1.2.1 HERBAGE ALLOWANCE
1.2.3 HERBAGE INTAKE5
1.2.3.1 Herbage Intake By Lactating Cows5
1.2.3.2 The Changes of Herbage Intake and Stage of6
1.2.3.3 Herbage Intake & Mobilisation of Body6
1.2.3.4 Herbage Intake & Animal Condition
1.2.3.5 Herbage Intake Achieved By Grazing Dairy8 1.3 RESPONSE TO FEEDING BY DAIRY COWS
1.3.1 THEORY OF RESPONSE TO FEEDING BY DAIRY COWS9
1.3.1.1 Short-term effects9
1.3.1.2 Long-term effects11
1.3.2 PRE-CALVING FEEDING
1.3.2.1 The Farly Works With Emphasis On Liveweight13

			1.3.2.2	Recent Works With Emphasis On Body Condition 14
			1.3.2.3	A Note on Condition Score17
		1.3.3	POST-CA	ALVING FEEDING (During Lactation)18
			1.3.3.1	Response To Underfeeding Early Lactation18
			1.3.3.2	Response To Underfeeding Late lactation24
			1.3.3.3	Priorities For Feed
			1.3.3.4	Other Aspects of Underfeeding27
			1.3.3.5	Conclusion For Response To Feeding By Dairy 27
	1.4	DAIR	Y COW QUA	ALITY28
		1.4.1	HIGH A	AND LOW YIELDING COWS28
			1.4.1.1	Production Characteristics of High and Low29
			1.4.1.2	Partition of Nutrients towards Lactation29
		1.4.2	EVIDENC	CE OF IMPROVED COW QUALITY BY SELECTION30
		1.4.3	GENETIC	VARIATION IN NUTRITION OF DAIRY COWS31
			1.4.3.1	Breed Differences31
			1.4.3.2	Heritabilities of Feed Efficiency31
			1.4.3.3	Genetic Differences in Feed Intake31
			1.4.3.4	Genetic Variation Maintenance Requirement32
			1.4.3.5	Heritability of Yield Traits32
		1.4.4	EVIDENC	CE OF GENETIC IMPROVEMENT OF DAIRY COWS IN NEW32
		1.4.5	NEW ZEA	ALAND FRIESIAN VS. EUROPEAN- AND
		1.4.6	PRODUCT	TION CHARACTERISTICS OF HIGH BI AND LOW BI35
		1.4.7	Product	ion Performances35
			1.4.7.1	Energy Metabolism36
			1.4.7.2	Grazing and Milking Behaviour36
			1.4.7.3	Marginal & Gross Efficiency Of Milk Fat37
				CHAPTER 2
2	м	л т г	RIAL	S AND METHODS
2				EXPERIMENT DESIGN
	2.1	2.1.1		perimental Period
		2.1.2	-	nental Period
			P	

2.1.3 Post-experimental Period......40

ENVIRONMENTS OF THE EXPERIMENTS40
2.2.1 Pasture
2.2.2 Animals
FEEDING REGIME AND ASSOCIATED PARAMETERS MEASSURED41
2.3.1 Herbage Mass41
2.3.2 Herbage Allowance
2.3.3 Residual Herbage Mass41
ESTIMATION OF HERBAGE DM INTAKE41
2.4.1 Estmate Herbage DM Intake Sward-Cutting Technique41
2.4.2 Estimate Herbage DM Intake Using Chromic Oxide42
2.4.2.1 Faecal Output42
2.4.2.2 Estimate DM intake42
ESTIMATE OF DIGESTIBILITY OF PASTURE42
2.5.1 Estimation of the Quality of Herbage Consumed42
2.5.2 Estimate In Vivo Digestibility43
MEASURMENTS OF ANIMAL PRODUCTION43
2.6.1 Milk Production43
2.6.2 Fat and Protein Concentration in Milk44
2.6.3 Fatty Acid Composition of Milk Fat44
2.6.4 Liveweight44
2.6.5 Condition Score44
STATISTICAL ANALYSES45
CHAPTER 3
E S U L T S
LACTATION PERFORMANCES46
3.1.1 MILK YIELD
3.1.2 MILK FAT YIELD
3.1.3 MILK PROTEIN YIELD49
3.1.4 MILK FAT CONCENTRATION
3.1.5 MILK PROTEIN CONCENTRATION
3.1.6 FATTY ACID COMPOSITION OF MILK
3.1.7 LIVEWEIGHT

		3.1.8 CONDITION SCORE					
	3.2	RESULTS FROM GRAZING TRIALS55					
		3.2.1 MILK YIELD55					
		3.2.1.1 Milk Yield During 3 Week Pre-experimental55					
		3.2.1.2 Milk Yield During Experimental Period,56					
		3.2.2 MILK FAT YIELD58					
		3.2.2.1 Milk fat yield during pre-experimental58					
		3.2.2.2 Milk Fat Yield During Experimental Period59					
		3.2.3 MILK PROTEIN YIELD6					
		3.2.3.1 Pre-experiment milk protein yield61					
		3.2.3.2 Milk Protein Yield During Experimental62					
		3.2.4 MILK FAT CONCENTRATION64					
		3.2.4.1 Milk Fat Concentration During64					
		3.2.4.2 Milk Fat Concentration During Experimental65					
		3.2.5 MILK PROTEIN CONCENTRATION					
		3.2.5.1 Milk Protein Concentration During67					
		3.2.5.2 Milk Protein Concentration During68					
		3.2.6 FATTY ACID COMPOSITION OF MILK DUE TO DIFFERENTIAL70					
		3.2.7 LIVEWEIGHT73					
		3.2.8 CONDITION SCORE					
	3.3	HERBAGE INTAKE77					
		3.3.1 ESTIMATE HERBAGE INTAKE, By Sward Cutting Technique77					
		3.3.2 HERBAGE INTAKE, Estimate by the Marker Technique79					
		3.3.2.1 Intake Estimated Prior To Differential Feed79					
		3.3.2.2 Estimated Herbage Intake due to Differential80					
		3.3.3 IN VIVO DIGESTIBILITY VALUES					
		CHAPTER 4					
,	_						
4		I S C U S S I O N82					
	4.1	HIGH AND LOW BI COWS AND THEIR PERFORMANCES82					
	4.2	FAT AND THIN COWS AND THEIR LACTATION PERFORMANCES					
	4.3						
	4.4	THE EFFECTS OF UNDERFEEDING DURING EARLY LACTATION88					

		4.4	4.1	The	Ef	fect	of	Under	feedi	ng on	Milk	Yield	And	Milk		.88
		4.4	.2	The	Ef	fect	of	Under	feedi	ng on	Fatty	Acid	Comp	osit	ion.	89
	4.5	RE	ESPO	NSE	то	FEEI	ING	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • •	• • • •	91
		4.5	5.1	Mil	k P	rodu	cti	on	• • • • •	• • • • •	• • • • •	• • • • •	• • • •	• • • •	• • • •	91
		4.5	5 • 2	Eff	ect	on	liv	eweigh	t and	cond	ition	score	• • • •	• • • •		95
	4.6	GI	ENER	AL C	ONS	IDER	RATIO	ON	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • •	• • • •	96
5	1	R E	F E	R E	N	C E	s	• • • • •	• • • • •	• • • •	• • • • •		• • • •	• • • •		.98
6		ΔР	PF	ת זא	т	CF	S									105

LIST OF TABLES

Table 1.1:	The effects of different levels of feeding in
	the 7th or 8th months of pregnancy15
Table 1.2:	The effect upon mean daily milk yield of herbage
	restriction and supplementation during the
	treatment periods and during 7 weeks in residual
	period20
Table 1.3:	Effects of levels of feeding in early lactation
	on milkfat production during week 0-6 of
	lactation
Table 1.4:	Effect of feeding level during the first five
	weeks of lactation23
Table 1.5:	The effects of two levels of feeding in 7th or
	8th months of lactation on milk production24
Table 1.6:	Estimated values for the amounts of extra
	milkfat produced if an extra 14 kg of pasture DM
	is fed at different times of the year (Holmes,
	1982)26
Table 1.7:	The data for genetic improvement in NZ dairy
	cows33
Table 1.8:	Rank of total butter fat and protein yield for
	10 strains of Friesian cows
Table 2.1:	Number of animals in each treatment for grazing
	trials
Table 3.1:	Lactation performances of the High and Low BI
	cows, total yield for 1982/83 season46
Table 3.2:	Fatty acid composition of milk of High and Low
	BI cows and Fat and Thin cows generously fed53
Table 3.3:	Milk yield during pre-experimental period55
Table 3.4:	Milk yield due to differential feeding, all
	values have been covariance adjusted57
Table 3.5:	Milk fat yield during pre-experimental period58
Table 3.6:	Milk fat yield due to differential feeding, all
	values have been covariance adjusted60
Table 3.7:	Pre-experiment milk protein yield, kg/cow/day61
Table 3.8:	Protein yield due to differential feeding, all

	values have been covariance adjusted63
Table 3.9:	Pre-experimental milk fat concentration64
Table 3.10:	Milk fat concentration due to differential
	feeding, all values have been covariance66
Table 3.11:	Milk protein concentration, pre-experimental67
Table 3.12:	Milk protein concentration due to differential
	feeding, all values have been covariance69
Table 3.13:	Milk fat composition due to differential feeding
	and the significant values of F
Table 3.14:	Cows' liveweight and liveweight changes due to
,	differential feeding74
Table 3.15:	Cows' condition score and condition score
	changes due to differential feeding76
Table 3.16:	The herbage allowance, and herbage intake by
	grazing dairy cows in the experiment77
Table 3.17:	Estimated herbage intake during preliminary
	experiment early lactation79
Table 3.18:	Herbage intake estimate by chromic oxide
	technique, when the cows were on differential80
Table 3.19:	The herbage allowance, and herbage intake by
	grazing dairy cows estimated by the
	sward-cutting and chromic oxide technique81
Table 4.1:	Production of High BI and Low BI cows calving at
	two levels of body condition85
Table 4.2:	
	lactation on milkfat production and body
	condition score94

LIST OF FIGURES

Figure 3	.1:	Milk Yield (A) High BI and Low BI cows (C) Fat
		and Thin cows FCM Yield (B) High BI and Low BI
		cows (D) Fat and Thin cows47
Figure 3	.2:	Fat Yield (A) High BI and Low BI cows (B) Fat
		cows and Thin cows48
Figure 3	.3:	Protein Yield (A) High BI and Low BI cows (B)
		Fat cows and Thin cows49
Figure 3	.4:	Fat Concentration (A) High BI and Low BI cows
		(B) Fat cows Thin cows50
Figure 3	.5:	Protein Concentration (A) High BI and Low BI
		cows (B) Fat and Thin cows51
Figure 3	.6:	Liveweight (A) High BI and Low BI cows (C) Fat
		and Thin cows Condition Score (B) High BI and
		Low BI cows (D) Fat and Thin cows54
Figure 3	.7:	Milk yield due to differential feeding (A)
		Generous and Restricted Feeding (B) For the four
		main treatments
Figure 3	.8:	Fat yield due to differential feeding (A)
		Generous and Restricted Feeding (B) For the four
		main treatments
Figure 3	.9:	Protein yield due to differential feeding (A)
		Generous and Restricted Feeding (B) For the four
		main treatments62
Figure 3	.10:	Fat concentration due to differential feeding
		(A) Generous and Restricted Feeding (B) For the
		four main treatments65
Figure 3	.11:	Protein concentration due to differential
		feeding (A) Generous and Restricted Feeding (B)
		For the four main treatments
Figure 3	.12:	Fatty acid composition of milk due to
		differential feeding (A) Fatty acid yield (B)
		Mole
Figure 3	.13:	Changes of fatty acid of milk due to
		differential feeding. (A) Short chain fatty
		acids (B) Medium chain fatty acids (C) Long

		chain fatty acids72
Figure	3.14:	(A) Liveweight and (B) Condition score due to
		differential feeding73
Figure	3.15:	(A) Liveweight and (B) Condition score due to
		differential feeding
Figure	3.16:	The relationships between herbage DM intake and
		(A) Herbage intake (B) Residual herbage mass78
Figure	4.1:	The relationships between BI values and (first
		5 week) (A) Milk, (B) FCM (C) Fat yield, (D)
		Protein yield (E) Fat concentration (F) Protein
		concentration83
Figure	4.2:	The relationship between cows' liveweight and
		condition score changes84
Figure	4.3:	Fatty acid composition of milk due to
		differential feeding (A) Fatty acid yield (B)
		Mole
Figure	4.4:	The covariance adjusted milk yield due to
		differential feeding94

LIST OF APPENDICES

APPENDIX	I.	Lactation Performances of High and Low BI Cows
		1982/83105
APPENDIX	II.	Milk, Fat and Protein Yield (kg/cow/day); and
		Fat and Protein Concentration (g/kg milk) of
		High BI (HBI) and Low BI (LBI) cows 1982/83
		season107
APPENDIX	III	Covariance adjusted milk yield due to
		differential feeding (week 7-10 of lactation)109
APPENDIX	IV.	Fatty acid composition of milk changes due to
		differential feeding (week 7-10 of lactation)111
APPENDIX	٧.	Results for Sward-Cutting When Cr O Technique
		Was Tested114
APPENDIX	VI.	The response to feeding by High and Low BI cows
		and by Fat and Thin cows116