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A B S T R A C T   

Educational institutions need to formulate a well-established data-driven plan to get long-term value from their 
learning analytics (LA) strategy. By tracking learners’ digital traces and measuring learners’ performance, in
stitutions can discern consequential learning trends via use of predictive models to enhance their instructional 
services. However, questions remain on how the proposed LA system is suitable, meaningful, and justifiable. In 
this concept paper, we examine generalizability and transparency of the internals of predictive models, alongside 
the ethical challenges in using learners’ data for building predictive capabilities. Model generalizability or 
transferability is hindered by inadequate feature representation, small and imbalanced datasets, concept drift, 
and contextually un-related domains. Additional challenges relate to trustworthiness and social acceptance of 
these models since algorithmic-driven models are difficult to interpret by themselves. Further, ethical dilemmas 
are faced in engaging with learners’ data while developing and deploying LA systems at an institutional level. We 
propose methodologies for apprehending these challenges by establishing efforts for managing transferability 
and transparency, and further assessing the ethical standing on justifiable use of the LA strategy. This study 
showcases underlying relationships that exist between constructs pertaining to learners’ data and the predictive 
model. We suggest the use of appropriate evaluation techniques and setting up research ethics protocols, since 
without proper controls in place, the model outcome would not be portable, transferable, trustworthy, or ad
missible as a responsible outcome. This concept paper has theoretical and practical implications for future in
quiry in the burgeoning field of learning analytics.   

1. Introduction 

The educational landscape has evolved with online learning man
agement systems (LMSs) having facilitated any-time, any-place, and 
any-pace learning. Learners can interact with the different e-learning 
activities embedded in their institutional LMS; however, in doing so, 
they leave their digital traces or their digital footprints. Learner activ
ities are captured via clickstream events associated with learners when 
they browse course content, navigate between course modules, down
load course material, participate over discussion forums, or upload/ 
submit assignments (e.g., uploading a file for assessment or submitting 
an online quiz for marking). Learners’ clickstream data annotated with 
the background LMS data are stored in log files [46, 50] that provide 

digital footprint awareness to their educational institution. In other 
words, the digital footprint reveals experiences concerning “every 
article sound, image and information left, shared and clicked by the 
person [or leaner] in the digital environment either consciously or un
consciously” ([49], p.50). 

Learning analytics (LA) is concerned with sense-making of learners’ 
digital footprints with the aim of understanding learner engagement 
patterns, such as, how learners traverse course structures and access 
course content at their own pace and time (e.g., How often do learners 
watch a video uploaded on the LMS by the teacher? Or, how often do 
they speed up, pause or rewind the video? [20]). By using such 
bottom-up approaches, LA can assist in creating new insights for further 
optimizing online learning experiences. LA employs educational data 
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mining (EDM) methods (or reductionist techniques) for generating 
actionable insights which enable optimization of learning experiences. 
These methods consist of gathering clickstream data and combining 
them with other available learner data in order to generate meaningful 
features that describe learners’ unique properties. Some of the 
commonly generated features include a number of learner logins into a 
LMS, their quiz completion times, grade averages and deviations from 
the cohort mean, number of course material downloads or the number of 
forum posts created/viewed amongst others. Once a rich set of features 
describing learners has been engineered on both current and past stu
dents, machine learning algorithms can then be used to generate pre
dictive models. Subsequent steps frequently involve applying human 
judgement to the derived models so as to draw out insights which can 
facilitate enhancements to existing instructional services, and also 
inform institutions on future-oriented educational delivery strategies 
[47]. 

The field of LA is growing and there is ample evidence supporting its 
extensive applications in higher education [2,58]. However, many 
challenges still exist in conducting learning analytics and in achieving 
desired efficiencies. [50], p. 157] are of the view that “most institutions 
may not be ready to exploit the variety of available datasets for learning 
and teaching”, since building a universal predictive model from the log 
files extracted from the LMS is not straightforward. The LMS data is 
scattered at different hierarchal levels that may be difficult to corelate 
[59]; moreover, the data have to be supplemented with additional data 
retrieved from other sources (e.g., student admission system, past study 
records). Once the combined data are pre-processed to a proper format, 
a predictive model is developed by inputting training datasets (or what 
is commonly referred to as seen data) to machine learning algorithms, 
whose outputs are then re-applied to new target data points (or to the 
unseen data in respect to the algorithm). Models which display high ac
curacy on unseen data are deemed to have generalized, or successfully 
transferred relevant knowledge from seen training datasets to the target 
data. In practice however, the training data and target data could differ 
in their composition and also the extent to which the target data rep
resents the problem that is being posed which impacts the transferability 
or generalizability of the model. Further, ensuring interpretability of the 
model internals by providing explanations on the scope and rationale of 
the algorithmic functions used to generate them, is crucial for social 
acceptance of the models [52]. Watcher et al. suggest conveying 
human-understandable non-technical explanations to the intended 
learners on influences of specific features on the overall model 
predictions. 

Alongside these issues also exist the ethical issues related to data 
privacy and data ownership. While institutions are privy to learners’ 
course-related data, they also have access to learners’ personal data (e. 
g., ethnicity, age, gender, prior study details, etc.), all of which must be 
used respectfully. The collection and usage of learner data by an insti
tution has broader implications, such as, an increased power over the 
learner by their institution, or learners receiving little information on 
what data is being collected, or profiling learners based on race, socio
economic status, ethnicity or gender, all of which raise moral questions 
pertaining to intrusion on students’ rights and privacy [27, 40]; hence, 
any data policy used for LA implementation must align with an in
stitution’s core principles [39] before it can be used for developing any 
form of institutional capability. 

This section has briefly introduced some challenges commonly faced 
by a learning analytics enterprise. In the following section, we present 
four research questions that drive this study. Next we provide an over
view of the state of science regarding current endeavors in establishing 
LA systems; since concept papers are about “what do we do, where have 
we come from, and what are the areas yet to be examined” rather than 
covering extensive literature reviews ([19], p. 128). In developing 
convincing arguments and providing theoretical explanations, concept 
papers assimilate and combine selected pieces of literary and empirical 
evidence to form a logical chain of argumentation [24]. This study 

examines published literature that articulate implementation issues 
faced in LA, and in doing so, we direct the readers to key pieces of 
published literature that provide a deeper coverage of the major issues 
identified. Against this backdrop of previous studies and recent litera
ture which explore general issues with the implementation of LA ini
tiatives [31], we discuss operational challenges frequently encountered 
in building predictive models with educational datasets across multiple 
learner environments. Specifically, we discuss the generalizability, 
model transparency (which covers model interpretability and the 
explanation of predictions) as well as ethical concerns, and we suggest 
guiding frameworks to address them. Accordingly, a model generaliz
ability framework is presented. The tensions faced in maintaining ac
curacy and effectiveness across low and high interpretability models are 
examined, and trade-offs around model transparency are identified. We 
further outline an institutional ethics protocol that can provide a regu
latory structure for avoiding ongoing conflicts between having an 
algorithmic-driven strategy and maintaining learner privacy in a LA 
context. Finally, in the last section, we consolidate key points that 
emerged from our discussion to answer the research questions that can 
inform predictive model building activities for future analytics practice. 

2. Research questions 

While LA manifests as an innovative data-driven capability that can 
personalize learning based on individual learner needs, researchers 
need to evaluate the theoretical and methodological stance per
taining to the conduct of their analytics strategy. Researchers 
encounter non-trivial challenges at all stages of developing LA sys
tems. These can be of a technical nature such as developing and 
selecting relevant features for predictive modeling, as well as making 
design choices about which type of predictive model to use given 
positives and negatives associated with different types. The diffi
culties can also be of a non-technical nature and concern how the 
predictive models are used and how their usage is communicated to 
the learners. This study therefore reflects on challenges associated 
with the development and deployment of LA systems to enable 
meaningful transformation of learners’ data into relevant features 
that can lead to improved instructional services. 
Following questions are posed.  

1 What are the key challenges in effectively deploying LA systems?  
2 What difficulties are still encountered in producing generalizable 

predictive models?  
3 What are the next frontiers in being able to extract more value from 

predictive models, rather than just predictions? 
4 Which ethical dilemmas still remain in the deployment and oper

ationalization of LA systems? 

3. Current studies on learning analytics 

Learning analytics is envisioned by educational institutions as a 
powerful force that can lead to more personalized learner experiences. It 
is considered as a way to “track individual student engagement, 
attainment and progression in near-real time, flagging any potential 
issues to tutors or support staff” ([42], p. 6.). With the use of predictive 
models built from historical student datasets, many educational in
stitutions have implemented strategies to boost student retention rates, 
maintain quality assurance practices, reveal key determinants for aca
demic achievement, bring about self-regulated learning (by predicting 
individual learning needs) and enhance learners’ experience [56]. But 
when a disconnect emerges between training datasets and target (live) 
data, the utility of the predictive models can be degraded [45]. Gener
alizability (or transferability) of the derived model [6] is constrained 
when the training and target data are extracted from different distri
butions that exhibit different learner scenarios. Researchers from 
educational fields, such as the EDM and LA community, are thus to some 
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degree restricted to the use of data belonging to similar courses when 
predicting students’ performances. 

In one study, the authors [9] built a universal predictive model from 
different MOOC (Massive Online Open Course) offerings. Data from 
three most recently finished MOOC course offerings, and also data from 
the initial weeks of an on-going course were used for building the pre
dictive model. Using naïve algorithm and importance sampling ap
proaches, they concluded that machine learning techniques should 
consider model performance on successive offerings of the same courses. 
The authors concluded that transferability can be improved when 
important sampling-based approach parameters are tuned by formu
lating a moving window size on longitudinal variables. 

Successful transferability can take place in multiple ways, such as the 
reuse of some or all of the training data sets, or features extracted from 
those datasets. The transfer can also consist of reusing some model- 
specific settings extracted from a trained model to iteratively evaluate 
classifications in the target domain [23]. Hunt et al. put forward the 
transfer learning method for predicting students’ graduation rates in 
undergraduate programmes. TrAdaBoost, an extended AdaBoost algo
rithm, was used to examine the effectiveness. That is instead of assuming 
all the training dataset (comprising a set of academic and demographic 
features of students belonging to different departments) came from the 
same distribution, the authors conducted two separate experiments each 
time using specific data for training. In the first experiment, the training 
set comprised all students apart from those studying engineering, while 
in the second one, the training set comprised all students that were 
suspended or on academic warnings. The experimental results showed 
that TrAdaBoost improved the accuracy of predictive models and 
recorded smallest error in both cases. Generally, TrAdaBoost helps 
improve the accuracy of predictive models by using the target set as a 
guide to select related data from the source set. However, when the 
target sample size is too small to be representative, TrAdaBoost does not 
improve performance because its selective process will be biased by the 
target samples and causes over-fitting to the target set. Moreover, when 
there is a variance in data distribution between training and target data, 
the predictive capability is compromised. 

López-Zambrano, Lara, and Romero [32] proposed generic methods 
to check the feasibility of predictive models by grouping similar courses 
by degree or by similar level of usage of activities provided by LMS logs. 
Experimental results from a well-known classification algorithm 
(namely J48 from the Weka [55] software) showed that it is feasible to 
directly generate accurate models with an acceptable accuracy; how
ever, the limitation is that the obtained models might result in low ac
curacy values with other courses that use different activities or actions 
compared to the course used for training. In such situations, the log files 
of the unseen data would show different events and then models efficacy 
would become compromised. [6] 

Baesens, Ravi, Marsden, Vanthienen, and Zhao [5] add that deep 
analytic techniques (e.g., neural networks, support vector machines, 
ensemble methods) for building predictive capabilities rely on infor
mation (data) and trust, in which trust has not been given proper 
attention. Trustworthiness of any data-driven algorithmic decision relies 
on data quality and on fitness of data used that in turn inform specific 
learner features (e.g., number of forum posts or number of quiz at
tempts) on which the predictive capabilities are built. Researchers must 
have proper domain knowledge of the complex implementations of the 
underlying LMS and understanding of data characteristics in the digital 
footprint trail. This in turn will inform the internal design and improve 
predictability; and, position the LA enterprise in better providing 
human-understandable counterfactual explanations on the significance 
of any learner-related feature that has been considered by the model to 
impact the learners’ performance [52]. With simple explanations, in
stitutions can send the message across that they do not consider their 
learners as passive recipients. Explanations provide new grounds for 
conducting meaningful exchanges leading to ongoing interactions that 
further builds more trust in the operationalised predictive model. 

“Building trust is essential to increase social acceptance of algorithmic 
decision-making” (p. 4); however, explaining the rationale and func
tionality of the algorithms that together computationally process the 
raw data with different rule-sets to provide predictor values is not an 
easy task. To appreciate the reductionist power of analytics and make 
sense of the predictor variables, learners must be able to comprehend 
how the predictions align with their digital footprint; therefore, inter
pretability of the models at a high level by its intended audience is 
crucial. 

Rubel and Jones [40] raise further questions regarding the conflict
ing positions between student privacy and learning analytics. While they 
recognize the benefits of LA, they caution on usage of other forms of 
student personal data, such as the students’ socioeconomic status, their 
demographic profile, academic history, or their financial aid package. 
Classifying data categories statistically based on socioeconomic status, 
race, or gender without proper thought could perpetuate “old preju
dices” and “have a stifling effect on individuals and society” ([51]; p. 
254). Proper controls that allow for differential access based on the 
merits of the purpose of data usage in learning analytics should be 
formed. That is, collecting learner information based upon their reli
gious observances or politics amongst others would be impermissible 
under these controls; however, information based on learning patterns 
so as to nudge students for enhancing their learning outcomes would be 
endorsed. Tene and Polonetsky suggest disclosure statements be made 
by institutions on their usage of individual data that has been harvested 
in log files, but without disclosing the internal logic of their proprietary 
algorithms (which constitute their trade secrets). Further, some mean
ingful explanations should be offered on algorithmic interpretability so 
as to increase societal acceptance and build trust in the automated de
cisions from the predictive models [52]. 

This section has discussed some of the recent research works on LA 
and highlighted both the opportunities and limitations. In particular, we 
have emphasized on the generalizability, transparency of predictive 
models and ethical challenges faced as predictions are tailored across 
diverse course offerings and learner groups. Next, we propose some key 
points to address these issues. 

4. Challenges in learning analytics 

This section provides more perspectives to the challenges that have 
been identified in learning analytics literature. Concept papers, in 
particular, do not have data; rather their focus is on integration of 
domain concepts to offer propositions that can serve as a bridge between 
validation and usefulness [19, 53]. We highlight generalizability, model 
transparency and ethical domain challenges as some of the key areas 
from literature. Model generalizability refers to transfer learning issues 
with regard to the relevance of patterns extracted from the training 
datasets for use on new data. Educational institutions are accountable 
for ensuring that the model’s predictive abilities are reliable, besides 
also holding a social responsibility of explaining the significance of 
model’s predictions to their intended audience (or to their current 
learners), referred to as the model interpretability domain or explain
able artificial intelligence. Moreover, the ethical domain related to the 
proper collection and usage of learner-related data is an important 
consideration for the LA enterprise. We discuss these challenges in more 
detail in the following three subsections. 

4.1. Generalizability challenges 

The intent of learning analytics is to uncover underlying relationship 
between predictors (e.g., assessment grades, participation via forum 
posts) and possible outcomes (e.g., final grades, course engagement 
level). A machine learning algorithm aids in computationally exploring 
data patterns in historic datasets and inferring rule-sets that can map 
predictor variables with outcomes being modelled. The result of this 
inductive process is a predictive model that can then be deployed to 
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make predictions on live data. However, achieving high predictive ac
curacies on real-world application data using these inductive methods is 
one of the key challenges. The failure of predictive models to generalize 
may happen for numerous reasons, and these will differ in respect to the 
unique challenges with which each application domain is associated. 
Machine learning challenges that are most relevant to the LA domain are 
“the curse of dimensionality” ,1 concept drift and class-imbalance ([41]. 
Moreover, the non-deterministic nature of the LA domain adds to the 
complexities around making accurate predictions about human 
behavior. While the dynamic nature of educational contexts can also 
compromise the predictive power induced from historic (training) data 
when applied to live (target) datasets. We observe this in dynamic en
vironments when the training data used for deriving a predictive model 
ceases to correlate with the live data onto which the predictive model is 
being applied. In dynamic contexts such as LA, the underlying data may 
change frequently thus rendering the trained models using historic data, 
inaccurate. An example of this are models which have been developed 
for predicting learner outcomes for specific courses with strong de
pendencies on features representing different assessments. As the 
courses and the assessments evolve, or where the assessment syllabus 
and evaluation styles have changed, the historic training data risks 
losing relevance on the current live data. Such course-specific and highly 
tailored features are more powerful, but they have the potential to 
decrease the generalizability of the predictive models when their usage 
changes in subsequent deliveries [9, 16] . 

Poor model generalization may also occur if the size of the training 
sample is not large enough for the machine learning algorithm to 
effectively create decision boundaries. In this instance high- 
dimensionality data are the culprit owing to the fact that it is 
tempting to exceed the number of features used in modeling in pro
portion to the size of the training datasets. Machine learning algorithms 
always uncover patterns. Many however are phantom patterns and do 
not correlate with reality. The more features an algorithm has access to, 
the higher the proclivity to discover meaningless patterns and overfit the 
model to irrelevant idiosyncrasies of the underlying dataset. 

In the LA context, access to datasets used for machine learning may 
be limited to a few courses due to privacy and legal constraints in 
different jurisdictions, as well as to policies requiring opt-in consents 
from learners. Consequently, this may result in training datasets that are 
insufficient in size and therefore more prone to the negative effects 
arising from high-dimensionality data. More diverse and representative 
samples are critical for the field of LA research [16]. With small-sized 
datasets, the resulting models are even more likely to overfit by 
capturing residual noise rather than provide useful patterns. Alterna
tively, a model may underfit and thereby be unable to learn a complex 
decision boundary when the data volume is not rich enough to support 
this sufficiently. In either of the above scenarios, the accuracy obtained 
with the given training data may not match that of the models that have 
been deployed into a production environment, thereby limiting the 
usefulness of the derived models. Suggested ways to solve these issues 
are to make use of more general features, eliminating redundant or 
less-discriminatory features, incorporating more recent data points 
(while omitting some older data) and reducing the complexity of the 
models [11, 35] 

It is well accepted within the machine learning community [12, 33] 
that the quality of features is more important than the choice of algo
rithms, or even the size of the training datasets. It has already been 
discussed that as courses evolve, often handcrafted features developed 
for an earlier course delivery may not express correlations with an 
ongoing course. Or they may not even exist in a subsequent course 
delivery. 

The problem of generalization is considerable. But this is further 
confounded by the phenomenon of concept drift. Concept drift refers to 
what happens to a predictive model over time as the training data and 
the current real-life data become disconnected. For example, prior to 
2000s, virtual learning environments in LA were rare. These days, they 
are ubiquitous. This shift in technology also represents a gradual shift in 
the manner that students have come to learn and generate their digital 
footprints – and this shift continues today. The consequence is that using 
historic educational data that reaches too far back in time risks pro
ducing models which are not relevant for making decisions about cur
rent cohorts of students. However, using too little of the historic data for 
training also risks producing models that overfit. A difficult challenge 
arises in this domain where frequent concept drift needs to be accounted 
for and detected. How this can be accomplished, is still an active area of 
research [33]. 

In addition to the above, educational datasets tend to also be highly 
class-imbalanced. Class-imbalanced dataset domains possess an unequal 
representation in the number of samples for the different dependent 
variables. Classes with proportionally much fewer samples than the 
larger classes tend to experience a degradation in accuracy due to the 
fact that machine learning algorithms generally focus more on majority 
classes. As a result, predictive models may behave differently in terms of 
generalizability on majority and minority classes [44]. For instance, if 
the training dataset consists of very few students labelled as at-risk 
students (or students facing learning challenges), then there is an 
increased chance of misclassification in detecting these students on live 
data streams. The overall accuracy would likely be biased towards stu
dents not at-risk. The proposed solutions to handle class imbalances are 
pre-processing the dataset in order to construct a more balanced training 
dataset. This may be done by under sampling, over sampling or synthetic 
sampling methods [14]. Under sampling implies removing samples from 
the majority class (i.e., the not at-risk students) to balance with the 
minority class (i.e., the at-risk students); over sampling involves creating 
copies of the existing minority class samples (i.e., the at-risk students) to 
match the majority class (i.e., the not at-risk students); while synthetic 
sampling involves increasing the minority class with synthetic samples 
using feature space similarity. While strategies for mitigating class im
balances exist, it is not always clear which strategy should be used for a 
particular dataset and the overall challenge of machine learning on this 
type of data is also an active area of research with many open questions 
[26]. 

Another concern raised by [18] is that currently predictive models 
are very focused on transferring knowledge from the source domain 
(training dataset) to a target domain (live data) irrespective of whether 
these domains are related; thus potentially resulting in low generaliz
ability. For example, consider an example of two sets of undergraduate 
students enrolled in a university. In this scenario, one set comprises 
final-year undergraduate students while the second set comprises 
first-year undergraduate students who have just entered tertiary study. 
These two sets represent different domains. The domains are obviously 
related (i.e., both belong to tertiary education), but their activity log 
files (extracted from the LMS) are likely to represent different learning 
patterns. The first-year undergraduates will interact with different ac
tivities within LMSs in a specific pattern due to having no previous 
experience with them. This will differ to the navigation patterns of the 
final year students who are more experienced. Moreover, the final year 
student cohort would have more background knowledge of their chosen 
area of study, hence their approach towards using online study resources 
would differ. These two domains are different and deriving a universal 
model between them could result in poor generalizability, or negative 
knowledge transfer. Fig. 1 below outlines these generalizability chal
lenges as identified from literature. 

The above challenges are highly relevant for the LA domain in 
respect to machine learning and generalizability. More broadly how
ever, generalizability of machine learning models in the context of Big 
Data are also complicated by the presence of noisy data and the necessity 

1 The curse of dimensionality is a phrase coined by Bellman [7], that refers to 
high-dimensional data, which in a LA context refers to learners’ data that has a 
very large number of features or attributes describing each student. . 
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to learn with unreliable or contradicting data. This can also be com
pounded by the need to use sub-optimal algorithms due to the fact that 
the training data may be too large and cannot be processed and held 
entirely in a processing machine’s working memory, which many al
gorithms require. These, as well as further challenges are reviewed in 
[28] and [57]. 

4.2. Model transparency (Interpretability and explainability) challenges 

The rapid proliferation of predictive models into areas where pre
viously human decision making was exclusive, has highlighted the need 
to be able to interrogate the mechanisms behind the models that drive 
their decisions. The goal is to ultimately generate glass-box models 
which provide transparency to the human-in-the-loop. There are a 
number of reasons why this is becoming important. Trust in black-box 
models is generally low, and trust in these systems can be forged 
through higher transparency. It is important to be able to verify the 
inner mechanics of the outputs of these algorithms in order to ensure 
that they are robust, reliable, and fair. Increasingly legal requirements 
are beginning to mandate that the predictive models account for their 
decisions and that the reasoning behind any automated decisions be 
clearly articulated to those affected by them. In addition, [52] point out 
the importance of those affected to have the ability to contest adverse 
decisions made by automated systems, and interestingly, to also have 
the ability to understand what would need to change in order to receive 
a desired result in the future, based on the current decision-making 
model. 

The high interest in seeking new approaches to better understand the 
predictive modeling in real-life contexts such as education, has given 
rise to relatively new research fields such as Interpretable Machine 
Learning and Explainable Artificial Intelligence (XAI). The main goals of 
research in these spaces revolves around how global model interpretability 
and model prediction explainability can be achieved. Helpful literature 
surveys on these topics have emerged recently [1, 4, 13], together with 
some examples of some early work that is specific for the LA domain [3, 
36] 

Technically, global model interpretability deals with the challenge of 
making sense of the internals of a predictive model once a model has 
been trained by a machine learning algorithm. While global model 
interpretability highlights the behavior of the entire model at an abstract 
level, model prediction explainability on the other hand relates to the 
ability of a model to explain how it has arrived at a given prediction for a 
specific student. Model interpretability enables an institution to commu
nicate to all students how a predictive model works using broad 
brushstrokes. Model prediction explainability enables an institution to 
respond to a specific student query about how and why they might have 
been identified as an at-risk student given this student’s unique data. 

Some algorithms produce models whose internals are in the form of 
decision trees or rule-sets which are highly interpretable at a global 
level. With these algorithms, it is easy to see the decision points and 

threshold values for various features. However, higher accuracies are 
usually attained by algorithms that produce black-box models. Difficult 
trade-offs need to be made since some degree of accuracy or model 
interpretability will be sacrificed when choosing an algorithm. Howev
er, new suites of tools are emerging which are able to expose the internal 
logic of opaque models and induce them with adequate global inter
pretability, often through visualisations. Various approaches can be 
used such as generating proxy or surrogate models which approximate 
the underlying black-box model and generate interpretable models like 
decision trees (Trepan; [10]), rule-sets (BETA; [29]) or linear models 
(LIME; [37]). Apart from standard feature importance plots, more 
effective insights about the inner workings of models can be gleaned 
using tools that generate Partial Dependence Plots (PDP; [15]), which 
show how each feature affects the model’s predictions across a range of 
values. While Individual Conditional Expectation (ICE; [21]) plots 
extend the PDPs with the ability to display the mean predicted outcomes 
for a range of values of a selected feature, meanwhile holding the values 
of other feature values constant. The challenge remains of matching the 
suitable tool for the particular educational dataset at-hand and per
forming extensive experimentation in order to identify the right tool. 

In respect to explainability of predictions, global models with a high 
degree of interpretability can usually explain their individual decisions 
by highlighting the path through the decision tree that a single data 
point traverses, or in the case of rule-sets, listing the selected rules which 
were triggered by given predicates being met. In the instance of k- 
Nearest Neighbour models, k number of most similar students to the 
target student can be returned for inspection and comparison. 

With opaque algorithms, once again additional tools are required in 
order to explain the model’s reasoning. Recently, Shapley Additive Ex
planations (SHAP; [34]) have gained popularity in their effectiveness to 
visually explain the drivers of a model’s decision-making process. An
chors [38] have also been recently developed as a tool that imparts a 
high degree of explainability. Anchors extend LIME by creating proxy 
models which are able to approximate non-linear functions and output a 
most succinct decision rule that "anchors" the prediction for a given data 
point for a given precision requirement. This means that rule anchors a 
prediction (the prediction will not change) with a given decision rule 
even if values change in other feature values, thus highlighting the key 
features for a given student. Using an opposite approach, counterfac
tuals [52] search out the smallest required change to a student’s values 
which would result in a change of prediction. A counterfactual expla
nation in a case of a student, offers insights in terms of a minimum shift 
in key features that would need to take place in order to achieve a 
different outcome to what is currently predicted. 

In summary, achieving full transparency and interpretability of 
operationalised predictive models in educational settings is challenging 
for a number of reasons already outlined, and presents delicate trade- 
offs that need to be made (refer Fig. 2). It can be tempting to use ma
chine learning models that come with a high degree of intrinsic inter
pretability, but they produce less accurate models. The reverse is true 
with black-box algorithms. However, the trade-off is that additional 
tools need to be used in order to unpack both the internals of the models 
at an abstract level, as well as a suite of tools that provide explanations at 
an individual level of each student. The second scenario places addi
tional burdens on educational providers to have larger and more skilled 
teams of data scientists who are able to work with a wide range of tools. 

4.3. Ethical challenges 

There is considerable evidence that confirms the value of learning 
analytics in the enhancement of institutional teaching environments. 
However, many institutions worldwide are still at early stages in their 
adoption of LA and in their practice of using data-informed approaches 
for improving instructional services and supporting learners [43], as 
they deal with associated ethical challenges. From an ethical standpoint, 
the field of learning analytics sits in contrast with other big data 

Generalizability 
Challenges 

Inadequate feature representa�on 

Concept dri� 
 

Few data points 

Unrelated or irrelevant domains 

Small sample size Class imbalance 

Fig. 1. Generalizability Challenges.  

A. Mathrani et al.                                                                                                                                                                                                                               



Computers and Education Open 2 (2021) 100060

6

analytics (e.g., marketing analytics), since the digital footprints used are 
directly linked with individual students who can be identified via unique 
identifiers [40]. This raises questions about what constitutes acceptable 
or ethical analytics activities; that is, to what degree should the learners 
be informed about the details of how their data is used and whether 
explicit consent should be sought. Moreover, taking actions on auto
mated predictions or recommendations from predictive models in
troduces levels of uncertainty, as future possibilities are conceived based 
upon their alignment with historic data. Institutions that use LA must 
confront lack of predictive certitude in deciding the effectiveness of 
predictive outcomes. Therefore, when flagging particular students, such 
as those who may be facing learning difficulties with intent to provide 
them with appropriate pedagogical interventions, they must provide 
learners with explanations on why such interventions are being 
actioned. 

Interventions could comprise automated notifications that can nudge 
students by recommending relevant learning resources or by making 
some other provision in the form of personalized human assistance to 
help students overcome their learning difficulties [56]. Even though the 
intent of flagging students is to improve their learning environment, the 
fact remains that LA can also be considered to be a form of surveillance 
[25]. This tension between surveillance concerns and getting the true 
value out of LA has made it difficult to devise concrete ethical guide
lines. Having said this, all scholarly research studies must follow high 
ethical standards. This involves conducting a proper ethical scrutiny by 
the concerned institution and by the analytics team to ensure appropriate 
protocols have been used in data collection and analysis. The word 
appropriate in the context of educational dataset for LA implies that 
institutional codes of conduct should cover elements of informed con
sent, privacy and de-identification, clearly state the scope and motive of 
learner data tracking, define the boundaries on data usage and have 
measures to prevent unauthorised access and disclosure of learner data 
[48]. However, getting ‘informed consent’ for participation would not 
be possible from past students (whose data has been used for training the 
model), or be feasible in covering large scale LA projects [27]; therefore, 
LA should be considered as “development or improvement of techno
logical resources within an ethical framework” (p. 2862). Kitto and 
Knight further caution ethics committees, asking them to acknowledge 
the diversity across applied research disciplines from traditional edu
cation research, adding that “informed consent” may not always be 
possible within LA projects. Hence, we suggest definition of an institu
tional research ethics protocol that lays out detailed guidelines with 
respect to their technology deployment strategy that recognizes the 
purpose of the learner-generated data before leveraging any benefits 
from learning analytics. 

Fortunately, the digital age has broadened everyone’s perspective on 
how digital footprints left on online public platforms can be leveraged 
by online agencies (e.g., advertising and marketing agencies). Online 
data traces can be linked to our persona such as to our social media 
profile, physical appearance, current location and to other personal in
terests, which can then be assessed by commercial agencies for their 
competitive advantage. Learners too are somewhat aware that they 
leave their digital footprints when interacting with the institutional LMS 
over the course of their study. However, if an institution intends to use 

learners’ digital footprints for LA, they hold the responsibility of 
conveying their intention explicitly to the enrolled learners [48]. That is, 
they must reiterate to the learners that their online interactions are 
being recorded in the log files of a LMS; further, that the data from the 
user generated log files may be used by their institution for analytics. 
Therefore, as a first step, the research protocol should account for 
managing regulatory practices to ensure that learner privacy and 
confidentiality are not compromised when LA approaches are deployed 
for institutional advantage. In other words, institutions must acknowl
edge to all enrolled students that their digital footprints (captured via 
online interactions on LMSs) would serve as proxy data for analyzing 
their online behaviors. The proxy data would be mined and subse
quently analyzed for gathering insights on learner behaviors that would 
in turn be used for improving overall instructional services. These ser
vices include creating models on user behavior, user experience, user 
profiles, trend analysis or for modeling various learner knowledge do
mains [8]. The benefits and limitations of these services must be 
explicitly stated in simple and non-technical language for ease in 
comprehension by the learners. 

Moreover, in the case where historical learner datasets are to be used 
for developing instructional services, the provision of ‘informed consent’ 
from students no longer holds since these students are not currently 
enrolled at the institution. Therefore, institutions must ensure proper 
research protocols are followed to preserve the privacy and confidenti
ality of their past learner cohorts. First and foremost, instead of using 
actual unique student identifiers that can identify past students, the 
institution should follow a proper data management plan, such as to 
apply pseudonymization. Pseudonymization differs from anonymization 
where the “data subject is not or no longer identifiable”, since here the 
specific data subject cannot be identified without the use of “additional 
information” [17, 54]. The Article 4(5) adds that “such additional in
formation is kept separately and is subject to technical and organiza
tional measures to ensure that the personal data are not attributed to an 
identified or identifiable natural person”. In the context of LA imple
mentation, pseudonymization techniques would imply replacing the 
real identifier of each student with another unique identifier that in no 
way can be connected to the actual student. Further, this procedure must 
be conducted in a fool-proof manner by institutionally approved data 
custodians to protect the re-identification of learners in compliance with 
Article 25. Hash algorithms (e.g., SHA-256) can be used to convert the 
unique student identifier into a fixed-length unique value that is used 
instead. The data stewards are therefore responsible that all personal 
identifiable information (e.g., name, address, and contact information) 
are removed and stored separately before using the pseudonymized data 
for model development. In this manner, the training data used for model 
development cannot be linked to any particular individual. 

The key actionable output of LA systems are interventions. Since the 
aim is to essentially develop early warning systems that identify students 
who are at risk of underperformance or discontinuation, and to subse
quently activate appropriate interventions in order to avoid these 
probable outcomes, clear understanding of what constitutes effective 
interventions must be known. However, the existing research into effi
cacy of various intervention types based on outputs of predictive models 
is unclear [30]. Further research needs to be conducted into effective 

Fig. 2. Trade-offs between Low and High Model Transparency.  
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strategies for segmenting different learner types into groups which 
represent distinctive profiles, which ultimately have different needs and 
responsiveness to various types of intervention strategies. The instruc
tional services henceforth produced from education data mining tech
niques will further inform on subsequent intervention strategies. 
Evidence-based strategies would relate to how current students who 
have been flagged as being at-risk or those facing learning difficulties are 
to be supported by tutoring staff in overcoming their learning chal
lenges. However, there is danger of oversimplifying the intervention 
support strategy as an outcome of the model. We advise caution in 
simply setting up any intervention strategy and suggest that institutions 
consider multiple socio-pedagogical approaches for assisting students in 
overcoming their learning difficulties. Rubel and Jones [40] state that 
intervention strategies must stay clear of the student’s personal choices 
that are central to their conception of well-being or social tolerance (e. 
g., religion or politics). Instead, the strategies should be via tailoring of 
teaching practice or via interventions such as allocating relevant course 
resources conducive to improving student learning. Fig. 3 gives an 
overview of the ethical process that has just been described. 

Meanwhile, more stringent legislation around data privacy like 
GDPR, require high levels of openness about operationalized analytics 
systems, and particularly the ability to explain to affected learners how 
certain automated decisions were formed, together with a list of all the 
contributing factors. While not all internals of a predictive model need to 
be explainable, there does however need to exist a mechanism that re- 
traces prediction outputs for learners on-demand [22]. This is both a 
technical (Wachter et al., 2017) and a capability challenge which rep
resents an ethical dilemma if predictive models are rushed into 
deployment without the ability to satisfy these requirements. 

Finally, LA is a burgeoning field, and there is a dearth of educational 
datasets for the emergent researcher community to practice and hone 
their EDM skills. Another ethical concern faced by educational in
stitutions is related to the sharing of student data with third parties in 
the current global environment [40]. Educational institutions are legally 
bound in ensuring privacy of student data thereby limiting 

reproducibility and replication studies in learning sciences. The advent 
of MOOCs run by global providers (e.g., Coursera, edX, FutureLearn) 
offer another view of the emerging learning environments; although 
sharing of the learner data here too is restricted by strict privacy regu
lations [16]. Recognizing these restrictions, wherein full anonymity of 
each individual has to be maintained, many MOOC providers (e.g., 
HarvardX, Coursera) have released limited non-identifiable data via 
MORF (MOOC Replication Framework), a platform that allows re
searchers to deposit anonymized data (e.g., assessment details, grades, 
time stamps of student interactions, demographic information), that can 
be used by researchers in controlled environments while maintaining 
full privacy of student data. Further, researchers adhere to a global level 
ethics instrument that has been in place by the MOOC provider for 
responsible use of the anonymized data. 

5. Conclusions, limitations and future directions 

This paper has provided a much-needed perspective on the chal
lenges encountered in deploying LA systems. Literature-based evidence 
in response to the first research question – What are the key challenges 
in effectively deploying LA systems? – has identified three challenges, 
namely, transferability or generalizability, model transparency, and 
ethical challenges. The LA movement espouses the premise that 
computational exploration of learners’ historical data could lead to 
relevant feature extraction and the development of predictive models 
that can profile currently enrolled students based on their learning 
needs. This can be further leveraged by the educational institution in 
facilitating intervention strategies for supporting learner communities 
in overcoming their learning difficulties. While it is tempting to have a 
general model solution that can be used across multiple courses and 
learner cohorts, in practice this is rather difficult to deliver. Moreover, 
model transparency concerns too need to be addressed for relevance, 
robustness, fairness, and social acceptance. Finally, the use of educa
tional datasets has additional ethical concerns, such as responsible use of 
learners’ data so that individual learner’s privacy and confidentiality are 

Fig. 3. Research Ethics Protocol.  
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not compromised. 
Discussions pertaining to the second research question – What dif

ficulties are still encountered in producing generalizable predictive 
models? – have revealed generalizability challenges associated with the 
dynamic nature of the domain, feature engineering and selection, small 
dataset sizes, unbalanced datasets, and concept drift amongst others 
(refer Section 4.1). For accurate transfer learning to take place by the 
prescribed models, educational institutions must first consider the con
straints both in the use of learners’ digital footprints and also the 
learning context. Exploratory analyses to acquire a basic understanding 
of the data and the learning context must precede any machine learning 
algorithmic analyses. Learning situations evolve with new course syl
labus, changes to assessment structures, different learner cohorts and 
with diverse pedagogical approaches used by different tutoring staff. 
These lead to challenges in extracting relevant features that require 
much analysis and careful selection. However, a strong predictor in one 
learning scenario may become a weak predictor in another learning 
scenario. Therefore, we recommend re-evaluating the model design 
after regular intervals, such as after each successive course offering. 
Predictive models are driven by hindsight or historical data; it is crucial 
to ensure that the historical (or training) data aligns well with the target 
data to avoid generalization degradations brought on by concept drift. 
The analytics task is not a one-off task that concludes once a model is 
developed, rather it is an iterative empirical process of trial and error. 

The third question – What are the next frontiers in being able to 
extract more value from predictive models, rather than just predictions? 
– has revealed gaps related to model transparency by the intended 
audience (refer Section 4.2). Algorithmic decisions as a consequence of 
predictive models are not easily interpretable. Hence, to achieve trans
parency, institutions must convey human-understandable explanations 
of the logic behind the internals of machine learning algorithms to their 
learners. In other words, simply informing a student about some algo
rithmic predictor value (e.g., AUC) as a measure of their learning 
behavior is by no means adequate; rather, both the high-level model 
behavior and the explanations of specific predictions must be made 
available in simple layman terms for non-technical people (i.e., to the 
currently enrolled students in this case). We have provided an overview 
of some strategies for explaining the model’s reasoning by way of 
counterfactuals, proxy models and visuals (e.g., decision trees, feature 
importance plots, individual conditional expectation, etc.) as the next 
frontiers in extracting more value, rather than merely stating 
predictions. 

The fourth question – Which ethical dilemmas still remain in the 
deployment and operationalisation of LA systems? – has further 
divulged ethical predicaments in the usage of learners’ digital footprints 
being harvested within the institutional learning management platform. 
We acknowledge the crucial role learning analytics can play in trans
forming educational delivery with better flow of customized instruc
tional services; however, we caution institutions on preserving the 
privacy and confidentiality of their learners. For any research to be 
recognized as a scholarly research outcome, all concerns related to its 
ethical conduct must be addressed first. However, we find that the 
ethical perspective in the deployment and operationalisation of LA 
systems is not explicitly stated in literature. We advise the use of an 
institutional research ethics protocol that clearly outlines the institu
tional strategy. Most importantly, disclosure statements on the use of 
learner data must be explicitly communicated to current learners, while 
historical data used for advancement/refinement of the model must be 
pseudonymized and all additional data that can lead to re-identification 
kept safe with authorized data custodians. The created model(s) is 
proprietary to the concerned institution; hence it is not required that 
institutions disclose their technical practices (e.g., ensemble of algo
rithms used). 

This concept paper takes a problem-centered approach with the main 
purpose of “developing logical and complete arguments for associations 
rather than testing them empirically” ([19], p. 127); hence, no 

experimental design or empirical data has been provided. Further, it 
does not cover analytic technicalities, such as choosing the right ma
chine learning algorithm or tuning of the machine learning algorithms. 
Concept papers are meant to provide a tightly focused literature over
view, since their objective is to put forth a bridge between validation 
and usefulness of constructs within some identified domain. Gilson and 
Goldberg advise the use of figures to clearly depict authors’ views on 
how these constructs are related. Figs. 1, 2 and 3 showcase constructs for 
establishing and managing data-driven approaches related to the 
generalizability, model transparency, and ethical domains. While 
tracking and measuring learner performance can make education pro
viders more aware of their instructional services, we encourage policy 
makers and institutional authorities to consider these constructs and 
question themselves on how their analytics approach is suitable, 
meaningful, and justifiable. 
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