
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

The Development of
a Visual Language for

Image Processing
Applications

A thesis presented in partial fulfilment of the requirements for

the degree of Doctor of Philosophy in Computer Science at

Massey University, Palmerston North, New Zealand.

Phillip Michael Ngan

1992

j j

Abstract
The research described in this thesis is based on the hypothesis that computer

support for the heuristic development of image processing algorithms can be

improved by the provision of a human-computer interface that is suited to the

task. Current interfaces are largely text based and are not specifically designed

to provide this support. It is suggested that an interface incorporating aspects of

menu-based, direct manipulation, and visual languages, can provide the

necessary support.

The research of this thesis begins with an analysis of the task of image

processing algorithm development. It is found that in development, algorithms

are more appropriately viewed as data-oriented networks of imaging operations
than as process-oriented lists. The representation of algorithms in most current

interfaces, particularly in text based systems, do not clearly convey the multi­

threaded data paths in an algorithm. However, a data-oriented representation

expresses such parallel paths clearly and naturally.

The second finding of the analysis is that human designers employ a set of

problem solving strategies or heuristics in the interactive development of

algorithms. These strategies include the top-down decomposition of the imaging
task, the identification and focus of critical sub-goals, the progressive refinement
of an algorithm, and the modification of existing algorithms. These heuristics

are used implicitly in the development of algorithms, but the ease with which

they are used in text based interfaces is restricted by the lack of appropriate
interactive facilities.

An evaluation of interface techniques suggests that an interface that combines
aspects of menu-based, direct manipulation, and visual languages, can support

the required interaction for the heuristic development of algorithms. The

required data-flow view can be provided by an iconic data flow language. Such a

representation is highly visible, and can be interpreted by a user at a glance.

Quick and convenient specification and editing of a data flow network can be

performed via direct manipulation interaction facilities. The search for suitable

operations can be facilitated by menu systems.

On the basis of the arguments for the adoption of a data-flow representation of

algorithms, a problem solving approach to algorithm development, and highly

interactive facilities, a software package, called OpShop, has been

implemented. Examples which compare OpShop to text based systems show that

four major tasks involved in algorithm development are better supported with

the new interface. These tasks are the visualisation of multi-threaded data

paths, the interactive experimentation with algorithm parameters, the

modification of algorithm topology, and the comparison of alternative

algorithms. In these examples, the OpShop software represents the tangible

outcome of the design for an interface that specifically supports the heuristic

development of image processing algorithms.

i i i

Table of Contents
Abstract. ... i i

Preface ... v i

Acknowledgnlellts ... ix

1 Introduction ... 1

1.1 The context .. 1

1.2 The approach .. 3

1.3 Thesis overview ... 4

2 Image Processing Algorithm Development 6

2.1

2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

2.3

2.4

2.5

2.6

2.7

2.8

2.7.1
2.7.2
2.7.3.
2.7.4
2.7.5
2.7.6

Introduction 6

General structure of an algorithm 9
Outside world 10
General image 11
Segmented image 12
Compact structures 13
Shape measurement 14
Pattern classification 15
An example algorithm 15

Data-oriented view of algorithms 17

Algorithm development is problem solving18

The solution graph 19

Solution development 20

The heuristic approach 22
The broad decomposition of the task 22
Identification of a critical subgoal.. 22
Jumping to an arbitrary location 23
Application of well known techniques 23
Exemplar based development 24
Progressive refinement 24

Summary and Conclusions 25

3 Human Computer Interface Techniques 26

3.1

3.2
3.2.1
3 .2.2

Introduction 26

Command line interfaces 27
Advantages 28
Disadvantages 29

3.3
3.3.1
3.3.2

3.4
3.4.1
3.4.2

3.5
3.5.1
3.5.2
3 .5.3
3.5.4
3 .5.5

3.6

iv
Menu based interface 30
Advantages .. 33
Disadvantages .. 33

Direct manipulation interface ... 34
Key characteristics 37
Disadvantages .. 38

Visual language interface .. 39
Visual programming vs program visualisation 39
Visually transformed vs naturally visual41
Program responsiveness42
Advantages 43
Disadvantages43

Sununary and conclusions ... 44

4 An Interface Design .. 46

4.1
4.1.1
4.1.2

4.2
4.2.1

4.3
4.3.1
4 .3.2
4.3.3

4.4

4.5

Design philosophy .. 46
Stepwise refinement .. 48
Dynamic exploration ... 48

Generation .. 49
An iconic data flow language for image processing 49

Execution .. 53
Specification of input and output data 53
Specification of parameter values 54
Oper

.
.

.
ation lnvocation 56

Evaluation of the results 57

Summary and Conclusions .. 58

5 OpShop: An Implementation .. 60

5.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4

5.3
5.3.1
5.3.2
5.3.3

5.4
5.4.1
5.4.2
5.4.3

An overview of OpShop .. 60

Elements of the visual language environment 63
Whi teboard .. 63
Operations .. 64
Algorithms 68
Subflows 71

User Interaction .. 74
Execution .. 74
Parameter exploration .. 74
Topology exploration 75

The OpShop software design ... 77
Why THINK C? ,77
Data structures .. 79
A data-driven execution scheme .. 83

v

5.5 Feasibility of continuous interaction 88

5.6 SUlTUTlary and conclusions 90

6 OpShop Examples ... 92

6.1

6.2
6.2.1
6.2.2
6.2.3

6.3
6.3.1
6.3.2
6.3.3

6.4
6.4.1
6.4.2
6.4.3

6.5
6.5.1
6.5.2
6.5.3

6.6

Introduction 92

Data flow view of an algorithm .. 93
Colour classification ... 93
A command line implementation .. 95
OpShop implementation . .. 96

Parameter exploration 97
The Abingdon Cross benchmark .. 97
A command line implementation .. 98
An OpShop implementation 100

Topological exploration ··· ... 102
Segmentation of a non-uniformly illuminated scene 102
A command line implementation .. 105
An OpShop implementation .. 106

Choosing between algorithm alternatives l07
Generation of alternative solutions 107
Command line implementation l07
An OpShop implementation .. 108

Summary 109

7 Summary and Conclusions ... 110

7.1 Suggestions for future work .. 113

References ... 117

Summary of the OpShop Software 127

A1.1

A1.2

A 1.3
A1.3.1
A1.3.2
A1.3.3
A1.3.4
A1.3.5

Al.4
A1.4.1
Al.4.2
A1.4.3
A1.4.4

Introduction 127

System requirements 128

Description of Operations .. 128
General Menu .. 128
Preprocessing Menu 135
Segmentation Menu ... 140
Measurement Menu 145
Miscellaneous interface elements 145

Operation Icons 146
General Menu 146
Preprocessing Menu .. 146
Segmentation Menu 146
Measurement Menu " . 146

v i

Preface
Background

This project grew out of a perceived need for a highly interactive computing

environment to support the heuristic approach to imaging algorithm

development. I was introduced to the field of image processing while I was an

undergraduate Electrical Engineering student at the University of Canterbury.

During the course of studying my B.E. and M.E. I had used, or at least been

exposed to, four interactive image processing systems. These systems, written by

post-graduate students of Richard Bates and Bob Hodgson, served their intended

purposes well; that of providing computing environments to support research into

image processing. However, it never occurred to me then, that good engineers can
(sometimes) create bad interfaces1. These were fine systems for performing post

graduate research, but they were not necessarily the easiest to use.

Richard Bates, on finding out that I was considering continuing my studies

overseas, strongly recommended Mark Apperley to me as a supervisor for Ph.D.

studies. As it turned out, Mark Apperley had a happy blend of an electrical

engineering background and research interests in both image processing and

human-computer interaction. After enrolling in a Ph.D degree course, Bob

Hodgson and Don Bailey, who had been key figures in the image processing work

at Canterbury, joined the staff at Massey University. They accepted invitations

to co-supervise my Ph.D. project So it was with a definite research objective and

a proficient team of supervisors that I started on the work reported in this thesis.

Original contributions

This thesis describes the development of an interactive user interface for image

processing applications. The primary goal of the interface is to facilitate the

development of imaging algorithms by enhancing a user's ability to directly

interact with the imaging task. In the course of pursuing this goal a number of

original contributions were made:

• A new viewpoint concerning the task of image processing algorithm

development . It is recognised that, for development, an algorithm is more

appropriately viewed as a data-oriented network of operations than as a

process-oriented list of imaging operations. This latter view is prevalent in

most current systems for imaging algorithm development.

• A data-oriented view, called the solu tion graph, was formulated as a
graphical model to represent image processing algorithms.

1 Genter, D.R. & Grudin, J. (1990): Why good engineers (sometimes) create bad

interfaces, CHI'90 Conference Proceedings, Seattle, Washington, 1 - 5
April, 1990.

v i i

• Another new viewpoint concerning the task of image processing algorithm

development. The pragmatic approach to the development of an algorithm

can be regarded as an example of a problem solving task. It is demonstrated

that the pragmatic approach involves the application of a set of heuristics, to

increase the likelihood of finding a satisfactory solution. The developed

interface incorporates a graphical language that enables the explicit

representation of the these heuristics.

• Demonstration of a user-oriented approach to software design. The user­

oriented approach to software design was shown to be feasible provided that a

designer is fully aware of the user's needs and interests regarding the task, and

that the designer carefully applies interaction techniques to support users'

concerns. In this study, the end-product is an interactive environment for the

development of imaging algOrithms.

• Demonstration of ways to s implify algorithm development. Four

demonstrations were given to show how the implemented design simplified

the development of imaging algOrithms.

As with most software projects, the process of development tends to be more

evolutionary than sequential. In practice, a development of a product rarely

proceeds in the distinct stages of analysis, design, implementation, and testing,

as indicated by the structure of this thesis. Rather, a typical development

process involves iteration of these stages. The research for this thesis was

conducted in such an evolutionary manner. Many of the insights and perceptions

presented were a product of hindsight and reflection of previous iterations.

Aspects of the design were formalised before, during, and after, the writing of

software. Although the form of a thesis constrains one to present material in a

linear sequence of logical steps, the reader should be aware that the ideas were

not necessarily developed in that order.

v i i i

publications

The following publications and presentations were prepared during the research

for this thesis:

Ngan, P.M., Apperley, M.D. & Hodgson, R.M. (1989): Towards a user model for

image processing and analysis, Proceedings of the 4th New Zealand

Image Processing Workshop, Auckland Industrial Development Division,

Department of Scientific and Industrial Research, Auckland, New

Zealand, 14-15 August, 1989, 94-100.

White A.G. & Ngan, P.M. (1989): The measurement of red colour of apple fruit

using digital imaging, Proceedings of the 4th New Zealand Image
Processing Workshop, Auckland Industrial Development Division,

Deparbnent of Scientific and Industrial Research, 14-15 August, 1989, 13-
19.

Ngan, P.M., Apperley, M.D. & Hodgson, R.M. (1990): The user-oriented

development of an interface for image processing, Proceedings of the 5th

New Zealand Image Processing Workshop, Massey University,

Palmerston North, New Zealand, 9-10 August, 1990, 63-68.

Cochrane, T., Matthew, c., Apperley, M.D. & Ngan, P.M. (1990): Plant root

length and diameter determination using an image analysis thinning

algOrithm, Proceedings Agronomy Society of New Zealand,20, 1990, 77-

82.

Ngan, P.M. (1991): OpShop: an iconic programming system for image processing,

Proceedings of the Australasian Apple University Consortium
Conference, Australian National UniverSity, Canberra, Australia, 1-4
July 1991.

Ngan, P.M. & Apperley, M.D. (1992): Opportunistic design in image processing

algorithm development, submitted to Journal of Visual Languages and
Computing.

ix

Acknow ledgments
During this Ph.D., I was fortunate to have had three exemplary researchers as

my supervisors: Mark Apperley, Bob Hodgson, and Don Bailey. Each tended to

help me in different aspects of my study, yet these differences were

complementary. This complementarity somewhat parallels the concept of

generation-execution-evaluation discussed in the thesis. Mark, my first

supervisor, helped me generate the ideas of this work through his acute insight

of important and promising avenues of research. Don helped in the carrying out of

the work by providing timely and key advice during both the programming and

writing phases. Bob often served as the beta-tester for the research and provided

greatly appreciated constructive critidsm to ensure the work was carried out to a

full professional standard. I greatly appreciate the support, encouragement, and

openness, that my supervisors have extended to me during this apprenticeship in

the craft of research.

Kirsten, my fiance and constant source of love and support during this work,
exercised her meticulous editing skills on many of the chapter drafts.

I appreciate the contribution of Paul Mudgeway relating to the graphical design

of the icon symbols for OpShop. His work demonstrates the value of involving

graphics designers in graphics-oriented HCI projects.

Throughout the Ph.D., I received financial support in the form of the ves Ph.D.

Study Award. I am indebted (and thankfully not financially!) to Massey

University for this assistance;

A man can do nothing better than to eat and drink and find satisfaction in his

work. This too, I see, is from the hand of God ... (Eccles. 2:24). This work has been

carried out to the glory of God.

1

Chapter 1

Introduction

1.1 The context

Humans acquire information primarily through the sense of sight (Barraga,

1986). With this sense, humans have the capacity to perform a rich and

sophisticated range of visual tasks, yet do so unconsciously. Examples of human

visual tasks are identified in the following excerpt from a popular children's

book (Milne, 1928, p.92ff.); the visual tasks are indicated in italics. In this scene,

the characters are leaning over the side of a bridge watching sticks float down a

river as part of a game call Poohsticks ...

"'1 can see mine!" cried Roo,

'No, I can't, it's something else. Can you see yours,
Piglet?

I thought I could see mine, but I couldn't. There it is!

No, it isn't. Can you see yours, Pooh?" ...

"It's corning!" said Pooh.

(object detection)

(object classification)

{in need of image
enhancement>

(motion analysis)

Chapter 1 - Introduction

"Are you sure it's mine?" squeaked Piglet excitedly.

''Yes, because it's grey.

A big grey one. Here it comes! A very - big - grey -

Oh, no, it isn't, it's Eeyore."

2

(pattern recognition)

<feature measurement)

(optical character
recognition!)

To augment our natural sense of sight, humans have created vision systems to
acquire spatially distributed information of phenomena and scales that cannot be

perceived unaided by the eye. Scott (1990) explains that: "These nonbiological

channels expose otherwise invisible domains to our systematic scrutiny. They

allow us to experiment and understand, to craft new generations of technology

from the previously unobserved. Most major innovations in science and technology

have been preceded and simulated by Significant extensions the natural

sensorium by technical means."·

Artificial vision systems are created not only to extend human information

gathering into other domains, but also are created "to simulate natural sensory

processes, endowing instruments with capacities that effectively mimic our own"

(Scott, 1990). In many situations, these "instruments" are required to more than

mimic human vision, but to operate with a precision and speed that is beyond the

normal capability human vision. One such situation is cited by Scott:

"Commercially available machine vision system can accurately screen parts

passing by on a conveyor belt at a rate at which the human eye perceives just a

blur ... "

The key functions of any vision system, be it natural or artificial, are the

acquisition of images and the processing images (Com, 1983). The main function of

the processing stage is to attribute meaning to a scene; this is also known as scene

interpretation. A vision system interprets a scene by measuring prescribed

parameters of a scene. A simple example of interpretation is the situation where

a viewer detects the parameters X and Y in a scene, and as a result attributes the

meaning Z to it. For humans, the visual parameters are set within the contexts of

culture, profession, and experience. For example, a native Chinese person and an

Anglo-Saxon would differ in their ability to transcribe a sentence composed of

Chinese ideograms or a sentence composed of English characters; an artist may

interpret a full moon against a clear night sky differently from an astronomer; a

seasoned farmer would probably interpret cloud formation differently from an

urban dweller. In artificial vision systems, the visual parameters used in scene

interpretation are usually prescribed by a computer program. Therefore, the

interpretation of a scene is performed according to the process specified in a

computer program.

The processing of image data is typically specified in a computer program as an

algorithm. In image processing terminology, an algorithm is a sequence of

Chapter 1 - Introduction 3

mathematical operations which performs some prescribed imaging task.

Brumfitt (1 984) notes that the development of a system for an imaging

application involves two distinct phases: the research phase in which the

algorithm is developed, and the engineering phase in which a prescribed

algorithm is implemented in such a way as to meet particular performance

criteria. This distinction implies two types of users for image processing systems:

those who develop algorithms and those who use the algorithm to achieve a

specific task. This thesis concerns provision of a computer environment to aid the

first type of user in the task of algorithm development.

The central problem in image processing algorithm development is to find an

appropriate sequence of mathematical (or imaging) operations which produces

the desired result. However, there is usually no single best solution. In some

situations, several alternative algorithms may be devised to achieve the result,

while in another situation, even one satisfactory algorithm may be extremely

difficult to find. The field of image processing lacks a general theoretical

underpinning (Haralick, 1986) and therefore algorithms are generally not

developed along a pre-determined solution path.

1.2 The approach

It is the view of this author and his supervisors that the development of image

processing algorithms - at least in the foreseeable future - is best performed using

an empirical approach. By· this approach, a human designer develops an

algorithm by performing a series of experiments, where each experiment is

designed by experience, trial-and-error learning, and intuition. At present, the

only alternative to this approach are design methods that seek to emulate

natural vision systems (Marr, 1982; Wilson, 1 987). While these approaches may

ultimately lead to the production of systems that perform optimally for the task

to which they are applied, it may take many years for the field of image

processing to gain the knowledge of human vision and general vision sufficient for

the implementation of such systems. The pragmatic alternative is to devise

systems to perform specific tasks proficiently and cost-effectively (Petkovic &

Wilder, 1991) . Although these systems may perform only the application for

which they were designed and may not resemble human vision in the method of

computation, nevertheless they may address the immediate needs for the

.
extraction of information from image data.

The research described in this thesis is based on the proposition that support for

experimental development of algorithms can be improved over existing methods

by the provision of a human-computer interface that is suited to the task. The

research performed to uphold this position involved: analysing the task domain

of image processing algorithm development, evaluating interface styles currently

used in image processing systems, developing guidelines for an interactive

Chapter 1 - Introduction 4

computer environment, implementing a software package according to the

proposed guidelines, and evaluating the software package.

The tangible product of the research this reported in this thesis is a program for

Macintosh computers, called OpShop, that supports the interactive development

of image processing algorithms. The implementation of this package is

thoroughly grounded on the principles of user-centred design espoused in this

thesis. The interactive environment includes a wide range of imaging

operations2. The software is written in a high level programming language,

"Think C", and contains 42 000 lines of source code3. Features of the OpShop

environment are described in detail in Chapter 5 and examples of its use are

demonstrated in Chapter 6. Descriptions of each imaging operation in the

package and the hardware and software requirements to run the package are

described in Appendix 1.

1.3 Thesis overview

The research conducted for this study takes a complete path from an analysis of
the application domain, to a review and evaluation of current interface

techniques, to an application of a particular (user-centred) design philosophy,

and finally culminating in an implementation of a software package, which is

evaluated against the development goals. The research reported in this thesis

deliberately follows a depth-first path through the field of development

possibilities. Many interesting issues are left unvisited so that a complete

development could be achieved. The principle restriction of the research is that

only image analysis algorithms are considered; however, the structures

developed may be readily extended to other application domains. It was not the

intent of this thesis to describe the development of a definitive image processing

system; such a
.

study would entail many aspects, of a system including:

extensibility and execution efficiency. However, this thesis contributes towards

the design of a definitive system by studying the interaction that occurs between

a human designer and an algorithm.

A thorough working knowledge of the application domain is a prerequisite for a

comprehensive interface design. Chapter 2 provides an overview of the

application domain of image processing algorithm development. Two models

that describe algorithms are presented: the first is the traditional model of

image operations arranged as a processing pipeline, the second is the result of a

2 Twenty-one of the full set of sixty-three operations have been implemented.

30f this body of code, 21 000 lines of code were written by the author, while the

other 21 000 lines were supplied as the Think™ object-oriented class library

(TCL).

Chapter 1 - Introduction 5

new perception: that an algorithm can be represented as a data-oriented

processing structure. The traditional view provides a well-established

framework within which the imaging concepts relevant to this study is defined.

The process-oriented view is found to restrict the user's capacity to develop

algorithms. To address this deficiency, the data-oriented representation is

introduced. Several problem solving strategies specific to image processing are

presented within the framework of the data-oriented representation.

Chapter 3 presents an overview of the interface styles used in current image

processing systems. Command line, menu-based, direct manipulation and visual

language interface styles are examined and evaluated for their suitability for

algorithm development. Such an overview represents an essential part of the
overall development because any software package proposed in this thesis must
not only incorporate features that improve interaction, but also build on the past

successes of conventional interface styles.

Chapter 4 presents a design for an environment that supports the interactive
development of imaging algorithms; this environment is an amalgam of some of

. the interface styles evaluated in Chapter 3. The design is directed by the

principles of user-centred deSign, which are advocated by Norman (990). The

specification of the interface is jointly shaped by the issues cOncerning algorithm

development raised in Chapter 2 and by the evaluations of interface styles made

in Chapter 3.

Chapter 5 describes OpShop, the practical implementation for the design

proposed in Chapter 4. The interactive features reviewed in Chapter 3
considered beneficial to algorithm development are integrated in this

environment. Components of the environment are described in detail and the

reasons for the particular implementations of these details are presented. The

user interaction involved in the fabrication of an algorithm is described, with

emphasis on the features that promote exploration of algorithm variations.

Details of the system software including the data structures and the

implementation of the data-flow execution scheme are described to give an

appreciation for the internal operation of the system.

In Chapter 6, the image processing package is tested to demonstrate the way in

which its features facilitate algorithm development. Four sample problems,

each representative of an interactive task in image processing, are described.

Each problem is discussed in two parts. In the first part, a command line

implementation is presented to highlight the interaction requirements

emphaSised by the example task. In the second part, the equivalent solution in

the OpShop environment is presented and contrasted with the command line

algorithm.

Conclusions of the research and suggestions for future work are presented in

Chapter 7.

Chapter 2

Image Processing
Algorithm Development

6

This chapter reviews the concepts and terminology of image processing

algorithm development relevant to this thesis. 'The first part of the chapter

includes a conventional description of image processing algorithm development

made within the framework of a data processing pipeline. The second part of the

chapter introduces the idea of data flow representation and the concept of

heuristic development of algorithms.

2.1 Introduction

The computer processing of pictorial infonnation is best described by the diagram

of Figure 2.1. This indicates how computer representation for such infonnation

falls into three general categories and shows the different types of processing

relevant to each representation. Images are a direct representation of a scene and

usually take the form of a two dimensional rectangular matrix of picture

elements or pixels. Measurements derived from the image data characterise the

useful infonnation in the image, and these typically take the form of a small set

of scalar numbers, such as a symmetry factor. The measurements in turn can be

Chapter 2 - Image processing algorithm development 7

..-:----used to infer some high level description of the objects in an image, for example,

"the kiwifruit has a dropped shoulder shape". The field of image analysis

involves the extraction of measurements from an image (Castleman, 1979),

whereas pattern recognition is concerned with the interpretation of the

measurements to infer abstract facts regarding the image (Freeman, 1986).

Figure 2.1: Computer processing of images.

image enhancement
segmentation
preprocessing

image analysis

pattern recognition

The applications that solely employ image to image transforms are image
enhancemen t , s egmen ta t ion, and preprocess ing. The purpose of i m a g e

enhancement is to process an image so that the res'ult is more suitable than the

original image for a specific application (Gonzalez, 1987). The term "specific" is

important because the processing is domain dependent. An example is to improve

the sharpness of an x-ray image so that a physician can better "see" the

anatomical structures. Another example is to improve the detectability of an

object travelling along a conveyor belt so that its quality may be more readily

assessed. In the first example, the enhancement is performed for the sake of a

human; in the second, for the sake of a machine. Despite the diversity in imaging

tasks, an image enhancement phase is nearly always required in the early stages

of proceSSing. Typical enhancement operations include contrast stretching, edge

sharpening, and noise suppression. When image enhancement techniques are used

to produce images that undergo further processing, the enhancement stage is

sometimes called preprocessing (Haralick & Shapiro, 1991). Segmentation is a

process which partitions an image into regions of similar properties; this is

discussed more fully in section 2.2.3.

Chapter 2 - Image processing algorithm development 8

Image enhancement, image analysis, and pattern recognition have been used

together successfully in commercial projects in the area of quality control. This

application of imaging techniques is called automated visual inspection
(Batchelor et al., 1985) or machine vision (Freeman, 1989). A typical application

is the identification and removal of defective products from a conveyor belt

before they are packaged and sent to customers. This usually involves a camera

set over a conveyor belt to capture the image of every item that passes. Defects

are inferred from key measurements made of the imaged objects. If an object is

identified as defective, the imaging sub-system signals an electro-mechanical

arm to remove the defective item from the conveyor. Often, much of the

development effort for a machine vision installation is devoted to the capture of

images and the computation of results at high frame rates. A typical example of

a machine vision system is A vdel (Hollingum, 1984), which inspects the head

diameter and stem length of rivets at a rate of 10 items per second. To capture

images at this rate, without blurring, requires specialised equipment such as line

scan cameras or strobe lighting. At present in 1992, computation at such speeds can

only be performed by custom hardware. Temperature and lighting variations,

vibration, and dust, together present a harsh environment in which an imaging

system must operate, but nevertheless the system must be resilient to these

constraints if it is to work properly.

Image enhancement, image analysis, and pattern recognition are regarded as the

"low-level" components for vision systems that use high level knowledge to

interpret a scene. The essence of the automated visual inspection problem is

captured in the question, "Does object X with property Y exist in the image?".

The description of X and Y and the method for their extraction is hard coded into

the inspection algorithm. In contrast, the task of image understanding systems

(Lawton & McConnell, 1988; Fischler & Firschein, 1987) or computer vision
systems (Ballard & Brown, 1982) are to provide a high-level description of a

(usually three-dimensional) scene. Scene interpretation is often an open ended

task, which is summed up by the question "what objects exist in this three­

dimensional scene?". In the United States, image understanding projects are

strongly oriented towards military applications because their funding comes

principally from the Defense Advanced Research Projects Agency (DARPA).

Typical image understanding projects relate to autonomous vehicle navigation

(Thorpe & Kanade, 1989), robot vision (Fennema et aI., 1989), smart weapons

(Bjorklund et al., 1989), and photointerpretation (McKeown et aI., 1985). There

are currently two broad schools of thought in the sub;-discipline of image

understanding. One school maintains that theory should lead implementation

(Jain & Binford, 1991; Snyder, 1991), while the other school insists that the

theory is advanced by practical experimentation (Aloimonos & Rosenfeld, 1991;

Huang, 1991; Bo 'Yer & Jones, 1991).

Any study must restrict the scope of its investigation to keep the project to a

manageable size and to increase the likelihood of producing meaningful results.

In this thesis, image processing algorithms are assumed to relate only to image

enhancement and analysis applications to avoid the need to deal with the

•

Chapter 2 - Image processing algorithm development 9

artificial intelligence aspects associated imaging understanding systems.

Artificial intelligence systems have the complex architectures needed to make

inferences from knowledge bases and for handling three dimensional geometric

models. A natural distinction exists between image processing and image

understanding; this is reflected in the recent division of the journal "Computer

Vision, Graphics, and Image Processing" into two separate publications, "Image

Understanding" and "Graphical Models and Image Processing" whose first

volumes were published in 1 991. The conclusions of this thesis, although based

only on image enhancement and analysis algorithms, will be of general relevance

as all vision systems must include "low-level" processing at some stage in its

processing (Rosenfeld, 1988).

2.2 General structure of an algorithm

An algorithm can be considered as a prescribed sequence of imaging operations

that refines data in stages. As the data progresses through each stage, the

information is progressively refined until the final descriptor is formulated.

Most algorithms can be represented by the processing pipeline shown in Figure

2.2. The lines with arrows represent groups of imaging operations that work

together to transform data from one state to another. Occasionally the

transformation between data states can be accomplished by a single operation,

but usually it is achieved by several operations. The combined set of operations is

generally regarded as an algorithm.

or

:::��mmrI8··��gll�:i·--

1. a�ea = 3.1, perim = 6.3
2. area = 2.3, perim = 5.1
3. area = 3, perim = 7

1. shape = circle
2. shape = triangle
3. shape = rectangle

Figure 2.2: Data tra11sjormations involved in most image processing algorithms,

Chapter 2 - Image processing algorithm development 1 0

A s the data passes through each stage of the processing, it increases i n structure

and decreases in volume but maintains the information that is ultimately

extracted (Rosenfeld, 1984). The changes to the data are illustrated by the

progression of the example data in Figure 2.2. At the start of the processing, the

image data contains geometric objects and noise. At the next stage, the segmented

image contains only the "silhouettes" of the geometric objects. Then, the object's

outlines are extracted and encoded as a linked lists of points called chain codes.

The outlines are then dispensed with altogether and each object is represented by

characteristic measurements of area and perimeter. Finally, each shape is

named. Detailed discussion of each stage follows in the next six sections.

2.2.1 Outside world

The outside world refers to a scene or object whose image will be captured by some

sensing device. Freeman (1986) categorises image processing applications by the

size of the scene compared to the camera. The first class contain scenes much

larger than the camera: remote sensing of earth resources data or aerial

reconnaissance fall into this category. The second class refer to scenes much

smaller than the camera: for example, viewing blood cells or chromosomes

through a microscope. The third class refer to scenes whose scale is comparable to

that of the camera: applications include shape measurement of apples (White &
Johnstone, 1991), optical character recognition, and the analysis of carpet wear.

Applications in the third class resemble most closely human visual tasks because

of the similar scale of the world sensed through the eyes.

Image capture involves the conversion of a scene into a representation suitable for

input to a digital computer. Among the most common image capture devices are

microdensitometers and solid state imaging arrays. A microdensitometer

measures the intensity of light transmitted through film. A solid-state array can

image either transmissive or reflective light intensity fields. These image

sensors have groups of receptive elements arranged as a two dimensional array

which allows natural three dimensional scenes to be captured in a single video

frame time. Consumer video cameras, which typically use CCD arrays, are

frequently used for image capture because of their versatility and relative low­

cost.

The image capture devices mentioned above sense the outside world in a

rectangular spatial geometry, but not all devices work in this way. Computerised

tomography (CT) machines take measurements in the form of projections. A

projection is a one dimensional distribution of image intensities integrated over a

set of parallel or divergent rays travelling through a transverse slice of a body.

In a CT scan, a set of projections - each displaced by a small angular increment - is

measured through a body for a single transverse plane. In x-ray CT (Hounsfield,

1980), projections are a measure of the x-ray attenuation experienced by the rays

passing through the bones and organs of a body. In emi?sion CT (Budinger, 1980;

Budinger et al., 1979; Knoll, 1983), the projections are a measure of the density

distribution of a radioisotope on the imaged plane. The cross-section of the body

Chapter 2 - Image processing algorithm development 1 1

can be inferred from the projection sets by a mathematical transformation

technique called reconstruction from projections (Herman, 1979; Herman, 1980;

Bates & Peters, 1971; Garden, 1984; Lewitt, 1983). Nuc1eJlr magnetic resonance
imaging or magnetic resonance imaging (to a void negative connotations

associated with the word 'nuclear') are further examples of imaging devices that

do not sense the data in spatial coordinates. These devices measure the frequency
spectrum of an electromagnetic field generated by a distribution of hydrogen and

other atoms that have been excited into resonance by an intense time-varying

magnetic field. The spatial cros�section of the body can be reconstructed from the

frequency distribution by a technique known as direct Fourier inversion

(Bracewell, 1986). The techniques that generate a spatial image from indirect

measurements are collectively known as image reconstruction (Bates &
McDonnell, 1986).

2.2.2 General image

A general image of a scene can be defined as a graphical representation of the

spatial distribution of one or more important physical quantities. Most often, an

image is a spatial distribution of light intenSity as detected by a transducer

sensitive to the appropriate wavelengths (Gonzalez & Wintz, 1987). However,
general images are not limited recorded light intensities, but encompass o ther

important physical quantities such as range (Jain & Jain, 1990; De Menthon et al.,
1987; Naylor, 1987), texture, surface shading, contours, (Aloimonos, 1988;

Aloimonos & Swain, 1988; Aloimonos & Weiss, 1988; Marr, 1982), x-ray

attenuation, radioisotope density (see above references for CT), ultrasound

scatter (Lee & Wade, 1990), and spin-lattice relaxation time (in nuclear magnetic

resonance) (Lauterbur, 1973). The physical quantities represented by general

images are diverse and encompass less "image" oriented spatial quantities
including: terrain (Hawke, 1989) and vegetation type (Smith et al., 1989).

Nonuniform sampling and quantisation - in both amplitude and space - of an

image capture system can distort the formation of a digital image. The removal
of such distortion before processing is a step is often known as decalibration

(Castleman, 1979). Barrel and pin-cushion distortions are examples of spatial

degradations which occur when the lens of a camera has a different

magnification at the centre of the field of view than at the periphery. Geometric

models of these distortions can be used to d esign transformations for their

correction. Low contrast in images, a form of intensity distortion, is often a result

of improper settings for sensor gain or lens aperture at the time of image capture.

Enhancement of low contrast images is performed by scaling the pixel values to

span the entire intensity range. The scale factor can be calculated over the entire

image (global method) (Hall, 1974); within a fixed sized neighbourhood (local

method) (Hummel, 1977); or over a variable size neighbourhood, which is

adjusted to meet some image statistic criterion (adaptive method) (Lesczczynski

& Shalev, 1989).

Chapter 2 - Image processing algorithm development

2.2.3 Segmented image

1 2

Unser and Eden (1988) state, 'The goal of image segmentation is to divide an
image into regions that are uniform or homogeneous with respect to certain

characteristics". Many authors agree with this definition (Ba)]ard & Brown,

1982; Castleman, 1979; Gonzalez & Wintz, 1987; Fu & Mui, 1981; Pavlidis, 1986;

Rosenfeld, 1988). The standard use of segmentation is to determine which pixels

in an image belong to an object, and which belong to the background. The resultant

segmented image usuaJJy has two values: one to denote the object and the other to

denote background. In some cases, a segmented image may indicate several classes

of objects. These images will have several labels, one for each class and one for

the background.

The most simple form of segmentation is global thresholding. Every pixel in an

image is compared to a prescribed intensity value caned the threshold value. If

an evaluated pixel is less than the threshold, then a black pixel (say) is

generated; but if the evaluated pixel is greater than or equal to the threshold,
then a white result pixel is generated. A threshold value may be chosen

manually, where the user successively applies a range of values to an image and
sees which yields the required segmentation. Alternatively, unsupervised
methods exist to automatically select the threshold value. For images where the

object's intensities are distinctly different from the background, the histogram of

the intensities will be bi-modal. In this case, a threshold can be chosen as the

intensity that corresponds to the valley of the histogram (Castleman, 1979). In

images where the object intensities are not distinct from the background, an edge

sharpening operation may be applied to deepen the valley so that it can be

detected more easily. For images where the object area is known, segmentation

can be achieved by varying the threshold value until the known area is

a ttained .

Global thresholding methods perform poorly on scenes that have been non­

uniformly illuminated. A superimposed intensity gradient across an image

precludes the use of a single threshold value. Local thresholding techniques

address this problem by dividing the original image into smaller images and

finding thresholds for each of the subimages. Threshold values can be calculated

for every point in an image or just once for each subimage. In the latter technique,

discontinuities appear at the subimage boundaries, but these can be reduced by a

smoothing operation (Sahoo et al., 1988).

Segmentation of non-uniformly illuminated images can also be achieved by edge

detection techniques, which identify a homogenous region by locating its

boundary. The application of edge detection techniques for segmentation is based

on the assumption that distinct steps in intensity occur at . object boundaries.

Common methods to detect edges include first and second order differential
operations. Among these filters are the Sobel filter, the Robert's prod uct

(Gonzalez & Wintz, 1987), and the Laplacian operator (Hildreth, 1980).

Chapter 2 - Image processing algorithm development 13

The Laplacian operator has also been used as the first step in methods of

segmentation based on texture. Techniques, like those of Perry (989) and

Catanzariti et al. (1989), derive texture measures from the local orientation and

density of zero crossings in an image's second derivative. The implementations of

these methods are still in the development stages, but they demonstrate the

possibility of segmenting scenes that do not exhibit regions of uniform intensity.

2.2.4 Compact structures

The speed of processing labelled images depends very much on the structures used

to represent the data. Compact structures can be often processed more rapidly

than two dimensional binary images. The advantages of using compact structures

are: increased speed of processing and lower memory requirement; both are

desirable properties for an image processing system.

The choice of the data structure to be used depends on the aspect of an image to be

represented. Sometimes only the outlines of objects are of interest; at other times

not just outlines, but the grey value distributions within objects are required for
subsequent processing. A convex hull generally has fewer vertices than its

original region and has straight line edges between possible distant vertices in

its original region, so it may be better to represent it by a list of vertices

(Gonzalez & Wintz, 1987), rather than a Freeman code (Freeman, 1961). The

number of control points in a vertex list can be reduced by using B-splines (Foley &

Van Dam, 1982) to approximate the paths between points on an outline. Data

structures that represent regions include quad trees (Manohar et al., 1990),

distance coded medial axis transforms (Arcelli ef al., 1975; Arcelli & Sanniti di

Baja, 1986), and interval lists (Rutovtiz, 1989).

The choice of data structure also depends on what processing can be directly

performed using these structures. For instance, the area of a Freeman coded

outline can be found by tracking around the boundary, adding x-coordinate values

when moving upwards and subtracting them moving downwards. This technique

must track outer boundaries in an anti-clockwise direction, and holes in a

clockwise direction. A circumscribing circle can be efficiently found for a region

represented as a list of vertices. Likewise, a convex hull can be found rapidly for

a region expressed as a list of line intervals (Rutovtiz, 1989).

Tanimoto and Kent (1990) claim that most specialised hardware systems for

image processing handle image-based transformations efficiently, but by

contrast, handle transformation of images into compact structures inefficiently.

They describe and compare several representative examples of architectures

that attempt to improve, what they call, the "intermediate-level" process of

transforming image data into compact data structures. The tradeoff between

speed and generality of computation was indicated as an important design issue.

Their conclusions suggest that this area of research is still at a formative stage

but that the possibilities for the development of new and interesting methods are

promising.

Chapter 2 - Image processing algorithm development 1 4

2.2.5 Shape measurement

The next data transformation in the algorithm sequence is the measurement of

geometric or intensity features of the extracted objects. As indicated in Figure 2.2,

measurements can be taken from either an image representation or a compact

structure representation. For an image analysis application, the measurement

procured at this stage is significant because it represents the end product of the

analysis. In pattern recognition or machine vision applications, measurements

describe key features about objects that can be later used in some decision process.

For example, a spanner can be distinguished from a bolt by simply comparing

their areas. In other cases, more than one number may be needed to uniquely

characterise different objects. Sets of measurements that represent an object are

called feature vectors (Castleman, 1 979).

Typical scalar measurements include area, perimeter, minimum length, maximum

length, minimum external circle, maximum internal circle, and ratios thereof.

Despite their simplicity, scalar measurements can be effective for the

identification of objects from a well defined set. Kruger and Thompson (1981) used

six simple measurements and one derived measurement to good effect to identify

car parts travelling on a conveyor in a robotic assembly system.

Besides measurements that describe the boundary shape of a region, descriptors

also exist to characterise the grey distribution inside regions. The simplest of

such measures is the sum of intensities within a region or what Castleman (1 979)

calls the integrated optical density (100):

IOD = LL,f(x,y)
x y

The intensity distribution of the image is denoted by f(x, y).

The weighted average for the x and y positions, otherwise known as the centroid,
can be found by applying the formulae:

L,L,f(x,y)x
x = _x_"'-y ___ _

IOD

L,L,f(x,y)y
y = _x�..;;.y ___ _

IOD

Using the centroid, the first and n-th order moments are given by:

jil l = L,L,(x - x)(y - y)f(x,y)
x)'

x y

where f\ is the order of the moment n ". p + q.

Chapter 2 - Image processing algorithm development 15

Numerous shape measurements are possible but it is beyond the scope of this

discussion to provide an exhaustive catalogue of all techniques. However,
Pavlidis (1978) and Marshall (989) review the subject in detail.

2.2.6 Pattern classification

To take the analogy of a court proceeding; to classify an object is to deliver a

verdict as to what the object is. The verdict is based on an examination of the

evidence, which is provided in the form of measurements made in the preceding

part of the algorithm.

A typical pattern classifier works by examining a number of feature

measurements for each object. Each set of measurements is called a feature vector
because it identifies the object at a specifiC location in an n-dimensional feature

space or pattern space, where n is the number of measurements. When a large

number of objects are measured and located in the pattern space, the distinct

objects types tend to form clusters in this space. Given a pattern space occupied by
clusters, discriminating functions can then be derived to classify any given
feature vector. Therefore any new feature vector can be immediately classified as

belonging to one of the known classes. The objects selected to form the initial

clusters are called training samples. The more training samples, the more

accurately the discriminant functions can be derived.

The computational cost of making a classification increases with each

additional measurement. The classification is made in a multidimensional space

where each measurement contributes one dimension. Hence a pattern space can
occupy huge amounts of memory for even a modest number of measurements. It is

therefore important to select a small but highly discriminatory set of
measurements to keep the volume of pattern space to a minimum. The only

guaranteed way of choosing the best set of measurements is to try all

combinations, but of course this is computationally impractical. In practice,

heuristics - like the seven techniques surveyed by Mucciardi and Gose (1971) - are

used to decide the best subset of measurements for making a classification.

2.2.7 An example algorithm

Figure 2.3 illustrates the sequential operation-by-operation nature of a typical

image processing algorithm. This VIPS (Bailey & Hodgson, 1988) algorithm
finds the width of a blob wall at its narrowest point as shown in Figure 2.4. This

is done by encoding all pixels inside the inner boundary of the blob with its

distance to the outer boundary; the smallest value will be the minimum thickness

of the blob wall. This algorithm represents a sequence of operations whose

structure matches that given in Figure 2.2. Table 2.1 highlights this by showing

how the variables in the algorithm correspond to the data types in the general

algorithm.

Chapter 2 - Image processing algorithm development

dec lare image (64 64) in inner outer ! Dec lare image

capture 1

get in

variables
Capture input image into

f rame buf f er
Put image into ' in '

1 6

! Extract inner boundary
threshold in 1 2 8 255
chain code in c

Segment blob from background
Chai n code blobs

cha in sort c c_i nner Keep on ly inner boundary
chain draw c_inner inner I f i l l ! Recon s t ruct i nner boundary

Repeat for outer wa l l
threshold in 0 1 2 8
chain code i n c
chai n sort c c_out er 5
cha in draw c_outer outer I f i l l

! Measure wal l thickness
d i st ance outer
and outer inner

subtract outer 1
extreme outer thinnest tmp
l e t thinnest = thinnest + 1
wri t e thinnest

Distance code outer boundary
Keep only dist ance codes

ins ide holes
Change background 0 - > 2 5 5
Ext ract minimum wal l va lue
Replace 1 just taken o f f
Wri t e result

Figure 2.3: VIPS algorithm to find wall thickness at its fI{¥'N;,J¢(point.

Minimum width of blob wall

Figure 2.4: An arbitrary object with a hole.

VIPS Variable name in Figure 2.3 Corresponding data Type of Figure 2.2

in (image) general image

inner , out er (image) segmented image

c , c_outer , c_ inner geometric structure

(chain code)

thi c kness (integer scalar) feature measurement

Table 2.1: The match between VIPS variables in Figure 2.3 and the data types in
the general algorithm structure.

Chapter 2 - Image processing algorithm development 1 7

2.3 Data-oriented view of algorithms

Figure 2.3 presents an algorithm as a sequence of operations, but the sequential

view may not be an ideal representation for a user trying to develop an

algorithm. The order in which the operations are shown is the order in which

they are executed on a computer. This is a process-oriented view of an algorithm.

In contrast, the user may focus on the changes made to data as it advances

th rough the algOrithm. This is a data-oriented view of the algorithm. In a

process-oriented view, the order that the operations are executed is represented

explicitly. In contrast, in a data-oriented view, the progress of data through the

system is represented explicitly. To ill ustrate the contrast between the two

views, the diagram shown in Figure 2.5 shows how the algorithm of Figure 2.3

was constructed. Each node in this network corresponds to a unique image, while

the links represent imaging operations. No significance is attached to locations

in this two dimensional space, so relative spatial positions do not indicate

qualitative or quantitative information.

, ' -:: /:

chain .
code· · . .

.
. . ,

.

. .
.
. .

.
. �

. . .
�. hreSho�d .• ·••• ••... . . • . . .
. 0 128 . . •. . .

.. .. threSholX . .

-........ .
·chain
code

. (I) .

.- "

- � . � . chain
sor� C::ai; 1

.
... ,,'

. 1 �·· .
.. . . I L.L_ I TT

.and

.
. . ::: : .' : :' - . ' (III)

Figure 2.5: Solution network to describe the de<Jelopment of the algorithm in

Figure 2.3.

The leftmost node of the network represents the digitised image of the outsi de

scene. The algorithm designer experiments with thi s raw image and finds that

the inner and outer boundaries of the blob can be isolated using various chain code

Chapter 2 - Image processing algorithm development 18

operations (as shown in Figure 2.5 (1) . The designer now strikes o n the key idea

of how to solve the measurement problem, which is to code every pixel inside the

hole with its distance to the outer boundary. The minimum thickness of the wall

is then simply the smallest coded distance (as shown in Figure 2.5 (11) . The

remaining task is to distance code only those pixels inside the hole. The designer

discovers that this can be done by first distance coding the pixels within the

outer boundary of the blob and then setting all pixels to zero except those i
,
nside

the hole (as shown in Figure 2.5 (Ill». This final step links the first and last

portions of the algorithm. This example illustrates that the development of an

algorithm can be multi-thread ed (with branching data paths) a nd non­

sequential. Localised sections of the algorithm are developed sequentially but

the global modules of the algorithm are not. Despite the non-sequential

progression of the development, the final algorithm shown in Figure 2 .3 may

give the false impression that the development was sequential and incremental.

2.4 Algorithm development is problem solving

The development of an imaging algorithm is an example of a problem solving

task. Polya (1962, pl 17) states "to have a problem means: to search consciously

for some action appropriate to attain a clearly conceived, but not immediately

attainable aim. To solve a problem means to find such action". The development

of an algorithm can be considered a problem solving activity, where the aim is to

find a set of operations that work together to produce a set of desired

measurements. The solution to this problem is an algorithm. "An algorithm is a

formula for a solution (i.e. a plan for the sequence of steps required in order 'to find

a solution with certainty if one exists)", states Dorner (983).

Humans commonly resort to one of several approaches to solve problems. One of

the earliest studies into problem solving was a performed by Thorndike (898)

who investigated how cats learned to escape from a 'puzzle box' by trial-and­

error learning. A hungry cat was placed inside a box and food was placed outside.

A piece of string that dangled from the ceiling was connected to the door; the cat

could open the door only by pulling the string. Thorndike timed how long it took

for the cat to escape from the box. He observed that a cat managed to escape

faster and faster the more times the experiment was performed. This

demonstrated how experience of a particular way of solving a problem enhanced

a subject's ability to solve that problem again. Another problem solving

approach, lateral thinking (De Bono, 1 969), attempts to break free from set kinds

of thinking fostered by trial-and-error learning. The lateral thinking approach

involves tackling a problem in a completely new way, as if nothing like it had

been come across before.

While trial-and-error and lateral thinking are valid approaches to solve

everyday problems, they are too general to easily assimilate into a design for a

human-computer interface. What is needed is a new way of thinking about a

problem - a new problem-solving paradigm.

Chapter 2 - Image processing algorithm development 1 9

A suitable paradigm is provided by Newell, Shaw, and Simon (1958). They have

used this paradigm, called means-ends analysis, in the General Problem Solver

(GPS) program, to solve cryptarithmetic and chess problems (Newell and Simon,

1972). The means-ends analysis paradigm includes a representation for situations

at the beginning and end of the solution, a representation for the difference

between the two states, and a database of actions that could span the difference.

GPS solves problems by selecting actions to remove the difference between the

present and desired state of the objects or situations. Typically, the initial

difference between the start and goal states are so distant that no single action

can span this difference. GPS overcomes this by breaking the problem down into a

number of smaller sub-goals, which serve to reduce the span of the maximum

difference.

2.5 The solution graph

The states and processes involved in means-ends analysis can be graphically

illustrated by a solution tree, like that shown in Figure 2.6. Dorner (1983)

suggests that the construction of the solution graph is the cognitive activity

involved in solving problems. Polya (1957, 1968) advocates the use of diagrams as

a tool that systematically identifies the unknowns and the data of a problem.

Polya's examples were mainly taken from the problem domain of solid geometry.

One feature of Polya's approach is that the problem and the current state of the

solution are graphically described on paper. Hence, the need to remember many

facts is greatly lessened. The person is then freed to pursue the more creative

activities of problem solving such as the use of analogy to associate, for the first

time, two facts that are usually unrelated.

goal

Figure 2.6: A solution graph through the 'field of reality '.

The space occupied by the graph in Figure 2.6 is what Dorner calls the field of
reality. This space represents all the facts that can be understood, used and

manipulated by the problem solver. Another name given to the space is problem
space because it represents the subject's model of the task (Newell & Simon, 1972,

p.59). For image proceSSing. the problem space can be formulated so that each

location represents a unique data set. whether it be image data or a chain code

etc. In this problem space, imaging operations are represented as a line spanning

Chapter 2 - Image processing algorithm development 20

two points because they transform data. Taken li terally, this space has many

"locations". For example, a problem space involving images that have NxM 8-bit

pixels, would have 2S6N"M locations to account for the image data alone; it

would also have additional locations to account for vector and other types of

data. In an interface, the solution graph is best used, not as tool to provide an

exhaustive representation of all the possible results, but rather as a graphical

tool to assist humans with the cognitive processes involved in problem solving.

2.6 �olution development

The use of the solution graph for algorithm development involves finding a

network of operations that will transform the input data to the required output

data. The naive approach would be to apply a brute force search where every

possible combination of operations would be tried until the target results are

attained. This, of course, is a ridiculous scenario. The computational demands of

such an approach could be enormous; more significantly, it is a blind approach

which does not take into account the problem solving ability of the user, nor the

advantage that could be gained by partitioning the problem into a set of smaller,

more manageable sub-goals. One method of performing means-ends analysis is to

first specify a complete set of sub-goals to span the start-goal difference

completely, and only then, attempt to specify the executable parts of the

solution. In software engineering terms, this is known as top-down decomposition.
However, the efficacy of this approach is tempered by the fact that if one sub­

goal is unattainable, then the entire solution fails, as the overall success relies on

the attainment of all the parts.

While the top-down decomposition approach seeks to introduce sub-goals that

span the entire gap between the start and the goal, the method of stepwise­
refinemen t looks only one step ahead. By this method, the solution graph is

extended one node at a time. Each extension requires the algorithm developer to

ask three questions:

(i) Where to from here?

(i i) How to get there?

(i i i) How good was that move?

Where to from here refers to the decision made concerning the location in the

problem space that should be visited next. The problem solver must know the

current solution state to make an informed and reasoned decision. If the current

path seems to lead towards the goal, then the next step will be in a forward

direction. If the path looks as if it will miss the goal, then the problem solver

may abandon one or several recent steps to backtrack the solution to a point

where it appears to be on the right track again. Figure 2.7 illustrates the

abandonment of multiple steps in the solution graph.

Chapter 2 - Image processing algorithm development

/.
/.� � �� S��g ., f Backtracking multiple steps

.� /. --...
•

Figure 2.7: Abandonment of multiple steps.

2 1

• goal

To answer question the where to from here, one may choose from two objectives;

that of computing the optimum or that of finding a satisfactory answer. In image

processing, a classic example of computing the optimum is the use of linear

programming to find a path between two known points (Unser et al., 1988). This

method is optimal in the sense that it minimises some prescribed cost function.

Simon (981) comments that in rea] life, a cost function is difficult to compute,

except for when it is applied to trivial problems. Simon suggests that a practical

alternative to computing the optimum is to look for good or satisfactory answers.

This procedure which Simon calls satisficing allows designs to be .rated as

''better'' or "worse" rather than "the best". Satisficing is a pragmatic method of

searching for solutions to real life problems.

Once the problem solver has set a sub-goal, the attention is turned to how to get
there. A typical system has a large range of operations, and how to get there is a

matter of choosing the correct operation. In image processing, the choice of

operation often involves guesswork. It
·
is not tha t humans are unable to

understand the theory of the operations involved, as they can all be described by

a mathematical procedure. Rather, the difficulty of choosing an operation

relates (i) to predicting the effect of the mathematical procedure on a large set of

input data (a rectangular array of pixels), (ii) to the fact that more than a single

operation may be needed to do the desired processing, and (iii) to the difficulty

in determining whether or not an operation moves toward the target.

Once an operation has been executed and the result displayed, the problem solver

must evaluate whether the target subgoal has been achieved. If the subgoal has

been achieved, the problem solver must then assess whether the subgoal actually

advances the solution towards the overall goal. A positive assessment usually

means that the operation is kept as part of the algorithm, otherwise it is

rejected and another operation is tried.

The stepwise refinement method has drawbacks; the most serious is that a

solution can easily get side-tracked. In a local sense, the development of an

algorithm may appear to progress smoothly with all its sub-goals easy to

specify, all the required operations available, and its sub-goals easy to achieve.

In a global sense however, the solution may lead nowhere near the overall goal.

This can happen because the search procedure is local to every operation, and

Chapter 2 - Image processing algorithm development 22

because there is no global way to monitor the combined effect of these searches in

the context of the overall solution development.

2.7 The heuristic approach

A heuristic is a plan for a sequence of steps that, when followed, increases the

likelihood finding a solution (Dorner, 1983). The classic example of a heuristic is

the advice given to beginners in chess: always check, i t may be mate (Newell,

1983). Heuristics are used to limit the search for possible solutions by "suggesting

plausible actions to foHow or implausible ones to avoid" (Lenat, 1983).

In practice, imaging algorithms are not developed by an exhaustive examination

of operation combinations. Experience teaches people efficient ways to attain

certain results. This experience is embodied in heuristics which experts apply

implicitly during an algOrithm development session. Some of these heuristics are

catalogued as follows.

2.7.1 The broad decomposition of the task

The general structure of an algorithm, which is discussed in Section 2.2,
illustrates the way in which a task can be decomposed into a sequence of smaller
steps. In effect, such a decomposition sub-divides the gap between the start and
goal positions in the problem space by specifying a number of interim states.

Simon (1981 , Chapter 7) argues that a complex system can be simplified by

decomposing it into a set of interacting subsystems, where each subsystem in turn
can be further decomposed. Decomposition continues recursively until elementary

systems are reached . DecompOSition should be applied whenever a natural

hierarchy exists in the problem domain, but avoided where such a hierarchy

does not exist. This heuristic is central to Bailey's computer assisted approach to

algorithm generation (Bailey, 1988).

geometric
structure segmented

image
- - - - �

starting . '
point

(general
image)

. "

goal
(pattern

shape • classif ication)
measurement .",,"""

..... , .",, ""
•

Figure 2.8: Interim goals are set by a broad decomposition of the task.

2.7.2 Identification of a critical subgoal

An algorithm designer may identify a critical subgoal that the solution must

pass through in order for that particular approach to be successful. This is

represented graphically in Figure 2.9. Here, the designer may give high priority

Chapter 2 - Image processing algorithm development 23

to the development of .partial algorithms to reach this subgoal. If the critical

subgoal cannot be achieved, th�n none of the auxiliary parts will be of any use.

For example, ' if the task is to measure the area distribution of a collection of

objects, then the critical subtask might be to separate any touching objects; this

may be a non-trivial task if the objects are crowded together. In a sense, this

heuristic is a special case of hierarchical decomposition.

critical point
(separated

blobs)

_ 'fIII"'" • - - - - - - • goal

starting • ,.,
point

Figure 2.9: Identification of a critical subgoal that must be reached in order for

the general approach to work.

2.7.3. Jumping to an arbitrary location

Synthesised or manually processed images can be used to jump the algorithm to

an arbitrary location in the problem space. Typically an image is created that is

close to a target goal or subgoal state. This simplifies the task of linking the

small span, as shown in Figure 2.10.

starting.
point

arbitrary location
(e.g. synthesised wedge) •

goal
� . �

Figure 2 .10: Synthesised data can be used to jump to a prescribed location.

2.7.4 Application of well known techniques

The designer may apply well known or robust techniques in order to span a

portion of the problem space. A partial solution makes the search easier because

the total distance is subdivided and the longest span is reduced. Figure 2.1 1

shows a robust technique for finding local maxima.

starting .
point

. . ': . :. ' , ". "," -:,::'", : .. -: : : :: . . .
I Finds :'loC:al miiXima].

box maX '
(64 64) " , ' " , ' , i ��reshold "
' . ,:, subtract ," (0' 0): "

� �' . � " .: .�
. .. . : .:::' . . :.;. , " " '-':" :-' ,:':- , : : ' :.: . . :.-,

• goal

Figure 2.11 : Well known techniques allow partial solutions to be prescribed.

Chapter 2 - Image processing algorithm development

2.7.5 Exemplar based development

24

In the development of an algorithm, a user may not always start with a "clean
slate"; instead, a user may adapt an exemplary algOrithm. The exemplar

algorithm provides a strong starting point for development, especially if it
almost performs the required imaging task. The ideal situation would be to use an
exemplary algorithm that exactly matched the required imaging task; this
could be used without alteration! Figure 2.12 illustrates the adaptation of a
related algorithm in order to attain a new goal state.

•

New
. • � . • goal

ExemPlar

.

a/ • -----�""- • ----i .. �
•

Exemplar
goal

,- �"$>'.
starting �

point • • New algorithm

Figure 2.12: The development of an algorithm based on an exemplar algorithm.

2.7.6 Progressive refinement

The development of an algorithm often involves multiple passes. Once a simple
algorithm is developed, it is often refined to make it more robust, accurate and
efficient. Refinement is typically performed over several passes, where each
refinement progressively improves the algorithm in one or more of the above
respects. This heuristic is called progressive refinement and is presented last in
this �tion because it can only be performed if a complete solution already exists.
Figure 2.13 illustrates the refinement of a simple algorithm with a solution
graph.

• ,

Algorithm for an earlier attempt �t;� / • -�--..II�""" • '_" ___ .. � • goal
p' "$;. �::: • % /

starting . �
point

/

Refined algorithm

Figure 2.13: The progressive refinement of an algorithm.

The general rule for the production of a robust algorithm is to verify its success

with many· data sets. For instance, Price (1986) suggests even six "natural" images
are unlikely to have the same obscure property that allows a fragile algorithm
to work. Of course six is an arbitrary number, but the point made by Price is that
an algorithm must be verified with many cases of sample data before it can be
regarded as reliable.

Chapter 2 - Image processing algorithm development

2.8 Summary and Conclusions

25

An image processing system can be viewed as a sequence of operations working in

succession to transform data through a series of distinct states. These states are:

general image, segmented image, compact structure, measurements, and pattern

class. Imaging applications are characterised by the forms of data they support:

image enhancement applications deal only with general images; image analysis

uses most data forms except the pattern class; machine vision applications

typically involve all stages of the data transformation pipeline.

The pipeline view of an algorithm is exemplified in its presentation as a

sequence of imaging operations. However, the process�riented view is not the
most natural way to represent the logic of the data transformation in the
algorithm. In particular, such a view does not readily express multi-threaded

data paths and interconnecting processing modules. A data�riented view is a

more natural way to describe the development of an algorithm.

The data�riented view can be graphically represented as a sOlution graph. This
device is commonly used in the field of problem solving to represent the

construction of a solution. Indeed, imaging algorithm development is a form of

problem solving activity, where the initial and goal states are defined by items

of data, and the solution is a complete algorithm. Heuristics that are commonly

used by algorithm designers include: decomposition of the task into subgoals,

identification of a critical subgoal, jumping to arbitrary locations in the problem

space, application of well known techniques, exemplar based development, and
progressive refinement.

Two distinct views of image processing algorithms are presented in this chapter:

process�riented and data oriented. The process�riented view is the appropriate
representation to describe the execution of an algorithm on serial computers,

because the order in which the operations appear in this view maps directly to

the order in which they are executed. This view is expedient for algorithm

execution, but not for development, because the sequence of operations in an

algorithm is not necessarily the order in which the algorithm was developed. In
practice, there is no particular order to the development of the constituent parts

of an algorithm. Algorithms are developed by the application of heuristics

which may effect any part of the algorithm. To handle this non-serial nature of
algorithm development, the data-oriented view of an algorithm is suggested as

being the more appropriate of the two representations discussed.

Chapter 3

Human Computer
Interface Techniques

26

This chapter evaluates the application of conventional interface styles to the

heuristic development of image processing algorithms. The styles discussed are:
command line, menu based, direct manipulation, and visual languages.

3.1 Introduction

The essence of the image processing algorithm development task involves
interaction between a human designer and an image processing algorithm, as
shown by arrowed lines in the diagram of Figure 3.1 .

Figure 3.1: The interaction between a human designer and an imaging algorithm.

27

This chapter is concerned with how a computer can be best used to facilitate the

algorithm development task. It is assumed that interaction between the human

and the algorithm is made possible by a human-computer interface, as

illustrated in Figure 3.2. Users' actions are directed towards the algorithm via

the user interface. Changes in an algorithm are perceived by the user only

through changes in the algorithm's representation in the interface. The user

interface, depicted as a prism in Figure 3.2, not only facilitates interaction, but

also shapes the interaction. An ideal interface facilitates the development of

the algorithm without influencing the form of the final algorithm. In practice,

ideal interfaces do not exist. It is inevitable that the user must perform actions

that solely concern the interface and not the goal. For example, a help system

assists the designer to use the interface but does not directly contribute to the

construction of an algorithm.

user interface

Figure 3.2: Human interaction mediated through a user interface.

Conventional styles of human computer interfaces include: command line based,

menu based, direct manipulation, and visual language systems. Each of these

approaches are examined for their ability to provide a transparent interface for

the task of image processing algorithm development.

3.2 Command l ine interfaces

The command line interface is the oldest of all the interaction forms discussed in

this chapter. In such an interface, the user types the name of an operation on a

keyboard as command. This text string is passed to a command line parser which

identifies and runs the selected operation. Associated parameters and options are

typically included as part of the command syntax. The following are examples of

command lines for a thresholding operation taken from VIPS (Bailey & Hodgson,

1988), lmproc (Lane, 1988), lTEX 200 (Imaging Technology, 1989a), and Serendip

(Wilson, 1987).

VI PS>

improc>

1 >

$ -

t hreshold im 1 2 8 2 5 5

threshold im_in im_out 1 2 8

binar i z e (im_in , im_out , 1 2 8 , 2 5 5) ;

l et im_out = threshold (1 2 8 , 2 5 5) o f im_in

These examples all use symbols to represent image variables. The command lines

to display the results for the respective systems are:

Cha

VIPS>

improc>

1 >

$ -

display im

di splay im_out 0 0

di splay (im_out) ;

display im_out at (0 , 0)

28

The interaction offered by command line systems became more direct with the

improvement in computing power and interaction hardware. In the early days of

digital computing, command lines were punched onto cards. The cards were

gathered into a pile and submitted to the computer for execution. The time

elapsed between the submission of cards and the return of results was measured in

hundreds of seconds, although processing times of hours and days were not

uncommon. Minimal interaction was afforded by these systems because of the long

response time and high effort involved. Interaction improved with introduction

of the teletype terminal as an input-output device, which cut the response time

down to tens of seconds. Mistakes were less serious because programs could be
altered and re-executed with little time penalty. With the development of

faster computers and visual display units (VDU), response times were reduced to

seconds. Jobs no longer needed to be submitted in batches, but instead could be
executed in line-by-line units. Text based VDU's currently remain the

. predominant type of interaction device used in image processing systems. The

following discussion on the advantages and disadvantages of command line

systems assumes the use of a VDU terminal.

3.2.1 Advantages

Command line interfaces commonly have three features that assist the

interactive development of image processing algorithms. The first and most

important feature is the ability to combine groups of commands into a file and to

execute this file with an instruction that could be contained on a single line. The

command file is in essence an algorithm. Command macro features are usually

supported in comprehensive command line systems, including VIPS, ITEX, Improc,

and Serendip.

Another beneficial feature of command line systems is that the appearance of

the interface does not change when new commands are added. When a new

command is programmed and incorporated into the system, a user needs only to

type the name of the new command to run it. This feature is significant because

commands are frequently added to well used systems.

The third feature is the rapidity with which operations can be invoked. If a user

is familiar with the syntax of the desired command, invocation is a simple

matter of correctly typing the command line. This feature is of particular value

in an image processing system where many operations are invoked, often in quick

succession, during a development session.

Command line interfaces usually support a number of other features that speed up

the specification of commands. One such feature is the provision of keyboard

shortcuts to recall previous command lines. Most command.-based operating

Chapter 3 - Human computer interface techniques 29

systems allow past commands to be recalled using the UP ARROW cursor key. Some

command line parsers accept abbreviated command names. For example, VIPS .

allows the abbreviation t h r to be entered instead of the full command

t hre sho ld. VIPS also allows users to define aliases for part or full command

lines, and so speeding up entry of commonly used commands. An alternative to

command abbreviation is command completion. For example, in the UNIX 't­

shell', the key sequence c a l e followed by the TAB key causes the operating

system to complete the command string to give calendar.

3.2.2 Disadvantages

Symbolic references to data objects can be an inconvenience. To specify the

parameters for a command, the user must remember the name of a particular

image or the contents for a given variable. Any memory load imposed on the user

is undesirable because it distracts the user from the real task of problem solving.

The maintenance of correct associations between an image and its name is

difficult because the contents of an image may often change during an interactive

session. Symbolic references are often a problem when a user tries to recall the

name of a displayed image. Recollections will be futile if the content of the

. image has been overwritten subsequent to its display. The assignment of

meaningful names helps to reduce the problem. However, the creation of such

names can be an onerous task in itself.

Another disadvantage of command line system is that a user can easily lose

sight of the current state of the solution; this is epitOmised by the question

"where am I?" (Nievergelt & Weydert, 1980). It is easy to lose one's place in a

development session because a standard text terminal gives a very limited view

of the overall algorithm; typically 24 lines of text as a maximum. Furthermore,

these 24 lines can be easily and irretrievably lost should the screen be filled

with extra information like on-line help information. In a bid to recall the status

of the development session, a user might list the data variables in current use, but

this may be of limited use because of the difficulties with using variable names

discussed above. Some systems, such as VIPS and Serendip, offer command log

files to help alleviate this disadvantage. However, log files are of limited use
because they cannot be inspected unless the user leaves the command line prompt.

Another drawback of command line interfaces stems from the inherent linear

representation of an algOrithm. As discussed in Section 2.3, a representation that

displays multi-threaded data paths is a more helpful view for image processing

algorithms.

Command line systems are generally difficult to learn and training can take days

or weeks. Systems may contain many commands and many variations of each

command. This problem is particularly acute for image processing systems

because comprehensive systems typically contain hundreds of operations.

Shneiderman (1 988) urges the use of meaningful, specific and distinctive

command names to reduce training time. At the extreme, command line systems

Chapter 3 - Human compu ter interface techniques 30
-------------����--���������������----------------------�-

can become an unwieldy assortment of commands; for example, Norman (1981)

scorns the UNIX operating system for its inconsistent and cryptic naming

conventions.

3.3 Menu based interface

In the context of computer systems, a menu evolved as an extension of command

line systems. The essential difference between the two systems is in the way

commands are selected. While a command line system presents a prompt which

invites a user to type the name of a command, a menu system places commands in

lists and invites the user to choose an item from the list. "A menu is a set of

selectable representations of actions, parameters, objects (which may be other

menus), states and other attributes." (Apperley & Spence, 1989). In a similar

vein, Smith and Mosier (1 986) define a menu as "a type of dialogue in which a

user selects one item out of a list of displayed alternatives, whether the selection

is by pointing, by entry of an associated option code, or by activation of an

adjacent function key" .

.
Figure 3.3 shows some examples of menus. The selectable items may take the form

of buttons (a, d), pull-down lists (b, c), and pop-up lists (f). The menu items can be

labelled with text-only (a, c, (), text and graphics (h, e), and graphics-only (d).

Most menu structures comprise lists within lists. Some dialogues explicitly show

the hierarchy tree of the menu (c, e). The ImageAction program (a) has the

unique feature of including a command line field in the menu panel.

lrnageAct ioo Plus Imaging Technology REV 1 . 1
+- - - - - -- lmage Processin�- -- - - . + - - - - - - - - - - - - - - - - + + - - - - - - - - - - - - - - - - . + - - - - - - - - - - - - - - - - + + - - - - - - - - - - - - - - - - +

Convolution I I Edge Detection I I Mo�hol ogy I I F i l t er

Hi stogram I 1 00tput Processing I I

IA> hi steqlRED. � . O . O . 51� . 5:2) ;

(Q)

AOI I I Images

Help I I Return to Main I

Cha ler 3

� Simple

""'t1 C o n s t a n t
..Q... M a t c h
@ P e rs i s t e n t
@ I n s t a n c e
� G e t
@ S e t
� L o c a l

{} 8€C
{} 8€M
{} 8€P
{} 8€ 1
{} 8€G
{} 8€ S
{} 8€L

.... _ _ _ _._ _ -........... .

M a p �
R dj u s t �
Calculate �
F l i p �
R o t a t e �

I m a g e S i z e • • .
C a n u a s S ize . . •

H i s t o g ra m . . .

(c)

(b)

R d d . . .
B l e n d . . .
C o m p o s i t e . . .
C o n s t a n t . . .
D a rk e r . . .
D i ffe re n c e . . .
D u p l i c a t e . . .
L i g h t e r . . .
Multiply • • •
S c re e n . . .
S u b t ra c t . . .

To o l s

, +
<'St A
E;3 :"F�
� �
� +
./--

-
-
-
-

(d)

31

Cha ter 3 32

ImageAction 2 0 0

I n Out Manipulate Process Anajyze Graphic �ys Aoi User Undo

LUT Constant Rotate Mirror Warp Project Double Copy

OK Cancel
a 0. 0 0
a O l 1. 00
a l a 0. 00
a l l 0.0 0

M e t h o d :

S t y l e :

U s i n g :

QII««lfI
R e s p e c t To :

O K

b 0.0 0
b O l 0. 0 0

OK Cancel

b l l 0. 0 0 0 0 0 0 , t I l

-'---lI"�----J
- 2. 0 0 0 0 0 0 2. 0 0 0 0 0 0

(e)

Top t o B o t t o m

S t a n d a rd

Figure 3.3: Examples of menus from different image processing systems: (a)

ImageAction™ (Imaging Technology, 1 987), (b) PrographTM (Pietr::.ykowski &
Matwin, 1 984), (c) PhotoshopTM (Adobe™ , 1 991), (d) Image (Rasband, 1 992), (e)

l1nageAction200™ (Imaging Technology, 1 989b), and (j) PixelPaint Pro™ (1 989).

Chapter 3 - Human computer interface techniques 33

3.3.1 Advantages

Two aspects associated with the execution of a command are: (i) the search for a

command to execute and (ii) the specification of this command for execution. In

command line systems, they are distinct activities. In command line systems, a

user learns of new commands by reading a user's manual or by consulting on-line

help information. Once a command is found, the execution is carried out by typing

its name, parameters and qualifiers at a command line prompt. In menu systems,

the two aspects are integrated. Commands are found by browsing the menu lists.

Once found, the command is selected and executed, usually by actions integrated

with the brOWSing actions.

The degree to which these activities are integrated can lead to differences in the

way an interface is used; these differences are especially pronounced in situations

where the command set is largely unknown to the user. In a menu system, a user

would probably be inclined to try new commands because of the little d ifference

in time and effort needed to select a new command in preference to a familiar

command. Whereas in a command line system, a user cannot use a new command

without first learning that such a command exists, and this cannot be done

. without consulting a user's manual, help system or a colleague. To find a new

command, the user's attention is usually turned away from the command line

prompt and so away from the tool that is used to actually perform the problem

solving. In contrast, a menu system entices a user to try a new command because all

operations, new and familiar, are presented in lists.

3.3.2 Disadvantages

Although menus address one of the main weaknesses in command line languages,

that of the difficulty in learning commands, they also sacrifice one of their main

strengths for image processing, that of being able to create macro files. Without

such a macro facili ty, menus essentially lack the capability to represent

algorithms. This is a serious drawback if a system is to be used for algorithm

development. Menu interfaces perform well for processing images in a one-off

fashion, but perform poorly in situations that require sequences of operations to be

repeated.

Another weakness of menu systems may be the d ifficulty in specifying

parameters. Menu systems for image processing often process images from frame­

buffer to frame-buffer <e.g. ImageActionplus™ (Imaging Technology, 1987) and

Imagelab™ (1987», and thus restricting the number and type of images that may

be processed.

Chapter 3 - H1Iman computer interface techniques 34

3.4 Direct manipulation interface

A direct manipulation interface (Shneiderman, 1 983) is best described by

example. The package used for the example is Image, which is a public domain

software package for image analysis (Rasband, 1 992). Given an image

representing a set of nerve fibres in cross-section, the task is to measure a line

profile of intensities through the image. In the Image package, which is shown

in Figure 3.4, the image data is displayed in a window and the tool for plotting

intensity profiles is represented as a button on a tool palette. To make a

measurement, the user selects the 'plot' tool and draws a line on the image to

indicate the path of the required profile. The program .responds immediately by

graphing the intensities of the specified line in an auxiliary window.

,.
O p t i o n s Enh8nce Rn81 ze S p e c i 8 1 reMt W i n d o w s

11 1\ �
� � M �

N V
�

U � � V} \.. 'J! 1 00

Figure 3.4: A example of a direct manip1llation operation: the measllrement of a
line of intensities across an image.

Now suppose the user wants to uniformly increase the intensity values of the

image. This can be performed in the Image program by adjusting the look-up

table (LUT) function which is displayed in its own window, as shown in Figure

3.5. The u ser adjusts the offset of the function by placing the mouse controlled

cursor over the function plot, depressing the mouse button, and moving the mouse.

Any mouse movement will now adjust the function and simultaneously adjust the

grey-scale values of the image of the top window. Figure 3.5 shows the LUT

functions and the corresponding images for two different settings.

Cha ter 3 35

(a)

(b)

Figure 3.5: The intensity values of an image are continuously adjusted by moving
the look-up table (LUT) function with the mouse.

PhotoshopTM (Adobe, 1 99 1) provides quite a different direct manipulation
control to adjust the pixel intensities of an image. The 'brightness' and 'contrast'

attributes of an image can be adjusted by the sliders shown in Figure 3.6. To make

an adjustment, the user clicks onto the slider tab and moves it sideways. The

brightness and contrast of the image respond instantly to changes in the control
settings thus giving the user instant visual feedback to indicate the new values.

Brightness: + 50
n OK n

, C8n cel Contr8st: + 2 7
A (prev iew)

Figure 3.6: Image brightness and contrast can be continuollsly adjusted with slider
controls.

Cha ter 3 - Human com 36

Now, say the user wants to perfonn an Emboss 4 operation on a rectangular sub­

region of the image. To do this, the user first chooses the 'select tool' from the

tool palette, and then draws a rectangle on the image (as shown in Figure 3.7) to

indicate the sub-region. This is done by moving the cursor to one corner of the

desired rectangle, depressing the mouse button and keeping it held down while

the cursor is moved to the diagonally opposite comer. The rectangle is

superimposed on the image to indicate the selected region. The user then chooses

the 'Emboss' operation from a menu. Only the pixels within the selected region
are affected by the operation.

SC F

(a)

(b)

F a c e t
F i n d E d g e s
F rag m e n t
M o s a i c . . .
Tra c e C o n t o u r . . .

Figure 3.7: The application of a filter operation to a n image in PhotoshopTM is

perfonned in two steps: the selection of the area for processing and the selection
of an operation, as shown in (a). The reslllt of the Emboss operation in the

selected slIb-region of the image is shown in (b).

4 The Emboss fil ter makes a selection appear raised or stamped by suppressing

the intensities within the selection and tracing i ts edges with black

(Adobe, 1 991).

Cha ter 3 - Human com

3.4.1 Key characteristics

37

This section briefly discusses the key characteristics of the direct manipulation

interface and the applicability of these characteristics to image processing

algorithm development. These characteristics are of benefit to most application

domains, including image processing.

Metaphor. As a grammatical construct, the Concise Oxford Dictionary (Sykes,

1 982) defines a metaphor as the application of a name or a descriptive term to an

object to which it is imaginatively but not literally applicable. In the context of

an interface, the term metaphor is u sed to describe the application of a

graphically represented world to serve as the interface for a specific application

to which it is imaginatively but not literally applicable. A metaphor draws

upon the wealth of existing knowledge to provide information about a novel topic

(Norman & Chin, 1989). The metaphor used in Image (in Figure 3.4) is of an

artist's studio. The window in which the image is displayed is equivalent to the

painter's easel and the tool palette is equivalent to the collection of tools a

painter may have on a workbench.

Metaphors do not need to be taken from concrete examples in the outside world. If

a metaphor is considered primarily as a device for organising the objects in an

interface in a consistent and systematic way, then a metaphor need not be

derived from a real world situation. A convincing reason for not choosing a real

world situation for an interface metaphor is that some situations can imply

meanings much richer than is intended. Command line systems and menu systems

can be considered to u se the metaphors of language and of the restaurant menu

(Norman & Chin, 1989), respectively. In these systems, metaphor is used

primarily to provide a systematic way to organise the interface, rather than a

rich and accurate analogy to an outside world situation.

Direct engagement. Direct manipulation interfaces have point-and-c1ick

facilities to allow users to select and move items, icons, and objects on the screen;

typing is necessary only to input text (Foley et al., 1 990, p.5). This characteristic

of being able to directly handle interface elements as physical objects is called

direct engagement.

The engagement is direct. For instance, to specify the path of the profile plot in

Figure 3.4, a user draws a line directly onto the image. The endpoints are

identified visually. In contrast, a command line method would require the line to

be specified by two position vectors (e.g. (34 1 3) (124 93». Here, the vector

information is provided indirectly by textual d escription. Norman (1 990)

elucidates the concept of directness by referring to the analogy of first-person and

third-person interaction. The difference between the two is like the difference

between driving a car yourself or being driven by a chauffeur. When you d rive

the car yourself, you directly control the motion of the car by turning the steering

wheel, pressing the accelerator, brake and clutch pedals, and shifting the gear

lever. When driven by a chauffeur, you describe where you want to go but you do

not manipulate the controls.

Chapter 3 - Human computer interface techniques 38

Continuous and reversible actions. Continuous and reversible actions are

demonstrated in the adjustment of the look-up tables in Figure 3.5. Here, each
control can be continuously varied. The appearance of the image changes in

immediate response to the smallest mouse movement. Continuous control helps to

create a d irect relationship between the mouse movement and the result. In

addition to being continuous, the actions performed are reversible. Hence results

for any setting can be regenerated at any time provided the same control value is

specified. Reversible actions allow mistakes in parameter settings to be made

without the penalty of losing data. In many cases, an action can be performed

without prior contemplation of the result; this is the essence of exploration. A

common way to reverse an action is through an UNDO facility, which allows the

results of an action to be retracted.

Exploration . The combination of all three characteristics of the interface

mentioned so far leads to the secondary characteristic of exploration. Norman

(1990) stresses the importance of exploration in the learning and use of a system.

It will be recalled in the previous chapter, that the development of an imaging

algorithm was described as a search process. Hence, the potential for exploration

is important aspect of any system used for algorithm development. Norman says

a system requires three properties to make it suitable for exploration.

(j) The user must be able to readily see and perform the allowable
actions. Direct manipulation interfaces satisfy this requirement by

the provision of a metaphorical representation of the objects and a

facility for direct engagement.

(i j) The effort of the action must be both visible and easy to interpret.
Direct manipulation fulfils these requirements again through the

use of metaphor and direct engagement.

(i i i) Actions should be readily reversible . .

3.4.2 Disadvantages

In d irect manipulation interfaces, a simple re-enaction of a sequence of user

actions may not necessary replicate a sequence of processing. The effect of the

replayed user actions depends very much on the state of the interface. Take the

example where the sequence of user actions that led to the application of the

Emboss operation (shown in Figure 3.7) is replayed, but the window containing

the image has been moved since the original episode. In this re-€nactment, the

mouse drag action used to select a region of image would occur in an undefined

region of the screen, and so the sequence would fail in its intended effect. The lack

of macro facilities in direct manipulation systems means that systems like Image

and PhotoshopTM are not useful for the development of algorithms. However,

they still have their place for the one-off processing of images.

The second drawback of direct manipulation relates to operations that process

multiple i tems of data. In the Macintosh interface, the paradigm for performing

Chapter 3 - Human computer interface techniques 39

an operation involves selecting the object to be processed, then selecting the
operation. However, the identification of input data is not straightforward
when an operation requires more than one input. The Subt rac t operation in

Photoshop illustrates this difficulty. The selection of the Subt ra c t menu item
invokes a dialogue box in which the user must identify input and result images,

as shown in Figure 3.8). Calculation is carried out after these inputs and outputs
have been identified. The required engagement is cumbersome and represents
very indirect engagement. The difficulty illustrated in this example is not
peculiar to the Macintosh interface, but relates to all interfaces that use a

sequence of direct engagement gestures to specify the input and output items.

Subtract . . . fi(K)1 -:t;£S" '4t1:!jMQI. ti 0)J "HiiiiJII?'MASSEY 1 28 GoP I Cj (ca n ce l)
Channel : 1 # 1 "--_.I

So urce 2: 1 MASSEY 1 2a_Gop I C I

C hannel : _I #_1 _I

scale : I�1
Offset: 1 0 I

D est ina tio n: ,-I _M_'e._'ll_'1 _____ ...

Channel : 1 Neal

Figure 3 .8: PhotoshopTM menu to specify the two input images and the result
image for the Subtract operation.

3.5 Visual language interface

30501 Visual programming vs program visualisation

Of the interaction styles reviewed in this chapter, the visual language style is
the most recent. It combines the linguistic properties of a command language and
the visual properties of a direct manipulation system. In general, a program is
series of coded instructions to control the operation of a computer. The set of
instructions directly or indirectly understood by the computer is a programming
language. If the instructions are encoded by pictures then the language is said to
be a visual programming language. These are not to be confused with languages
for the manipulation and query of pictorial data; such languages are often text

40

based. The image processing systems referred to in this section are visual with
regard to both language and data.

One of the prime motivations for the development of visual programming

languages is to make the programming task easier for users (Myers, 1 990).

Programming is necessary when the required function is not available on a given
system. Systems that allow the end user to modify and change the existing

working environment still only offer the possibility of a recombination of the

available tools. In many cases, a recombination may not be enough to address the
user's actual problem.

HI-VISUAL was one of the first reported visual programming languages for
image processing (Monden et al., 1984). Both operations and data are represented
by icons. In a HI-VISUAL algOrithm, the data icons and imaging operator icons
are interleaved; an operation always produces a data object, and only data
objects are accepted by operations. Figure 3.9 shows a HI-VISUAL algorithm
that detects cracks in an input image. First, the video image is binarized by the
operation B INARI ZE. The cracks and edges of the objects are then detected with
the CRACK DETECT and EDGE DETECT operations, respectively. These outputs
are then superimposed with the SYNTHES IZE operation to produce an image that
shows the spatial relationship between the cracks and the objects.

�.
.

'"
,- .:- .: .

. . . " ,, . , ...

allA.ln
•

Figure 3.9: An example HI-VISUAL algorithm (from Shu, 1 988).

Later versions of HI-VISUAL (Hirakawa et al., 1 990; Ichikawa & Hirakawa,
1 990) have the distinction of using icons to represent only the objects supported by
the system; icons to represent functions are not provided. Operations are specified
by moving one object icon over another. The specific operation is inferred from the
context of the two data objects. For example, when a 'paper' object - which
supports the actions of 'edit', 'print', or 'copy' - is moved onto a 'pen' object, the
'edit' function of the 'paper' object is invoked. This model alleviates the need to
design icons to represent functions; this is an advantage as far as software design

is concerned as such functions tend to not lend themselves to visual representation.

Cha ter 3 4 1

3.5.2 Visually transfonned vs naturally visual

Ambler and Burnett (1989) classify visual languages into one of two types. The
first type, visually transformed languages, "include those visual languages that
are inherently non-visual but have superimposed visual representations". These

are visually edited traditional languages. PICf (Glinert & Tanimoto, 1984),

SunPict, and C2 (Glinert et al. , 1 990) are examples of these types of visual
languages. The second type, naturally visual languages, are languages whose

expression is inherently visual. These may not have any textual equivalent.

Cantata (Rasure & Williams, 1991; Rasure et aI., 1 990) is representative of a

visually transformed language for image processing. Graphics are used both for
the editing and display of the algorithm. When an algorithm is run, a textual

equivalent is generated and submitted for execution as a UNIX command. The
text and graphical equivalents are shown in separate windows in Figure 3.10.

)
)Yhstr -i lu/sbon/aspg/aspghi"a. l o . y1 f f -0

rMAa002'72 -p
, o. yi ff -0 Ius r Itap/ynseeOAAa00272 -p 0 -t 1

'��::��::��:;:��::m���
":a;;.

l o . Yi f f -update 2 lu -uodate 2

Edit

Vrlcl.

I£lP

WIT

Figure 3.10: Data flou, and command line equivalents in Cantata.

Duplicated data streams are difficult to represent in an inherently non-visual

language. A limited form of data stream duplication is achieved in the UNIX
operating system with the tee command. For example, the UNIX command:

> l s - 1 I tee theDi r

Chapter 3 - Human computer inter/ace techniques 42
-----------����--����������������--------�--------�-

lists the current directory onto the screen and into a file (theDi r). However, the
t e e command allows the duplicated data stream to flow only into files. What is
really required for true data flow processing is a 'real' tee (Davis, 1990), which

would allow true duplicate streams, as shown by Figure 3.1 1 .

Figure 3.11: Possible implementation of a reJlCtee operator.

The real_tee construct, although needed to support duplicated data streams, is
difficult to express in an inherently non-visual language. Therefore one of the

primary motives for the development of naturally visual languages is to create
an interface that supports duplicated data streams. One such language, the i kp

image processing system (Davis, 1990), was developed to overcome this precise
difficulty. This system uses an iconic data flow diagram as a basis for its
interface language.

Although Cantata supports a visual representation of an algorithm, it is classed
as visually transformed language because its algorithms are ultimately
transfonned to sequences of single-function programs which are executed from a
UNIX command line, as shown in Figure 3.10. The translation of the algorithms
into an intennediate language incurs a considerable processing overhead. This
overhead is particularly severe in Cantata because all intermediate results are
buffered in disk files, which makes processing extremely slow. A desirable
alternative is to execute graphical representations directly. Here, a graphical
representation serves not merely as a front end to a command line system, but
represents the complete specification of the program. Such a language would fall
into the class of naturally visual languages because they are inherently visual.

The data flow representation of algorithms coupled with fast execution speed
would facilitate the heuristic approach to algorithm development.

3.5.3 Program responsiveness

Tanimoto (1 990) proposes four levels of "liveness" for visual programming
systems. At the first level, the visual representation serves only as visual
documentation for a program. At the second level, the visual representation is
the specification of the program and can be run. Most visual languages for image
processing fall into this category, including the Cantata and i kp systems. At
the third level, the program responds to any edits made to the program and re­
executes immeqiately to reflect the changes. At the fourth and most "lively"

level, the program accepts a stream of data and executes for every new piece of
data. These concepts are embodied in the proposed vrv A system (which stands

for "VIsualization of Vision Algorithms") whose primary objective is to provide
a learning environment that supports the construction and understanding of
algorithms.

Cha ter 3 - Human com 43

3.5.4 Advantages

The persistent representation of an algorithm as a graphical picture is useful in

image processing because it facilitates the incremental development o f

algOrithms. The term incremental means that a n algorithm can be built one step

at a time, and that each step can be performed without the re-executing the
preceding steps. Incremental development allows a user to concentrate on the part
of the algorithm that is to be extended. This allows a user to focus solely on the
problem solving task.

Visual languages incorporate desirable features of command line systems and
direct manipulation systems, which are: a language facility and a direct
engagement facility. A language facility provides a graphical means to
represent a sequence or network of operations. Furthermore, this representation
can be a recorded and re-executed at a later time. A direct engagement facility
provides a powerful means to compose and edit the graphically represented
language.

The pictorial nature of a visual language makes possible the representation of
parallel data flows. Parallel data flows occur frequently in image processing
algorithms. For example, the independent processing of the red-green-blue
channels of a colour image could be represented as three parallel data flows.

Such a representation would not only show the independent, but also the
parallel, structure of an algorithm. More importantly, it would emphasise the
fact that each flow contributes to the processing of a final composite RGB image.

3.5.5 Disadvantages

Control structures, such as loops and conditional statements, are generally
difficult to incorporate into data flow languages without compromising the

simplicity of the data flow form. However, these structures are routinely used in
image processing, especially in algorithms that perform analysis procedures for

every extracted object in an image. The Prograph ™ system addresses the issue of
control structures by offering special classes of operations for handling iteration

and lists. For example, Figure 3.12(a) depicts an operation that sounds the system
beep ten times; Figure 3.12(b) depiCts a sequence that accumulates the values in a
list and displays the running total.

1 0 o (1 0 20 30)

~
(a)

(b)

Figure 3.12: Examples of control operations from Prograph: (a) beeps 10 times, and
(b) accumlliates vailles in a list and displays the nmning sums.

Chapter 3 - Human computer interface techniques 44
---�------�����------������������--------------------��

A second disadvantage is that visual languages require a large screen space in

which to represent algorithms. In textually represented algorithms, each
command occupies a single line and these lines are packed tightly together on a

display screen. By contrast, in a visually represented algorithm, each graphical
element occupies a portion of screen space and these elements are typically
distributed sparsely over the display screen to prevent the program from
appearing cluttered.

Although graphical languages have the potential to better utilise a two­
dimensional display than a textual language, graphical programs are typically
longer in one direction. Visual programs often appear elongated because they are
often composed of many stages but few parallel flows.

The requirement for a large screen is seen as a disadvantage primarily because of
its high cost relative to the other components of an imaging system. Large

displays, especially large colour displays, and their accompanying high­
bandwidth video driver circuitry tend to be expensive.

3.6 Summary and conclusions

The human-computer interface mediates the interaction between a human
designer and an imaging algorithm. Inevitably, the interface changes the
perceived nature of the task, but a well-designed interface should minimise this

imposition. An interface should ideally be transparent to the user.

No single approach meets all the needs of an environment for the heuristic
development of imaging algorithms. It would appear that an interface that
combined the features of menu, d irect manipulation, and visual language styles
could achieve the desired transparency. Menus allow rapid operations to be

searched rapidly and entices the user to try new operations, which is a feature

conducive to heuristic development. Direct manipulation style provides direct

engagement facilities for the rapid execution of operations, and continuous and
reversible actions that invite the user to explore the use of available operations.

A key aspect of direct manipulation is the use of metaphor as a device to
consistently and systematically organise the elements of the interface. The data
flow is a widely used metaphor for image processing because it allows multi­
threaded data paths to be represented explicitly. Upon examining a visually

transformed data flow languages for image processing (Cantata), it would seem
that an inherently visual language would provide the desired data flow
representation without compromising execution efficiency. The following table
summarises the advantages and disadvantages for each interface style with
respect to image processing algorithm development.

a textual language.

• Appearance of the interface does

associations between the

and contents of variables.

not change when new commands • Linear text does not give a

are added. picture' of the current state of the

• Commands can be executed solution.

quickly provided the syntax is • Linear text does not

known. represent multi-threaded

paths.

• New commands must be

away from the command line

parser: usually through the use of

on-l i n e help o r hard copy

documentation.

• Entices the user to try new • Difficult to represent algorithms

command s because the user d ue to lack of a high-level

actions to search and execute a

command are integrated.

• The use of a system does not

require a comprehensive know

led of the command set.

and systematic

organisation of interface through

the use of metaphor.

• Direct engagement enables quick

and direct actions.

Exploration is encouraged be

cause mistakes can be readily

reversed .

language.

• Frame-buffer based systems

restrict the number and type

images that can be processed.

• Lack of a high-level language to

represent algOrithms.

• Difficult to specify multi p I

inputs or outputs o r both for a n

operation.

• Inherits all the advantages listed • Awkward to incorporate control

above for a direct manipulation

interface.

structures, such as loops a nd

conditional facilities.

• Persistent representation o f . Representation of complex algo-

program facilitates incremental rithms requires large d isplay

development of algorithms. screens.

Table 3 . 1 : Comparison of the advantages and disadvantages of the interface
styles discussed in this chapter.

This chapter has evaluated current human computer interface styles when

applied to the application of heuristic d evelopment of image processing

algorithms. The insights brought to light in this chapter are drawn together in a

single coherent design, which is presented in the following chapter.

46

Chapter 4

An Interface Design

This chapter presents a design of an interface that facilitates the development

of image processing algorithms. The first section looks at the philosophy

adopted for the design. This is followed by a brief discussion on two modes of

problem solving: stepwise refinement and dynamic exploration. The final
sections discuss how these modes of investigation can be incorporated into a

common interface using a visual language.

4.1 DeSign ph ilosophy

As mentioned in the previous chapter, an ideal interface is one that

transparently mediates the interactions between the user and the algorithm.

Norman's (1990) philosophy of user-centred design aspires to this ideal. User­

centred design, as the name suggests, focuses on the needs and interests of the user,

which are taken into account in the design of the interface. The objective of this

approach is to produce a useable and understandable product. This thesis adopts

Norman's approach as its underlying design philosophy.

User-centred design is explained with the diagram of Figure 4.1. This diagram

shows the relationship between: the user of the system, the designer of the

system, and the program. User centred-design prescribes that the u ser's

Chapter 4 - An interface design 47

perception of the task should be taken into account by the designer when a
program is written. The arrows of Figure 4.1 indicate that the designer should
understand the user's perception of a task domain, and that the designer should

write the program in such a way to make the user's task easier to perform. In an

ideal user-centred deSign, the user's model, the design model, and the

appearance of the program are equivalent, moreover the design should originate
at the user.

Design model

••

Figure 4.1: Three aspects of user-oriented design (Norman, 1 990).

The user's model adopted in this chapter is based on the solution graph
representation of an algorithm discussed in Section 2.5 (reproduced in Figure 4.2).

It is recognised that different users may have different perceptions of a task.
However, the solution graph model has been adopted because it is easy to

understand and is appropriate for the task, as discussed in Section 2.3. With this
user's model, an algorithm is defined by the topology of the solution graph.

goal

Figure 4.2: A solution graph.

Other problem solving methods use or have used diagrammatic representation of

problems to aid solution development; notably those of POlya (1957, 1968) and
Newell and Simon (1972). Polya's problem solving methods, which he applied

mainly to solid geometry problems, uses solution graphs extensively to represent

Chapter 4 - An interface design 48

the knowns and unknowns of a problem. Solution graphs promoted by Polya
presented the entire current state of the solution at a glance. Newell and Simon
used a solution tree diagram to represent problem solving sessions performed by

the General Problem Solver (GPS) program. These diagrams, called Problem

Behaviour Graphs, were a trace of steps taken by the GPS program through

problem space in its search for a solution.

The visual aspect of the solution graph relates to the static property of the user's
model; the dynamic aspect of the user's model is also important. This concerns
the actions carried out by a user to extend the solution graph. A user generally
employs two heuristics in the development of a solution: stepwise refinement (see
Section 2.6) and dynamic exploration (Spence & Apperley, 1977). Stepwise
refinement and dynamic exploration are complementary modes of investigation.
Both are used during the development of an algorithm, so it is desirable to

integrate both in a common user interface.

4.1 .1 Stepwise refinement

The stepwise refinement heuristic for building a solution has been discussed
earlier in Section 2.6. A solution graph is built up by the step-by-step addition of
new branches. Each step follows a cycle that comprises three stages: (i) the

genera tion of an interim goal; (ii) the execu tion of operations that could
potentially attain the interim goal; and (iii) the evaluation of the extent to

which the goal has been achieved. Stated tersely, the three stages involved are:
generation, execution, and evaluation. The solution graph is incrementally
extended by a discrete series of goal-setting and goal-achievement episodes. The
discrete goal-oriented nature of stepwise refinement is highlighted in the
diagram of Figure 4.3.

/ � �.
starting

•

point '-
�:

�.�
current point

.. .

next sub-goal?

Figure 4.3: The solution graph is built step by step.

4.1 .2 DynamiC exploration

• goal

To complement the directed approach of stepwise refinement, a more exploratory

approach is sometimes needed, particularly in situations where the designer is
at a loss to formulate a sub-goal. A user explores the solution space by
deliberately varying the topology of a solution graph or varying the parameters
of constituent operations, and observing changes in the generated results.

Chapter 4 - An interface design 49

Notably, these variations are performed without first establishing a specific
su�al. This is equivalent to sweeping a continuous region of the solution space,
as shown in Figure 4.4.

/.

/ � ----- . starting
•

point �
.. .

Continuous sweep caused by
parameter or topological variation

• goal

Figure 4.4: The solution graph representation of the effect of dynamic
exploration .

Spence and Apperley (1977) used the term dynamic exploration to describe such a

facility in the circuit design process. In the MINNIE circuit analysis package
which Spence and Apperley described, designers could make continuous
variations in component values and simultaneously and instantly observe the
effect of these changes on a predetermined circuit behaviour. This enabled

designers (i) to gain a "feel" for the effect of each component on the properties of
interest, (ii) to smoothly adjust circuit parameters to an optimum response, and

(iii) to easily and quickly test speculative ideas. Further, Spence and Apperley
suggested that the continuous interaction did " . . . not simply speed up the design

process . . . " but that " . . . there are some ideas that would just not be tested with a
longer response time . . . ". They drew a distinction between a conscious trial-wait-
obseroe error-decide-trial activity and the dynamic exploration characterised
by continuous interaction.

4.2 Generation

The extension of the solution graph, or the process of generation, involves finding

a "suitable operation". For stepwise refinement, a "suitable operation" is one
that achieves the prescribed sub-goal, while for dynamic exploration, it is one
that will potentially yield results that advances the solution towards the
ultimate goal. The interface can help a user find a suitable operation in two

. ways: by providing a complete picture of the solution graph and by providing a
rapid means to search for and select an operation.

4.2.1 An iconic data flow language for image processing

An iconic data flow representation of an algorithm could provide the needed

overview of the current state of the solution. Such a representation could be
readily implemented as part of a graphical user interface in the form of a
solution graph. For this reason, an iconic data flow language seems the

Chapter 4 - An interface design 50

appropriate choice as the graphical metaphor (see Section 3 .4 .1) in a direct

manipulation interface for the heuristic design of imaging algorithms.

Data flow diagrams have gain widespread acceptance in the field of software

engineering as a visualisation tool to aid the planning and design of large

software systems. De Marco (1978) and Gane and Sarson (1979), who are major

proponents of data flow methods, use data flow diagrams to aid communication

between customers and software developers in the early stages. De Marco claims

that the diagrams provide a "big picture" of the system in a non-technical

manner. In the design of a software system, the data flow diagram is only one of

several techniques used to specify requirements. Detailed information, such as

control and loop constructs, are specified in flow-charts and textual design

documents. These additional documents are used by systems analysts and

programmers and are important in the advanced stages of the development

process.

Data flow diagrams serve as a visualisation tool in software engineering, but for

an image processing system, they could serve as a complete Specification for an

executable algorithm. Therefore, data flow diagrams for an image processing

system would differ in three principal ways to the diagrams used by De Marco:

(i) they must have the ability to be interactively edited, (ii) they must be

executable, and (iii) they must allow the specification of control and loop

constructs.

The task of algorithm generation is considered to be one of extending a solution

graph by the addition of new operations. An interface that assists a user in this

generation phase should allow a user to see and understand - at a glance - the

definition of the algorithm and to assist in the selection of new operations for the

algorithm. These two facilities are discussed in the following sections.

Icons

It is desirable for a representation of an algorithm to document its function. That

is, a user should be able to "see" the function of an algorithm at a glance. Self­

documentation benefits all users, from the person designing a new system to the

novice presented with an algorithm for the first time. The most highly visual

elements in an iconic data flow language are the operation icons, hence close

attention should be given to the design of clear and unambiguous icons.

In visual languages, icons are often used as graphical symbols to represent data

objects or operations. An icon should indicate its referent clearly. This clarity is

difficult to achieve in image processing applications because icons are often used

to symbolise operations that perform abstract actions; such actions are generally

difficult to show with pictures. For example, the Sobel filter would be difficult

to represent with an icon, especially if the icon set must also meaningfully

distinguish the Robert's product and other edge detection operations.

Chapter 4 - An interface design 51

Apperley (1990) suggests the effectiveness with which an icon conveys its

underlying meaning can be subjectively ranked into three classes: transparent,
translucent, and opaque. These names draw on the analogy that icons are like a

port through which the underlying meaning is viewed. If the assodation is made

immediately and without explanation, it is classed as transparent. If the

association comes easily after having been once explained, it is classed as
translucent. If the association cannot be made without difficulty, despite

repeated explanations, it is classed as opaque.

Rogers (989) classifies icons on the way the form of an icon represents its
underlying concept. An example for each class is shown in Figure 4 .5. Resemblance

icons depict the underlying meaning through an analogous image. Exemplar icons
depict a typical example for the underlying object. Symbolic icons convey an
abstract meaning with a simplified image. Arbitrary icons bear no resemblance to
the intended meaning and so the association must be explained.

" y
(a) (b) (c) (d)

Figure 4.5: Different fonns an icon can take: (a) resemblance - 'falling rocks ',
(b) exemplar - 'restaurant services ', (c) symbolic - 'fragility ', (d) arbitrary -

'biohazard ' .

The choice regarding whether icons should refer to its underlying meaning by the

use of graphics, text, or a combination of both, is important to the overall ease of
use of the interface. Rasure and Williams (1991), two of the authors of the
Cantata visual language, argue that to assign unique and well-suited icons to all
operations would be a formidable undertaking owing to the sheer number of

operations (over 250) that exist in their system. Cantata icons (called glyphs),
shown in Figure 4.6, do not use graphical elements to assist the recognition of
operations. Their identification rests solely on the textual label. Hirakawa et
ai. , authors of the HI-VISUAL system, argue that icons that represent actions

are difficult to design. They avoid such difficulty in their interface by spedfying
operations through mouse movements rather than icons. However, a possible
difficul ty with such a scheme is the definition of mouse movements to

distinguish between subtly different operations; for example, the Sobel and
Laplacian filters.

[f]� [f]�� [f]��
� � � � -�D

input vinvert
put_update

Figure 4.6: Cantata icons are identified solely on the basis of textual labels.

ill)
JSGl]

:!E!l

Chapter 4 - An interface design 52

It is desirable for the imaging algorithms represented in the proposed system to
be self-documenting. This implies the visual appearance of the icons should
immediately suggest the underlying meaning. To use Apperley's term, the icons

should be transparent. The abstract nature of most imaging operations makes the

definition of transparent icons difficult. However, Kacmar and Carey (199 1)

presents experimental results that suggest icons composed o f text and graphics
result in fewer numbers of incorrect selections compared to icons composed of

graphics-only or text-only. Therefore, the best approach to the design of
transparent icons for imaging operations would be to use meaningful pictures
augmented with textual name labels.

Menus

Once a user has surveyed the current state of the solution and has decided what
type of operation is needed, the next step is to find and select an appropriate
operation. Stepwise refinement and dynamic exploration have different criteria
that govern the selection of an operation. Under the refinement method, an
operation is selected to attain a prescribed sub-goal; this is a goal-directed
action. For dynamiC exploration, an operation is selected according to i ts
potential to yield interesting results. The term "interesting results" ' refers to
results that may lie closer to the end goal in an unanticipated way.

In a visual language environment, operations are typically selected through a

menu dialogue. Menu structures assist the search for a suitable operation by
providing a way to rapidly browse the entire range of operations offered. Once a

desired operation is identified in a men� list, it is typically a simple action to
complete the selection. Long lists of operations are avoided by partitioning the

range of operations into a number of sub-lists. A hierarchic organisation of
selection items is often used to reduce the scope of a search and so improve the
speed of a search. LabVIEWTM (1 990) and Prograph include icons in menu labels
to help the user to recognise operations rapidly, as shown in Figure 4.7.

)1 1S] 1I32] ill))U 1S])U32]

JOBl] lEXT] UJ§] lEi! [J] 1?0:1] .!I"!N
� Simp l e {f 8€ 2

..... _ _ _--_._---------_._ _---� �]Em IUI.JSIl }(l.JSm � C o n s t a n t {f 8€ C

95=0�� I'A'II',�'I -A- M a tch {f 8€ M

® P e rs i s t e n t {f 8€ P

@ I n s ta n ce {f 8€ 1 0 1 00 � � IM I � � G e t {f 8€ G 00 1 0 � 0 1 0 1 · �' Y �.r 0000 . @ S e t {f 8€ S

[@ l o c a l "If S€ l
.............................. _ .. _----_ .. _---_ _ -

Figure 4.7: The lise of graphics in menll items: (a) LabVIEW and (b) Prograph.

Chapter 4 - An interface design 53

4.3 Execution

In a typical visual language, such as Prograph and LabVIEW, the selection of an
operation from a menu creates an instance of that operation. In such an interface,

a selection deposits an icon onto the graphical workspace. An operation,

represented as an icon, has the properties of: a unique visual identity, a temporal
existence, and a spatial existence. The execution of the operation involves the
specification of its input and output data flows, and it parameters.

4.3.1 Specification of input and output data

Since an operation defines a process that transforms data, it must have means to
accept input data and pass on output data. Most operations have single input and
output channels. For example, for a VIPS box average filter, the input and
output data are specified as symbolic references to image variables Urn_ i n and
im_out):

Other operations accept more than one item of input data and return a single
result, such as the operation to find the difference (di f f) between two images
Urn_inl and irn_in2) in Serendip (Wilson, 1987):

l e t d i f f = subtract (irn_in l , irn_in2

A generic imaging operation has multiple input and output data channels - where
the exact number is determined by the specific operation. Some operations may
have either no inputs or no outputs, such as operations to generate test images and
operations to save data to disk. It is unlikely that an operation will have

neither input nor output data channels, as such an operation can never be part of

an algorithm!

In a visual language, data items flow along data paths. Inputs and outputs for

operations are typically specified by joining the paths directly onto the
operation icons at special termination points. Such termination points are
depicted in Prograph as circles, and in Cantata as boxes with arrows inside as
shown in Figure 4.8.

[IJ� [IJ��
� � � �

i nput v i nvert

Figure 4.8: Termination points for (a) Prograph operations (circles), and (b)

Cantata operations (arrows).

Chapter 4 - An interface design 54

4.3.2 Specification of parameter values

Most operations require parameter values in the calculation of a result. These

values influence the calculation of the result in some way. Some parameters are

specified by a user, while others are specified by another part of the algorithm
(Sakaue, & Tamura, 1985). For instance, the size of a window for a box average

filter could be supplied by a user and the cut-off intensity values for a
thresholding operation could be supplied by the algorithm. Examples of these

cases are shown in the VIPS command lines:

box average im_in im_out (3 , 3)
threshold im_in 1o_cut 2 5 5

where the value of 1 o_cut , which denotes the lower threshold intensity, is
derived by the algorithm.

Calculation parameters can be specified implicitly via default parameter
values. For example the following command lines are equivalent to the ones
above.

box average im_in im_out

threshold im_in 1 o_cut

Command line systems offer little flexibility in the way a command can be
invoked. Each command must be specified in accordance to a strictly enforced

syntax. In contrast, direct manipulation interfaces allow calculation parameters
to be specified in many ways. Graphical objects, called controls or widgets, allow

values to be specified either . as incremental or absolute values. A facility to
specify incremental adjustments to parameter values is helpful in situations

where the absolute value is not as important as knowing that the value should be

"increased" or "decreased". However, when a specific absolute value is desired,

it is appropriate to specify this directly rather than having to adjust an
incremental control until the desired value is reached.

(7
(a)

4 .0 6.0

2°08 .0

0.0 1 0 .0
006.88 I

(b)

6.0 ��

4 .0 -

2.0 -

0 .0 -
v

(c)

Figure 4.9: Controls objects for the setting of parameter values.

Chapter 4 - An interface design 55

Figure 4.9 shows representative direct manipulation widgets. A familiar control

is the slider bar, shown in Figure 4.9(a). This allows values to be specified in
coarse and fine steps when the cursor is clicked on the grey background and

arrowed regions, respectively. Elaborate variations of the scroll bar include the
circular knob and slider shown in Figure 4.9(b) and (c); these are from the

interface of the LabVIEWTM system. These widgets indicate the absolute value
of the parameter setting as a decimal number. This number, displayed in an

ed itable text field, can be changed by typing a" new number over the top of the
old. Coarse incremental control can be performed by engaging the knob or slider
button. Fine incremental control - in single steps of the smallest increment - can be

performed by clicking in the triangular button next to the d ecimal number field.

A characteristic common to all the controls shown in Figure 4.9, is representation

of the adjustable value as a proportion of the dynamic range. Proportional,
rather than absolute, representation of a value is appropriate in situations
where the controlled parameter has no natural units; for example, the brightness
and contrast settings for a cathode ray tube.

The controls shown in Figure 4.9 adjust parameter values in a continuous fashion.
However, not all parameters are represented as a continuum, some a re
represented as discrete values. For example, discrete switches are used to specify

the parameters of the Sub t r a c t operation, as shown Figure 4 .10. Often the
difference between two images results in negative values; however negative
values are unsupported for unsigned byte images, which have an intensity range
of 0 to 255. Therefore, switches are required for the Sub t r a c t operation to
specify how negative difference values should be treated. The first switch in
Figure 4.10, "Offset", is a simple on-off switch. It specifies whether or not an
offset of 128 should be added to the difference values before they are written to
the difference image. Such an offset will raise negative pixel values in the range

-1 to -127 to positive values. The second switch specifies one of two mutually
exclusive choices of "Wrap" or "Saturate". These functions specify two different

ways to transform negative values to positive values. The first "wraps" the
value around the dynamic range of 0 to 255. Hence the value -20 will be converted
to the value 236 (256-20). The second option, "Saturate", assigns all negative
values to zero.

g 0 ��mmmmmmmmmmmmmmmmmmmmmg
[81 Offset

@ W rap

o Saturate

Figure 4.1 0: A control to enter discrete parameter values.

Chapter 4 - An interface design 56

4.3.3 Operation invocation

Two obvious ways to execute a data flow algorithm are (j) to select an

"execution" item from a menu and (ij) to double dick an icon of one of the imaging

operations. A program can be executed in the Prograph system by the selection of

the "Execute Method" menu item, as shown in Figure 4.1 1 . For image processing,

the drawback of this method is in the granularity of what can be selected for

execution. Prograph allows entire programs and methods (sub-programs) to

execute, but in image processing it is often useful to specify execution of an

algorithm beginning at a particular operation. This leads to the second way to

run an algorithm: double-click on an operation. The execution of an operation

should lead to the execution of all operations that follow it in the algorithm.

With this method, the execution of the entire algorithm can be performed by

invoking the first operation in the algorithm data flow. A system need not

provide both methods of invoking an execution. For an image processing system,

the more useful method would be the double clicking method because it offers

finer selectivity of what can be executed.

EHecution

H b o r t

Edit Rppl icat ion
Set Progra m
[h� {u' (>nHJ r n m

Step/Show leve l . . .
S tep/Show On
Step/Show O ff
B n� n k l) () i n t O n
B n� n k l) o i n t O t t
C lear S teps & Breaks

" ::: '.' l
'-•• '" , J
-(} 3€)

Figure 4.11: Menu item for the execution of a Prograph program.

Once an operation has been invoked, its execution will typically initiate the

execution of many other operations. The order in which the subsequent operations

are automatically executed is determined by the execution scheduler. In a typical

iconic data flow language, like the Prograph example shown in Figure 4.12, the

output of one operation feeds into the input of another operation. Therefore if

either of the '.' operations execute, then the '+' operation must update its result

to reflect its new inputs. The updated results for the '+' operation, will in turn,

initiate the recalculation of the 'sqrt' operation. In this way, the execution of

either '.' operations will cause the execution of the '+' operation followed by

'sqrt' operation. This style of execution, known as data-driven execution

(Ackerman, 1982), is appropriate for image processing because the designer is

interested how a new parameter will effect the entire algorithm.

Chapter 4 - An interface design

Square
=....==- each side

Hy potenuse

Py thagorean Formula

Figure 4.12: Prograph IIses the classic 'box' and 'stick' representation for an
algori th m .

57

An investigation of parameter values could be hastened if the adjustment of a

parameter value could automatically trigger re-execution of an algorithm. This

facility could more than quicken the investigation, it could potentially induce

dynamic exploration. For this to happen, the system must respond to adjustments

in parameter value very rapidly. Ideally, the system should respond so rapidly

that the generation of a series of parameter values would cause the changes in

the displayed result to appear animated .

4.4 Evaluation of the results

After the selection and execution of an operation, the user must evaluate whether

the results satisfy the goal of the action. If the results are satisfactory, then the

development moves to the next step. However, if the results are unsatisfactory,

then the user must assess whether the deficiency was caused by a bad choice of

operation or parameter setting. This decision may lead to the use of new

parameter values or a new operation altogether.

The goals for stepwise refinement and dynamiC exploration differ, hence the

respective evaluations, also differ. For stepwise refinement, the basic question is

"has the sub-goal been attained ?". For dynamic exploration, the equivalent

question is "does this result bring me closer to the ultimate goal?". Regardless of

the approach, the user is helped greatly if the new result may be easily related

back to the operation that generated it. Such assistance can be provided by

displaying the new result near the operation that generated it, and displaying it

without delay.

Visibility of results and the promptness of delivery are important attributes

relating to the assessment of results. Obviously the result must be visible in order

for it to be assessed. A natural way to display an image result in a graphical

interface is to place it in a window. The default position for the window should

be near its associated operation because this helps a user to link the related

items. The Cantata system works in this way, as shown in Figure 4.13.

Chapter 4 - An interface design 58
------------����--��������----------------------------------�-

Figure 4.13: A Cantata operation and its result which is displayed nearby in a
movable window.

In Cantata, the result of an operation cannot be displayed without first
attaching an operation called put_updat e to it. The need to use a specialised
operation to perform a routine action - such as displaying an image - is an indirect

interaction that could be avoided if each operation includes a facility to display
its own results.

4.5 Summary and Conclusions

The design philosophy adopted in this chapter is one of user-oriented design.
This advocates that a design should focus on the needs of the user. For imaging
applications, a representation of the algorithm based on the solution graph
would achieve this aim. A solution graph visually represents the operations

used in the solution and the data-relationships between them. An iconic data
flow language would explicitly represent the solution graph in an interface.

The problem solving strategies, or heuristics, commonly used to build the solution
graph, are stepwise refinement and dynamic exploration. Both strategies

involve acts of generation, execution, and evaluation in the extension of a
solution. The major distinction between the two methods exists in the degree to
which the three activities are integrated. In stepwise refinement, each step is
distinct from the other. A deliberate sub-goal is decided upon; then an operation
is chosen to specifically attain the sub-goal; and finally the extent to which the
sub-goal is attained is evaluated. In dynamic exploration, the three steps are

integrated into one continuous activity. An operation is selected according to how
likely it is to produce an "interesting" result. The operation is executed many
times in quick succession, each time with different parameter settings. Results
are generated with sufficient rapidity to induce a sensation that the parameter
controls are directly connected to the image display. Ideally the system responds
so rapidly that continuous changes in parameter values appear to animate the

Chapter 4 - An interface design 59

change of results. This high degree of interaction promotes free investigation
which is a primary characteristic of dynamic exploration.

Interspersed amongst the philosophical discussion of design in this chapter,

concrete recommendations for the implementation of an image processing system

have been suggested. In effect, these recommendations constitute a design

framework based on a user-centred approach to heuristic imaging algorithm

development. To uphold the principles of user-centred d esign, these guidelines

should be incorporated into an implementation o f the d esign. The

recommendations of this chapter are as follows. This chapter recommends that:

• facilities should be provided to perform generation, execution, and evaluation
as discrete actions (for step-wise refinement) and as a continuous action (for
dynamic exploration);

• an iconic data flow language be used (so that the user can quickly ascertain the
state of the solution and hence make a reasoned decision for the next plan of

action);

• the aforementioned language be modelled after the solution graph (because
the solution graph has been adopted as the user's model);

• the data flow language be editable and executable;

• the data flow language should incorporate control structures;

• the icons of the proposed language contain pictures and text (to improve the
documentation of algorithms);

• operations be selectable from a menu structure (because a search for operations
is necessary in both stepwise refinement and d ynamiC exploration
approaches);

• input and output data for an operation be specified by
terminations placed somewhere on an operation's icon;

graphical

• specification of parameters be done through d irect manipulation widgets (to

allow numeric values to be Specified in incremental and absolute styles and to
allow choices to be specified through discrete switches);

• operations be invoked by the action of double clicking on its icon or by changing

a parameter value;

. • the execution of one operation should in turn initiate the execution of all
operations that depend, directly or indirectly, on its result; such execution can
be achieved through the use of a data-driven scheduler;

• results should be displayed in windows, which are movable, and by default
"'"

position" close to its associated operation.

These design guidelines have been incorporated into a visual language for image

processing algorithm development, which is presented in the following chapter.

60

Chapter 5

OpShop :
An . Implementation

This chapter presents an overview of the software implementation of the design

presented in the Chapter 4. The description is in four sections: (i) a description of
the elements of the user interface, (ii) a description of the user interactions, (iii)

an overview of the key aspects of the software design, (iv) and an evaluation of
the speed of computation.

5.1 An overview of OpShop

The purpose of OpShopS is to provide an environment for the heuristic
development of image processing algorithms. This is achieved by providing a

5 In New Zealand, an opportunity shop <colloquially called an opshop) is a store
where one goes to buy second hand articles at bargain prices. This name has been
chosen for the software presented in this chapter to reinforce the idea of
inexpensive yet delightful discovery - in this case, of solutions to algorithms,

rather than of haute couture.

Chapter 5 - OpShop: an implementation 61

visual language that serves as both a programming language and a program

development environment. The .two functions of the system are inseparable. This

is often the case for visual language programming environments (Ambler &

Burnett, 1989). OpShop provides an integrated environment for both the

development and execution of an algorithm. This integration leads to a high

degree of interactivity in the development process because it minimises the time

taken to turn an idea into code, perform a trial, and to make modifications.

The principle features of any visual programming environment are the

representation of the program under construction and the interaction it supports to

allow the user to edit programs. A program visualization system (Myers, 1990)

graphically represents data structures and control flow in a program, but does not

provide facilities to allow programs to be visually edited. A visual programming
system provides for both. According to this classification, OpShop is a visual

programming system: it depicts algorithms by a visual data flow language and

supports the direct manipulation style of user interaction.

In OpShop, an algorithm is represented as a data flow network of imaging

operations. An example of i ts iconic visual language is given in Figure S.l.
Operations are depicted by icons, while data flows between operations are

represented by interconnecting lines. The points at which data flows connect to

operations are called tenninals, which are depicted by triangular symbols. Two

types of terminals exist; one to support input flows and the other to output flows.

Input terminals are situated on the left side of an o peration icon, while output

terminals are situated on the right side. This arrangement of terminals leads to a

predominantly left-to-right flow of data through an algorithm; algorithms are

generally read from left to right. Figure 5.1 represents a sample algorithm that

can be directly executed.

]II:. .111(. . �-··DImI
eate Hist� Box Averag Label Region Hist Stretch

�
-,-----------

Read Image �-_______ --. __ !Ii'.:ru .. l!: � i� ____ -------------------------------------'L�O�OkUP 2D

Read Image

Figure 5.1 : Atl OpShop algorithm to perform feature classification based on

colour.

OpShop algorithms, such as the example shown in Figure 5.1, are directly edited

by the user through actions specified by a pointing device. Typically, a mouse is

used to directly engage the iconic elements of the OpShop language through

Cluzpter 5 - OpShop: an implementation 62

actions such as clicking and dragging. The algorithm topology is modified

through such mouse actions.

The OpShop language provides a complete specification of an algorithm. It is not

compiled or translated into an intermediate language in order for it to be

executed. Rather, the visual representation is executed directly. Therefore, not

only is the editing of an algorithm specified by mouse actions, but also the

execution of an algorithm. OpShop integrates into a single environment,

facilities for the graphical display, the visual editing, and the execution of

algorithms. This feature, coupled with rapid calculation of results, provides a

highly interactive env.ironment that is conducive to the heuristic development of

imaging algorithms.

The OpShop software environment was developed on a Macintosh LC computer,

which was configured with 10M Bytes of RAM, a 40M Byte hard disk and version

7.0.1 of the Macintosh operating system software. The Info Box for the OpShop

application is shown in Figure 5.2; the OpShop icon portrays the data flow

nature of the OpShop language. The programming language Used, THINK C 5.0.2

(Symantec Corporation, 1 991), is an object-oriented language. The OpShop

software extensively uses the object-oriented features of THINK C and the

THINK class library (TCL 1 . 1). To run, the OpShop application requires a

Macintosh configured with 8-bit colour display, system software version 6.0.76

or later, and at least 3 MBytes of RAM free after the system software is loaded.

O p S h o p I nfo •"iml '
. : � � . OpShop IW�:'�

Kind : .pplmtion pr09r.m
Sin : 296K on disk (290,944 bytts und)

Yh�r� : Godf.thtr : Ustrs : Phil :
Devtlopment : OpShop :

Crut�d : Tut, Ftb 1 8, 1 992, 9 :24 PM
Hodifi�d : Mon, Jun 1 5 , 1 992, 5 :33 PM

Y�rsion : 0 . 1 d3

o Locked

-.. ··Htmory _ _ _ -: 1 SU99tSttd sizt : 3 ,000 K � i Currtnt sizt : 13000 1 K ! -" -� --.... -...... -........ -... ;

Figure 5.2: The "Info Box" for the OpShop application.

6 The 32-bit Quickdraw !NIT is required when OpShop is run under System 6.

Chapter 5 - OpShop: an implementation 63

OpShop comprises a collection of 67 operations that span a range of imaging

functions including arithmetic .calculations, preprocessing, segmentation, and

image measurement. The functional description for each operation is given in

Appendix 1 .

5.2 Elements of the visual language environment

This section presents an overview of the graphical elements of the visual

language environment. The elements are discussed in the same order that they

would be met by a user in the construction of a new algorithm. Therefore, the

whiteboard is described first, because development activity cannot begin without

a work area. Presented next are operations. These are deposited onto the

whiteboard when selected from the OpShop menu bar. Combinations of

operations, algorithms, and a description of how they are created, are presented

next. Finally, subflows are d escribed . A subflow simplifies a cluttered

whiteboard by reducing the number of icons on a whiteboard without altering the

functionality of the algorithm.

5.2.1 Whiteboard

Algorithms are built and executed in a work area called a whiteboard. As shown

in Figure 5.3, a whiteboard looks like a typical Macintosh window with the

exception of an additional text box in its bottom left corner that indicates the

amount of memory available for allocation to new operations. Two operations

(Read Image and Threshol d) appear in the whiteboard shown in Figure 5.3.

The whiteboard supports typical Macintosh window functions: it can be closed by

clicking in the close box (which is the left box in the title bar), it can be enlarged

to fill the screen by clicking in the zoom box (which is the right box in the title

bar), and it can be hidden behind or exposed from behind other windows. Several

whiteboards can exist concurrently during an OpShop session, but only one can be

active at any time.

Close
Saue
S Gu e R s • • •

Page S e t u p • • •
P rint • . .

Quit

Preprocessing S e g m e n t a t i o n

O p S h o p W o rlc s h e et

Threshold

Figure 5.3: An OpShop whiteboard containing two data flow linked operations.

Chapter 5 - OpShop: an implementation 64

Whiteboards are created by a user selection on the New menu item. An existing

whiteboard and its contents can. be written and read to file using the Open ... and

Save . • . menu items. Algorithm topology and parameter settings are saved with

the file, but image data is not saved. Whiteboard files exclude image data to

avoid storage problems. Without saving image data, the whiteboard data files

are typically three kilobytes in size, rather than hundreds of kilobytes if images

are included. The image data can readily be reconstructed by simply executing

the restored algorithm.

5.2.2 Operations

The basic element of an algorithm is an image processing operation. In OpShop,

operations are represented by graphical symbols, called icons (see Figure 5.4).

Icons can be created, deleted, stored on disk and retrieved, and repositioned on a

whiteboard. The direct engagement properties of OpShop icons conform to the

behaviour prescribed in 'The Macintosh user interface guidelines' (Apple

Computer, 1985). In other imaging systems, operations do not have a temporal

existence, but rather exist as functions that are executed when invoked from a

command line or a menu selection.

�.iffi
• . . : . .. :: .
N �
Lookup 2D

S e t P a ra m s

(a) Non-selected Lookup 2D operation (b) A selected Wedge operation. Its pop
up menu has been invoked by option­

clicking on itscolour icon.

Figure 5.4: Examples of OpShop operations.

The OpShop icons all have a number of visual attributes, which are discussed

below:

• Each operation is denoted by a unique 32 x 32 pixel colour image. The unique

appearance of each icon not only assists in the identification of each

operation, but also indicates key characteristics of the operation. For example,

the four non-linear filters shown in Figure 5.5 display a family resemblance

whereby each icon has a vertical bar of sorted intensity values to indicate

that each is a rank based operation .

Min
(a)

•)1.
Range

(c)

Figure 5.5: Non-linear filters: (a) Minimum, (b) Maximum, (c) Range, and (d)
Rank filters.

Chapter 5 - OpShop: an implementation 65

• Each operation has a text label indicating the name of the operation. An
operation is more readily identifiable when its icon is augmented with a name
label (see Section 4.2.1). When an operation is selected, the text label is

highlighted. Figure 5.4(a) and (b) show selected and unselected operations.

• Each operation has a set of input and output data terminals to receive data
from and pass data to other parts of the algorithm. An operation is limited to

five input and five output terminals, as the physical dimensions of an icon
cannot accommodate any more. These limits are unlikely to pose�problem as

imaging operations with five inputs or outputs are rare. The most that
OpShop currently uses is three inputs (Lookup 2 D) and two outputs
(Di s t r i bu t ion). Most operations will have one input and output, such as the
filter operations shown in Figure 5.5. Operations that generate image data
internally have no input terminals, such as the Wedge operation shown in
Figure 5.4(b). TIle Save Image operation has no outputs because it transfers its

data to disk.

• Each operation has its own menu from which actions specific to that operation
can be invoked. The menu is accessed by pressing the option key while clicking
on the operation's icon. Figure 5.4(b) shows the menu for the Wedge operation;
this menu has only a single item, which is to display the window in which the
operation's parameters are set.

Associated with each operation are calculation parameter values and results.

These can be accessed for each operation by option-clicking the operation icon
and option-clicking an output terminal, respectively.

Control panels

Fill Llelue @!]
o loHA w::1¢1 255
Seed (H) �

o lokT 1:ml¢1 1 28
Seed (y) �

o IOWH lH¢1 1 28
[81 Diagonal Boundery
® Boundary ·" Fil l
o Boundary (:E Fill
o Boundary >· Fill

(a) The Fi l l operation has both
numeric parameters and option

s w itches .

(b) Th e Read Ima ge operation requires
no controls to carry out its function.

Figure 5.6: Examples control panels.

Chapter 5 - OpShop: an implementation 66

Operations have parameters that are used in the calculation of results. These

parameters are generally simp.le numeric values and switches that select the

way a calculation is performed. Some operations may have parameters that are

a mixture of numeric values and switches, while others may have no parameters.

Each OpShop operation has an associated control panel which can hold sliders,

text fields, and switches for specification of calculation parameters. Figure 5.6

shows the controls for the operations Fi l l and Read Image.

The F i l l operation has a combination of a slider and a text field to specify

scalar parameter values, a check-box switch for choosing one of two options

(diago.nal or orthogonal fill region), and a set of radio button switches for

choosing one of three options. The control panel for the Read Image operation is

empty because it does not require any preset input from the user to perform its

function.

OpShop control panels are implemented as windows that "float" on the

whiteboard window. Floating windows remain visible, hence accessible, even

when the user clicks in the document window, as shown in FigUre 5.7.

R b i n d o n C ro s s a

--� •• JIII�---�.JI j.�--.�JrIl�
Make Cross Add Noise Box Avtrage Threshold Skeletonize

2 1 37 k

Figure 5.7: Floating control panel for the Box Average operation.

Parameter values can be changed easily with floating windows because the

controls are always immediately accessible. If the panels were instead

implemented with modal dialogue boxes, they would need to be opened and

closed each time a parameter was adjusted, thus greatly reducing the overall

ease of use. Furthermore, a user could not interact with an algorithm while a

modal dialogue box was present. Clearly, floating windows offer more flexibility

for interaction than modal dialogues.

Chapter 5 - OpShop: an implementation 67

Tenninals

As mentioned earlier, an algorithm is represented in OpShop as a network o f

interconnected imaging operations. Data flows between operations along paths

indicated by graphical lines. The points where these paths attach to the

operation icons are called terminals. These are depicted as triangular symbols

along the left and right edge of an operation icon, as shown in Figure 5.B.

Make Cros� Add Noise

Figure 5.8: Data terminals for operation icons are indicated by triangular icons on
the vertical sides of operation icons.

In an earlier version of OpShop (Ngan et aI., 1 990), data paths were not

terminated at specific data terminals, but instead at the operation themselves,

as shown in Figure 5.9. The major drawback of this scheme was that operations

could have only one input and one output. This was regarded as severe limitation

as many imaging operations demand multiple inputs or outputs or both.

Figure 5.9: Data terminations used in an earlier version of OpShop.

Data terminals also serve as visible symbols to indicate the direction of data

flow through an algorithm. The combination of data flow lines and terminal

symbols look like arrows, which point in the direction of data flow.

The OpShop language includes five different types of data terminals to support

four dimensionalities of data (scalar, 1 0, 20, and 3D) and an unknown type. Each

type is distinguished by a different colour. A terminal will form a connection only

with another terminal of the same dimensionality .. The exception is that any
terminal can connect to a terminal of the unknown type, in which case the

unknown terminal will assume the dimensionality of the first terminal to which

it connects. When all interconnections are removed from an unknown terminal, it

reverts to the unknown state.

A data terminal does not distinguish the type of the data it handles; types

meaning byte, integer, real, etc. Operations are assumed to accept any type of

data for processing. In object-oriented terms, the operations are said to be

polymorphic. At present, OpShop supports the following data types: byte 0-
byte), short (2-bytes), long (4-bytes), float (4-bytes), double (12-bytes), complex­

float (B-bytes), and complex-double (24-bytes).

All terminals are associated with data. Data can be valid and invalid. When an

algorithm is in a stable state - that is, when no calculations are in progress or

pending - all data in the algorithm are valid. However, while calculations are

taking place, certain data buffers may await recalculation. In the time pending

their recalculation, the data stored in these buffers are functionally invalid. To

Chapter 5 - OpShop: an implementation 68

indicate this invalid state, a terminal displays a black mark on the tip of its

triangular icon. Figure 5.10 illustrates the visual distinction between the two

states.

". lill<t::. �:,. r. 1:OW Y<,. I!"...J.W��
Distribution

(a) Black tipped terminals indicate
invalid data .

. _t�. $'m��
Distribution

(b) After execution, valid data
appears at the termhlals and the

black tips disappear.

Figure 5.10: Invalid and valid data terminals.

Each output terminal has an associated local result buffer. Although the

dimensionality of the buffer is fixed, the size of the dimensions and the data

type of the buffer can vary at run-time. The contents of a local result buffer are

displayed in result windows which are associated with each output terminal.

The user opens a display window by pressing the 'option' key while clicking the

mouse button on the output terminal. Figure 5.1 1 shows the display windows for

one- and two-dimensional results. An example of a one-dimensional result is an

. intensity histogram. An example of a two-dimensional result is a grey-scale

image. The title of the result window indicates the operation which relates to

the displayed data.

(a) A one dimensional result (b) A two dimensional result

Figure 5.1 1 : Display windows .

5.2.3 Algorithms

Individual operations discussed in the previous section rarely constitute a

complete processing strategy. More commonly, groups of operations are used to

perform an imaging task. In OpShop, groups of operations arranged in a data

flow configuration are called algorith ms . Although the term algori thm

normally implies a sequential procedure, i t is used i n this thesis to refer to an

OpShop data flow in order to remain consistent with conventional image

processing terminology.

Chapter 5 - OpShop: an implementation 69 ----------����--����������--------------------------�
User interaction in the construction of algorithms

Algorithms are formed in the OpShop system by linking the data terminals of

separate operations with a data flow. The user creates a data flow by the action

of pressing the mouse button on the tenninal of one operation and while keeping

the mouse button held down, moving the cursor until it is above the target

terminal, then releasing the mouse button. Visual feedback during the linking

process is given in the form of various cursor shapes. The most useful is the rubber

band cursor. Figure 5.12(a) and (b) illustrates two of the steps involved in the

creation of a data flow. The cross- (in (a» and links- (in (b» shaped cursors

indicate keep-dragging and ok-to-release actions available to the user .

'Wedge

IJ" . � l! dJ
Threshold

(a) The 'cross ' shaped cursor indicates a
drag geshlre. If the mouse button is

released at this point, no
interconnection is fonned.

'Wedge

(c) The 'broken links ' cursor shape
indicates that the existing

interconnection can be broken if the
mouse button is released at this point.

• i� l! dJ
Threshold

'Wedge

(b) The 'links ' shaped cursor indicates
a valid interconnection can be fonned

if the mouse button is released.

'Wedge

(d) The cursor stays as a 'cross ' when
an invalid connection is attempted. If
the mouse button is released at this
instant, no interconnection is fonned

Figure 5.12: Action sequences involved in the creation and deletion of data flows.

To disconnect a data flow, the user clicks on the input terminal end of the flow, as

shown in Figure 5.12(c). The 'broken links' cursor indicates that the data flows

will be disconnected if the mouse button is released.

During the sequence of user action to create a data flow, the shape of the cursor

indicates whether an a ttempted connection is permissible. Figure 5.1 2(d)

illustrates that the shape of the cursor stays as a 'cross' rather than changing to

'links' when illegal connection is attempted; in this case, an output terminal

cannot be connected to another output terminal. The cursor is designed to remain

unchanged for illegal actions so that the user can visually perceive that the

action is illegal and will know not to try it (Gaver, 1 991) . Attempts at illegal
connections occur in other situations besides the one shown. The following
connections are not allowed:

(i) output terminal to output terminal;

(i i) input terminal to input terminal;

(i i i) to input terminal that already has an established connection;

(i v) between input and output terminals o f dissimilar dimensionality (except if

one of the terminals is of the unknown dimensionality).

Types of algorHhm topology

Multiple interconnections can emanate from a single output terminal, as shown in
Figure 5.13, which indicates that the output data of the Read Image operation
is accessible by both the Box Average and the Max operations. However, an
input terminal cannot have multiple sources converging into it. Such a connection
would not make sense because an input can only have one source. If an operation
requires multiple input sources, such as the subtraction of two images, then this
operation would require multiple input terminals, as shown in the Subt rac t

operation of Figure 5.15.

D�
Box Average

Figure 5.13 : OpShop supports multiple connections to an output terminal.

Algorithms commonly consist of operations that do not have multiple inputs or

outputs. Such algorithms can be constructed as linear sequences of operations, as
shown in Figure 5.14. A linear sequence is formed when every operation has a fan­
out of one; in this respect, the linear sequence is a special case of the parallel

topology.

Wedge
IJ" --.. ..-.
I! dJ

Threshold Fill

Figure 5.14: Linear sequence of operations.

Parallel data paths can merge at an operation that has multiple input

terminals. Here the two dimensional expressiveness of a visual language is well
suited to show the parallel nature of the data-flows as illustrated in Figure 5.15.

/"'" -
Chapter 5 - OpShop: an implementation 71

Read Image Subtract

Figure 5.15: Parallel sequence of operations.

The number of operations that can be included in an algorithm is limited only by

the memory space pre-allocated to the program at start-up; by default OpShop
requires 3 MBytes. This figure can be changed in the Macintosh™ Finder through

the Information Box for the application (see Figure 5.2). A user should exercise
caution when the memory allocation is decreased to a value less than 3MBytes,

to ensure that the available memory is never entirely depleted. Each operation
deposited onto the whiteboard uses a certain amount of the pre-allocated
program memory; for example, a Read Image operation that supports a 128 x 128
pixel result buffer occupies almost 80 kBytes of program memory. The amount of
memory consumed by each operation is largely dependent on the size of the result
buffer.

5.2.4 Subflows

A problem common to all visual language environments is the lack of screen space

to display programs (see Section 3.5.5). Graphical representations of a program
or algorithm typically occupy large expanses of the screen. OpShop addresses
the shortage by providing two mechanisms: scrollable whiteboards (as described
in Section 5.2.1) and visual procedures called slIbflows.

Scrolling the document windows is not an optimal way to overcome the problem
of a screen overcrowding. Consider the situation where an algorithm has two

operations which need to be repeatedly accessed, but are separated by a distance

greater than a screen width. The user is forced to repeatedly scroll the window to
access the alternate operation. It would not take long for this activity to become

tedious. The need to scroll could be eliminated if the separated operations were
brought closer together. This can be achieved by combining all operations
between them into a single operation called a slIbflow. A subflow is the visual
equivalent to a procedure in text based programming languages such as

FORTRAN and C.

Subflows do not merely conserve screen space, but also provide a way to organise
an algorithm into logical units, where each unit would perform a well defined
task. The organisation of source code into modules and libraries is a common
practice in the programming of textual languages.

Figure 5.16 illustrates the steps involved in the creation of a subflow. First, all
operations to be encapsulated in a subflow are highlighted . Figure 5.1 6(a)

indica tes a way that a group of operationsmay be selected: by dragging a

l /
I

Chapter 5 - OpShop: an implementation 72

selection rectangle across the required icons; shift-clicking is another action that

can add or remove icons from a selected set. Once the set of operations to be

transferred has been selected, the Create SubFlow item is chosen from the Edit

menu (see Figure 5.1 6(b». The system responds by creating a new whiteboard and

placing within it the interconnected algorithm fragment, as shown in Figure

5.16(c). The selected set of operations is replaced in the parent flow with a single

operation called subFlow, as shown in Figure 5.16(d); all necessary connections

to the subflow are automatically created.

• � rUe [dlt 'en.,..'

(a) The operations to include into the sUbflow are selected by a dragging motion.

(b) The selected operations are grouped into a sub-flow by choosing the
Create SubFlow command.

Chapter 5 - OpShop: an implementation 73
------------���������----�--�

"iiiilils"iiiiif' ···ilif·iiiiifiiiifiiii!ii8.:·�ps"licip 'UIOi'lishe81ii'iifii······· · · · · · · · 'II· · · · 'i!'ifm:,��

(c) The whiteboard for the newly created subflow.

I!! ! ! !! !

(d) The modified whiteboard for the parent flow.

Figure 5.16: The sequence of user actions involved in the creation of a subflow.

The subflow mechanism introduces a new of type of terminal whose specific
function is to pass data between a subflow and its parent flow. These terminals
for subflow operations occur in pairs: one is situated on the side of the subflow

icon while the other is situated on a side of the subflow whiteboard. Examples of
such terminals are indicated in Figure 5.16(c) and (d). The two terminals on the

left edge and the single terminal on the right edge of the subflow whiteboard in
Figure 5.16(C) correspond to the two terminals on the left edge and single terminal
on the right edge of the SubFlow icon of Figure 5.1 6(d).

As with sub-program constructions in any language, a sub-program can be called
from within a sub-program and so a hierarchy of nested sub-programs can be

created. The hierarchical organisation of a program can enhance the readability
and comprehensibility of a program. OpShop has no limit to which subflows can
be nested, save the limitation of allocated memory space.

\ \
\
\

Chapter 5 - OpShop: an implementation

5.3 User Interaction

74

This section discusses the dynamic properties of algorithms and the user

interaction required to execute them.

5.3.1 Execution

Execution of an algorithm is performed by simply d ouble clicking on an operation.

In response, this operation recalculates its result which is deposited into its local

result buffer. This result may then be used as input for other operations, in which

case this second operation must also update its result because its output is no
longer consistent with its input.

The �t ..) - driven execution scheme in OpShop ensures that the necessary
calculations are performed to maintain a consistency between results and the
algorithm definition. Therefore, the execution of a single operation by double­
clicking may initiate the execution of many other operations. A functional
description of the execution scheduler is given later in section 5.4.3.

Double clicking on an operation is just one of three ways to initiate algorithm
execution. Algorithms also execute when a change is made to a parameter value
on a parameter control panel, and when a change is made to the algorithm
topology.

5.3.2 Parameter exploration

In Chapter 4, it was established that a system that supports heuristic

development should offer facilities for parameter exploration. An environment is

conducive to parameter exploration when (i) it provides a convenient way for the

designer to adjust parameter values, when (ii) the system immediately responds

to change in values by initiating the recalculation of results, and when (iii) the

results are calculated and displayed rapidly.

Control Panels are a convenient way of specifying parameter values because they

are readily accessible and easy to interact with. Figure 5.6(a) shows the range of

controls available in the OpShop operations. Numeric scalar parameters can be

specified as absolute values by typing the numbers into a text field box; they can

also be specified in increments by engaging a slider bar.

Parameter exploration is possible in OpShop because a change to a parameter

value directly initiates the execution of the operation to which it relates. The

length of delay before the result is displayed depends on the complexity and

number of operations that execute, and the computational power of the computer

--
Chapter 5 - OpShop: an implementation 75

used. The optimal processing speed would allow an update of all results within

0.25 seconds7 after a parameter adjusbnent is made.

A feature of parameter exploration is the animated display of changing results.

When a user holds the mouse button on the arrowed part of a slider bar, a series

of parameter values is generated in quick succession. Each of these new parameter

values causes new results to be calculated. If successive results are updated

quicker than the eye can perceive, the changing result appears to be animated.

The effectiveness of the animation is clearly dependent on the speed of the host

computer. With the Mac LC on which this development was carried out, true

animation is only possible for simple operations such as Thre s ho l d. Futu re

computers offer the possibility of true animation for more computationally

intensive operations and even sequences of operations. Parameter exploration

could absorb any available amount of computational power!

5.3.3 Topology exploration

The dynamic properties of OpShop not only facilitate interactive investigation

of parameter values but also of algorithm topology. An OpShop algorithm is

represented by a data flow graph; the topology of that graph specifies the

network of data paths interconnecting constituent operations. Topology

exploration refers to a facility that allows a designer to readily adjust a n

algorithm topology and to rapidly view the effect of that adjustment. The

purpose of the exploration is to find a data flow network that performs a

prescribed imaging function.

OpShop has two interface facilities that makes topology exploration possible;

direct engagement style of interaction and an execution scheduler that is

responsive to user generated changes to algorithm topology. Direct engagement

allows data flows to be made and broken rapidly. In immediate response to a

change in topology, the OpShop execution scheduler causes the a ffected

operations to recalculate and display results that are consistent with the

adjusted topology.

The sequence of networks illustrated in Figure 5 . 1 7 illustrates topology

exploration. The aim of the sequence is to investigate the performance of the Max

7 Goodman and Spence (1978) performed tests to investigate the effect of system

response time on the ability of a human user to point the cursor to a randomly

located target on the screen. They observed the user had little difficulty

performing the positioning task for system response times less than 0.25 seconds.

However, the u ser's ability steadily worsened for response times greater than

this quarter second threshold. This observation suggests that the u ser starts to

loose the ability to judge the effect of hand movement on the cursor when the

cursor response is more than 0.25 seconds, but that the user perceives continuous

cursor response for delays less than 0.25 seconds.

Chapter 5 - OpShop: an implementation i6
--------�����������--------------------�

filter in the presence of noise. In the three frames of the sequence, (a) shows the
Max filter applied to the test image, (b) shows the response of the Max filter to
noise superimposed on the test image, and (c) illustrates the same response when

the noise is first smoothed before the application of the Max filter.

[a-----..
Read Image

(a) A Max filter is applied to a test image.

Read Image Add Noise

(b) The noise sensitivity of the Max filter is investigated.

� .• �. ·--··I�··�··JlOI·

Read Image Add Noise Box Average Max

(c) The introdllctio;1 of a low-pass filter redllces the adverse effect of noise on the

Max filter.

Figure 5.17: The successive refinement of an algorithm is an exercise in topology
exploration .

Chapter 5 - OpShop: an implementation 77

The sequence of experiments can be considered a succession of refinements to the

algorithm. A key task in the refinement of an algorithm is the comparison of

results of successive iterations in order to see if an improvement is actually

gained. A more effective way to perform a comparative study is to construct a

composite algorithm where each parallel branch represents a successively

refined topology (see Figure 5.18).

Box Average

Figure 5.18: The constmction of an algorithm with parallel data paths is
equivalent to the three experiments of Figure 5. 1 7.

5.4 The OpShop software design

This section discusses the implementation details of the OpShop software. The

first sub-section outlines the reasons for choosing THINK C as the programming

language. The following subsections detail key parts of the implementation,

namely (i) the data structures for the operations, algorithms, and subflows; and

(ii) the execution scheduler.

5.4.1 Why THINK C?

The decision to use THINK C as the programming language for the OpShop

system resulted from the consideration of a series of three questions.

Chapter 5 - OpShop: an implementation 78
------------����--�����������----------------------------�-

A high-level programming language or an "end-user " programming tool, such as
Hypercard? From the beginning of the implementation, it was decided that (i)
the program was to start as a clean slate and that (ii) the programming

environment chosen should not lock the development into an unnecessarily rigid
framework or user interface style. In essence, the programming environment had
to offer sufficient generality to allow the coding of different interface
approaches. Hypercard (Apple Computer, 1 987; Goodman, 1 990) was considered

too restrictive because it required a program be organised as a linked set of cards.

The Prograph (Pietrzykowski & Matwin, 1 984) visual programming language
was another programming environment considered for the implementation.
Prograph was not chosen because it was a new and untried environment that
posed a risk of not being sufficiently comprehensive. At the time, Prograph was
still an interpreted language, and its compiler had not been released. This was
seen as a undesirable limitation because efficient performance would be needed to
properly demonstrate parameter and topology exploration. At the time the
implement

.
ation of OpShop was started, only a high-level general purpose

programmIng language was able to produce code for the implementation of
innovative interfaces that could run efficiently; so the decision was made to use
such a language.

An object oriented or procedural language? This choice hinged on whether an
object-oriented or a functional decomposition approach was more appropriate for
the system (Baoch, 1 986). An object-oriented design is generally easier to
implement with an object-oriented language and similarly a functional design
with a procedural language. The reasons for adopting an object-oriented
approach were compelling. Firstly, graphical user interfaces are composed of
graphical objects (sometimes called widgets) and so naturally suit an object­
oriented design. Secondly, in OpShop, image processing operations are not just
functions that return a result when provided with the required input parameters:
they are objects composed of many entities including: an icon, a display window,
a parameter window, a context sensitive menu, and a collection of input and

output terminals. A software object is able to combine all the associated parts of
an operation and its calculation functions into a single cohesive package (Cox,

1 986); high cohesion within software modules is generally considered a
hallmark of well designed software (Sommerville, 1 989).

To C or not to c. .. ? It is not enough to choose an object-oriented programming

language solely based on language features; it is also important to examine the
total programming environment that comes with the language. The four
environments available to the author at the time of embarking on the software
implementation were: THINK C, THINK Pascal, MPW C++, and MPW Object
Pascal. The MPW environments were disregarded because they required much
longer to compile and link code than the THINK counterparts. The main
strengths of the MPW environments were. that they provided powerful tools for
version control and included an extensible editor. However, the lengthy time

which these environments needed to compile and link software projects were
strong disincentives for choosing them despite their support of powerful

-
Chapter 5 - OpShop: an implementation 79

programming tools. Both THINK environments offered a comprehensive object­

oriented class library, fast compile and link times, and good interactive source­

level debuggers. The C version was preferred because facilities for low-level

data manipulation, which are often required in imaging software, were provided

as standard features of the language. THINK C implements a competent subset of

the C++ language, including the main object-oriented features of objects, classes,

and inheritance (Wegner, 1987).

5.4.2 Data structures

Operations, algorithms, and subflows are implemented in software as run-time

data structures called objects. Objects are defined in C source code by templates

called classes. A c l a s s structure is very much like a s t ru c t data structure in

the C programming language, but the key difference is that a class includes

methods8 (functions) and instance variables. Instance variables define the state

of an object, while methods provide an interface through which the instance

variables can be accessed and modified. The class of an operation includes

variables that define its icon, display and control parameter windows, context­

sensitive menu, and lists of input and output terminals. Oass methods of an

operation include those to redraw its icon at a specified position, save and read

its parameters to a data file, toggle the selection state, and to perform the image

processing calculation.

Operation structures

An Opshop operation can be described with the use of two complementary views.

The visual parts of an operation are best described by a graphical representation

augmented with textual annotation to indicate the associated instance variable

names, as shown in Figure 5.19. The non-visual parts of the operation are best

viewed in pseudo<ode, as shown in Figure 5.20.

CKTI < • • A- CKTO i � .m; �
Subtract

CWindow

g O lllHlgmmmmgllgmlllmmmglmmmmlllmmg
r8I O ffset

® W rap

o Sat ura t e

Figure 5.19: Object names for the components of a typical OpShop operation.

8 Though the implementation of objects in THINK C is based on C++, most of the

terminology comes from Small talk. The THINK C terms, method and instance
variable are equivalent to the C++ terms member function and data member.

COGA2 _ S u b

Instance Variables

CLiat I nputTermina l L i s t

CltTI T l

CltTI T2

CLiat Output Terminal List

CltTO Tl

CWin�ow cont rolWi ndow

Methods

ExecuteMainOp ()

Figure 5.20: The stniChlre of the COGA2_Sub operation.

Figure 5.19 and Figure 5.20 together describe the function of the Subt r a c t

operation. The graphical representation indicates that the Subt ract operation
is an instance of the COGA 2 _ S ub class and that it has two input terminals
(CltTI) and a single output terminal (CKTO). The pseudo-code reveals that the
input terminals are named Tl and T2 and the output terminal is named Tl. The
pseudo-code also indicates that the Sub t ract operation has a method called
Exe cu t eMa in Op () , which returns the difference of two input images. The
control window is itself an object, called CWindow. It should be noted that class
names are indicated in bold type and are prefixed with the letter ·C· while
method names are followed by '0'.

The display window and result buffer objects are absent from the above classes
because they are part of an output terminal object (CKTO_ 2 D_Byt e) rather
than an operation object (e.g. COGA2_s ub). The pseudo-code for an output
terminal for a 2D array indicates the presence of a result buffer object. However,
the display window object is still absent.

C lt TO_2 D_Byt e

Ins tance Variables

CPixMap resul t Bu f fer

The declaration of the display window object occurs in the superclass of the
CKTO_2D_Byte class, namely the generic 2D output terminal object

C KT O 2 D

Instance Var iables

CWindow d i sp l ayWi ndow

The C KTO_2 D_Byt e class inherits the declaration for the display window
from i ts superclass using the object-oriented mechanism of inheritance.
Inheritance is used extensively in the OpShop source code to maximise code re­

use and hence minimise the amount of original code. Figure 5.21 shows the
inheritance tree for terminal objects the OpShop software. A generic terminal
(C K TG), which exists at the top level, defines properties common to all

CJuzpter 5 - OpShop: an implementation 81

terminals, such as, a triangular icon and a pointer to its related operation. The
two specific cases of the generic icon are defined, an input (CKTZ) and an output
(CKTO) operation. These icons in turn have special cases to accommodate

different data types.

� CKT IS....Ext I
� CKT I .� CKT lS_lnt I

� CKT I....2D J
� CKTG I � CKTOS....Ext J

J� CKTOS_lnt J
� CKTO

CKTO_1 D J �
� CKTO....2D CKTO....2D....Bu t�

Figure 5.2 1 : The inheritance tree for terminal objects in the OpShop software.

Algorithm structures

An OpShop algorithm is represented internally as a doubly linked graph of

terminal objects. This data structure is equivalent to the visual representation of
the algorithm. Figure 5.22 compares the visual representation of a simple
algorithm with the corresponding pseudo-code for the algorithm. The links
between terminal objects are indicated in both views.

COG_R eadlm

COS_Th re sho ld

(a) A simple algorithm.
COG_ReadIm

CLi s t OutputTerminalList

CKTO_2D_Byte Tl

CList Connect i o nL i s t
COGA2_Sub

CLi st Inpu tTermi nalL i s t
CKTl *Tl ------t---��

CKTl_2D Tl

cmo * KTOPrev

COS_Threshold

CLi s t OutputTermin a l L i s t CKTO *KTOPrev

CKTO_2D_Byte Tl ��--4------------
CList Conne c t i onLi st

CKTI *Tl
(b) The internal data stmchlTe representation for (a).

Figure 5.22: The internal representation for the topology of an algorithm is
implemented by pointers of the data terminal objects.

Chapter 5 - OpShop: an implementation 82
------------------�����-=����������--��

A doubly linked structure is used instead of a simpler singly linked structure

because communication between operations travels in both directions. Messages to

recalculate are propagated forward, hence the need for forward references.

When an operation does recalculate, input data is obtained by reading the data

located in the previous operation's result buffer, hence the need for a reverse

reference. Doubly linked lists are also needed because messages are passed in

both directions as part of the graphical update procedure; when an operation is

dragged to a new position, the terminals must also redraw the data flow paths to

reflect the new poSitions of the icons.

Subflow structures

As mentioned in section 5.2.4, a collection of operations can be grouped into a

single logical unit called a subflow. Subflows appear in the parent flow as a

single operation, although its behaviour is functionally identical to the

collection of operation it represents. The key data structures in a subflow are the

two pairs of terminals that import and export data to and from the parent

algorithm. In Figure 5.23, the external terminals of these pairs (CKT I S_Ext

and C KTOS_Ext) appear on the vertical sides of the SubFlow icon, while the

complementary internal terminals of these pairs (C K T o S _ I n t and

C KT I S _ I n t) appear on the left and right internal edges of the subflow

document.

(a) Names for external slIbflow terminals

Chapter 5 - OpShop: an implementation 83
------------���������----�------------------------------------��

(b) Names for internal subflow tenninals

CO_Subflow

CList I nputTerminalList

CKTXS_Ext anExt ITerrnl

CKTOS_Xnt '* i tsCKTOS_Int CKTOS_Xnt

CKTXS_Ext anExt ITerm2

CList OutputTerrninalList

CKTOS_Ext anlntOTerrnl

CKTOS_Xnt

CKTXS_Xnt '* i t sCKTOS_Ext --------i .. � CKTXS_Xnt

(c) Object structure for the subflow shown in (a) and (b).

Figure 5.23: The struchJre of a subflow operation.

The pair of terminals used to import data into a subflow are: CKTXS_Ext and
C K T 0 S _ X n t , and similarly the pair of terminals to export data are:
C KT X S _ X n t and C KTO S _ E x t . The terminals in a complementary pair

communicate with each other through an internal bi-directional link as
indicated in the pseudo-code shown in Figure 5.23(C). The two types of output
terminals associated with subflows, C KTOS_Xnt and C KTOS_Ext, do not
buffer data like other output terminals, so option-c1icking on them does not bring

up a display window.

5.4.3 A data-driven execution scheme

An execution scheme determines the order in which operations execute. The
development of an execution scheme is a non-trivial task when an algorithm is

- Chapter 5 - OpShop: an implementation 84

expressed in data flow form. Two schemes exist for the execution of data flow

structures, which are broadly classed as data-driven and demand-driven
(Docker, 1989). Of the two, the data-driven scheme better facilitates the

interaction required in the exploratory approach to algorithm development.

When a user makes a parameter change to an operation or a topological change to

an algorithm, the new results should be rapidly displayed. Furthermore, if the

change is calculated for the entire algorithm, then the user is able to construct

local episodes of what-if investigations involving the whole algorithm. In
contrast, the central answer given by a demand-driven execution scheme is for the

question what-is-the-result-here? The data-driven execution scheme inherently

answers this question because intermediate results are automatically kept up to

date. In a demand-driven system, an operation does not execute unless it is

explicitly requested by a user or if its result is needed by another operation; even

then, it executes only if its result needs updating. The amount of computation that

a system must perform is minimised by demand-driven execution. However, this

benefit is not sufficient to offset the drawback that such execution does not

support the exploratory what-if style of investigation.

Scheduling

The data-driven execution of an OpShop algorithm is best illustrated by

diagrams that are similar to logic traces that are used to describe the function of

digital electronic circuits. These traces indicate the ·validity of data for each

flow during algorithm execution. The most elementary example is the execution
of a single operation that has no input terminals; such an operation will always

execute immediately upon request. Figure 5.24 shows the logic trace for the

execution of the Read Image operation.

Read Image

(a) Output label for result of the We d g e operation.

1 2
1

Valid;ty of A I : J_.1 ------.. t-
(b) Validity trace for the data at Al .

1 : Resu l t I s lnva l id () message is generated and the validity of
A 1 is set to False, which is indicated by a black tip on the

terminal icon (see Section 5.2.2).

1 -2: The Read Image operation executes.

Chapter 5 - OpShop: an implementation 85
�----------������--�----�--���----------------------------��

2: NewResu l t I sAva i lable () message is generated and the

validity of A 1 returns to True.

(c) Interpretation for (b)

Figure 5.24: A validity trace for the tiDta-driven execution of a single Rea d Image
operation.

The next example shows a slightly more complicated algorithm involving one

data flow (see Figure 5.25). The important difference between this and a single

operation is that: (i) Read Image operation sends the Res u l t I s lnva l i d ()
message to the Thr e s ho l d operation before any calculations are made; this

message causes Thre sho l d to set its output validity to False, and that (ii) the

T h r e s h 0 1 d operation executes only u po n receip t o f the ·

NewR e s u l t I sAva i l ab l e () message, which the Read Image sends after

completing its calculation.

�J�.------•• JI 1·
Read Image Threshold

(a) Output labels for a simple algorithm: Al and BI .

1 2 3 4

I
T J Validity of Al
F

I
I

T] Validity of B l
F

I I

5

I
I [

(b) The validity trace for the data at tenninals A1 and B1 .

1-2: Resul tIs Inva l id () message is sent from Read Image to

Threshold.

2-3: The Read Image executes.

3-4: NewResul t IsAvai l able () message is sent from Read Image

to Threshold.

4-5: The Threshold operation executes.

(c) Interpretation for (b).

Figure 5.25: A validity trace for the data-driven execution of a simple
algorithm.

Chapter 5 - OpShop: an implementation 86
-------------����--�����������------------------------------�-

The situation where two data flows merge into a single operation demonstrates

the enforcement of the data-driven scheduling rule: "an operation can execute

only if all its inputs are valid". The validity trace of Figure 5.26 shows that

although the Subtract operation receives the NewR e s u l t I sAva i l ab l e ()

message from Read Image before T hr e s h o l d does, it does not execute

immediately. At the instant Read Image informs Subtract that a new result is

available, the second input of Subt ract (on Bl) is still invalid. According to the

above scheduling rule, it is not until Threshold updates Bl that Subt ract can

execute.

�j�l=!l'L=!��.::....:1 --�I Il1.
IJ" I! dl

Threshold

Subtract

(a) Output labels for an algorithm with parallel data paths: Al, Bl, and Cl .

1 2 3 4 5 6 7 8 9 10
I I I I I I I I

T I I I I
I] J " Validit}' of Al I

F I I
I
I
I I I

I I I I
I I I I

T
Validity of B 1 i i i I ' F I I I I I

I I I I I
I I I I I

I I
I I

T I I

Validity of C 1 J [
(b)

F I
I I I I
I I I I I I

Validity trace for algorlthm with paralle data paths. Note that all outputs
are set to an invalid state before any recalculation occurs.

1 -2: Resul t I s Inva l id () message is sent from Read Image to

Subtract.

2-3: ResultIs lnva l id () message is sent from Read Image to

Thr.esho l d.

3-4: Resu l t I s lnva l i d () message is sent from Threshold to

Subtract.

4-5: The Read Image operation executes.

Chapter 5 - OpShop: an implementation 87
------------=�������--���----��----------------------------�--

5-6: NewResul t IsAvai lable () message is sent from Read Image

to Subtract. The Subtract operation does not execute because
it input data supplied by B1 is invalid.

6-7: NewResult IsAva i lable () message is sent from Read Image

to Threshold, which begins to execute immediately.

7-8: The Threshold operation executes and sets its output validity

high when it completes.

8-9: NewResul t IsAvai lable () message is sent from Threshold
to Subtract. The Subtract operation executes immediately

because both of its inputs (on Al and B1) are now valid.

9-10: The Subtract operation executes.

(c) Interpretation for (b).

Figure 5.26: A validity trace for the data-driven execution of an algorithm with
parallel data paths.

In the example given in Figure 5.26, Read Image has two outputs connected to it:

S u b t r a c t and Th re sho l d . Messages are sent from Read Image to its

neighbouring operations in the same order that these operations were connected

to Read Image when the algorithm was constructed. For an algorithm with

parallel paths, the order of execution may vary depending on the order that the

paths were connected. However, the net effect of the algorithm is determined

only by the data-dependency.

Side-effects

Ackerman (1982) claims that an execution schedule can be deduced simply from

the data dependencies of a data flow algorithm provided all the operations

execute without side-effects. An algorithm with hidden data dependencies is an

algorithm with side-effects. Shared access of global variables between functions

in C is a common example of a side-effect:

voi d f oo (int x)

{
s = X*2 i / * s is a g l obal variable * /

When the function f 00 () changes the value of the global variable s , any

.other function that also uses s is affected. Implicit data dependency exists

between any two functions that can modify a common global variable. Absence of

global variables and careful control of the scope of variables eliminate this type

of side-effect. Another common side-effect is changing a parameter passed into a

function by reference:

Chapter 5 - OpShop: an implementation 88 ------------����--�����������----------------------------�
voi d f oo (int *x

x = 3 . 1 4 1 ; 1 The mod i f i cat ion o f * x is a s ide - e f f ect * 1

A function calling foo () may be unaware that the value of * x has changed and
so be unaware of the implicit data dependency that exists between foo () and

i tself.

The OpShop software avoids side-effects by providing a local result buffer for
every operation. Contents of this buffer can be changed only by using its related

operation and so discounting any possibility of side-effects.

5.5 Feasibil ity of continuous interaction

This section reports an assessment of the feasibility of achieving continuous
interaction for OpShop running on current and future computing hardware. The
assessment involved a comparison of the execution times of benchmark tests to
the 0.25 second criterion that marks the attainment of continuous interaction. It
should be noted that the criterion for continuous interaction is less demanding

than the criterion for true visual animation, which requires algorithms to
complete execution in less than 0.10 seconds (Card et.al., 1983).

Commands representative of those found in typical algorithms were chosen for
the benchmark tests. Invert and Threshol d are point operations that process a
single image to yield a single image result; Subt ract is a point operation that

processes two images to give a single image result; the M a x filter and B o x

Average filter are local area operations; Ske leton i z e is a complex multipass
operation. Results of the benchmark tests are graphed in Figure 5.27. In this

graph, the operations are ranked in order of computational complexity. The

timings are averaged over five trials. The top and centre graphs show results of
OpShop operations running on computers that are considered to be very and

moderately powerful by 1992 standards: a 25 Mhz Mac Quadra 900 and a 16 MHz
Mac cx. On the Quadra, all the point operations returned results within 0.25
seconds, even for the larger 256 x 256 images. The local area operations also

calculated within 0.25 seconds except for the 256x256 images. For Skeletoni ze,
only the smallest image was calculated within the desired response time, while

the largest image required more than one order of magnitude longer than the
optimal time. On the Mac ex, only point operations calculated within the quarter

second guideline and then for only the two smaller images. As a control
experiment, the equivalent VIPS operations were run on the Quadra. No

significant disparities were observed between OpShop and VIPS timings.
Differences in times are mainly due to auxiliary pixel intensity conversions
performed by OpShop, which are required to ensure that images are displayed
with conventional grey scale mappings (Q = black and 255 = white).

Chapter 5 - OpShop: an implementation

f!! � _ 1 0
o .g
o C III 0

� lfi
1II .e.
c CD 1 o E
� i= '2 5 c ._
2 '5
� � 0. 1 c75 w
a.

o

0.01

>< 1 00
0

= (;) 0 -0 III C � 0 1 0 III lfi c III 0 -CD O) E c ._ 1 '2 � c c 2 .2
0. '5
o 0 .c CD 0.1 C/) >< 8" w

0.01
III 1 0

-0
111 -::J III
o -g
o 0
III �

� III 1 111 ;-
C E o .-
O) � c c .- 0 c ._ c - 0.1 ::J ::J 0

C/) � a.. w
:>

0.01

;.; ! 1 i . : i i !

j' jlj�t:l
J� � J J + I
I i I I i I

4 : ; ···_··i··--···-t·_·_····i··········i········· .. t····_····if--·
i i i � � i -...p - : - r- - : - ,.....
i i i i 1 d i i i � � i ":-_ .. -:--_ .. --: .. -.... -: .. _ ':"--_ .. ":-.....

·1 .J .J t i l
- 0 -0 CD
a; (5 � �

III
> � .c u:: '2
1: :0 III u:: 0 CD CD ::J >< CD C/) .c III 0) CD � � III .:s:. C/) CD

�
Image Operation

89

o
D

64x64 Image

1 28x1 28 Image

256x256 I mage
_Desired response
time (0.25s)

_Desired response
time (0.25s)

-Desired response
time (0.25s)

Figure 5.27: Comparison of response times for OpShop and VIPS.

Chapter 5 - OpShop: an implementation 90
� _____________ � ____ ���� ____ L-� ____ � ____________________________ ��

This feasibility study shows that continuous interaction is attainable for point
operations processing moderate sized images on current hardware. The Mac
Quadra performs point operations on smaller images one order of magnitude more

quickly than is needed for continuous interaction. Very rapid processing was

attained on the Quadra because the entire contents of an image can be stored in

the CPU's high speed data cache. Continuous interaction was attained by the

local area operations for all but the largest test image.

In practice, continuous interaction is required for the execution of whole - or at
least partial - algorithms rather than single operations. It can be inferred from

the benchmark results that continuous interaction is achievable for simple

algOrithms composed of point operations, or even local area operations, provided

image sizes are kept small. Workstations today use 25 MHz processors, but it is

expected that speeds of 500 MHz or more will be common place by the end of the

decade (Prince & Salters, 1992); these machines should provide sufficient

performance to satisfy the computational requirements of the dynamic
exploration techniques discussed in this thesis.

5.6 Summary and conclusions

The OpShop software facilitates the development of imaging algorithms by
providing an environment that encourages the heuristic investigation of
algorithm variations. In this chapter, the key interactive features of the

OpShop package were described in three parts:

• a description of the graphical elements that denote operations and algorithms
in the OpShop visual language;

• a demonstration of the user actions needed to interactively develop

algorithms;

• a description of the software data structures and the execution scheduler.

The graphical elements representing operations, algorithms, and subflows of an
iconic visual language have been described. Colour icons to depict operations,

interconnected sets of icons to depict algorithms, and grouped subsets of icons to

depict subflows were used to form an iconic language. An important aspect of
OpShop is direct engagement interaction, because it provides easy variation of

calculation parameters and algorithm topology, and rapid calculation and
display of results; these characteristics are conducive to an exploratory

approach to algorithm development.

The data structures of the operations, algorithms, and subflows in OpShop have
also been described. The software for OpShop is written in an object-oriented

programming language because a graphical interface iconic visual language is

well suited to an object-oriented design decomposition. The fundamental element

of an algorithm is a single operation, and so these are coded as object classes. An
operation object is composed of many other objects, including an icon, a text label,

Chapter 5 - OpShop: an impiementation 91

and a list of input and output tenninals. The input and output terminals contain
links to tenninals of other operations, and it is this network that defines the
algorithm topology. Communication between operations inside and outside a

subflow is interfaced by two special pairs of terminals whose specific function is

to pass data into and out of a subflow.

Benchmark tests running on current computing hardware demonstrate that
continuous interaction can be achieved for simple algorithms - that is,
algorithms composed of point operations - provided that the processed images
are sized 256x256 or smaller. Continuous interaction can also be achieved for

algorithms that include local area operations, provided that the processed

images are 1 28x128 or smaller. The one or two orders of magnitude o f
improvement in speed required for continuous execution o f general algOrithms are
expected to be well within the capabilities of the hardware offerings of the

present decade.

The OpShop package represents a tangible implementation of the concepts o f
algorithm development and user interaction discussed i n Chapters 2, 3 and 4. The
key features of the system combine to provide an interactive environment that

supports a user in the task of heuristic algorithm development. These key
features are: the representation of an algorithm as an iconic data flow network,

the adjustment of algorithm parameters and topology in a direct manipulation
interaction style, and the rapid update of results. Rapid updates are possible
through the use of a responsive execution scheme. Demonstrations of how the
OpShop package can be used to simplify algorithm development are given in the

following chapter.

92

Chapter 6

OpShop Examples

This chapter demonstrates by example how the OpShop visual language

facilitates the development of image processing algorithms. The development of

four algorithms using both a typical command line system and using OpShop are

d escribed. The contrast between the two approaches highlights how the features

of OpShop work towards the simplification of the development task.

6.1 Introduction

OpShop is a visual language designed to facilitate the development of imaging

algorithms. The way OpShop achieves this objective it best demonstrated by

example. The four examples presented in this chapter are representative of

common i nteraction tasks in the development of an imaging algorithm. They

demonstrate how OpShop helps the user to (i) visualise and understand multi­

threaded algorithm topologies, (ij) explore parameter values, (ii i) refine

algorithm topologies, and (iv) choose between alternative algorithms. It is

suggested that these demonstrations, by implication, validate the design

philosophy of OpShop presented in Chapter 4.

Cllapter 6 - OpShop examples .93

6.2 Data flow view of an algorithm
A simple example of a multi-threaded algorithm is one which calculates local

maxima. The eqUivalent algorithms in the VIPS and OpShop languages are

shown in Figure 6.1 .

loadl raw anlmag e . img im
box max im i m max
l e t im ou t = im
s ub tract i m out im max

(a)

Hgure 6..1- Algorithms to calculate local maxima olan image' (a) in VIPS and (b)
in OpShop.

These algorithms contain two data threads: one for the original image and

another for the local maximum of the original image. The pixels in the two

images will only have the same i ntensity values a t paints of the local maxima in

the original image. These paints can be found by taking the difference between

the two images; a zero pixel in this difference image will denote a local

maximum in the original image. Note how the parallel threads are shown

explicitly in the Op Shop language but just implicitly in the VI PS listing.

6.2.1 Colour classification

The algorithm demonstrated in this section classifies the pixels in an image on

the basis of colour. The colour image used for this example, Figure 6.2, is derived

from an aerial photograph of a part of the Massey University campus in autumn.

Infra-red film was used, so the trees, grass fields, and bush appear a red colour,

and the tar-sealed roads and roofs of buildings appear a grey colour. The pixels

in this image fall into four classes: (i) gras s padd ock, (ii) trees and bush, (iii)

concrete or tar-seal structures, and (iv) unknown.

Hgure 6.2,-Near infra-red linage of/he Ma�:5ey Unfvenity campus in autumn.

Chapter 6 - OpShop examples 94

The technique of colour classification assumes that the colour values of pixels

within a class are similar, and pixels between classes are dissimilar. Figure 6.2
exhibits this property of colour distinction, and so the pixels can indeed be

classified on the basis of colour.

The technique used in this example is a two dimensional extension of the

technique of finding an optimal threshold by analysing a histogram (see Section

2.2.3). In the case of colour, a histogram indicates the frequency of occurrence of

colour values. Pixels corresponding to the different classes in the image, map to

distinct clusters in the histogram space. Typically a histogram of colour values is

three dimensional, but for the image shown in Figure 6.2, the histogram needs

only to be two dimensional because the green and blue channels contain

essentially the same information. Therefore, the blue channel has been omitted,

and the resultant two-dimensional histogram is shown in Figure 6.3(a). The

clusters in this histogram are identified by a peak detection algorithm and

labels are assigned to each cluster as shown in Figure 6.3(b). These labels can

then be reassigned to the original image to give a classified image. The original

histogram, labelled histogram, and classified images are shown in Figure 6.4.

.... c: :J o
U

Red

Green

.... c: :J o
U

Roads/Buildirgs

R e d

Gre e n

(b)

Figure 6.3: Colour histograms for the image shown in Figure 6.2: (a) measured
histogram, (b) labelled histogram. The wire-frame and 'image ' represen tations

of the histograms are equivalent.

Chapter 6 - OpShop examples 95

(a) (b) (c)

Figure 6.4: Intermediate and final results of a colour classification algorithm: (a)

histogram of input image, (b) labelled histogram, and (c) classified image.

6.2.2 A command line implementation

A VIPS algorithm to implement the colour classification procedure just described

is shown below:

! Prel iminar i e s

load/program l abe l . vi p labe l
load/ raw mas sey_r . img red

load/ raw mas sey_g . img green

Perform colour c l a s s i f icat ion

h2 red green t_lut2d
convert t lut2d lut2d
box average lut2d t
let lut2d = t

Read VI PS l abe l program .
Get red channe l o f aer ial

image .
Get green channel o f aerial

image .

Create 2d h i s togram .
Long t o byte image convers i on .
Smooth no i s e .

expand lut 2d Linear st retch the con t rast .

t o make func t ion v i s ible .
run labe l lut 2d Labe l the c lu s ters .
lookup red green lut2d c l as s i f ied Reas s ign l abe l s to

or i g i na l image .

Figure 6.5: A VIPS algorithm for colour segmentation, which is based on the

detection of clusters in a colour histogram.

The preliminary operations prepare the variables and data that are used in the

actual processing. The VIPS variables red and g r e e n store the red and green

components of the colour image. A two dimensional histogram (t_ l u t 2d) of the

red and green components i s calculated by the h2 operation. This histogram is

converted to a byte image (1 u t 2 d) by the conve r t operation. The operations

box average and expand prepare the histogram for the labelling procedure

which is carried out by the VIPS program l abe 1 . Finally, the classified image

(c l a s s i f i e d) is created by mapping the original red and green values (in red

and g reen) to the labelled values (in lut 2 d) with the l ookup operation.

Chapter 6 - OpShop examples 96

The linear textual representation of the algorithm shown in Figure 6.5 obscures

the perception of parallel data paths, which are indicated in Figure 6.6. A user

would find it difficult to gain an understanding of how this algorithm works

without actually reading the algorithm and following the progress of each

variable. Obscurity of parallel data paths often hinders comprehension of an

algorithm whose logic is inherently parallel, such as the one presented.

! Perform colour clas s i f icat ion

h2 [k�:�rkt:r..e.�D.�:·t_lut2d
conv�:�:"t t

· · ':lut2d lut2d
box a�1:::ra;e

:\lut2d t
l e t lut�i:d = b
expand i"0:Pd \\ . . .
run labe i·\hut2�i::
l ookup ri.��rbf�:�:ii> lut2d c lass i f ied

Figure 6.6: The parallel data paths of the imJ1ges: r e d, gre en, (shown) and
l u t 2 d (follows the text).

6.2.3 OpShop implementation

In contrast to the command line representation, multi-threaded data paths are

represented explicitly in the iconic data flow language of OpShop. Figure 6.7

shows clearly the flow of the original red-green colour pixels to the C r e a t e

H i s t 2 D operation, which creates the two-dimensional histogram, and also to

the Lookup 2D operation, which maps the original values to the extracted class

labels. Not only are the paths shown clearly, but also the operations involved in

each path. In contrast to the command line representation, the graphical

representation of an algorithm used in OpShop is highly visual and explicitly

shows the logic of data transformations.

p-�·�II�·-··
Box Averag Label Region

!.1 __ --�L�OOkUP 2D

Read Image

Figure 6.7: Parallel data paths of the colour classification algorithm are shown

explicitly in the OpShop representation.

Chapter 6 - OpShop examples

6.3 Parameter exploration

97

Most operations have associated parameter values that control the calculation

of the result. The values of these parameters are often critical to the

effectiveness of the operation. For example, when a threshold operation is used

to segment an object from its background, the upper and lower thresholds must be
chosen to include the entire intensity range of the object, but none of the

background. If the two threshold values do not bound the intensities of the object,

but instead include intensities of the background, then a threshold operation will

yield a segmented region that includes regions of the background. However, if

the threshold range is too narrow so as to exclude some of the object intensities,

then the segmented region will correspondingly exclude regions of the object For

segmentation and many other operations, the choice of parameter values can be

critical to the effectiveness of the operation. The actual parameter values are

not only critical, but are often different for each new set of input data. For these

reasons, a facility for the exploration of parameter values is essential to the

heuristic development of algorithms.

Another aspect of parameter exploration is that a parameter does not affect just

the operation to which it belongs, but all subsequent operations that depend on

the result of the adjusted operation. Therefore, a parameter value can be

considered to be a parameter of an algorithm, and not just a local operation.

Therefore a change in a parameter value in one operation may often make

necessary the re-execution of a string of subsequent operations. A facility that

supports parameter exploration will automatically perform the necessary

recalculations, as discussed in Section 5.4.3.

Yet another aspect of parameter exploration is that several parameters in an

algorithm may be interdependent, so that a change in the value of one parameter

may necessitate changes in other parameters. Such an interdependency occurs

between the brightness and contrast controls for a cathode ray tube. When inter­

dependencies exist in an algOrithm, the search for a satisfactory balance of

parameter values may require repeated execution.

The following example demonstrates the rapidi ty and ease with which

parameter values can be specified in OpShop, and the way in which the system

brings all the results up-to-date in response to any parameter adjustments.

6.3.1 The Abingdon Cross benchmark

The imaging task used for this example is based on the Abingdon Cross

benchmark, which was used by Preston (1989) to compare relative processing

performances of image processing systems. The benchmark transformation is

shown in Figure 6.8. The input data for the benchmark algorithm consists of a test

image that contains a cross figure that is superimposed with Gaussian

distributed intensity noise. The aim of the benchmark is to extract the medial

axis, or skeleton, of the cross figure. The critical parameter for generation of the

cross is the signal to noise ratio.

Chapter 6 - OpShop examples

... .

(a) (b)

Figure 6.S: Abingdon Cross benchmark transformation: (a) noisy cross image and
(b) medial axis of the cross.

6.3.2 A command line implementation

A VIPS algorithm to perform the Abingdon Cross benchmark is:

! P r e l iminaries

l oad/program makecros s . vip mc

! Do benchmark

run mc

noi s e / gaus s ian b 1 1 2 3 2

add a b
box average a across 9
threshold acros s 1 2 8
t h i n across

Put s cross into ' a '

Generate cross image
background = 0 , cross = 3 2 .

Generat e gauss ian no i s e with
mean= 1 2 8 and std dev = 3 2 .
i . e . SNR = 1

Super impos e noi se into cross
Average f i l ter , box kernel= 9
Create binary image

Create ske l eton

Figure 6.9: VIPS implementation of the Abingdon Cross benchmark.

The mc program creates a cross figure a signal magnitude of 32. The standard

deviation of the Gaussian noise superimposed on the cross image is also 32, hence

yielding a test image that has a signal to noise ratio (SNR) of one. Three

operations are now applied to the test i mage to extract the medial axis. First, a

box average filter with a box size of 9 x 9 is used to smooth the high-frequency

intensity variations. This smoothed image is then thresholded at an intensity of

1 28, which is a value half way between the average background and the average

cross signal. Finally, the t h i n operation calculates the skeleton of the binary

image. A typical sequence of image data is shown in Figure 6.1 0.

Chapter 6 - OpShop examples 99

(a) (b)

(c) (d)

Figure 6.10: Snapshots of image data a s it passes through the Abingdon Cross

bench mark algorithm: (a) input image, (b) smoothed image, (c) thresholded

image, and (d) the skeleton image.

The algorithm shown in Figure 6.9 i l l ustrates two aspects relevant to the

selection of parameter values. Firstly, the two parameters involved, the signal

to noise ratio and the box size for the average filter, are inter-dependent: the

lower the signal to noise ratio, the more severe the required smoothing. Secondly,

a poor choice for the size of the box fil ter typically results in dramatic errors in

the skeleton image, as shown in Figure 6.1 1 . In this example, the smoothing is

inadequate and consequently leads to a segmented cross with a hole. Since the

skeletonising operation must accommod a te the hole, the resultant skeleton

contains a highly visible loop in its left arm.

(a) (b)

Figure 6.1 1: Extraction of a deformed skeleton dlle to insufficient noise

sliPpression: the (a) binary image with a hole and (b) the deformed skeleton.

Chapter 6 - OpShop examples 1 00

A facility that will allow rapid experi mentation with parameter values is

clearly helpful in the development of an algorithm that has inter-dependent

parameter values and critical parameter settings. However, command line

interfaces do not lend themselves to repeated execution of algorithms because of

the amount o f retyping involved . Experimentation with the box size parameter

requ ires the re-execu tion o f three opera tion s for each trial, while

experimentation with the noise value increases this number to five. Command

line recall facilities sig-nificantly relieve the amount of retyping; but even then,

a small amount of re-petition would still cause experimentation to be tedious.

Retyping can be reduced by grouping the repeated operations into a program file.

Re-execution would then require only retyping a single command. However, this

practice may lead to a proliferation of small program fi les that have li ttle

meaning outside the context of immediate the experiments. Furthermore, each

time the user wants to change a part of the repeated sequence, the relevant

program file must be edited. Clearly, parameter exploration with a command

line system is a tedious process.

6.3.3 An OpShop implementation

OpShop supports parameter exploration by a providing an easy and convenient

method for the specification of parameter values, as shown in Figure 6.12. With

these controls, the specification of a new parameter can be performed by a simple

mouse click. If the value of the standard deviation of the noise is adjusted, then

the Add No i s e operation will automatically re-execute, as will the B o x

Ave rage, Thr e s ho l d and Ske l et on i z e operations, in order to maintain the

integrity of the output data with respect to the current parameters (see Section

5.4.3). The ease with which the standard deviation (hence SNR) can be changed,

and the rapidity of execution of the algorithm, is conducive to the exploration o f

that parameter.

1 S t d Oeu � Kemal Size �
l�njHrj@{rtil 255 lM�I�)]lti�i'lI9:1 64

Figure 6.12: The OpShop algorithm for the A�ingdon Cross benchmark.

Chapter 6 - OpShop examples 1 01

I n OpShop, the exploration of combinations of inter-dependen t parameter values

can a l so be conveniently performed because the controls for i n terdependent

parameters can be concurrently accessed . For example, the controls for both the

standard d eviation parameter or the box size parameter shown in Figure 6.12 can

be assessed with the same effort. The grid of resul ts shown in Figure 6. 1 3 were

generated by accessing the parameters in exactly this way. The generation o f

these results required the specification o f just ten d i fferen t parameter values; two

for the initial parameter values and one for each add itional trial thereafter.

The ten trials were performed quickly and easil y because the control panels

pro\'ided good accessibility to the parameter values.

Figure 6.13: Results for noise sensitivity tests.

Chapter 6 - OpShop examples 1 02

6.4 Topological exploration

6.4.1 Segmentation of a non-uniformly i l luminated scene

This third example demonstrates how OpShop helps the user to define the

topology of an algorithm. This definition process invol ves the addition and

removal of operations from an algorithm, the rearrangement of the operations

within an algorithm, and the generation results.

The function of the imaging task presented in this section is one of segmentation.

The image shown in Figure 6.14 is of a microscope slide that displays a cross­

section through axons in a sample of horse muscle tissue. The task involves the

measurement of the area distribution of the axons, which are represented by the

central regions of the ring structures. The rings are myQJlo sheaths which provide

structural support for the axons. This project carried out by the author was part of

a clinical study (Kennegieter, 1 989) to test the hypothesis that a certain disease

effects the diameters of the axons. To measure the axon area distribution, the

individ ual axons must first be isolated from the rest of the
.
image. This

segmentation process is the focus of the example.

Figure 6.14: Arons in a sample of horse muscle tissue.

The segmentation of regions of axons can be performed by the following

operations:

(i) acquire a grey-scale image,

(i i) segment rings from the background,

(i i i) clear the pixels around the border of the image to the background

colour so that axons truncated at the edge of the image are filled

in by the next step,

(i v) flood the background of the binary image with an intensity equal

to the value of the myJ,f'I sheath.

For ideal inpu t data, the action of this sequence of operations is illustrated by

the progression of images shown in Figure 6.15.

Chapter 6 - OpShop examples

(a)

(c)

1 03

(b)

(d)

Figure 6.15: Successive transformations of the horse axon image as i t passes

through the segmentation process: (a) acquired image, (b) segmented image, (c)

segmented image with cleared border, and (d) axon image.

In practice, image data often exhibit non-ideal characteristics that disrupt the

proper operation of the segmentation process just outlined. One such non-ideal

characteristic is non-uniform illumination of the scene at the time of image

capture; this causes an intensity gradient to be superimposed across an image.

Figure 6.1 4 is degraded in this way. The d egrada tion is not immediately

apparent, but is revealed when the image is segmented at different global

threshold values. The sequence of segmented images at d ifferent threshold

va)ue� in Figure 6.16 shows that the superimposed intensity gradient is lowest in

the top right hand corner of the image and rises towards the bottom left comer.

Chapter 6 - OpShop examples 1 04

§o§ Thres.h o l d �0§

(a) (b)

(c) (d)

Figure 6.1 6: A sequence of binary images generated for different lower threshold
(t]) values: (a) t] = 60, (b) t] = 90, (c) t] = 120, (c) t] = 150.

Without compensating for the intensity gradient, the simple global thresholding

algorithm leads to the genera tion of many spurious 'axons', as shown in Figure

6.17 . The false axons represent regions where the flood-fill operation could not

transform the background to black because these regions are totally enclosed by

shea th pixels.

Figure 6 . 1 i: A rtifacts generated because of the application of the simple

segmentation algorithm to non-u n iformly illuminated input images .

Chapter 6 - OpShop examples 1 05

6.4.2 A command line implementation

For the global threshold operation to yield an accurate segmentation o f the

mylen sheaths, the intensity gradient must first be removed. Compensation for

the intensity gradient can be achieved by the execution of additional operations

prior to the application of the thresholding operation. In the VIPS algorithm,

compensation is achieved by i nserting additional commands before the

threshold and f i l l operations, as shown by:

l oad/ raw axons . img ax

Ope rat ions to compensate for �on -un i form i l luminat ion

threshold ax 7 0
draw box / rectang le (0 0) (2 5 5 2 5 5) / image 2 5 5 ax
f i l l ax 0 (1 0 1 0)
Figure 6.18: Proposed modification to the simple segmentation algorith m for the

compensation of non-uniform illumination.

It should be noticed that the proposed modification to the algorithm in Figure

6.1 8 occurs in the body of the algorithm rather than at i ts end. Therefore any

changes involving operations related to the compensation will necessitate the

retyping of the thr e s ho l d, d raw and f i l l operations. The need for constant

backtracking and retyping is illustrated in a trace of VIPS commands, shown in

Figure 6.19, for a possible development scenario.
declare image (255 2 5 5) ax
l oad/ raw axons . img ax . . ·.·:··:·L
s l ice ax

. ,,:.::. ·P·�6·.' � des an interact ive way t o

t hreshold a x 70
inves"t-.igate threshold values .

.....
draw box Irectangle (0 0) (255 25�:\. l image 255 ax
f i l l ax 0 (1 0 10) ,
! At this po int the intens i ty gradi�t is not iced . Therefore
! try a background subt ract ion metha� o f c ompensa t i on .
! Bact rack to retiieve original datil :{: I l oad/raw axons . img ax
let t 1 = ax --: It is much quicker to retrieve

...... ! orginal data from a temporary ···,· variable than from disk .
box max t l ax (1 6 1 6) . . :.::::{ :
subtract ax t 1 I saturate
let t2 = ax N:::::;;;; ••. • t�'�'�old operat ion ove r..T i t e s

t he

. : .. i nput·.,::···s o it ' s wise to take a copy
·t;·<. i t ·!:.ri . .case i t · s needed again .

s l ice ax
t hreshold ax 0 95

....

....

.:. -', display ax . " , "�.
draw box Irectangle (0 0) (127 1:,27) :::/ r::nage 255 ax
display ax :: '.
! Whoops , drew the box the wrong ·; s i ze..
! Retrieve ax , and backtrack t o ::;';: II "':. l et ax = t2 ::

t hreshold ax 0 95 " ':.' . .
draw box I rectangle (0 O}"··· ·�255 255) l i�agE;. 255 ax
display ax Bc;�. s i ze is C::,rr�ct this t ime .
f i l l ax 0 (1 0 1 0) -',

display ax \.
See lot 5 o f small spurious bi�i::y regions ::
Thi s compensat ion met hod must b'� impr�ed ;:01' abancioned .
Now , 1 can choose bet ween three ': a lt e rriat i"es :
1 . Try another threshold value);:. Ill ' .
2 . Try another max f i l ter kernal s i z e ':;;:;' ::
3 . Try new compensat i on method a l t ogethe r ·:;:::·

Figure 6.19: A possible VIPS trace for the development of the background
compensation method.

Chapter 6 - OpShop examples 106

The session progresses in successive episodes of backtracking. At point I, the

designer must reload the original iIl)age data to begin the implementation of a

compensation method. At point II, the designer made a mistake in drawing the

border and so must replicate the let, threshol d, and corrected draw operations

to regain the same place. The first trial of the compensation method is completed

at point III, but at this stage the user observes that the method has not worked

properly. To improve the current compensation method, the user is presented

wi th three possible alternatives; each invol ves a d ifferent d egree of

backtracking.

6.4.3 An OpShop implementation

In contrast to command line systems, OpShop is specifically designed to

facilitate the experimentation of algorithm topology. The ease with which

commands can be inserted into the body of an existing algorithm is illustrated by

the OpShop sequence shown in Figure 6.20.

�·��·�I } --;··I.I··-·
Read Image Thresho ld Clr Border Fill

(a)

�--------------------�··I 1�·--·���.--.
Read Image Thresho ld Clr Border

(b) ,,, lilJiffi .-____________________ �r9��. -- �.��
Read Image

(c)

(d)

Max
(e)

I! :::!I
Threshold Clr Border

IJ� • •
I! :::!I

Threshold ClY' Border

Fill

Fill

FHl

Figure 6.20: The addition of an operation into an existing OpShop algorithm.

Chapter 6 - OpShop examples 107

Figure 6.20(a) shows the bask segmentation algorithm before the addition of

compensation operations. In Figure 6.2O(b), the Read Image operation is dragged

leftwards to accommodate the operations to be added. The input data flow to the

Thre sho l d operation is broken in Figure 6.20(c). Next, a Max filter is deposited

onto the whiteboard by a menu selection. This is connected to the algorithm by a

dragging a rubber band line from its input to the output of the Read Image

operation, as shown in Figure 6.20(d). The S u bt r a c t operation is added in

Figure 6.20(e) to complete the experiment.

The iconic data flow language of OpShop makes experimentation with

algorithms simple. The simplicity is largely due to the temporally persistent

nature of operation objects and algorithm definition. When an operation has been

deposited onto the whiteboard and incorporated into an algorithm, the topology

of the modified algorithm persists unti l it is deliberately adjusted by a user.

Furthermore, when the topology of an algorithm is adjusted, the modifications

are restricted to a small part of the algorithm. In contrast, an algorithm is

represented in a command language by the order in which commands are

presented to the command line prompt. Therefore, to modify this algorithm, the

r�rdered sequence of operations must be presented to the command line prompt;

hence the need for a high degree of user input.

6.5 Choosing between algorithm alternatives

6.5.1 Generation of alternative solutions

During an algorithm development session, a designer may construct more than one

possible solution. In such situations, it is desirable that the user has the

capability to compare the candidate algorithms side-by-side.

The example used in this section continues the horse axons example presented in

section 6.4, where two segmentation algorithms were developed; one that

performed a simple global thresholding and an other that compensated for non­

uniform illumination before applying the global threshold. In the development

of such algorithms, a user would benefit from a facility to compare the results of

the old and improved methods.

6.5.2 Command line implementation

Two aspects of command line systems that hinder the comparison of alternative

algori thms are variable reuse and the l inear textual represen tation of

algorithms. A variable that stores a significant result can' be overwritten before

the result is recognised as being significant and stored for later retrieval .

Therefore results - particularly results stored in frequently used variables ­

cannot be guaranteed to exist because of variable reuse. A result that has been

overwritten but not saved elsewhere, can be regained only by repeating some or

all the calcu lations that generated it in the first instance. An example of

Chapter 6 - OpShop examples iOB
variable reuse is shown in the VIPS listing of Figure 6.19. The result ax , which

is the output of the f i l l operation in the seventh line, is significant because it

represents the result of the simple segmentation method. However, a x is

immediately overwritten in the following line and reused to store the original

image data for the second experiment. The variable ax should have been saved,

instead of being overwritten, so that it could be later compared with the result of

the compensated algorithm. Since it was not saved, the original ax must be

recalculated before any comparisons between the two methods can be made.

A second reason for the difficulty in comparing alternative algorithms in

command line systems is that, the boundaries between algorithms, or logical

parts of algorithms, are displayed implicitly when represented by text. The

listing shown in Figure 6.19 is a homogeneous sequence of text that is devoid of

visual cues to indicate logical relationships between commands. For instance, the

sequence contains no indication that two algorithms exist, nor that the first

algorithm ends on the seventh line at the f i l l operation. It should be noted that

the annotation shown in the listing would normally be absent in its screen

representation of an interactive development session.

6.5.3 An OpShop implementation

Alternative solutions are easy to compare in OpShop because the alternatives

may be represented as parallel data threads. Variable reuse is not an issue

because variables are not used. Alternative solutions are visually indicated by

branching paths, as shown in Figure 6.21, which shows how judicious positioning

of equivalent operations from parallel experiments aids comparative studies.

Deliberate juxtapositioning of result windows further reinforces the equivalences

and highlights the differences between algorithms. The alternatives can be

easily created by a cut-and-paste facility9 .

The upper thread depicts the uncompensated method {or segmentation.

Compensation by background subtraction is represented by the middle thread.

The lower thread shows a second alternative compensation method, which uses

the Lee H i s t S t r operation to normalise the intensity gradient across the

image by adaptive contrast enhancement. The three result windows relate to the

three threads as indicated by their respective positions.

9 The cut-and-paste facility has not yet been implemented, but will probably be

included in later versions of OpShop.

Chapter 6 - OpShop examples

Loc Hist Str
M � :: :: .. . I!!i' ::�

Tt'lr�shold Clr Bordfl" Fill

1 09

Figure 6.2 1 : A possible scenario for the comparison of three different methods to segment
horse axons from a background.

6.6 Summary

This chapter h a s demonstrated how the OpShop visual language simplifies the

development of imaging algorithms. This has been achieved by describing the

application of the OpShop language in four situations that commonly occur in the

process of algorithm development.

In summary, the strengths of OpShop language highlighted by the four examples

are:

(i) graphical d a ta flow representation simplifies the comprehensibility of

algorithms involving multi-threaded data paths;

(i i) simple and rapid adjustment of operation parameter values simplifies the

search for suitable calculation parameter values; this is the facil i ty o f

parameter exploration;

(i i i) easy addition, i nsertion, removal and reordering of operations simplifies

the search for suitable algorithm topologies; this is the facil i ty o f

topology exploration;

(j v) graphical d a ta flow representation allows parallel experiments to be

represented explicitly and so simplifies the tasks of choosing between

alternative algorithms.

Chapter 7

Summary and
Conclusions

1 10

I n this thesis, the research which lead t o the development o f a graphical

human-computer interface for imaging applications was described. This involved

an analysis of the task domain, an evaluation of interface techniques in the
context of algorithm development, and the adoption of a user-oriented d esign
approach. The implementation of the design resulted in a visual language
software package, which was outlined in Chapters 5 and 6.

Chapter 2 examined in detail the application domain relevant to this thesis:

that is, image processing algorithm development. A new perception arose from

the discussion of algorithms: that algorithms can be modelled by either a
process-oriented or a data-oriented computational structure. The process-oriented
model has been adopted widely in the past, because a sequential algorithm maps
directly to the representation required for execution on a typical von Neumann

machine. This model is expedient for execution, but not necessarily for
development. The example given in Section 2.3 demonstrated that a data­

oriented model mapped closely to the conceptual model which a human designer

forms to explain the solution of an imaging problem. The data-oriented model

was formalised in a graphical representation called the solution graph. This

Chapter 7 - Summant and conclusions 1 1 1
representation was used to illustrate a suite of heuristics commonly used by

algorithm designers in the construction of a typical image processing algoritlun.

In Chapter 3, the applicability of conventional interface techniques for the task

of heuristic algorithm development was evaluated. The aim of this evaluation

was to provide insight into how algoritlun development is assisted or hindered

by currently used types of interfaces. This insight was taken into account in the

proposal of a new interface design. The evaluation revealed that most

conventional techniques hinder algoritlun development because they lack either

direct forms of interaction or language facilities to describe the algorithm.

• Command line interfaces were found to provide indirect mediation between the

user and the task because of the requirement for symbolic references to data

objects and the need for repetitious typing to repeat command sequences.

• Menu interfaces require fewer user actions to select and execute operations than

command languages. However, the pointing model for command selection leads

to records of command sequences that are difficult to read and interpret.

• A high degree of user interaction is achieved by direct manipulation interfaces
through the property of direct engagement. This interface style naturally suits

imaging applications because both tool and data are inherently spatial in

nature. The main drawback of this interface is that macros are represented as

a sequences of user actions that are related to the interface, rather than

related directly to the imaging task.

• Visual langui2ges were fou!'d to represent algoritluns in an understandable form

without sacrificing direct interaction. For this reason, the visual language was

favoured as the interaction technique for the proposed design.

Ch12pter 4 outlined the approach taken for the design of an interface tailored

specifically for the interactive development of imaging algorithms. The main

insight afforded in this chapter is that a systematic method of interface design

involves: (i) a coherent design model, (ii) a user-oriented analysis of the task,

and (iii) a thorough understanding of the available interface techniques and the

success with which they have been used in the past. The information for the

second and third aspects were furnished by Chapters 2 and 3 respectively.

The software was designed according to a user-centred model (Norman, 1990).
This model was used to explain an interface design in terms of: the user's model,

the designer's model, and the system's visual appearance. This approach

suggests that in order for a design to be user-rentred, these three aspects should be

equivalent, and that the specification of the designer's model and the system's

visual appearance should be defined by the user's model. Since a user's model

explains the essential interaction between the user and the task, it was therefore

appropriate to adopt the solution graph as the representation for the user's

model. Stepwise refinement and dynamic explorat io n were cited as two

complementary modes used in building a solution graph. These modes can be

Chapter 7 - Summary and conclusions 1 1 2

considered a s heuristics because they define problem solving strategies that

increase the likelihood of attaining a successful solution. Analysis of the

strategies revealed that both could be decomposed into cycles of three stages:

generation, execu tion, and evaluation. The two strategies exhibit s trong
similarities and, in fact, complement each other in the design process. Therefore,
it was suggested that both strategies could be accommodated in the same
interface, and that such an integration would be desirable. To achieve this

integration, the distinctions between the two modes were clarified. Stepwise
refinement was observed to be a goal-directed approach, where its three stages
were carried out in cycles of discrete steps. On the other hand, dynamic
exploration was seen as an exploratory approach, where the distinctions between
its three stages were blurred and instead appeared as a single continuous action.

Chapter 5 described the features and discussed the development of a software
package. This package, OpShop, was implemented in accordance to the design

guidelines set in Chapter 4. The software package was designed to support the
stepwise refinement and dynamic exploration approaches to the development of
imaging algorithms. The solution graph view of algorithms was incorporated as
an executable data-flow diagram. Faci lities for the rapid adjustment of

operation parameter values and algorithm topology were provided via
graphical objects that could be directly manipulated with a mouse pointing
device. Rapid calculation of results were provided by an execution schedular
that responded to changes of operation parameters or algorithm topology made

by the user. Such an execution scheme maintained strict consistency between the
results and the algorithm definition. The rapid delivery of results after changes
of parameter or topology was found to strengthen the relationship between the
algorithm controls and the displayed result.

Chapter 6 described four situations where the visual and dynamic features of the
OpShop package worked to simplify algorithm development. Each of these

situations were representati ve of a typical interaction task in algorithm

development. The first example demonstrated that multi-threaded data paths

were easier to observe when represented in graphical data flow form than in

linear textual form. In the second example, the provision of direct manipulation
controls to adjust parameter values, coupled with the rapid update of results,

was shown to facilitate experimentation with parameter values. The Abingdon
Cross benchmark was deliberately chosen for its interdependent parameter

settings. This interdependency places a heavy demand on facilities for
parameter experimentation. It was shown that the equivalent experimentation
on a command line interface would have demanded considerable retyping to the
extent of making the process tedious or at worst, infeasible. In the third example,
support for experimentation of algorithm topology is illustrated. The ability to
di rectly add, remove, and rearrange operations in an algorithm was
demonstrated and contrasted with equivalent procedures in a command I in�
language. The new interface was shown to be a positive advance because it

greatly reduced the user action required to perform an investigation. The fourth
example demonstrated the software's capability to conveniently provide a

Chapter 7 - Summa11l and conclusions 1 13

comparison of alternative solutions. Comparisons were facilitated by the side­

by-side arrangement of candidate algorithms. Thi s had the effect of

highlighting apparent similarities and differences in alternative algorithms.

Each of the examples in this chapter were designed to demonstrate a single

interactive feature; however, imaging tasks would typically demand the

combined use of these features. The combined benefit of the interaction features

provided in the OpShop package are best experienced.

In summary, this thesis has shown:

• that at the development stage, image processing algorithms are more

appropriately represented in a data flow form than in a process-oriented form;

• that an analysis of interaction between the user and the a pplication can

provide crucial background information on which to base selection of interface

techniques;

• that the user-oriented design philosophy expounded by Norman provides a

systematic method for the development of an interface for a given application

domain;

• that step-wise refinement and dynamic exploration are two principle

heuristics used in algorithm development;

• that facili ties of parameter and topology exploration can be ably

implemented in a direct manipulation interface.

7.1 Suggestions for future work

The primary concern of this thesis has been the human-computer interaction

aspects of algorithm development using image processing systems. The insight

gai ned in this thesis regarding i nteraction could be extended into other

application domains.

The ideas of algorithm development presented here have placed an accent on

heuristics. It has been assumed that the sole source of intelligence that furnishes

heuristic strategies is a human designer. This source of heuristic strategy is weak

where the designer is a novice; novices would profit from being assisted by an

expert system that acts as a complementary source of heuristic strategy. It is

envisaged that the human designer would be in control of the construction of the

algorithm, but that the expert system would provide valuable and timely on­

line assistance. In such a system, the OpShop environment could act as a visual

communication channel - much in the same ways as a blackboard does - through

which the human designer and the expert system communicate. The expert

system would monitor the algorithm development activity of the user. When the

system recognises a situation that could be performed in a more effective way, it

could offer its suggestion directly onto the OpShop whiteboard in the form of an

Chapter 7 - SlImmary and conclusions 1 14

algorithm fragment. The expert system could have a knowledge base that not

only covers aspects of heuristics, but it could also suggest possible operations to
include in an algorithm {similar to the system proposed by Bailey (1 988» or it
could directly adjust parameter values (like the system reported by Sakaue &

Tamura, 1 985).

The multi-threaded data oriented view of a processing structure could be used in

many applications as a visualisation tool; an obvious example is the field of
neural networks. In particular, parameter and topology exploration are relevant

to the definition and tuning of experimental neural networks. Parallel processing

is another field that stands to gain from the ability to represent processing
structures as multi-threaded data flows. A fundamental concern of any parallel
processing implementation is the effective partition of program execution
between processors. This partitioning is inherent in multi-threaded data flows,
where each parallel flow can be computed independently of other flows, and

hence each flow can be assigned to a separate hard ware processor. The
application of data flow diagrams as a vehicle for studying algorithms and
architectures for parallel image processing is currently being investigated by
Tanimoto (1990); OpShop would provide an ideal presentation medium for such a

system.

The OpShop language is l ikely to be extended in future. One major enhancement
is to provide control panels for subflows. At present, to access the parameter
settings of an operation within a sub flow, a subflow window must first be opened
to expose the operation to which the parameter belongs. It is envisaged that

future versions of OpShop would incorporate subflow control panels to provide
direct access to those parameters critical to the functioning of the subflow. Many
parameters within a subflow need only be set once - at the time of development ­
and require no further adjustment these parameters would not need to be included

in the subflow control panel. Parameters that call for constant attention would be

included in the higher level control panel . The user action to designate which

parameters of the constituent operations to include in the subflow panel is

expected to be a drag operation. Such an action is consistent with the direct

manipulation theme of the interface.

A second enhancement likely to be made to the OpShop language is the addition

of iteration and conditional control constructs. The OpShop language must offer
these features if. it to serve as a complete specification language for algorithms.
So as to not confuse the data flow view of an algorithm with control information,
it would be desirable to embed control information within specialised operations

rather than introduce line elements. A possible implementation for an iteration
construct is shown in Figure 7.1 . The iteration is performed by the combination of

three distinct parts: a loop opera t i on, a subflow that contains operations to
iterate, and a subflow that contains operations to test for a termination condition.
The i t erated subf low is invoked by the loop operat i on. Invocation occurs
repeatedly provided the intermediate resul ts of the iterated sub flow do not

exhibit a termination condition. If a termination condi tion does exist, it is

Chapter 7 - Sllmmart/ and conclusions 1 15

detected by the t e s t sub f l ow which in tum informs the l oop operat i on to

stop looping and to output the final data.

Initial Data

Intermediate
Data

Final Data

Figure 7.1: Possible implementation for a loop constnlct in OpShop.

A third addition to the OpShop language that could further enhance its utility

is to treat parameter values as data inputs. In the present version of OpShop,

parameters can be adjusted only via pre-defined parameter panels (as discussed

in Section 5.2.2). However, there are times where the specification of parameter

values would be more appropriately performed by the algorithm itself. One

situation where this feature might be used is in the specification of optimal

threshold values for a threshold operation. For example, Sakaue and Tamura

(1 985) describe a system where the optimal values are found by a histogram

analysis technique. The OpShop language could be modified to allow the option

of accepting either values generated by another part of the algorithm or values

specified by the user. One possible modification to the language that would

achieve this objective is the inclusion of terminal symbols for the input of

parameter values, in a similar manner to that currently used for data input. If a

parameter is specified by another part of the algorithm, then the corresponding

input terminal would be connected to the output of the relevant operation. If

instead, parameters are to be supplied by the user, the data terminals could have

parameter panels which are, by default, active when no external connection

exists.

Execution speed can never be too great for dynamic exploration. Faster computing

hardware will na turally benefit the interactivity offered by the OpShop

system, especially for the continuous execution of complex algorithms. A possible

research avenue to accelerate the processing rate is the development of

incremental image operations. Small increments in a parameter value may cause

some, but not all, pixel values in an image to change. When this occurs, a

subsequent operation only needs to recalculate those pixels that depend on the

change in its input image. This technique of incremental recalculation is used

effectively in electronic circuit design packages and may offer similar speed

improvements to the processing of images.

Chapter 7 - Summar1l and conclusions 1 1 6

The objective of this study was to create a system that simplifies the interactive

design of image processing algorithms. To this end, this thesis has examined an
often neglected aspect of the algorithm development task: human-computer

interaction. The author and his supervisors hope that the insights reported in
this thesis will promote the growth of a new generation of interactive image

processing systems that are simple to use, and that facilitate speedy and
creative development of image processing algorithms.

1 1 7

References
Ackerman, W.B. (1 982): Data flow languages, IEEE Computer, 15(2), 1982, 1 5-25.

[56, 87]

Adobe (1991) : Adobe PhotoshopTM user guide, Adobe Systems Incorporated,
Mountain View, California, 1 991 . [32, 351

Aloimonos,]. (1988): Shape from texture, Biological Cybernetics, 58, 1988, 345-
360. [1 1 1

Aloimonos,] . & Swain, M . (1988): Shape from patterns: Regularization,
International Journal of Computer Vision, 2, 1 988, 1 71 -187. [1 1 1

Aloimonos,]. & Weiss, I . (1 988): Active vision, International Journal of Computer
Vision, 2, 1 988, 333-356. [1 1 1

Aloimonos, Y. & Rosenfeld, A. (1991) : A response to "Ignorance, myopia, and
naivete in computer visions systems" by R.C. Jain and T.O. Binford,
CVGIP: I111i1ge Understanding, 53(1), 1991, 1 20-124. [8]

Ambler, A.L. & Burnett, M.M. (1989): Influence of visual technology on the
evolution of language environments, IEEE Computer, 22(10), 1989, 9-22.

[41, 611

Apperley, M.D. (1990): A private communication. [51]

Apperley, M.D. & Spence, R. (1989): Lean Cuisine: a low-fat notation for menus,
Interacting with Computers, 1(1), 1989,45-68. [301

Apple Computer (1985): Inside Macintosh™, Chapter 2, Vol. 1 , Addison­
Wesley, Reading, Massachusetts, 1985. 64]

Apple Computer (1987): Hypercard user's guide, Apple Computer Inc., Cupertino,
California, 1 987. [78]

Arcelli, C. & Sanniti di Baja, G. (1986): Endoskeleton and exoskeleton of digital

figures: an effective procedure, In CappelIini, V & Marconi, R. (Eds.):
Advances in image processing and pattern recognition, Elsevier Science

Publishers B.V. (North-Holland), 1 986, 224-228. [1 3]

Arcelli, c., CordelIa, L. & Levialdi, S. (1975) : Parallel thinning of binary
pictures, Electronics Letters, 11(7), 1975, 1 48-149. [1 31

Bailey, D.G. & Hodgson, R.M . (1988): VIPS - A Digital image processing
algorithm development environment, Image and Vision Computing, 6(3),

1988, 176-184. [15, 27]

The numbers in the square brackets indicate the page number, or numbers,

at which the reference is cited.

References 1 1 8

Bailey, D.G. (1 988): Research o n computer-a ssisted generation o f image

processing algorithms, IAPR Workshop on Computer Vision - Special
Hardware and Industrial Applications, Oct 12-14, 1 988, Tokyo, 294-297.

[22, 1 14]

Ballard, D.H. & Brown, C.M. (1982): Computer vision, Prentice-Hall, Englewood
Cliffs, New Jersey, 1 982. [8, 12]

Barraga, N.C. (1 986): Sensory perceptual development, in Scholl, G.T. (Ed.):
Foundations of education for blind and visually handicapped children
and youth: theory and practice, American Foundation for the Blind, New

York, 1986, 84-98. [1]

Batchelor, B.G., Hill, D.A. & Hodgson, D.C. (Eds.) (1 985): Automated visual
inspection, Elsevier Science Publishers B.V. (North-Holland), 1 985. [8]

Bates, R.H.T.B. & McDonnell, M.J. (1986): Image restoration and reconstruction,
Oarendon Press, Oxford, England, 1986. [1 1]

Bates, R.H.T.B. & Peters, T.M. (1971): Towards improvements in tomography,

New Zealand Journal of Science, 14(4), 1971, 883-896. [1 1]

Bjorklund, c., Noga, M., Barrett, E . & Kuan, D . (1 989): Lockheed imaging
technology research for missiles, Proceedings of the Image Understanding
Workshop, DARPA/ISTO, Palo Alto, California, May 23-26, 1989, 219-

231 . [8]

Booch, G. (1986): Object-oriented development, IEEE Transactions on Software
Engineering, 5E-12(12), 1986, 21 1-221 . [78]

Bowyer, KW. & Jones, J.P. (1991): Revolutions and experimental computer vision,
CVGIP: Image Understanding, 53(1), 1 991, 1 27-1 28. [8]

Bracewell, R.N. (1986): The Fourier transform and its applications, 2nd Edition,
McGraw-Hill, New York, 1986. [1 1]

Brumfitt, P.J. (1984): Environments for image processing algorithm development,
Image and Vision Computing, 2(4), 1984, 1 98-203. [3]

Budinger, T.F. (1 980): Physical attributes of single-photon tomography, Journal
of Nuclear Medicine, 21(6), 1980, 579-592. [1 0]

Budinger, T.F., Gullberg, G.T. & Huesman, R.H. (1 979): Emission computed
tomography, Chapter 5: Image reconstruction from projections,
implementations and applica tions, Herman, G.T. (Ed .). Springer-Verlag,

Berlin, 1979, 147-246. [1 0]

Card, S.K, Moran, T.P. & Newell, A. (1983): The psychology of human-computer

interaction, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1989.
[88]

References 1 1 9

Castleman, K.R. (1 979): Digital image processing, Prentice-Hall, Englewood

Oiffs, New Jersey, 1979. [7, 1 1 , 12, 14]

Catanzariti, E., di Cerbo, M.G. & Menna, R. (1 989): A method for representing

and computing immediate texture discrimination in natural images, in
Cantoni, V, Cordelia, L.P., Levialdi, S. & Sanniti di Baja, G . (Eds.):

Progress in image analysis and processing, World Scientific Publishing

Co., Singapore, 1 990, 36-43. [13]

Com, A. (1983): Vision function: a model for individuals with low vision, Journal
of Visual Impairment of Blindness, 77, 1 983, 373-377. [2]

Cox, B. (1 986): Object-oriented programming: an evolutionary approach,
Addison-Wesley, Reading, Massachusetts, 1986. [78]

Davis, R. (1 990): Iconic interface processing in a scientific environment,
Sun Expert, June 1 990, 80-86. [42]

De Bono, E. (1969): The mechanism of mind, Harmondsworth, Penguin, 1969. [18]

De Marco, T. (1 978): Structured analysis and system specification, Prentice-Hall,
Englewood Oiffs, New Jersey, 1978. [50]

De Menthon, D., Siddalingaiah, T. & Davis, L.S. (1987) : Production of Dense

Range Images with the CVL Light-Stripe Range Scanner, Center for
Automation Research Report, University of Maryland, College Park,
Maryland 20742, December, 1987. [1 1]

Docker, T.W.G. (1 989): SAME Structured analysis modelling environment: a
prototyping tool, Ph.D. Thesis, Department of Computer Science, Massey
University, Palmerston North, New Zealand. [84]

Domer, D. (1 983): Heuristics and cognition in complex systems, in Groner, R.,

Groner, M. & Bischof, W.F. (Eds.): Methods of heuristics, Lawrence

Erlbaum Associates, New Jersey, 1983. [18, 19, 22]

Fennema, c., Hanson, A.R. & Riseman, E. (1989): Towards autonomous mobile
robot navigation, Proceedings of the Image Understanding Workshop,
DARPA/ISTO, Palo Alto, California, May 23-26, 1989, 219-231 . [8]

Fischler, M.A. & Firschein, 0. (Eds.) (1987): Readings in computer vision: issues,
problems, principles, and paradigms, Morgan Kaufmann Publishers,

California, 1987.[8]

Foley, J.D. & Van Dam, A. (1982): Fundamentals of interactive computer
graphics, Addison-Wesley, Reading, Massachusetts, 1982. [13]

Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1 990): Computer graphics:

principles and practice, 2nd Edition, Addison-Wesley, Reading,

Massachusetts, 1 990. [37]

References 120

Freeman, H. (1961): On the encoding of arbitrary geometric configurations, IRE

Transactions on Electronic Computers, EC-10(2), 1 961, 260-268. [131

Freeman, H. (1986): Image processing and pattern recogni tion: a general
overview, In Cappellini, V & Marconi, R. (Eds.): Advances in Image

Processing and Pattern Recognition, Elsevier Science Publishers B.V.
(North-Holland), 1 986, 224-228. [7, 10]

Freeman, H. (1989): Development of a trainable machine-vision inspection
system, in Cantoni, V, CordelIa, L.P., Levialdi, S. & Sanniti di Baja, G.
(Eds.): Progress in image analysis and processing, World Scientific
Publishing Co., Singapore, 1 990, 375-388. [8]

Fu, K.S. & Mui, J.K. (1981): A survey on image segmentation, Pattern Recognition,

13, 1981, 3-16. [12]

Gane, C. & Sarson, T. (1979): Structure systems analysis: tools and techniques,
Prentice-Hall, New Jersey, 1979. [50]

Garden, K .L. (1984): An Overview of Computed Tomography, Ph.D. Thesis,
Department of Electrical and Electronic Engineering, University of
Canterbury, 1984. [1 1 1

Gaver, W.W. (1991) : Technology affordances, CHl '91 Conference Proceedings,
ACM Press, New York, 1 991 . [70]

Gl inert, E .P. & Tanimoto, S.L. (1 984) : Pict: An interactive graphical
programming environment, IEEE Computer, November, 1 984, 7-25. [41 1

Glinert, E.P., Kopache, M.E. & McIntyre, D.W. (1990): Exploring the general­
purpose visual alternative, Journal of Visual Languages and Computing,
1(1), 1 990, 3-39. [41 1

Gonzalez, R.C. & Wintz, P . (1987): Digital Image Processing, 2nd Edition,

Addison-Wesley, Reading, Massachusetts, 1987. [7, 1 1 , 1 2, 1 3]

Goodman, D. (1990): The complete HyperCard 2.0 handbook, 3rd Ed., Bantam

Books, New York, 1 990. [781

Goodman, P. & Spence, R. (1 978): The effect of system response time on

interactive computer aided problem solving, Computer Graphics, 12,
1978, 1 00-104. [951

Hall, E.H. (1974): A lmost uniform distributions for computer image enhancement,

. IEEE Transactions on Computers, C-23(2), 1974, 207-208. [1 1 1

H aralick, R.M. & Shapiro, L.G. (1 991): Glossary o f computer vision terms,
Artificial Intelligence, 24(1), 1 991, 69-93. [71

Haralick, R.M. (1986): Computer vision theory: the lack thereof, Compu ter
Graphics, Vision, and Image Processing, 36, 1 986, 372-386. [31

References 121

Hawke, D. (1989): Terrain modelling and GIS. In Mackaness, W. (Ed .):

Proceedings of the Inaugural Colloquium of the Spa tial Information
Research Centre, University of Otago, New Zealand, 30 Nov - 1 Dec,

1 989, 90-95. [11]

Herman, G .T. (1980): Image reconstruction from projections: fundamentals of
computerized tomography, Academic Press, New York, 1 980. [1 1]

Hennan, G.T. (Ed.) (1979): Image reconstruction from projections: implementation
and applications, Springer-Verlag, Berlin, 1979. [1 1]

Hildreth, E . (1980): A computer implementation o f a theory of edge detection,
MIT AI LAboratory Technical Report, TR-579, 1980. [12]

Hirakawa, M., Tanaka, M. & Ichikawa, T. (1 990): An iconic programming
system, HI-VISUAL, IEEE Transactions on Software Engineering,

SE-16(10), 1990, 1 1 78-1 1 84. [40}

Hollingum, J. (1 984): Machine vision: the eyes of automation, Springer-Verlag,
Berlin, Gennany, 1984. [8]

Hounsfield, G.N. (1980): Computer medical imaging, Nobel Lecture, Journal of
computer-assisted tomography, 4, 1 980, 665ff. [1 0]

Huang, T.5. (1991): Computer vision needs more experiments and applications,
CVGIP: Image Understanding, 53(1), 1991, 125-1 26. [8]

Hummel, R (1977): Image enhancement by histogram transfonnation, Computer

Graphics and Image Processing, 6, 1977, 184-195. [1 1]

Ichikawa, T. & Hirakawa, M. (1990): Iconic programming: where to go?, IEEE
Software, November 1990, 63-68. [40]

Imagelab™ (1 987) : User manual, Werner Frei Associates, Santa Monica,
California. [40]

Imaging Technology (1987): ImageActionplus user's guide, Imaging Technology

Incorporated, Massachusetts, 1987. [33]

Imaging Technology (1 989a): ITEX 200 image processing functions, Imaging
Technology Incorporated, Massachusetts, 1989. [32, 33]

Imaging Technology (1989b): ImageAction 200 user's guide, Imaging Technology
Incorporated, Massachusetts, 1989. [27]

Jain, RC. & Binford, T.O. (1991): Ignorance, myopia, and naivete in computer
visions systems, CVGIP: Image Understanding, 53(1), 1 991 , 1 12-1 1 7. [8]

Jain, RC. & Jain, A.K. (Eds.) (1990): Analysis and interpretation of range images,

Springer-Verlag, New York, 1 990. [1 1]

References 1 22

Kacmar, c.J. & Carey, J .M. (1991) : Assessing the usability of icons in u ser
interfaces, Behaviour and Information Technology, 10(6), 1991, 443-457.
[52]

Kennegieter, N.J. (1989): A study of the distal hindlimb muscles and nerves in

normal and laryngeal hemiplegic horses, Ph.D. Thesis, Department of
Veterinary Science, Massey University, Pal merston North, New

Zealand, 1989. [102]

Knoll, G.F. (1983): Single-photon emission computed tomography, Proceedings of
the IEEE, 71(3), 1983, 320-329. [10]

Kruger, R.P. & Thompson, W.B. (1981): A technical and economic assessment of
computer vision for industrial inspection and robotic assembly,
Proceedings of the IEEE, 69(12), 1 981, 1524-1538. [14]

LabVIEW (1990): LabVIEW 2 User Manual, National Instruments Corporation,
Austin, Texas. [52]

Lane, R.G. (1 988): Blind deconvolution and phase retrieval, Ph.D. Thesis,
Electrical and Electronic Engineering Department, University of
Canterbury, Christi church, New Zealand. [27]

Lauterbur, P.c. (1973): Image formation by induced local interactions: examples
employing nuclear magnetic resonance, Nature, 242, 1973, 1 90-191 . [1 11

Lawton, D.T. & McConnell, c.c. (1 988): Image understanding environments,
Proceedings of the IEEE, 76(8), 1 988, 1036-1050. [8]

Lee, H. & Wade, G. (Eds.) (1 990): Acoustical Imaging, 18, Plenum Press, New
York, 1990. [1 1]

Lenat, D.B. (1983): Towards a theory of heuristics, in Groner, R., Groner, M. &

Bischof, W.F. (Eds.): M ethods of heuristics, Lawrence Erlbaum

Associates, New Jersey, 1 983. [22]

Lesczczynski, K.W. & Shalev, 5. (1 989): A robust algorithm for contrast
enhancement by l ocal histogram modification, Image and Vision

Computing, 7(3), 1 989, 205-209. [1 1]

Lewitt, R.M. (1983): Reconstruction algorithms: transform methods, Proceedings

of the IEEE, 71(3), 1 983, 390-408. [1 1]

Manohar, M . , Rao, p.s. & Iyengar, 5.s. (1 990): Template quadtrees for
representing region and line data present in binary images, Computer

Vision, Graphics, and Image Processing, 51, 1 990, 338-354. [1 3]

Marr, D. (1 982): Vision: a compu tational investigation into the human
representation and processing of visual information, W.H. Freeman and

Company, San Francisco, 1 982. [3, 1 1]

References 123

Marshall, S. (1 989): Review of shape coding techniques, Image and Vision

Computing, 7(4), 1989, 281 -294. [151

McKeown, D.M., Harvey, W.A. & McDermott, J . (1 985) : Rule-based
interpretation of aerial imagery, IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-7(5), 1985, 570-585. [81

Milne, A.A. (1928): The house at Pooh Comer, Methuen Co. Ltd., London, 1928. [1 1

Monden, N., Yoshimoto, I ., Hirakawa, M., Tanaka, M. & Ichikawa, T. (1 984):
Hl-VISUAL: A language supporting visual interaction in programming,
Proceedings of the 1 984 IEEE Workshop on Visual Languages, 1 984, 199-

205. [401

Mucciardi, A.N. & Gose, E.E. (1971): A comparison of seven techniques for
choosing subsets of pattern recognition properties, IEEE Transactions on

Computers, C-20(9), 1 971, 1023-1031 . [151

Myers, B .A. (1 990): Taxonomies of visual progra mming and program
visualisation,]ounull of Visual LAnguages and Computing, 1(1), 1990, 97-
123. [40, 611

Naylor, M.J. (1 987): The use of structured lighting in 3D image capture,
Proceedings of the 2nd New Zealand image processing workshop,
University of Canterbury, Christchurch, 20-21 August 1 987. [1 1]

Newell, A. (1983): The heuristics of George Polya, in Groner, R., Groner, M. &

Bischof, W.F. (Eds.): Methods of heuristics, Lawrence Erlbaum
Associates, New Jersey, 1 983. [221

Newell, A., Shaw, J.e. & Simon, H.A. (1958): Elements of a theory of human

problem solving, Psychological Review, 65, 151-166. [19]

Newell, A . & Simon, H. A. (972): Human problem solving, Prentice-Hall,

Englewood Cliffs, New Jersey, 1972. 19, 47]

Ngan, P.M., Apperley, M.D. & Hodgson, R.M. (1 990): The user-oriented
development of an interface for image proceSSing, Proceedings of the 5th

New Zealand Image Processing Workshop, Massey University,
Palmerston North, New Zealand, 9-10 August, 1990, 63-68. [67]

Nievergelt, J, & Weydert, J. (1980): Sites, modes, and trails: telling the user of an
interactive system where he is, what he can do, and how to get places. In

Guedj, R.A., ten Hagen, P.J.W., Hopgood, F.R.A., Tucker, H.A. & Duce,
D.A. (Eds.): Methodology of Interaction, North Holland, 327-338. [29]

Norman, D.A. & Chin, J.P. (1 990): The menu metaphor: food for thought,

Behaviour and Infonnation Technology, 8(2), 125-134, 1 989. [37]

Norman, D.A. (1981): The trouble with UNIX, Datamation, 27(12), November
1981, 139-150. [30]

References 124

Nonnan, D.A. (1 990): The design of everyday things, Doubleday Currency, New

York, 1990. [37, 38, 46, 47, 1 1 1)

Pavlidis, T . (1 978) : A review o f algorithms for shape analysis, Co m p u t e r
Graphics and Image Processing, 7, 1978, 243-258. [15)

Pavlidis, T. (1 986): A critical survey of image analysis methods, Proceedings of

the IAPR Eighth International Conference on Pattern Recognition, Paris,
France, Oct 27-31, 1986, 502-51 1 . [12)

Perry, A. (1 989): Segmentation of texture regions using points of sharp intensity

change, in Cantoni, V, Cordelia, L.P., Levialdi, S. & Sanniti di Baja, G.
(Eds.): Progress in image analysis and processing, World Scientific
Publishing Co., Singapore, 1990, 99-105. (13)

Petko vic, D. & Wilder, J. (1991): Machine vision in the 1990s: applications and

how to get there, Machine Vision and Applications, 4, 1991, 1 1 3-1 26. (3)

Pietrzykowski, T. & Matwin, S. (1 984): PROGRAPH: A preliminary report,
University of Ottawa Technical Report, TR-84-07, April, 1984. [32, 78]

PixelPaint Pro™ (1989): User's manual, SuperMac Technology, Sunnyvale,
California, 1 989. (32)

Polya, G. (1957): How to solve it; a new aspect of mathematical method,

Doubleday, New York, 1957. [19, 47]

Polya, G. (1 962): Mathematical discovery: on understanding, learning, and
teaching problem solving, Vol. 1, John Wiley and Sons, New York, 1962.

[18, 19, 47]

Preston, K. (1989): The Abingdon Cross benchmark survey, IEEE Computer, July

1 989, 9-18.

Price, K. (1 986): Anything you can do, I can do better (no you can't), Computer

Vision, G raphics, and Image Processing, 36, 1 986, 387-391 . (24)

Prince, B. & Salters, R.H.W. (1992): ICs going on a 3-V diet, IEEE Spectrum,
29(5), 22-25, 1 992. [90]

Rasband, W. (1 992): Image user's manual, National Institutes of Health,

Bethesda, Maryland. [32, 34]

Rasure, J ., Argiro, D., Sauer, T. & Williams, C. (1 990) : A Visual Language and

Software Development Environment for Image Processing, International

Journal of Imaging Systems and Technology, 2, 1 990, 183-199. [41]

Rasure, J.R. & Williams, C.S. (1991): An integrated data flow visual language

and software development environment, Journal of Visual Languages and

Computing, 2, (1991), 1-30. [41 , 51)

References 125

Rogers, Y. (1989): Icons at the interface: their u sefulness, Interacting with
Computers, 1(1), 1989, 105-1 1 7. (51]

Rosenfeld, A. (1 984): Image Analysis: problems, progress and prospects, Pattern
Recognition, 17(1), 1984, 3-12. [10]

Rosenfeld, A. (1 988): Computer vision: basic principles, Proceedings of the IEEE,

76(8), 1988, 863-868. [9, 12]

Ru tovitz, D. (1 989): Efficient processing of 2-D images, in Cantoni, V, Cordell a,
L.P., Levialdi, S. & Sanniti di Baja, G. (Eds.): Progress in image analysis
and processing, World Scientific Publishing Co., Singapore, 1 990, 99-105.

[13]

Sahoo, P.K., Soltani, 5., Wong, K.c. &. Chen, Y .c. (1 988): A survey of
thresholding techniques, Compu ter Vision, Graph ics, and Image

Processing, 41(2), 1988, 233-260. [12]

Sakaue, K. & Tamura, H. (1985): Automatic generation of image processing
program by knowledge-based verification, IEEE Proceedings on Computer

Vision and Pattern Recognition, San Francisco, California, June 1 9-23,
1 985, 1 89-192. [1 14, 1 15]

Scott, P.O. (1990): Applied machine vision, in Leibovic, K.N. (Ed.): Science of
vision, Springer-Verlag, New York, 1 990, 439-465. [2]

Shneiderman, B. (1983): Direct manipulation: a step beyond programming

languages, IEEE Computer, 16(8), 1983, 57-62. [34]

Shneiderman, B. (1 988): We can design better user interfaces: a r�view of human­
computer interaction styles, Ergonomics, 31(5), 1 988, 699-710. [29] .

Shu, N.C. (1988): Visual programming, Van Nostrand Reinhold Company, New

York. [40]

Simon, H .A . (1981) : The sciences of the artificial, 2nd Edition, The MIT Press,

Massachusetts, 1 981. [21 , 22]

Smith, S., Schreirer, H.E. & Brown, S. (1 989): Analysis of forage crops using GIS

and image analysis techniques. In Mackaness, W. (Ed.): Proceedings of

the Inaugural Colloquium of the Spatial Information Research Cen tre,
University of Otago, New Zealand, 30 Nov-l Dec, 1989, 155-169. [1 1]

Smith, S.L. &. Mosier, J .N. (1 986): Guidelines for designing u ser interface
software, MITRE, ESD-TR-86-278, Bedford, Massachusetts, 1 986. [30]

Snyder, M.A. (1991): A commentary on the paper by Jain and Binford, CVGIP:

b1U1ge . Understanding. 53(1), 1991, 1 1 8-1 19 . [8]

Sommerville, I. (1989): Software engineering, 3rd Ed., Addison-Wesley, Reading,

Massachusetts, 1 989. [78]

References 126

Spence, R. & Apperley, M. (1977): The interactive-graphic man-computer
dialogue in computer-aided circuit design, IEEE Transactions on Circuits

and Systems, CAS-24(2), 1977, 49-61 . [48, 49]

Sykes, J.B. (Ed.) (1982): The concise Oxford dictionary, 7th Edition, Clarendon
Press, Oxford. [37]

Symantec Corporation (1991): THINK C Object-oriented programming manual,
Symantec Corporation, Cupertino, California, 1 99 1 . [62]

Tanimoto, S.L. & Kent, E.W. (1990): Architectures and algorithms for iconic-to­
symbolic transformations, Pattern Recognition, 23(12), 1 990, 1377-1388.

[13]

Tanimoto, S.L. (1990): VIVA: A visual language for image processing, Technical
Report #90-02-04, Department of Compu ter Science and Engineering,

University of Washington, Seattle, Washington. [42, 1 14]

Thorndike, E.L. (1898): Animal intelligence: an experimental study of the
associative processes in animals, The Psychological Review, Monograph

Supplements, 2, No.4., 1898. [18]

Thorpe, C. & Kanade, T. (1 989): Carnegie Mellon Navlab vision, Proceedings of

the Image Understanding Workshop, DARPA /ISTO, Palo Al to,
California, May 23-26, 1989, 219-231 . [8]

Unser, M. & Eden, M. (1 988): A Multi-resolution feature reduction technique for

image segmentation with multiple components, Proceedings of Computer
Vision and Pattern Recognition, Ann Arbor, Michiga n, June 5-9, 1 988, 568-

573. [12]

Unser, M., Pelle, G., Prun, P. & Eden. M. (1988): Computer analysis of m-mode

echocardiograms: sequential extraction of myocardial borders, In Brun,
P., Chadwick, R. S. & Levy, B. (Eds.): Cardiovascular dynamics and

models, Paris, INSERM, 1988, 304-310. [21]

Wegner, P. (1 987): Dimensions of object-based language deSign, Proceedings of the

OOPSLA 'S7 Conference, October 4-8, 1 987, Orlando, F1orida. [79]

White, A.G. & Johnstone, N.M. (1 991): Measurement of fruit surface colour in

'Gala' apple (Malus pumila Mill.) and twenty of i ts sports by image
analYSis, New Zealand Journal of Crop and Horticultural Science, 1 9 ,
1991, 221-223. [3]

Wilson, J.e. (1 987): Models of the human visual system applied to pattern
recognition, Ph.D. Thesis, Department of Electrical and Electronic
Engineering, Universi ty of Canterbury, Christchurch, New Zealand,
1987. [27, 53]

127

Appendix 1

Summary of the OpShop
Software

A 1 .1 Introduction

OpShop is general purpose image analysis software for colour Macintosh
computers. The distinctive feature of OpShop is its human-computer interface,
which is composed of an iconic visual language, where operations are denoted by

colour icons, and algorithms by a dataflow network of icons. Construction of

algorithms in OpShop are preformed by first selecting operations from the main

menu, then interconnecting the data paths between of the data terminals of the

operations. Input data terminals are denoted by triangular icons on the left side
of an icon, while output data terminals are denoted by triangular icons on the

right side of an icon. Each output terminal for an operation has an associated
output buffer in which the result of a calculation is stored. The contents of the
buffer is displayed by option-clicking on the output terminal icon. The content of

the result buffer persists until it is overwritten by a subsequent calculation. Each

operation has an assodated parameter control panel that can be opened by

option-clicking on the operation icon. Execution of an algorithm is performed in

128

three ways: (i) by double clicking operation icons, (ii) by adjusting a parameter

value, and (iii) by adjusting the algorithm data flow topology.

OpShop supports many standard image processing operations including those for

image arithmetic, data input and output, geometric transformation, test image

generation, linear and non-linear filters, Fourier transformations, contrast

enhancement, segmentation, and measurement Images may be written to and read

from PICf files. SubfJows are created by selecting the operations to be grouped in
the subfJow and then choosing the Create Sub flow menu item.

A1 .2 System requirements

OpShop requires a Macintosh with an 8-bit video card for the display of 256
shades of grey. The program requires 3 MBytes of memory by default, but this can

be reduced if only a few operations are used. OpShop requires system software
greater than version 6.0.7. System 6 system software must be used in conjunction

with Apple's 32-bit Quickdraw INIT (avail able with the Color Disk

distribution).

A 1 .3 Description of Operations

Key to symbols:

tbi denotes 'to be implemented'.
20 denotes two dimensional data array.
ME denotes mutually exclusive parameter list.

S denotes an ON-OFF switch.

[a .. b) denotes an integer scalar value between a and b inclusively.

A 1 .3.1 General Menu
Brief description: Loads a PICf image file into OpShop.

Outputs:

(20): The loaded image.

Brief description (fbi): Saves an OpShop as a PICf file.

Input:

(20) The image to save.

Add C

Sub C

Mult C

Brief description (tbi): Adds a constant value to a 20 image.

Input:

(j) (20) Input image.

Output:

(i) (20) Input image + Offset.

Parameters:
(j) [0 . . 255] Offset: Value to be added to the input image.

(ii) (ME)

129

Wrap: Overflow and underflow result values are wrapped around.

Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Brief description (tbO: Subtract a constant value from a 20 image.

Input:

(i) (20) Input image.

Output:

(i) (20) Input image - Offset.
Parameters:

(i) [0 .. 255] Offset: Value to be subtracted from the input image.
(ii) (ME)

Wrap: Overflow and underflow result values are wrapped around.
Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Brief description (tbl): Multiplies a 20 image by a constant

Input:

(i) (20) Input image.

Output:

(i) (20) Input image • Factor.
Parameters:

(i) (Real) Factor: Multiplication factor.
(ii) (ME)

Wrap: Overflow and underflow result values are wrapped around.

Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Div C

Invert

:lear Im�ge

Clip

Brief description (tbi): Divides a 2D image by a constant.

Input:

(i) (2D) Input image.

Output:

(j) (2D) Input image / Denominator.
Parameters:

(i) (Real) Denominator: The value to be divided by.
(ij) (ME)

130

Wrap: Overflow and underflow result values are wrapped around.

Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Brief description: Inverts the intensity range of a 2D image.

Input:

(i) (2D) Input image.

Output:

(i) (2D) Inverted image.

Brief description (tbi): Sets aU pixels in an image to zero.

Input:

(i) (2D) Input image.
Output:

(i) (2D) Cleared image.

Brief description (tbi): Clips the intensity range of a 2D image between two

intensities. Any pixel whose value is outside these intensities is

truncated to the nearer intensity. Pixel values between the two

• intensities are not affected.

Input:

(i) (2D) Input image.

Output:

(i) (2D) Clipped image.

Parameters:

(i) [0 .. 255] Lower intensity

(ii) [0 .. 255] Upper intensity

Subtr�ct

Mult 2

Brief description (tbi): Adds two images.

Input:

Output:

(i) (20) First addend.

(ii) (20) Second addend.

(i) (20) The sum of the two addends.

Parameters:

(i) (ME)

131

Wrap: Overflow and underflow result values are wrapped around.

Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Brief description: Calculates the difference of two images.

Input:

(i) (20) Reference image.

(ii) (20) Image to be subtracted.

Output:

(i) (20) The image representing Input (i) - Input (ii).
Parameters:

(i) (ME)

Wrap: Overflow and underflow result values are wrapped around.
Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Brief description (tbi): Multiplies two images.

Input:

Output:

(i) (20) First factor.

(li) (20) Second factor.

(i) (20) The product of the two factors.
Parameters:

(i) (ME)
Wrap: Overflow and underflow result values are wrapped around.

Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Div 2

Brief description (tbi): Divides two images.

Input:

Output:

(i) (20) Numerator image.

(ii) (20) Denominator image.

(i) (20) The ratio image

Parameters:
(i) (ME)

132

Wrap: Overflow and underflow result values are wrapped around.
Saturate: Overflow and underflow result values are constrained to the

range 0 to 255.

Brief description (tbi): Calculates the bitwise boolean AND of intensities of

two images. The truth table for a bitwise boolean AND is:

Input:

Output:

Input 1 Input 2 Output

0 0 0

o

1

1

1

o

1

(i) (20) First image.

(li) (20) Second image.

(i) (20) ANDed image.

o

o

1

Brief description (tbi): Calculates the bitwise boolean OR of intensities of two

images: The truth table for a bitwise boolean OR is:

Input:

Output:

Input 1 Input 2 Output

0 0 0

o

1

1

1

o

1

(i) (20) First image.

(ii) (20) Second image.

(i) (20) ORed image.

1

1

1

Flip Horz

Rotat�

133

Brief description (tbi): Calculates the bitwise boolean Exclusive OR of

intensities of two images. The truth table for a bitwise boolean XOR is:

Input:

Input 1 Input 2 Output

o 0 0

o

1

1

1

o

1

(i) (20) First image.

(ii) (20) Second image.

1

1

o

Output:

(i) (20) XORed image.

Brief description (tbi): Geometrically reflect the pixel intensities along a

vertical line that divides the image into equal left and right halves.

Input

(i) (20) Input image.

Output:

(i) (20) Transformed image.

Brief description (tbi): Geometrically reflect the pixel intensities along a

horizontal line that divides the image into equal top and bottom

halves.

Input:

(i) (20) Input image.

Output:

(i) (20) Transformed image.

Brief description (tbi): Geometrically rotate the pixel intensities through an

arbitrary angle/

Input:

(i) (20) Input image.

Output:

(i) (20) Transformed image.

Parameters:

(i) (Real): Angle (in degrees) to rotate image. Positive values denote an

anti-clockwise rotation, while negative values denote a clockwise

rotation.

Transpose-

'w'�dge

I� ·

Mak� Cross

Brief description (tbi): Geometrically transpose the pixels intensities lying

along the rows and columns of an image.

Input:

(i) (2D) Input image.

Output:

(i) (2D) Transposed image.

Brief description (tbi): Resize the image.

Input: .

(i) (2D) Input image.

Output:
(i) (2D) Resized image.

Parameters:

(i) [0 .. 2048J New x dimension

(ii) [0 . . 2048J New y dimension

134

(iii) (ME) Nearest Neighbour / 1st Order: Order of the interpolation or

extrapolation.

Brief description: Generate a Wedge test image.

Output:
(i) (2D) Wedge image.

Parameters:

(i) [0 .. 255] Period of the wedge in y direction.

Brief description: Generate a Cross test image.

Output:
(i) (2D) Cross image.

Parameters:

(i) [0 .. 255] Cross intensity.

(ii) [0 .. 255] Background intensity.

Brief description: Superimpose Gaussian distributed intensity noise on an

image.

Input:

(i) (2D) Input image upon which noise is to be superimposed

Output:
(i) (2D) Image with superimposed noise.

Parameters:

(i) [0 . . 255] Standard deviation of the noise distribution.

Clr Border

·jl�
Range

Brief description: Sets the intensities of the border pixels of an image to zero.

The border to a single pixel wide.

Input:

(i) (20) Input image.

Output:
(j) (20) Image with cleared border.

A 1 .3.2 Preprocessing Menu
Brief description(tbi): Filters the image selecting as the output the minimum

pixel value within a specified size window.

Input:

(i) (20) The image to be filtered.

Output:
(i) (20) The resultant filtered image.

Parameters:
(i) [0 . .255] X dimension of the window

(ii) [0.255] Y dimension of the window

135

Brief description (tbi): Filters the image selecting as the output the maximum

pixel value within a Specified size window.

Input:

(i) (20) The image to be filtered.

Output:

(i) (20) The resultant fil tered image.
Parameters:

(i) [0 . .255] X dimension of the window

(ii) [0.255] Y dimension of the window

Brief description (tbi): Filters the image selecting as the output the difference

between the maximum and minimum pixel value within a Specified

size window. Such a filter is useful for detecting edges within the input

image.

Input:

(i) (20) The image to be filtered.
Output:

(i) (20) The resultant filtered image.

Parameters:

(i) [0.255] X dimension of the window

(ii) [0.255] Y dimension of the window

Brief description (tbi): Rank filters an image using a 3 x 3 square window.

Input:

(i) (20) The image to be filtered.

Output:
(i) (20) The resultant filtered image.

Parameters:

(i) [0 . . 9] The rank value to be used.

Brief description: Filters an image using a moving average in a window.

Input:

(i) (20) The image to be filtered.
Output:

(i) (20) The resultant filtered image.

Parameters:

(i) [0 . . 255] X dimension of the window

(ii) [0 . .255] Y dimension of the window

(iii) (ME) Trim/ Zero.

Trim: As the window nears the edge of the image, the window is
reduced in size by taking the average only of the window
pixels within the image.

Zero: The window remains the specified size, and the pixels outside
the image are assumed to be zero.

Brief description (tbi): Filters an image using a Gaussian weighted moving

average in a window.

Input:

(i) (2D) The image to be filtered.

Output:
(i) (2D) The resultant filtered image.

Parameters:
(i) [0 . .255] X dimension of the window

(ii) [0 . . 255] Y dimension of the window

(iii) (ME) Trim/ Zero.
Trim: As the window nears the edge of the image, the window is

reduced in size by taking the average only of the window

pixels within the .image.

Zero: The window remains the specified size, and the pixels outside

the image are assumed to be zero.

136

II . " .
I! !!l

Robeorts

�II�
Sharpeon

137

Brief description (tbi): Filter an image selecting as the output pixel either the

minimum or maximum value from within a specified sized window,

depending on which is closer to the original pixel value. Such a filter

is useful for enhancing edges within the input image.

Input:

(i) (20) The image to be filtered.

Output:
(i) (20) The resultant filtered image.

Parameters:
(i) (0 . . 255) X dimension of the window
(ii) (0 . .255) Y dimension of the window

Brief description (tbi): Filter an image by taking a Robert's product within a

moving 2x2 window in the input image.

Input:

(i) (20) The image to be filtered.

Output:
(i) (20) The resultant filtered image.

Brief description (tbi): Filter an image by convolving the input image with a

Laplacian kernel.

Input:

(i) (20) The image to be filtered.
Output:

- m (20) The resultant filtered image.
Parameters:

(i) [0 .. 255) X dimension of the window

(ii) [0 . .255) Y dimension of the window

Brief description (tbi): Filters the image selecting as the output the mode pixel

value within a Specified size window.

Input:

(i) (20) The image to be filtered.
Output:

(i) (20) The resultant filtered image.

Parameters:

(i) (0 . .255] X dimension of the window

(ii) [0 . .255] Y dimension of the window

Variance

�II�
FFFT

Brief description (tbi): Filters an image by calculating the variance within a

specified size window.

Input:

(i) (20) The image to be filtered.

Output:

(i) (20) The resultant fil tered image.
Parameters:

(i) [0 .. 255] X dimension of the window
(ii) [0 .. 255] Y dimension of the window

Brief description (tbi): Filters the image selecting as the output the median

pixel value within a specified size window.

Input:

(i) (20) The image to be filtered.
Output:

(i) (20) The resultant filtered image.
Parameters:

(i) [0 . .255] X dimension of the window

(ii) [0 . .255] Y dimension of the window

Brief description (tbi): Performs the forward Fast Fourier Transform.

Input:

(i) (20 Complex) The spatial image.
Output:

(i) (20 Complex) The frequency space image.
Parameters:

. (i) (ME) Top-Left Origin/Centre Origin.
Top-Left Origin: Origin of the images is at (0, 0)

Centre Origin: Origin of the images is at the centre of the

images.

Brief description (tbi): Performs the reverse Fast Fourier Transform.

Input:

(i) (20 Complex) The frequency space image.

Output:
(i) (20 Complex) The spatial image.

Parameters:
(i) (ME) Top-Left Origin/Centre Origin.

Top-Left Origin: Origin of the images is at (0, 0)

Centre Origin: Origin of the. images is at the centre of the images.

138

::I!�
Make Z

�D�
Hist Stretch

Brief description (tbi): Create a complex image from real and imaginary

components or magnitude and phase components.

Input:

Output:

(i) (20) Real image or magnitude image.

(ii) (20) Imaginary image or phase image.

(i) (20 Complex) The resultant complex image.
Parameter:

(i) (ME) Rectangular IPolar: Form of the input and output components.

Brief description (tbi): Split components of a complex image into real and

imaginary components or magnitude and phase components.

Input:

Output:

(i) (20 Complex) The complex input image.

(i) (20) Real image or magnitude image.

(ii) (20) Imaginary image or phase image.
Parameter:

(i) (ME) Rectangular IPolar: Form of the input and output components.

139

Brief description: Stretches the contrast range of an image linearly so that the

given intensity range fills the available intensity range.
Input:

(i) (20) The image to be stretched
Output:

(i) (20) The stretched image
Parameters:

(i) [0.255] The intensity level that is set to O.
(ii) [0.255] The intensity level that is set to 255.

Brief description: Performs a local contrast enhancement by stretching the

intensities linearly within a window of the specified size. For each

window position, only the pixel in the centre of the window is

stretched.

Input:

(i) (20) The image to be filtered.

Output:
(i) (2D) The resultant filtered image.

Parameters:

(i) [0 . .255] X dimension of the window
(ii) [0 . .255] Y dimension of the window

�a ..
Pt D�tect

Brief description (tbO: Perfonns histogram equalisation on an image.

Input:

(i) (20) The image whose contrast is to be enhanced.

Output:
(i) (20) The contrast enhanced image.

A 1 .3.3 Segmentation Menu
Brief description <tbi): Performs 3x3 linear fil ter to detect isolated pixels.

Input:

Output:

Convolution kernel: -1 - 1 - 1

- 1 8 -1

-1 -1 - 1

(i) (20) The image to be filtered.

(i) (20) The filtered image.

Brief description (tbi): Performs 3x3 linear filter to detect isolated pixels.

e.g. Convolution kernel for horizontal lines:

Input:

Output:

-1 -1 - 1

2 2 2

- 1 -1 - 1

(i) (20) The image to be filtered.

(i) (20) The filtered image.

Parameters:

I

(i) (ME) Horizontal /Vertical/BR-TL/TR-BR: Direction of detected

. lines.

1 40

Labt" 1 Region

Fill

Brief description (tbi): Filters an image with a SOBEL filter. This is used for

detecting edges.

Input:

(i) (20) The image to be filtered.

Output:

(i) (20) The resultant filtered image.
Parameters:

141

(i) (3x3 MASK) The weights within the 3x3 window. These are
weights are for a linear convolution filter. The input image is filtered

twice, once with the weights and again with the weights transposed.
(ii) (ME) RMs/sUM/MAX:
RMs: The square root of the sum of the squares of the two filtered
images is returned.

SUM: Half of the sum of the absolute values of the two filtered images

is returned.

MAX: The maximum of the absolute values of the two filtered images
is returned.

Brief description: Finds and labels the intensity peaks in an image .

Input:

(i) (20) The image with the peaks.
Output:

(i) (20) The labelled image.
Parameters:

(i) [0 .. 255] An allowable tolerance between the peaks.

Brief description: Fills a region in an image within a Specified boundary.

Input:.

Output:

(i) (20) The image to be filled. A region from the seed is grown until

the specified boundary is reached.

(i) (20) The filled image.

Parameters:
(i) [0 .. 255] Fill intensity.

(ii) [0 .. 255] X position of seed pixel.
(iii) [0 .. 255] Y position of seed pixel.

(iv) (5) Diagonal: True assumes 8-connected boundary; False assumes 4-

ronnected boundary.

(v) (ME) Boundary == Fill: Fill boundary intensity is equal to fill

intensity

Boundary <= Fill: Fill boundary intensity is less than or equal to fill

intensity.

Boundary >= Fill: Fill boundary intensity is greater than or equal to

fill in tensi ty .

I t
"eshold

fif� -
ate Hist 1

kup 1 0

·sh LUT

Brief description: Thresholds an image so that pixel values between two

threshold intensities are set to 255, while those outside are set to O.
Input:

(i) (20) The image to be thresholded.

Output:

(i) (20) The resultant thresholded image.

Parameters:

(i) [0.255) The lower threshold intensity

(ii) [0.255] The upper threshold intensity

Brief description: Creates an intensity histogram of a 20 grey-scale image.

Input:

(i) (20) The image from which the histogram is to be calculated.

Output:

(i) (10) The resultant histogram.

Brief description (tbi): Transfonns the intensities of a grey-scale image by a

look-up table.

Input:

(i) (20) The image to be transformed.

(ii) (10) The look-up table that specifies the transformation.

Output:

(i) (20) The transfonned image.

Brief description (tbi): Assigns a Thresholding function to a LUT.

Input:

(i) (10) The input look-up table.

Output:

(i) (10) The look-up table containing the thresholding function.

Parameters:

(i) [0.255) The lower threshold intensity

(ii) [0.255) The upper threshold intensity

142

'odt> Rgn

143

Brief description: Creates 20 intensity histogram of two 20 grey-scale images.

Input:

The first image forms of the histogram, while the second image forms

the vertical axis.

(i) (20) The first image from which the horizontal axis of the

histogram is to be calculated.

(ii) (20) The second image from which the vertical axis of the

histogram is to be calculated.

Output:

(i) (20) The resultant 20 histogram.

Brief description: Transforms the intensities of two grey-scale image by a 20

look-up table to create a single 20 image.

Input:

Output:

(i) (20) The 20 look-up tablethat specifies the transformation.

(ii) (20) The first image to be transfonned (indexes the horizontal

axis).

(iii) (20) The second image to be transformed (indexes the vertical

axis).

(i) (20) The transformed image.

Brief description (tbO: Dilate white elements in a region.

Input:

(i) (20) The binary or grey-scale image to be dilated.

Output:

(i) (20) The dilated image.

Parameters:

(i) (ME) Binary/Grey Scale: type of input image.

Brief description (tbi): Erode white elements in a region.

Input:

(i) (20) The binary or grey-scale image to be eroded.

Output:

(i) (20) The eroded image.

Parameters:

(i) (ME) Binary/Grey Scale: type of input image.

�II�
Inten CHULL

II • •
l! !J

Bin CHULL

-
._. l! !J
Ske letonize

144

Brief description (tbi): Perfonns the convex hull of intensities along the rows of

an image.

Input:

(i) (20) The grey-scale image to be hulled.

Output:

(i) (20) The convex hull of the input image.

Brief description (tbi): Performs a convex hull operation on every white blob in

a binary image. If two or more blobs merge as a resul t of this operation,

the convex hull of the composite is returned. A convex hull is the

minimum are convex polygon that totally contains the object

Input

(i) (20) The binary image to be hulled.

Output:

(i) (20) The convex hull of the input image.

Brief description: Thins an image down to a single pixel wide skeleton.

Input

Output:

(i) (20) The binary image to be thinned. The pixels on the edge of the

image are cleared before processing begins.

(i) (20) The skeletonised image.

Parameters:

(i) [0 .. 255] Prune Length: Branches less than this number are excluded

from the skeletonised result.

(ii) (ME) Binary ICoded:

Binary: The skeleton is returned uncoded.

Coded: The skeleton is coded with the distance from the edge of the

blob.

·11· : �
Inten Prof

. Iii •
. � .
: �
I

Stats

I
!
I

3ubflIOW

145

A 1 .3.4 Measurement Menu
Brief description (fbi): Measures an intensity profile across the image. The line

of the profile is specified interactively by the u ser.

Input:

(j) (2D) The image to be measured.

Output:

(0 (lD) The list of intensity values.

Parameters:

Note :

(i) [0 . . 255] X co-ordinate o f point 1 .

(ii) [0 .. 255] Y co-ordinate o f point 1 .

(iii) [0 . . 255] X co-ordinate of point 2.

(iv) [0 .. 255] Y co-ordinate of point 2.

Eventually the l ine will specified by drawing a line over the image in

the display window, in addition to specifying the co-ordinates of the

end points.

Brief description (fbi): Returns statistics to describe the intensity distribution

of an image. The measured statistics include: mean, standard

deviation, maximum, minimum, range, mode.

Input:

(j) (2D) The image to be measured.

Output

(i) (Scalar) The single valued measurement.

Parameters:

(i) (ME) Mean/standard deviation /Maximum/Minimum/Range/Mode:

The statistic to be returned.

Brief description: Measures the area distribution for a collection of white

regions.

Input:

(i) (2D) The image to be measured.

Output

(i) (l D) The unsorted list of blob areas.

(ii) (10) The histogram of blob area distributions.

A 1 .3.5 Miscellaneous interface elements

The icon for an OpShop subflow.

A 1.4 Operation Icons
A 1 .4.1 General Menu

� " ;n �I
� ". � -

Read Imagl? Sav� Imagl?

�
Invert

� �
Div 2

� H±L
Roh�e

I -"I
Clr Border

r---;
Jsj

Cll?ar Image

l r �"��
AND 2

t]J.�'.91 ---

� i'i�
Transpose

r +j Ibe- dl
Add C

A 1 .4.2 Preprocessing Menu

rr � r ii rr Ib - ::!.J 1k :::!J

� L!J
Robeds

Ii 91
M4X Range

rn1
00
Mode

Q5
Spli� Z

A 1 .4.3 Segmentation Menu

r --=jl -:C'-l
�r-:�, :t

P� De�ed

i n] , , (\
� '!!!!J

Crea�e His� 1

rr .. 51

'f � 1
� ;j

Ln Detect rrVj
� &:!J

Lookup 1 D

Inten CHULL

� = �
Sobel

.Lr:�
Thresh LUT

l!
Bin CHULL

A 1 .4.4 Measurement Menu

Inten Prof Shts Distribution

"'edge

1k :!.J
Labeo 1 Region

l' 'bY .. / '. "

� \ .�
Crea�eo His�2

Ske 1etonize

Ic �I
f'1ult C

m
&IJ

Flip Horz:

�
Makl? Cross

rill
�
Gauss

146

i J):T I!!: l!:!J
Mu1t 2

r�I
Flip Vert

D�U
Enhance

f£�
Hist Eq

