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Abstract

In this thesis I study the effects of gap junctions on pattern formation in a neural field
model for working memory. I review known results for the base model (the “Amari
model”), then see how the results change for the “gap junction model”.

I find steady states of both models analytically and numerically, using lateral inhibition
with a step firing rate function, and a decaying oscillatory coupling function with a smooth
firing rate function. Steady states are homoclinic orbits to the fixed point at the origin. 1
also use a method of piecewise construction of solutions by deriving an ordinary differential
equation from the partial integro-differential formulation of the model. Solutions are
found numerically using AUTO and my own continuation code in MATLAB. Given an
appropriate level of threshold, as the firing rate function steepens, the solution curve
becomes discontinuous and stable homoclinic orbits no longer exist in a region of parameter
space. These results have not been described previously in the literature.

Taking a phase space approach, the Amari model is written as a four-dimensional,
reversible Hamiltonian system. I develop a numerical technique for finding both symmetric
and asymmetric homoclinic orbits. I discover a small separate solution curve that causes
the main curve to break as the firing rate function steepens and show there is a global
bifurcation. The small curve and the global bifurcation have not been reported previously
in the literature. Through the use of travelling fronts and construction of an Evans
function, I show the existence of stable heteroclinic orbits.

I also find asymmetric steady state solutions using other numerical techniques. Various
methods of determining the stability of solutions are presented, including a method of
eigenvalue analysis that I develop. I then find both stable and transient Turing structures
in one and two spatial dimensions, as well as a Type-I intermittency. To my knowledge,
this is the first time transient Turing structures have been found in a neural field model. In
the Appendix, I outline numerical integration schemes, the pseudo-arclength continuation

method, and introduce the software package AUTO used throughout the thesis.
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