
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

MODULAR LOCAL SEARCH:

A FRAMEWORK FOR SELF-ADAPTIVE METAHEURISTICS

A THESIS PRESENTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN DECISION SCIENCE AT

MASSEY UNIVERSITY

David Colin Woods

2010

i

Abstract

This research develops Modular Local Search (MLS), a framework such that trajectory-based

metaheuristics can be expressed as subsets of “modules” from a common library, with a common

structure. The standardized modules and structure allow the easy formulation of common metaheuristic

paradigms, as well as the easy creation of relatively complex hybrids by simply listing the modules that

should be included. A new markup language called Modular Local Search Markup Language

(MLSML) is developed so that new metaheuristics can be implemented declaratively, rather than

programmatically.

Some advanced ideas are introduced and explored, whereby metaheuristics are able to modify

themselves during their execution, by varying parameters and swapping modules into and out of

activation. This ability introduces the potential for semi-intelligent algorithms that are capable of a type

of learning. Several demonstration methods are developed and these show promise on a small test set

of problem instances.

A new combinatorial optimization problem is developed to serve as the testing ground for the new

heuristic ideas. The Arc Subset Routing Problem (ASRP) involves routing a vehicle on a graph,

choosing a subset of the arcs, such that the reward collected by traversing these arcs is maximised

subject to a constraint on the total distance travelled. This problem is first formulated and explored as a

traditional Operations Research investigation; construction heuristics are developed, as well as some

improvement routines for local search, and computational tournaments are performed to compare the

methods.

Some attention is given to developing methods to predict which of two heuristics is most suited to a

given problem instance, based on an analysis of the characteristics of that problem. Initial results

demonstrate the potential of such an approach.

The MLS framework offers a powerful and flexible structure both for the easy and consistent

implementation of existing metaheuristics, and also as a platform for the development of new, advanced

metaheuristic ideas. Early results are encouraging, and a number of directions for future research are

discussed, including some complex real-world problems for which the self-adaptive capabilities of MLS

would be especially useful.

ii

iii

Acknowledgements

I would like to thank all the many people who have supported and encouraged me over the years. It has

been a long journey, including several complete changes in direction, and the effort to complete this

work has been made easier by their understanding.

First and foremost I need to express my gratitude to my supervisors, Mark Bebbington and John Giffin.

Mark, who took over as chief supervisor after John moved to Canterbury, has served as a constant

reality check and I appreciate his resisting the urge, overwhelming at times I’m sure, to wash his hands

of me as the pressures of developing a career and a family meant that my progress was, at times,

intermittent. Extra special thanks are due to John, who served as my mentor and friend during my

undergraduate years. Many hours were spent in his office discussing the world and Operations

Research, and many ideas were discussed, including the germs of what later became this research,

although via a circuitous route. Since then he has provided much timely advice, and encouragement to

PhD thinking, which has served, barely, as a restraint on my own tendency to bite off more than I can

chew. His critical eye has also prevented many potentially embarassing typos and misspellings,

although of course I take responsibility for any mistakes in the final thesis, mindful of the words of

Randy Milholland, who said that “typos are very important to all written form. It gives the reader

something to look for so they aren't distracted by the total lack of content in your writing”. I should

also acknowledge a former PhD student of John’s, Mark Johnston, the formatting and layout of whose

thesis I shamelessly copied.

Continuing to work on this research over these many years would not have been possible without the

support of my boss, Graeme Gee. As well as providing me the opportunity to develop my career in

analytics consulting, which has allowed me to gain a hands-on appreciation for techniques that work in

the real world, and the complexities of “real” optimization problems, he has been unfailingly

supportive. This support has extended to dedicated periods of time where I could focus on my PhD

research, financially sponsoring my study, including fees and any text books I decided I must have, and

a steady stream of computing resources. In the last stages of writing up this thesis he even drove me to

a meeting at Massey because I hadn’t been getting enough sleep to drive safely. His unwavering

support has made the completion of this work possible.

iv

Last, but certainly not least, I need to thank my family and friends. My friends, who have offered many

opportunities to escape for a time from thinking about anything related to Operations Research, in fact

probably too many opportunities. My family, who have always had faith that I would finish; one might

say blind faith, but that is what families are for. Especial thanks to my Nana, who has been patiently

looking forward to my finishing for more years than I care to count, and to my father, who never fails to

nag me about it. My biggest appreciation is reserved for my partner Vin; she has been heroically

patient and supportive, especially over the last few months of the write-up while I have been absent in

order to devote myself to it. She undertook, mostly without complaint, essentially to act as a single

mother to our daughter Tui while I industriously finished this thesis. Thanks are also due to Tui; the

burning desire to get back to see her motivated more late nights and early mornings than are really

healthy – she finally provided my inspiration to finish, regardless of how “finished” I feel.

v

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents v

List of Figures ix

List of Tables xiii

List of Algorithms xv

1 Introduction 1

1.1 Local search and metaheuristics.. 1

1.2 Trajectory-based metaheuristics.. 3

1.3 Introducing Modular Local Search.. 3

1.4 Research overview .. 5

1.5 Research questions and goals .. 7

1.6 Other frameworks.. 7

1.7 Thesis structure ... 10

Part I The Arc Subset Routing Problem 13

2 Arc Routing Literature Review 17

2.1 Vehicle routing problems in general ... 17

2.2 Arc routing problems .. 18

2.3 Subset routing problems.. 24

vi

3 Preliminary Investigation of the ASRP 33

3.1 Formulation of the ASRP .. 33

3.2 Construction heuristics .. 42

3.3 Improvement procedures ... 48

3.4 Problem generation principles ... 52

3.5 Specific problem instances .. 58

3.6 Preliminary experimentation ... 61

3.7 Phase 1 experimentation.. 64

3.8 Phase 2 experimentation.. 68

Part II MLS Foundations 83

4 Modular Local Search 87

4.1 Introduction ... 87

4.2 Structure of MLS... 88

4.3 The search scheme... 89

4.4 The control system .. 97

4.5 The memory structures .. 105

4.6 Summary of MLS components.. 108

4.7 Examples of metaheuristics as MLS ... 109

4.8 Discussion.. 117

5 Metaheuristic Concepts 123

5.1 Ascent Search .. 123

5.2 Iterated Search ... 124

5.3 Thresholding.. 137

5.4 Adaptive Memory and Tabu Search.. 145

5.5 Other trajectory methods ... 153

Part III Experimentation and Analysis 157

6 Applying MLS to the ASRP 161

6.1 Introduction ... 161

6.2 Problem instance design .. 162

6.3 MLS metaheuristics... 167

6.4 Experimentation and analysis.. 181

6.5 Hybrids .. 203

6.6 Discussion.. 212

7 Heuristic Problem Design 215

7.1 Introduction ... 215

7.2 New problem features.. 216

7.3 The Maximally Diverse Subset Selection Problem... 218

vii

7.4 A tiny illustrative problem .. 219

7.5 Measures of distance ... 219

7.6 Heuristics... 223

7.7 Solving the tiny problem... 224

7.8 Additional measures of diversity... 225

7.9 A giant selection problem ... 228

7.10 Solving the giant problem ... 229

7.11 Using MLS to design problem instances... 237

8 Advanced MLS Applications 247

8.1 Introduction ... 247

8.2 Using MLS to design MLS heuristics ... 250

8.3 Adaptive Diversification Local Search ... 267

9 Conclusions and Recommendations for Future Research 277

9.1 Overview of research .. 277

9.2 Experimental design.. 281

9.3 Contributions and implications ... 282

9.4 Further research directions .. 286

Appendices 301

A Glossary of MLS Terms 303

B Programmatic Structure 309

B.1 Introduction ... 309

B.2 Object-oriented programming structure .. 310

B.3 Extension to new problem domains .. 318

C Modular Local Search Markup Language (MLSML) 321

C.1 Structure of MLSML... 321

C.2 Examples of MLSML specifications... 324

D Discussion of Possible Extensions to the ASRP 339

D.1 Introduction ... 339

D.2 Variations on the Basic ASRP .. 340

D.3 Reward structures.. 342

D.4 Service variation.. 348

D.5 Competition... 350

E Bibliography 355

ix

List of Figures

2.1 Example of a graph that cannot be made Eulerian ...20

2.2 Example illustrating the difference between service and traversal..22

3.1 Examples of cycles...45

3.2 Example of nested cycles ...45

3.3 Basic ASRP move-types ..49

3.4 Example of a 6x6 grid graph ..52

3.5 Example of a grid graph. ..54

3.6 Graph partition ...56

3.7 Grids generated using GRID GROW ...57

3.8 Grids generated using GRID SELECT ...57

3.9 Grids which were misclassified..57

3.10 Designed problem instances...59

3.11 Examples of random grid graphs..59

3.12 Ratio of reward to computation time (efficiency) ..63

3.13 Results of constructive heuristics on complete grids with increasing budget66

3.14 Approximate divisions of heuristic performance for unimproved heuristics68

4.1 The search iteration process ...90

4.2 Relationships of solutions and moves in the MLS search iteration process.................................91

4.3 The MLS control system ..97

4.4 Partial solution hierarchy ...117

5.1 Performance of initial methods on benchmark instances ..127

5.2 Performance of initial methods on random instances..127

5.3 Pictorial representation of the perturbation step for iterated local search.128

x

5.4 Performance of perturbation strengths on benchmark instances .. 129

5.5 Performance of perturbation strengths on random instances.. 129

6.1 Sum of reward collected by heuristic for 246 instance overlap set ... 183

6.2 Score means for Steepest Ascent heuristics with 95% confidence bars 184

6.3 Total reward for Steepest Ascent... 185

6.4 Mean score for Steepest Ascent... 185

6.5 Total reward for Simulated Annealing .. 190

6.6 Mean score for Simulated Annealing .. 190

6.7 Mean score by “temp” ... 191

6.8 Mean score for each problem instance by “temp”... 192

6.9 Mean score by “rate” ... 193

6.10 Mean score by “iterations” .. 193

6.11 Mean score by “threshold” .. 193

6.12 Proportion of problem instances correct for each heuristic pair .. 197

6.13 Total reward for Tabu Search.. 198

6.14 Mean score for Tabu Search.. 198

6.15 Total reward for VNS.. 201

6.16 Mean score for VNS.. 201

6.17 Sum of reward collected by heuristic for 246 instance overlap set, including hybrids 209

6.18 Scatter plot of scores: TS-VNS1 vs Tabu10.. 211

6.19 Scatter plot of scores: TS-VNS3 vs Tabu10.. 211

7.1 Distribution of normalised Euclidean distances for the tiny problem 220

7.2 Distribution of generalized interpoint distances for the tiny problem....................................... 221

7.3 Scatter plot of GID vs NED for the tiny problem.. 222

7.4 Examples of problem instances with differing diversity ... 227

7.5 Overlap of instances for the three methods on the giant problem ... 230

7.6 Distribution of Z for instances where budget = 0.75 * arcs... 239

7.7 Trajectory of Z when adding arcs (StpAscBasic – StpAscExt12)... 240

7.8 Trajectory of Z* when adding arcs (StpAscExt12 – StpAscBasic) ... 241

7.9 Distribution of Z by number of arcs .. 242

7.10 Distribution of Z (105 arcs) ... 242

7.11 Distribution of Z (210 arcs) ... 242

7.12 Trajectory of Z with 10 candidates .. 243

7.13 Trajectory of Z* with 10 candidates .. 243

7.14 Trajectory of Z with 20 candidates .. 243

xi

7.15 Trajectory of Z* with 20 candidates...243

8.1 Graph for problem instance P1...248

8.2 Graph for problem instance P2...248

8.3 Graph for problem instance P3...249

8.4 Graph for problem instance P4...249

8.5 Graph for problem instance P5...249

8.6 Objective function trajectories for MDP1 and MDP2 on P1 ...263

8.7 Objective function trajectories for MDP1 and MDP2 on P2 ...263

8.8 Objective function trajectories for MDP1 and MDP2 on P3 ...264

8.9 Objective function trajectories for MDP1 and MDP2 on P4 ...264

8.10 Objective function trajectories for MDP1 and MDP2 on P5 ...264

9.1 An example of a route displayed with the route visualizer ..318

xiii

List of Tables

3.1 Definition of incidence and adjacency sets ..35

3.2 Specifications for problem set A of random graphs...60

3.3 Specifications for problem set B of random graphs ...61

3.4 Rewards and computation times for RICHEST NEIGHBOUR sensitivity analysis62

3.5 Results from Tabu Search sensitivity analysis ...64

3.6 Heuristics used in phase 1experiments...65

3.7 Results for unimproved heuristics on complete grids ..65

3.8 Results for improved heuristics on complete grids ..67

3.9 Results for set A random graphs ..67

3.10 Heuristics used in phase 2 experiments..69

3.11 Results from experiments on designed graphs with C = 36 ...70

3.12 Results from experiments on designed graphs with C = 72 ...71

3.13 Results from experiments on designed graphs with C = 108 ...72

3.14 Results from experiments on designed graphs with C = 144 ...73

3.15 Results from experiments on designed graphs with C = 180 ...74

3.16 Results from experiments on random graphs with C = 36 ...75

3.17 Results from experiments on random graphs with C = 72 ...76

3.18 Results from experiments on random graphs with C = 108 ...77

3.19 Results from experiments on random graphs with C = 144 ...78

3.20 Results from experiments on random graphs with C = 180 ...79

6.1 Configuration settings for the Steepest Ascent MLS instances..174

6.2 Configuration settings for the Simulated Annealing MLS instances ...177

6.3 Configuration settings for the Tabu Search MLS instances ...179

xiv

6.4 Configuration settings for the Variable Neighbourhood Search MLS instances....................... 181

6.5 Proportion of problem instances at each rank for Steepest Ascent.. 185

6.6 Combinations of ranks for Steepest Ascent... 187

6.7 Relative importance of input characteristics to neural net... 188

6.8 Classification results on the test set ... 189

6.9 Distribution of ranks for Simulated Annealing heuristics ordered by total reward................... 190

6.10 Parameters for top 4 Simulated Annealing heuristics.. 191

6.11 Proportion of problem characteristic variation explained by each principle component 194

6.12 Coefficients of the first six principle components under varimax rotation 195

6.13 Distribution of ranks for Tabu Search heuristics ordered by total reward................................. 199

6.14 Results of pair-wise Tabu Search prediction ... 200

6.15 Partial summary of rank distribution of VNS heuristics ... 202

6.16 Frequency of ranks between SA6 and Tabu10 .. 202

6.17 Classification results on the test set for TS and SA... 203

6.18 Combinations of ranks for TS-VNS hybrids and Tabu10 ... 210

6.19 Comparison of Tabu10 and TS-VNS3 .. 211

6.20 Comparison of Tabu10 and SA-TS ... 211

7.1 Results for the tiny problem .. 225

7.2 Diversity measures for the example sets ... 228

7.3 Total distance for the results of giant problem .. 231

7.4 Total absolute distance by characteristic for the giant problem .. 232

7.5 Average consecutive distance by characteristic for the giant problem...................................... 233

7.6 Standard deviation of consecutive differences by characteristic for the giant problem 234

7.7 Coefficient of variation of consecutive differences by characteristic for the giant problem..... 235

7.8 Maximum consecutive difference by characteristic for the giant problem 236

8.1 Density and budget characteristics for the test set of problem instances................................... 248

8.2 Reward collected by each heuristic on the test problem instances .. 250

8.3 Reward collected by the MDP heuristics and benchmark heuristics on the test problems........ 262

8.4 MDP move frequencies for MDP2.. 265

8.5 Reward collected by the ADLS heuristic, compared with other heuristics 274

xv

List of Algorithms

2.1 algorithm CONSTRUCT EULER TOUR FROM EULERIAN GRAPH..19

2.2 heuristic TSTSP ..30

3.1 heuristic PRUNE AND ROUTE...44

3.2 heuristic ROUTE AND PRUNE...46

3.3 heuristic RICHEST NEIGHBOUR (n) ..47

3.4 procedure DELETE REDUNDANCY ...49

3.5 procedure GRID GROW...55

3.6 procedure GRID SELECT...56

4.1 procedure MLS SEARCH ITERATION PROCESS ..89

5.1 metaheuristic ITERATED LOCAL SEARCH ..125

5.2 metaheuristic MULTI-START..131

5.3 procedure GREEDY RANDOMIZED ADAPTIVE CONSTRUCTION ..133

5.4 metaheuristic SIMULATED ANNEALING...138

5.5 MLS admissibility condition METROPOLIS CONDITION ..144

5.6 MLS admissibility condition BASIC THRESHOLD ACCEPTING..144

5.7 MLS admissibility condition GREAT DELUGE..145

5.8 MLS admissibility condition RECORD-TO-RECORD TRAVEL ...145

5.9 procedure HYPERHEURISTIC..154

6.1 procedure GRIDDESELECT ..163

6.2 procedure GRIDGROW-k-SEEDS..164

6.3 MLS admissibility condition FEASIBLE (ASRP)..169

6.4 MLS admissibility condition IMPROVING ..169

6.5 MLS fitness function OBJECTIVE..170

xvi

6.6 MLS update-memory UPDATE BEST-SO-FAR (OBJECTIVE) ... 170

6.7 MLS trigger LOCAL OPTIMUM.. 170

6.8 MLS trigger ITERATIONS SINCE LAST TRIGGER (trig) .. 171

6.9 MLS trigger TOTAL ITERATIONS .. 171

6.10 MLS trigger TRIGGER TRIP COUNT (trig) ... 172

6.11 MLS response TERMINATE... 172

6.12 MLS response DEACTIVATE TRIGGER (trig)... 172

6.13 MLS response ACTIVATE TRIGGER (trig) ... 172

6.14 MLS response DEACTIVATE ADMISSIBILITY CONDITION (c).. 172

6.15 MLS response ACTIVATE ADMISSIBILITY CONDITION (c) .. 173

6.16 MLS configuration RICHEST NEIGHBOUR... 173

6.17 MLS configuration STEEPEST ASCENT.. 173

6.18 MLS configuration SIMULATED ANNEALING... 174

6.19 MLS admissibility condition ANNEALING PROBABILITY .. 175

6.20 MLS response REDUCE ANNEALING TEMPERATURE .. 175

6.21 MLS trigger TEMPERATURE THRESHOLD... 176

6.22 MLS configuration TABU SEARCH ... 178

6.23 MLS admissibility condition TABU ARCS WITH ASPIRATION .. 178

6.24 MLS update-memory UPDATE TABU ARCS ... 179

6.25 MLS configuration VARIABLE NEIGHBOURHOOD SEARCH .. 180

6.26 MLS response SWITCH TO BASIC MOVE-TYPES.. 180

6.27 MLS response SWITCH TO EXTENDED MOVE-TYPES .. 181

6.28 MLS configuration HYBRID – SA & TS .. 204

6.29 MLS configuration HYBRID – SA & VNS... 206

6.30 MLS response SET CANDIDATE LIST SIZE (size) ... 207

6.31 MLS response SET ANNEALING TEMPERATURE (temp) .. 207

6.32 MLS configuration HYBRID – TS & VNS ... 208

8.1 MLS configuration ITERATIVE SAMPLING LOCAL SEARCH .. 250

8.2 MLS configuration ASRP TEMPLATE FOR MDP... 257

8.3 MLS admissibility condition ALL ADMISSIBLE ... 258

8.4 MLS admissibility condition IMPROVING FITNESS AND FEASIBLE OR INFEASIBLE BUT

DECREASING COST ... 258

8.5 MLS admissibility condition ANNEALING PROBABILITY AND FEASIBLE 259

8.6 MLS admissibility condition TABU ARCS WITH ASPIRATION AND FEASIBLE 260

8.7 MLS configuration MDP CONTROL HEURISTIC 1.. 261

8.8 MLS configuration MDP CONTROL HEURISTIC 2.. 262

xvii

8.9 MLS response START DIVERSIFICATION PHASE ..270

8.10 MLS response END DIVERSIFICATION PHASE..271

8.11 MLS update-memory UPDATE DIVERSIFICATION WEIGHTS...272

8.12 MLS configuration ADAPTIVE DIVERSIFICATION LOCAL SEARCH..273

8.13 MLS fitness function REWARD TO COST RATIO ..274

1

 C H A P T E R 1

1 Introduction

1.1 Local search and metaheuristics

1.2 Trajectory-based metaheuristics

1.3 Introducing Modular Local Search

1.4 Research overview

1.5 Research questions and goals

1.6 Other frameworks

1.7 Thesis structure

1.1 Local search and metaheuristics

A major part of Operations Research is concerned with methods of solving combinatorial problems; this

is known as combinatorial optimization. A combinatorial problem is one which has a finite, but often

very large, number of solutions, and for which it is possible to evaluate an objective function. To solve

a combinatorial problem it is desirable to use an algorithm, a method which is guaranteed to find the

best solution, the optimum (or rather an optimum, if there are multiple best solutions with the same

objective function value). The most basic algorithm is called Explicit Enumeration, and it involves

simply evaluating all of the possible solutions, and then choosing the best one.

Algorithms are fine for small problems, and for problems with structures that they are suited for,

however there are a large class of problems where the effort required to solve them with exact methods

grows exponentially (or worse) with the size of the problem. For these problems it is believed that there

can be no algorithm that guarantees an optimum in a reasonable amount of time. In these cases

heuristics are used. A heuristic is a method for finding a solution, like an algorithm, except that this

solution may not be the optimum. The trade off is that heuristics usually run much faster than

algorithms; their aim is to find a reasonable solution in a reasonable amount of time. Note that we can

also use the word “algorithm” in the sense of a set of step-by-step instructions, in which case we

distinguish between exact algorithms and approximation, or heuristic, algorithms.

Early heuristic research concentrated on developing methods that were particular to a single problem.

An example is the Nearest Neighbour heuristic for the Travelling Salesman Problem (TSP). Given a set

2 Introduction Chapter 1

of cities, and knowing the distances between the cities, the Travelling Salesman Problem is to find a

tour through every city, and back to the starting point, so that the total distance travelled is minimized;

i.e., what order should the cities be visited in? The Nearest Neighbour heuristic is to start at any

arbitrary city and select the nearest unvisited city to visit next, repeating this until all cities have been

visited, and then returning to the starting point. Nearest Neighbour is an example of a construction

heuristic, a technique that assembles a solution to the problem iteratively; at each step a partial solution

is maintained, and a complete solution is found only at the completion of the heuristic.

The next development was the concept of local search methods. These heuristics were often used as

improvement routines that were applied after a construction heuristic had found an initial solution. In a

local search heuristic a full solution to the problem is transformed into another solution by a

perturbation procedure called a move. For the TSP an example of a move is swapping the positions of

two cities in the ordered sequence that defines the solution. The set of solutions that can be reached by

the application of one move defines the neighbourhood of a solution. The set of all solutions that can

be reached eventually by the repeated application of a set of moves is the search space for a problem

instance, and local search heuristics are so named because they “search” through this space for good

solutions.

The most basic local search heuristic is simply a random walk. This method chooses a neighbour at

random at each iteration, and good solutions are found by chance. A more effective strategy is to use a

hill-climbing approach, where at each iteration the search chooses a solution that has a better objective

function value than the current solution until there are no improving solutions within one move, in

which case a local optimum has been reached. For a given problem instance, and depending on the

moves available, which define the topology of the search space, there may be many local optima, many

of which may be severely sub-optimal.

Much research has been devoted to developing heuristics that have mechanisms to avoid or escape local

optima; these methods may be broadly termed metaheuristics. Although metaheuristics can, and often

do, include problem-specific components, there are several “families” of techniques that have been

developed over time that are rather more problem-agnostic; they are general techniques that are

designed to efficiently search a solution space. They operate through “moves” on “solutions” to find

“neighbours”; the actual mechanism of a move is not relevant to the metaheuristic routine’s logic,

although the quality of the move structures influences the ability of the metaheuristic to find good

neighbours, so the development of appropriate moves is still important.

An example of an early metaheuristic is Simulated Annealing, introduced in 1983 by Kirkpatrick et al.

[160]. Starting from an initial solution the metaheuristic evaluates neighbours one at a time. If a

neighbour improves the current solution value then it is accepted and becomes the new current solution.

If it is non-improving then it is accepted with a certain probability, p = e-δ/T, where δ is the difference

between the objective values of the neighbour and the current solution, and T is a parameter called the

temperature that decreases slowly as the search progresses. This has the effect that non-improving

solutions are accepted near the beginning of the search process but become progressively less likely,

intensifying the search as it (presumably) finds a good region of the search space.

1.2 Trajectory-based metaheuristics 3

It is worth noting that none of these definitions are absolute. For example there are metaheuristics that

are not based on a local search approach, including many that are hybrids with more traditional

algorithmic approaches such as Branch-and-Bound. Also, the problems that metaheuristics can solve

are not necessarily combinatorial. It is even not necessary that the solution space be finite; so long as

there is some defined neighbourhood structure, and a method for evaluating solutions, their techniques

may be applied.

1.2 Trajectory-based metaheuristics

The field of this research is in what may broadly be described as metaheuristics. However, there are

many different types of metaheuristic, and we restrict our attention to a particular sub-genre.

Metaheuristics can be classified in many different ways; for example: deterministic or stochasic,

sequential or parallel, memoryless or with memory, naturally terminating or not. Perhaps the most

fundamental distinction is between trajectory-based methods and population-based methods.

Population-based metaheuristics maintain a pool of solutions simultaneously, and each iteration

represents a “generation” of solutions that are modified and, especially, combined with each other to

form the next generation. In this way the population tends to “evolve” towards better solutions.

Perhaps the most popular are Genetic Algorithms, which mimic the process of evolution by artificial

selection, which is an incredibly powerful process in the real world. Many aspects of biological

processes have been incorporated into their algorithm analogues, such as crossover combinations and

mutations, with significant success, and population-based metaheuristics are a thriving field of study.

Trajectory-based metaheuristics instead maintain a single solution at a time, and a conceptual trajectory

is formed by the path of the search through the solution space. Trajectory-based metaheuristics

generally have mechanisms to intensify the search in a promising area, or diversify the search away

from a non-promising, or no-longer-promising, area (a local optimum is no longer promising once it has

been found). These metaheuristics too have a rich history of development, and modern metaheuristics

are growing ever more sophisticated. What were initially a number of distinct “families” of techniques

are beginning to blur and merge as hybrids become more prevalent.

In this research we restrict our attention to trajectory-based metaheuristics, and develop a taxonomy and

framework which accomodates the trend towards hybridization and sophisticated multi-phase

techniques. Our attention is further focussed on sequential, rather than parallel, methods, although

these are briefly discussed. For convenience we use the terms “heuristic”, “metaheuristic”, and “local

search” interchangeably to refer to sequentially processed trajectory-based techniques, except where it

is necessary to make a distinction.

1.3 Introducing Modular Local Search

The main challenge of this research is to formulate a taxonomy of (trajectory-based) metaheuristics, and

develop a framework whereby these can be expressed in a common “language”. We introduce

Modular Local Search (MLS). MLS is a conceptual metaheuristic template consisting of a number of

components that are capable of expressing most of the main trajectory-based metaheuristics. We

4 Introduction Chapter 1

identify, and explicitly formalize many concepts that are common in metaheuristic literature, but are

often implied, assumed, or have inconsistent definitions. We also incorporate several novel concepts.

MLS is designed to be modular, such that each MLS component fulfils an architectural role, and there

are many potential ways that each role can be implemented, corresponding to specific functions

(modules) derived from various metaheuristics. As an example, one of the MLS components is the

admissibility condition. Consider the neighbourhood of the current solution, defined as all the

solutions that can be reached with the application of one move. For most heuristics only a subset of the

neighbours are actually eligible to be chosen as the next solution in the trajectory; in ascent-based

heuristics only improving solutions are eligible, in Tabu Search (see Section 5.4.1) only solutions that

have not previously been made tabu are allowed, and in Simulated Annealing (see Section 5.3.1)

solutions are accepted probabilistically. Each of these conditions is a “module” that can act in the

admissibility condition role. MLS defines a number of other components that, acting together, define

any desired metaheuristic.

The fundamental structure around which MLS is based is the search iteration process, which in one

iteration starts with a given solution and chooses a neighbour solution according to the search scheme.

The search scheme defines the search topology (which solutions are in the neighbourhood, which are

admissible, and how attractive they are in relation to each other) and the search logic (how many

neighbours are examined, and in what order, before the search chooses the next solution in the

trajectory).

Most metaheuristics act through some mechansim to alter the search scheme. MLS introduces a new

concept to faciliate and control this process: triggers and responses. The trigger-response model is, to

the best of the author’s knowledge, a novel approach to metaheuristic control; it acts as the

“intelligence” of the metaheuristic. After each iteration of the search iteration process the triggers are

checked. These are functions that check the state of the search for predefined conditions or events. If a

trigger is “tripped” then the responses associated with that trigger are performed. The responses

perform tasks to modify the heuristic somehow, usually changing the search scheme.

Every heuristic has a termination criterion, which defines when the heuristic should stop. Commonly

used termination criteria are when a local optimum is reached, or when a certain number of iterations

have elapsed. In MLS the criterion would be the trigger, and the response would be termination.

However, the true power of the trigger-response model is that it is reflexive; the responses are not only

able to modify the search scheme, they are able to modify any other part of the MLS heuristic,

including the triggers and responses themselves. Due to its modular nature, when the appropriate

trigger is tripped the heuristic is able to completely transform itself. For example transforming from

Tabu Search to Simulated Annealing would simply require a set of responses to deactivate the

appropriate Tabu Search modules and activate the corresponding Simulated Annealing modules.

The other primary feature of MLS is the formalized memory structures. All the parameters required for

the operation of the search scheme (such as the number of neighbours to examine), as well as any

parameters that are required for specific modules (such as the tabu tenure) are stored as memory

parameter items that can be read by modules that need them and modified by responses. In addition

1.4 Research overview 5

other memory structures, for example lists such as the tabu list or a list of elite solutions, can also be

defined and modified. MLS has a number of specialised components that can be used to maintain these

memory structures, for example immediately after the search iteration process but before the triggers

are checked is an update-memory phase, where any memory update modules can be specified. The

final aspect of memory is a large number of automatically updated counters that keep track of the

number of iterations, the number of times a trigger has been tripped, etc.

1.4 Research overview

The original research topic of this PhD was subset-selection arc routing problems, following on from an

honours project of the author on the Snowplough Routing Problem. Preliminary reviews of the

literature led to an observation that most research in combinatorial optimization tended to perform one

of the following activities: development of a new heuristic or variation, and application of this to a

single, or limited number of, problems; development of a new problem or variation, and application of a

few basic heuristics to it; or the application of existing heuristics to existing problems, with some

evaluation of which is better in this case. Each of these activities is an important contribution to the

body of knowledge, but it seemed that there was no systematic way to compile this knowledge, to create

a standardized method for determining which heuristics were suited for which problems, and under

what conditions. Each piece of research seemed to contribute a number of isolated data points, but

because of different ways of structuring the heuristics and approaches to experimentation there was no

way to effectively combine these into a unified model. Hooker [144,145] made a similar complaint and

urged a more “scientific” approach to testing heuristics, although did not propose a specific framework

for doing so. James [150] echoed these ideas and sketched some suggestions for how this could be

implemented; these ideas were formative in the early development of MLS.

The need for a structured framework to support these ideas was the motivation for Modular Local

Search. While programming metaheuristics for the ASRP it became apparent that the different

techniques actually have most of their operation in common, and differ from each other in specific

operations. This lead to identifying the aspects that these heuristics have in common, and those they do

not, and development of the idea of modules that can “slot in” to specific roles; a heuristic could then

simply be represented as a list of modules. The reasoning was that this standardized structure would

provide a basis for meaningful comparisons between heuristics, and the structure would impose a type

of heuristic space, where small tweaks in parameters or modules would represent heuristics “close” in

heuristic space, and large differences in modules would represent heuristics “far apart” in heuristic

space. A similar structure imposed on problems would then allow an empirical modelling of the

relationshiip between problem space and heuristic space.

This type of investigation was briefly explored in the research; in the main experimental investigation

of Chapter 6 one of the analysis goals is to determine whether it is possible to predict which of two

heuristics will perform best on a certain problem instance, based solely on an analysis of the

characteristics of that problem instance. Although this was not a major research imperative, the results

of the analysis validate the concept that this is possible, and developing a systematic methodology for

this may be a fruitful direction for future research.

6 Introduction Chapter 1

Another side investigation in the research concerns the generation of “interesting” sets of problem

instances. The motivation for this investigation again derived originally from the concept of modelling

the relationship between problem characteristics and heuristic performance. Two approaches are

introduced. The first attempts to select a “maximally diverse” subset of problem instances from a larger

set that is randomly generated. The second method actually applies a version of MLS to design

problem instances with desired properties, which in this case is a large performance differential between

two heuristics.

The main direction of research eventually focused on the potential of the MLS framework to not only

express existing metaheuristics in a standardized and comparable way, but to enable the efficient

creation of new metaheuristics, utilizing the implicit hybridization that follows from modularization and

the self-adaptive capabilites that result from the trigger-response model. MLS was developed in the

Java programming language as an object-oriented framework that is problem-independent to as large a

degree as possible.

The goal of the experimentation in this research is to demonstrate and validate the applicability of the

MLS framework to the field of metaheuristic design, rather than to attempt to find a single new

metaheuristic that performs better than existing methods. This is done in three phases:

1. A number of standard metaheuristics are modelled as MLS, and extensive experimentation is

performed.

2. Some basic hybrids of the standard metaheuristics are developed to demonstrate the ease with

which this can be performed by mixing and matching modules with no new programming

required.

3. Several advanced metaheuristics are developed using the same modules used previously. These

are briefly applied to some test problems as proof-of-concept demonstrations of the flexibility

of MLS. The results suggest that these approaches have significant potential to facilitate

advanced metaheuristic design.

Another goal of the experimentation was to demonstrate the flexibilty and generality of the MLS

framework. A new markup language was developed so that new, quite sophisticated, metaheuristics

can be expressed declaratively, by specifying the combination of modules and parameters, rather than

programmatically. The modules of MLS are re-usable, and each additional metaheuristic that is

modelled as MLS contributes to a “toolbox” of modules that can be mixed and matched to create new

combinations.

Through the course of the research, MLS was applied to three distinct problem domains:

• The Arc Subset Routing Problem is the main problem domain;

• MLS is used to construct problem instances with desired properties, where a “solution” is a

problem instance for the ASRP and “moves” involve changing the structure of the problem

instance by adding and removing arcs from the graph;

1.5 Research questions and goals 7

• MLS is used to design other MLS heuristics. This is one of the advanced applications, and is

made possible by the combination of the modular nature of MLS, and the object-oriented

implementation that allows a “solution” to be anything desired.

1.5 Research questions and goals

There are two major research questions that motivate and guide the various investigations throughout

this thesis.

1. Is it possible to predict the relative performance of heuristics on a problem instance based on

analysis of the problem instance prior to running the heuristics?

2. Can we develop a modular metaheuristic system, that encapsulates most trajectory-based local

search methods, that allows easy hybridization of metaheuristics, and is not simply a

programming convenience but also supports the creation of new types of metaheuristics?

These two research questions are inter-related, in that a modular structure for metaheuristic components

allows more systematic experimentation and analysis relating heuristic performance to problem instance

characteristics.

Each of the investigations in the thesis supports or informs one of these research questions.

1.6 Other frameworks

As may be expected, various frameworks have been developed by other researchers. These may be

broadly classified as one of two types: conceptual frameworks, and programmatic frameworks.

1.6.1 Conceptual frameworks

Conceptual frameworks attempt to unify the various metaheuristic paradigms within a single conceptual

model. James [150] explores a model that abstracts several of the functions of a metaheuristic, chiefly

those aspects that influence the search topology: the neighbourhood scheme and the fitness function.

He briefly notes that these two points are where many metaheuristics operate. This paper inspired much

of the original conception of MLS, which perhaps may be seen as an extension of these ideas. Vaessens

et al. [241] propose another high-level framework, defining functions such as GENERATENEIGHBOURS()

and REDUCENEIGHBOURS() to control the neighbourhood exploration. They have more of a focus on

the intersection with population-based methods, with functions to generate a population from a single

solution. They seem to have a similar motivation to MLS; they hint at the ability to create hybrids by

using procedures that originated with more than one source metaheuristic.

Tabu Search itself may be thought of as a conceptual framework. Although the basic heuristic itself

acts through a clearly defined mechanism, the tabu list, it has grown to encompass many other ideas,

especially associated with Adaptive Memory Programming. The seminal book by Glover and Laguna

[120] contains many ideas on how to express and extend metaheuristics, also incorporating the ideas of

Scatter Search (which may also be considered a framework in its own right).

8 Introduction Chapter 1

Many other authors have also created “generalizations” of one or more local search approaches (for

example, [46]), and many hybrid heuristics are motivated by this approach. Hoos and Stützle [146]

develop the idea of a Generalized Local Search Machine; a theoretical state-based framework that

encompasses most metaheuristics. This model is an interesting unification of metaheuristic concepts,

but seems more useful as a method of conceptualising these ideas than it is helpful in implementing or

extending them.

1.6.2 Programmatic frameworks

The other type of framework that has been attempted multiple times is a programmatic framework.

These are typically collections of classes in some programming language, and are usually extensible.

Whereas one of the goals of MLS is to provide for new types of metaheuristics, the frameworks that the

author discovered in the literature were not means of extending metaheuristic research, they were

primarily methods of saving time when implementing heuristics; many of the functions which would

need to be written each time are standardized. However, they all seemed to be only the beginnings of a

really useful framework; the authors present a basic framework that identifies several operations that

heuristics have in common, such as generating the neighbourhood, and then develop specialised

functions to implement Tabu Search, Simulated Annealing, and perhaps one or two more

metaheuristics.

Di Gaspero and Schaerf [70] present EasyLocal++, which they describe as an object-oriented

framework for local search algorithms. This heuristic provides a basic structure for implementing

metaheuristics, although each metaheuristic must still be programmed separately; the framework seems

to offer the structure around the use of the heuristic on problems: output classes, problem data, etc.

There is little abstraction of the metaheuristic concepts.

Michel and Van Hentenryck [189,190] develop Localizer, a modelling language for local search. This

framework has some similarities with MLS, in that it defines some standard operations that are common

to many metaheuristics, and a particular heuristic can be expressed by specifying which functions fulfil

which roles, with standardized structures for aspects like the Acceptance Criterion.

Andreatta et al. [6] describe the LocalSearch framework, an object-oriented package that attempts to

abstract some of the components of a local search routine, but again tends to package metaheuristics

into distinct packages; it features a TabuSearch class and SimualtedAnnealing class as subclasses of

LocalSearch, rather than the MLS approach of modularizing the different components of these.

Perhaps the most promising programmatic framework is the HotFrame framework of Fink and Voß

[96]. This framework provides a robust object-oriented architecture that breaks all the components

required to implement local search techniques into objects and classes: problems, solutions,

neighbours, moves and move attributes. Components of metaheuristics such as tabu attributes are also

treated as objects. One of the key advantages of HotFrame is that is defines the architecture that allows

the metaheuristics to interact with problem data in a standardized way, and handles the interaction

between the objects of different classes. Similar to the previously described frameworks, HotFrame

appears primarily to be an aid to speed up implementation, and make doing so more consistent, with

1.6 Other frameworks 9

much reusable code, rather than a method of extending the metaheuristics concepts themselves. Each

metaheuristic is still programmed separately as a collection of specific packages, rather than generic

swappable modules.

Fink et al. [97] briefly summarize several other frameworks: Templar, NeighbourSearcher, iOpt, and

ILOG.

1.6.3 The place of MLS among other frameworks

Modular Local Search offers some unique points of difference with other frameworks. It may be

considered both a conceptual framework, and a programmatic framework.

Like the other conceptual frameworks it abstracts the components that metaheuristics have in common,

however it goes significantly further along this path than other frameworks. For example, there are four

distinct places in which the scope of the neighbourhood examination can be controlled, each with

nuanced differences: the move-list size, the examinations maximum, the candidate list size, and the

optional neighbourhood reduction process. Like programmatic frameworks, MLS provides an

architecture such that most code can be reused between heuristics, and developing new metaheuristics

only requires the specific logic for the parts that are new. Again though, MLS goes further than

existing frameworks; there is no real concept of a metaheuristic such as Tabu Search within MLS,

instead Tabu Search is simply a collection of modules, most of which may be in common with

Simulated Annealing. MLS blurs the lines between metaheuristics, and encourages the creation of

hybrids, for example a hybrid that combines the main features of Tabu Search and Simulated Annealing

is created in Section 6.5.1.1. This hybrid analyses the admissibility of neighbours based on their tabu

status and the Metropolis probability criterion.

The key difference of MLS from other frameworks, and what is its main contribution, is its potential for

advanced applications such as multi-phase heuristics, self-adaptation, and learning. This is made

possible because of the combination of explicit components that fulfil specific roles in all local search

metaheuristics, modules that can easily be swapped in and out of use, and the trigger-response model.

The trigger-response model is a new contribution that underlies the ability of an MLS heuristic to

completely change its structure between iterations. For example, consider a metaheuristic that performs

a Steepest Ascent search until it reachs a local optimum, then changes to Tabu Search with a different

set of available moves for a certain number of iterations, then finally finishs with a Simulated

Annealing phase to intensify the search. This multi-phase metaheuristic would be possible to specify

with MLS with absolutely no programming required, in addition to that already done to create the

modules for the individual heuristics. Of course, some logical design would still be necessary to

declare this order of phases, but it is conceivable that even this logical design can be performed by one

heuristic designing the other. We introduce this type of idea in Chapter 8.

Similar to other programmatic frameworks, MLS provides an extensible set of classes. For new

metaheuristics, only the modules containing the new logic need to be programmed, for example

different admissibility conditions or move-types. However, MLS also allows new, sophisticated,

metaheuristics to be created declaratively, rather than programmatically, by the use of a new markup

10 Introduction Chapter 1

language designed to express MLS configurations: MLSML (Modular Local Search Markup

Language).

In the words of George Box, “all models are wrong, but some are useful”. Similarly, there is no “right”

framework for local search techniques, each will be designed to support specific activities, and will

have strengths and weaknesses. MLS is designed to allow changes to be made to the search process

during its execution, and for each component to have a clearly defined role, so that the heuristic itself

can swap modules into place. While other frameworks appear to be primarily structures to support and

implement existing metaheuristics, MLS is designed to faciliate the creation of new metaheuristic

paradigms, especially those involving changes to the structure during the search.

1.7 Thesis structure

The thesis is divided into three parts.

Part I – The Arc Subset Routing Problem. This part contains an investigation of a new arc routing

problem. The Arc Subset Routing Problem (ASRP) is to find a walk on a weighted graph, such

that the sum of the weights of traversed arcs is maximized and the total distance travelled does

not exceed a given cost budget. Part I is structured like a traditional Operations Research

investigation: Chapter 2 is a review of relevant arc routing and subset routing literature; and

Chapter 3 is a preliminary investigation into the ASRP, as a combinatorial optimization problem.

The preliminary investigation formulates the problem and develops a number of construction

heuristics, and experimentally evaluates these in computational tournaments, along with some

improvement procedures in the form of basic versions of Steepest Ascent and Tabu Search. The

place of the ASRP in the remainder of the research is as the test problem on which the MLS

heuristics are evaluated, and this investigation provides a solid foundation.

Part II – MLS Foundations. This part introduces and defines the Modular Local Search framework.

Chapter 4 explains the architecture of MLS, defining all the components and discussing potential

applications of these. This is followed by some illustrative examples of how popular

metaheuristics would be modelled as MLS, without formally defining the logic for the modules,

which occurs later. This chapter finishes with a discussion of the strengths and limitations of

MLS. Chapter 5 is a literature review for trajectory-based metaheuristics. The main

metaheuristic paradigms are discussed extensively, since these provide the building blocks of

MLS. Thoughts are given as to how these metaheuristics could be modelled as MLS techniques.

Part III – Experimentation and Analysis. This part explores the uses of MLS, using the ASRP as a

test problem. In Chapter 6 we define a number of MLS heuristics, based on the standard

metaheuristic paradigms of Steepest Ascent, Simulated Annealing, Tabu Search, and Variable

Neighbourhood Search. We explicitly formulate all the modules required for these heuristics,

and these become the foundation of the MLS “toolbox”. Extensive computational tournaments

provide a large dataset of results and these are modelled against a set of problem characteristics.

Several hybrids are developed to demonstrate the hybridization capability of MLS. Chapter 7

contains a side investigation into methods to develop interesting sets of problem instances. A

number of heuristics are developed and tested on a large number of problem instances. A brief

1.7 Thesis structure 11

study of using MLS to design problem instances that exhibit desired properties shows promise.

Chapter 8 contains a brief discussion of ways to use MLS to develop advanced metaheuristics.

Two examples are demonstrated: using MLS to design other MLS heuristics, as a “meta”

strategy, and using the memory structures of MLS to adaptively modify the structure of the

heuristic, with elements of learning. Chapter 9 concludes with a discussion of directions for

future research.

A glossary of terms that have specific definitions in this thesis concerning MLS is given in Appendix A.

Appendix B describes the programmatic structure used to implement MLS. Appendix C describes the

MLSML markup language used to specify new MLS heuristics. Appendix D is an exploration of some

possible extensions that could be made to the ASRP. A bibliography of referenced works concludes.

13

Part I

The Arc Subset Routing Problem

15

Overview of Part I

The Arc Subset Routing Problem

Part I introduces the Arc Subset Routing Problem (ASRP), which is to find a walk on a weighted graph,

such that the sum of the weights of traversed arcs is maximized and the total distance travelled does not

exceed a given cost budget. This part is structured as a traditional Operations Research investigation.

Chapter 2 is a review of relevant arc routing and subset routing literature. Chapter 3 is a preliminary

investigation into the ASRP, as a combinatorial optimization problem.

A number of construction heuristics are developed, and experimentally evaluated in computational

tournaments, along with some improvement procedures in the form of basic versions of Steepest Ascent

and Tabu Search.

Methods for generating and characterising problem instances are introduced.

17

 C H A P T E R 2

 Arc Routing Literature Review

2.1 Vehicle routing problems in general

2.2 Arc routing problems

2.3 Subset routing problems

This chapter surveys the literature on arc routing and on subset selection problems. We

introduce vehicle routing problems, explaining the differences between node routing problems,

arc routing problems, and general routing problems. We review the field of Arc Routing,

summarizing the main problems and their solution techniques, and then continue by

cataloging the literature on Subset Routing Problems; most of these have been explored in a

node routing context. This chapter concludes with a description of the few Arc Subset Routing

Problems in the literature.

2.1 Vehicle routing problems in general

One large subclass of combinatorial problems is that of vehicle routing problems. In general, routing

problems require the design of a route, from a depot location to several other locations, and then back to

the depot. There are endless ways to vary the basic problem, and many of these have been the subject

of study; some variations define fields in their own right. The ‘medium’ for these problems is some sort

of network, consisting of a set of nodes, and a set of arcs between these nodes. The broadest distinction

is between node routing problems and arc routing problems. A solution to a node routing problem is a

sequence of customers, starting and finishing with the depot. A solution to an arc routing problem is

again a sequence of nodes, starting and finishing with the depot, but the focus is on the arcs that are

traversed along the way rather than the nodes themselves.

The most basic node routing problem is the Travelling Salesman Problem (TSP). In this problem the

aim is to visit all the vertices on a graph, while travelling the minimum distance. A solution consists of

a sequence of nodes, starting and ending with the depot.

18 Arc Routing Literature Review Chapter 2

The most basic arc routing problem is the Chinese Postman Problem (CPP). In this problem the

objective is to traverse all the edges on the graph, while travelling the minimum distance. Since an

edge is the link between two nodes, a solution again consists of a sequence of nodes, starting and

ending with the depot.

Node routing problems treat the vertices in the graph as the ‘customers’ to be serviced; whereas arc

routing problems treat the edges as the customers to be serviced. The general routing problem is a

combination of these, where both edges and vertices are different types of customers to be serviced.

2.2 Arc routing problems

Let us first define some terminology. Following Hertz and Mittaz [141], Arc Routing Problems

(ARPs) are defined on a connected graph G = (V, E ∪ A), where V is the vertex set, E is the edge set,

and A is the arc set. For the purposes of this discussion we regard E ∪ A to be the links of the graph; an

edge is an undirected link, and an arc is a directed link. G is called undirected if A is empty, directed if

E is empty, and mixed otherwise. There is a cost matrix C = (cij) associated with E ∪ A. A tour in G is

represented by a vector of the form (v1, v2, … , vn) where (vi, vi+1) belongs to E ∪ A for i = 1, … , n – 1

and vn = v1. A covering tour for G is a tour which traverses all the links in E ∪ A at least once. A

connected graph, G, is unicursal or Eulerian if there exists a covering tour such that each link is

traversed exactly once. The following, from Ford and Fulkerson [102], is a list of necessary and

sufficient conditions for a connected graph to be Eulerian:

• If G is undirected, then every vertex must have even degree, where the degree of a vertex is the

number of links incident on that vertex.

• If G is directed, then the number of links entering and leaving a vertex must be equal.

• If G is mixed, then every vertex must be incident upon an even number of directed and undirected

links (arcs and edges); moreover, for each subset of vertices S, the difference between the number of

directed links out of S and the number of directed links into S must be less than or equal to the

number of the number of undirected links incident on S.

A covering tour on an Eulerian graph is called an Euler tour. A simple algorithm for finding an Euler

tour from an Eulerian graph is given in Algorithm 2.1, as described in Evans and Minieka [87]:

2.2 Arc routing problems 19

Algorithm 2.1 algorithm CONSTRUCT EULER TOUR FROM EULERIAN GRAPH

 Step 1. Begin at any vertex s and construct a cycle C. This can be done by traversing

any link (s, x) incident on vertex s and marking this link “used”. Next,

traverse any unused link incident on vertex x. Repeat this process of

traversing unused edges until returning to vertex s. (This process must return

to vertex s since every vertex has even degree and every visit to a vertex

leaves an even number of unused links incident on that vertex. Hence, every

time a vertex is entered, there is an unused link for departing from that

vertex.)

 Step 2. If C contains all the edges of G, stop. If not, then the subgraph G’ in which

all links of C are removed must be Eulerian since each vertex of C must have

an even number of incident links. Since G is connected there must be at least

one vertex v in common with C.

 Step 3. Starting at v, construct a cycle in G’, say C’.

 Step 4. Splice together the cycles C and C’, calling the combined cycle C. Return to

Step 2.

end

2.2.1 The Chinese Postman Problem

The foundational ARP is the Chinese Postman Problem (CPP), so called since it was proposed by the

Chinese mathematician M. Guan [131]; following Guan’s original application of a postman designing

his postal route, ARPs are known as postman problems. The CPP consists of finding a minimum-cost

covering tour on a connected graph, G. The problem was shown by Edmonds and Johnson [78] to be

solvable in polynomial time for both the case where all links are undirected (edges) and the case where

all the links are directed (arcs). When G is Eulerian, the Euler tour passing through each link exactly

once is the optimum. When G is not Eulerian, the problem becomes that of augmenting G, with copies

of existing links, such that it becomes Eulerian; when this augmentation is done with minimum cost the

optimum is the associated Euler tour. The augmentation is performed by adding edges to match odd

degree vertices, i.e. by finding a minimum-cost perfect matching (see Edmonds and Johnson [78] and

Christfides [47]).

The CPP on a directed graph can also be solved in polynomial time by solving a minimum cost flow

problem where the flow on each arc has to be at least 1, see Orloff [202]. However, there is a further

condition on G; in addition to being connected, G must be strongly connected (there must be a path

between every pair of nodes). A least-cost Eulerian graph can be constructed by solving a

transportation problem; details are provided by Edmonds and Johnson [78] and Orloff [202], and

Beltrami and Bodin give an example [21]. The method given above (Algorithm 2.1) for finding an

20 Arc Routing Literature Review Chapter 2

Euler tour can then be used to find the optimal tour, with the addition that the arcs selected when

leaving a vertex must be directed out of that vertex.

For a mixed graph, G, we define some additional terminology, from Eiselt et al. [84]. A graph is even if

the total number of links (both arcs and edges) incident to each of its vertices is even; it is symmetric if

for each vertex the number of incoming arcs is equal to the number of outgoing arcs; a graph is

balanced if the balanced set condition is satisfied. The balanced set condition (as defined in Nobert and

Picard [198]) says that a graph is balanced if, given any subset S of vertices, the difference between the

number of arcs directed from S to V \ S and the number of arcs directed from V \ S to S is no greater than

the number of (undirected) edges joining S and V \ S. The conditions for the unicursality of a mixed

graph are therefore that the graph be both even and balanced. Note that if G is even and symmetric,

then it is also balanced, and hence Eulerian.

If G is Eulerian then the mixed CPP may be solved by using the above method for finding an Euler tour.

If G is even, but not balanced, then Edmonds and Johnson [78] show that the mixed CPP may still be

solved in polynomial time, for example by using the procedure described in Coberán et al. [61].

If G is not even, then the mixed CPP is NP-hard, as shown by Papadimitriou [203]. The aim is to find a

minimum cost augmentation of G by replicating a sufficient number of the edges and arcs of G so that

the resulting graph is Eulerian. This is not always possible because not all graphs can be made Eulerian

(Figure 2.1), so in that case, the mixed CPP is infeasible.

Figure 2.1: Example of a graph that cannot be made Eulerian

Edmonds and Johnson [78] suggest two heuristics, MIXED1 and MIXED2, which have been improved

by Frederickson [103], Christofides et al. [48], Raghavachari and Veerasamy [216] and Pearn and Chou

[205]. Cutting plane algorithms have been developed by Grötschel and Win [130], Nobert and Picard

[198], and by Corberán et al. [62]. Pearn and Liu [208] also present several strong algorithms.

Polyhedral results directly relating to the mixed CPP were reported by Eglese and Letchford [81].

Corberán et al. [61] have developed a GRASP heuristic for this problem.

Clossey et al. [54] study a version of the CPP with turn penalties. Prior methods solved this problem

using a transformation into an equivalent node routing problem, but the authors present a direct method.

A variant known as the Windy Postman Problem (WPP) occurs when the cost matrix is asymmetric.

The undirected CPP is a special case of the WPP, with cij = cji. Moreover, since an arc a = (i, j) with

2.2 Arc routing problems 21

cost ca can be transformed to an edge with costs cij = ca and cji = ∞, the directed and mixed problems

can also be viewed as special cases of the WPP [250].

Brucker [34] and Guan [132] have shown that the WPP is NP-hard, but it is solvable in polynomial time

if G is Eulerian [250]. The polyhedral structure of the WPP has been studied by Win [249,250] and by

Grötschel and Win [130], who devised a cutting plane algorithm.

Benavent et al. [23] present several heuristics and a Scatter Search metaheuristic for the WPP, and give

extensive computational results.

2.2.2 The Rural Postman Problem

The Rural Postman Problem (RPP) is a generalization of the CPP where a given subset R ⊆ (E ∪ A)

of edges and arcs are said to be required. A covering tour for R is a tour that traverses all the edges and

arcs of R at least once. Both the undirected and directed versions of the RPP are NP-hard (see Lenstra

and Rinnooy Kan [169] and Garfinkel and Webb [106]), except for the special case where R = E ∪ A,

which is the CPP.

Eiselt et al. [85] describe applications for the RPP and its variants as including street sweeping

[29,30,83], snow ploughing (often as a hierarchical RPP) [3,58,82,137,168,238], garbage collection

[4,21,28,51,52,107,183,230,239,253], mail delivery [172,173,224], and meter reading [229,252].

Mathematical programming formulations of the RPP have been proposed in Christofides et al. [49],

Corberán and Sanchis [63], and Ghiani and Laporte [113]. Early computational results were achieved

by Ghiani and Laporte [113] (branch-and-cut), Corberán et al. [60] (cutting planes for the general

routing polyhedron), Frederickson [103], Pearn and Wu [206], and Hertz et al. [139] (heuristics). A

Memetic Algorithm was proposed by Rodrigues and Ferreira [221]. A fundamentally different

formulation was introduced by Garfinkel and Webb [106], then modified and tested computationally by

Fernández et al. [94]. Letchford [171], and Corberán and Sanchis [64], introduce new inequalities for

the General Routing Problem, which are also valid for the RPP.

The directed RPP was examined in detail by Christofides et al. [50]. Benavent and Soler [24] introduce

a generalization of the directed RPP with turn penalties, and transform it into an asymmetric TSP,

which allows its solution with existing methods. An analogue of the hierarchical postman version of

the CPP was studied by Dror and Langevin [74], who solved the clustered version of the directed RPP

by transforming it into a generalized travelling salesman problem. Cabral et al. [41] also studied a

transformation of the Hierarchical CPP into the RPP. Laporte [163] studied solving several classes of

arc routing problems, including the Mixed Rural Postman Problem, by transforming them into

travelling salesman problems.

Letchford [170] investigates the RPP with deadline classes, which are similar to time-windows, and

gives a cutting plane algorithm. Ghiani et al. [115] consider the Periodic RPP, where each required

arc/edge of a graph must be visited a given number of times over an m-day planning period in such a

way that service days are equally spaced.

22 Arc Routing Literature Review Chapter 2

2.2.3 Capacitated Arc Routing Problems

In real-world applications there are often restrictions on the time or resources available to accomplish

the touring. The theory has incorporated some of these restrictions in the form of capacitated problems.

The most common capacitation is for the delivery vehicle to have a capacity, either on the distance it

can travel before returning to the depot, or on the amount of demand it can supply before returning to

the depot. In these cases it is necessary either for the vehicle to make multiple trips, or for multiple

vehicles to work together. If there are no time constraints, then multiple trips and multiple vehicles are

equivalent. The capacitated node-routing equivalent is the Vehicle Routing Problem.

The Capacitated Chinese Postman Problem (CCPP) was introduced by Christofides [47]. The CCPP

may be stated as follows: given a connected graph, G = (V, E) in which each edge (vi, vj) has an

associated cost cij and positive demand dij, and a set of vehicles having fixed capacity W, find a

minimum-cost set of tours, each starting and finishing at the depot, such that the total demand on each

cycle does not exceed the vehicle capacity W.

The CCPP introduces the distinction between service and traversal; the example below (Figure 2.2),

taken from Golden et al. [123], illustrates this point. Vertex 1 is the depot, W = 4, and edges are

labelled by ordered pairs (cij, dij). One feasible solution is the set of tours

1 2 4 3 1

1 4 3 1

(underlines indicate the servicing of edge demands) with a total distance of 15 units. Note that this is

not necessarily the optimum solution, but illustrates that edges can be either serviced or traversed.

Figure 2.2: Example illustrating the difference between service and traversal

Golden and Wong [127] have shown that the CCPP is NP-hard. They also proved that the easier

0.5-approximate CCPP is NP-hard; the 0.5-approximate CCPP is to find a CCPP solution whose cost is

less than 1.5 times the optimal solution.

Christofides [47] gave a construct-and-strike heuristic and calculated a lower bound. This lower bound

was corrected by Golden and Wong [127], who also presented a formulation and suggested an augment-

merge heuristic. Golden et al. [123] present an augment-merge heuristic and a path-scanning heuristic,

2.2 Arc routing problems 23

and give computational results for all three heuristics. Assad et al. [10] present a node-scanning lower

bound.

The Capacitated Arc Routing Problem (CARP) is a generalization of the CCPP and the RPP. The

only difference with the CCPP is that instead of being positive, the demands are non-negative, so that

some of them can be zero. The problem becomes the capacitated analogue of the RPP, where only

those edges with positive demand require service.

Because the CCPP is a special case of the CARP, most of the work done for the CCPP is applicable also

to the CARP; the CARP and the 0.5-approximate CARP are also NP-hard.

We paraphrase Amberg et al. [5] to note that capacitated arc routing problems consist of two

interdependent subproblems: the assignment problem which forms subsets or clusters of required edges

served by the same vehicle and the sequencing or routing problem which determines the sequence of

serving the edges.

There are several so-called “parallel” heuristics which simultaneously consider these subproblems: the

path-scanning algorithm of [123] and the construct-and-strike heuristic of Christofides [47], both

modified by Pearn [207]; the parallel-insert method of Chapleau et al. [45]; the augment-insert

algorithm of Pearn [204]; and the augment-and-merge procedure of Golden and Wong [127], which

uses the savings criterion of Clarke and Wright [53].

Sequential algorithms either choose the assignment before computing the routes within the formed

subsets (cluster-first-route-second, CFRS) or construct a giant route that is broken into small routes

(route-first-cluster-second, RFCS). CFRS methods are more suitable for node routing problems, but the

greedy criterion of Win [249], or a generalized assignment algorithm, as in Benavent et al. [22], can be

used to partition the edges, then a route is found for each cluster by a simple modification of a CPP

algorithm (see Eiselt et al. [85]). The RFCS algorithm of Stern and Dror [229] designs a giant route as

for the CPP and cuts it into small paths. The heuristic of Liebman and Male [183] splits the giant route

into cycles and uses savings criteria for the recombination.

Hertz et al. [139] present a set of construction and post-optimization procedures for the RPP. These are

borrowed and added to by Hertz et al. [140] for use on the CARP, and then combined into a new Tabu

Search algorithm, CARPET; the procedures are SHORTEN, DROP, ADD, PASTE, CUT, SWITCH,

and POSTOPT. Hertz and Mittaz [142] use these procedures in a variable neighbourhood descent

algorithm. Amberg et al. [5] uses a Tabu Search implementation on the CARP with multiple depots.

Many metaheuristics have been applied to capacitated arc routing problems. Beullens et al. [25]

develop a Guided Local Search heuristic for the CARP with some new moves derived from a node

routing context. Greistorfer [128] presents a Tabu Scatter Search heuristic for the CCPP.

Ghiani and Improta [114] use a transformation into the CARP to solve the Generalized Vehicle Routing

Problem, which at the time constituted the only known exact method of solution.

Mourăo and Almeida [197] solve a refuse collection problem in Lisbon by modelling as a CARP with

side constraints, and present lower bounds and a three-phase heuristic.

24 Arc Routing Literature Review Chapter 2

2.2.4 Advanced arc routing problems

A number of more complicated variations on arc routing problems have been studied, often arising as a

result of a real-world problem.

Li and Fu [174] describe a case study of a school bus routing problem, formulated as a multi-objective

problem to minimize the total number of buses required, the total travel time spent by pupils, and the

total bus travel time.

Rosa et al. [223] study an extension they call the Arc Routing and Scheduling Problem with

Transhipment, which has applications in garbage collection, where the demand is collected and taken to

a transfer station by one set of vehicles, and then transferred to a dump site by another set of vehicles.

They give a lower bound based on a relaxation, and computational results with a Tabu Search heuristic.

Fleury et al. [101] consider a stochastic CARP, where demands are random, rather than known

deterministically, which is commonly the case in real-world applications. The goal for this problem is

to create routes that are insensitive to changes in demand. They develop a Genetic Algorithm approach.

2.3 Subset routing problems

Subset routing problems (SRPs) can be modelled as reward collection problems; the objective is to

collect the maximum reward, within some constraints on the route. This varies from simple routing

problems where all customers require service and thus only their location is important. When it is not

possible for all customers to be serviced, due to the constraints, a subset of them is serviced. Subset

routing is a sub-class of vehicle routing problems (VRPs; see [164] for a description VRPs and their

heuristics); a VRP solution consists of a number of routes, each of which satisfies the demand of a

subset of the customer set. A SRP route can be thought of as a single VRP route that satisfies the

maximum demand.

We divide subset routing problems into Node Subset Routing Problems (NSRPs), Arc Subset Routing

Problems (ASRPs), and Mixed Subset Routing Problems (MSRPs). SRPs require finding a route on a

graph, which visits a subset of vertices, and traverses a subset of edges. In a NSRP the reward is

distributed on the vertices of the graph, in an ASRP it is distributed on the edges, and in a MSRP, the

reward is distributed on both the vertices and the edges of the graph.

2.3.1 Node Subset Routing Problems

Most of the SRPs in the literature can be classified as NSRPs. Feillet et al. [91] describe a class of

problems that they call Traveling Salesman Problems with Profits, define several generic problems

of this class, and survey the literature on these types of problems. In these problems reward is collected

for customers serviced, and cost is incurred during the travel, and the goal is to maximize the profit

(reward collected minus cost incurred). They note that TSPs with profits may be viewed as bi-objective

problems — to maximize profit and to minimize cost — and hence a valid solution technique could be

to find the Pareto frontier (the set of feasible solutions such that neither objective can be improved

without deteriorating the other). However researchers generally address their single-criterion versions,

2.3 Subset routing problems 25

which are either combining the objectives linearly, or constraining one of the objectives. The three

generic problems they define are (1) to maximize a linear profit function, (2) to maximize profit while

incurrable cost is constrained, and (3) to minimize cost while meeting a minimum profit threshold. The

various problems described in the following sections generally fall into these categories (although there

are always variations and exceptions).

2.3.1.1 Unconstrained NSRP

Unconstrained NSRPs relax the requirement that every vertex be visited at least once. Instead of

being forced to service a subset of the vertices, they make it desirable to do so.

In the Travelling Salesman Subset-tour Problem (TSSP), studied by Mittenthal and Noon [193], a

salesman collects a reward, rj, in every city vj that he visits, and incurs a fixed penalty, πk, for every

city vk that he doesn’t visit. There is a fixed cost cij to travel between cities vi and vj. The objective is to

maximize the total net benefit; i.e., the sum of the rewards collected minus the sum of the penalties

incurred. The salesman must determine both the subset of cities to visit, and also the order in which

they are visited; these decisions are interdependent.

Beasley and Nascimento [20] consider a generalization of the TSSP where some reward may be gained

by allocating customers not directly visited by the salesman to a nearby customer who is visited. They

formulate the Single Vehicle Routing Allocation Problem (SVRAP), which serves as a framework for

various other problems, such as the Covering Tour Problem (CTP) of Gendreau et al. [108], the

Shortest Covering Path Problem (SCPP) of Current et al. [65], and the Covering Salesman Problem

(CSP), Median Tour Problem (MTP), and Maximal Covering Tour Problem (MCTP), of Current

and Schilling [66,67]. In the SVRAP, three types of selection occur: on-route customers, who

contribute a fixed reward; off-route (allocated) customers, who contribute a reward dependent upon the

on-route customers they are allocated to; and isolated customers, who contribute a fixed penalty cost.

Customers may have a predetermined type.

Keller and Goodchild [159] and Keller [158] propose the Multiobjective Vending Problem (MVP),

where the objective is to simultaneously minimize the total cost incurred and maximize the total reward

collected. They attempt to find a non-inferior solution set, which is the set of all solutions such that no

other solution has both a greater reward and a lower cost.

In another unconstrained NSRP, the objective is to minimize the sum of all the travel costs and non-

inclusion penalties, without considering reward. This variation was studied by Bienstock et al. [26],

Williamson [248], and Goemans and Williamson [121]. Volgenant and Jonker [244] had earlier

considered the same problem, naming it the Generalized Travelling Salesman Problem (GTSP), and

also a special case called the Shortest Path Problem with Specified Nodes (SPPSN) in which a

specified set of vertices must be visited exactly once, remaining vertices at most once, and large

penalties are incurred for not visiting the specified vertices. Note that there are many problems called

the Generalized Travelling Salesman Problem in the literature, each is a generalization of the standard

TSP.

26 Arc Routing Literature Review Chapter 2

Malandraki and Daskin [181] introduce the Maximum Benefit Travelling Salesman Problem

(MBTSP), in which the objective is to maximize the net benefit (reward collected minus cost incurred).

They have the additional feature of being able to collect additional reward on second and subsequent

visits to a vertex. This reward diminishes with each visit.

2.3.1.2 Reward constrained NSRP

A reward constrained NSRP is an NSRP constrained by a single constraint on the sum of reward

values collected during the subtour.

The Prize Collecting Travelling Salesman Problem (PCTSP) features a salesman who wishes to

minimize the sum of his travel costs and penalty (isolation) costs during a subtour that starts and

finishes at a depot, whilst visiting enough cities to collect a prescribed minimum amount of reward.

This problem was studied by Awerbuch et al. [11], Balas [15,16], Dell’Amico et al. [69], and Fischetti

and Toth [122].

Hamacher and Moll [133] consider a special case of the PCTSP in which all the rewards are equal and

there is no pre-specified depot vertex. They name this version the Travelling Salesman Selection

Problem, which we will label (Hamacher-TSSP). Heuristics are based on approximations for the

k-Minimal Spanning Tree Problem, to find the vertex cluster containing the shortest subtour

satisfying the requirement to visit the given number of cities.

2.3.1.3 Cost constrained NSRP

A cost constrained NSRP is a NSRP constrained by a single constraint on the cost or length of the

subtour.

Gensch [112] studies a problem in which the salesman wishes to maximize the net profit (reward

collected minus cost incurred) whilst not exceeding a prescribed cost budget. Gensch names this the

Travelling Salesman’s Subtour Problem, which we label (Gensh-TSSP).

The most prevalent SRP studied in the literature is the so-called Orienteering Problem (OP), in which

the salesman wishes to maximize the reward collected without exceeding a prescribed cost budget. The

motivation for this problem is the sport of orienteering, concisely described by Chao et al. [43]:

“Orienteering is an outdoor sport usually played in a mountainous or heavily

forested area. Armed with a compass and map, competitors start at a specified

control point, try to visit as many other control points as possible within a

prescribed time limit, and return to a specified control point. Each control point has

an associated score, so that the objective of orienteering is to maximize the total

score. Competitors who arrive at the finish point after time has expired are

disqualified, and the eligible competitor with the highest score is declared the

winner. Since time is limited, competitors may not be able to visit all the control

points. The competitors have to select a subset of control points to visit that will

maximize their total score subject to the time restriction.”

2.3 Subset routing problems 27

Hayes and Norman [138] model a real world orienteering event, the 1974 Lake District Mountain Trail,

in England, as a Dynamic Program, to compare optimal paths against the actual routes selected by

participants. However, they do not formulate a combinatorial optimization problem.

Tsiligirides [236] appears to be the first to consider the CO problem now known as the OP, although

calling it the Generalized Travelling Salesman Problem. Tsiligirides created the first test instances

for this problem, and these have subsequently become the standard benchmark instances for the OP.

Golden et al. [124] coined the name Orienteering Problem, and compared a number of stochastic and

deterministic subtour construction and improvement heuristics with those proposed by Tsiligirides.

Golden et al. [125] improved these heuristic ideas with a multifaceted heuristic including center-of-

gravity improvement, randomness, subgravity and a learning capability. Keller [158] adds a heuristic

for the MVP (but restricted to the OP) to these computational comparisons. Ramesh and Brown [217]

propose another heuristic for the OP employing local subtour operations including insertions, deletions

and improvements; in their version, which they call the Generalized Orienteering Problem (GOP),

the start and finish vertices may be different, but are still specified. Wang et al. [246] modify a neural

network to find an initial feasible solution which is then improved using 2-exchanges and cheapest

insertion. A local search heuristic was developed by Chao et al. [43], which outperformed most other

heuristics on a set of 107 test problems. Sokkappa [227] also studied the OP, but called it the Cost

Constrained Travelling Salesman Problem (CCTSP), as did Awerbuch et al. [11], calling the OP the

Bank Robber Problem. Awerbuch et al. were also able to provide a poly-logarithmic performance

guarantee for the OP and the PCTSP.

A number of algorithms have been proposed to find optimal solutions to the OP. Kataoka and Morito

[156] introduced an equivalent problem, the Maximum Collection Problem (MCP), and proposed a

branch-and-bound algorithm with an Assignment Problem (AP) relaxation. Laporte and Martello

[162] provide an integer linear programming formulation of the Selective Travelling Salesman

Problem (STSP), also equivalent to the OP, and suggest simple greedy heuristics, upper and lower

bounding techniques and a branch-and-bound algorithm. Ramesh et al. [218] also propose a branch-

and-bound algorithm, using a Lagrangean relaxation solved by a degree-constrained spanning tree

procedure. Leifer and Rosenwein [167] add several strong linear programming relaxations for the OP

by adding a sequence of valid inequalities; the solution of three successive linear programs provide

upper bounds on the optimum. Gendreau et al. [109] and Fischetti et al. [98] give optimal branch-and-

cut algorithms for the OP, Gendreau et al. for a version with the addition that a specified subset of the

customers must be in the solution.

Arkin et al. [8] describe a version of the OP on networks. Their formulation requires rewards to be

integer, as the objective was to maximize the number of customers visited, and therefore reward

corresponds to repeated customers.

Diaby and Ramesh [71] consider a capacitated NSRP, called the Distribution Problem with Carrier

Service (DPCS). Each customer has a given demand, the vehicle has a carrying capacity, and the entire

operation must be completed within a certain time. An outside carrier is available for direct service of

customers from the depot. The problem is to determine a feasible tour for the company vehicle and the

customers to be serviced by the outside carrier such that the total cost of the operation is minimized.

28 Arc Routing Literature Review Chapter 2

Key features of this problem are feasibility with respect to vehicle load as well as the travel time

constraint, penalty costs for not visiting a customer and no rewards.

Millar [191] and Millar and Kiragu [192] describe an application of the OP to a fisheries patrol problem

in the Scotia-Fundy region of the Atlantic coast of Canada. Here the OP serves as a static snapshot of a

more dynamic problem; the reward values are used to approximate urgency and importance criteria.

2.3.1.4 Multiple vehicle NSRP

In the Multiple Travelling Salesman Problem (MTSP), m salesmen start from a depot, each visiting a

number of vertices and returning to the depot, such that every vertex is visited by at least one salesman

and the sum of the distances travelled is minimized. The Vehicle Routing Problem (VRP) is simply a

capacitated MTSP. Similarly, multiple versions of NSRPs have been defined.

Chao et al. [44] formulate the Team Orienteering Problem (TOP), where m team members cooperate

to maximize the sum of reward collected by the team, subject to a common time limit. There are three

interdependent decisions: which vertices to visit, to which team member each vertex should be

allocated, and for each team member the sequence of in which to visit the vertices. This paper suggests

modified versions of the local search heuristic of Chao et al. [43] and the stochastic heuristic of

Tsiligirides [236], both originally for the OP.

Butt and Cavalier [38] and Butt and Ryan [37,39] consider an equivalent problem, the Multiple Tour

Maximum Collection Problem (MTMCP). Butt and Cavalier provide an integer programming

formulation and propose a local search heuristic, and Butt and Ryan suggest an optimal branch-and-

bound algorithm.

Johnston [152] devotes a PhD thesis to an extensive investigation of a competitive reward collection

problem, which he calls the Competition Routing Problem (CRP). In this problem there are multiple

competing vehicles which seek to maximize their own reward, while minimizing their opponents. He

focuses on the comparative performances of a wide range of strategies which incorporate some level of

response to an opponent’s actions.

2.3.1.5 Time dependent NSRP

Three forms of Time Dependent NSRP have been investigated in the literature: time dependent

rewards, time dependent costs, and time windows.

Brideau and Cavalier [33] and Erkut and Zhang [86] look at the Maximum Collection Problem with

Time Dependent Rewards (MCPTDR). They include reward values which decay to zero as a linear

function of time. Malandraki and Dial [182] and Malandraki and Daskin [180] also consider time

dependent costs.

Problems which specify when customers may be visited are known collectively as Time Window

Problems. These problems specify for each customer an early time (before which they cannot be

visited) and a late time (after which they cannot be visited). Kantor and Rosenwein [154] introduce the

Orienteering Problem with Time Windows (OPTW) in which three interrelated decisions are

2.3 Subset routing problems 29

required: selection of customers to be serviced, sequencing of customers within the solution route, and

scheduling of customer deliveries with respect to their time windows.

In his PhD thesis, Beale [19] considers the Maximum Collection Problem (MCP), in which he

includes multiple vehicles, time dependent rewards, non-zero service times, penalties for non-service,

and the completion of specified tasks associated with the service of each customer, which possibly

include pickups and deliveries.

2.3.2 Arc subset routing problems

Golden et al. [126] briefly define the Time-Constrained Travelling Salesman Problem (TCTSP).

This problem shares the features of an NSRP and an ASRP; all vertices are adjacent, as in node routing

problems, but reward is distributed on edges, as in an arc routing problem. There is a reward associated

with each edge and the salesman wishes to maximize the total reward over the edges traversed whilst

not exceeding the prescribed cost budget. In keeping with the TSP formulation, though, all vertices are

adjacent to all others; as with node routing problems any vertex may be followed by any other in a

subtour. They suggest an iterative heuristic procedure, which we describe in Algorithm 2.2.

Let rij and cij respectively be the reward and cost associated with the traversal of edge (vi, vj). The cost

budget is C; let the depot be vertex v0. At each iteration k, let P and T denote the total reward and total

cost of the subtour just generated. Also, ∆P and ∆T are the changes in total reward and cost associated

with each permissible insertion.

30 Arc Routing Literature Review Chapter 2

Algorithm 2.2 heuristic TSTSP

 Step 0. Set k, P and T to 0. Initialize parameter R0. Choose parameter α.

 Step 1. for i = 1 to |V| do

 0 0i iT c c∆ ← +

 0 0 0 0 0 0() ()i i i iP R T r r R c c∆ − ∆ ← + − +

 end

 Find i* such that T C∆ ≤ and 0P R T∆ − ∆ is maximized.

 if no such point exists then

 STOP

 else

 Record the subtour (0, i*, 0)

P P P

T T T

← + ∆

← + ∆

 end

 Step 2. k ← k + 1

 1(/) (1)k kR P T Rα α −← + −

 Step 3. for each vertex vk in the present subtour, and for each pair of vertices (vi, vj)

which are adjacent in the subtour do

 ik kj ijT c c c∆ ← + −

 () ()k ik kj ij k ik kj ijP R T r r r R c c c∆ − ∆ ← + − − + −

 end

 Find the triple i*, j*, k* such that T T C+ ∆ ≤ and kP R T∆ − ∆ is maximized.

 if no such triple exists then

 goto Step 4.

 else

 Insert k* between i* and j* in the subtour and record the subtour.

P P P

T T T

← + ∆

← + ∆

 end

 goto Step 2.

 Step 4. From all the subtours recorded, select the one with the largest P.

end

Golden et al. [126] clarify several points about this heuristic as follows. The ratio P/T is the worth of a

unit of cost in the current subtour, Rk is the best estimate of the worth of a unit of cost at iteration k; Rk

is an estimate which takes into account all previous ratios P/T but weights the more recent ones more

2.3 Subset routing problems 31

heavily. R0 should represent an educated guess (possibly based on preliminary analysis) of the reward

to cost ratio for the optimal subtour. The parameter α should be chosen between 0 and 1.

Malandraki and Daskin [181] also introduce an ASRP, the Maximum Benefit Chinese Postman

Problem (MBCPP). This problem is an Unconstrained ASRP, where the objective is to maximize the

net profit (reward collected minus cost incurred). An additional feature is that an edge may be serviced

more than once, with a diminishing reward for each traversal.Feillet et al. [90] introduce the Profitable

Arc Tour Problem and give a branch-and-price algorithm for its solution. In this problem there is

reward associated with each arc, and this reward may be collected up to a specified number of times.

The objective is to find a set of cycles in the graph that maximize the profit, reward collected minus

cost incurred, subject to a maximum length of cycles.

Archetti et al. [7] consider the Undirect Capacitated Arc Routing Problem with Profits, where a subset

of edges of a graph have a profit and a demand, and a fleet of capacitated vehicles service them

attempting to maximize profit. It is unclear form their description exactly why the demand is included,

since it does not feature in their formulation.

Johnston and Chukova [151] briefly consider a version of the Arc Subset Routing Problem, which they

call the Rural Postman Problem with Rewards, where the goal is to maximize collected reward subject

to a cost constraint. They consider several swap operators in the context of a local search heuristic.

Their swap operators are suited to the RPP, since they treat the required edges as nodes in a graph, and

simply route between their end points with shortest paths. This idea neatly sidesteps the difficulty of

using swap operators on arc routing problems.

Compared to the node-routing literature, there are still relatively few Arc Subset Routing Problems.

Those that have been studied tend to attempt to maximize profit, rather than constraining cost. Two

techniques that have been used by others that are potential building blocks are the profit-to-cost ratio

used by Golden et al. [126] to identify the best "bang-for-buck" next move, and the concept of using

swap operators for arc routing problems of Johnston and Chukova [151], which could be extended from

required arcs to any arbitrarily-decided valuable arcs.

Coda

▼ Summary

In this chapter we have summarized the literature on arc routing problems, subset routing problems and

the intersection of these: arc subset routing problems.

▼ Link

In the next chapter we formulate the Arc Subset Routing Problem that will be used for experimentation

throughout the thesis, and perform a preliminary investigation as a traditional Operations Research

probem; we develop several construction heuristics and test these in computational tournaments.

32 Arc Routing Literature Review Chapter 2

33

 C H A P T E R 3

3 Preliminary Investigation

of the ASRP

3.1 Formulation of the ASRP

3.2 Construction heuristics

3.3 Improvement procedures

3.4 Problem generation principles

3.5 Specific problem instances

3.6 Preliminary experimentation

3.7 Phase 1 experimentation

3.8 Phase 2 experimentation

The purpose of this chapter is to examine the Arc Subset Routing Problem in a traditional

Operations Research investigation. We start with an exploration of mathematical programming

formulations, and then develop a number of construction heuristics and test these extensively

on grid graphs, along with some local search improvement routines. This chapter provides the

only consideration of construction routines for the ASRP; the remainder of the thesis is

concerned with local search approaches, where the initial solution is basically provided by a

black box procedure. A key element is the development of a set of move-types for the ASRP,

which are used throughout the rest of the thesis. We consider some elements of ASRP

problem instance design, and develop two methods for problem generation, along with a

number of metrics to characterize these problem instances.

3.1 Formulation of the ASRP

It is useful to have an accurate representation of the Arc Subset Routing Problem (ASRP) as an integer

program. Having a mathematical programming formulation is essential to both designing problem

instances with known optima and to the design of exact algorithms, and also formally defines the

problem in an unambiguous way. There are several ways of formulating the ASRP, but they all have

several constraint sets in common.

34 Preliminary Investigation of the ASRP Chapter 3

We define the ASRP as follows. Let G(V, E) be an undirected graph, where V is the vertex set, E is the

edge set, ce (≥ 0) and re (≥ 0) are respectively the cost and reward associated with traversing edge e ∈ E

where the cost is incurred for each traversal and the reward is collected only on the first traversal.

Further, let C be the maximum incurable cost: the cost budget. The ASRP is to determine a greatest-

reward subset of edges and associated traversal frequencies that make up an Eulerian and connected

subgraph incident on a given depot vertex. In other words, we want to find a subset of edges that are

connected, and the number of times each of those edges is traversed. This is equivalent to finding a

closed tour through a subset of the edges.

Any valid formulation needs to ensure the following:

• The solution results in a tour (each vertex is left the same number of times it is entered). This is

accomplished by ensuring that every vertex has even degree.

• The graph contains no subtours (it is connected).

• The depot is incident on an included arc (it has positive degree).

• The cost budget is not exceeded.

In Section 3.1.1, we first give some definitions that will be utilized throughout. Then, in Section 3.1.2,

we consider the various ways in which the restrictions above may be represented as constraints.

Finally, in Sections 3.1.3-3.1.5 we present three alternative formulations, which use various ways of

defining the traversal variables.

3.1.1 Definitions

Let V* ⊆ V be a subset of vertices and E* ⊆ E be a subset of edges. We define the incidence set δ(V*)

(often known as the edge cutset) of V* to be the set of edges which are incident (touching) on exactly

one of the vertices in V*, so they have one end-point in V* and one end-point in V \ V*. Similarly, the

incidence set δ(E*) of E* we define to be the set of vertices which are incident on exactly one of the

edges in E*. If E* = {e}, then we write δ(e), not δ({e}), to denote the set of vertices incident on edge e.

Similarly, we write δ(v) to denote the set of arcs incident on vertex v.

Note that edges are incident on vertices and vertices are incident on edges. We use the term adjacent to

refer to edges that are incident on the same vertex, and to vertices that are incident on the same edge.

We define the adjacency θ(V*) of V* to be the set of vertices which are incident on the incidence set of

V*, but are not themselves in V*; the adjacency of a vertex set is all the vertices one arc away from the

set. Similarly, the adjacency θ(E*) of E* is the set of edges which share one vertex with E*.

Definitions.

The total incidence ∆ of an edge (vertex) set is all the vertices (edges) which are incident on the

individual edges (vertices).

The joint incidence ∂̂ of an edge (vertex) set is all the vertices (edges) which are incident on all of the

elements of the edge (vertex) set.

3.1 Formulation of the ASRP 35

The exclusive incidence ∂ of an edge (vertex) set is all the vertices (edges) which are only incident upon

edges (vertices) of the set.

Similarly, the total adjacency Ξ of an edge (vertex) set is all the edges (vertices) which are adjacent to

the individual edges (vertices) of the set.

The joint adjacency θ̂ of an edge (vertex) set is all the edges (vertices) which are adjacent to all the

elements of the set.

The exclusive adjacency θ of an edge (vertex) set is all the edges (vertices) which are only adjacent to

elements of the set.

The formulae of these sets is given in Table 3.1.

Table 3.1: Definition of incidence and adjacency sets

 Vertex set V* Edge set E*

Total incidence U
*

)(*)(
Vv

vV
∈

=∆ δ U
*

)(*)(
Ee

eE
∈

=∆ δ

Joint incidence

*

ˆ(*) ()
v V

V vδ δ
∈

= I I
*

)(*)(ˆ

Ee

eE
∈

= δδ

Exclusive incidence *)(*)(*)(VVV δδ ∆= *)(*)(*)(EEE δδ ∆=

Total adjacency U
*

)(*)(
Vv

vV
∈

=Ξ θ U
*

)(*)(
Ee

eE
∈

=Ξ θ

Joint adjacency I
*

)(*)(ˆ

Vv

vV
∈

= θθ I
*

)(*)(ˆ

Ee

eE
∈

= θθ

Exclusive adjacency *)(*)(*)(VVV θθ Ξ= *)(*)(*)(EEE θθ Ξ=

The only other relationship worth mentioning is that the adjacency of an edge (vertex) set is the same as

the incidence of the total incidence of the set.

))(()(VV ∆= δθ *))((*)(EE ∆= δθ

Definition. A 0/1/2 edge is an edge whose associated traversal frequency variable can be equal to

either 0, 1 or 2 in an optimal solution. Similarly, a 0/2 edge is an edge whose traversal frequency

variable can be equal to either 0 or 2. The remaining edges are said to be 0/1. Furthermore, the sets of

all these edges will be denoted as E012, E02 and E01, respectively.

Definition. We define edge b to be a bridge if its removal disconnects the graph. We define edge p to

be a pendant edge if it is incident on a vertex of order 1. All pendant edges are also bridges. We let B

be the set of edges which are bridges, and P ⊆ B be the set of pendant edges.

36 Preliminary Investigation of the ASRP Chapter 3

3.1.2 Considering the constraints

In the following sections we need two types of variables. For each edge, we need a variable that tells us

whether an edge has been included, and a variable that tells us how many times it has been included. In

the later formulations, we define several ways of doing this, but for the purposes of this section we

assume that for each edge e we have a variable xe, which we set to 1 if the edge is included and 0 if it is

not, and a variable se, which we set equal to the number of times e is included (integer).

3.1.2.1 Objective function

We simply take the sum of the rewards for included edges.

 ∑
∈Ee

eexr

3.1.2.2 Even degree constraint

We need to ensure that every vertex has even degree, as a requirement of an Euler graph. The

following constraint ensures this by counting the number of times that the edges incident on the vertex

are traversed, and ensuring that the sum is even.

)2 mod(0
)(

=∑
∈ ve

es
δ

 ∀ v ∈ V

This constraint has the disadvantage of non-linearity, but is a common enough method in arc routing

problems (see [113] for examples). Another possible constraint could be the following.

 v
ve

e ks 2
)(

=∑
∈δ

 ∀ v ∈ V

Where {kv} are non-negative integers. This constraint is easier to use within standard IP algorithms, but

still has the disadvantage of an introduced integer variable. Moreover, in a linear programming (LP)

relaxation, the constraint would no longer ensure that each vertex has even degree.

3.1.2.3 Cost budget constraint

We ensure that the sum of the incurred costs for each edge is not greater than the budget.

 Csc
Ee

ee ≤∑
∈

3.1.2.4 Depot connection constraint

We ensure that the depot is incident on an included edge.

 1
)(

≥∑
∈ depote

ex
δ

3.1 Formulation of the ASRP 37

3.1.2.5 Edge connectedness constraint

There are several options here that are variously utilized in the literature; the goal is to eliminate

subtours. The basic method used is to define a proper subset of the vertices S ⊂ V and then apply some

check to this subset, and then repeat for all proper subsets of V. Valid checks include:

• Ensure that the total incidence of S is more than just the exclusive incidence (again, there are

lots of possible inequalities which would work):

0

)()(

>− ∑∑
∈∆∈ Se

e
Se

e xx
δ

∀ S ⊂ V

• Ensure that the incidence set of S is not empty.

 0
)(

>∑
∈ Se

ex
δ

 ∀ S ⊂ V

However, the ASRP has a complication that other problems do not. It is possible that in a feasible

solution there are some vertices which are not visited (are not incident on an included edge); this allows

the possibility of a subset S* ⊂ V for which ∆(S*) = {∅}. We want to allow this possibility, which the

above constraints would disallow.

To combat this, we utilize the standard form of if-then constraints. Suppose we have two functions f and

g, and we want to ensure that when f > 0 then g ≥ 0, i.e. f > 0 ⇒ g ≥ 0. We introduce the following two

constraints:

 -g ≤ My

 f ≤ M(1 – y)

Where M is a large number and y is binary. Consider: f > 0 ⇒ y = 0 ⇒ g ≥ 0, as required. Of course, if

f ≤ 0 then y can be either 0 or 1, and g can take any value; the implication is only one way. For our

purposes we can define f and g as follows:

 ∑
∆∈)(

:
Se

esf

 2:
)(

−∑
∈ Se

esg
δ

So when there are any edges incident on one of the vertices in S, then we force the incidence set of S to

contain at least two included edges. This results in the following equations, where for each subset S we

have an associated binary variable yS:

)1(
)(

S
Se

e yMs −≤∑
∆∈

 ∀ S ⊂ V

 S
Se

e Mys −≥−∑
∈)(

2
δ

∀ S ⊂ V

However, in our case we want to make the constraint that the incidence set of S be non-empty hold only

if the total incidence of S is non-empty and the total incidence of V \ S is non-empty. We need the

38 Preliminary Investigation of the ASRP Chapter 3

equivalent constraints to ensuring that f > 0 ∧ h > 0 ⇒ g ≥ 0. We can easily accomplish this by

exchanging the second constraint above with the following.

 fh ≤ M(1 – y)

However, this constraint is non-linear, so we instead use the following set of constraints.

 -g ≤ M(y + z)

 f ≤ M(1 – y)

 h ≤ M(1 – z)

Now g is forced to be non-negative only when both f and h are positive. This translates to the subtour

elimination constraints as follows.

)1(
)(

S
Se

e yMs −≤∑
∆∈

 ∀ S ⊂ V

)1(
)\(

S
SVe

e zMs −≤∑
∆∈

∀ S ⊂ V

)(2
)(

SS
Se

e zyMs +−≥−∑
∈δ

∀ S ⊂ V

It is worth noting that even in an LP relaxation, these constraints will hold. In fact it is not necessary

for y and z to be integer; the main characteristic they must have is that they can be 0 or greater than 0.

The only modification is that M must be made large enough that no values of the variables will cause it

to be met.

3.1.2.6 Other necessary constraints

There are several other constraints needed in the formulation to make sure the variables take appropriate

values. We need to ensure that when se is positive, xe is 1, and 0 otherwise. We need to ensure that the

x, y and z variables are binary, and that s is non-negative and integer. We include the following

constraints.

 ee sx ≤ ∀ e ∈ E

 0≥es

∀ e ∈ E

 integer es

∀ e ∈ E

 0vk ≥
 ∀ v ∈ V

 integervk
 ∀ v ∈ V

 binary ex

∀ e ∈ E

 binary , SS zy

∀ S ⊂ V

3.1.3 ASRP formulation 1

The first integer programming (IP) formulation is presented below. This formulation uses the

definitions of variables used in the above section; xe is 1 if edge e is included and 0 otherwise, se is the

number of times it is included.

3.1 Formulation of the ASRP 39

ASRP1:

max ∑
∈Ee

eexr

s.t. v
ve

e ks 2
)(

=∑
∈δ

 ∀ v ∈ V

 Csc
Ee

ee ≤∑
∈

 1
)(

≥∑
∈ depote

ex
δ

)1(
)(

S
Se

e yMs −≤∑
∆∈

 ∀ S ⊂ V

)1(
)\(

S
SVe

e zMs −≤∑
∆∈

∀ S ⊂ V

)(2
)(

SS
Se

e zyMs +−≥−∑
∈δ

∀ S ⊂ V

 ee sx ≤ ∀ e ∈ E

 0≥es

∀ e ∈ E

 integer es

∀ e ∈ E

 0vk ≥
 ∀ v ∈ V

 integervk
 ∀ v ∈ V

 binary ex

∀ e ∈ E

 binary , SS zy

∀ S ⊂ V

3.1.4 ASRP formulation 2

Broadly speaking, dominance relations are equalities or inequalities that reduce the set of feasible

solutions to a smaller set that surely contains an optimal solution. Hence, a dominance relation is

satisfied by at least one optimal solution for the problem but not necessarily by all feasible solutions.

Dominance Relation D1.

We define a dominance relation for the ASRP by noting that in an Euler tour (a minimum cost tour

covering all the required edges), each edge is traversed at most twice. If an edge is traversed more

than twice in a solution, it is possible to find another route through the same edges, which traverses

each edge at most twice, at a not-greater cost. Let D1 be the dominance relation that se ≤ 2, for all

edges e ∈ E.

Formulation 2 takes advantage of the above dominance relation, D1. Instead of x and s, variables to

denote whether an edge is traversed, and the number of times it is traversed, we define variables p and

q. Let pe = 1 if edge e is traversed once in the solution, and 0 otherwise; let qe = 1 if edge e is traversed

twice in the solution. Clearly, then, (pe + qe) is equivalent to xe in ASRP1, and (pe + 2qe) is equivalent

to se.

40 Preliminary Investigation of the ASRP Chapter 3

We define the following integer program for the ASRP.

ASRP2:

max ∑
∈

+
Ee

eee qpr)(

s.t.
()

(2) 2e e v
e v

p q k
δ∈

+ =∑ ∀ v ∈ V

 Cqpc
Ee

eee ≤+∑
∈

)2(

 1)(
)(

≥+∑
∈ depote

ee qp
δ

)1()2(
)(

S
Se

ee yMqp −≤+∑
∆∈

 ∀ S ⊂ V

)1()2(
)\(

S
SVe

ee zMqp −≤+∑
∆∈

∀ S ⊂ V

)(2)2(
)(

SS
Se

ee zyMqp +−≥−+∑
∈δ

∀ S ⊂ V

 1≤+ ee qp ∀ e ∈ E

 binary , ee qp

∀ e ∈ E

 0vk ≥
 ∀ v ∈ V

 integervk
 ∀ v ∈ V

 binary , SS zy

∀ S ⊂ V

3.1.5 ASRP formulation 3

We can again make use of the dominance relation D1 and formulate the problem differently. For each

edge e in the original graph G, we associate two binary variables xe′ and xe″, each representing one

traversal. In terms of the first formulation, se = xe′ + xe″ and xe = xe′.

Now, we have the problem of how to deal with the reward. We have several options.

If the reward for traversing the original edge e was re, then we can let the reward for each of the new

variables be re and change our reward function so that only one of the rewards is added:

 ∑∑
∈∈

′−′′+′
Ee

eee
Ee

ee rxxrx)1(

This method would work, but unfortunately the objective function is now non-linear – something we

would prefer to avoid.

We could associate reward variables re′ and re″ with the traversal variables xe′ and xe″, respectively, and

then introduce the following constraints to ensure that when one of the variables is 1, the reward

variables are equal to the original reward, and when both of them are 1, then the reward variables are

equal to half of the original reward. When neither is one, we don’t really care.

3.1 Formulation of the ASRP 41

 eeeee rxxrr)3(′′−′−=′′+′ ∀ e ∈ E

 0=− ee rr ∀ e ∈ E

The first equation ensures that the reward variables sum to the correct amount, and the second equation

ensures that they are equal. This method would work, however it adds an additional 2*|E| variables and

2*|E| constraints to the model.

We could sum the rewards in the objective function only for the xe′ variables, and then add a constraint

to ensure that xe″ is only equal to 1 when xe′ is already equal to 1 (if only one of the variables is

selected, then it is xe′). The objective function would then be:

 ∑
∈

′
Ee

eerx

And the added constraint set would be:

 ee xx ′≤′′ ∀ e ∈ E

This method is linear, and results in no new variables and only |E| new constraints, so it is preferable.

Dominance Relation 2.

All bridges are 0/2 edges. Proof: A bridge edge b may be equal to 0 by not including the bridge

and by not including all the edges on the far side of the bridge from the depot. It may be equal to 2

so that it is traversed once on the way to the far side and once on the way back. If b equals 1 then

any route would be able to get to the far side, but not return to the depot. Let D2 be the dominance

relation that ee xx ′=′′ , for all edges e ∈ B.

Note that we could also use D2 in ASRP2, by setting pe = 0 ∀ e ∈ B.

42 Preliminary Investigation of the ASRP Chapter 3

The revised formulation is given below.

ASRP3:

max ∑
∈

′
Ee

ee xr

s.t.
()

() 2e e v
e v

x x k
δ∈

′ ′′+ =∑ ∀ v ∈ V

 Cxxc
Ee

eee ≤′′+′∑
∈

)(

 1)(
)(

≥′∑
∈ depote

ex
δ

)1()(
)(

S
Se

ee yMxx −≤′′+′∑
∆∈

 ∀ S ⊂ V

)1()(
)\(

S
SVe

ee zMxx −≤′′+′∑
∆∈

∀ S ⊂ V

)(2)(
)(

SS
Se

ee zyMxx +−≥−′′+′∑
∈δ

∀ S ⊂ V

 ee xx ′≤′′ ∀ e ∈ E

 ee xx ′=′′ ∀ e ∈ B

 0vk ≥
 ∀ v ∈ V

 integervk
 ∀ v ∈ V

 binary , ee xx ′′′

∀ e ∈ E

 binary , SS zy

∀ S ⊂ V

3.2 Construction heuristics

The existing heuristic concepts for arc routing problems are predominantly based on one of two ideas:

augmenting the graph to make it Eulerian so that an Euler tour may be found (for single vehicle

problems), and swapping edges between routes (for multiple vehicle problems). These methods are

based on the premise that a known subset of the edges (usually all of them) is to be serviced. They

manipulate the order of the edges. The difficulty for subset selection problems is that this premise is no

longer true. In the ASRP, we have a complicating factor: we need to select only a subset of the arcs.

We present three construction heuristics for the ASRP. Our first two heuristics, PRUNE AND ROUTE and

ROUTE AND PRUNE, exploit the properties of Eulerian graphs. We also present a constructive look-

ahead heuristic, RICHEST NEIGHBOUR, which is based on the nearest neighbour principle with the

addition of a budget-checking phase.

A key phase in both of the pruning heuristics is the solution of a Chinese Postman Problem, which is

essentially equivalent to finding the solution to a minimum-weight matching problem. We use a variant

of the algorithm designed by Edmonds and Johnson [78], modified from Evans and Minieka [87].

3.2 Construction heuristics 43

3.2.1 Prune and Route

Many of the algorithms and heuristics for arc routing problems, such as the Chinese Postman Problem

and the Rural Postman Problem, attempt to transform the problem instance graph by adding arcs until

the graph is Eulerian, and then using the resulting Euler tour as the solution. We adapt the same

approach but, to compensate for our limited cost budget, we add an extra phase, the pruning phase. We

make an analogy with solution methods for the Capacitated Arc Routing Problem (CARP), some of

which are known as Cluster-First-Route-Second algorithms; our heuristic is a Prune-First-Route-Second

heuristic.

There are three phases to the pruning heuristic. Phase 1: delete sufficient edges from G that when an

Euler tour is found, the total cost is within budget; call this transformed graph G–, and call its edge set

E–. Phase 2: augment G– by replicating sufficient edges from E– to make the graph Eulerian; this can be

done by solving a matching problem on the odd-degree vertices. Call this augmented graph G+. Phase

3: Find an Euler tour on G+, this is our solution.

Phases 2 and 3 are together equivalent to solving a Chinese Postman Problem, and there are algorithms

that easily deal with them. Phase 1 is more problematic. One method of deciding when to stop deleting

edges is to actually perform phases 2 and 3 at each step, and repeat the whole process of prune-

augment-route until the resulting Euler tour is within budget. However, this involves intensive

computation. A modification which improves efficiency is to delete arcs until the sum of costs on the

edges of the remaining graph is less than the cost budget; since we still have to augment the graph, we

know that we won’t delete too many. From there either a new estimate of how many arcs to delete can

be made, or they can be deleted, and an Euler tour formed, one arc at a time.

An Euler augmentation GE, of a graph G, is a least cost augmentation such that the resulting graph is

Eulerian; every node has even degree. Let yij denote the number of times edge (vi, vj) occurs in GE. We

may assume that each edge has at most two copies, yij ∈ {0, 1, 2}, since any augmentation with greater

than two copies of an arc is not least cost (see dominance relation D1 in Section 3.1.4).

There is also a decision to be made on the order in which the arcs should be deleted. There are two

factors: we want to delete edges with low reward:cost ratio, and we want to delete edges that contribute

to adding more arcs in phase 2. Under no circumstances will we permit the deletion of a bridge.

(Recall that a bridge is an edge, the deletion of which disconnects the graph; pendant edges –edges that

are incident on a vertex of degree 1 – may also be classified as bridges, but we will use the more

restricted definition.) There are several possible schedules for the deletion of arcs, but for this chapter

we will use the following three:

Schedule 1: First delete all the end edges (edges that are incident on a vertex of degree 1), in order

of increasing reward:cost ratio. Next, delete all the edges that are not a bridge, in order of increasing

reward:cost ratio. Note that the graph should be reassessed after each deletion. We desire to delete end

edges first, because they necessarily must be traversed twice.

Schedule 2: Delete all the edges that are either pendant or are not a bridge, in order of increasing

reward:cost ratio.

44 Preliminary Investigation of the ASRP Chapter 3

Schedule 3: The same as Schedule 2, except that the reward:cost ratio of end-edges is halved to

make them more attractive to the selection. The reasoning behind this is that end edges must be

traversed twice in succession; so, the deletion of them saves twice the cost that the deletion of other

edges saves (assuming unit cost, this is not generally true).

The schedules are the same, except that in schedule 1, the two groups of candidate edges are deleted

sequentially, and in schedule 2 they are deleted simultaneously. We check whether an edge (vi, vj) is a

bridge by checking whether vi and vj are connected on the graph resulting from the deletion of edge

(vi, vj).

Algorithm 3.1 heuristic PRUNE AND ROUTE

 // Heuristic that iteratively prunes the graph and then finds the Euler augmentation

 Scope: ASRP problems

 Input: G // The graph

 Output: R // The solution route

 k ← 0

 Gk = (Vk, Ek) ← original graph G // Initially set the reduced graph as the original graph

E
kG ← the Euler augmentation of Gk

 C* ← ∑yijcij ∋ (vi, vj) ∈
E
kE

 while (C* > C) do

 k ← k + 1

 Delete edge (va, vb) from Ek, according to the schedule, such that (va, vb) has

 minimum reward:cost ratio and (va, vb) is not a bridge. The deletion of

 this edge must not disconnect the depot. Call the resulting graph Gk.

E
kG ← the Euler augmentation of Gk

 C* ← ∑yijcij ∋ (vi, vj) ∈
E
kE

 end

 R ← Euler tour on
E
kG

end

3.2.2 Route and Prune

This heuristic, which may be considered a Route-First-Prune-Second method, is based on methods for

the CARP that first form a giant tour, by solving the CPP relaxation, and then breaking that tour up into

smaller tours. We proceed similarly, by solving the CPP relaxation of the ARCP (treating it as a CPP,

where all arcs must be traversed), forming a giant tour, and then we delete sections of the tour until it is

cost-feasible.

3.2 Construction heuristics 45

We use the following method to prune the giant tour. Identify all the cycles within the giant tour; a

cycle is defined for our purposes to be a sequence of vertices, which starts and finishes at the same

vertex. Consider the graph in Figure 3.1.

3

0

1

2

4

5

6

7

8

9

10

Figure 3.1: Examples of cycles

Starting at the depot (vertex 0), the route is R = (0, 1, 2, 3, 2, 4, 5, 6, 4, 7, 8, 9, 10, 9, 0). We identify the

following cycles within R: (2, 3, 2), (4, 5, 6, 4), and (9, 10, 9); R itself is a cycle, but we exclude it from

consideration. We then delete the cycles from our giant tour, by solving a bin-packing problem to

minimize the loss of reward:cost while getting the cost within budget.

Note that we must be careful because some cycles are dependent on others; it is possible for there to be

cycles-within-cycles, e.g. Figure 3.2.

Figure 3.2: Example of nested cycles

In this example, where the route is R = (0, 1, 2, 3, 2, 4, 1, 5, 0), there are the following cycles: (1, 2, 3,

2, 4, 1), (2, 3, 2), and the full route is itself a cycle.

46 Preliminary Investigation of the ASRP Chapter 3

Algorithm 3.2 heuristic ROUTE AND PRUNE

 // Heuristic that creates a giant CPP tour, and then deletes cycles until the

 // subtour is feasible with respect to cost

 Scope: ASRP problems

 Input: G // The graph

 Output: R // The solution route

 k ← 0

 Gk = (Vk, Ek) ← original graph G // Initially set the reduced graph as the original graph

E
kG ← the Euler augmentation of Gk

 C* ← ∑yijcij ∋ (vi, vj) ∈
E
kE

 Rk ← Euler tour on
E
kG

 while (C* > C) do

 Identify all the cycles in Rk.

 k ← k + 1

 Delete the cycle that has the minimum reward:cost ratio, and which also contains

 no other cycles. The deletion of this cycle must not disconnect the

 depot. Call the resulting route Rk.

E
kG ← the Euler augmentation of Gk

 C* ← ∑yijcij ∋ (vi, vj) ∈ Rk

 end

 R ← Rk

end

3.2.3 Richest Neighbour

This heuristic is an adaptation of the classic Nearest Neighbour heuristic for the Travelling Salesman

Problem, with the addition of a check to ensure continuing cost feasibility.

Starting at the depot, and at each step, a path is formed by adding an adjacent edge to the route if its

reward:cost ratio is the largest of all edges, and if the shortest path back to the depot from the arc results

in a cost-feasible solution. Once no more edges can be added, the shortest path to the depot is appended

to the end of the path, forming a closed subtour.

The heuristic can be extended from a 1-period look-ahead to an n-period look-ahead by considering the

added reward if the next n edges are added to the route, and then adding the first edge of the candidate

which resulted in the greatest increase in reward. Only one edge is added to the route at a time, but

more possibilities are considered for higher values of n. This is analogous to a path-scanning approach.

At each iteration the heuristic considers all other nodes in the graph to be the “destination node” e for

the current iteration. The first node along this shortest path is denoted e1. If the shortest path from the

3.2 Construction heuristics 47

current node to e is within the look-ahead (not greater than the look-ahead) and if the addition of the arc

between the current node and e1 allows a return to the depot from e1 within the cost budget, then e is a

valid destination node. The reward:cost ratio, for all untraversed arcs along the shortest path to e, is

calculated; if it is better than any other valid destination nodes for this iteration it is selected. At the end

of the iteration e1 is added to the node route. If there were no valid destination nodes then the shortest

path from the current node to the depot is added to the end of the route and the solution is returned.

Algorithm 3.3 gives the pseudo-code for the RICHEST NEIGHBOUR family of heuristics, with look-

ahead n.

Algorithm 3.3 heuristic RICHEST NEIGHBOUR (n)

 // Heuristic that constructs a path one arc at a time, and then takes the shortest

 // path back to the depot

 Input: G, SP(i, j), n // The graph, the shortest path cost matrix between all

 pairs of nodes and the look-ahead parameter

 Output: R // The solution route, expressed as a sequence of nodes

 k ← 0

 Rk ← depot // Set the depot node as the current node

 finishedExpansion ← false

 while (finishedExpansion = false) do

 // Find the next destination node (up to n away)

 rc* ← 0 // Initialize the best reward:cost ratio to zero

 e* ← null // Initialize the best next destination node as null

 do e ∈ E \ Rk // Loop through all the nodes in the graph except the current node

 e1 ← the first node on the path from Rk to e

 if SP(Rk, e) ≤ n then

 if C + SP(e1, depot) ≤ B then

 reward ← the sum of all the rewards of the currently untraversed

 arcs in the shortest path from Rk to e

 rc ← reward / SP(Rk, e) // Calculate the reward:cost ratio for this path

 if rc > rc* then // If this destination node is better then update the best

 rc* ← rc // Update the best reward:cost ratio

 e* ← e // Update the best next destination node

 end

 end

 end

 end

 // Update the current node

 if e* is not null then

48 Preliminary Investigation of the ASRP Chapter 3

 e1 ← the first node on the path from Rk to e

 k ← k + 1

 Rk ← e1

 else

 finishedExpansion ← true

 end

 end

 // No more expansion can be performed, return to depot

 while (Rk is not depot) do

 e1 ← the first node on the path from Rk to depot

 k ← k + 1

 Rk ← e1

 end

end

3.3 Improvement procedures

We develop a number of local search move-types that can be applied to the solutions created by the

constructive heuristics. These are incorporated into simple implementations of the Steepest Ascent and

Tabu Search local search heuristics. Note that in this chapter we do not use the Modular Local Search

framework; we simply construct traditional versions of these metaheuristics.

An important point to note is that these move-types all start with a valid ASRP tour, and the resulting

solution is also a valid ASRP tour. It is not possible to arrive at a solution that is infeasible with respect

to being a valid tour or having subtours, assuming that the initial solution was feasible to start with. For

the ASRP we need only be concerned with infeasibility due to exeeding the cost budget.

We also define a procedure, Algorithm 3.4, that deletes redundancy in the completed route. A solution

route to the ASRP may be thought of as an Euler tour on the subgraph which consists only of those

edges which are traversed in the solution. For an Euler tour to be optimal for the subgraph, each edge

must be traversed no more than twice.

This procedure reduces the number of times an edge is traversed and then finds a resulting Euler tour.

If an edge is traversed an odd number of times in the original route, it is traversed once in the modified

route, and if an edge is traversed an even number of times in the original route, then it is traversed twice

in the modified route. The modified route will have the same reward, but its incurred cost will be less

than, or equal to, that of the original route.

Since this procedure re-routes the solution through the same subset of arcs, the route obtained

potentially traverses the arcs in a different order. This procedure can be used to “reshuffle” a solution,

potentially creating new neighbours.

3.3 Improvement procedures 49

Algorithm 3.4 procedure DELETE REDUNDANCY

 // Reduces the number of times an arc is traversed and re-routes the solution through

 // the same set of arcs, possibly in a different order.

 Scope: ASRP problems

 Input: R // The current solution route, expressed as an ordered sequence of arcs

 Output: R* // The new solution route

 A ← the distinct set of arcs in R // Each distinct arc appears in A only once

 GE ← construct Eulerian graph from A using the matching algorithm of Edmonds

 and Johnson [78]

 R* ← CONSTRUCT EULER TOUR FROM EULERIAN GRAPH(GE) (Algorithm 2.1)

end

3.3.1 Basic ASRP move-types for local search heuristics

The following procedures are combined as moves in local search heuristics, such as Tabu Search and

Steepest Ascent. These move-types are defined on general graphs, not necessarily limited to the grid

graphs that are used for the experimental phase, however they are most easily visualized on grids, as in

Figure 3.3.

Figure 3.3: Basic ASRP move-types

3.3.1.1 Add

Given a route S traversing a subset R ⊆ E of edges, and given an edge (vj, vk) ∈ E\R, the ADD procedure

adds this edge twice, inserting it between a pair of adjacent arcs.

For example, if a section of the route is (…, A, B, C, E, …) and we wish to add edge (C, D), then the

new path is (…, A, B, C, D, C, E, …). The cost of the route is increased by cCD + cDC = 2cCD, for a

symmetric cost matrix.

50 Preliminary Investigation of the ASRP Chapter 3

3.3.1.2 Drop

DROP is the opposite procedure to ADD. Given a route S traversing a subset R ⊆ E of edges, and given

an edge (vj, vk) ∈ R, which is included at least twice consecutively in S, this procedure constructs a new,

shorter, route without this edge.

For example, if a section of the route is (…, A, B, C, D, C, E, …), and we wish to DROP edge (C, D),

then the new path is (…, A, B, C, E, …). The cost of the route is reduced by cCD + cDC = 2cCD, for a

symmetric cost matrix.

3.3.1.3 Shortcut

Given a route S traversing a subset R ⊆ E of edges, and given a subpath of S, S′ = (vi, vj, vm, vn), if edge

(vi, vn) ∈ E then the SHORTCUT procedure deletes the edges (vi, vj), (vj, vm), and (vm, vn) from S′ and

replaces them with edge (vi, vn). On a grid, this is equivalent to traversing one side of a square, instead

of the other three.

For example, if a section of the route is (…, A, B, C, D, E, F, …), and we wish to shortcut the subpath

(B, C, D, E), then the new path is (…, A, B, E, F, …). The cost of the route has been reduced by

cBC + cCD + cDE – cBE.

3.3.1.4 Detour

Given a route S traversing a subset R ⊆ E of edges, and given a subpath of S, S′ = (vi, vj, vk), if edge

(vi, vm) ∈ E and edge (vm, vk) ∈ E then the DETOUR procedure deletes edges (vi, vj), (vj, vk) from S′ and

replaces them with edges (vi, vm), (vm, vk). On a grid, this is equivalent to traversing two sides of a

square, rather than the other two.

For example, if a section of the route is (…, A, B, C, D, F, …), and we wish to detour the subpath

(B, C, D) via vertex E, then the new path is (…, A, B, E, D, F, …). The cost of the route has been

reduced by cBC + cCD – cBE – cED.

3.3.2 Extended ASRP move-types

In addition to the basic move-types that are used in the improvement procedures in this chapter, we also

define four extended move-types that will be used in later chapters. The extended move-types are

generalizations of their basic counterparts. All the extended move-types are general to any type of

graph; they are not limited to grid graphs.

The extended move-types are parameterized with a look-ahead parameter λ. The look-ahead

determines the potential size of the move; λ = 1 makes the extended move-types equivalent to the basic

move-types.

3.3 Improvement procedures 51

3.3.2.1 nAdd

NADD is the generalized version of ADD. Given a route S visiting a subset R ⊂ V of vertices, and given

a vertex vi ∈ R and a vertex vj ∈ V \ R, let Yij be the length of the shortest path between vi and vj. If Yij ≤

λ then the NADD procedure inserts the shortest path between vi and vj into S, starting at vi, and then

inserts the shortest path between vj and vi into S directly after it to reconnect the route. The length of the

route is increased by 2Yij.

3.3.2.2 nDrop

NDROP is the generalized version of DROP. Given a route S with a sequence of arcs ai, ai+1, ..., an,

NDROP deletes a cycle within this sequence, such that the length of the cycle does not exceed λ.

For example, if a section of the route is (..., A, B, C, D, C, F, B, ...), then there are two cycles that can

be considered for deletion: (C, D, C) and (B, C, D, C, F, B). The cost of the route is reduced by the

length of the cycle.

Note that the Route and Prune construction heuristic is equivalent to repeated application of NDROP,

starting from the "giant" tour resulting from solving the CPP relaxation.

3.3.2.3 nShortcut

NSHORTCUT is the generalized version of SHORTCUT. Given a route S visiting a subset R ⊂ V of

vertices, and a sequence of vertices within S: vi, vi+1, ..., vj, let Yij be the length of the shortest path

between vi and vj. If Yij ≤ λ then the NSHORTCUT procedure replaces the path in the route from vi to vj

with the shortest path from vi to vj.

3.3.2.4 nDetour

NDETOUR is the generalized version of DETOUR. Given a route S visiting a subset R ⊂ V of vertices,

and a sequence of vertices within S: vi, ... vp, ..., vj, and let vq be a vertex not in R, then let Yiq be the

length of the shortest path between vi and vq, and let Yqj be the length of the shortest path between vq and

vj.

If Yiq ≤ λ and Yqj ≤ λ then NDETOUR replaces the path in the route from vi to vj via vp with the shortest

path from vi to vq and the shortest path from vq to vj. Essentially the path from vi to vj detours through

vq.

3.3.3 Steepest Ascent

Ascent Search is a heuristic improvement procedure (descent for minimization problems). It starts from

an initial solution and, at each step, selects an improving move and sets that as the current solution. It

continues until no improving moves are available, and the current solution is then a local optimum.

Steepest Ascent follows the same procedure, but it selects the best improving move at each step.

52 Preliminary Investigation of the ASRP Chapter 3

Our version of Steepest Ascent selects from the neighbourhood of solutions generated by the moves

described above: ADD, DROP, SHORTCUT, and DETOUR.

3.3.4 Tabu Search

Tabu Search is a metaheuristic that has been applied with considerable success to routing problems.

We consider a basic version, as an improvement procedure to the construction heuristics. Its basic

operation is similar to Steepest Ascent. It starts with an initial solution and at each step, evaluates all

the possible moves and compiles a list of candidate moves. It then checks the tabu status of each of the

moves and, if the move is not tabu, or if it is tabu but satisfies the aspiration criterion, then the move is

added to the list of admissible moves. Then, the best admissible move is selected and becomes the

current solution and the tabu list is updated.

The tabu list works by making some moves unavailable for selection. The purpose of this is to

encourage diversification and prevent cycling. This version of Tabu Search uses the four moves

described above: ADD, DROP, SHORTCUT, and DETOUR. Any arcs which are added to, or dropped from,

the route as a result of a move are made tabu for a set number of moves (known as the tabu tenure).

The exception is when a move requires a tabu edge and that move would result in the satisfaction of the

aspiration criterion. The most common aspiration criterion is that the resulting solution would be better

than the best found so far. After each step, the number of tabu iterations remaining for each edge on the

list is reduced by one.

Our version of Tabu Search for this chapter allows solutions that are infeasible with respect to the cost

budget, but apply a penalty to each unit of cost over the cost budget that is incurred, and the best-

solution-so-far is only updated with feasible solutions.

3.4 Problem generation principles

In this section we discuss some issues involved in problem generation for the ASRP.

3.4.1 Graph generation

All of our computational experiments are implemented on grid graphs with arcs of unit length. A grid

graph is one in which all the arcs are laid out in the form of a grid, and we denote the size of a grid by

the number of vertices down and across. For example, Figure 3.4 gives an example of a 6×6 grid graph;

the arcs are laid out on a lattice of six rows by six columns of vertices.

Figure 3.4: Example of a 6x6 grid graph

3.4 Problem generation principles 53

Grid graphs offer a number of advantages over more general graphs, and have been used several times

by other researchers. Frizzell and Giffin [104] study a variation on the Vehicle Routing Problem, using

quite small (6×6) square grid graphs with constant edge costs. They note that grid graphs have a layout

that more closely models that of actual road networks, especially in an urban environment. From an

experimental perspective, they also allow more finely grained control over the structure of the

networks, reducing the degrees of freedom. Mohan et al. [195] study the Stochastic Eulerian Tour

Problem on grid graphs of sizes 4×4, 5×5, 6×6, 7×7, 8×8 and 9×9. Johnston and Chukova [151] briefly

study a version of the Arc Subset Routing Problem, which they call the Rural Postman Problem with

Rewards, on grid graphs of size 9×9. For the purposes of exposition, we will limit ourselves to a 10×10

grid, and we define each arc to have unit length.

3.4.1.1 General graph characteristics

In order to compare and classify different graphs, we define several graph characteristics.

Given a graph, G = (V, E), let

• E be the cardinality of the edge set (the number of edges).

• V be the cardinality of the vertex set. For a 10 × 10 grid, this is nominally 100, but, as can be

seen in Figure 3.5, the graph generation techniques may result in some of the vertices being

isolated.

•
ivD be the degree of vertex vi (the number of arcs incident on vi).

•
VD be the average degree of the vertices in the graph.

V

D

D Vv
v

V i

i∑
∈

=

• E1 ⊂ E be the set of pendant-edges. A pendant-edge is an edge incident on a vertex vi, with

ivD = 1. Let E1 be the cardinality of the set of pendant-edges.

• ϒ be the matrix of shortest path lengths, where element ijϒ is the length of the shortest path

from vertex vi to vertex vj. Further, let Vϒ be the average of the shortest distances between all

pairs of vertices, and let dϒ be the average of the shortest distances from the depot to every

other vertex.

3.4.1.2 Grid graph characteristics

We also define several measures specific to grid graphs.

Given a grid graph, G = (V, E), let

• m be the number of rows of vertices, and n be the number of columns of vertices, in the grid.

We then say that G is an m × n grid.

54 Preliminary Investigation of the ASRP Chapter 3

• EC be the set of edges in the complete grid (one where all possible edges are included)

corresponding to G. E ⊆ EC. Let EC be the cardinality of the edges of the complete grid.

For an m × n grid,

nmmnmnnmEC −−=−+−= 2)1()1(

• ΨG be the density of G. The density is the number of edges in the graph divided by the number

of edges there would be in a complete grid.

C

G

E

E
=Ψ

• PC = P1

C ,P2

C ,...,Pk
C{ } be a partition of EC, such that every edge in EC is an element of one,

and only one, element of P; i.e. Pi
C ⊂ EC and Pi

C ∩ Pj
C = ∅ ∀ i,j; and P1

C ∪ P2
C ∪ … ∪ Pk

C =

EC. Let { }kPPPP ,...,, 21= be the corresponding partition of E ∋ iPP C
ii ∀⊆ .

• iPΨ be the density of set i of partition P.

C
i

iP

P

P
i =Ψ

3.4.1.3 Example of a grid graph

In our experiments we use a 10 × 10 grid, so
CE = 180.

Figure 3.5. Example of a grid graph.

In Figure 3.5, we see an example of a 10×10 grid graph. This graph has the following characteristics:

E = 110, V = 97,
VD = 2.27,

1E = 17, ΨG = 0.61, Vϒ = 11.72, dϒ = 13.21. We may derive

other measures from these, if desired, for example, the proportion of end-edges is 17/120 = 0.155.

3.4.1.4 Graph generation methods

Two methods of generating random grid-graphs are presented. The main restriction on the generation

of the graphs is that, for our purposes, the graphs must be connected. Clossey et al. [54] also used grid

graphs, studying the Chinese Postman Problem with Turn Penalties. Their method of grid generation

was to grow a connected graph by adding arcs adjacent to those already added. We believe that this

3.4 Problem generation principles 55

method will tend to create graphs with regions of high density, surrounded by regions of lower density.

We refer to this method as GRID GROW, and it is described in Algorithm 3.5.

Algorithm 3.5 procedure GRID GROW

 // Constructs a graph by iteratively adding arcs from the full grid template that are

 // adjacent to an already added arc

 Scope: Routing problems

 Input: EC, Ψ // The edges of the complete grid and the desired density of the

 generated subgrid

 Output: E // The set of edges in the generated subgraph of the complete grid

 E ← ∅

 Randomly choose an edge e ∈ EC

 Add e to E

 repeat

 Randomly choose an edge e ∈ EC \ E

 if e is adjacent to another arc in E then add e to E

 until |E| = Ψ × |EC| // The desired density is achieved

end

Our second method of grid graph generation is to randomly select one of the 180 arcs and mark it

“selected”, then select one of the remaining 179 arcs, etc., until we have a graph of the required density.

To ensure the connectedness of the graph, we check to see if it is connected, and discard it if it is not.

This method, which we call GRID SELECT, is more computationally intensive, but still quick enough that

several hundred instances may be generated in no more than a few minutes.

56 Preliminary Investigation of the ASRP Chapter 3

Algorithm 3.6 procedure GRID SELECT

 // Constructs a graph by adding a random subset of arcs from the complete grid and

 // then checking to see if connected. This repeats until a connected graph is found.

 Scope: Routing problems

 Input: EC, Ψ // The edges of the complete grid and the desired density of the

 generated subgrid

 Output: E // The set of edges in the generated subgraph of the complete grid

 repeat

 E ← ∅

 Randomly choose E ⊆ EC, where |E| = Ψ × |EC|

 Check whether E results in a connected graph

 until E results in a connected graph

end

To explore whether the two methods generate different types of graphs we perform a small experiment,

where we generate a large number of graphs by each method, and then compare them using the graph

and grid characteristics.

Experiment: Generate 30 instances for each of the following edge set cardinalities, on a 10×10

structure: {90, 100, 110, 120, 130, 140, 150}. Do this for both the GRID GROW and the GRID SELECT

methods. In order to compare the distribution of edges within the graphs, we define the following

partition of the full grid, as illustrated in Figure 3.6:

{ }CCCCCCCCCC PPPPPPPPPP 987654321 ,,,,,,,,= , where 20180 =⇒= C
i

C PE .

CCC

CCC

CCC

PPP

PPP

PPP

987

654

321

Figure 3.6: Graph partition

We used the multivariate analysis technique of discriminant analysis to determine if we could predict

whether a particular problem instance was formed using GRID GROW or GRID SELECT, just from its

3.4 Problem generation principles 57

characteristics. There were 420 instances altogether, and we found a linear discriminant function (LDF)

which was very successful (99.5%) in telling the two types of instance apart. It made two

misclassifications. In Figure 3.7, we see some typical examples of grids generated using GRID GROW, in

Figure 3.8, we see some generated using GRID SELECT. The two instances which were misclassified are

shown in Figure 3.9; they were both generated using GRID GROW, and were classified by the LDF as

GRID SELECT.

90 edges

120 edges

150 edges

Figure 3.7: Grids generated using GRID GROW

90 edges

120 edges

150 edges

Figure 3.8: Grids generated using GRID SELECT

GRID GROW 130 edges

GRID GROW 150 edges

Figure 3.9: Grids which were misclassified

In the subsequent experiments, we use both types of grid graphs to test the heuristics.

3.4.2 Rewards and classes

Initially, the rewards are set randomly, according to a uniform distribution, U(a, b). In order to create

interesting examples, we introduce the concept of classes. Each arc within a class has its reward drawn

from the same distribution. For example, a problem instance might have two classes of arcs, normal

58 Preliminary Investigation of the ASRP Chapter 3

roads and arterial roads, and these might have different reward distributions, e.g. U(10, 20) and

U(30, 35), respectively. A variety of class distributions are applied.

3.4.3 Cost budget

The best method of distinguishing the performance of the heuristics will be their relative performances

for different levels of the cost budget, so this factor will be increased incrementally. Let us define a

measure of the size of the cost budget relative to the total cost of the grid (the sum of all the costs on the

arcs) as B = (cost budget)/(sum of arc costs). A value of B = 1 does not necessarily mean that all the

arcs may be traversed, since some may be traversed more than once. On a complete m × m grid,

0.1*ΨG is the required budget to cross from one side of the grid to the other, and back. Therefore, a

reasonable á priori range for B seems to be between 0.1 and 1.0.

3.5 Specific problem instances

Two types of problem instance were generated. The first type were designed around a certain concept,

which we call designed graphs. We generated three designed graphs and varied the depot location to

give distinct instances. The second type were randomly generated graphs. There were 12 specifications

of edge number and reward distribution, and two methods of generation, giving 24 distinct instances.

3.5.1 Designed graphs

For each of the designed grids, we used three different approximate depot locations: edge, corner, and

middle. For the asymmetric graphs below, we used all combinations of depot locations.

The designed grids (shown in Figure 3.10) were of three stylized types, giving 21 problem instances in

all. The grey squares correspond to the depot locations; the numbering is top to bottom, left to right (as

a page of text would be read).

• Complete grid. This is a complete grid, 180 arcs, density = 1. The distribution of rewards was

U(10, 20). There were three depot locations used for this grid; the graphs are labeled C1, C2, C3.

• Lake. 140 edges, density = 0.78. The distribution of rewards was U(10, 20). There were nine

depot locations used for this grid; the graphs are labeled L1, L2, …, L9.

• River. 154 edges, density = 0.86. There were two classes of edge, with uniform rewards for each

class; the single line edges were in the range U(10, 15), the double line edges were in the range

U(15, 25). There were nine depot locations used for this grid; the graphs are labeled R1, R2,…, R9.

3.5 Specific problem instances 59

Complete – 3 depot locations

Lake – 9 depot locations

River – 9 depot locations

Figure 3.10: Designed problem instances

3.5.2 Random graphs

Two phases of experimentation were performed on random graphs. An initial phase and a more

extensive phase 2. Figure 3.11 gives some examples of the graphs generated by the two generation

methods.

GROW 90 edges

SELECT 90 edges

GROW 150 edges

SELECT 150 edges

Figure 3.11: Examples of random grid graphs

All of the problem instances generated were connected grid graphs.

3.5.2.1 Phase 1 problem instances

Phase 1 involves a small set of specifications with the parameters in Table 3.2. These four

specifications for the two methods of generation and the 15 cost budgets give 120 distinct problem

instances. We generate five realizations of each instance, giving a total of 600 realizations. We call

this problem set A.

60 Preliminary Investigation of the ASRP Chapter 3

Table 3.2: Specifications for problem set A of random graphs

 Class 1 Class 2

Problem Set No. Arcs # Dist
n
. # Dist

n
.

GRID GROW 1 (G1) 90 45 U(5, 10) 45 U(15, 20)

GRID GROW 2 (G2) 110 55 U(5, 10) 63 U(15, 20)

GRID GROW 3 (G3) 130 65 U(5, 10) 27 U(15, 20)

GRID GROW 4 (G4) 150 75 U(5, 10) 55 U(15, 20)

GRID SELECT 1 (S1) 90 45 U(5, 10) 45 U(15, 20)

GRID SELECT 2 (S2) 110 55 U(5, 10) 63 U(15, 20)

GRID SELECT 3 (S3) 130 65 U(5, 10) 27 U(15, 20)

GRID SELECT 4 (S4) 159 75 U(5, 10) 55 U(15, 20)

3.5.2.2 Phase 2 problem instances

Phase 2 involves a more extensive round of experimentation. Each of the twelve specifications given in

Table 3.3 were generated using both GRID GROW and GRID SELECT, giving 120 instances.

There are three factors which are varied: the graph generation technique (GRID GROW and GRID

SELECT), the cardinality of the edge set (90, 110, 130, 150 edges), and the proportion of edges in each

class (50-50, 30-70, 70-30).

3.6 Preliminary experimentation 61

Table 3.3: Specifications for problem set B of random graphs

 Class 1 Class 2

Problem Set No. Arcs # Dist
n
. # Dist

n
.

GRID GROW 1 (G1) 90 45 U(5, 10) 45 U(15, 20)

GRID GROW 2 (G2) 90 27 U(5, 10) 63 U(15, 20)

GRID GROW 3 (G3) 90 63 U(5, 10) 27 U(15, 20)

GRID GROW 4 (G4) 110 55 U(5, 10) 55 U(15, 20)

GRID GROW 5 (G5) 110 33 U(5, 10) 77 U(15, 20)

GRID GROW 6 (G6) 110 77 U(5, 10) 33 U(15, 20)

GRID GROW 7 (G7) 130 65 U(5, 10) 65 U(15, 20)

GRID GROW 8 (G8) 130 39 U(5, 10) 91 U(15, 20)

GRID GROW 9 (G9) 130 91 U(5, 10) 39 U(15, 20)

GRID GROW 10 (G10) 150 75 U(5, 10) 75 U(15, 20)

GRID GROW 11 (G11) 150 45 U(5, 10) 105 U(15, 20)

GRID GROW 12 (G12) 150 105 U(5, 10) 45 U(15, 20)

GRID SELECT 1 (S1) 90 45 U(5, 10) 45 U(15, 20)

GRID SELECT 2 (S2) 90 27 U(5, 10) 63 U(15, 20)

GRID SELECT 3 (S3) 90 63 U(5, 10) 27 U(15, 20)

GRID SELECT 4 (S4) 110 55 U(5, 10) 55 U(15, 20)

GRID SELECT 5 (S5) 110 33 U(5, 10) 77 U(15, 20)

GRID SELECT 6 (S6) 110 77 U(5, 10) 33 U(15, 20)

GRID SELECT 7 (S7) 130 65 U(5, 10) 65 U(15, 20)

GRID SELECT 8 (S8) 130 39 U(5, 10) 91 U(15, 20)

GRID SELECT 9 (S9) 130 91 U(5, 10) 39 U(15, 20)

GRID SELECT 10 (S10) 150 75 U(5, 10) 75 U(15, 20)

GRID SELECT 11 (S11) 150 45 U(5, 10) 105 U(15, 20)

GRID SELECT 12 (S12) 150 105 U(5, 10) 45 U(15, 20)

Altogether, if we have a full factorial experimental design, with the following factors and levels, then

we have 2 × 4 × 3 × 5 = 120 distinct problem specifications.

• Graph generation method. Two levels – GRID GROW and GRID SELECT.

• Edge set cardinality. Four levels – 90, 110, 130, 150 edges.

• Class proportions. Three levels – 50-50, 30-70, 70-30.

• Cost budget. 0.2, 0.4, 0.6, 0.8, 1.0 times the total grid cost.

3.6 Preliminary experimentation

The heuristics and experiments performed in this chapter were programmed in C++ in the early stages

of the research. All of this code was later replaced with the Java object oriented framework developed

for Modular Local Search. Computation was performed on an AMD Athlon4 processor, running under

Windows XP, with 1.2 GHz and 240Mb RAM.

62 Preliminary Investigation of the ASRP Chapter 3

To begin with we perform a simple sensitivity analysis on the parameters for RICHEST NEIGHBOUR (the

look-ahead period) and for TABU SEARCH (the penalty for infeasible solutions, the number of iterations,

and the tabu list size). We then perform a more detailed investigation of the construction heuristics and

improvement procedures.

3.6.1 Richest Neighbour look-ahead period

In principle, we can set the look-ahead to whatever we wish; in practice the computation times increase

geometrically, quickly becoming impractical for large numbers of experiments. Table 3.4 shows the

reward values and computation times (in seconds) for look-ahead periods 1-13 on a sample of instance

from problem set B. The highlighted values are the maxima achieved for each problem instance. The

problem names are constructed from the generation specification (see Table 3.3) and the cost budget,

which is calculated as a proportion of the total cost.

Table 3.4. Rewards and computation times for RICHEST NEIGHBOUR sensitivity analysis

REWARD

Heuristic G1-144 G1-216 G1-72 G10-144 G10-216 G10-72 G7-144 G7-216 G7-72 Grand Total

RN1 1022.86 1109.38 831.96 1414.28 1709.46 826.99 1366.83 1484.57 704.27 10470.61

RN2 1071.47 1132.98 853.33 1619.82 1780.59 952.80 1486.98 1644.01 970.35 11512.32

RN3 692.79 692.79 692.79 1254.65 1254.65 962.61 1300.93 1300.93 1029.10 9181.24

RN4 888.09 888.09 888.09 1626.53 1697.52 964.88 1382.86 1382.86 1012.51 10731.42

RN5 884.31 884.31 884.31 1542.02 1542.02 1045.14 1373.91 1373.91 1000.77 10530.71

RN6 904.04 904.04 898.10 1455.94 1455.94 994.57 1507.86 1530.06 996.85 10647.40

RN7 737.80 737.80 737.80 1584.34 1584.34 1024.07 1368.77 1368.77 1044.82 10188.54

RN8 894.26 894.26 894.26 1628.22 1628.22 1015.64 1494.69 1557.21 1038.78 11045.54

RN9 947.63 947.63 868.95 1630.17 1768.19 1012.64 1495.47 1530.05 1033.36 11234.08

RN10 1021.43 1021.43 831.68 1653.92 1776.44 1011.25 1506.20 1577.60 1044.45 11444.38

RN11 992.16 992.16 908.96 1656.06 1766.45 1012.09 1495.56 1508.83 1036.28 11368.55

RN12 890.75 890.75 890.75 1652.74 1820.89 1021.99 1534.63 1544.79 1012.40 11259.68

RN13 1016.55 1016.55 859.19 1650.25 1860.82 1008.31 1524.79 1549.34 1057.33 11543.13

maxima 1071.47 1132.98 908.96 1656.06 1860.82 1045.14 1534.63 1644.01 1057.33 11543.13

COMPUTATION TIME

Heuristic G1-144 G1-216 G1-72 G10-144 G10-216 G10-72 G7-144 G7-216 G7-72 Grand Total Ratio

RN1 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.16 65441.3

RN2 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.17 67719.5

RN3 0.02 0.01 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.21 43720.2

RN4 0.05 0.03 0.02 0.06 0.07 0.04 0.03 0.08 0.04 0.42 25551.0

RN5 0.12 0.16 0.08 0.15 0.20 0.09 0.17 0.11 0.10 1.18 8916.8

RN6 0.33 0.39 0.12 0.34 0.22 0.13 0.41 0.55 0.29 2.78 3824.5

RN7 0.63 0.78 0.33 0.81 0.91 0.54 1.07 1.72 0.63 7.43 1371.1

RN8 1.98 2.47 1.20 2.52 2.72 1.50 3.33 4.58 1.69 22.00 502.0

RN9 8.43 12.19 4.22 9.00 12.91 4.34 12.61 18.12 6.05 87.86 127.9

RN10 29.41 42.89 16.37 32.24 48.47 18.05 38.65 62.32 22.02 310.42 36.9

RN11 75.86 91.75 55.19 110.30 170.53 61.08 149.27 218.75 89.65 1022.36 11.1

RN12 424.00 651.06 183.31 373.75 591.19 201.43 569.34 724.24 328.91 4047.23 2.8

RN13 1532.73 2574.68 723.26 1293.10 2021.41 665.31 2045.57 2334.60 1247.72 14438.38 0.8

3.6 Preliminary experimentation 63

It can be seen that for specific problem instances, the increase in the objective function (reward) does

not increase monotonically with increasing look-ahead period. We note that RN2, especially, has as

much success as higher look-ahead values. We can calculate the ratio of reward collected to

computation time, to find the “bang-for-buck” values; we use this ratio as a measure of the efficiency of

the heuristic.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 2 3 4 5 6 7 8 9 10 11 12 13

R
a

ti
o

 (
1

0
0

0
's

)

Lookahead period

Figure 3.12. Ratio of reward to computation time (efficiency)

Figure 3.12 shows that both RN1 and RN2 have the highest efficiency, and since RN2 also has high

performance (reward) this heuristic is used in the full experiments.

3.6.2 Tabu Search parameter values

There are three parameter values for the TABU SEARCH heuristic: the penalty for each unit of cost over

the budget in intermediate solutions, the number of iterations that the heuristic runs for, and the tabu list

size/tabu tenure. Initial experiments revealed that when the penalty was 0, there was no improvement

over the initial constructive solution. They also revealed that an iteration counts of 50 and 100 were

completely dominated by an iteration count of 200.

An experiment was performed on some problems from problem set B, using RICHEST NEIGHBOUR with

look-ahead period 1 to construct the initial solution. Penalties of 10 and 100, iteration counts of 200

and 500, and tabu tenures of 2, 4, …, 20 were varied in a full factorial design, for a subset of instances.

The results are displayed in Table 3.5. The ghosted values are those which are not improved from the

initial solution, while those highlighted are the maximum achieved by any parameter specification.

As can be seen, the best results were achieved with 500 iteration, and a penalty of 10, with a tabu tenure

of 16. This tabu tenure seems quite high; in the literature (for example Glover [119]) the optimal tabu

tenure seems to be about 7. For the subsequent experiments in this chapter we will use TABU SEARCH

with 500 iterations, a penalty of 10, and a tabu tenure of 16.

64 Preliminary Investigation of the ASRP Chapter 3

Table 3.5. Results from Tabu Search sensitivity analysis

Iterations Penalty Tenure G1 G4 G7 G10 Grand Total

200 10 2 862.36 748.74 748.47 991.66 3351.23

4 862.36 835.56 942.97 991.66 3632.55

6 862.36 851.79 940.67 991.66 3646.48

8 862.36 854.31 940.67 991.58 3648.91

10 873.04 873.36 940.67 991.58 3678.65

12 873.04 857.18 962.72 991.66 3684.60

14 872.71 855.49 974.19 991.66 3694.05

16 873.04 862.78 972.84 991.66 3700.32

18 866.42 882.18 942.75 991.66 3683.00

20 871.06 873.34 952.37 991.66 3688.43

100 2 824.40 748.74 748.47 863.61 3185.22

4 824.40 786.28 748.47 863.61 3222.76

6 824.40 786.28 832.48 901.88 3345.04

8 844.97 768.65 855.49 863.61 3332.72

10 858.27 768.65 832.48 863.61 3323.01

12 869.34 774.48 840.82 863.61 3348.25

14 864.10 849.02 897.51 960.27 3570.89

16 861.22 850.05 914.69 946.13 3572.09

18 850.13 817.86 832.48 915.23 3415.70

20 853.55 836.72 832.48 863.61 3386.36

500 10 2 862.36 748.74 748.47 991.66 3351.23

4 862.36 835.56 942.97 991.66 3632.55

6 862.36 854.88 940.67 991.66 3649.57

8 862.36 854.31 940.67 991.58 3648.91

10 873.04 873.36 940.67 991.58 3678.65

12 873.04 857.18 962.72 991.66 3684.60

14 872.71 867.00 974.19 991.66 3705.56

16 873.04 903.89 973.86 991.66 3742.46

18 866.42 882.18 955.99 991.66 3696.24

20 871.06 873.34 958.55 991.66 3694.61

100 2 824.40 748.74 748.47 863.61 3185.22

4 824.40 786.28 748.47 863.61 3222.76

6 824.40 786.28 832.48 901.88 3345.04

8 844.97 768.65 855.49 863.61 3332.72

10 858.27 768.65 832.48 863.61 3323.01

12 869.34 774.48 840.82 863.61 3348.25

14 864.10 849.02 897.51 960.27 3570.89

16 861.22 850.05 914.69 982.32 3608.29

18 850.13 817.86 832.48 915.23 3415.70

20 866.02 836.72 832.48 1110.66 3645.88

maxima 873.04 903.89 974.19 1110.66 3742.46

available 1121.81 1408.32 1632.06 1917.71 6079.90

RN1 value 820.36 748.74 728.86 863.61 3161.57

3.7 Phase 1 experimentation

The experiments in this phase were performed on problem set A, and the intention was to become

familiar with the types of results that are obtained on the ASRP, and to examine a few features of the

3.7 Phase 1 experimentation 65

generated problems. In phase 2 we perform a more extensive set of tournaments, with more heuristics

and more problem instances.

3.7.1 Phase 1 heuristics

We compare the following 6 heuristics, described in Table 3.6. We consider three constructive

heuristics, both unimproved and with a Tabu Search improvement phase.

Table 3.6. Heuristics used in phase 1experiments

Label Description

RN2 RICHEST NEIGHBOUR construction with look-ahead 2 periods.

RN2-TS RICHEST NEIGHBOUR-2 construction followed by TABU SEARCH improvement.

PR PRUNE THEN ROUTE construction with Schedule 1

PR-TS PRUNE THEN ROUTE-1 construction followed by TABU SEARCH improvement.

RP ROUTE THEN PRUNE construction.

RP-TS ROUTE THEN PRUNE construction followed by TABU SEARCH improvement.

3.7.2 Effect of depot location on complete grids

The next experiment involved examining the heuristics’ performances on the complete grids. One of

the points of interest was to determine the effect of depot location. In the tables below, the results from

five problem instances were averaged to give the reward values. Table 3.7 gives the results for the

unimproved heuristics.

Table 3.7: Results for unimproved heuristics on complete grids

 Budget

Heuristic 18 36 54 72 90 108 126 144 162 180 198 216 234 252 Average

Corner Depot

RN2 287 569 854 1146 1381 1621 1839 2061 2277 2417 2517 2630 2683 2692 1784

PR 161 410 626 908 1179 1446 1703 1901 2138 2381 2692 2692 2692 2692 1687

RP 55 465 688 1009 1371 1615 1886 2129 2382 2576 2692 2692 2692 2692 1782

Middle Depot

RN2 295 576 880 1161 1413 1645 1878 2069 2220 2425 2567 2653 2690 2692 1797

PR 168 376 651 908 1178 1433 1706 1901 2138 2381 2692 2692 2692 2692 1686

RP 167 437 795 1080 1378 1640 1908 2158 2392 2589 2692 2692 2692 2692 1808

Edge Depot

RN2 272 579 878 1131 1379 1637 1841 2066 2240 2371 2548 2641 2692 2692 1783

PR 166 364 633 901 1171 1456 1703 1901 2137 2381 2692 2692 2692 2692 1684

RP 149 479 766 1118 1370 1654 1897 2154 2405 2587 2692 2692 2692 2692 1811

All Complete Grids

RN2 284 574 871 1146 1391 1634 1853 2065 2246 2404 2544 2641 2689 2692 1788

PR 165 383 637 906 1176 1445 1704 1901 2138 2381 2692 2692 2692 2692 1686

RP 124 460 750 1069 1373 1636 1897 2147 2393 2584 2692 2692 2692 2692 1800

The budget is partitioned into four intervals, based on which heuristic(s) found the best solution: RN2,

RP, PR and RP, or all three. The divisions occur at approximately the same value of the cost budget for

the three depot locations. Note that the second division must occur at the same place, since it marks the

point where PR and RP find the optimum: a covering tour which requires no pruning, which for a

66 Preliminary Investigation of the ASRP Chapter 3

complete 10 × 10 grid requires 196 edge traversals. The first division occurs where RP becomes better

than RN2, and the third division begins where RN2 attains the optimum.

The only difference between the depot locations was for the edge location. RN2 manages to find the

optimum at a lower budget than for the middle and corner locations. The other difference is that RP

takes prime position from RN2 at a lower budget for the edge location. We can probably attribute these

differences to differing regions of reward density; they would likely reduce if the results of more

realizations were averaged. Apart from these differences, it appears that depot location induces no

systematic influence on the relative heuristic performances.

Applied to this data, for C approximately less than or equal to half the total grid cost, RN2 finds the best

solutions. For higher values of C, RP provides solutions as good as or better than RN2 and PR.

Overall, RP is the best unimproved heuristic. Figure 3.13 gives a graphical representation of the

performances. It makes intuitive sense that RP will perform poorly, on average, for low budget

problems. To produce a feasible solution the heuristic must delete many cycles; as the smaller cycles

are deleted only large cycles remain to be deleted, so the resulting solution may not utilize all the

available budget.

0

500

1000

1500

2000

2500

3000

18 36 54 72 90 108 126 144 162 180 198 216 234 252

R
ew

a
rd

Cost budget

RN2

PR

RP

Figure 3.13: Results of constructive heuristics on complete grids with increasing budget

Table 3.8 gives the results for the improved heuristics. As can be seen, this version of Tabu Search is

very sensitive to the initial solution. A similar phenomenon of regions may be seen, but they are not as

definite as for the unimproved heuristics. In particular, when the depot is located at the edge of the

grid, PR-TS does the best for mid range cost budgets. Also, the RN heuristic performs the best for

higher values of C, although the difference in performance quality among the three improved heuristics

is slight.

3.7 Phase 1 experimentation 67

Table 3.8: Results for improved heuristics on complete grids

 Budget

Heuristic 18 36 54 72 90 108 126 144 162 180 198 216 234 252 Average

Corner Depot

RN2-TS 297 590 879 1178 1435 1693 1924 2165 2375 2534 2630 2692 2692 2692 1841

PR-TS 284 578 851 1145 1400 1698 1918 2094 2280 2463 2692 2692 2692 2692 1820

RP-TS 119 570 860 1133 1403 1656 1922 2169 2396 2576 2692 2692 2692 2692 1827

Middle Depot

RN2-TS 297 594 889 1172 1436 1704 1940 2165 2333 2496 2622 2692 2692 2692 1838

PR-TS 279 562 855 1143 1406 1684 1919 2118 2286 2468 2692 2692 2692 2692 1820

RP-TS 283 572 865 1146 1418 1680 1939 2192 2421 2589 2692 2692 2692 2692 1848

Edge Depot

RN2-TS 288 593 889 1156 1428 1692 1933 2166 2357 2502 2627 2686 2692 2692 1836

PR-TS 291 566 856 1133 1431 1693 1936 2139 2292 2481 2692 2692 2692 2692 1828

RP-TS 230 576 865 1146 1406 1672 1927 2180 2410 2587 2692 2692 2692 2692 1841

All Complete Grids

RN2-TS 294 592 886 1169 1433 1696 1932 2166 2355 2511 2626 2690 2692 2692 1838

PR-TS 284 569 854 1140 1412 1692 1924 2117 2286 2471 2692 2692 2692 2692 1823

RP-TS 211 572 863 1142 1409 1670 1929 2180 2409 2584 2692 2692 2692 2692 1838

3.7.3 Results for random graphs

Table 3.9 summarizes the results summaries for the random graphs. Similar patterns to those with the

complete grids are evident.

Table 3.9: Results for set A random graphs

 Budget

Heuristic 18 36 54 72 90 108 126 144 162 180 198 216 234 252 Average

All 'GROW' Graphs

RN2 233 460 680 872 1044 1169 1267 1368 1433 1473 1502 1512 1516 1517 1146

PR 171 377 628 848 1020 1182 1311 1414 1480 1512 1517 1517 1517 1517 1143

RP 99 414 654 873 1057 1226 1353 1439 1492 1514 1517 1517 1517 1517 1156

RN2-TS 244 498 750 957 1125 1263 1361 1434 1483 1507 1517 1517 1517 1517 1192

PR-TS 229 486 731 946 1116 1259 1364 1441 1493 1514 1517 1517 1517 1517 1189

RP-TS 162 475 729 940 1121 1270 1378 1448 1494 1514 1517 1517 1517 1517 1186

All 'SELECT' Graphs

RN2 194 419 594 749 909 1070 1190 1309 1393 1450 1493 1515 1523 1524 1095

PR 147 330 545 731 947 1120 1275 1390 1479 1517 1524 1524 1524 1524 1113

RP 86 348 568 770 966 1142 1290 1416 1493 1520 1524 1524 1524 1524 1121

RN2-TS 208 448 656 837 1025 1189 1310 1412 1480 1512 1523 1524 1524 1524 1155

PR-TS 192 403 613 806 1018 1187 1324 1423 1490 1520 1524 1524 1524 1524 1148

RP-TS 153 435 654 848 1026 1189 1326 1429 1495 1520 1524 1524 1524 1524 1155

All Random Graphs ('GROW' and 'SELECT')

RN2 213 440 637 810 976 1119 1228 1338 1413 1461 1498 1514 1520 1520 1121

PR 159 353 587 789 984 1151 1293 1402 1479 1514 1520 1520 1520 1520 1128

RP 93 381 611 822 1012 1184 1322 1428 1492 1517 1520 1520 1520 1520 1139

RN2-TS 226 473 703 897 1075 1226 1336 1423 1481 1510 1520 1520 1520 1520 1174

PR-TS 211 445 672 876 1067 1223 1344 1432 1491 1517 1520 1520 1520 1520 1169

RP-TS 158 455 691 894 1073 1230 1352 1439 1495 1517 1520 1520 1520 1520 1170

There is additional information in the breakdown by problem instance, as summarized by Figure 3.14,

which shows where the divisions occur. The general trend is that the more edges in the graph, the later

the division, with respect to cost budget.

68 Preliminary Investigation of the ASRP Chapter 3

0

18

36

54

72

90

108

126

144

162

180

198

216

234

252

90 110 130 150

C
o

st
 b

u
d

g
e
t

Number of edges

RN best

RP best

PR1 & RP optimal

all optimal

Figure 3.14: Approximate divisions of heuristic performance for unimproved heuristics

3.8 Phase 2 experimentation

The experiments in this phase are performed on problem set B, with more heuristics. The goal is to

build on the results from phase 1.

3.8.1 Phase 2 heuristics

We compare the following 14 heuristics, described in Table 3.10. In addition to those examined in

phase 1, we add an extra version of PRUNE THE ROUTE with schedule 3, we add an additional

improvement procedure based on Steepest Ascent, and we compare versions of RN2 both with, and

without, a DELETE REDUNDANCY step before the improvement procedures.

3.8 Phase 2 experimentation 69

Table 3.10. Heuristics used in phase 2 experiments

Label Description

RN2 RICHEST NEIGHBOUR construction with look-ahead 2 periods.

RN2-TS RICHEST NEIGHBOUR-2 construction followed by TABU SEARCH improvement.

RN2-SA
RICHEST NEIGHBOUR-2 construction followed by STEEPEST ASCENT

improvement.

RN2-DR-TS
RICHEST NEIGHBOUR-2 construction followed by DELETE REDUNDANCY and

then TABU SEARCH improvement.

RN2-DR-SA
RICHEST NEIGHBOUR-2 construction followed by DELETE REDUNDANCY and

then STEEPEST ASCENT improvement.

PR1 PRUNE THEN ROUTE construction with Schedule 1

PR1-TS PRUNE THEN ROUTE-1 construction followed by TABU SEARCH improvement.

PR1-SA
PRUNE THEN ROUTE-1 construction followed by STEEPEST ASCENT

improvement.

PR3 PRUNE THEN ROUTE construction with Schedule 3.

PR3-TS PRUNE THEN ROUTE-3 construction followed by TABU SEARCH improvement.

PR3-SA
PRUNE THEN ROUTE-3 construction followed by STEEPEST ASCENT

improvement.

RP ROUTE THEN PRUNE construction.

RP-TS ROUTE THEN PRUNE construction followed by TABU SEARCH improvement.

RP-SA ROUTE THEN PRUNE construction followed by STEEPEST ASCENT improvement.

3.8.2 Results from Experiments on Designed Graphs

Experiments were executed comparing the 14 heuristics on the 21 designed problem instances. In the

following results:

• The maximum value for a given instance is highlighted.

• If a heuristic collects all the reward available on the graph, then the value is bolded.

• In the totals columns, the constructive (unimproved) heuristic with the highest value is italicized.

3.8.2.1 Designed graphs with C = 36

• RN2 was the best constructive heuristic overall and for each of the classes.

• The best heuristic overall was RN2-DR-TS. It was also the best heuristic for each of the classes.

• The Euler tour-based heuristics did not perform as well, in general, as the look-ahead heuristics.

• Several of the RP solutions were extremely bad (one was zero, corresponding to the whole route

being deleted as a cycle).

70 Preliminary Investigation of the ASRP Chapter 3

Table 3.11. Results from experiments on designed graphs with C = 36

Heuristic C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 L9

RN2 611.54 595.99 605.91 597.04 582.14 594.86 545.83 579.48 530.59 542.38 577.91 540.11

RN2-TS 634.67 595.99 619.79 597.04 582.14 609.82 563.05 586.97 548.60 542.38 597.61 559.08

RN2-SA 612.00 595.99 605.91 598.06 582.14 609.82 563.05 579.48 548.60 555.75 577.91 549.27

RN2-DR-TS 623.92 614.81 619.79 597.04 582.14 609.82 593.32 586.97 571.08 542.38 597.61 592.82

RN2-DR-SA 624.37 603.49 605.91 598.06 582.14 609.82 561.21 579.48 548.60 555.75 577.91 559.59

PR1 506.60 506.25 453.26 308.79 306.11 313.53 315.66 321.65 389.52 386.94 388.88 389.52

PR1-TS 595.94 591.23 597.70 579.53 549.37 555.87 585.84 591.18 561.99 593.40 568.79 548.15

PR1-SA 601.66 597.56 597.70 534.95 520.68 532.19 546.39 535.80 519.19 555.80 552.49 519.19

PR3 506.60 506.25 453.26 308.79 306.11 313.53 315.66 321.65 389.52 386.94 388.88 389.52

PR3-TS 595.94 591.23 597.70 579.53 549.37 555.87 585.84 591.18 561.99 593.40 568.79 548.15

PR3-SA 601.66 597.56 597.70 534.95 520.68 532.19 546.39 535.80 519.19 555.80 552.49 519.19

RP 523.95 575.84 565.81 72.88 523.87 514.80 0.00 566.80 17.78 66.25 255.95 61.90

RP-TS 577.05 613.99 599.69 571.46 539.95 537.33 582.99 572.11 540.16 582.99 584.15 566.24

RP-SA 572.34 621.33 589.02 504.19 539.95 523.94 531.62 572.11 536.68 531.62 542.89 498.84

maxima 634.67 621.33 619.79 598.06 582.14 609.82 593.32 591.18 571.08 593.40 597.61 592.82

available 2722.64 2722.64 2722.64 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

Heuristic R1 R2 R3 R4 R5 R6 R7 R8 R9 Total C Total L Total R Grand Total

RN2 422.03 494.62 495.60 404.50 481.06 434.54 521.65 499.85 437.62 1813.44 5090.33 4191.46 11095.23

RN2-TS 422.97 498.69 495.60 404.50 481.06 445.36 521.65 499.85 437.62 1850.45 5186.69 4207.30 11244.43

RN2-SA 422.97 498.69 499.67 404.50 482.01 445.36 521.65 499.85 437.62 1813.90 5164.09 4212.32 11190.31

RN2-DR-TS 422.97 498.69 495.60 408.25 481.06 469.33 521.65 499.85 437.62 1858.51 5273.18 4235.02 11366.70

RN2-DR-SA 422.97 498.69 499.67 408.25 482.01 442.86 521.65 499.85 437.62 1833.78 5172.57 4213.57 11219.91

PR1 223.97 386.52 361.73 242.99 222.58 358.10 293.61 317.11 388.26 1466.11 3120.59 2794.87 7381.58

PR1-TS 372.08 461.01 430.97 410.60 365.91 435.35 417.59 441.03 460.31 1784.87 5134.12 3794.85 10713.84

PR1-SA 349.04 461.01 468.43 370.92 357.68 428.22 366.72 406.78 417.24 1796.92 4816.69 3626.02 10239.64

PR3 223.97 386.52 361.73 242.99 222.58 358.10 293.61 317.11 388.26 1466.11 3120.59 2794.87 7381.58

PR3-TS 372.08 461.01 430.97 410.60 365.91 435.35 417.59 441.03 460.31 1784.87 5134.12 3794.85 10713.84

PR3-SA 349.04 461.01 468.43 370.92 357.68 428.22 366.72 406.78 417.24 1796.92 4816.69 3626.02 10239.64

RP 356.59 332.36 358.58 358.11 432.86 260.52 345.00 347.82 278.14 1665.60 2080.22 3069.99 6815.81

RP-TS 409.27 425.70 445.36 368.22 467.75 454.23 440.60 373.31 469.99 1790.73 5077.37 3854.43 10722.53

RP-SA 404.14 395.81 429.04 377.62 455.70 440.62 406.23 373.31 429.73 1782.69 4781.84 3712.20 10276.74

maxima 422.97 498.69 499.67 410.60 482.01 469.33 521.65 499.85 469.99 1858.51 5273.18 4235.02 11366.70

available 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 8167.92 21370.59 14933.52 44472.03

3.8 Phase 2 experimentation 71

3.8.2.2 Designed graphs with C=72

• RN2 was the best constructive heuristic overall and for each of the classes.

• The best heuristic overall was RN2-DR-TS. It was also the best heuristic for classes L and R; the

best heuristics for class C were RN2-TS and RN2-SA.

• The PR-TS heuristics found the best solution for a number of R problems; they were just behind the

RN2 heuristics in effectiveness. The RP heuristics were not as effective for R problem instances,

but found some good solutions for the L problem instances.

Table 3.12. Results from experiments on designed graphs with C = 72

Heuristic C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 L9

RN2 1170.64 1217.19 1124.23 1150.34 1045.74 1162.22 1155.09 1122.75 1052.99 980.30 1080.64 1089.17

RN2-TS 1197.02 1226.57 1131.85 1180.02 1086.21 1196.90 1169.26 1164.14 1056.50 1041.73 1120.44 1107.82

RN2-SA 1197.02 1226.57 1131.85 1165.99 1045.74 1177.19 1169.26 1123.56 1056.50 990.88 1097.61 1089.17

RN2-DR-TS 1197.02 1226.57 1124.23 1180.02 1193.88 1209.34 1197.21 1163.32 1169.70 1023.00 1163.97 1139.03

RN2-DR-SA 1197.02 1226.57 1124.23 1165.99 1057.16 1177.19 1165.81 1135.20 1070.30 1011.71 1110.77 1089.17

PR1 922.18 972.50 972.50 699.24 745.54 745.54 702.04 747.01 745.54 751.51 747.81 745.54

PR1-TS 1160.28 1103.02 1067.86 1140.67 1165.03 1165.03 1073.27 1143.27 1137.22 1173.20 1121.47 1132.33

PR1-SA 1057.27 1061.59 1067.86 1037.72 1059.25 1059.25 1073.27 1060.41 1059.25 1110.94 1093.11 1059.25

PR3 922.18 972.50 972.50 699.24 745.54 745.54 702.04 747.01 745.54 751.51 747.81 745.54

PR3-TS 1160.28 1103.02 1067.86 1140.67 1165.03 1165.03 1073.27 1143.27 1137.22 1173.20 1121.47 1132.33

PR3-SA 1057.27 1061.59 1067.86 1037.72 1059.25 1059.25 1073.27 1060.41 1059.25 1110.94 1093.11 1059.25

RP 923.85 1132.14 1133.69 1074.84 788.13 1104.36 1075.49 777.27 1097.03 1137.79 1063.24 1127.72

RP-TS 1131.35 1188.12 1161.66 1142.13 1138.73 1139.66 1179.47 1148.39 1177.39 1150.86 1120.04 1167.13

RP-SA 1109.38 1188.12 1161.02 1110.65 1027.36 1112.70 1130.93 1083.66 1145.62 1160.83 1092.87 1153.02

maxima 1197.02 1226.57 1161.66 1180.02 1193.88 1209.34 1197.21 1164.14 1177.39 1173.20 1163.97 1167.13

available 2722.64 2722.64 2722.64 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

Heuristic R1 R2 R3 R4 R5 R6 R7 R8 R9 Total C Total L Total R Grand Total

RN2 882.08 854.08 865.76 900.17 882.91 862.40 896.33 880.90 894.92 3512.06 9839.25 7919.54 21270.84

RN2-TS 905.12 903.70 903.39 911.07 882.91 900.09 896.33 904.10 894.92 3555.44 10123.00 8101.62 21780.06

RN2-SA 882.08 863.20 874.88 900.17 882.91 878.03 896.33 893.23 894.92 3555.44 9915.91 7965.74 21437.09

RN2-DR-TS 908.35 909.03 918.44 912.44 901.00 898.92 896.33 906.66 896.33 3547.82 10439.48 8147.50 22134.80

RN2-DR-SA 882.43 854.08 865.76 902.98 897.50 898.92 896.33 904.10 894.92 3547.82 9983.29 7997.02 21528.14

PR1 808.81 806.96 810.14 808.81 816.06 700.88 808.81 811.42 808.81 2867.19 6629.76 7180.72 16677.66

PR1-TS 912.55 905.42 905.04 915.56 920.54 781.13 897.83 891.34 883.53 3331.16 10251.48 8012.94 21595.58

PR1-SA 848.81 846.28 842.90 848.14 854.37 764.16 835.62 855.72 836.99 3186.71 9612.47 7533.00 20332.19

PR3 808.81 806.96 810.14 808.81 816.06 700.88 808.81 811.42 808.81 2867.19 6629.76 7180.72 16677.66

PR3-TS 912.55 905.42 905.04 915.56 920.54 781.13 897.83 891.34 883.53 3331.16 10251.48 8012.94 21595.58

PR3-SA 848.81 846.28 842.90 848.14 854.37 764.16 835.62 855.72 836.99 3186.71 9612.47 7533.00 20332.19

RP 768.19 746.29 768.62 769.03 588.14 788.40 775.58 796.37 806.02 3189.68 9245.86 6806.64 19242.19

RP-TS 812.65 857.12 851.57 779.14 914.12 864.11 846.83 826.72 870.37 3481.12 10363.80 7622.65 21467.57

RP-SA 805.24 805.51 833.37 788.54 839.81 838.67 813.62 816.89 836.83 3458.52 10017.65 7378.46 20854.63

maxima 912.55 909.03 918.44 915.56 920.54 900.09 897.83 906.66 896.33 3555.44 10439.48 8147.50 22134.80

available 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 8167.92 21370.59 14933.52 44472.03

72 Preliminary Investigation of the ASRP Chapter 3

3.8.2.3 Designed graphs with C = 108

• RP was the best constructive heuristic overall and for classes L and R; RN2 was the best

constructive heuristic for class C.

• The best heuristic overall was RP-TS. It was also the best heuristic for class L; the best heuristic for

classes C and R was RN2-DR-TS.

• The PR heuristics were not as effective as the RN2 and RP heuristics. The RN2 and RP heuristics

both found a high number of best solutions.

Table 3.13. Results from experiments on designed graphs with C = 108

Heuristic C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 L9

RN2 1657.07 1710.04 1598.26 1494.93 1538.00 1522.12 1528.92 1611.77 1604.54 1557.88 1637.92 1580.97

RN2-TS 1683.45 1727.58 1680.11 1511.98 1563.46 1543.87 1605.98 1691.96 1693.55 1618.54 1662.02 1701.44

RN2-SA 1683.45 1727.58 1611.63 1494.93 1538.00 1526.44 1532.38 1622.62 1647.39 1557.88 1637.92 1581.79

RN2-DR-TS 1739.96 1733.98 1654.31 1507.07 1541.20 1547.84 1658.20 1686.76 1700.92 1689.55 1691.51 1675.56

RN2-DR-SA 1689.55 1710.04 1598.26 1507.07 1541.20 1525.63 1530.37 1634.26 1647.39 1577.69 1637.92 1600.42

PR1 1456.31 1456.31 1456.31 1493.72 1493.72 1493.72 1493.72 1496.62 1493.72 1493.72 1493.72 1493.72

PR1-TS 1609.36 1620.64 1575.10 1647.73 1583.14 1583.14 1663.23 1648.70 1583.14 1644.55 1658.48 1650.82

PR1-SA 1595.14 1568.83 1575.10 1567.71 1583.14 1583.14 1587.07 1578.90 1583.14 1580.49 1567.71 1563.47

PR3 1456.31 1456.31 1456.31 1493.72 1493.72 1493.72 1493.72 1496.62 1493.72 1493.72 1493.72 1493.72

PR3-TS 1609.36 1620.64 1575.10 1647.73 1583.14 1583.14 1663.23 1648.70 1583.14 1644.55 1658.48 1650.82

PR3-SA 1595.14 1568.83 1575.10 1567.71 1583.14 1583.14 1587.07 1578.90 1583.14 1580.49 1567.71 1563.47

RP 1637.85 1635.27 1678.83 1573.85 1593.74 1655.06 1608.63 1637.99 1587.68 1668.58 1605.04 1637.28

RP-TS 1676.56 1714.66 1721.13 1687.11 1658.94 1666.97 1646.73 1653.28 1611.56 1689.97 1627.70 1671.32

RP-SA 1676.56 1709.31 1720.50 1633.29 1616.97 1655.06 1620.09 1640.70 1608.41 1672.87 1627.70 1657.22

maxima 1739.96 1733.98 1721.13 1687.11 1658.94 1666.97 1663.23 1691.96 1700.92 1689.97 1691.51 1701.44

available 2722.64 2722.64 2722.64 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

Heuristic R1 R2 R3 R4 R5 R6 R7 R8 R9 Total C Total L Total R Grand Total

RN2 1219.90 1203.88 1153.79 1193.51 1175.44 1146.17 1126.62 1175.62 1121.13 4965.37 14077.05 10516.05 29558.48

RN2-TS 1223.16 1203.88 1215.06 1223.02 1241.39 1169.69 1145.60 1227.66 1131.89 5091.15 14592.80 10781.34 30465.28

RN2-SA 1219.90 1203.88 1179.18 1193.51 1175.44 1156.93 1126.62 1186.38 1131.89 5022.66 14139.35 10573.72 29735.72

RN2-DR-TS 1229.17 1224.38 1216.60 1226.71 1211.78 1209.81 1143.99 1183.15 1159.03 5128.25 14698.62 10804.62 30631.48

RN2-DR-SA 1219.90 1203.88 1183.54 1216.15 1175.44 1158.66 1136.53 1183.15 1159.03 4997.85 14201.94 10636.28 29836.08

PR1 1096.47 1096.47 1097.33 1096.47 1103.25 1096.47 1096.47 1103.05 1096.47 4368.92 13446.38 9882.47 27697.77

PR1-TS 1140.57 1212.32 1209.89 1133.31 1215.26 1197.76 1140.57 1218.73 1187.52 4805.10 14662.92 10655.94 30123.96

PR1-SA 1140.57 1153.23 1160.83 1133.31 1157.13 1153.45 1140.57 1147.15 1155.69 4739.07 14194.76 10341.94 29275.76

PR3 1096.47 1096.47 1097.33 1096.47 1103.25 1096.47 1096.47 1103.05 1096.47 4368.92 13446.38 9882.47 27697.77

PR3-TS 1140.57 1212.32 1209.89 1133.31 1215.26 1197.76 1140.57 1218.73 1187.52 4805.10 14662.92 10655.94 30123.96

PR3-SA 1140.57 1153.23 1160.83 1133.31 1157.13 1153.45 1140.57 1147.15 1155.69 4739.07 14194.76 10341.94 29275.76

RP 1132.59 1170.09 1173.39 1171.45 1156.19 1178.93 1160.02 1188.46 1193.61 4951.95 14567.84 10524.72 30044.51

RP-TS 1186.12 1179.44 1201.96 1177.10 1191.11 1214.61 1204.14 1211.31 1214.78 5112.35 14913.57 10780.56 30806.48

RP-SA 1154.74 1176.67 1188.13 1177.10 1183.72 1194.47 1195.77 1188.46 1214.78 5106.37 14732.30 10673.84 30512.51

maxima 1229.17 1224.38 1216.60 1226.71 1241.39 1214.61 1204.14 1227.66 1214.78 5128.25 14913.57 10804.62 30806.48

available 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 8167.92 21370.59 14933.52 44472.03

3.8 Phase 2 experimentation 73

3.8.2.4 Designed graphs with C = 144

• RP was the best constructive heuristic overall and for each of the classes.

• The best heuristic overall was RP-TS. It was also the best heuristic for each of the classes.

• Neither the RN2 heuristics or the PR heuristics performed as well as the RP heuristics, but

RN2-DR-TS did produce the best solution for three of the problem instances.

• For many of the problem instances, RP produced the best solution and TS and SA could not

improve it.

Table 3.14. Results from experiments on designed graphs with C = 144

Heuristic C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 L9

RN2 2120.55 2064.29 2067.77 1946.10 1862.26 1904.34 2008.56 1953.21 2042.96 1751.12 1935.92 1931.85

RN2-TS 2175.58 2088.74 2101.92 1982.28 1898.07 1985.55 2075.09 1980.71 2071.00 1801.02 1940.36 1998.50

RN2-SA 2151.96 2064.29 2125.99 1951.02 1878.28 1933.34 2031.30 1963.24 2071.00 1751.12 1940.36 1982.09

RN2-DR-TS 2218.17 2204.89 2096.68 2038.22 1957.19 1971.92 2086.84 1980.71 2113.90 1842.02 1938.78 2079.06

RN2-DR-SA 2151.96 2115.17 2067.77 1965.53 1938.67 1971.92 2022.57 1980.71 2091.11 1842.02 1938.78 2018.95

PR1 1882.26 1882.26 1882.26 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08

PR1-TS 1997.02 2140.26 2144.99 2057.97 2035.67 2012.50 2007.18 2038.82 2083.08 2010.63 2016.80 2038.91

PR1-SA 1967.24 1986.35 1986.35 1993.69 1993.69 1993.69 2007.18 2000.49 1993.69 2010.63 2016.80 2021.41

PR3 1882.26 1882.26 1882.26 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08 1920.08

PR3-TS 1997.02 2140.26 2144.99 2057.97 2035.67 2012.50 2007.18 2038.82 2083.08 2010.63 2016.80 2038.91

PR3-SA 1967.24 1986.35 1986.35 1993.69 1993.69 1993.69 2007.18 2000.49 1993.69 2010.63 2016.80 2021.41

RP 2171.63 2188.99 2221.18 2058.48 2044.52 2076.05 2067.07 2104.96 2070.43 2118.94 2046.81 2070.43

RP-TS 2193.78 2219.66 2221.76 2101.58 2068.64 2095.99 2067.07 2104.96 2092.52 2118.94 2085.59 2091.08

RP-SA 2193.78 2219.66 2221.18 2058.48 2068.64 2095.99 2067.07 2104.96 2091.08 2118.94 2085.59 2091.08

maxima 2218.17 2219.66 2221.76 2101.58 2068.64 2095.99 2086.84 2104.96 2113.90 2118.94 2085.59 2091.08

available 2722.64 2722.64 2722.64 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

Heuristic R1 R2 R3 R4 R5 R6 R7 R8 R9 Total C Total L Total R Grand Total

RN2 1337.82 1265.53 1377.65 1332.11 1329.31 1377.45 1398.29 1279.45 1381.43 6252.61 17336.33 12079.04 35667.98

RN2-TS 1370.94 1265.53 1394.04 1332.11 1362.43 1377.45 1398.29 1302.33 1381.43 6366.25 17732.58 12184.56 36283.39

RN2-SA 1337.82 1265.53 1379.78 1332.11 1329.31 1377.45 1398.29 1302.33 1381.43 6342.24 17501.75 12104.05 35948.04

RN2-DR-TS 1356.04 1412.58 1422.17 1420.10 1362.43 1436.63 1416.51 1336.10 1399.33 6519.75 18008.63 12561.89 37090.28

RN2-DR-SA 1356.04 1397.94 1422.17 1420.10 1362.43 1421.06 1416.51 1317.55 1396.33 6334.90 17770.25 12510.14 36615.29

PR1 1394.51 1394.51 1394.51 1394.51 1394.51 1394.51 1394.51 1379.63 1394.51 5646.78 17280.73 12535.67 35463.19

PR1-TS 1441.55 1399.73 1399.73 1420.16 1399.73 1404.98 1433.55 1428.43 1437.93 6282.27 18301.57 12765.78 37349.62

PR1-SA 1399.73 1399.73 1399.73 1399.73 1399.73 1404.98 1399.73 1384.85 1401.97 5939.94 18031.29 12590.15 36561.39

PR3 1378.87 1378.87 1378.87 1378.87 1378.87 1378.87 1378.87 1378.87 1378.87 5646.78 17280.73 12409.83 35337.34

PR3-TS 1418.56 1402.35 1402.35 1437.83 1407.17 1479.26 1451.52 1412.09 1426.82 6282.27 18301.57 12837.95 37421.79

PR3-SA 1401.67 1402.35 1402.35 1407.28 1407.17 1438.14 1412.09 1412.09 1421.29 5939.94 18031.29 12704.44 36675.68

RP 1473.90 1502.84 1507.53 1494.61 1516.63 1513.07 1521.52 1487.51 1509.62 6581.80 18657.69 13527.22 38766.71

RP-TS 1487.75 1502.84 1507.53 1497.50 1516.63 1513.07 1521.52 1519.31 1509.62 6635.20 18826.36 13575.76 39037.32

RP-SA 1487.75 1502.84 1507.53 1497.50 1516.63 1513.07 1521.52 1519.31 1509.62 6634.62 18781.82 13575.76 38992.20

maxima 1487.75 1502.84 1507.53 1497.50 1516.63 1513.07 1521.52 1519.31 1509.62 6635.20 18826.36 13575.76 39037.32

available 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 8167.92 21370.59 14933.52 44472.03

74 Preliminary Investigation of the ASRP Chapter 3

3.8.2.5 Designed graphs with C = 180

• RP was the best constructive heuristic overall and for each of the classes.

• The best heuristics overall were all three RP heuristics. They were also the best heuristics for each

of the classes; and the improved PR heuristics also produced the best solutions for classes L and R.

• Neither the RN2 heuristics or the PR heuristics performed as well as the RP heuristics for class C,

but the PR heuristics performed as well as the RP heuristics for classes L and R.

• For many of the problem instances, RP produced the best solution and TS and SA could not

improve it.

• The RP heuristics and the improved PR heuristics managed to find many solutions that collected all

the reward available on the graph. In this case the cost of the CPP relaxation was less than the

budget, so could be solved using the CPP algorithm.

Table 3.15. Results from experiments on designed graphs with C = 180

Heuristic C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 L9

RN2 2492.09 2393.85 2430.73 2192.16 2165.27 2201.31 2165.70 2235.40 2280.00 1944.85 2206.42 2195.66

RN2-TS 2515.33 2393.85 2430.73 2234.69 2181.28 2246.99 2192.48 2245.44 2308.72 2054.62 2273.71 2196.66

RN2-SA 2492.09 2393.85 2430.73 2204.73 2181.28 2229.52 2192.48 2245.44 2290.03 1944.85 2210.85 2196.66

RN2-DR-TS 2538.82 2411.53 2463.64 2290.47 2291.29 2245.53 2246.31 2275.26 2342.68 2183.61 2279.03 2259.52

RN2-DR-SA 2515.33 2411.53 2430.73 2247.75 2291.29 2245.53 2228.85 2262.90 2342.68 2137.11 2243.45 2245.51

PR1 2362.11 2362.11 2362.11 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50

PR1-TS 2474.15 2456.47 2396.39 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

PR1-SA 2399.94 2430.17 2386.23 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

PR3 2362.11 2362.11 2362.11 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50 2364.50

PR3-TS 2474.15 2456.47 2396.39 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

PR3-SA 2399.94 2430.17 2386.23 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

RP 2602.86 2620.77 2620.77 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

RP-TS 2602.86 2620.77 2620.77 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

RP-SA 2602.86 2620.77 2620.77 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

maxima 2602.86 2620.77 2620.77 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

available 2722.64 2722.64 2722.64 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51 2374.51

Heuristic R1 R2 R3 R4 R5 R6 R7 R8 R9 Total C Total L Total R Grand Total

RN2 1459.45 1452.92 1498.21 1459.45 1446.26 1510.43 1445.83 1563.89 1547.04 7316.67 19586.78 13383.49 40286.94

RN2-TS 1477.67 1467.82 1527.46 1477.67 1470.83 1543.53 1464.05 1613.19 1547.04 7339.91 19934.59 13589.27 40863.77

RN2-SA 1459.45 1452.92 1498.21 1459.45 1459.45 1532.77 1453.18 1573.11 1547.04 7316.67 19695.85 13435.59 40448.11

RN2-DR-TS 1559.54 1609.34 1579.68 1541.40 1582.29 1618.39 1599.20 1642.08 1628.89 7413.99 20413.71 14360.81 42188.52

RN2-DR-SA 1559.54 1609.34 1555.16 1541.40 1582.29 1618.39 1599.20 1628.89 1614.79 7357.59 20245.07 14309.00 41911.66

PR1 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 7086.34 21280.50 14886.58 43253.43

PR1-TS 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7327.01 21370.58 14933.56 43631.15

PR1-SA 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7216.35 21370.58 14933.56 43520.48

PR3 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 1654.06 7086.34 21280.50 14886.58 43253.43

PR3-TS 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7327.01 21370.58 14933.56 43631.15

PR3-SA 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7216.35 21370.58 14933.56 43520.48

RP 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7844.40 21370.57 14933.56 44148.53

RP-TS 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7844.40 21370.57 14933.56 44148.53

RP-SA 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7844.40 21370.58 14933.56 44148.53

maxima 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 7844.40 21370.58 14933.56 44148.53

available 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 1659.28 8167.92 21370.59 14933.52 44472.03

3.8 Phase 2 experimentation 75

3.8.3 Results from Experiments on Random Graphs

Experiments were executed comparing the 14 heuristics on the 24 random problem instances. In the

following results:

• The maximum value for a given instance is highlighted.

• If a heuristic collects all the reward available on the graph, then the value is bolded.

• In the totals columns, the constructive (unimproved) heuristic with the highest value is italicized.

3.8.3.1 Random graphs with C = 36

• RN2 was the best constructive heuristic overall and for both of the classes.

• The best heuristic overall, and for each of the classes, was RP-TS.

• All three heuristic types (RN2, PR, RP) achieved the best solution on some problem instances.

• For some problem instances, RP performed very poorly (zero for S12).

Table 3.16. Results from experiments on random graphs with C = 36

Heuristic G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Total

RN2 405.64 583.09 344.51 503.34 484.92 405.25 463.52 503.09 422.08 518.49 555.68 349.41 5539.03

RN2-TS 445.42 622.12 398.66 503.76 484.92 410.79 466.33 503.09 436.00 518.49 564.48 349.41 5703.47

RN2-SA 405.64 598.56 349.87 503.34 484.92 405.25 505.27 503.09 436.00 518.49 555.68 349.41 5615.52

RN2-DR-TS 448.77 622.12 398.66 503.76 529.09 420.10 530.35 518.57 458.93 518.49 590.04 372.95 5911.84

RN2-DR-SA 425.31 622.12 349.87 503.34 504.08 405.25 464.71 512.82 431.42 518.49 590.04 365.22 5692.66

PR1 426.16 524.80 299.63 354.08 431.85 303.70 377.41 341.88 321.28 365.04 365.32 307.08 4418.22

PR1-TS 474.33 577.83 381.10 482.08 468.95 431.93 502.80 394.91 442.05 524.83 550.34 434.56 5665.71

PR1-SA 441.31 543.65 326.87 445.64 468.95 431.93 464.01 394.91 358.59 507.85 547.22 392.59 5323.51

PR3 282.11 524.80 234.14 354.08 431.85 318.04 365.83 341.88 261.04 365.04 365.32 247.95 4092.06

PR3-TS 392.87 577.83 314.82 482.08 468.95 425.03 511.54 394.91 425.83 524.83 550.34 395.96 5464.99

PR3-SA 322.98 543.65 303.68 445.64 468.95 396.04 499.13 394.91 401.33 507.85 547.22 387.19 5218.55

RP 437.02 502.84 371.17 226.18 482.81 404.30 502.68 453.42 312.42 479.70 462.91 329.25 4964.71

RP-TS 489.70 544.41 425.32 447.19 539.94 413.98 519.44 509.65 458.11 518.31 589.80 455.21 5911.04

RP-SA 481.05 544.41 397.01 405.12 527.10 413.98 519.44 509.65 420.97 518.31 557.43 383.85 5678.30

maxima 489.70 622.12 425.32 503.76 539.94 431.93 530.35 518.57 458.93 524.83 590.04 455.21 5911.84

available 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2189.75 1627.33 18246.22

Heuristic S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total Grand Total

RN2 277.77 273.97 288.24 392.14 397.46 283.16 413.78 405.83 384.43 529.53 622.92 361.47 4630.69 10169.72

RN2-TS 346.80 273.97 317.29 413.17 408.95 348.37 415.32 485.27 399.10 543.96 622.92 424.78 4999.89 10703.36

RN2-SA 287.74 273.97 288.24 392.14 397.46 284.09 424.67 405.83 391.33 543.96 622.92 361.47 4673.82 10289.34

RN2-DR-TS 346.80 273.97 317.29 413.17 399.76 360.17 423.79 484.51 428.87 543.96 635.94 396.01 5024.24 10936.08

RN2-DR-SA 295.86 273.97 288.24 392.14 397.46 319.98 424.67 425.35 391.45 543.96 622.92 378.49 4754.48 10447.15

PR1 228.63 332.93 243.87 278.83 314.39 247.82 332.24 415.36 240.52 308.31 526.79 278.96 3748.64 8166.86

PR1-TS 290.38 333.10 243.87 325.80 399.89 339.96 373.17 487.20 280.83 469.60 554.98 434.19 4532.97 10198.68

PR1-SA 236.37 332.93 243.87 288.50 314.39 299.25 373.17 474.03 280.83 458.58 542.48 333.46 4177.86 9501.37

PR3 220.66 286.79 202.61 307.95 316.20 219.39 314.50 415.36 203.75 308.31 526.79 237.27 3559.58 7651.64

PR3-TS 290.38 330.74 260.03 323.61 399.89 358.09 413.23 487.20 252.74 469.60 554.98 349.50 4489.99 9954.98

PR3-SA 236.37 296.98 202.61 307.95 316.20 299.25 366.13 474.03 230.38 458.58 542.48 329.55 4060.51 9279.06

RP 338.99 333.10 303.86 401.74 524.09 39.43 361.07 78.02 312.41 423.03 564.79 0.00 3680.51 8645.22

RP-TS 373.16 333.10 336.28 415.41 524.09 371.33 433.96 444.23 384.72 446.58 604.94 428.30 5096.09 11007.13

RP-SA 338.99 333.10 303.86 401.74 524.09 319.93 433.96 399.30 365.54 431.86 606.33 364.06 4822.77 10501.06

maxima 373.16 333.10 336.28 415.41 524.09 371.33 433.96 487.20 428.87 543.96 635.94 434.19 5096.09 11007.13

available 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1910.98 2204.97 1587.33 18260.88 35369.68

76 Preliminary Investigation of the ASRP Chapter 3

3.8.3.2 Random graphs with C = 72

• RP was the best constructive heuristic overall and for class S; RN2 was the best constructive

heuristic for class G.

• The best heuristic overall, and for class S, was RP-TS; for class G the best heuristic was PR1-TS.

• All three heuristic types (RN2, PR, RP) achieved the best solution on some problem instances.

Table 3.17. Results from experiments on random graphs with C = 72

Heuristic G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Total

RN2 828.96 985.38 690.46 773.12 889.47 763.99 911.90 1038.43 701.25 1016.87 1072.07 772.57 10444.47

RN2-TS 864.60 1020.50 704.85 911.10 1030.85 867.67 944.20 1094.55 701.25 1016.87 1072.07 773.48 11001.98

RN2-SA 828.96 985.38 695.82 789.22 889.47 785.03 911.90 1038.43 701.25 1016.87 1072.07 773.48 10487.88

RN2-DR-TS 872.68 1030.30 704.85 927.25 926.38 868.19 997.29 1108.28 755.83 1040.73 1111.25 881.86 11224.87

RN2-DR-SA 830.95 1004.65 695.82 792.03 926.29 786.76 911.90 1038.43 719.28 1040.73 1101.40 793.15 10641.39

PR1 790.19 997.55 653.39 843.93 956.49 732.02 883.61 908.87 745.01 951.58 1001.46 702.72 10166.83

PR1-TS 858.29 1020.29 698.26 929.88 1019.77 828.02 999.61 1022.07 845.58 1091.71 1067.04 855.60 11236.11

PR1-SA 793.21 997.55 662.59 896.88 970.69 761.10 959.77 1002.98 756.56 1007.13 1067.04 783.09 10658.59

PR3 647.18 931.86 474.64 753.24 919.39 578.85 742.04 908.87 551.91 883.21 1001.46 513.27 8905.91

PR3-TS 776.75 1027.46 662.59 921.90 946.21 828.85 975.99 1022.07 713.37 1007.79 1067.04 832.88 10782.89

PR3-SA 695.97 1005.93 612.51 832.58 935.85 732.24 886.79 1002.98 713.37 1007.79 1067.04 783.84 10276.89

RP 821.39 969.20 510.06 773.48 910.81 763.99 919.02 1065.18 747.78 1017.99 1072.52 774.03 10345.46

RP-TS 863.88 1005.46 663.75 892.64 1030.54 820.04 1013.45 1069.05 858.46 1042.64 1120.00 843.73 11223.64

RP-SA 857.48 1004.51 659.30 877.31 958.07 788.64 959.68 1069.05 807.42 1027.31 1109.75 818.22 10936.72

maxima 872.68 1030.30 704.85 929.88 1030.85 868.19 1013.45 1108.28 858.46 1091.71 1120.00 881.86 11236.11

available 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2189.75 1627.33 18246.22

Heuristic S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total Grand Total

RN2 571.47 550.59 521.68 500.29 918.85 599.63 616.83 935.38 610.24 957.36 971.32 702.20 8455.85 18900.32

RN2-TS 625.28 634.13 534.66 693.34 960.79 608.02 616.83 983.53 741.01 971.80 1022.49 702.20 9094.09 20096.07

RN2-SA 581.44 550.59 521.68 513.89 929.00 608.02 616.83 937.50 617.95 971.80 971.32 702.20 8522.23 19010.12

RN2-DR-TS 627.51 550.59 534.66 775.23 960.79 681.09 671.30 982.77 756.91 1039.36 1116.92 754.63 9451.75 20676.62

RN2-DR-SA 590.32 550.59 521.68 722.48 960.79 659.60 671.30 937.50 633.19 971.80 971.32 745.08 8935.65 19577.04

PR1 617.19 601.16 550.04 743.83 812.45 504.86 653.03 912.92 557.96 802.89 1062.43 521.35 8340.11 18506.94

PR1-TS 656.10 633.96 577.31 800.89 885.59 590.10 750.99 962.70 640.45 985.78 1082.32 765.73 9331.91 20568.02

PR1-SA 617.19 601.16 550.04 749.92 857.62 578.07 706.79 940.92 623.59 942.08 1082.32 665.49 8915.18 19573.77

PR3 500.89 577.27 437.68 551.80 601.22 449.66 596.79 818.62 460.28 776.70 1062.43 461.69 7295.02 16200.92

PR3-TS 564.37 633.96 484.93 685.60 725.21 571.28 774.32 925.90 629.28 935.80 1082.32 732.64 8745.61 19528.51

PR3-SA 515.95 601.16 445.23 583.98 622.75 557.21 731.15 883.93 529.33 898.88 1082.32 650.58 8102.45 18379.35

RP 604.06 596.04 536.23 809.35 928.50 693.87 906.76 960.20 688.06 864.07 1043.23 682.89 9313.25 19658.71

RP-TS 648.93 634.29 585.13 837.95 952.76 734.95 950.50 1058.78 757.71 907.94 1102.37 859.68 10030.99 21254.63

RP-SA 604.06 596.04 536.23 819.90 928.50 723.67 929.28 999.02 723.06 907.94 1081.05 773.93 9622.69 20559.41

maxima 656.10 634.29 585.13 837.95 960.79 734.95 950.50 1058.78 757.71 1039.36 1116.92 859.68 10030.99 21254.63

available 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1910.98 2204.97 1587.33 18260.88 35369.68

3.8 Phase 2 experimentation 77

3.8.3.3 Random graphs with C = 108

• RP was the best constructive heuristic overall and for both classes.

• The best heuristic overall, and for both classes was RP-TS.

• All three heuristic types (RN2, PR, RP) achieved the best solution on some problem instances.

• On G1, G2, and G3, the RP heuristics dominate. These graphs have 90 edges.

Table 3.18. Results from experiments on random graphs with C = 108

Heuristic G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Total

RN2 1046.47 1156.05 782.74 932.75 1313.00 1000.27 1335.03 1425.12 1022.30 1400.84 1523.53 1171.21 14109.30

RN2-TS 1063.78 1177.18 788.10 949.28 1351.21 1033.93 1367.33 1433.27 1022.30 1474.03 1628.08 1173.30 14461.80

RN2-SA 1046.47 1156.05 788.10 932.75 1313.00 1028.53 1335.03 1433.27 1022.30 1412.93 1523.53 1173.30 14165.26

RN2-DR-TS 1079.17 1260.04 846.91 1175.59 1415.23 1039.10 1375.54 1489.21 1041.19 1481.31 1571.52 1187.94 14962.75

RN2-DR-SA 1063.78 1234.22 846.91 1115.12 1369.22 1038.77 1335.03 1453.66 1031.92 1443.91 1525.04 1187.19 14644.77

PR1 1080.27 1284.32 884.30 1183.16 1289.30 1043.39 1205.85 1321.99 1091.22 1331.93 1491.54 1076.63 14283.89

PR1-TS 1089.81 1284.32 884.30 1193.06 1305.48 1095.13 1257.51 1428.53 1142.24 1409.05 1623.39 1197.60 14910.42

PR1-SA 1080.27 1284.32 884.30 1183.16 1289.30 1064.74 1257.51 1355.76 1118.84 1374.70 1519.35 1099.99 14512.24

PR3 1090.59 1284.32 884.30 1103.16 1232.80 1054.16 1012.80 1305.36 969.59 1276.62 1368.57 812.30 13394.57

PR3-TS 1090.59 1284.32 884.30 1203.33 1303.10 1059.50 1199.23 1423.61 1087.31 1497.19 1409.93 1040.31 14482.73

PR3-SA 1090.59 1284.32 884.30 1165.19 1288.54 1059.50 1199.23 1328.32 1080.44 1416.02 1409.93 1052.22 14258.60

RP 1091.75 1286.43 886.86 1202.32 1365.31 1070.18 1322.01 1470.51 1123.96 1379.93 1544.10 1120.27 14863.64

RP-TS 1091.88 1286.43 886.86 1213.65 1386.09 1087.37 1360.29 1486.86 1166.41 1438.85 1600.47 1222.12 15227.29

RP-SA 1091.75 1286.43 886.86 1202.32 1375.77 1070.18 1348.48 1470.51 1125.95 1422.31 1583.73 1171.65 15035.95

maxima 1091.88 1286.43 886.86 1213.65 1415.23 1095.13 1375.54 1489.21 1166.41 1497.19 1628.08 1222.12 15227.29

available 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2189.75 1627.33 18246.22

Heuristic S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total Grand Total

RN2 817.26 811.46 731.88 838.73 1085.82 888.85 976.66 1325.87 954.81 1282.11 1349.28 1087.70 12150.44 26259.74

RN2-TS 835.35 811.46 764.44 898.69 1105.57 897.25 976.66 1424.67 967.76 1282.11 1567.51 1124.28 12655.74 27117.54

RN2-SA 817.26 811.46 731.88 838.73 1085.82 897.25 976.66 1325.87 967.76 1282.11 1379.80 1103.23 12217.83 26383.09

RN2-DR-TS 928.88 811.46 760.35 988.14 1255.20 985.27 1150.58 1425.43 1101.63 1394.78 1369.21 1181.48 13352.40 28315.15

RN2-DR-SA 861.41 811.46 731.88 935.78 1237.38 948.83 1150.58 1406.92 1007.06 1282.11 1369.21 1118.79 12861.40 27506.17

PR1 904.27 863.70 761.96 1086.68 1193.53 952.09 1194.28 1295.80 1072.72 1344.13 1505.78 989.12 13164.06 27447.95

PR1-TS 926.75 918.91 770.81 1134.88 1195.07 1016.15 1194.33 1378.85 1098.97 1370.97 1534.51 1142.49 13682.70 28593.12

PR1-SA 904.27 863.70 761.96 1086.68 1195.07 955.63 1194.33 1295.80 1072.72 1368.74 1530.33 1058.07 13287.30 27799.53

PR3 807.14 850.33 667.01 851.95 916.19 734.84 880.56 1115.68 736.25 1183.99 1401.72 719.25 10864.90 24259.47

PR3-TS 836.70 918.91 691.22 1005.36 1051.90 882.51 1167.65 1262.20 841.55 1326.39 1539.91 1118.87 12643.18 27125.90

PR3-SA 822.20 863.70 680.96 931.12 961.35 819.87 1062.83 1215.63 841.55 1314.07 1478.41 993.60 11985.30 26243.90

RP 892.80 878.70 737.20 1087.87 1211.61 1001.74 1276.58 1405.25 1051.52 1329.08 1569.14 1015.77 13457.26 28320.90

RP-TS 928.88 904.51 759.28 1134.88 1221.45 1014.61 1300.76 1440.28 1085.13 1391.48 1602.42 1179.06 13962.73 29190.01

RP-SA 892.80 878.70 746.39 1087.87 1211.61 1001.74 1279.91 1436.85 1074.21 1342.89 1599.93 1170.24 13723.13 28759.08

maxima 928.88 918.91 770.81 1134.88 1255.20 1016.15 1300.76 1440.28 1101.63 1394.78 1602.42 1181.48 13962.73 29190.01

available 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1910.98 2204.97 1587.33 18260.88 35369.68

78 Preliminary Investigation of the ASRP Chapter 3

3.8.3.4 Random graphs with C = 144

• RP was the best constructive heuristic overall and for both classes.

• The best heuristic overall, and for both classes was RP-TS.

• All three heuristic types (RN2, PR, RP) achieved the best solution on some problem instances.

• On many of the early G problem instances (those with 90 edges and 110 edges), all the reward

available on the graph was collected.

Table 3.19. Results from experiments on random graphs with C = 144

Heuristic G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Total

RN2 1079.19 1184.97 893.08 1220.80 1394.27 1128.90 1437.98 1624.33 1103.73 1466.93 1833.02 1400.87 15768.07

RN2-TS 1079.19 1190.07 930.54 1358.83 1401.49 1187.70 1454.28 1652.87 1103.85 1466.93 1837.12 1436.60 16099.47

RN2-SA 1079.19 1190.07 900.37 1231.77 1401.49 1148.79 1454.28 1632.48 1103.85 1466.93 1837.12 1409.42 15855.75

RN2-DR-TS 1121.81 1307.16 954.24 1371.45 1555.60 1175.94 1523.81 1652.87 1301.12 1629.46 1897.03 1433.51 16924.00

RN2-DR-SA 1121.81 1307.16 954.24 1360.55 1548.38 1169.37 1456.41 1632.48 1166.10 1619.92 1888.52 1433.51 16658.45

PR1 1116.62 1300.22 949.05 1402.48 1597.10 1193.66 1558.34 1714.71 1326.25 1713.55 1852.07 1396.17 17120.22

PR1-TS 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1571.18 1723.57 1347.05 1744.78 1902.58 1437.23 17320.24

PR1-SA 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1558.34 1723.57 1326.25 1713.55 1891.20 1406.93 17213.67

PR3 1116.62 1300.22 949.05 1402.48 1597.10 1193.66 1532.49 1678.02 1297.63 1715.98 1863.56 1405.13 17051.95

PR3-TS 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1532.49 1731.31 1315.23 1735.85 1947.66 1414.53 17270.92

PR3-SA 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1532.49 1696.68 1311.74 1730.80 1904.71 1410.23 17180.51

RP 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1574.39 1775.52 1357.44 1736.39 1919.49 1455.24 17412.32

RP-TS 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1574.51 1793.12 1357.44 1755.16 1927.65 1458.46 17460.19

RP-SA 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1574.39 1782.45 1357.44 1755.16 1919.49 1458.46 17441.24

maxima 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1574.51 1793.12 1357.44 1755.16 1947.66 1458.46 17460.19

available 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2189.75 1627.33 18246.22

Heuristic S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total Grand Total

RN2 1004.83 910.54 845.73 1067.09 1215.93 1042.96 1236.92 1434.75 1131.58 1672.47 1731.22 1342.00 14636.01 30404.08

RN2-TS 1046.92 948.45 845.73 1067.09 1235.68 1042.96 1347.35 1534.02 1184.63 1691.61 1751.15 1359.05 15054.64 31154.11

RN2-SA 1028.83 910.54 845.73 1067.09 1215.93 1042.96 1248.87 1452.11 1139.30 1672.47 1731.22 1347.98 14703.02 30558.77

RN2-DR-TS 1102.59 1169.33 937.98 1154.84 1361.61 1114.80 1419.49 1649.24 1187.61 1707.37 1770.15 1346.27 15921.27 32845.27

RN2-DR-SA 1095.74 1091.46 912.23 1154.84 1361.61 1114.80 1419.49 1649.24 1187.61 1672.48 1770.15 1346.27 15775.92 32434.37

PR1 1114.94 1161.52 937.98 1350.75 1508.73 1149.75 1460.78 1680.71 1274.38 1611.99 1863.55 1310.59 16425.68 33545.89

PR1-TS 1114.94 1166.03 937.98 1352.07 1527.22 1151.30 1496.00 1763.37 1304.18 1654.59 1898.77 1355.20 16721.65 34041.89

PR1-SA 1114.94 1161.52 937.98 1350.75 1508.73 1149.75 1465.88 1688.33 1276.01 1654.59 1863.55 1328.92 16500.95 33714.62

PR3 1114.94 1137.86 937.98 1350.75 1268.97 1149.75 1499.09 1462.40 1288.61 1651.65 1766.27 1293.08 15921.36 32973.30

PR3-TS 1114.94 1165.82 937.98 1352.07 1349.94 1151.30 1509.23 1544.61 1300.03 1686.85 1838.69 1341.48 16292.93 33563.86

PR3-SA 1114.94 1145.44 937.98 1350.75 1334.69 1149.75 1509.23 1544.61 1300.03 1669.87 1827.93 1320.88 16206.10 33386.61

RP 1113.82 1152.29 936.89 1346.13 1527.51 1151.30 1521.20 1738.68 1298.51 1672.29 1911.43 1387.69 16757.73 34170.05

RP-TS 1113.82 1163.08 937.31 1346.13 1533.92 1151.30 1523.30 1763.80 1302.74 1681.80 1926.00 1417.19 16860.37 34320.57

RP-SA 1113.82 1160.29 936.89 1346.13 1527.51 1151.30 1521.20 1747.29 1300.54 1681.80 1919.15 1417.19 16823.10 34264.34

maxima 1114.94 1169.33 937.98 1352.07 1533.92 1151.30 1523.30 1763.80 1304.18 1707.37 1926.00 1417.19 16860.37 34320.57

available 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1910.98 2204.97 1587.33 18260.88 35369.68

3.8 Phase 2 experimentation 79

3.8.3.5 Random graphs with C = 180

• RP was the best constructive heuristic overall and for both classes.

• The best heuristics overall, and for both classes were all three RP heuristics.

• RP found the best solution for all problem instances, and could not be improved by TS or SA.

• For many of the problem instances all the reward available on the graph was collected.

• The DR improvement procedure appears to make a considerable difference to the improvement of

the RN2 heuristics.

Table 3.20. Results from experiments on random graphs with C = 180

Heuristic G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Total

RN2 1101.42 1233.84 907.30 1375.73 1520.91 1149.84 1591.79 1735.89 1121.10 1702.24 2002.95 1504.67 16947.69

RN2-TS 1101.42 1251.28 923.42 1383.55 1530.52 1170.10 1608.09 1735.89 1121.10 1736.69 2007.06 1510.96 17080.08

RN2-SA 1101.42 1233.84 907.30 1375.73 1520.91 1156.19 1608.09 1735.89 1121.10 1712.99 2007.06 1510.96 16991.48

RN2-DR-TS 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1621.55 1801.76 1347.75 1859.73 2076.09 1577.25 17877.97

RN2-DR-SA 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1621.55 1774.19 1347.75 1840.91 2076.09 1562.28 17816.61

PR1 1116.62 1300.22 949.05 1402.48 1597.10 1193.66 1626.71 1872.36 1398.58 1912.14 2172.12 1621.06 18162.10

PR1-TS 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2172.12 1627.33 18228.60

PR1-SA 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2172.12 1627.33 18228.60

PR3 1116.62 1300.22 949.05 1402.48 1597.10 1193.66 1626.71 1872.36 1398.58 1912.14 2172.12 1621.06 18162.10

PR3-TS 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2172.12 1627.33 18228.60

PR3-SA 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2172.12 1627.33 18228.60

RP 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2177.66 1627.33 18234.14

RP-TS 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2177.66 1627.33 18234.14

RP-SA 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2177.66 1627.33 18234.14

maxima 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2177.66 1627.33 18234.14

available 1121.81 1307.16 954.24 1408.32 1602.98 1199.33 1632.06 1881.29 1404.24 1917.71 2189.75 1627.33 18246.22

Heuristic S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Total Grand Total

RN2 1075.01 962.14 866.43 1322.68 1471.82 1121.70 1390.19 1672.71 1267.13 1826.43 2028.37 1412.72 16417.33 33365.03

RN2-TS 1075.01 981.49 894.42 1356.03 1530.16 1150.58 1404.48 1672.96 1306.41 1826.70 2055.91 1447.85 16702.00 33782.08

RN2-SA 1075.01 962.14 866.43 1322.68 1471.82 1121.70 1404.48 1672.96 1267.13 1826.70 2038.70 1412.72 16442.48 33433.96

RN2-DR-TS 1152.08 1319.15 975.13 1416.69 1623.80 1182.72 1610.34 1880.08 1311.64 1826.70 2123.17 1504.75 17926.25 35804.22

RN2-DR-SA 1152.08 1319.15 975.13 1416.69 1623.80 1182.72 1610.34 1880.08 1311.64 1826.70 2123.17 1504.75 17926.25 35742.86

PR1 1146.89 1313.31 969.93 1411.66 1623.81 1176.73 1609.69 1879.13 1375.94 1894.77 2152.04 1566.24 18120.14 36282.24

PR1-TS 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1894.77 2171.51 1568.34 18192.21 36420.82

PR1-SA 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1894.77 2152.04 1566.24 18170.65 36399.25

PR3 1146.89 1313.31 969.93 1411.66 1623.81 1176.73 1609.69 1879.13 1375.94 1894.77 2165.31 1566.24 18133.41 36295.51

PR3-TS 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1894.77 2165.31 1568.34 18186.01 36414.61

PR3-SA 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1894.77 2165.31 1566.24 18183.91 36412.52

RP 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1899.13 2179.78 1569.17 18205.67 36439.82

RP-TS 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1899.13 2179.78 1569.17 18205.67 36439.82

RP-SA 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1899.13 2179.78 1569.17 18205.67 36439.82

maxima 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1899.13 2179.78 1569.17 18205.67 36439.82

available 1152.08 1319.15 975.13 1416.69 1628.88 1182.72 1615.60 1886.02 1381.33 1910.98 2204.97 1587.33 18260.88 35369.68

3.8.4 Discussion of phase 2 results

Points have already been made in the relevant sections about the individual results tables, so we

concentrate here on observations about the similarities and differences between the tables.

80 Preliminary Investigation of the ASRP Chapter 3

3.8.4.1 Designed graphs

Constructive heuristics. For C = 36 and C = 72, RN2 was the best constructive heuristic for each class

and overall. For C = 108, RP was the best overall and for classes L and R, but RN2 was the best for

class C. For C = 144 and C = 180, RP was the best overall and for each class.

This suggests that RP is better than RN2 when the graph is both sparse and the budget is high. When

only a small section of the graph can be traversed then RN2 seeks out better subtours.

Best heuristic overall. In all cases, the TS improvement was at least as good, and usually better than

both the unimproved heuristics, and the SA improvement. RP dominated for higher budgets, and RN2

dominated for lower budgets. Tabu Search and Steepest Ascent were both quite sensitive to the initial

solution.

Failure of RP. On several problems when C = 36, RP produced extremely bad solutions, even zero on

one problem. This is probably due to deleting large amounts of the route with the final cycle deletions.

It is a symptom of using RP with low cost budgets, and could have been anticipated by considering the

nature of the heuristic. Fortunately, the TS and SA improvements were able to recover reasonable

solutions.

Summary. It seems that the best approach is to use RN2 with TS (either with DR or without) when the

cost budget is low (< 90), and to use RP with TS when the cost budget is high.

3.8.4.2 Random graphs

Constructive heuristics. Similarly to with the designed graphs, RN2 is the best constructive heuristic

for C = 32, while RP is the best for the other budget levels. RP is better for lower budget levels than

with the designed graphs, possibly because the random graphs are sparser.

Best heuristic overall. Again, the TS improvement dominated both unimproved solutions, and the SA

improvement. RP-TS was the best heuristic for all budget levels, although often other heuristics

achieved the same values.

Summary. The same as for the designed graphs.

3.8 Phase 2 experimentation 81

Coda

▼ Summary

In this chapter we developed several original heuristics for the ASRP. PRUNE THEN ROUTE iteratively

deletes arcs until the solution to the resulting CPP relaxation is a cost feasible solution to the original

problem. ROUTE THEN PRUNE solves the CPP relaxation, and then deletes cycles from the tour until it

is cost-feasible. RICHEST NEIGHBOUR uses a look-ahead greedy criterion to construct a path, with a

check to ensure the path returns to the depot within the cost budget. We also developed several

improvement procedures that were implemented as moves under the framework of Tabu Search.

Experimentation was performed on grid graph instances. Two methods of generating random grids

were used, GRID GROW and GRID SELECT, and these methods were found to produce graphs with

different characteristics. In particular, grids generated using the GRID GROW method have a larger

number of isolated vertices, and those generated using the GRID SELECT method have a larger number of

end edges.

We explored the influence of depot location by using three designed instances, and discovered that the

position on the grid (corner, middle, or edge) did not have a significant effect, other than that

attributable to regions of reward density. Future experiments might profitably devise some measure of

reward distribution, perhaps based on clusters.

Extensive computational tests on random instances, allowed us to determine that for low-medium cost

budgets, the RICHEST NEIGHBOUR heuristic performed best, while ROUTE THEN PRUNE was best for

higher budgets.

This is the end of Part I, which was a focused study of the ASRP as a traditional Operations Research

problem. The ASRP will be the test problem for later experimentation.

▼ Link

In Part II we introduce the Modular Local Search framework. We define its architecture and describe

its programming implementation, and review common metaheuristics from the literature, exploring how

they can be expressed in the MLS framework.

83

Part II

MLS Foundations

85

Overview of Part II

MLS Foundations

Part II introduces and defines the Modular Local Search framework.

Chapter 4 explains the architecture of MLS, defining all the components and discussing potential

applications of these. This is followed by some illustrative examples of how popular metaheuristics

would be modelled as MLS, without formally defining the logic for the modules, which occurs later.

This chapter finishes with a discussion of the strengths and limitations of MLS.

Chapter 5 is a literature review for trajectory-based metaheuristics. The main metaheuristic paradigms

are discussed extensively, since these provide the building blocks of MLS. Thoughts are given as to

how these metaheuristics could be modelled as MLS techniques.

87

 C H A P T E R 4

4 Modular Local Search

4.1 Introduction

4.2 Structure of MLS

4.3 The search scheme

4.4 The control system

4.5 The memory structures

4.6 Summary of MLS components

4.7 Examples of metaheuristics as MLS

4.8 Discussion

This chapter provides a detailed description of the structure of MLS, as well as discussion of

various ways in which the components and modules can be modelled and combined. To

illustrate the concepts, a number of metaheuristics are described in terms of their MLS

modules. A brief discussion of the strengths and limitations of MLS concludes.

4.1 Introduction

We introduce Modular Local Search (MLS), a framework for metaheuristics. MLS identifies a number

of operators and stages that many metaheuristics have in common, and formalizes this structure as a

modular heuristic system, whereby a particular metaheuristic can be implemented simply by “slotting

in” the appropriate modules. An advantage of this approach is the ease with which modules that were

originally inspired by particular metaheuristics can be mixed and matched to create hybrids. The nature

of the MLS framework is that it makes explicit some previously implicit aspects of existing

metaheuristics, thereby allowing these aspects to be manipulated, creating opportunities for new

metaheuristic ideas and novel hybrids.

One of the most fundamental ways to classify metaheuristics is whether they are trajectory-based or

population-based. Trajectory-based methods maintain a single solution and each iteration updates this

single solution, usually by moving to a neighbour of the solution, but sometimes by the mechanism of a

translocation to a different point in the solution space, for example by a reconstruction, a perturbation,

88 Modular Local Search Chapter 4

or revisiting past solutions. Population-based methods maintain a population of solutions, and perturb

and combine these in various ways over a number of generations. Modular Local Search is designed to

model trajectory-based methods; an MLS-based framework to support population-based methods is

possible, but would require a number of different components and is beyond the scope of this thesis.

An important consideration is that there are many possible metaheuristic frameworks. Some previous

efforts were briefly discussed in Chapter 1. There is no necessarily “right” framework; each may be

useful for specific purposes. In the words of the statistician George Box [31], “all models are wrong,

but some are useful.” The motivation behind MLS is to create a heuristic system, such that “modules”

derived from various metaheuristic concepts can be mixed and matched in a standardized way. The

eventual goal of such a system is to allow heuristic guiding strategies to modify the algorithm as it

progresses, based on the state of the search and the past successes or failures of attempted changes:

essentially to enable learning and self-adaptation.

The MLS framework consists of both a conceptual structure, which is the focus of this chapter, and a

programmatic implementation of that conceptual structure, which is outlined in Appendix B. The

conceptual structure was designed from the start with the intention of being implemented as an object-

oriented system, so there are some references to Classes, and we refer to modules “calling” other

modules. These references are clarified in Appendix B. Appendix C describes the Modular Local

Search Markup Language (MLSML). This is an XML-based language that specifies all the modules in

an MLS heuristic. Assuming all the required modules have already been programmed, MLSML allows

new complex hybrids to be expressed declaratively, rather than programmatically. The user simply

specifies the modules that should be assigned to each component, and the program handles the

interaction of these different concepts.

This chapter is structured as follows. A high-level description of the structure of MLS is given in

Section 4.2. Sections 4.3-4.5 describe each of the MLS components in detail and Section 4.6

summarizes these into a list of all MLS components. Section 4.7 gives some illustrative examples of

metaheuristics expressed as MLS. Finally, Section 4.8 discusses some of the uses of MLS, along with

its strengths and weaknesses.

4.2 Structure of MLS

Three core concepts underpin the structure of MLS: the search scheme, the control system, and the

memory structures. We define an MLS component to be a specific role in the MLS process, and an

MLS module to be a specific function or value to provide functionality for that component. For

example, one component is generate-initial-solution. This generic component is where the first

solution is generated by some process, and then this solution is used as the starting point for the search.

Particular modules that could be used in the generate-initial-solution component include random

generation and greedy construction. One way to think of the distinction between components and

modules is that components are the “slots” that need to be filled to define a heuristic, and modules are

the specific parts that fill those slots. Another analogy is that the components define the architecture of

the MLS framework; a blueprint for the bathroom of a house might call for a bath, that would be the

4.3 The search scheme 89

required “component”; specific “modules” that could be used include “claw-footed bath”, “free-

standing modern bath” and “sealed and wall mounted bath”.

The search scheme is the set of components that control how the heuristic moves from one solution to

the next. They influence the search through the search iteration process, a procedure that takes a

starting solution as input and outputs a target solution, in a single iteration. The search scheme

components together define the search topology, and how the topology is searched to find the target

solution that the search moves to.

The control system consists of everything else required to execute a metaheuristic. It controls which

solution should be passed as input to the search scheme, and makes changes to the search scheme, the

control system itself, and the memory structures, as required throughout the search process. It is the

“intelligence” of the heuristic algorithm.

The memory structures store any parameters, quantities or sets of attributes that are used by the search

scheme and the control system.

We refer to MLS configurations. A configuration is a particular set of modules that are specified as

belonging to the same heuristic. Modules are not necessarily all active at the same time; all the modules

used in a heuristic are specified at the start, but they may be activated or deactivated in response to

certain criteria.

4.3 The search scheme

The search scheme consists of a number of components that are present in all local search heuristics,

either explicitly or implicitly. These components interact with the search through a number of steps of

the search iteration process. Starting from the current solution, the search iteration process finds a

neighbouring solution to be the target solution or, if no suitable solution can be found, returns the

current solution as the target solution.

The search iteration process is described below:

Algorithm 4.1 procedure MLS SEARCH ITERATION PROCESS

 Input the current solution s

 Generate the move-list → M(s)

 Reduce the move-list → MR(s) // Optional step

 repeat

 Choose a trial solution, s″

 Check the trial solution admissibility

 if s″ is admissible then add it to the candidate list, A

 until sufficient trial solutions have been examined

 if A is empty then let the target solution be the current solution, s′ = s

 else let the target solution be the candidate with the highest fitness

end

90 Modular Local Search Chapter 4

Figure 4.1 illustrates the search iteration process. There are three main points of control over the

breadth of the search, which we define as the number of solutions examined. The current solution is

used to generate a set of specific moves that can be performed to generate neighbour solutions. This set

may not contain all the moves that are possible on the current solution, so offers the first point of

control over the breadth of the search for this iteration. Next, an optional neighbourhood reduction

process is performed to reduce the number of number of moves in the move-list; this process may

involve some sort of fast, or “heuristic” evaluation of the move quality, and is the second point of

control over the breadth of the search. Then the search process selects moves one at a time,

constructing the resulting neighbour solution and evaluating the admissibility of this solution. If the

neighbour is admissible it is added to the candidate list and this continues until either candidate list is

full or the number of solutions examined has reached the limit. These thresholds are the third point of

control over the breadth of the search. The final step is to choose the candidate with the highest fitness

to be the target solution, i.e. the solution outputted by the search iteration process. If there were no

admissible candidates found then the search notes this and returns the current solution. Fitness is

usually the objective function value, but can be some other proxy value, as described subsequently.

Figure 4.1: The search iteration process

The search iteration process is controlled by the components of the MLS search scheme:

• The neighbourhood scheme

• The neighbourhood reduction process

• The fitness function

• The admissibility conditions

• The search logic

Conceptually, the neighbourhood scheme and the admissibility conditions together define the set of

solutions that could possibly be chosen, and the search logic dictates which of these solutions will be

constructed and evaluated.

Construct
move - list

Reduce
move - list

Generate
trial neighbour

Add
neighbour to
candidate list

Assign
target solution

Is solution
admissible?

Yes

No Finished
searching ?

Yes

No

4.3 The search scheme 91

Search

logic

Move l i s t

Reduced

move l i s t

Examined

move l i s t

s M* M M R M E

S* S N* N N R E A s ’
Search

space

Examined

neighbours

Target

solution

Admiss ible

candidates

⊇⊃

Set of

move-types

Neighbourhood

reduction process

Admiss ibi l i ty

condi tions

⊇

⊇ ⊇

Set of poss ible

moves

Movel i s t s ize

& selection

order

Solution

 space

⊇

Ful l

neighbourhood

of current

solution

Effective

neighbourhood

of current

solution

Reduced

neighbourhood

of current

solution

Current

solution

Fi tness

function

⊇ ⊇

⊇

D
e

fin
e

s

D
e

fin
e

s

P
ro

d
u

c
e

s

D
e

fin
e

s

Figure 4.2: Relationships of solutions and moves in the MLS search iteration process

Figure 4.2 illustrates the relationships between the different sets of solutions and moves. The top row

indicates which MLS search scheme components influence each set. Some of the above sets are

conceptual only, and some are actually generated by the MLS algorithm. Only M, MR, ME, E and A are

real sets calculated by the MLS algorithm during a search iteration, each generated from the previous:

 () () () () ()R Es M s M s M s E s A s s′→ → → → → →

The solution space S* is the set of all possible solutions to the problem instance, while the search space

S is the set of all solutions that can conceivably be reached by the MLS heuristic. These may be

equivalent, but in some instances there may be solutions that cannot be reached by the MLS heuristic.

The set of move-types defines the theoretical set of all possible moves on the current solution, where a

move is an actual instance of a type of move (so swapping two cities in the TSP is a move-type,

swapping cities B and F is a move). The move-list is the subset of moves that are actually stored in

memory. This conceptually defines the effective neighbourhood of solutions; those which we could

choose to generate, depending on what happens further in the search scheme process. The

neighbourhood reduction process selects a subset of the move-list, from which we select those to

perform to check for admissibility of the resulting solution. The reduced move-list defines the reduced

neighbourhood of the current solution. The search logic and the admissibility conditions together

determine which moves will actually be performed to create solutions that are tested for admissibility;

these solutions form the set E, which is actually stored in memory. Of these, some are admissible, and

are added to the candidate list. The final step is to select the best candidate, based on the evaluation of

the fitness function.

The following sections describe each of the MLS search scheme components in more detail.

92 Modular Local Search Chapter 4

4.3.1 The neighbourhood scheme

The neighbourhood scheme defines which solutions are in the neighbourhood N(s) of current

solution s. A neighbour is any solution that may be reached by the application of one move on the

current solution, so the neighbourhood is determined by the set of moves and move-types available.

The neighbourhood scheme has three parts: the set of move-types, the move-list size, and the move

selection order.

An important point to note is that although the neighbourhood scheme defines which solutions are in

N(s), these solutions are not actually constructed by the neighbourhood scheme. The neighbourhood

scheme is focused on moves; a neighbour is a solution obtained by the application of a move to the

current solution. The purpose of this is to save computational effort. For some problems the actual

execution of a move is a significant computational effort – there is no need to do this for every solution

in the neighbourhood if we are simply going to accept the first improving solution examined. We do,

however, catalogue the moves that can be performed, without actually performing them. For example,

when constructing the neighbourhood for a TSP solution, we might note that a move is to swap

customers A and B, but we do not actually construct or evaluate the resulting route. Since the solutions

are not constructed or evaluated, at this stage they can still be either feasible or infeasible. This set of

moves is called the move-list.

The ability to restrict the neighbourhood offers more flexibility and an opportunity to make the heuristic

more efficient. However, it can involve some difficult design considerations, depending on the problem

and move structure. Choosing an unlimited maximum neighbourhood size avoids these difficulties and

defaults to the standard option of considering the whole neighbourhood.

4.3.1.1 Set of move-types

We define a move-type to be the abstract definition of how to perform a move, and a move to be the

specific realization of a move-type on the current solution. For the TSP, swapping the position of two

cities in the route is a move-type; swapping the position of cities D and F is a move. For a given current

solution, there will usually be many possible moves of each move-type.

Each move-type is either active or inactive at any given iteration. Inactive move-types are defined

within the heuristic but are not available to the search scheme and are not evaluated. Move-types may

be activated or deactivated by the control system between iterations.

4.3.1.2 Move-list size

The move-list size is the maximum number of moves that can be added to the move-list. It can either

be unlimited, in which case all possible moves on the current solution are considered, or some specified

number, in which case only a subset of moves are considered. The move-list size allows us to limit the

computational effort required in listing the moves that can be performed. For some problems this can

be a significant computational burden, and is often unnecessary, for example if the first admissible

solution is to be chosen. Note that the cardinality of the move-list may be less than the move-list size, if

there are fewer moves possible.

4.3 The search scheme 93

4.3.1.3 Move selection order

If the move-list size is unlimited, then the move selection order is unimportant, since all potential

moves will be added to the move-list. However, if the move-list size is constrained then there is a

choice to make for which possible moves to include. There are several options here:

Purely random. It is actually quite hard to select a purely random move, without listing all the

possible moves first, which defeats the purpose of having a restricted move-list. The only way to do

this is if there is some special structure to the moves so that we can randomly select the elements. For

example, in the TSP if we have a move-type that is to swap the position of two cities within the route,

then we can randomly generate a move by randomly choosing the first city (as a random number

between 1 and the number of cities) and then randomly choose another city. This method also requires

the addition of a step to check whether the generated move is already on the move-list. If there are

multiple types of moves then there is a further complication. We need to know in advance how many

of each type of move are available, and then the first step is to randomly choose the move-type, based

on the proportion of the total moves available that each move-type represents, and then randomly

choose the move from the moves of that move-type. A purely random move selection order requires

some problem-specific consideration to implement, and may not be possible for all problems.

Random weighted by move-type. This method is essentially the same as the purely random method,

except that instead of choosing the move-type of each next move by the proportion of total moves

represented by that move-type, the weighting is specified by the user. These weightings control the

tendency to prefer some moves over others, and can therefore be used to guide the search. To the best

of our knowledge, this technique has not been considered in the literature. The weightings for each

move-type are memory parameters that can be varied dynamically throughout the course of the

heuristic.

Random fixed for move-type. Similar to the previous method, except that for each move-type a fixed

proportion of the maximum neighbourhood size is selected, not necessarily the same for each move-

type. Again, the proportions are memory parameters.

By implementation structure. There are many ways to store problem structures and solutions in the

programming implementation of the heuristic, depending both on the problem and the programmer.

Usually for these there will be a natural way to loop through the elements; for example if a route for the

TSP with P cities is stored in a list, with the first element of the list being the first city visited, and so

on, then a natural way to enumerate all the moves would be the following:

for i=1 to P do

for j=i+1 to P do

move = swap(route[i], route[j])

add move to move-list

end

end

94 Modular Local Search Chapter 4

Notice that this method produces a biased neighbourhood when the neighbourhood size is restricted;

moves with cities near the start of the route will tend to be included in the neighbourhood more often.

When the move selection order is based on the implementation structure the order of the move-types to

be examined is very important, since the all the moves of the first move-type will be selected before any

of the second or subsequent types are selected, unless a fixed proportion for each move-type is

specified, as described below.

By implementation structure, fixed for move-type. A fixed proportion of the maximum

neighbourhood size is specified for each move-type and stored as memory parameters. The heuristic

will select the appropriate number, as described above, for each move-type.

4.3.2 The neighbourhood reduction process

This is an entirely optional step in the search scheme, and most heuristics do not have this process.

Examples of heuristics that do are given in Chapter 5. The neighbourhood reduction process applies

some subroutine or rule to choose a subset of the moves in the move-list to be progress to be evaluated

as solutions and checked for admissibility. This process will usually not involve explicitly evaluating

the fitness function of each solution – the utility of this phase is in using more streamlined evaluation

methods. There are not restrictions on the type of process, but there are two main types: cardinality-

based and evaluation-based.

Cardinality-based reduction processes ensure that the reduced move-list (which defines the reduced

neighbourhood) contains only a specified number of moves, which is a memory parameter. These can

be selected randomly, or according to some selection routine, or based on a ranking according to some

evaluation, like the ones discussed below.

Evaluation-based reduction processes include all those moves that meet some defined evaluation

criterion – possibly comparison against a threshold, which is stored as a memory parameter.

One of the primary uses of a neighbourhood reduction process is for when the solution construction, or

fitness function evaluation is quite a complicated or time-consuming task. If evaluating a solution is

expensive, then each iteration of the search scheme can become quite expensive, if many solutions must

be examined, especially if there is a high-ratio of poor neighbours to good neighbours. In this case a

simpler proxy for the fitness function can be used to filter out moves that look promising, and those that

don’t.

The neighbourhood reduction process can also be used as part of the “intelligence” of the search

process. One way of doing this would be to consider the solution elements that the move modifies, and

check whether these solution elements (e.g. arcs in an arc routing problem) are on a list of previously

identified “good” elements, or “bad” elements.

Another “intelligent” use is to increase or decrease the level of diversification occurring. If a fast

indicator of the level of diversification a move introduces exists, then this can be used to specify that

only high-diversification moves will be considered, without the need to explicitly construct and

evaluate the solutions resulting from these moves.

4.3 The search scheme 95

One use of the neighbourhood reduction process can be to check for infeasibility, if this can be easily

ascertained. The neighbourhood construction step simply considers possible moves, and is blind to

whether or not they are feasible. If this is an important concern it can be considered as a neighbourhood

reduction step. The alternative is to consider feasibility as part of the admissibility conditions, however

if the feasibility of a solution can be checked or estimated without explicitly constructing it, then there

may be some value to performing a check here.

If the neighbourhood reduction routine involves explicitly constructing the solution resulting from a

move, and then evaluating the full fitness function, then there may be no advantage from using a

neighbourhood reduction process over using the search logic and admissibility conditions.

Explicit neighbourhood reduction processes have not been considered often in the literature, however

we consider them to have significant potential to efficiently guide searches to productive areas of the

search space, especially in problems where solution construction or fitness function evaluation is

computationally expensive.

4.3.3 The fitness function

The fitness function is used to determine the relative value of solutions. In its most basic version, the

fitness function is simply the objective function, and most heuristics use this expression. However

allowing the fitness function to potentially be different to the objective function gives the ability to

modify it to create slightly different search schemes, with different search topologies. As with all MLS

components, this modification can be combined with other modules to create hybrids.

An example of a heuristic which uses fitness function modification is Guided Local Search, which

penalizes certain solution attributes (such as the inclusion of certain arcs in the TSP), making them less

desirable and hence creating a modified search topology. Another use of the fitness function is to

penalize infeasibility rather than making infeasible solutions inadmissible.

If the objective function is computationally expensive to evaluate, then a simplified evaluation function

can be used for the fitness function in order to speed up the search. The fitness function can change at

certain points throughout the search, perhaps returning to be the objective function in the last stages of

an intensification phase.

More complicated fitness functions can involve the execution of some algorithm. For example a

sophisticated MLS heuristic might use the evaluation of a simpler version of MLS (perhaps a basic

ascent search) as the evaluation of the fitness of the neighbouring solution. In this case the value of the

objective function for the local optimum reached by the evaluation of the simpler local search heuristic

would be the fitness function.

4.3.4 The admissibility conditions

The admissibility conditions describe whether an examined solution is a candidate for selection as the

target solution. If a solution is examined and found to be admissible then it is added to the candidate

list.

96 Modular Local Search Chapter 4

The admissibility conditions examine solutions in relation to the current solution, to other solutions in

memory such as the best-so-far, or according to certain rules and thresholds. They do not compare

neighbours of the current solution with each other. So an admissibility condition cannot require that a

solution be the best available - this type of condition is dealt with by the search logic.

The following are some examples of admissibility conditions in common local search heuristics:

• In Ascent Search only improving solutions are admissible;

• In Tabu Search, solutions that are not tabu, or that are tabu and satisfy the aspiration criteria, are

admissible;

• In Simulated Annealing, solutions that are improving are admissible and solutions that are not

improving are admissible with a certain acceptance probability.

A heuristic can have multiple admissibility conditions. If this is the case then all admissibility

conditions must be satisfied. One common admissibility condition that is applied in addition to others

is that the solution be feasible.

One possible use of admissibility conditions is to modify the data of the problem instance. For

example, if certain solution attributes are known to be sub-optimal then these can be made non-

admissible. This is similar to the neighbourhood-reduction process of filtering out moves that introduce

these elements, although in this case the solution is actually generated, so using the admissibility

conditions to achieve this effect could potentially be more expensive in terms of computational effort.

Yet another approach would be to use the fitness function to penalize these solution attributes, rather

than forbidding them completely.

4.3.5 The search logic

The search logic controls how moves are chosen from the reduced move-list, and examined by the

admissibility conditions to determine if they are candidates. The search logic has three components:

• The examinations maximum. This is the number of solutions to evaluate to determine if they

are admissible (can be unlimited).

• The candidate list size. This is the maximum number of candidates that can be added to the

candidate list of admissible neighbours (can be unlimited).

• The examination order. This determines how moves are selected from the move-list to be

examined by the admissibility conditions (has no effect on the search if the examinations

maximum and the candidate list size are unlimited).

Note that both the examinations maximum and the candidate list size are simultaneously in force, so

either can stop the search if it is reached. The search is also stopped if the move-list is exhausted

without finding any admissible candidates.

After the search is finished for one of the three above reasons then the best solution in the candidate list,

based on the fitness function evaluations, is returned. If the search does not find any candidates then

the search scheme notes this and returns the current solution.

4.4 The control system 97

We discuss the implications and applications of the search logic and the restricted move-list in more

detail in Section 4.8.1.

4.4 The control system

The control system of modular local search serves as its “intelligence”. If the search scheme may be

imagined as a particular point in “heuristic space”, then the control system is the meta-heuristic that

guides a path through heuristic space.

Figure 4.3: The MLS control system

The control system is composed of a number of components. Figure 4.3 illustrates the flow of

information through these components. First an initial solution must be generated; at each iteration the

search scheme acts on a starting solution and selects one of its neighbours, so a solution to begin this

process is required. The next step is a memory initialization. The counters and other system-

maintained memory structures are automatically initialized, so no module is necessary, however some

heuristics may have specific initialization requirements. Next is a single search iteration, using the

components of the search scheme, starting from the current solution and producing a target solution.

The memory is then updated, based on the results of the search iteration.

The next stage checks to see if any of the triggers have been tripped, and if they have then the

associated responses are performed. Multiple responses can be associated with each trigger, and

responses generally perform one of four tasks: terminating the algorithm if a termination criterion is

satisfied, changing the current solution, modifying the search scheme, or changing the triggers or

responses themselves for the next iteration.

4.4.1 Generate-initial-solution

MLS is a local search methodology, it moves from solution to solution, so an initial solution is required

to provide the starting point of this trajectory. The choice of initial solution can have a significant

impact on the quality of the final solution for local search heuristics, and this is discussed in Chapter 5.

Triggers and responses

Starting
solution

Perform the
search iteration

process

Target
solution

Start
Generate initial

solution

Change the solution if required ,
else set target solution as starting solution

Stop
Return

best solution
found so far

Update
memory

Change the triggers
if required

Change the search scheme
if required

Terminate
if required

Initialize
memory

98 Modular Local Search Chapter 4

However, it is beyond the scope of our research to consider this aspect of heuristic design, and we treat

the initial solution generation as a black-box function; any appropriate problem-specific method can be

used as a module for this component.

The only exception to this is where the construction of a solution can be modelled as a local search

heuristic. In this case the initial solution can be simply an empty solution, and the construction of the

solution is treated as a phase of the MLS procedure. An example of this is the Greedy Randomized

Adaptive Search Procedure (GRASP), where a solution construction phase is followed by a local search

improvement phase. It is possible to model both of these phases as MLS, with a different configuration

of modules for each phase.

4.4.2 Initialize-memory

The initialization of memory structures, such as iteration counters and lists of elite solutions, happens

automatically, and does not require an MLS module. The initialize-memory component of the control

system is for additional initialization tasks that may be required by some heuristics.

An example of a memory initialization is for the List-Based Threshold Accepting method of Tarantilis

et al. [234]. In this heuristic a list of admissibility threshold values is generated at the start of the

procedure, and then as the actual search progresses these are modified and replaced.

If an initialize-memory module is required for the execution of another MLS component, then this is

specified by the requiring module, and a valid MLS heuristic will satisfy this requirements.

4.4.3 Update-memory

The update-memory component consists of multiple modules that update any of the memory structures

that are in use in the heuristic. These update-memory modules are performed in the following order,

based on the type of analysis.

4.4.3.1 Automatically updated memory structures

Some memory structures are updated automatically by the MLS framework without requiring a specific

module. For example, all the iteration counters are automatically incremented, and all the search

scheme quantities are stored in memory, such as the number of solutions examined, and the size of the

move-list. These are discussed in more detail in the section on memory structures.

4.4.3.2 Specific lists or quantities

If a heuristic requires specific lists or quantities to be maintained then these can be managed through an

appropriate update-memory module. The possibilities are endless, but some common examples are

described below.

Tabu Search requires a list, or lists, of tabu solutions or solution elements to be maintained. This

would be done in a special update-memory module that adds any newly tabu elements to the lists,

updates the remaining tenure of all items, and removes any items whose tabu status has expired.

4.4 The control system 99

List-Based Threshold Accepting maintains a list of threshold values that are used to determine

admissibility. The updating of this list would be performed by an update-memory module.

4.4.3.3 The best-so-far solution

One of the update-memory features that requires a module determines whether the best-so-far (BSF)

solution is updated with the fitness function or the objective function. The overall goal of the heuristic

is to find the solution with the best objective function value, so it would seem logical to use this

evaluation method, however one of the advantages offered by using a simplified fitness function is that

it can increase the speed of the search and this advantage is lost if every iteration the objective function

must be evaluated against the objective function anyway.

The alternative, i.e., always using the fitness function, has its own complications. First is the obvious

problem that BSF solutions, even globally optimal solutions, based on the objective function evaluation,

may not have high fitness function values, and so these solutions may be passed over by the search if

the objective function is not evaluated. A secondary problem is that the fitness function is liable to

change from one iteration to the next, for example in guided local search, so that comparing the fitness

function value of one solution with another to determine if the BSF should be updated can result in

unfair comparisons.

The solution within the MLS framework is to make both methods possibilities and to leave the decision

of which to utilize up to the heuristic designer, with possibly both being used at different phases of the

heuristic. A MLS heuristic must have at least one of the following modules:

• Update BSF (objective function). This module evaluates the value of the objective function of

the target solution against that of the current BSF (objective function) and if the target solution

has a better objective function value then the target solution replaces the current BSF (objective

function). Note that the objective function value of the BSF (objective function) is stored in

memory, rather than re-evaluated for each execution of this module.

• Update BSF (fitness function). This module evaluates the value of the fitness function of the

target solution against that of the current BSF (fitness function) and if the target solution has a

better fitness function value then the target solution replaces the current BSF (fitness function).

Note that the current BSF (fitness function) solution is re-evaluated using the current fitness

function if this has changed since the last update, in order that both solutions are compared using

the same measure, the current fitness function.

An MLS configuration can have either or both of these modules in operation at the same time.

Although these modules are primarily update-memory modules, they can also be called as responses to

certain triggers being tripped. This is discussed in more detail in Section 4.4.4.5.

If another MLS module requires a particular BSF solution to be present, then this is described in the

specification for that module, and a valid MLS heuristic will satisfy this requirement. For example, a

common Tabu Search aspiration criterion is that a trial solution always be admissible, regardless of its

tabu status, if it is better than the best solution found so far. This comparison would usually be based

100 Modular Local Search Chapter 4

on the fitness function evaluation, rather than the objective function evaluation (although this is up to

the designer), so the appropriate BSF solution would need to be available for comparison.

4.4.3.4 The state of the search

Update-memory modules are not restricted to simply storing values and entities that have already been

calculated during the search iteration process, or incrementing counters; they can be quite complex and

sophisticated procedures that analyze the current state of the search. Such modules cannot affect other

modules directly themselves, but they can create “flags” in memory that may be detected by

complimentary triggers, which are then able to perform any desired response. These responses will

typically be used to either intensify or diversify the search.

The state of the search is an abstract concept that can nevertheless be quantified by an appropriate

procedure, which is implemented in MLS through update-memory modules. The following paragraphs

describe some aspects that could be investigated.

Results of current iteration. The outcomes of the current iteration, such as whether a target solution

was found, how many moves and solutions were examined, etc.

Rate of improvement. The trajectory of solution values can be analysed, both in the immediate past

and over the whole course of the heuristic. This can be used to identify when progress has stalled, or

when it is progressing satisfactorily.

Quality of search space region. Tests can be performed to determine how promising the current

region of the search space is. These could be based on the recent search history, or could involve other

investigations into aspects of the search topology, such as the ratio of improving neighbours to non-

improving neighbours, the prevalence of certain solution attributes in neighbours, or the “steepness” of

the search space. An example of how this might be estimated is to randomly choose three neighbouring

solutions, and then for each of these perform a basic ascent search with a simple move structure, and

count the number of moves required to reach a local optimum.

Performance of heuristic modules. It is possible to track how well the search is doing, based on any

number of metrics, and record this against the modules that are in use at the time. For example, at the

end of a diversification phase the success of the diversification can be measured (perhaps based on the

quality of the new search region), and recorded against the configuration used for the diversification. If

there are multiple methods of diversification then these can gradually be trialled, and their success

recorded. If the probability of selecting a particular diversification method is based on its past success

then we have managed to implement a form of learning. More sophisticated approaches would also

record other aspects of the search state at the same time, such as the prevalence of certain solution

features in the neighbourhood. Sophisticated classification and prediction models could be employed to

determine appropriate combinations of modules for certain patterns of within the search state, for

example decision trees or neural networks. This type of update-memory module would probably not be

executed every iteration, but could be available to call on demand as a response to certain triggers.

Chapter 8 discusses advanced MLS applications such as learning in more detail.

4.4 The control system 101

4.4.4 Triggers and responses

Many of the components within the MLS framework are conceptually similar to procedures in existing

heuristics from the literature, except that they have been made more explicit and formalized in MLS.

The concept of triggers and responses is, to the best of our knowledge, quite original. They allow an

MLS heuristic extremely flexible control over its own structure, and the state of the search. The trigger-

response model is the key to the ability of MLS to be self-adaptive.

After every search iteration a test is performed to check whether a trigger is tripped, i.e. whether the

trigger logic is satisfied. If the trigger is tripped then one or more responses that are associated with

that trigger are performed. A response is procedure that performs some piece of analysis or changes

another module or memory structure.

4.4.4.1 Parts of a trigger

A trigger has the following attributes:

• Trigger logic. This specifies the logic that is checked to determine if the trigger has been

tripped. The trigger logic can only refer to and compare memory elements, both those specific to

this trigger and any other generic memory elements. A trigger can consist of any desired

calculation or subroutine, but must evaluate to either true or false (tripped or not tripped).

However, the logic for a trigger should be as simple as possible, with most of the analysis tasks

being performed during the update-memory phase.

• Trigger memory elements. These are parameters against which the trigger can be compared.

Not all triggers need have memory elements, but they can and they are stored as part of the

memory structures, so can be updated or modified by responses if desired. When a trigger is

designed, one or more memory structures will usually be designed to service the trigger, along

with any required update-memory modules to maintain the memory structures.

• Active flag. A trigger is either active or inactive. Triggers can be specified for a particular

heuristic and then activated and deactivated throughout the course of the heuristic execution.

Typically certain triggers will relate to certain MLS configurations, and when the configuration is

changed one set of triggers will be deactivated and another set will be activated to take their

place.

• Responses. A trigger can have one or more responses associated with it. Responses can be

added or removed from a trigger throughout the course of the heuristic. Responses are performed

as soon as the trigger is tripped, and they are performed in the order that they are specified.

4.4.4.2 Examples of triggers

Triggers are designed to react somehow to certain states of the search. The following list gives some

examples of the possible conditions that could cause a trigger to be tripped:

• The total number of iterations for the heuristic has reached a threshold;

102 Modular Local Search Chapter 4

• A certain number of iterations have passed since some milestone event;

• There have been no improvements in the search for a certain (threshold) number of iterations;

• The allowed duration of the heuristic has expired;

• The search iteration process found no admissible candidates (an apparent local optimum);

• The ratio of admissible solutions examined to non-admissible solutions examined fell by a certain

amount, e.g. by more than 20% over the past 5 iterations;

• The value of a memory element is less than a certain threshold (for example the temperature in

Simulated Annealing);

• A certain number of iterations have passed since this trigger was last tripped and the search has

not improved for a certain number of iterations.

A general design imperative is that triggers be problem-agnostic. What this means is that their logic

should be based on comparison of values and thresholds, and cardinalities of lists, etc, so that the same

triggers can be applied to multiple problem domains. This is not a strict requirement of the MLS

triggers, but it enables portability of heuristic concepts across problem domains. A trigger might refer

to the “quality” of a solution – this is a generic quantity that can be used for multiple problem domains,

even though the method of evaluating this quality will be problem specific (and calculated with an

update-memory module).

4.4.4.3 Types of response

There are seven different types of response:

• Terminate the heuristic;

• Learn something new by performing an update-memory analysis module (including evaluating

the BSF);

• Change a memory element in the memory structures;

• Change the current solution by performing a change-current-solution module;

• Add or remove a search scheme module;

• Add or remove a response from a particular trigger;

• Activate or deactivate a trigger.

Note that apart from the termination response, all of these responses involve changing an MLS

component. If a response attempts to modify an MLS component, then the appropriate parts of that

component must be specified and present in the MLS heuristic. For example if a response modifies a

memory element, this element must be defined. If a response adds an admissibility condition, this

condition must be defined as a dependency.

A response has a single, optional, parameter, which specifies the MLS module or memory element on

which it is acting. The implication of this is that a particular MLS heuristic implementation might have

many versions of essentially the same response type, each acting on a specific module. This parameter

is not modifiable like other MLS components; a response parameter cannot be changed, instead two

separate responses of the same type would exist and would be swapped in and out of a trigger. The

4.4 The control system 103

benefit of this is that there are very few types of response that need to be considered, the only thing that

changes is the module on which they are acting.

The following sections describe these response types in more detail. An important point is that these

responses are performed in this order. One response could initiate an analysis to determine and update

the relative performance metrics of different modules, and perhaps create a ranked list of diversification

strategies. The next response could be to actually implement these strategies. Responses perform a

single task, but multiple responses can be associated with each trigger, so the combination of these

responses can create quite complex changes in the MLS configuration.

4.4.4.4 Response: termination

Every heuristic needs to have a termination response available through at least one trigger. The

trigger that contains the termination response is commonly called the termination criterion. The

termination response stops the search immediately and returns the best solution found so far. The

termination response has no parameter.

4.4.4.5 Response: update-memory

The update-memory response performs one of the update-memory modules, which is specified in the

parameter. This can be as complex as a sophisticated modelling exercise, or as simple as modifying a

threshold. The end result of the update-memory module is a change in one or more elements of the

memory structures.

The response can perform either an active update-memory module, which is performed anyway at the

end of each iteration, or an inactive module.

This response is always performed before any of the other modification responses so that the updated

memory elements can be used in subsequent responses and triggers.

When one of the search scheme parameters is modified, for example the candidate list size, or the

temperature for Simulated Annealing, we may think of this as a “small move” in heuristic space; the

heuristic is essentially the same but has different values for some parameters.

4.4.4.6 Response: change-current-solution

By default the target solution from the current iteration becomes the starting solution for the next

iteration. If desired, however, this solution can be modified, or even substituted for a completely

different solution. The change-current-solution response is performed by executing a particular type

of module: a change-current-solution module; the module to execute is specified in the response

parameter.

A change-current-solution module can take several forms:

• Running a construction heuristic to generate a completely new solution;

• Performing a local search-type “move” on the current target solution;

104 Modular Local Search Chapter 4

• Revisiting a previously-stored elite (or otherwise) solution from the memory structures;

• Performing some other procedure to generate a new solution.

A change-current-solution module might be as sophisticated as the execution of another entire MLS

local search heuristic, with its own configuration. A similar outcome might have been possible by

changing the current configuration, performing the search, and then changing back, but using a

change-current-solution module may sometimes be a more elegant approach.

Note that change-current-solution modules are not executed automatically by the control system. They

are only available to be executed by responses.

It can also be a completely new type of procedure. For example, path relinking uses the search history

to create a new solution that is on a “path” between two previously visited solutions by varying

particular solution elements. This type of “move” is best expressed as a change-current-solution

module.

4.4.4.7 Response: add or remove module

This is two distinct types of response: add module and remove module. The modules modified in this

response are those for the search scheme components or the update-memory component. This response

creates what can be a major change in the configuration of the MLS heuristic; a “large move” in

heuristic space, essentially creating what would appear to be a new heuristic or metaheuristic.

Basic examples would be changing the set of moves in the neighbourhood scheme. This is the

metaheuristic approach from Variable Neighbourhood Search, and is used to diversify the search away

from a local optimum. A more drastic series of responses would be to remove an admissibility

condition and replace it with another admissibility condition.

The addition and removal of modules is performed by activating and deactivating these modules.

4.4.4.8 Response: add or remove a response

Responses correspond to specific actions to modify the MLS configuration, usually to either intensify

the search or diversify the search. The appropriate response can depend on a number of factors, and

can vary over time as more knowledge is gained. The ability to add or remove a response from a trigger

allows variation in the way that this knowledge is applied, and provides the potential for a more

intelligent search process. An alternative method of achieving the same goals would be to have

multiple copies of a trigger, each with a different set of responses, and to activate a particular one at a

time. For some purposes this may be the most appropriate method, however it is useful to have the

option.

4.4.4.9 Response: activate or deactivate a trigger

Activating or deactivating particular triggers occurs when the MLS configuration changes. One method

of switching between configurations is to have a trigger A with one set of responses that change the

4.5 The memory structures 105

MLS modules, activate another trigger B and deactivate this trigger A. When trigger B is tripped it

would change the MLS modules back, reactivate A and deactivate B.

Note that if a trigger is activated or deactivated this takes effect as of the next iteration – so if a trigger

that hasn’t yet been checked is deactivated, the trigger is still checked and, if tripped, its responses are

still performed this iteration, but it is not checked on the subsequent iteration.

4.5 The memory structures

The memory structures store parameters, lists, past solutions such as the best-so-far, and any other

values or entities that need to be stored so that they can be used by the other MLS components and

modules. We refer to a particular memory structure as a memory element.

Some memory elements are automatically maintained by the MLS framework, and are available to be

used by any module. Others are updated by modules for the initialize-memory and update-memory

components.

The memory structures described in this section are not an exhaustive list. Those described illustrate

the potential of memory structures, however many more are possible, and often required by specific

metaheuristics. MLS memory structures, when used in conjunction with appropriate update-memory

modules, allows very flexible and powerful metaheuristic concepts. They also make the MLS

framework very extensible; it is easy to create a new memory structure to keep track of some new idea,

and then write update-memory modules, triggers and responses to utilize the new concept.

The MLS memory structures have multiple uses, storing things that need to be referenced:

• Parts of the search scheme control components: the move-list size, the examinations maximum,

and the candidate list size.

• Additional parameters relating to specific search scheme modules or control system modules.

For example the temperature in Simulated Annealing.

• Lists of solutions or solution attributes that are required by other MLS components. For

example, tabu solution attributes in Tabu Search, and elite solutions that can be revisited in Path

Relinking.

• Lists of other values that are needed by other MLS components. For example, multiple threshold

values populated by a routine in List-Based Threshold Accepting.

• Automatically maintained and incremented counters. For example the iteration count, and the

number of iterations since the best-so-far solution was improved.

• The best solution found so far, and the value of that solution.

The best solution so far and the automatic counters are maintained by default by the MLS framework.

The other memory structures are specified by the various MLS modules, and the design of a new MLS

module requires also designing how these memory structures are stored and updated.

106 Modular Local Search Chapter 4

4.5.1 Search parameters

There are two types of search parameters that are stored in the memory structures. The first are

technically search scheme components, but their values are stored in memory rather than as modules

since they are only single values. The move-list size, the examinations maximum and the candidate list

size are stored in memory so that they are able to be modified the same as any other parameter by an

update-memory module. The move selection order and examination order are components of the search

scheme that are filled with modules, rather than memory parameters.

The other type of search parameter is quantities such as the temperature in Simulated Annealing. These

are single-value quantities that are used by some module and need to be remembered and potentially

updated by update-memory modules.

4.5.2 Lists

Many heuristics require lists of memory items to be retained. In general lists can consist of any

particular type of item desired. The following are some examples in common use:

• Past elite solutions, such as in Path Relinking;

• Solution elements, such as those made tabu in Tabu Search;

• Values, such as the threshold values in List-Based Threshold Accepting.

Lists need not necessarily store single entities. For example, a duple entity could be defined that stores

the name of a particular module, and some success metric for the last time it was utilized. This list

could be used as part of a learning strategy. Consider that we have implemented a Tabu Search

heuristic, and wish to determine which of 6 proposed tabu tenures should be used on the particular

problem instance. We could specify a multi-phase MLS heuristic that runs the basic Tabu Search

mechanism on a number of random starting solution for each tenure value, and stores the value of the

best solution obtained after a set number of iterations in this memory structure. Then the MLS heuristic

would choose the best tenure and continue for many more iterations for the main run of the heuristic.

We are not suggesting that this approach would necessarily be a good metaheuristic – but it

demonstrates the use of lists.

4.5.3 Automatic counters

The MLS framework automatically maintains a number of counters that are available to any module

that needs to refer to them. No specific modules need to be specified to maintain these counters, they

are included by default. The main use of the automatic counters is in trigger conditions. The following

list is not exhaustive; any new counters that are deemed to be generally applicable and likely to be

useful to multiple modules may be added to the system.

Automatically incremented counters:

• Total number of iterations

• Total number of iterations where a target solution was found

• Iterations since a target solution was found

• Iterations since a target solution was not found

4.5 The memory structures 107

• Total number of solutions examined

• Total number of admissible solutions added to candidate lists

• Number of iterations since the BSF was updated

• Number of times the BSF has been updated

For each trigger the following counters are automatically incremented:

• Iterations since the trigger was last tripped

• Iterations since the trigger was made active (0 if currently inactive)

• Iterations since the trigger was made inactive (0 if currently active)

• Number of times the trigger has been tripped

• Total number of active iterations

• Total number of inactive iterations

4.5.4 Search characteristics

The details of what happened in the current iteration of the search scheme are also automatically

maintained, since these might be required by the triggers.

• Number of moves added to the move-list (note that this is not necessarily the same as the move-

list size, if there were fewer moves available than the move-list size);

• Number of moves in the reduced move-list;

• Number of solutions examined for admissibility;

• Number of admissible candidates.

Other quantities required for specific modules are also maintained in the memory structures, but these

must be maintained by user-created modules. For example, particular metrics relating to

neighbourhood reduction processes.

4.5.5 Best solution so far

Some early heuristics did not actually require storing the best solution found so far, but all modern

heuristics do, and it seems ridiculous not to, so this is an automatic part of the MLS framework. There

are some design decisions, however. All solutions that are examined by the search logic and the

admissibility conditions components of the search scheme have their fitness evaluated. The fitness

function can be equivalent to, or different from, the problem objective function, and the real goal of the

search is to find the best solution according to the objective function, so evaluating whether a solution is

the best-so-far would make sense to be performed based on the objective function. However, this

evaluation could be computationally very expensive, and avoiding this evaluation every iteration is one

of the primary reasons why a different fitness function might be employed.

Whether to evaluate the best-so-far based on the fitness function or the objective function is a decision

made by the update-memory modules, and is discussed in Section 4.4.3.3.

108 Modular Local Search Chapter 4

4.6 Summary of MLS components

We briefly summarize the types of components and modules in the MLS framework. Some modules

are completely generic and can be reused regardless of the problem domain; others need to be

redesigned for each new problem.

Note also that most modules have a status of either active or inactive. This allows an MLS heuristic to

specify multiple options for a particular component, and then swap these in and out as desired.

4.6.1 Search scheme components

• Neighbourhood scheme.

o Set of move-types. Whatever moves are appropriate for the problem. Problem-

dependent, and needs to be created for each problem.

o Move-list size. Can be unlimited or some fixed number. Is stored as a memory

element, so can be manipulated by update-memory modules. Problem-independent.

o Move selection order. The actual choices are problem-independent, but the logic used

to do the selection is problem-dependent and needs to be created for each problem.

• Neighbourhood reduction process. Problem-dependent.

• Fitness function. Problem-dependent.

• Admissibility conditions. For most applications this will be problem-independent, however

some specific admissibility condition modules could be designed that are problem-dependent.

• Search logic.

o Examinations maximum. Can be unlimited or some fixed number. Is stored as a

memory element, so can be manipulated by update-memory modules. Problem-

independent.

o Candidate list size. Can be unlimited or some fixed number. Is stored as a memory

element, so can be manipulated by update-memory modules. Problem-independent..

o Examination order. Since the moves that are being selected are simply in a list, this is

problem-independent. The moves themselves are problem dependent, but the search

logic simply sees “moves”.

4.6.2 Control system components

• Generate-initial-solution. Problem-dependent.

• Initialize-memory. Specific modules may or may not be problem-dependent.

• Update-memory. Specific modules may or may not be problem-dependent.

• Change-current-solution. Specific modules may or may not be problem-dependent. Change-

current-solution modules are not executed automatically, they are executed when called by

responses.

• Triggers. Problem-independent.

• Responses. Problem-independent, although the update-memory or change-current-solution

modules that are called may be problem-dependent.

4.7 Examples of metaheuristics as MLS 109

4.6.3 Memory structures

• Best-so-far solution. Problem-independent. The representation of the solution itself is problem

dependent, but the BSF memory element simply holds a “solution object”.

• Parameters and thresholds. These can take many forms but are problem-independent.

• Lists. These may be problem-dependent or problem-independent, depending on the application.

• Search characteristics. Problem-independent.

4.7 Examples of metaheuristics as MLS

We illustrate the MLS framework by describing how basic versions of four common metaheuristics

could be expressed as MLS heuristics: random restart, Tabu Search, Simulated Annealing and Variable

Neighbourhood Search. Descriptions of these metaheuristics can be found in Chapter 5. We also

describe a new metaheuristic idea that MLS makes possible, which we call Iterative Sampling Local

Search, which illustrates the power of some of the MLS components. We discuss these in the context

of the Travelling Salesman Problem.

4.7.1 Random Restart as MLS

Random Restart repeatedly executes a basic Steepest Ascent search. Starting from a randomly

generated solution, it moves to the best solution in the neighbourhood until a local optimum is reached,

and then generates a new starting solution and repeats the ascent process.

The key characteristic of how random-restart is expressed in MLS is a change-current-solution module

that is executed in response to a local optimum trigger.

The following modules specify how this basic version of random restart for the TSP could be expressed

as MLS:

Search scheme modules:

• Set of move-types. Whatever move-types are appropriate for the problem. E.g. 2-exchange for

the TSP.

• Move-list size. Unlimited.

• Move selection order. By implementation structure (it doesn’t make a difference to the search

since the size is unlimited, but this is fastest).

• Neighbourhood reduction process. None.

• Fitness function. Objective function, i.e. minimizing the total cost for the TSP.

• Admissibility conditions. If the trial solution has a better fitness than the current solution, then

it is accepted.

• Examinations maximum. Unlimited.

• Candidate list size. Unlimited.

• Examination order. Random.

Control system modules:

110 Modular Local Search Chapter 4

• Generate-initial-solution. Randomly generate a solution, e.g. a random ordering of cities for the

TSP.

• Initialize-memory. None, apart from the automatic initialization.

• Update-memory. The best so far is updated on the fitness function. There are no other update-

memory modules performed every iteration, except for the automatic counters.

• Change-current-solution. A new random solution (random ordering of cities) is generated and

set to be the starting solution for the next iteration. Note that this module is not performed

automatically, but is available to be called by a response.

• Triggers and responses.

o Trigger-1 (active): the search found no admissible candidates (an apparent local

optimum);

� Response: Execute the change-current-solution module.

o Trigger-2 (active): the total iteration count (automatic memory element) reaches the

termination iteration threshold (memory element);

� Response: Terminate the heuristic.

Memory structures:

• Best-so-far solution. Fitness based.

• Termination iteration threshold. For the termination trigger.

4.7.2 Tabu Search as MLS

Tabu Search chooses the best move in the neighbourhood, whether it is improving or not. Since a

neighbour is not required to be better than the current solution the search does not get stuck in local

optima, however there is the risk of the search cycling among a few solutions. To prevent this, a tabu

list is used, which stores attributes of recent moves or solutions. This tabu list prevents these attributes

being repeated for a certain number of iterations, which guides the search into a different region of the

search space. To prevent good solutions being passed over because of their tabu status, an aspiration

criterion is commonly used that a neighbour is accepted if it is better than the best solution found so far.

The key MLS component through which Tabu Search may be expressed is the admissibility conditions.

A neighbour is admissible if the move that led there did not modify any tabu solution elements or if it is

strictly better than the BSF. To support this admissibility condition several more MLS modules are

required. A list of tabu solution elements much be stored in the memory structures, and an update-

memory module must maintain this list, adding new elements and removing expired elements. Basic

Tabu Search keeps the same search scheme throughout the course of the heuristic; the metaheuristic

elements are expressed through the memory structures rather than changes in the search scheme. The

only trigger-response is the termination criteria, usually a fixed number of iterations.

4.7 Examples of metaheuristics as MLS 111

The following modules specify how a version of basic Tabu Search for the TSP could be expressed as

MLS:

Search scheme modules:

• Set of move-types. Whatever move-types are appropriate for the problem. E.g., 2-exchange for

the TSP.

• Move-list size. Unlimited.

• Move selection order. By implementation structure (it doesn’t make a difference to the search

since the size is unlimited, but this is fastest).

• Neighbourhood reduction process. None.

• Fitness function. Objective function, i.e. minimizing the total cost for the TSP.

• Admissibility conditions. If the move contains no tabu attributes or if it is better than the BSF

(note that this is a single admissibility condition). For the TSP we can make any edges that have

just been added to the route tabu – so they cannot be removed until their tabu status has expired.

• Examinations maximum. Unlimited.

• Candidate list size. Unlimited.

• Examination order. By list order (makes no difference to the search since the search logic does

not constrain the number of solutions examined, either through the examinations maximum or the

candidate list size).

Control system modules:

• Generate-initial-solution. Any valid method for the TSP, e.g. a random ordering of cities.

• Initialize-memory. None, apart from the automatic initialization.

• Update-memory. The best so far is updated on the fitness function. Any solution elements that

have been added to the target solution that are not in the starting solution are added to the tabu

list, and given a tabu tenure equal to the value of the tabu tenure memory element. Any elements

of the tabu list that have been on the list for a number of iterations equal to their tabu tenure are

removed. For the TSP, the solution element would be arcs added to the route.

• Change-current-solution. None – the target solution becomes the starting solution for the next

iteration.

• Triggers and responses.

o Trigger (active): the number of elapsed iterations reaches the termination iteration

threshold memory element);

� Response: Terminate the heuristic.

Memory structures:

• Best-so-far solution. Fitness based.

• Termination iteration threshold. For the termination trigger.

• Tabu list. Stores arcs, along with the remaining tabu tenure of each one.

• Tabu tenure. The number of iterations that new additions to the tabu list remain tabu.

112 Modular Local Search Chapter 4

4.7.3 Simulated Annealing as MLS

Simulated Annealing chooses the first admissible solution it examines. It always accepts improving

solutions and accepts non-improving solutions with a probability that decreases over time. If the fitness

value difference between the trial solution and the current solution is δ, then non-improving solutions (δ

≥ 0 for a minimization problem such as the TSP) are accepted with probability e-δ/T, where T is a

parameter called the temperature. The temperature decreases by a fixed cooling rate a every n

iterations. The heuristic terminates when the temperature effectively drops below some threshold Tmin.

Within the MLS framework, Simulated Annealing is expressed primarily through an admissibility

condition, which controls the acceptance of each trial solution based on a temperature memory element.

This temperature is modified by a trigger-response that is tripped every n (memory element) iterations,

and the response is to execute an update-memory module that reduces the temperature memory element

by multiplication with the cooling rate memory element. A second trigger is tripped when the

temperature falls below the minimum temperature memory element.

The following modules specify how a version of basic Simulated Annealing for the TSP could be

expressed as MLS:

Search scheme modules:

• Set of move-types. Whatever move-types are appropriate for the problem. E.g. 2-exchange for

the TSP.

• Move-list size. Unlimited.

• Move selection order. By implementation structure (it doesn’t make a difference to the search

since the size is unlimited, but this is fastest).

• Neighbourhood reduction process. None.

• Fitness function. Objective function, i.e. minimizing the total cost for the TSP.

• Admissibility conditions. If the trial solution has a better fitness than the current solution, then

it is accepted. Otherwise it is accepted with probability e-δ / T, where δ is the amount of

disimprovement in the fitness functions, and T is the temperature memory element.

• Examinations maximum. Unlimited.

• Candidate list size. 1, corresponding to a first-admissible search.

• Examination order. Random.

Control system modules:

• Generate-initial-solution. Any valid method for the TSP, e.g. a random ordering of cities.

• Initialize-memory. None, apart from the automatic initialization. Note that the memory

elements temperature, minimum temperature and cooling rate are specified when the MLS

heuristic is defined, rather than as initialize-memory modules.

• Update-memory. The best so far is updated on the fitness. There are no other update-memory

modules performed every iteration, except for the automatic counters. However, there is an

update-memory module that is called by a response that reduces the temperature memory

element by multiplying it by the cooling rate memory element.

4.7 Examples of metaheuristics as MLS 113

• Change-current-solution. None – the target solution becomes the starting solution for the next

iteration.

• Triggers and responses.

o Trigger (active): The number of iterations since this trigger was last tripped (automatic

memory element) reaches the epoch-length iteration threshold (memory element);

� Response: Execute the update-memory module that reduces the temperature.

o Trigger (active): The temperature is lower than the minimum temperature (both

memory elements);

� Response: Terminate the heuristic.

Memory structures:

• Best-so-far solution. Fitness based.

• Epoch-length iteration threshold. For the temperature reduction trigger.

• Temperature. Used in the admissibility condition probability calculation. Set to a large

value, e.g. 1000.

• Minimum temperature. Used in the termination criterion. Set to some value close to zero,

e.g. 0.05.

• Cooling rate. Used in the update-memory module that reduces the temperature. A value

between 0 and 1.

4.7.4 Variable Neighbourhood Search as MLS

Variable Neighbourhood Search performs a basic Ascent Search until it gets stuck in a local optimum,

and then changes the move-set to enable the search to continue. The local optimum is only optimal

with respect to the solution topology defined by the particular set of moves being employed. When this

move set is modified, there may be new improving moves available.

There are many variations. To illustrate the way that multi-phase heuristics are expressed as MLS, we

consider the case where there are two types of moves available; a simple type of move (2-exchange for

the TSP) and a more computationally expensive type of move (3-exchange for the TSP). For most

iterations the search uses the simpler 2-exchange move set, and when a local optimum is reached, a

single iteration is performed with the more complex 3-exchange neighbourhood. This brief

diversification phase will hopefully be sufficient to move the search into a new region of the search

space. We further change the search during this diversification phase so that the best solution examined

is chosen, regardless of whether it is improving or not. This ensures that the search is able to move

away from the local optimum.

Within the MLS framework, Variable Neighbourhood Search is modeled as a multi-phase heuristic. In

each phase a different configuration of modules is active, and the trigger-response mechanism is used to

switch between them. We summarize the key features of the two configurations below:

Configuration 1 – local search phase

• Simple move-type, 2-exchange;

• Admissible if improving over current solution, best selected;

114 Modular Local Search Chapter 4

• Continues until a local optimum is reached.

Configuration 2 – diversification phase

• Complex move-type, 3-exchange;

• All solutions admissible, best selected;

• Executed for a single iteration.

The following modules specify how this version of Variable Neighbourhood Search for the TSP could

be expressed as MLS:

Search scheme modules:

• Set of move-types. There are two move-types available. At the start of the heuristic the simpler

2-exchange move-type is active and the more complex 3-exchange move-type is inactive.

• Move-list size. Unlimited.

• Move selection order. By implementation structure (it doesn’t make a difference to the search

since the size is unlimited, but this is fastest).

• Neighbourhood reduction process. None.

• Fitness function. Objective function, i.e. minimizing the total cost for the TSP.

• Admissibility conditions.

o Condition-1 (active): If the trial solution has a better fitness than the current solution,

then it is accepted.

o Condition-2 (inactive): All solutions are accepted.

• Examinations maximum. Unlimited.

• Candidate list size. Unlimited.

• Examination order. Random.

Control system modules:

• Generate-initial-solution. Any valid method for the TSP, e.g. a random ordering of cities.

• Initialize-memory. None, apart from the automatic initialization.

• Update-memory. The best so far is updated on the fitness function. There are no other update-

memory modules performed every iteration, except for the automatic counters.

• Change-current-solution. None – the target solution becomes the starting solution for the next

iteration.

• Triggers and responses.

o Trigger-1 (active): the search found no admissible candidates (an apparent local

optimum);

� Response: Deactivate the 2-exchange move-type.

� Response: Activate the 3-exchange move-type.

� Response: Deactivate admissibility condition Condition-1.

� Response: Activate admissibility condition Condition-2.

� Response: Deactivate this trigger (Trigger-1) for the next iteration.

� Response: Activate Trigger-2 for the next iteration.

4.7 Examples of metaheuristics as MLS 115

o Trigger-2 (inactive): the number of elapsed iterations since Trigger-1 was last tripped

(automatic memory element) reaches the diversification phase iteration threshold

(memory element).

� Response: Deactivate the 3-exchange move-type.

� Response: Activate the 2-exchange move-type.

� Response: Deactivate admissibility condition Condition-2.

� Response: Activate admissibility condition Condition-1.

� Response: Deactivate this trigger (Trigger-2) for the next iteration.

� Response: Activate Trigger-1 for the next iteration.

o Trigger-3 (active): the total iteration count (automatic memory element) reaches the

termination iteration threshold (memory element);

� Response: Terminate the heuristic.

Memory structures:

• Best-so-far solution. Fitness based.

• Diversification phase iteration threshold. Determines how many of the diversification

phase iterations are performed. In this case, one.

• Termination iteration threshold. For the termination trigger.

Note that trigger-2 is only active for a single iteration before it is tripped. This is the length of the

diversification phase that we have defined for this heuristic.

4.7.5 Iterative Sampling Local Search

The main motivation that drives metaheuristic design is the need to escape from local optima, which

basic ascent searches quickly get stuck in. One way to do this, used by Tabu Search, is to choose the

best solution from the neighbourhood, even if it is non-improving. So if there are no improving moves

available, then the move that results in the least disimprovement in the objective function is selected.

The problem with this method is that it leads to cycling, where a small set of solutions is repeated.

Tabu Search counteracts this effect by making recent move attributes forbidden, so that if the search

moves away from a “local optimum” it cannot immediately step back.

We propose an alternative method of preventing cycling, which we call Iterative Sampling Local

Search. At each iteration, only a (possibly random) subset of the neighbours of the current solution are

examined, and the best of these is selected as the target solution to move to. It is unlikely that the

previous apparent local optimum will be present in the new neighbourhood subset, and if it is, it may

not be locally optimal anymore. To the best of the authour’s knowledge this metaheuristic idea has not

been explored in the literature.

Within MLS there are three search scheme parameters that can be used to restrict the number of

neighbours examined: the move-list size, the examinations maximum and the candidate list size. In this

case we would achieve exactly the same effect by limiting the examinations maximum and the

candidate list size, since all solutions are admissible, even if they are non-improving, and for the TSP

all combinations of cities are feasible. In general, we achieve a faster, more efficient search by

116 Modular Local Search Chapter 4

restricting the move-list size, since the solutions do not need to be constructed and have their fitness

evaluated first, which occurs with all solutions examined by the search logic. The difficulty with

restricting the move-list size occurs when there is no easy way to generate random moves, for example

with arc routing problems. In the case of the TSP, however, generating random 2-exchange moves is

easy, so restricting the move-list is preferred over restricting the examinations maximum or the

candidate list size.

The following modules specify how this version of iterated sampling local search for the TSP could be

expressed as MLS:

Search scheme modules:

• Set of move-types. Whatever move-types are appropriate for the problem. E.g. 2-exchange for

the TSP.

• Move-list size. Restricted to some number, which should be significantly less that the number of

possible moves. For a 2-exchange move-type this can be calculated, and we might choose the

move-list size to be 50% of the number of moves available.

• Move selection order. Random.

• Neighbourhood reduction process. None.

• Fitness function. Objective function, i.e. minimizing the total cost for the TSP.

• Admissibility conditions. All solutions are accepted.

• Examinations maximum. Unlimited.

• Candidate list size. Unlimited.

• Examination order. Random.

Control system modules:

• Generate-initial-solution. Randomly generate a solution, e.g. a random ordering of cities for the

TSP.

• Initialize-memory. None, apart from the automatic initialization.

• Update-memory. The best so far is updated on the fitness function (which is actually the

objective function). There are no other update-memory modules performed every iteration,

except for the automatic counters.

• Change-current-solution. None – the target solution becomes the starting solution for the next

iteration.

• Triggers and responses.

o Trigger (active): the total iteration count (automatic memory element) reaches the

termination iteration threshold (memory element);

� Response: Terminate the heuristic.

Memory structures:

• Best-so-far solution. Fitness based.

• Termination iteration threshold. For the termination trigger.

4.8 Discussion 117

4.8 Discussion

One of the goals is to explicitly break each of the steps that occurs in various heuristics into discrete

operations; the more finely packaged these steps, the more subtleties and variations are available to

fine-tune hybrids of heuristics. This is one of the drivers behind such additional stages as the

neighbourhood reduction process, and the multiple points of specifying the number of moves and

solutions to examine.

4.8.1 Restricting the neighbourhood search

There are four points of control over the breadth of the neighbourhood examination that are built into

the search scheme: the move-list size, the neighbourhood reduction process, the examinations

maximum and the candidate list size. This allows fine control over the search process, and gives the

ability to make trade-offs between search intensity and computational effort. The maximum

neighbourhood size is only the first of these. The same algorithmic result can sometimes be obtained

with MLS in a variety of ways. For example the following are equivalent (depending on the

neighbourhood reduction process; a random reduction makes them equivalent):

• An unlimited move-list size, no neighbourhood reduction process, and an examinations

maximum of 100.

• A maximum move-list size of 200, a neighbourhood reduction process that reduces the

neighbourhood to 100, and unlimited examinations.

Figure 4.4: Partial solution hierarchy

Figure 4.4 shows a partial solution hierarchy. Neighbours of the current solution are a subset of all

solutions, and only some of those are admissible. The search scheme, using the search logic, examines

a subset of the neighbours, some admissible and some not admissible.

A key implication of the introduction of the examination of partial neighbourhoods, is that the term

“local optimum” takes on a new meaning. We distinguish between a true local optimum, where there

is no solution in the entire neighbourhood of the current solution that has a higher fitness, and an

apparent local optimum, where there was no solution in those examined that had a higher fitness. All

118 Modular Local Search Chapter 4

true local optima are apparent local optima, but not all apparent local optima are necessarily true local

optima.

This ability to control the execution of the search scheme with precision is one of the advantages of the

Modular Local Search framework. Often in the literature the consideration of the search efficiency is

ignored, and the whole neighbourhood is examined every iteration. Efforts to improve the efficiency of

the search tend to concentrate on different types of neighbourhood. This removes one facet of control

from the heuristic designer. It may either force neighbourhood size to be too small, by necessarily

restricting the moves available, or force the iteration duration to be too long, by demanding explicit

examination of too many neighbours.

We believe that this is not simply an “implementation concern”. Deciding when to trade off between

intensity of search and breadth of search is a key design consideration, and it may be a valid technique

to introduce a diversification move-type that radically extends the neighbourhood, while limiting the

number of these neighbours that can be examined, in order to make computation practical. Restricting

the search space through measures like the maximum neighbourhood size, the reduction of the search

space, the examinations maximum and the candidate list size is a valid tradeoff against the

computational complexity of searching the neighbourhood at each iteration, and can lead to faster

trajectories through the search space. It is worth reiterating that all of these quantities and restrictions

are already present implicitly in existing local search heuristics, but they are usually set, by default, to

unlimited.

The examination order consideration is also a contribution that is original, to the best of our knowledge,

although it is a natural consequence of limiting the examination of the full neighbourhood. As soon as a

limitation is placed on the number of solutions examined, the order of that examination becomes

relevant. There are two points of control in the search scheme: the move selection order and the

examination order. The obvious method is to select moves randomly, however for some problems there

is no easy way to generate random moves, and explicitly enumerating all the moves so that one can be

selected randomly from this list defeats the purpose of restricting the move-list size, especially for

problems where the number of possible moves is prohibitively large.

4.8.2 Motivating metaheuristics – intensification and diversification

MLS is designed around being able to change heuristics, even part way through a run. The eventual

goal of this research direction is semi-intelligent heuristics that can change themselves based on what

they have learned. Why would we want to change the heuristic? Most reasons reduce to a need for

either intensification or diversification. Intensification means to examine the current region of the

search space more closely, and diversification means to move away from the current region of the

search space more rapidly.

We have described that the control system, specifically the triggers and responses, is where the MLS

configuration is changed, but have yet given little explanation of the reasons why such a change might

be desirable. There are several reasons why it might be desirable to modify the configuration:

• The search is stuck in a local optimum � diversify;

4.8 Discussion 119

• There has been no improvement for a long time � diversify;

• The search is cycling among the same, or similar, solution � diversify;

• The search needs to move more quickly � diversify;

• A potentially good region of the search space has been found� intensify.

All of these reasons can be loosely grouped as requiring either intensification or diversification of the

search. Diversification is more common, since it is used to improve the search, making it more

appropriate for the current search state; leaving the search scheme as it is could be regarded as a trivial

form of intensification.

It is interesting to note that just about every clever metaheuristic technique in the literature is an attempt

to do one or more of these things: Tabu Search changes the tabu tenure to intensify the search in a good

region or move out of a poor region more quickly, and has the tabu list at all in order to prevent cycling;

Simulated Annealing has its annealing schedule to prevent being stuck in local optima and gradually

lowers the “temperature” to intensify the search. What we are proposing is a framework which allows

multiple techniques to be used, depending on which the most appropriate is at the time – all existing

trajectory-based metaheuristics can then be seen as particular cases of an MLS approach.

4.8.3 Strengths of MLS

The MLS framework has many strengths that recommend it as a metaheuristic engine.

The main goal of the MLS system, and its major achievement, is that it allows extremely easy

hybridization of multiple metaheuristic paradigms into a single algorithm. This occurs both by mixing

different metaheuristics search scheme modules, but also by allowing complex multi-phase heuristics.

Because many of the operations within a local search heuristic which are usually implicit are made

explicit in MLS, these can be deliberately modified. Aspects such as the examination order and

candidate list size are usually ignored, however these can be the basis of subtle and sophisticated

metaheuristic variations. A designer considering each component and module can discover new

metaheuristic approaches that seem obvious when viewed as MLS, such as Iterative Sampling Local

Search, discussed in Section 4.7.5.

One of the biggest benefits of this framework is that it allows the exploration of heuristic space in a

systematic, rather than in an arbitrary, or ad-hoc, manner. The structure provided by the MLS

components and modules provides a way to classify heuristics quite precisely, and develop measures for

how similar various heuristics are, i.e. how close in heuristic space.

The complex memory structures and memory interactions provided by the update-memory modules,

and the trigger-response mechanism, allow for heuristics to be self-adaptive and to make decisions on

those adaptations based on the history of the search process – essentially creating a framework for

learning. This suggests the possibility of higher-level control mechanisms. If heuristics are problem-

solving tactics, then these higher-level heuristics (metaheuristics) may be thought of as strategies. In

Chapter 8 we discuss several advanced applications of MLS, including some learning mechanisms.

120 Modular Local Search Chapter 4

The standardized architecture of MLS, and the fact that as much as possible is problem-independent,

means that it is relatively straightforward to extend to new problems. We demonstrate this in later

chapters where MLS is applied to several different problems. The control logic is almost completely

reusable, and only the interfaces with the problem data need to be redesigned: things such as what is a

solution, how is the objective function evaluated, what move-types are available, and how are these

evaluated.

From an implementation perspective, the MLS framework also offers some advantages.

Along with the MLS markup language, the framework allows heuristics to be expressed and invented

declaratively, rather than programmatically. A library of modules can programmed, and then these can

be combined in an infinite number of ways to specify new, complex, heuristics simply by listing the set

of modules.

When several different metaheuristics must be compared for the purposes of a "tournament", a

notorious problem is determining how much of the difference in relative performances may be

attributed to the superiority of the heuristic, and how much to the method of implementation. This is

especially relevant for running times, and for heuristics that terminate after a certain time has elapsed.

MLS provides a way to ensure that as much as possible of the heuristics' implementations is on a

consistent basis, to make comparisons fairer.

The framework also enables significant savings on the time required to implement many different local

search methods, since most of the code will be in common and reusable. Indeed, all of the control logic

is reused, and simply the modules relating to the specific features of the new metaheuristic need to be

designed.

4.8.4 Limitations of MLS

There are some limitations of the MLS framework.

It is very much designed as a practical system; it was inspired by reducing existing trajectory-based

metaheuristics into a set of common components. For this reason there is not the theoretical structure

that is claimed for alternative frameworks such as the Generalized Local Search Machines of Hoos and

Stützle [146]. However, we believe that MLS is more suited for practical implementation of

metaheuristics, and for hybridization and advanced control mechanisms.

The MLS framework is not suited for expressing all metaheuristics. It is limited to local search, i.e.

trajectory-based methods. Population- and evolutionary-based methods have had considerable success

in the literature, however these are outside the domain of the current form of MLS. We note, however,

that many of the MLS concepts would have an applicability to population-based metaheuristics, and

that it may be possible to extend the framework to a population-based version.

From an implementation perspective, an MLS version of a particular metaheuristic will probably not be

as efficient computationally as a version of that heuristic programmed specifically, and optimized to

take advantage of the specific heuristic structure. There is some overhead involved with maintaining

the MLS structure, and the move-lists, etc. However, this difference in efficiency is not guaranteed, and

4.8 Discussion 121

will depend on the skill of the coder of the MLS system and the coder of the specific metaheuristic.

This possible difference is counterbalanced by the fact that the MLS system can be used repeatedly for

many types of heuristic, so any optimization only needs to happen once. The overall development and

execution time should be much lower with MLS because of this recycling of the main parts of the

system.

Coda

▼ Summary

In this chapter we have defined the components of the Modular Local Search framework and have

given some examples of how common metaheuristics can be expressed in this framework.

▼ Link

In the next chapter we catalogue metaheuristics from the literature, discussing variations and innovative

features. We describe how these can be expressed in the MLS framework, and define a number of

modules that may be used as building blocks in hybrids of these metaheuristic concepts.

123

 C H A P T E R 5

5 Metaheuristic Concepts

5.1 Ascent Search

5.2 Iterated Search

5.3 Thresholding

5.4 Adaptive Memory and Tabu Search

5.5 Other trajectory methods

This chapter provides a detailed review of the main concepts on which most trajectory-based

metaheuristics are based. The metaheuristics are grouped by their primary mode of operation:

iteration, thresholding, memory, and other assorted concepts. Suggestions for how these

concepts would be implemented under the MLS framework are presented and discussed.

5.1 Ascent Search

The most basic form of a local search heuristic is Ascent Search (Descent Search for minimization

problems). This method, also known as the Hill Climbing heuristic, First Improving Local Search,

Depth-First Search or simply Local Search, starts with a solution and moves to the first improving

solution examined from the neighbourhood, continuing until it is stuck in a local optimum, i.e. there are

no improving solutions in the neighbourhood, and then stops.

Steepest Ascent (also known as Best Improving Local Search or Breadth-First Search), is similar to

Ascent Search except that the whole neighbourhood is examined and the best improving neighbour is

selected. It can result in a shorter trajectory to a local optimum, but increases the processing time for

each iteration.

Ascent Search has the tendency to get stuck in a local maximum of the underlying search topology.

Depending on the problem, and the shape of the topology, it can still sometimes be reasonably effective.

For example, if the neighbourhood scheme is such that every solution can be reached within one

transforming move from the current solution, then the Steepest Ascent variation is guaranteed to arrive

124 Metaheuristic Concepts Chapter 5

at the global optimum within a single iteration. However, this iteration involves explicitly enumerating

every solution, so it is usually not practical.

This basic iterative improvement procedure forms the core of every local search metaheuristic. They

often add layers of sophistication in order to escape from local optima and continue the search, to

diversify the search into other more promising areas of the search space, or to intensify the search

around a promising area of the search space.

5.2 Iterated Search

Iterated Search procedures repeatedly apply a simple local search mechanism, choosing a different

starting solution each time.

5.2.1 Repeated Local Search

Repeated Local Search is perhaps the simplest "metaheuristic", with the ability to escape from local

optima and continue with the search. This is achieved by selecting a new initial solution and repeating

the ascent, to a new local optimum, until some time limit or iteration count is reached.

If a population of solutions is available, then the simplest expression of repeated local search is random

restart local search; simply randomly sampling another solution from the population. The ability to do

this will depend on the problem. For example, a solution to the travelling salesman problem simply

consists of an ordered list of cities visited, and any permutation of the cities will be a feasible solution.

In this case constructing a random solution is trivial. In contrast, a solution to the Chinese postman

problem consists of an ordered list of the arcs of a graph to be traversed, and not all sequences of arcs

form valid tours; consecutive arcs must be adjacent. In this case constructing a random solution is

considerably harder.

Local search heuristics start from a solution s and output a local optimum w, that is better than s. Many

experimental results from the literature confirm that the quality of the initial solution strongly

influences the quality of the local optimum. Therefore much effort has gone into ways of choosing the

next starting solution.

There are two broad approaches to the choice of a new initial solution. Those methods which use a

constructive heuristic to construct a new solution are commonly called multi-start methods (random

restart is the simplest case of this). Other methods, known as iterative local search perform an

operation to select a new initial solution by perturbing the local optimum reached by the previous

iteration, in such a way that the search may continue.

5.2.1.1 Termination criteria

One design decision that is common to all the iterated search techniques is when to stop. In fact the

need to include some method to terminate the heuristic is common to all metaheuristics that do not “get

stuck” in local optima. Possible options include the following:

5.2 Iterated Search 125

• A time limit on the computation. This is a natural termination condition, since a consideration

of run-time is one of the motivating factors for using heuristics at all over algorithms (in the

worst case explicit enumeration). A time limit also provides a way of balancing the number of

iterations with the speed of the iterations, since either of these measures alone can be

misleading as to the effort required. Time limits will, of course, depend on the speed of the

machine running the heuristic, and the efficiency of the implementation.

• A limit on the number of iterations. The advantages of an iteration limit are that it allows

comparison that is independent of the hardware or software implementation used to run the

heuristic.

• A time or iteration limit after some significant event, for example the last improvement in the

best solution.

• A local optimum is reached.

5.2.2 Iterated local search

Iterated local search (ILS) is a conceptually simple metaheuristic that iteratively applies local search

to perturbations of successive local minima. The reasoning is that if the current solution is a local

minimum then there are likely to be some portions of it that are optimized, and hopefully we will be

able to keep these portions and continue to optimize the others, after escaping from the local minimum.

From a search space perspective, we attempt to remain in a close region of the search space, to explore

it further, rather than moving to a completely different region.

Lourenço et al. [176] describe four procedures that have to be implemented in an ILS heuristic:

GenerateInitialSolution, LocalSearch, Perturbation, and AcceptanceCriterion, and define

the following high-level architecture, which is widely reproduced within the literature:

Algorithm 5.1 metaheuristic ITERATED LOCAL SEARCH

 s0 = GenerateInitialSolution

 s* = LocalSearch(s0)

 repeat

 s′ = Perturbation(s*, history)

 s*′ = LocalSearch(s′)

 s* = AcceptanceCriterion(s*, s*′, history)

 until termination condition met

end

Within this basic framework, heuristics can either be very simple, or quite complicated. Lourenço et al.

[176] give some tips for creating a basic version of ILS that usually leads to much better performance

than random restart approaches: “(i) one can start with a random solution or one returned by some

greedy construction heuristic; (ii) for most problems a local search algorithm is readily available; (iii)

for the perturbation, and random move in a neighbourhood of higher order than the one used by the

local search algorithm can be surprisingly effective; and (iv) a reasonable first guess for the acceptance

126 Metaheuristic Concepts Chapter 5

criterion is to force the cost to decrease, corresponding to a first-improvement descent in the set S*.”

They consider the ILS approach to be a walk in the set of local optima, S*.

5.2.2.1 Initial solution

The usual method to obtain an initial starting solution is to apply some constructive heuristic, perhaps a

greedy method. A recent (2008) example of using a constructive heuristic can be found in Tang and

Wang [233], who extend the Insert/Delete heuristic of Mittenthal and Noon [193] for the travelling

salesman subset-tour problem with one additional constraint to the Capacitated Prize-Collecting

Travelling Salesman Problem.

If there are no well-regarded constructive heuristics for a given problem domain then any random

solution can suffice; Stützle [232] uses a random assignment of items to locations for the quadratic

assignment problem, stating that no high performing construction heuristics are known. Even in recent

research the random initial solution is chosen, an example from 2009 is Grosso et al. [129], who apply

ILS to finding maximin latin hypercube designs1, although they do give evidence that their approach

could be improved by using a specialized heuristic to find the initial solution. Indeed, the premise of

ILS is that starting each iteration from an already-promising solution is preferable to “any old solution”,

so this would seem to apply to the initial starting solution also.

Dong et al. [72] develop an ILS for the permutation flowshop problem with total flowtime criterion, and

conduct an experimental analysis of the effect of different initial solution generation methods on 120

benchmark instances and 900 randomly generated instances. They used a number of different

constructive heuristics from the literature, and also randomly generated instances. Figure 5.1 and

Figure 5.2 are reproduced with permission from [72] and demonstrate that the constructive heuristics all

performed much better than the randomly generated solutions, based on the average relative percentage

deviation (ARPD) between the method and best solution known:

1 The maximin LHD problem calls for arranging N points in a k-dimensional grid so that no pair of points
share a coordinate and the distance of the closest pair of points is as large as possible.

5.2 Iterated Search 127

Figure 5.1: Performance of initial

methods on benchmark instances [72]

Figure 5.2: Performance of initial

methods on random instances [72]

5.2.2.2 Local search component

The basic form of the local search component is simply ascent search, although there can be

considerable differences in the performance of different neighbourhood schemes, and even hybrids with

other metaheuristics. Quite sophisticated neighbourhoods can be constructed using expert knowledge

of the problem domain. However, even quite basic neighbourhood schemes can provide good results.

Tang and Wang [233] utilize a sophisticated local search component which actually has three different

search schemes. Every five iterations they run a basic form of the Tabu Search metaheuristic, which

doesn’t technically end in a local optimum, since Tabu Search just takes the best non-restricted move

available, even if it worsens the objective value, so they let it run for 80 moves. Every 20 iterations

they find a local optimum using a 3-opt neighbourhood, and the remainder of the time they use a fast 2-

opt neighbourhood called dynasearch. The 3-opt neighbourhood is more computationally intensive,

which is why it is only performed infrequently. This multi-phase approach is an interesting hybrid of

the iterated local search, Variable Neighbourhood Search and Tabu Search heuristics.

5.2.2.3 Perturbation

The perturbation step transforms the current solution s into a new starting solution s′. It is used to

escape from the local optimum resulting from the local search heuristic. A key consideration here is the

extent to which the perturbation changes the current solution. If too great a change is made then there is

a danger of losing the good features of the current solution, and moving into a completely different

region of the search space. In this case the ILS heuristic may not have any advantage over a random

restart method. However, if the perturbation is too small then the perturbed solution s′ may be in what

Lourenço et al. [176] call the same basin of attraction as s, i.e. they result in the same local optimum

during the next local search phase. For illustration consider Figure 5.3. At the end of the local search

phase we are sitting at the local maximum a. If the perturbation only moves the solution to b, then the

next ascent search will end up at a again; a and b are said to be in the same basin of attraction. If,

128 Metaheuristic Concepts Chapter 5

however, the perturbation moves the solution to c, then the search will arrive at a new local maximum

d, which in this instance is better than a, but in general this may not be the case.

Figure 5.3: Pictorial representation of the perturbation step for iterated local search.

Lourenço et al. [176] point out that the local search should not be able to undo the perturbation,

otherwise the same local optimum is likely to be repeated. They state that often a random move in a

neighbourhood of higher order than the one used by the local search component can achieve good

results.

Tang and Wang [233] utilize a feature called backtracking, which they borrow from Congram [55]. In

their implementation of backtracking, whenever the current solution has not improved for a given

number of successive iterations, it is pulled back to the best one found in history. This attempts to

ensure that most of the search time is spent in promising regions of the search space. We can easily see

that this concept can be extended to revisiting other promising regions of the search space; not

necessarily the best solution found so far, but perhaps one of a set of elite solutions. This approach of

the perturbation involving past solutions is explored in more detail in the discussion of Path Relinking.

The perturbation step is also sometimes known as a kick. This kick is usually performed by making the

perturbation a small change on one or a few solution components, often at random. Tang and Wang

[233] introduce a guided kick, which is essentially the evaluation of a set of possible small moves –

adding a customer, removing a customer or swapping a customer – and then choosing the best of these

moves. If none is improving then they perform a multi-customer swap and then restore feasibility if

necessary. So the perturbation can sometimes be thought of as simply a modification of the

neighbourhood for a move.

Lourenço et al. [176] refer to the strength of a perturbation as the number of solution components that

are modified, for example in the TSP, it is the number of edges that are changed in the tour. They

experimentally analyse perturbation strengths and show that for some problems, an appropriate

perturbation strength is very small and seems to be independent of the instance size. However, for other

problems the best permutation size is strongly dependent on the particular instance. They suggest using

adaptive perturbations; changing the perturbation strength during the search.

5.2 Iterated Search 129

Another approach described by Lourenço et al. [176] is more complex than simply making a move in a

higher order neighbourhood. They describe a general procedure of subtly modifying the problem

instance, for example via the parameters defining the various costs, then running the local search on this

modified problem to obtain a new solution. This is the approach used by Baxter [18], which may be the

earliest application of an iterated local search approach, although he simply called it local optima

avoidance.

Dong et al. [72] also define a parameterized perturbation, which is a number of pair-wise swaps of the

solution components. The number of swaps to perform is their perturbation strength. They perform an

experimental analysis of various permutation strengths, and determine that the optimal level for their

flowshop problem is between 4 and 7, based on the average relative percentage deviation (ARPD)

between the method and best solution known, as shown below in Figure 5.4 and Figure 5.5, which are

reproduced with permission from [72]:

Figure 5.4: Performance of perturbation

strengths on benchmark instances [72]

Figure 5.5: Performance of perturbation

strengths on random instances [72]

5.2.2.4 Acceptance Criterion

Iterated local search may be thought of as a walk in the space of local optima [176], with the

neighbourhood of this space being defined by the local search components executed at each step and the

perturbation mechanism. The AcceptanceCriterion procedure then determines whether that “move”

in local optima space will occur, or whether the search will consider another locally optimal

“neighbour” of the current solution. This procedure can be used to control the balance of intensification

and diversification of the search process.

A strong intensification effect is obtained by requiring that the neighbouring local optimum be better

than the current local optimum, this would be analogous to a first-improving ascent search. We

couldn’t find an example of this in the literature, but it is easy to extend this analogy and consider a

best-improving ascent search in the space of local optima, which would correspond to making all the

available perturbations, and applying the embedded local search component to each one, then selecting

130 Metaheuristic Concepts Chapter 5

the best “neighbouring” local optimum. This type of search would be very computationally intensive,

however.

Lourenço et al. [176] summarised a finding of Stützle [231], who analysed the run-time behaviour of

ILS heuristics for the TSP, and concluded that the “better” acceptance criterion led to a type of

stagnation behaviour for long run times, as expected for a strong intensification search.

To obtain a strong diversification effect, the neighbouring local optimum could always be accepted,

regardless of whether it is better or worse than the current solution. The acceptance criterion in ILS is

equivalent to the admissibility criteria in the MLS framework, and therefore any of the methods

discussed in later sections for using these criteria are possible. For example, in Martin et al. [184,185] a

hybrid of ILS and Simulated Annealing is used, where the acceptance criterion is based on the

Simulated Annealing idea: s*′ is always accepted if it is better than s*, otherwise if is accepted with

probability exp{C(s*) – C(s*′)) / T}, where C is the objective function value (based on a minimization

objective) and T is a parameter called the annealing temperature.

Lourenço et al. [176], in their review of ILS for the 2003 Handbook of Metaheuristics, state that:

“Most of the acceptance criteria applied so far in ILS algorithms are either fully Markovian or

make use of the search history in a very limited way. We expect that there will be many more

ILS applications in the future making strong use of the search history; in particular, alternating

between intensification and diversification is likely to be an essential feature in these

applications.”

This has been true in that ILS perturbations are incorporated as key aspect of many modern hybrids that

arise. A general trend seems to be that “pure” forms of the various metaheuristic families are starting to

be become less prevalent in the literature; they are being replaced by sophisticated hybrids that take the

features of many metaheuristics and mix them into adaptive, multi-phase approaches.

5.2.2.5 MLS interpretation

As with many metaheuristic concepts, Iterated Local Search may be interpreted in more than one way.

The most natural interpretation is to consider a default MLS search scheme as the ILS LocalSearch

component. We would then implement the perturbation using MLS triggers and responses. After the

local optimum trigger is tripped, a perturbation response module is performed. This occurs within the

MLS control system, leaving the search scheme as is. The perturbation response module acts as a

ChangeCurrentSolution module, using whatever perturbation logic is specified by the heuristic. This

module would also include the acceptance criterion logic to determine whether to accept the perturbed

solution or not.

An alternative interpretation is to follow Lourenço et al. [176] and consider the ILS heuristic as a walk

in local optimum space. In this case the search scheme would be quite non-standard, but there wouldn’t

be the trigger and responses described above. A “move” in this artificial solution space would be a

compound process of performing a perturbation and then executing an embedded local search heuristic

5.2 Iterated Search 131

(which could be an MLS heuristic itself). The ILS acceptance criterion would be expressed as part of

the MLS admissibility criteria, and the search logic would be first improving.

Yet another interpretation that uses the MLS trigger-response model moves the responsibility for the

perturbation from the control system ChangeCurrentSolution module to the search scheme (the inner

local search process). When the local optimum trigger is tripped, the local optimum stays as the current

solution for the next iteration, however the neighbourhood scheme and possibly the admissibility

criteria are modified. The new neighbourhood is whatever move the perturbation consists of, and the

admissibility criteria include the ILS acceptance criterion. In addition the triggers and responses are

modified so that the previous search scheme is restored after one iteration (the perturbation phase).

This type approach, where the MLS heuristic is shifted into a completely different configuration for a

short diversification phase, is discussed in more detail in the section on Variable Neighbourhood Search

(see Section 5.5.2).

The decision of which interpretation to implement would be based on the expected complexity of the

components, and especially on whether any other hybrid modules need to be included.

5.2.3 Multi-start and GRASP

Multi-Start (MS) heuristics have the same basic concept as Iterated Local Search, which is the repeated

application of a basic local search heuristic, starting from a different solution each time. Whereas ILS

perturbs the local optimum reached at the end of each run to find the starting solution for the next run,

MS generally begins each iteration from an independently chosen solution. In this sense MS can be

seen as a special case of ILS, where the perturbation is the generation of a completely new solution.

Random Restart is the simplest expression of this.

Martí [186], in his 2003 review, describes the basic structure of a multi-start heuristic, which we

reformulate in Algorithm 5.2:

Algorithm 5.2 metaheuristic MULTI-START

 repeat

 s = GenerateSolution

 s* = LocalSearch(s)

 until termination condition met

end

MS is conceptually a very simply metaheuristic. It is worth mentioning that the LocalSearch

procedure has a trivial case of not changing s at all. In this case the multi-start method is simply

sampling from the population of solutions, and evaluating the objective function.

When each starting solution is truly independent of those that have gone before and the search history,

MS becomes a Monte Carlo method, and early papers studied the convergence properties, for example

Solis and Wets [228].

132 Metaheuristic Concepts Chapter 5

Tsubakitani and Evans [237] develop a multi-start heuristic which they call jump search. They claim

to have developed the first non-random multi-start procedure. Jump search constructs a number of

“jump points” – potential starting solutions with mutually exclusive neighbourhoods. Local search is

applied to the jump point with the best solution value, and so on down the list until the time limit is

reached, or all the jump points are exhausted.

Because of its simplicity, multi-start is often enhanced with features of other metaheuristics, especially

in the form of adaptive memory. Whereas iterated local search switches to a new solution by perturbing

some solution components of the current local optimum, adaptive MS techniques often use other

aspects of the search history or knowledge of the problem domain to construct the next starting solution.

5.2.3.1 Classification scheme for multi-start

Martí [186] proposes a classification of MS heuristics based on three elements. Each can be considered

either “present” or “not present”, but can also represent a whole range between these two extremes:

Memory. This is used to identify elements that are common to “good” previous solutions, using a

definition of "good" that can include the objective function value, but also other factors such as

diversity. Memory is a very powerful technique that was first fully developed under the Tabu Search

framework, but which has become a pervasive concept. The other extreme of this, memory avoidance,

can also have some value in terms of diversity.

Randomization. This refers to the degree of randomness in the generation method for the starting

solutions. The approach can either be fully random, fully systematic or some combination.

Systematically generated solutions are those that are constructed deterministically. Randomness can be

an easy way of achieving diversification, but with no control over the solution it is not assured. Glover,

in many papers (eg [120]), is an advocate of systematic heuristic methods that intelligently exploit

knowledge of the problem and search history, over those that "resort to randomness".

Degree of rebuild. This indicates the solution elements that remain fixed from one iteration to the

next. Martí [186] states that most applications build the solution at each generation from scratch, but

more recent implementations have fixed some solution elements for a certain number of iterations. This

aspect is where multi-start begins to look very similar to iterated local search, where only certain

solution components are perturbed. The difference is mainly conceptual; in ILS the default position is

to keep most of the solution elements the same, and change only the few necessary to perturb the

solution sufficiently, in MS the default position is to construct a new solution, keeping only those few

components that are deemed to valuable to lose. Martí [186] draws the analogy with Tabu Search,

which also uses memory to target solution elements based on impact, frequency and recency, and with

Path Relinking, which creates new solutions based on attributes of previous elite solutions.

5.2.3.2 Basic GRASP

One of the most widely applied multi-start heuristics is the Greedy Randomized Adaptive Search

Procedure (GRASP), introduced by Feo and Resende [92,93]. Many studies have confirmed that the

quality of the local optimum returned by a local search routine is strongly dependent on the quality of

5.2 Iterated Search 133

the initial starting solution, so the attractiveness of GRASP heuristics is that they combine strong initial

solutions with the improvement power of local search, and they are easy to hybridize with other

features.

A common method of finding reasonably high-quality solutions for combinatorial optimization

problems is to apply a greedy construction heuristic. Greedy methods start with an empty solution, and

add solution components based on some ranking, until a complete feasible solution is obtained.

Usually, greedy construction methods can generate one, or possibly several, solutions for a given

problem; since the ranking of solution components is deterministic, it proceeds through the same

selection order each time. GRASP heuristics overcome this limitation by introducing randomness into

the selection of solution components. Instead of adding the best-ranked component, it selects randomly

from a restricted candidate list of solution components. These solution components are ranked

according to the incremental change in the objective function resulting from their inclusion (the greedy

aspect), and this restricted candidate list is updated and the incremental benefits reevaluated after each

selection (the adaptive aspect).

Resende and Ribeiro [219] give a basic structure of the greedy randomized adaptive construction

process (the GenerateSolution function of the multi-start procedure defined above), which we

reformulate in Algorithm 5.3:

Algorithm 5.3 procedure GREEDY RANDOMIZED ADAPTIVE CONSTRUCTION

 Solution ← ∅

 repeat

 Evaluate the incremental costs/benefits of the candidate elements

 Build the restricted candidate list (RCL)

 Select an element in the RCL at random

 Randomly select an element from the RCL and add it to Solution

 until Solution is a complete solution

end

GRASP heuristics are extremely easy to implement. Apart from the termination criterion, the only

parameters that need to be tuned relate to the restricted candidate list of solution elements. According

to Hoos and Stützle [146] there are two different mechanisms for defining the RCL: by cardinality

restriction or by value restriction.

In the case of cardinality restriction, the RCL consists of the best k solution elements, based on their

incremental costs. If k = 1 then the construction procedure is not random, and defaults to the special

case which is the basic greedy construction heuristic.

In the case of the value restriction we consider, without loss of generality, a minimization problem

where c(e) is the incremental cost of incorporating element e into the solution, and we let cmin and cmax

be the smallest and largest incremental costs. Then a solution element e is included in the RCL if, and

only if, c(e) ≤ cmin + α(cmax – cmin). As with k in the case of the cardinality restriction, the smaller the

134 Metaheuristic Concepts Chapter 5

parameter α, the greedier the heuristic. For α = 1, the algorithm is equal to random choice of all

elements, α = 0 corresponds to greedy construction.

We can classify the basic GRASP method using the classification scheme described above:

• Memory. Basic versions of GRASP have no memory, each new starting solution is

constructed independently of those that have gone before.

• Randomization. GRASP does have a randomization component, and this can be strengthened

or relaxed using the candidate list parameter, either k or α.

• Degree of rebuild. Basic GRASP has a full rebuild at each iteration.

Each of these areas gives opportunities to extend or hybridize GRASP, and this has been done in the

literature. GRASP heuristics have been successfully applied to a large number of problems, due to their

ease of implementation, and their tendency to produce high-quality solutions quite quickly. See Festa

and Resende [95] for an annotated bibliography of GRASP up to 2001. Many GRASP applications

focus on problem specific aspects, but there are some enhancements to the basic GRASP that should be

highlighted.

5.2.3.3 Enhanced GRASP heuristics

Prais and Ribeiro [212,213] explore variation of the RCL parameter α. In their review, Resende and

Ribeiro [219] summarise the experimental results of [212] into four different variation schemes for α:

• α self tuned during the heuristic run (this is known as Reactive GRASP);

• α randomly chosen from a uniform discrete probability distribution;

• α randomly chosen from a decreasing non-uniform discrete probability distribution; and

• fixed values of α, close to the purely greedy choice.

The experiments were conducted on four different optimization problems. The reactive GRASP most

often found the best solutions, followed by random choice from the uniform distribution. Fixed values

of α performed the worst.

Reactive GRASP selects α at each iteration from a discrete set of possible values. The scheme below

was introduced by Prais and Ribeiro [213], and is quoted from Resende and Ribeiro [219]:

“Let Ψ = {α1, …,αm} be the set of possible values for α. The probabilities associated with the

choice of each value are all initially made equal to pi = 1/m, i = 1,…,m. Furthermore, let z* be

the incumbent solution and let Ai be the average value of all solutions found using α = αi,

i = 1,…,m. The selection probabilities are periodically reevaluated by taking
1

/
m

i i jj
p q q

=
= ∑ ,

with qi = z*/Ai for i = 1,…,m. The value of qi will be larger for values of α = αi leading to the

best solutions on average. Larger values of qi correspond to more suitable values for the

parameter α. The probabilities associated with these more appropriate values will then increase

when they are reevaluated.”

5.2 Iterated Search 135

Prais and Ribeiro [213] update the selection probabilities after a fixed number of iterations, which they

call the parameter block-iterations (they used block-iterations = 100). In terms of the classification

scheme of Martí [186], reactive GRASP introduces a degree of memory, by using selection probabilities

that change dynamically over the course of the heuristic, and it allows the level of randomness to be

tuned to the specific problem at hand. The degree of rebuild is still complete.

Scaparra and Church [225] extend the reactive GRASP approach by making the parameter block-

iterations variable. In the initial runs they use a large value for block-iterations in order to have a better

estimate of the “goodness” of each α choice. As the algorithm proceeds they systematically reduce the

value of block-iterations in order to intensify the use of good α values. They use two schemes for this:

setting block-iterations to 75 and reducing it by 25 each time the probabilities are updated, and setting it

to 100 and halving its value after each update, to a minimum value of 25. Their results suggest that the

variable parameter performs better and is more efficient computationally than the fixed block-sizes, and

the method of halving was superior to the fixed reductions.

Bresina [32] introduced the concept of bias functions, in the context of an iterative sampling search

method called heuristic-biased stochastic sampling. These bias functions were extended to the

restricted candidate list (RCL) of GRASP heuristics in Ribeiro and Hansen [27], and we paraphrase

below the description found in the review of Resende and Ribeiro [219]. In the basic GRASP, each of

the elements in the RCL has an equal chance of being selected for inclusion in the solution being

constructed, however any probability distribution can be used to bias the selection towards particular

candidates. Bresina [32] suggests a family of bias functions, based on the rank r(σ) assigned to each

candidate element σ:

• random bias: bias(r) = 1;

• linear bias: bias(r) = 1/r;

• log bias: bias(r) = log-1(r + 1)

• exponential bias: bias(r) = e-r; and

• polynomial bias of order n: bias(r) = r-n.

Let r(σ) denote the rank of element σ and let bias(r(σ)) be one of the bias functions defined above.

Once these values have been evaluated for all elements of the RCL, the probability π(σ) of selecting

element σ is

'

(())
()

(('))
RCL

r

r
σ

σ
π σ

σ
∈

=
∑
bias

bias

As with all metaheuristics, many hybrids can be created by mixing the features of GRASP with those of

other techniques.

5.2.3.4 MLS interpretation

Multi-start heuristics can be modeled in MLS very similarly to iterated local search. The basic multi-

start heuristic, where a black-box construction technique is applied independently before each

136 Metaheuristic Concepts Chapter 5

application of the local search process, lends itself more strongly to the trigger-response MLS model,

rather than the change-of-neighbourhood method. So after a local optimum trigger is tripped, the

response is to execute a construction technique to set the new starting solution.

GRASP presents an interesting case. In general constructive methods are out of the scope of our

interest; the MLS framework simply treats these as black-box functions. However, we have explored

the details of the greedy randomized adaptive construction component of GRASP because this

procedure itself can be considered a local search, and is able to be interpreted as an MLS heuristic.

Under MLS we can consider GRASP to be a two-phase local search heuristic. The first local search

phase performs the construction, and the second phase performs the “traditional” local search

improvement. Each of these phases has an MLS search scheme with a quite different configuration,

which are switched via the trigger-response model. To model GRASP with MLS we modify the

definition of a “solution” slightly to be any set of solution elements, including an empty set, and draw a

distinction between a feasible solution and an infeasible (incomplete) solution.

We first consider the construction phase. The neighbourhood is defined by the single movetype of

adding a solution element to the current solution, and the neighbourhood size is unconstrained. The

restricted candidate list is modeled by a neighbourhood reduction procedure. All the solutions in the

neighbourhood are evaluated and ranked based on their incremental improvement in the fitness

function. Only those which meet the RCL conditions are accepted, using either cardinality-based or

value-based restriction.

The search logic for the GRASP construction phase is to accept the first admissible solution examined

from the reduced neighbourhood (search size = 1). The admissibility conditions are probability-based;

for basic GRASP each solution has a probability equal to the inverse of the cardinality of the reduced

neighbourhood, i.e. if there are m solutions in the reduced neighbourhood then each is accepted with

probability 1/m. For more advanced variations the probability can vary, for example as in reactive

GRASP, or with bias functions. The search logic is to examine all the solutions until one is accepted, in

random order. The search logic is set to sample with replacement.

There will be a number of triggers in effect. The most basic one waits until a feasible solution is

constructed. When this occurs the response is to change the configuration of the MLS heuristic to the

local search phase. Other potential triggers are waiting for particular iteration counts to be passed, at

which time some of the parameters may be changed, as for reactive GRASP.

After the feasible solution phase-change trigger is tripped the neighbourhood scheme changes to the

type of moves that the local search requires, along with the other MLS modules that the search scheme

requires. The feasible solution phase-change trigger is deactivated and the local optimum trigger is

activated. After it is tripped, the configurations are reversed again and the appropriate triggers are

reactivated or deactivated.

5.3 Thresholding 137

5.3 Thresholding

Thresholding is one of the earliest metaheuristic ideas, where the search does not get stuck in local

optima because non-improving are accepted if they meet certain conditions, which get stricter over the

course of the heuristic. In general these heuristics are expressed in the MLS framework by

manipulating the admissibility criteria, with the trigger-response procedure modifying the threshold.

5.3.1 Simulated Annealing

Simulated Annealing (SA) is one of the earliest, and most well-studied metaheuristics. Kirkpatrick et

al. [160] and Černý [42] independently introduced Simulated Annealing as an application to

combinatorial optimization of the Metropolis algorithm from statistical mechanics (see Metropolis et al.

[188] for the original algorithm). The name derives from the analogy with the manner in which liquids

or metals recrystalize in the process of annealing while cooling. If the initial temperature of the system

is too low, or the cooling is done too quickly, the system may become quenched forming defects, which

correspond to local optima in combinatorial optimization.

Simulated Annealing proceeds according to a standard local search approach, with the key difference

that it offers a way to escape from local optima. At each iteration, a neighbouring solution is always

accepted if it improves the fitness function, and accepted with a certain probability otherwise. Allowing

worsening moves means that the algorithm can escape from local optima. This probability decreases as

the search progresses, making worsening moves less likely near the end of the search. This has the

effect of a broad search across the search space at the beginning of the process, and a more intense

search as the heuristic identifies the most promising region to focus on.

The probability of accepting a non-improving move is based on the Boltzmann distribution of statistical

mechanics. At each iteration, where the current solution is s, a neighbouring solution s′ is selected at

random. Let δ = z(s′) – z(s) be the improvement in the objective function obtained by moving to the

neighbouring solution. If δ > 0 then the new solution is accepted; if δ ≤ 0 then the new solution is

accepted with probability e-δ/T, where T is a parameter called the temperature. This acceptance function

implies that small decreases in the objective function (for maximization problems) are more likely to be

accepted than large ones. The temperature is initially set to an appropriately high value T0; after a fixed

number of iterations the temperature is decreased. Simulated Annealing stops when the temperature

reaches a value close to zero, and no improving solution has been found – the system is “frozen”.

Therefore, although Simulated Annealing offers a way to escape local optima in the early stages, its

eventual termination point is in a local optimum.

138 Metaheuristic Concepts Chapter 5

Algorithm 5.4 metaheuristic SIMULATED ANNEALING

 s = GenerateInitialSolution

 Select an initial temperature T = T0

 Set temperature change counter t = 0

 repeat

 Set iteration counter n = 0

 repeat

 Choose a random neighbour s′ of s

 Calculate δ = z(s′) – z(s)

 if δ > 0 then s = s′

 else if Uniform(0,1) < e -δ / T then s = s′

 n = n + 1

 until n = N(t)

 t = t + 1

 Reduce temperature T = T(t)

 until termination condition met

end

Eglese [80] describes the generic choices that must be made when designing a Simulated Annealing

algorithm. The following aspects together constitute the cooling schedule:

• the initial value of the temperature parameter, T0;

• a temperature function, T(t), to determine how the temperature is to be changed;

• the number of iterations, N, to be performed at each temperature (the epoch length); and

• a stopping criterion to terminate the algorithm.

In their seminal paper, Kirkpatrick et al. [160] base their cooling schedule on the analogy with physical

annealing. The initial temperature is set high enough to accept almost all possible moves, and a

geometric temperature function is used: T(t + 1) = a.T(t), where a is constant and 0 ≤ a ≤ 1. Eglese [80]

states that typical values of a used in practice lie between 0.8 and 0.99. Clearly, in this case the

temperature slows its rate of cooling as it approaches zero. Other cooling schedules are possible, and

are commonly considered, for example Lundy and Mees [177] propose a scheme where there is only a

single iteration at each temperature, and T(t + 1) = T(t) / (1 + B.T(t)), where B is a constant. This

represents a slower cooling than with fixed values of a and N. Bölte et al. [40] describe the only known

annealing schedule that guarantees optimality: T(t) = C / log(t), where C is a constant. However this

schedule requires run times that are “too long for most applications”.

Pirlot [210] gives two commonly-used stopping criteria: if the value of the best solution has not

improved by at least q% in the last k sets of N steps, or if the number of accepted moves is less than q%

of N for the last k sets of N steps. Other researchers, such as Connolly [56], prefer to fix the number of

iterations à priori to obtain algorithms with a deterministic run time.

5.3 Thresholding 139

The most common approach is for N to be a constant, perhaps proportional to the size of the problem

instance or the neighbourhood, as described by Eglese [80].

5.3.1.1 Varations on cooling schedules

The performance of Simulated Annealing is known to be sensitive to the values of the control

parameters used for the cooling schedule. Kouvelis and Chiang [161] undertook a computational study

of various parameter setting for their SA algorithm for single row layout problems in flexible

manufacturing systems, and concluded that the solutions are “highly dependent on the initial

configuration”, which is specific to each problem.

Wang and Wu [247] use response surface methodology to discover good parameters for the cooling

schedule, combining this with a Steepest Ascent search using each parameter set as a “solution”.

Similarly, Bölte et al. [40] use genetic programming1 to evolve good annealing schedules for a range of

problem instances for the quadratic assignment problem. They found that temperatures that oscillated

between two values were usually better than those that were monotone decreasing, and that the shape of

this oscillation did not matter; they achieved good results with different shapes, such as sine and

rectangular. These works were also some of the earliest examples of using one heuristic technique to

optimize another, although they are used more as preprocessing research than as part of the heuristic

itself.

A two-staged Simulated Annealing algorithm is one in which the nature of the search changes once the

temperature has reached a certain threshold. This allows a faster heuristic to search at high

temperatures, and then a more thorough configuration to continue at lower temperatures. Varanelli and

Cohoon [242] discuss such a two-staged heuristic and propose a method for determining the change-

over temperature; they note that if this threshold is too low then the heuristic can get trapped

prematurely in an inferior solution, while if it is too high then computing time can be wasted by

accepting too many unnecessary worsening moves.

Lin et al. [175] study adaptive variations of both Simulated Annealing and Threshold Accepting (which

is introduced in the following section). They propose adaptive features for both the neighbourhood

exploration and the temperature/threshold values. The adaptive neighbourhood is reminiscent of the

ideas in reactive GRASP, where solutions that share features with previously examined good solutions

are selected with a higher probability. The adaptive temperature/threshold is based on an analysis of

how often the best-so-far solution value was improved at the previous temperature. They allow the

temperature to increase and decrease, to intensify and diversify the search, according to a number of

rules. Note that this type of adaptive behaviour is ideally suited to be expressed as MLS.

Azizi and Zolfaghari [12] also develop an adaptive SA, where the temperature control function cools

suddenly with an improving move and slowly heats up (gets less strict) if needed:

1 Genetic programming is a method that maintains a population of entities, in this case algorithms. By generations

of breeding the “best” algorithms together, the quality of the population improves.

140 Metaheuristic Concepts Chapter 5

Tt = Tmin + λ ln(1 + rt), where Tmin is the minimum value the temperature can take, λ is a coefficient that

controls the rate of temperature rise, and rt is the number of consecutive non-improving moves at

iteration t. The initial value of rt is zero, and the initial temperature is Tmin. The minimum temperature

prevents the probability function from becoming invalid when rt is zero. The rationale of this approach

is that there is a good chance of improving moves early in the search, so there is little need for a high

temperature to push the search away from local optima.

5.3.1.2 Variations on the Simulated Annealing structure

Ishibuchi et al. [149] alter the basic Simulated Annealing heuristic. At each iteration, instead of

randomly selecting a single solution from the neighbourhood and accepting it according to the

acceptance rules, they randomly sample K solutions from the neighbourhood and test the best of these

for acceptance. Note that this is a generalization of Simulated Annealing, since the basic algorithm is a

special case with K = 1. They also propose a variation of this where K solutions are randomly sampled

from the population, and test these one at a time. The first solution that improves the objective function

is accepted, unless no solutions improve the objective function, in which case the best of the sample is

tested for acceptance using the acceptance rules. This second variation may be considered as lying

conceptually between the regular Simulated Annealing approach and the first variation. In terms of

MLS, this would be considered changing the search logic through the examinations maximum.

Katayama and Narihisa [157] propose an interesting multi-phase SA algorithm, which they call

reannealing. Essentially the Simulated Annealing progresses as usual, but with a fast neighbourhood

examination scheme (they use a 1-opt neighbourhood for the unconstrained binary quadratic

programming problem). At the end of the process the procedure is repeated, using a lower initial

temperature and using the local optimum from the previous SA process as the starting solution for the

new one. This reannealing process has two extra parameters in addition to those of the inner SA

algorithm: the number of times to perform the annealing process, and the reduction rate to apply to the

initial of the current process to get the initial temperature of the next process.

Ohlmann et al. [199] introduce a new heuristic called compressed annealing for a class of problems

where the formation of a neighbourhood structure is impeded by a set of constraints, for example the

travelling salesman problem with time windows (see Ohlmann and Thomas [200]). Neighbourhoods

are recovered by relaxing the complicating constraints into the objective function within a penalty term.

They refer to the penalty multiplier as “pressure”, hence the name “compressed annealing”.

5.3.2 Threshold Accepting

Dueck and Scheuer [77] propose the Threshold Accepting (TA) algorithm, which is a deterministic

variation of the Simulated Annealing principle. Improving moves are always accepted, and non-

improving moves are accepted only if they are don’t worsen the objective function value more than

some threshold, which is typically set to be a deterministic, non-decreasing (for a maximization

problem) step function based on the iteration count. The authors state that the “trivial” threshold

schedule is “essentially best” and suggest that the performance of TA is basically insensitive to the

threshold schedule. Their schedule is linear in the iteration count i, with Ti = T0 (1 – i/M), where M is

5.3 Thresholding 141

the limit on the number of iterations. Threshold Accepting is also known as deterministic annealing,

for example by Gendreau et al. [111].

Dueck and Scheuer [77] present significant improvements over a Simulated Annealing heuristic for the

travelling salesman problem, and also a faster runtime, due to the fact that TA does not need to compute

random numbers or probabilities. Moscato and Fontanari [196] independently developed a Threshold

Accepting heuristic, and reported less of an advantage over SA, but suggested that the probabilistic

acceptance function is not a crucial element of the Simulated Annealing approach. Lin et al. [175]

compare experimentally both standard and adaptive versions of Simulated Annealing and Threshold

Accepting, and find that the TA versions perform better than their SA counterparts.

Dueck [75,76] further develops the Threshold Accepting approach by introducing two new

metaheuristics, which he calls the Great Deluge algorithm and Record-to-Record Travel. These

heuristics are based on new monotone threshold schedules. Great deluge starts with an initial water

level, which may be interpreted as a minimum allowable solution value (in a maximization problem).

The first allowable neighbour found prompts a move to that neighbour and an increase in the water

level. This increase amount is the only tunable parameter in the great deluge algorithm, known as "up".

One popular choice for "up" is that it should be somewhat smaller than one percent of the average gap

between the value of the current solution and the water level. Note that the threshold in Great Deluge is

judged against the actual solution value, rather than the amount of disimprovement, as in TA. The

Record-to-Record Travel heuristic also uses a different quantity to compare against its threshold. It

maintains a value "record", which is the value of the best solution found so far. It then allows solutions

which are better than "record" minus some allowed deviation, which is, again, the only tunable

parameter.

Hu et al. [147] disagree with the assertion of Dueck and Scheuer [77] that the threshold schedule is

unimportant and develop a Threshold Accepting variation, which they call Old Bachelor Acceptance,

where the threshold schedule is self-tuning and non-monotone. Their approach derives from an

experimental examination, where they exhaustively examined all possible threshold schedules for some

small problems they devised for this purpose. They found that many of the optimal schedules they

found were non-monotone (able to increase as well as decrease), and they cite the work of other

researchers who have reported effective non-monotone schedules for Simulated Annealing. In old

bachelor acceptance the threshold changes dynamically, up or down, based on the perceived likelihood

of being near a local maximum. They observe that if the current solution is better than most of its

neighbours, then it will be hard to move to a neighbouring solution; standard TA will repeatedly

generate a trial solution and fail to accept it. The authors describe the principle of dwindling

expectations: after each failure, the criterion for “acceptability” is relaxed by slightly increasing the

threshold T. After sufficiently many consecutive failures the threshold becomes large enough for the

heuristic to escape. The converse of dwindling expectations they call ambition, whereby after each

acceptance of the trial solution the threshold is lowered. They consider a number of different increase

and decrease functions; the basic version is simply to use a constant value, but they also consider quite

complicated functions that depend on the neighbourhood size, the number of iterations remaining, and

the current threshold value. Old Bachelor Acceptance is an interesting and flexible generalization of

142 Metaheuristic Concepts Chapter 5

Threshold Accepting. A recent study by Ricca and Simeone [220] applies metaheuristics to a political

districting problem, and finds that old bachelor acceptance outperforms both Simulated Annealing and

two versions of Tabu Search.

Tarantilis et al. [235] propose a slightly different variation of an adaptive TA, which they call the

Backtracking Adaptive Threshold Accepting algorithm. This heuristic is structured around an outer

loop, which controls the modification of the threshold, and the inner loop that does a local search based

on the acceptability conditions of that threshold. Basically if at least one acceptable solution was found

at a given threshold, then the threshold is reduced, otherwise it is raised. The process in the outer loop

is stopped when the maximum number of outer loop iterations has been reached, or when no feasible

inner loop move can be found, even though the threshold has just been backtracked (raised). The

threshold is reduced by multiplying it by a reduction rate r: T(t + 1) = r T(t), where t in this case refers

to iterations of the outer loop. A key aspect of this heuristic is that when the threshold is backtracked it

is raised to a value lower than the value before the previous reduction; in this way the threshold tends

towards zero. Specifically, T(t + 1) = T(t – 1) – (1 – b)(T(t – 1) – T(t)), where b is the percentage of

threshold backtracking.

Tarantilis et al. [234] introduce the List-Based Threshold Accepting Method, which they describe on

a VRP problem with the goal of minimizing costs, which we reframe as a maximization problem in the

description below. This two-phase TA variation starts with an initial feasible solution and then

generates a “threshold list”. Starting from the initial solution s, a neighbour s′ is generated and their

objective function values are compared as Tnew = (z(s) – z(s′)) / z(s). If Tnew is positive and lower than

the maximum element of the list, Tmax, then Tnew is inserted in the list. This is repeated until the list is

filled with M threshold values. This initialization phase is then followed by the local search phase. At

each iteration a neighbour solution s′ is generated from the current solution s, and a new threshold

value Tnew is calculated using the formula above. If Tnew ≤ Tmax then the proposed solution s′ is accepted

and s is set to s′. Tnew then replaces Tmax on the list, and Tmax becomes one of the other values on the list.

In this way the list becomes more strict over time. This list-based method has only a single parameter,

the list size M. Lee et al. [166] extend this List-Based Threshold Accepting method by selecting at each

iteration the best of a sample of admissible neighbours, rather than the first admissible neighbour

examined. This approach echoes the earlier method of Ishibuchi et al. for SA, which was discussed

above, although they do not cite this paper.

5.3.3 MLS interpretation

The thresholding metaheuristics are expressed in the MLS framework through the admissibility

conditions of the search scheme. A solution is an admissible candidate if the fitness function passes the

specific condition.

The basic Simulated Annealing algorithm has an admissibility condition that a neighbour solution is

accepted as an admissible candidate if the fitness function value is better than that of the current

solution, or otherwise accepted with the Metropolis probability, which has a parameter temperature.

There is no neighbourhood reduction phase, and the search logic is to select the best 1 of 1 (first

admissible). The reduction of the temperature parameter is controlled through the trigger-response

5.3 Thresholding 143

model; when a certain iteration count trigger is tripped, the temperature parameter is reduced, according

to the appropriate cooling schedule, which is part of the response. A second trigger is waiting for the

termination condition, to terminate the heuristic; this can be an iteration count, a trigger count (number

of temperature reductions), or a certain temperature being reached.

Most of the variations of Simulated Annealing simply utilise different logic for modifying the

temperature, both when to modify it and how to modify it. All of these variations are expressed with

different logic within the trigger and response modules. The Threshold Accepting variants have

essentially the same structure as for Simulated Annealing, except with different admissibility

conditions, and different response modules to modify those conditions.

Based on the literature review above, we define the following MLS modules.

Memory structures. These memory structures exist in the heuristic’s memory. Not all heuristic

implementations will utilize all memory elements, but they are present if needed. If an MLS module

requires a particular memory structure, then this is listed. The following memory structures are those

which can be specified by the user, and modified by the trigger-responses.

• Threshold for admissibility. Note that this also includes the temperature for SA.

• Cooling rate

The following memory structures are automatically generated and updated by the MLS control process,

without having to be specified by the user.

• Iteration count

• Iterations since last tripping of each trigger

• Iterations since BSF was improved

• Size of neighbourhood in last iteration

• Size of restricted neighbourhood in last iteration

• Number of solutions examined in last iteration

• Number of admissible candidates in last iteration

We are able to define the MLS logic for several of the admissibility conditions, to demonstrate how

MLS modules are defined. Algorithm 5.5 defines the admissibility condition for the Metropolis

condition, which is the fundamental module that defines Simulated Annealing.

144 Metaheuristic Concepts Chapter 5

Algorithm 5.5 MLS admissibility condition METROPOLIS CONDITION

 // The fundamental module of Simulated Annealing. This admissibility condition

 // accepts the trial solution if it has a better fitness than the current solution, or if not,

 // then with probability based on the size of the difference, using a “temperature”

 // parameter.

 Prerequisites: A memory parameter must be defined for the annealing temperature.

 Input: f(s), s′, T // The fitness of the current solution, the trial solution and the

 annealing temperature

 Calculate the fitness of the trial solution, f(s′)

 δ ← f(s′) – f(s)

 if δ > 0 then

 return admissible

 else if Uniform(0,1) < e -δ / T then

 return admissible

 else

 return inadmissible

 end

end

Algorithm 5.6 defines the admissibility condition for Threshold Accepting.

Algorithm 5.6 MLS admissibility condition BASIC THRESHOLD ACCEPTING

 // The fundamental module of Threshold Accepting. This admissibility condition

 // accepts the trial solution if the difference in fitness values between then current

 // solution and the trial solution is less than the threshold.

 Prerequisites: A memory parameter must be defined for the threshold.

 Input: f(s), s′, T // The fitness of the current solution, the trial solution and the

 threshold

 Calculate the fitness of the trial solution, f(s′)

 δ ← f(s) – f(s′)

 if δ < T then

 return admissible

 else

 return inadmissible

 end

end

5.4 Adaptive Memory and Tabu Search 145

Algorithm 5.7 gives the admissibility condition for the Great Deluge algorithm.

Algorithm 5.7 MLS admissibility condition GREAT DELUGE

 // The fundamental module of the Great Deluge algorithm. This admissibility condition

 // accepts the trial solution if it is absolutely above the threshold, which is dynamically

 // updated by other modules.

 Prerequisites: A memory parameter must be defined for the threshold.

 Input: s′, T // The trial solution and the threshold

 Calculate the fitness of the trial solution, f(s′)

 if f(s′) > T then

 return admissible

 else

 return inadmissible

 end

end

Algorithm 5.8 gives the admissibility condition for Record-to-Record Travel.

Algorithm 5.8 MLS admissibility condition RECORD-TO-RECORD TRAVEL

 // The fundamental module of Record-to-Record Travel. This admissibility condition

 // accepts the trial solution if the difference in fitness between the best-so-far solution

 // and the trial solution is less than the threshold.

 Prerequisites: A memory parameter must be defined for the threshold.

 Input: f(s*), s′, T // The fitness of the BSF solution, the trial solution and the

 annealing temperature

 Calculate the fitness of the trial solution, f(s′)

 δ ← f(s*) – f(s′)

 if δ < T then

 return admissible

 else

 return inadmissible

 end

end

5.4 Adaptive Memory and Tabu Search

Tabu Search (TS) is a metaheuristic developed by Glover that uses a list of tabu solution elements to

guide the search away from recently visited solutions, and hence away from local optima. The core

concept is relatively basic, however Tabu Search has grown into a framework that encompasses many

aspects of memory, often referred to as Adaptive Memory Programming. When discussing Tabu

146 Metaheuristic Concepts Chapter 5

Search it is necessary to highlight the enormous contribution and body of work of Fred Glover, and

several of his regular research partners. It is impossible to overstate the importance and influence of

their work, both on the Tabu Search family of metaheuristics, and on the field of metaheuristics in

general. The 1997 book Tabu Search by Glover and Laguna [120] is possibly the single most

comprehensive source of metaheuristic concepts and original ideas that exists. Thirteen years after its

publication many of the concepts introduced are now fundamental pillars of the metaheuristic design

toolbox, however new papers are still being published based on ideas in this work that haven’t yet been

picked up by the research community and are still fueling further progress. This work also discusses

implementation concerns of adaptive memory concepts, such as data structures and efficiency, etc.

Such considerations are outside the scope of this review, which focuses on conceptual features.

In this section on Tabu Search and adaptive memory, it is impractical to list every use or variation of

the adaptive memory framework, therefore we briefly discuss the main features, and conceptual

paradigms – drawing heavily from Glover and Laguna [120]. Our focus in this section is to catalogue

the ideas that would be valuable in an MLS framework, rather than to give a full history of the

development of every nuance of these ideas. Other citations are used where necessary to further

develop ideas, however this section does not attempt to provide a comprehensive Tabu Search

bibliography.

Glover and Laguna [120] describe the distinction between Tabu Search and Adaptive Memory

Programming:

“Tabu Search has been presented with two faces in the literature – one simpler and one more

advanced. The simpler method incorporates a restricted portion of the TS design, and is

sometimes used in preliminary analyses to test the performance of a limited subset of its

components – usually involving only short term memory. The more advanced method

embodies a broader framework that includes longer term memory, with associated

intensification and diversification strategies. This second approach, due to its focus on

exploiting a collection of strategic memory components, is sometimes referred to as Adaptive

Memory Programming (AMP).”

This section begins with a description of the basic Tabu Search heuristic, and then we catalogue and

discuss the other memory-based strategies.

5.4.1 Basic Tabu Search

In addition to the broader Tabu Search/Adaptive Memory Programming framework being so central to

modern metaheuristic design, the Tabu Search metaheuristic itself has proven to be one of the most

successful local search approaches, with countless applications; even quite simple implementations

often perform competitively.

Tabu Search was introduced by Glover [117], in the same paper that he coined the term

“metaheuristic”. Tabu Search chooses the best available move, whether it is improving or not. This

allows the heuristic to escape from local maxima, but creates the risk of cycling among solutions; to

illustrate this concept consider that the current solution is a local optimum. There is no improving

5.4 Adaptive Memory and Tabu Search 147

move in the neighbourhood of the current solution (by definition), so the move which worsens the

objective function the least is chosen. Depending on the move-types available, at this point there may

be at least one improving move available, which is the move back to the previous solution, the local

optimum. Without any further guidance, the search would step back and forth between these two

solutions, which is called cycling. In general, cycling occurs whenever a sequence of solutions is

necessarily repeated continuously.

In order to prevent this, a tabu list is used, which stores attributes of recent moves or solutions. The

attributes remain on the list for a set number of iterations, the tabu tenure. These tabu restrictions tend

to let the heuristic escape from local maxima because once the heuristic has left them it cannot return

for a set number of iterations, unless some aspiration criterion is met. An aspiration criterion allows a

tabu move to be admissible; a common criterion is that if the resulting solution is (strictly) better than

the best obtained so far, then it is accepted. The tabu list is a form of recency-based memory, and may

be considered short-term memory.

5.4.1.1 Tabu lists and tabu tenure

Standard tabu lists are usually implemented as circular lists of fixed length. The addition of a new tabu

element to the list causes the oldest element to “fall off”. In this sense tabu tenure and tabu list size are

equivalent. However, fixed-length tabus cannot always prevent cycling; the tabu list prevents certain

moves or solutions being revisited only for a certain period of time – if the search has not managed to

escape the basin of attraction of the local optimum, then cycling can occur. In this case various

techniques have been applied to vary the tabu tenure. Glover [118] (among others) proposed varying

the tabu list length during the search, and Gendreau et al. [110] use a random tabu tenure within a small

range. The possibility of a dynamic tenure, i.e. allowing different tabu tenures for different attributes,

according to a rule, or randomly, is at odds with the concept of the tabu “list”. For this reason, we

prefer to refer to tabu tenure, rather than tabu list size.

Glover and Laguna [120] distinguish between random dynamic tenures and systematic dynamic tenures.

Random dynamic tenures select a tenure between a minimum and a maximum, following a uniform

distribution, either changing the tenure every iteration, or after a constant number of iterations. The

simplest systematic dynamic tenure consists of a pre-defined sequence of tenures between a minimum

and a maximum. The advantage is that it allows patterns that are unlikely to occur randomly, such as

alternately increasing and decreasing values.

The systematic variation of the tabu tenure provides an easy-to-control method of intensification and

diversification. A longer tabu tenure tends to increase the diversification, by forcing the search away

from recently examined solutions, conversely a shorter tabu tenure lessens this effect, resulting in a

more intense search.

5.4.1.2 Aspiration criteria

An aspiration criterion is a safety check to make sure that the tabu restrictions do not exceed their

purpose, and prevent promising solutions from being considered. By far the most common aspiration

148 Metaheuristic Concepts Chapter 5

criterion in practice is to accept a move, which would otherwise be inadmissible because it is tabu, if

the resulting solution value is better than the best solution found so far.

Glover and Laguna [120] suggest possible aspiration criteria in more detail:

• Aspiration by default. If all available moves are classified tabu, and are not rendered

admissible by some other aspiration criterion, then a “least tabu” move is selected. For example

if all moves are tabu, then those which are only have a remaining tabu tenure of one iteration

could be considered, and the best of these chosen.

• Aspiration by global objective. A move aspiration is satisfied if the move yields a solution

better than the best obtained so far. This is a common standard aspiration criterion.

• Aspiration by regional objective. A move aspiration is satisfied if the move yields a solution

better than the best found in the region of the current solution.

• Aspiration by search direction. A move aspiration is satisfied if the move yields a solution that

allows the direction of the search (improving or nonimproving) to continue.

• Aspiration by influence. A move aspiration for a low influence move is satisfied if a high-

influence move has been performed since establishing the tabu status for the low influence move.

The concept of influence measures the degree of change in solution structure or feasibility, and may be

thought of as a “move distance”. Generally, moves of high influence tend to diversify the search more,

modifying the solution in a greater way. Glover and Laguna [120] stress the importance of a balance

between move quality and move influence; influential moves do not always result in solutions of high

quality, but at different phases of the search may be desirable.

5.4.1.3 MLS interpretation

Although Tabu Search chooses the “best” solution at each iteration, the definition of best is subject to a

type of fitness function interpretation, as described by Glover and Laguna [120]:

“The meaning of best in TS applications is customarily not limited to an objective function

evaluation. Even where the objective function evaluation may appear on the surface to be the

only reasonable criterion to determine the best move, the non-tabu move that yields a maximum

improvement or least deterioration is not always the one that should be chosen. Rather, as we

have noted, the definition of best should consider factors such as move influence, determined

by the search history and the problem context.”

Influence – can be incorporated into fitness function, to help diversify the search. Update-memory

procedures can update the tabu list, not just naively, but by revoking tabu status if desired, perhaps at a

change of phase.

5.4 Adaptive Memory and Tabu Search 149

5.4.2 Candidate list strategies

Candidate list strategies are a method of reducing the number of solutions examined in a given

iteration. This is necessary where the neighbourhood is large or when its elements are expensive to

evaluate. However, they are not simply limitations on the number of solutions examined, but

incorporate careful metaheuristic ideas to guide the search.

Glover and Laguna [120] describe in detail several classes of candidate list strategy, which we

summarize below. They emphasize that “the effectiveness of a candidate list strategy should not be

measured in terms of the reduction of the computational effort in a single iteration. Instead a preferable

measure of performance for a given candidate list is the quality of the best solution found given a

specified amount of computer time.”

The motivation behind candidate list strategies influences one of the central features of MLS, although

MLS has multiple points of control for limiting the number of solutions examined, and formalizes the

role of each component. The relevant MLS components are the move-list size, the neighbourhood

reduction process, the examinations maximum and the candidate list size. Each of the strategies is

described, and then the MLS interpretation given.

5.4.2.1 Aspiration plus

The aspiration plus strategy establishes a threshold for the quality of a move, based on the search

history. The procedure examines moves one at a time until a move satisfying this threshold is found,

and then additional moves are examined, equal in number to the value of plus. This strategy may be

thought of as a countdown after a solution better than the threshold is found. The best solution overall

is then selected.

In order to ensure that neither too many nor too few moves are considered, the rule is qualified to

require that at least min moves and at most max moves are examined. So if we let first be the number of

moves examined when the aspiration criterion is first satisfied, then if min and max are not specified,

then this strategy would consider first + plus moves. However, if first + plus < min, then min moves are

examined, and if first + plus > max then max moves are examined.

This strategy is expressed by using a combination of MLS components. Note that the strategy says

nothing about the admissibility of solutions; the threshold is not used to define the solutions that are

admissible, but is simply used as a method of dynamically setting the number of moves examined. The

strategy is designed to reduce the number of moves that are evaluated as solutions, so we can freely

choose more to be in the move-list that are required, so long as only the appropriate number are actually

evaluated.

The neighbourhood reduction process is the main component for this strategy. It performs a full

evaluation of the moves in the move-list, comparing with the threshold, which is a memory element.

When first + plus moves have been examined (and at least min) then the best move is returned as the

reduced move-list. The search logic would then only have a single solution to examine. This

implementation shifts most of the examination work away from the search logic to the neighbourhood

150 Metaheuristic Concepts Chapter 5

reduction process. A more general extension of this method would be to return all the first + plus

examined moves as the reduced move-list. An advantage of this is that instead of evaluating the full

solution, a “heuristic” method of evaluating the solutions could be used, perhaps a faster method than

the full solution evaluation. The search logic would then complete the task of examining these

solutions according to any admissibility conditions.

5.4.2.2 Elite candidate list

The elite candidate list strategy first builds a master list of moves by examining all, or a large number

of, moves and selecting the k best (where k is a parameter). At each iteration the current best move

from the master list is chosen to be executed, continuing until such a move falls below a given quality

threshold, or a given number of iterations have elapsed. Then a new master list is constructed and the

process repeats.

This strategy is unusual in that it stores actual moves. For example consider a small TSP route:

A – B – C – D – E – F – A

Two 2-exchange moves are to swap B and D, and to swap D and F. When evaluating these moves we

obtain the potential routes

A – D – C – B – E – F – A and A – B – C – F – E – D – A

The elite candidate list strategy states that we use both of these moves on the master list. Let us

suppose that we then select the B-D swap as the best move. The D-F swap is the next move on the

master list, however after the previous move it results in the following:

A – D – C – B – E – F – A → A – F – C – B – E – D – A

This is quite a different outcome than the move was originally chosen for! Glover and Laguna [120]

state that this strategy is motivated by the assumption that a good move, if not performed at the present

iteration, will still be a good move for some further iterations. This may sometimes be the case but is

not guaranteed, so careful monitoring of the list and re-evaluation of the solutions is necessary. Since

re-evaluation of the solutions must occur at each iteration to choose the current best, this strategy seems

to us not to achieve much, although is an interesting approach.

In terms of MLS this strategy would be implemented by maintaining a memory structure that contains

the identifiers of the moves in the “master list”. This list would initially be constructed as an initialize-

memory module, and then updated when required with an update-memory module. An interesting

aspect is that the actual problem move-types are implemented in these update-memory modules, rather

than as part of the search scheme. The neighbourhood scheme move-type would be the selection of a

predetermined move from the list in memory, so that the eventual search scheme move-list is simply the

stored master list from memory. The trigger-response mechanism is used to control when the master

list is replenished.

5.4 Adaptive Memory and Tabu Search 151

5.4.2.3 Successive filter strategy

Moves can often be broken into component operations, for example an exchange move might consist of

an “add” component and a “drop” component. The successive filter strategy limits the number of

moves evaluated by filtering only those that consist of good components. Glover and Laguna [120]

give an example where there are 100 add possibilities and 100 drop possibilities, giving the number of

add/drop combinations as 10,000 moves. However, by restricting attention to the 8 best add and drop

moves, considered independently, the number of combinations to examine is only 64. This reduces the

total number of evaluations from 10,000 to 264 (64 combined moves and 100 each of the basic moves).

Glover and Laguna [120] motivate this heuristic with a discussion of the TSP. They note that good

solutions are often primarily composed of edges that are among the 20 to 40 shortest edges meeting one

of their endpoints. Some studies have attempted to limit consideration entirely to tours constructed

from these edges. The successive filter strategy offers a more flexible alternative by simply specifying

that one of these edges should be incorporated as part of a move.

Successive filter strategies offer a perfect use-case for the MLS neighbourhood reduction process. A

reduced move-list is produced from the move-list by deconstructing each of the moves into its

component parts, and then evaluating the performance of these component moves. The best

components are noted and only those full moves that are composed of the best components are included

in the reduced move-list. All other parts of the MLS heuristic perform as usual, so this strategy would

be an effective method to combine with other heuristic ideas. A major limitation is that the move-types

must be amenable to decomposition into their component parts, so the feasibility of this strategy is quite

problem dependent.

5.4.2.4 Sequential fan candidate list

The sequential fan candidate list strategy, described by Glover and Laguna [120], is a potentially very

powerful metaheuristic concept that has not received much attention from the metaheuristic community.

The basic idea is to generate p best alternative moves at a give step, and to create a “fan” of solution

streams, one for each alternative. The several best available moves for each stream are again examined,

and only the best p moves overall (where many or no moves may be contributed by a given stream)

provide the p new streams at the next step.

One way of considering this is as a population-based method, and as such it is highly exploitable by

parallel processing. From our perspective, the more interesting form of the strategy is as a look-ahead

strategy. In this case a limit is placed on the number of iterations that the streams are created past the

current iteration, then the best outcome from all these streams is used to identify a best current move,

which is the first move in the stream that leads to the best outcome. Upon executing this move, the

neighbouring solution becomes the new current solution, which is the source of p new streams and the

process repeats. This look-ahead strategy is very computationally intensive, but can be very powerful,

especially when used in combination with other methods for limiting the scope of the stream searches

and making them quicker, or more heuristic. Of course the parameters such as the iteration limit and

the number of streams, p, can be modified dynamically throughout the course of the heuristic.

152 Metaheuristic Concepts Chapter 5

This strategy highlights the flexibility of the MLS framework, especially the object-oriented

implementation of it that we use, and which is discussed in Appendix B. Within MLS this strategy is

best implemented by use of a complex fitness function. We noted in Chapter 4 that the fitness function

may be significantly more complex than the objective function, even the result of the processing of

another algorithm. In this case the fitness function is actually the evaluation of another (simpler) MLS

heuristic! There is significant potential with this strategy to create a complex web of MLS heuristics

that each have varying levels of complexity, and perhaps interact with shared memory structures. Even

quite simple implementations would seem to have considerable power, although they will be

computationally expensive. This factor makes them ideal to combine with the techniques of MLS that

limit and streamline the number of solutions examined, possibly utilizing some of the other candidate

list strategies described in this section.

5.4.3 Other adaptive memory concepts

There are many other examples of Adaptive Memory concepts. Glover and Laguna [120] provide an in

depth discussion of many of these, for example, some of the following:

• Strategic Oscillation, which varies some threshold up and down so that the search may

repeatedly arrive at solutions along the boundary from different levels. Strategic Oscillation

can occur with any desired aspect of the search; it is often used to slightly relax feasibility

conditions.

• Path Relinking is a method that takes advantage of remembered elite solutions. A “path”

between two solutions can be found (for example the current solution and a previously visited

solution. The motivation is that there are likely to be other promising solutions along this path.

Path Relinking can be used as a metaheuristic in its own right, but is often combined as an

intensification (or diversification) mechanism in other metaheuristics.

One example of adaptive memory is from Tang and Wang [233], who develop a speed-up mechanism

for their enhanced dynasearch 2-opt neighbourhood by remembering the best h solutions found in the

search history of their iterated local search heuristic (this list updates dynamically, so that the lowest-

ranked item falls off when a new item is added). This list is then used to weight solution components

(arcs in their case), which they use to map the search space to a reduced search space, upon which their

algorithm proceeds much faster.

Ghosh and Sierksma [116] present Complete Local Search with Memory, which maintains several lists

of promising and examined solutions in memory. See [17,143,201,222,243,254] for further examples

of Adaptive Memory Programming.

5.5 Other trajectory methods 153

5.5 Other trajectory methods

This section describes the other main trajectory-based metaheuristic paradigms.

5.5.1 Guided Local Search

Guided Local Search (GLS) was developed by Voudouris and Tsang [245], and has achieved some

popularity as a metaheuristic concept. See [25,79,88,89] for examples of use.

The main mechanism of GLS is with a modified fitness function. Local search proceeds until a local

optimum is reached. At this time the solution features of the local optimum are penalised by adding

penalty terms to the fitness function, so that the local optimum is no longer locally optimal, with respect

to the new fitness function. In this way the search is guided to other areas of the search space by

modifying the search topology.

To be implemented in MLS, a new fitness function module would be required that considers the

penalties associated with each solution component. In addition, memory parameters to hold these

penalties would need to be specified, and an update-memory module to calculate and update the

penalties after each iteration after a local optimum is reached would be needed.

5.5.2 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is an extremely popular metaheuristic concept, originally

introduced by Mladenović and Hansen [194]. See Hansen and Mladenović [135] for a good

introduction and summary. See [57,68,100,134,136,141] for a selection of other papers using VNS,

including many variations and extensions. VNS is also very suitable for hybridizing with other

methods, for example [105,214].

The basic concept is that solutions that are locally optimal with respect to one neighbourhood structure

are not necessarily locally optimal with respect to another. By varying the neighbourhood structures,

then search is able to continue.

Hansen and Mladenović [135] describe several of the basic VNS heuristic structures, which we

summarise below.

• Basic Variable Neighbourhood Descent has a set of neighbourhood structures Nk, for

k = 1,...,kmax. The search starts with the first neighbourhood structure (k = 1) and selects a

neighbour at random. If this solution is better than the current solution then the search moves

there, otherwise k is incremented and a random point is selected from the next neighbourhood

structure. If k reaches kmax then it is reset to 1, and if an admissible neighbour is found at any

point the next selection starts from k = 1 again. The search continues until some stopping

criterion is met.

• Basic Variable Neighbourhood Search proceeds the same as Basic Variable Neighbourhood

Descent, except that the random solution chosen from the kth neighbourhood then has a local

search method applied to it to arrive at a local optimum, and this local optimum is compared

154 Metaheuristic Concepts Chapter 5

with the current solution to determine if the search should move there or if k should be

incremented.

In general, any technique which modifies the neighbourhood structure can be thought of as Variable

Neighbourhood Search. In the experiments in later chapters we utilize a version where a specific

neighbourhood structure is swapped into service as required as a diversification phase.

To express the above variations of VNS as MLS configurations, the primary mechanism would be the

trigger-response model. The candidate list size would be set to 1, to accept the first admissible solution,

with an improving admissibility condition, and the examinations maximum would also be set to 1 (only

one solution examined). A trigger would be waiting for an apparent local optimum (the single solution

examined was not acceptable), in which case the neighbourhood structure (the set of move-types) would

be changed. Another trigger would be tripped if an admissible solution was found, in order to reset the

neighbourhood structure back to k = 1.

5.5.3 Hyperheuristics

Hyperheuristics are an interesting metaheuristic paradigm that shares many similarities with MLS, both

in mechanism and in motivation. Burke et al. [35] define hyperheuristics as the procedure of "using

(meta-) heuristics to choose (meta-) heuristics to solve the problem in hand."

Burke et al. [36] present a good summary of the main ideas, and summarise the hyperheuristic concept

with the following steps:

Algorithm 5.9 procedure HYPERHEURISTIC

 Step 1. Start with a set H for heuristic ingredients, each of which is applicable to a

problem state and transforms it to a new problem state. Examples of such

ingredients in bin-packing are a single top-level iteration of ‘Exact Fit’ or a

single top-level iteration of ‘largest first, first fit’;

 Step 2. Let the initial problem state be S0

 Step 3. If the problem state is Si then find the ingredient that is in some sense most

suitable for transforming that state. Apply it, to get a new state of the problem

Si+1

 Step 4. If the problem is solved, stop. Otherwise go to Step 3.

end

One of the motivations for hyperheuristics is to assist in the design of metaheuristics that are suited for

a problem, when no problem-specific knowledge is available. Researchers typically tailor

metaheuristics closely to problem domains to achieve high levels of performance; the goal of

hyperheuristics is to be able to apply a more general technique that adapts itself to the problem.

5.5 Other trajectory methods 155

These goals are very similar to those of MLS. In fact, it could be argued that MLS is actually an

implementation and refinement of a hyperheuristic framework. "Heuristics choosing heuristics" is

precisely what is made possible by MLS, and is demonstrated in Chapter 8 with some of the advanced

applications.

In Section 8.3 we introduce a similar concept: Adaptive Diversification Local Search, which has a

mechanism for selecting “the ingredient that is in some sense most suitable for transforming the search

state”, and we introduce a learning mechanism that makes this judgement get progressively more

“suitable”. In Section 8.2 we introduce the MLS Design Problem, which uses one higher-level MLS

metaheuristic configuration to guide the design and development of a lower-level heuristic to solve the

actual ASRP problem.

In its earliest stages hyperheuristics were mainly ways of combining low-level "heuristic ingredients"

that consisted on constructive or perturbative elements. However, much of the recent hyperheuristic

literature seems to be converging with the approach of MLS. Bai et al. [14] apply both metaheuristics

(GRASP, Simulated Annealing, and Multi-Start) to a produce allocation problem, along with several

varieties of hyperheuristics and found that the hyperheuristics found the best solution on most instances.

The hyperheuristics they used combined elements of Tabu Search and Simulated Annealing in various

types of hybrid, for example using both a tabu list to control which moves are considered, and a

simulated annealing probability for acceptance of the resulting solution. Note that these metaheuristic

control elements are acting to "evolve" a particular heuristic for the underlying allocation problem, but

the evolved heuristic is composed of low-level heuristic elements. In contrast, MLS operates at a

higher level of abstraction, where the underlying heuristic being assembled is itself a full version of

MLS. MLS actually allows any number of these levels of abstraction, so in the extreme case we could

have heuristics designing heuristics that design heuristics that solve the problem. It is not clear that

there would be any benefit of this type of layering; in principle it creates an extremely flexible and

powerful system, but in practice the computational requirements would be so extreme as to prevent it

functioning effectively.

Hyperheuristics are an interesting approach that seem to have many of the similar goals to MLS, but

approach the task somewhat differently; using metaheuristic principles to design combinations of low-

level heuristics, whereas MLS attempts to design other high-level metaheuristics. They are a subset of

the options available in MLS, and can be expressed using appropriate triggers and responses, and

carefully designed memory structures and memory-update modules.

156 Metaheuristic Concepts Chapter 5

Coda

▼ Summary

In this chapter we have explored some of the common metaheuristic paradigms that exist for trajectory-

based methods, and have given descriptions of how these could be formulated as MLS heuristics. This

concludes Part II.

▼ Link

Part III applies MLS to the ASRP; multiple heuristics are developed and extensively tested.

157

Part III

Experimentation and Analysis

159

Overview of Part III

Experimentation and Analysis

Part III explores the uses of MLS, using the ASRP as a test problem.

Chapter 6 defines a number of MLS heuristics, based on the standard metaheuristic paradigms of

Steepest Ascent, Simulated Annealing, Tabu Search, and Variable Neighbourhood Search. We

explicitly formulate all the modules required for these heuristics, and these become the foundation of

the MLS “toolbox”. Extensive computational tournaments provide a large dataset of results and these

are modelled against a set of problem characteristics. Several hybrids are developed to demonstrate the

hybridization capability of MLS.

Chapter 7 contains a side investigation into methods to develop interesting sets of problem instances. A

number of heuristics are developed and tested on a large number of problem instances. A brief study of

using MLS to design problem instances that exhibit desired properties shows promise.

Chapter 8 contains a brief discussion of ways to use MLS to develop advanced metaheuristics. Two

examples are demonstrated: using MLS to design other MLS heuristics, as a “meta” strategy, and using

the memory structures of MLS to adaptively modify the structure of the heuristic, with elements of

learning.

Chapter 9 concludes with a discussion of directions for future research.

161

 C H A P T E R 6

6 Applying MLS to the ASRP

6.1 Introduction

6.2 Problem instance design

6.3 MLS metaheuristics

6.4 Experimentation and analysis

6.5 Hybrids

6.6 Discussion

In this chapter we perform extensive computational experiments with Modular Local Search

(MLS) heuristics on the Arc Subset Routing Problem (ASRP). A number of standard

metaheuristics are formulated and tested, and some basic hybrids are demonstrated. Some

attention is given to new methods of predicting which of two heuristics will perform better on a

given problem instance, based on an analysis of the problem characteristics of that instance.

6.1 Introduction

Recall that in Chapter 4 we introduced the MLS framework for metaheuristics, and in Chapter 5 we

described in detail how many of the existing metaheuristic paradigms could be expressed as MLS

heuristics. In Chapter 3 we defined the ASRP and performed a preliminary investigation of this

problem, using traditional techniques and constructive heuristics. There are three objectives in this

chapter.

The first objective is to demonstrate the use of the MLS framework to express some common

metaheuristics: Steepest Ascent, Simulated Annealing, Tabu Search, and Variable Neighbourhood

Search. We develop variations on these heuristics and compare them to each other in computational

experiments. The focus here is to illustrate in practice how MLS can be used to construct heuristics.

The second objective is to extend these “regular” heuristics and to construct some basic hybrids of

these. Again, the focus is to demonstrate the ease with which this can be performed with MLS, rather

than attempting to find the best possible hybrids. We consider two types of hybrid. The first type

162 Applying MLS to the ASRP Chapter 6

combines the primary search scheme characteristics of two source heuristics; we construct a hybrid of

Simulated Annealing and Tabu Search that uses the admissibility conditions of both simultaneously to

determine whether a given neighbour is admissible. The second type are multi-phase hybrids that

change their structure in a significant way in response to certain events during the search. These types

of hybrid are typically quite complicated to implement, however the MLS structure is relatively simple;

all that is required is the specification of appropriate triggers and responses to completely change the

structure of the heuristic. We propose hybrids of Simulated Annealing with Variable Neighbourhood

Search, and Tabu Search with Variable Neighbourhood Search.

The final objective concerns the analysis of the experimental results. In the application of

metaheuristics to real-world problems a major factor is choosing which metaheuristic to use to solve a

given problem. This decision is easy if there is a particular metaheuristic that is known to dominate; if a

particular metaheuristic outperforms all other metaheuristics on most problem instances then this

technique can be safely chosen. However, the situation is more complex if there are two or more

metaheuristics that perform well, each on different problem instances. In this case it is natural to ask

whether it is possible to analyze the problem instances beforehand and choose the metaheuristic that is

most suited for that type of problem instance.

To develop such a system would seem to be a significant research project in its own right. In this

chapter we attempt to provide some of the foundation for such a system by demonstrating the validity of

such an approach. Our hypothesis is that it is possible to use problem instance characteristics that are

calculated à priori to predict which of two heuristics will perform better.

6.2 Problem instance design

We build on the methods developed in Chapter 3, utilizing grid graphs. The purpose of the problem

instance design is to develop a large set of problem instances for the experimentation in this chapter. It

is desirable to create a set of problem instances with quite diverse problem instance characteristics.

6.2.1 Graph generation methods

For the reasons presented in Chapter 3.4.1, all experimentation on the Arc Subset Routing Problem is

performed on grid graphs, with arcs of unit cost. For our purposes the key advantage of grid graphs, as

discussed below in Section 6.2.4, is that they allow the calculation of many different graph

characteristics.

Graphs are generated with a specified density, which is a property unique to grid graphs. Let Ac be the

set of arcs in the complete grid, and A ⊆ Ac be the subset of arcs in the problem instance graph. The

graph density D = |A|/|Ac| is the proportion of arcs from the corresponding complete grid that are

included in the graph. An m × n complete grid has |Ac| = m(n – 1) + n(m – 1) = 2mn – m – n arcs. For

example, a 4×4 complete grid has 24 arcs; a graph with 50% density would have 12 arcs. Of course, all

graphs must be connected.

6.2 Problem instance design 163

In the preliminary investigation of the ASRP we used grid sizes of 10×10. For subsequent experiments,

graphs based on size 15×15 grids are used. Graphs are randomly generated using three different

generation schemes, based on the GRIDGROW and GRIDSELECT methods of Chapter 3.

6.2.1.1 The GridDeselect generation method

In the preliminary ASRP investigation the GRIDSELECT graph generation method was introduced. This

method randomly selects the appropriate number of arcs from the complete grid and then checks to see

if the graph is connected. If the graph is disconnected it is discarded and the process repeats until a

connected graph is obtained. When the density is low the GRIDSELECT generation method can be quite

computationally expensive, as the probability of obtaining a connected graph decreases as the density

decreases. The advantage of the GRIDSELECT method is that tends to create a homogeneous graph; the

arcs are spread evenly across the grid, rather than being more concentrated in one region.

We introduce the GRIDDESELECT graph generation method, which was also used by Johnston and

Chukova [151]. This method starts with a complete grid and randomly deletes arcs until the desired

density is achieved, ensuring at each step that an arc is not deleted if its deletion would disconnect the

graph.

Algorithm 6.1 procedure GRIDDESELECT

 // This procedure is a method for generating a connected grid-based subgraph of

 // a desired density by starting with a complete grid and iteratively removing arcs

 Input: Ac, D // The set of arcs in the complete grid and the desired density

 Output: A // The set of arcs in the generated subgraph

 A ← Ac

 repeat

 Randomly choose an arc a ∈ A

 Check if A \ a results in a connected graph

 if A \ a results in a connected graph then delete a from A

 until |A| = D × |Ac|

end

This method still results in a homogeneous graph, but is much more computationally efficient that the

GRIDSELECT method.

6.2.1.2 The GridGrow-k-Seeds generation method

The preliminary investigation introduced the GRIDGROW graph generation method. This method starts

with a single random arc from the complete grid, and then iteratively adds arcs until the desired density

is achieved, ensuring at each step that the graph is connected. So an arc is only added to the graph if it

is adjacent to an already-included arc.

164 Applying MLS to the ASRP Chapter 6

We develop this concept further by introducing the concept of seeds. The GRIDGROW-k-SEEDS

generation method is a hybrid of the GRIDSELECT and GRIDGROW methods from the preliminary

investigation. The initial step randomly includes k arcs from the complete graph; these are the seeds.

At each iteration an arc is randomly selected from the complete grid and included in the graph if it is

adjacent to an already-included arc; this is the similarity to the GRIDGROW method. However, at the

end of this process, when the desired density is achieved, the resulting graph may not be connected. If

this is the case the graph is discarded and the process repeats until a connected graph is obtained. This

is the similarity to the GRIDSELECT method.

Algorithm 6.2 procedure GRIDGROW-k-SEEDS

 // This procedure is a method for generating a connected grid-based subgraph of

 // a desired density by with k seed arcs from the complete grid and iteratively adding

 // adjacent arcs. If the resulting graph is disconnected then the procedure repeats.

 Input: Ac, D // The set of arcs in the complete grid and the desired density

 Output: A // The set of arcs in the generated subgraph

 repeat

 A ← ∅

 Randomly choose k seeds arcs a1, a2,..., ak from Ac

 Add arcs a1, a2,..., ak to A

 repeat

 Randomly choose an arc a from Ac \ A

 if a is adjacent to another arc in A then add a to A

 until |A| = D × |Ac|

 Check whether A results in a connected graph

 until A results in a connected graph

end

It turns out that not many iterations are needed to achieve a connected graph; most of the time this can

be achieved on the first attempt. Note that if k =1 then this method is the basic GRIDGROW method.

The advantage of the GRIDGROW-k-SEEDS methods is that they can result in more interesting, non-

homogeneous, graph structures; as noted in Chapter 3, the graph tends to be more dense around the

seeds.

6.2.2 Reward distribution

In the preliminary investigation of Chapter 3, rewards were randomly assigned to arcs, uniformly

chosen from some range U(a, b). The arcs were assigned randomly to a reward class based on

specified proportions; each reward class has a different range from which the rewards are generated.

However the rewards were spread randomly about the graph.

6.2 Problem instance design 165

In this chapter we introduce a new method that allows some regions of the graph to have higher rewards

than others by again utilizing the concept of seeds. Let R ⊆ A be the set of arcs that have had their

reward assigned. Randomly choose k arcs from A to be the reward seed arcs. Seed reward values are

assigned to these arcs then they are added to R; for example, if there are three seed arcs these might

have initial rewards of 5, 10 and 20. An unassigned arc a is randomly chosen from the adjacency of R,

such that a ∈ A\R is adjacent to an arc w ∈ R. The adjacent arc w from R is called the reward-parent

of a. If a is adjacent to more than one arc in R then one of these arcs is randomly chosen to be the

reward-parent. The reward of a is then chosen to be within a certain range either side of the reward

of w, with an adjustment to prevent rewards from going negative:

max(δ, rw) – δ ≤ ra ≤ max(δ, rw) + δ

where δ is the maximum deviation between an arc and its reward-parent. This process repeats until all

arcs are assigned. Depending on the value of δ, this method tends to create regions that have rewards in

similar ranges, and the randomness allows variation, resulting in a rich variety of reward distributions

for different graphs.

6.2.3 Depot location

The depot node is where the route must start and end. The location of the depot node can have a

potentially large effect on the type of solutions that are possible, especially for a low budget. For the

experiments in this chapter we assign the depot to a random node. Other possibilities include, but are

not limited to the following:

• Least central – so that the maximum shortest path between any two nodes is maximised.

• Most central – so that the maximum shortest path between any two nodes is minimised.

• Least rich – for each node a “richness” measure is calculated. This richness measure is found

by, for each arc, dividing the reward by the shortest distance to a node of that arc, and then

adding for all arcs. The node with the lowest richness measure is selected.

• Most rich – the same as for least rich, except that the node with the highest richness measure is

selected.

6.2.4 Problem instance generation settings

For the computational experiments in this chapter a set of 1440 problem instances was generated by

generating 30 instances for each combination of the following generation settings:

• 4 × graph generation and reward assignment methods:

o GRIDDESELECT, rewards assigned randomly from (5, 15)

o GRIDGROW-1-SEED, rewards assigned randomly from (5, 15)

o GRIDGROW-3-SEEDS, rewards assigned randomly from (5, 15)

o GRIDGROW-3-SEEDS, rewards assigned by seed: 3 seeds (5,8,10), with δ = 3.

• 3 × graph density levels: (25%, 50%, 75% of the complete grid)

• 4 × budget levels: (50%, 75%, 100%, 125% of total cost)

• 1 × depot setting method: random

166 Applying MLS to the ASRP Chapter 6

These settings were chosen to provide a good mix of problem instances.

6.2.5 Problem characteristics

Problem characteristics are metrics that can be calculated for a given problem instance. These are

calculated independently of the generation settings; two graphs generated in quite different ways could

nevertheless have similar characteristics, and conversely two graphs generated with the same settings

could have quite different characteristics. We extend the metrics introduced in Chapter 3 and define the

following set of problem characteristics, many of which are specific to graphs based on grid graphs.

There are characteristics for arc distribution, reward distribution and depot location.

• GRID_ROWS. The number of rows of vertices down the graph. Although we are using a 15×15

grid as a template, the actual graph might not extend all the way across, and so the effective

height of the grid may be less than 15 (if the resulting graph was drawn on a piece of paper and

the number of rows counted, this would be the “effective” height, which may be less than the

underlying complete grid template).

• GRID_COLUMNS. The number of columns of vertices across the graph. Although we are

using a 15×15 grid as a template, the actual graph might not extend all the way across, and so the

effective width of the grid may be less than 15.

• GRID_ARCS. The number of arcs in the complete grid corresponding to the effective grid

defined by GRID_ROWS and GRID_COLUMNS, rather than the 15×15 template grid.

• NODES. The number of nodes in the graph. Although the complete grid has 152 = 225 nodes,

the actual number in the graph is limited to only those that are incident on an included arc.

• ARCS. The number of arcs included in the graph.

• DENSITY. This measure is of the density of the graph based on the effective grid described

above: ARCS / GRID_ARCS. The DENSITY may be greater than the density used in the graph

generation method.

• BUDGET. The cost budget for the problem instance. In our case this corresponds to the

maximum number of arc traversals, since arcs have unit cost.

• AVG_NODE_DEGREE. The mean degree of included nodes, where the degree of a node is the

number of incident arcs, which may be 1, 2, 3 or 4.

• DEPOT_DEGREE. The degree of the depot node.

• DEPOT_ROWS_FROM_SIDE. Since the graph is laid out on a grid, every node may be thought

of as having a “distance” to each side, not based on the path to a “side” node, but the number of

grid rows or columns. This metric is the minimum of the four distances.

• PENDANT_ARCS. The number of arcs that are incident on a node of degree one. These are

arcs that are only connected to the rest of the graph at one end.

• STRAIGHTLINE_ARCS. The number of arcs that are connected to only two other arcs, one at

either end. Note that “straightline” arcs are not necessarily laid out in a straight lines on the grid.

• AVG_ARC_ADJACENCY. Each arc has an adjacency, the number of other arcs it is adjacent

to. This metric is the mean of these across all arcs.

• AVG_SHORTEST_PATH. Between every pair of nodes the shortest path may be calculated (for

example by using the Floyd-Warshall algorithm, described by Evans and Minieka [87]). This

6.3 MLS metaheuristics 167

metric is the mean of these shortest paths, and gives a measure of how well-connected the graph

is.

• AVG_DEPOT_SHORTEST_PATH. The mean of the shortest paths between the depot node and

every other node. Provides a measure of how centrally the depot node is located.

• BUDGET_TO_COST_RATIO. The ratio of the budget to the total cost of the graph, which in

our case is the same as the number of arcs since they have unit cost: BUDGET / ARCS.

• TOTAL_REWARD. The sum of the rewards of all arcs.

• MAX_REWARD. The maximum reward of any arc.

• MIN_REWARD. The minimum reward of any arc.

• AVG_REWARD. The mean of the rewards of all arcs.

• STD_DEV_REWARD. The standard deviation of the rewards of all arcs.

• AVG_NODE_INCIDENCE_REWARD. The incidence reward for a node is the sum of the

rewards of all incident arcs. This metric is the mean of these across all nodes.

Note that many of these characteristics will be strongly correlated, since they are designed to capture

slightly different aspects of the same underlying structural features. This is not a problem, as the

modelling procedures take that potential correlation into account.

6.3 MLS metaheuristics

We define a number of Modular Local Search heuristics. Our goal in this chapter is not to develop

particularly new or effective heuristics, but to demonstrate the basic mechanism and usage of MLS, so

the heuristics used are quite simple. We define variations of four common metaheuristic families:

Steepest Ascent, Simulated Annealing, Tabu Search, and Variable Neighbourhood Search. We propose

a number of variations of each of these, varying some of the key parameters. Detailed introductions to

these heuristics are given in Chapter 5; the descriptions below focus on the specific MLS

implementations of these that are used for experimentation in this chapter.

We consider 45 MLS instances in total. The motivation for these counts is given in

Sections 6.3.4-6.3.8; it depends on the number and type of the parameters being varied:

• 1 × Richest Neighbour

• 4 × Steepest Ascent

• 25 × Simulated Annealing

• 6 × Tabu Search

• 9 × Variable Neighbourhood Search

In Section 6.5 we then combine the modules that make up these heuristics into hybrids of various types.

6.3.1 Construction heuristic

The same construction heuristic is used to generate the initial solution for all the MLS metaheuristics.

This allows us to remove one degree of freedom; although the construction heuristic is very important

to the final solution quality, it isn’t part of the generic MLS framework, and much research has already

168 Applying MLS to the ASRP Chapter 6

been performed that investigates construction heuristics; we are more interested in the metaheuristic

strategies that come after this.

The construction heuristic used is the RICHEST NEIGHBOUR heuristic from Chapter 3 (Algorithm 3.3),

with a lookahead of 1. In the computational experiments that follow we also present the results from

this heuristic, to be used as the base level of performance from which the metaheuristics improve.

6.3.2 Move types

A solution for the ASRP is a route through a number of arcs, represented as an ordered sequence of

nodes, beginning and ending at the depot node. The objective function is the total reward of the arcs

included in the route.

For the purposes of this experiment we utilize two sets of the move-types defined in Chapter 3: the

basic move-types ADD, DROP, SHORTCUT and DETOUR, and the extended move-types NADD, NDROP,

NSHORTCUT and NDETOUR.

6.3.3 MLS defaults

In the descriptions of the metaheuristics that follow an MLS configuration is a template that defines

which modules and parameters are included in the heuristic. An MLS instance is a specific instance of

that configuration, with the parameter values set. In the configuration, if there are multiple values that a

parameter may take, these are represented in curly braces, e.g. {1, 2, 3}.

The configurations only list deviations from the defaults, rather than listing every module explicitly

each time. For the purposes of this chapter’s experimentation the defaults are listed below:

• Move-list size: 5000

• Move selection order: random

• Neighbourhood reduction process: none

• Admissibility condition: FEASIBLE (Algorithm 6.3)

• Fitness function: OBJECTIVE (Algorithm 6.5)

• Examinations maximum: unlimited

• Examination order: random

• Generate-initial-solution: RICHEST NEIGHBOUR(1) (Algorithm 3.3)

• Initialize-memory: none

• Update-memory: UPDATE BEST-SO-FAR (OBJECTIVE) (Algorithm 6.6)

• Change-current-solution: none

• Memory structures: best-so-far solution (objective)

The move-list size was set to 5000 after an early round of experimentation that caused some of the

heuristics to take prohibitively long to execute.

In particular, note that for these experiments we do not allow infeasible solutions, the FEASIBLE

admissibility condition (Algorithm 6.3) always applies. Recall that multiple admissibility conditions

may be active at any time, and they must all be satisfied for the solution to be admissible.

6.3 MLS metaheuristics 169

Specific modules are defined for each heuristic, but the following modules are common to many of the

heuristics, or are in principle generic. Recall the notation conventions that s represents a solution

(usually the current solution), s′ represents a trial neighbour solution, s″ represents the target solution,

i.e. the best admissible neighbour, s* is the best-so-far solution, f(s) is the fitness function value of s,

z(s) is the objective function value of s, c(s) is the cost of s, A is the set of admissible neighbours and B

is the cost budget.

Modules that are specific to the ASRP have the scope explicitly defined; all other modules are generic

and may be applied to any problem domain.

6.3.3.1 Admissibility condition modules

Algorithm 6.3 presents an admissibility condition that is domain-specific to the ASRP. This

admissibility condition is satisfied if the solution is feasible, which in the context of the ASRP means

that the total cost does not exceed the budget.

Algorithm 6.3 MLS admissibility condition FEASIBLE (ASRP)

 Scope: ASRP problems

 Input: s′, B // The trial solution and the cost budget

 Calculate the cost of the trial solution, c(s′)

 if c(s′) ≤ B then

 return admissible

 else

 return inadmissible

 end

end

Algorithm 6.4 gives the improving admissibility condition, which is satisfied if the trial solution has a

strictly better fitness function value than the current solution.

Algorithm 6.4 MLS admissibility condition IMPROVING

 Input: f(s), s′ // The fitness of the current solution and the trial solution

 Calculate the fitness of the trial solution, f(s′)

 if f(s′) > f(s) then

 return admissible

 else

 return inadmissible

 end

end

170 Applying MLS to the ASRP Chapter 6

6.3.3.2 Fitness function modules

Algorithm 6.5 gives the OBJECTIVE fitness function, which is the default unless specifically over-ridden.

Algorithm 6.5 MLS fitness function OBJECTIVE

 Input: s // The solution being evaluated

 return z(s)

end

6.3.3.3 Update-memory modules

Algorithm 6.6 gives the default update-memory function, which is to update the best-so-far solution if

the target solution is better.

Algorithm 6.6 MLS update-memory UPDATE BEST-SO-FAR (OBJECTIVE)

 Input: s″, s* // The target solution and the BSF solution

 if z(s″) > z(s*) then

 s* ← s″ // Update the best-so-far

 end

end

6.3.3.4 Trigger modules

Algorithm 6.7 gives the local optimum trigger, which is tripped if there were no admissible neighbours

found in the previous iteration of the search scheme. Note that this is only checking for an apparent

local optimum; there may have been other admissible solutions that were technically in the

neighbourhood of the current solution, but were not examined due to the search logic.

Algorithm 6.7 MLS trigger LOCAL OPTIMUM

 Input: A // The set of admissible candidates

 if A = ∅ then

 return tripped

 else

 return not tripped

 end

end

Algorithm 6.8 checks whether a certain number of iterations have passed since a specified trigger has

been tripped. Every trigger has an automatic counter memory parameter that is incremented every

iteration and is reset to zero when tripped. This trigger takes a parameter which is the trigger whose

counter is being checked; this can be, but is not necessarily, this trigger itself. If this trigger is included

in the configuration it has a requirement that the threshold memory parameter also be set.

6.3 MLS metaheuristics 171

Algorithm 6.8 MLS trigger ITERATIONS SINCE LAST TRIGGER (trig)

 Prerequisite: A memory parameter must be defined for the iteration threshold.

 Input: ttrig, θ // The number of iterations since trigger “trig” was last tripped and

 the iteration threshold for this trigger

 if ttrig ≥ θ then

 return tripped

 else

 return not tripped

 end

end

Algorithm 6.9 checks whether the total number of iterations since the metaheuristic started has reached

some threshold. Usually used to terminate the heuristic, or in more complicated scenarios to enter a

new phase.

Algorithm 6.9 MLS trigger TOTAL ITERATIONS

 Prerequisite: A memory parameter must be defined for the iteration threshold.

 Input: t, θ // The number of iterations and the iteration threshold for this trigger

 if t ≥ θ then

 return tripped

 else

 return not tripped

 end

end

Algorithm 6.10 checks whether the specified trigger has been tripped a certain number of times. Every

trigger has an automatic counter memory parameter that is incremented each time the trigger is tripped.

This trigger takes a parameter which is the trigger whose counter is being checked; this can be, but is

not necessarily, this trigger itself. If this trigger is included in the configuration it has a requirement

that the threshold memory parameter also be set.

172 Applying MLS to the ASRP Chapter 6

Algorithm 6.10 MLS trigger TRIGGER TRIP COUNT (trig)

 Prerequisite: A memory parameter must be defined for the trip count threshold.

 Input: Ktrig, θ // The number of times that trigger “trig” has been tripped and

 the trip count threshold for this trigger

 if Ktrig ≥ θ then

 return tripped

 else

 return not tripped

 end

end

6.3.3.5 Response modules

All MLS configurations must include Algorithm 6.11, which is the termination response. This response

can belong to a variety of different triggers.

Algorithm 6.11 MLS response TERMINATE

 Terminate the heuristic, returning the best solution found so far

end

Algorithm 6.12 is the response to deactivate a particular trigger, which is specified as an input

parameter. An inactive trigger is not checked at the end of the search scheme iteration until it is

reactivated.

Algorithm 6.12 MLS response DEACTIVATE TRIGGER (trig)

 Set trigger trig to inactive

end

Algorithm 6.13 is the response to activate a particular trigger, which is specified as an input parameter.

Algorithm 6.13 MLS response ACTIVATE TRIGGER (trig)

 Set trigger trig to active

end

Algorithm 6.14 is the response to deactivate a particular admissibility condition, which is specified as

an input parameter.

Algorithm 6.14 MLS response DEACTIVATE ADMISSIBILITY CONDITION (c)

 Set admissibility condition c to inactive

end

Algorithm 6.15 is the response to activate a particular admissibility condition, which is specified as an

input parameter.

6.3 MLS metaheuristics 173

Algorithm 6.15 MLS response ACTIVATE ADMISSIBILITY CONDITION (c)

 Set admissibility condition c to active

end

6.3.4 Richest Neighbour

This metaheuristic is a trivial container for the solution obtained by the construction heuristic. It simply

immediately terminates, returning the constructed solution. Algorithm 6.16 gives the MLS

configuration. Since the move-list size is set to zero, no moves are selected, no solutions are examined,

and therefore an apparent local optimum has been reached so the procedure terminates.

The configuration is called RICHEST NEIGHBOUR since this is the solution obtained by the construction

heuristic RICHEST NEIGHBOUR(1). In the experimentation this instance is called “RN1”.

Algorithm 6.16 MLS configuration RICHEST NEIGHBOUR

 Generate-initial-solution: RICHEST NEIGHBOUR(1) (Algorithm 3.3)

 Move-list size: 0

 Triggers and responses:

 Trigger: LOCAL OPTIMUM (Algorithm 6.7) - active

 Response: TERMINATE (Algorithm 6.11)

end

6.3.5 Steepest Ascent

Steepest Ascent is one of the simplest local search heuristics; it examines all of the solutions in the

neighbourhood and selects the best improving solution, iterating until there are no improving solutions

in the neighbourhood, at which time the current (best) solution is returned.

Steepest Ascent is expressed with the configuration in Algorithm 6.17.

Algorithm 6.17 MLS configuration STEEPEST ASCENT

 Move-types: {basic, extended}

 Admissibility conditions:

 IMPROVING (Algorithm 6.4)

 FEASIBLE (Algorithm 5.1)

 Candidate list size: unlimited

 Triggers and responses:

 Trigger: LOCAL OPTIMUM (Algorithm 6.7) - active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Lookahead: {4, 8, 12}

end

There are no additional modules required for Steepest Ascent, other than those already defined.

174 Applying MLS to the ASRP Chapter 6

6.3.5.1 Steepest Ascent instances for experimentation

Four instances of Steepest Ascent are considered, as shown in Table 6.1:

Table 6.1: Configuration settings for the Steepest Ascent MLS instances

Name Move-type set Lookahead

StpAscBasic basic 1

StpAscExt4 extended 4

StpAscExt8 extended 8

StpAscExt12 extended 12

6.3.6 Simulated Annealing

Simulated Annealing is one of the oldest metaheuristics. The first admissible candidate examined is

chosen as the target, improving solutions are always accepted, and non-improving solutions are

accepted with a certain probability, which decreases as the heuristic progresses.

Simulated Annealing is expressed with the configuration in Algorithm 6.18.

Algorithm 6.18 MLS configuration SIMULATED ANNEALING

 Move-types: basic

 Admissibility conditions:

 ANNEALING PROBABILITY (Algorithm 6.19)

 FEASIBLE (Algorithm 6.3)

 Candidate list size: 1

 Triggers and responses:

 Trigger-1: ITERATIONS SINCE LAST TRIGGER (trigger-1) (Algorithm 6.8) - active

 Response: REDUCE ANNEALING TEMPERATURE (Algorithm 6.20)

 Trigger-2: TEMPERATURE THRESHOLD (Algorithm 6.21) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Annealing temperature: {100, 250, 500, 1000, 1500}

 Cooling rate: {0.99, 0.95, 0.80, 0.60, 0.35}

 Iterations before temperature reduction: {5, 10, 20, 50, 80}

 Temperature threshold: {0.001, 0.05, 0.2, 1.0, 10}

end

Note that the memory parameter iterations before temperature reduction is the threshold used in

Trigger-1.

Simulated Annealing also has a number of specialist modules. The main module is the

ANNEALING PROBABILITY admissibility condition defined in Algorithm 6.19. This module has the

prerequisite that the annealing temperature and cooling rate memory parameters are defined.

6.3 MLS metaheuristics 175

Algorithm 6.19 MLS admissibility condition ANNEALING PROBABILITY

 Prerequisites: Memory parameters must be defined for the annealing temperature and

 the cooling rate.

 Input: f(s), s′, T // The fitness of the current solution, the trial solution and the

 annealing temperature

 Calculate the fitness of the trial solution, f(s′)

 δ ← f(s′) – f(s)

 if δ > 0 then

 return admissible

 else if Uniform(0,1) < e -δ / T then

 return admissible

 else

 return inadmissible

 end

end

Algorithm 6.20 is a specialist Simulated Annealing response, it reduces the annealing temperature. This

response represents the “annealing” concept in the Simulated Annealing heuristic; it makes non-

improving solutions less likely to be accepted as admissible. This response is technically an update-

memory module, and the response is to execute the update-memory module, but they are

computationally equivalent.

Algorithm 6.20 MLS response REDUCE ANNEALING TEMPERATURE

 Input: T, a // The annealing temperature and the cooling rate

 T ← a.T

end

Algorithm 6.21 describes the specialist Simulated Annealing trigger that is used to detect when the

heuristic should be terminated. When the annealing temperature has been reduced below a certain

threshold this trigger is tripped.

176 Applying MLS to the ASRP Chapter 6

Algorithm 6.21 MLS trigger TEMPERATURE THRESHOLD

 Prerequisite: The memory parameters for the annealing temperature and the minimum

 temperature threshold must be defined

 Input: T, Tmin // The current annealing temperature and the temperature threshold

 if T ≤ Tmin then

 return tripped

 else

 return not tripped

 end

end

6.3.6.1 Simulated Annealing instances for experimentation

The version of the Simulated Annealing metaheuristic used here has four parameters, each with five

values:

• Annealing temperature: {100, 250, 500, 1000, 1500}

• Cooling rate: {0.99, 0.95, 0.80, 0.60, 0.35}

• Iterations before temperature reduction: {5, 10, 20, 50, 80}

• Temperature threshold: {0.001, 0.05, 0.2, 1.0, 10}

A full factorial design would call for 54 = 625 different Simulated Annealing heuristics. Instead, a

Taguchi experimental design for four factors, each at five levels, was used. The Taguchi design

allowed an even spread of the parameter values to be chosen, while keeping the number of variations to

a minimum (see Wu and Hamada [251] for a description of Taguchi experimental designs). The

Simulated Annealing instances are listed in Table 6.2.

6.3 MLS metaheuristics 177

Table 6.2: Configuration settings for the Simulated Annealing MLS instances

Name Temp Rate Iterations Threshold

SA1 1500 0.99 80 0.001

SA2 1500 0.95 50 0.05

SA3 1500 0.80 20 0.2

SA4 1500 0.60 10 1

SA5 1500 0.35 5 10

SA6 1000 0.99 50 0.2

SA7 1000 0.95 20 1

SA8 1000 0.80 10 10

SA9 1000 0.60 5 0.001

SA10 1000 0.35 80 0.05

SA11 500 0.99 20 10

SA12 500 0.95 10 0.001

SA13 500 0.80 5 0.05

SA14 500 0.60 80 0.2

SA15 500 0.35 50 1

SA16 250 0.99 10 0.05

SA17 250 0.95 5 0.2

SA18 250 0.80 80 1

SA19 250 0.60 50 10

SA20 250 0.35 20 0.001

SA21 100 0.99 5 1

SA22 100 0.95 80 10

SA23 100 0.80 50 0.001

SA24 100 0.60 20 0.05

SA25 100 0.35 10 0.2

6.3.7 Tabu Search

Tabu Search selects the best neighbouring solution from the neighbourhood whether it is improving or

not. This allows it to escape from local optima, but can cause cycling. It mitigates this by maintaining

a tabu list of solution elements that may not be changed for a certain number of iterations, the tabu

tenure. In the case of the ASRP we make arcs tabu when they are added or removed from the route;

they may not be added or removed from the route again until the tabu tenure has elapsed. The

exception is when the neighbouring solution meets the aspiration criterion that it is (strictly) better than

the best-so-far solution.

178 Applying MLS to the ASRP Chapter 6

Tabu Search is expressed with the configuration given in Algorithm 6.22.

Algorithm 6.22 MLS configuration TABU SEARCH

 Move-types: basic

 Admissibility conditions:

 TABU ARCS WITH ASPIRATION (Algorithm 6.23)

 FEASIBLE (Algorithm 6.3)

 Candidate list size: unlimited

 Memory update: UPDATE TABU ARCS (Algorithm 6.24)

 Triggers and responses:

 Trigger: TOTAL ITERATIONS (Algorithm 6.9) - active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Tabu tenure: {3, 5, 7, 10, 15, 20}

 Iteration threshold for termination: 1000

end

Tabu Search has a number of specialist modules. The main module is the admissibility condition that

checks whether the neighbouring solution involves changing any tabu arcs, as defined in Algorithm

6.23. For notational convenience we treat a solution s as a set of arcs.

Algorithm 6.23 MLS admissibility condition TABU ARCS WITH ASPIRATION

 Scope: ASRP problems

 Prerequisites: The tabu tenure memory parameter, and the tabu list memory element

 must be defined

 Input: s*, s, s′, T // The best-so-far solution, the current solution, the trial solution and

the tabu list

 ∆ ← {s ∪ s′} \ { s ∩ s′} // Find all the arcs that have changed from s to s′

 if ∆ ∩ T = ∅ then // No tabu arcs are changed

 return admissible

 else if f(s′) > f(s*) then // Tabu arcs are changed but the aspiration criterion is met

 return admissible

 else

 return inadmissible

 end

end

After each iteration the tabu list needs to be updated; any arcs that have changed from the current

solution to the target solution need to be added, and their remaining tenure set to the tabu tenure

memory parameter, arcs already on the list need to have their remaining tenure decremented, and then

arcs that have zero remaining tenure must be removed from the list. In MLS the tabu list is actually a

list of tabu items. A tabu item is a memory element that is a container for an arc and an integer

6.3 MLS metaheuristics 179

representing the remaining tabu tenure. For convenience, we refer to arcs being on the tabu list, and to

setting their tenure; programmatically this is managed with the tabu items. Algorithm 6.24 describes

the procedure by which the tabu list is updated.

Algorithm 6.24 MLS update-memory UPDATE TABU ARCS

 Scope: ASRP problems

 Prerequisites: The tabu tenure memory parameter, and the tabu list memory element

 must be defined. The tabu arcs with aspiration admissibility condition must be

 active.

 Input: s, s″, T, τ , ra // The current solution, the best solution, the tabu list, the tabu

 tenure, and the remaining tenure for all arcs a ∈ T

 ∆ ← {s ∪ s″} \ { s ∩ s″} // Find all the arcs that have changed between from s and s″

 ra ← ra – 1, ∀ a ∈ T // Decrement the tenure of all the arcs currently on the list

 T ← T \ {a: ra = 0} // Remove any arcs with no remaining tenure from the list

 ra ← τ, ∀ a ∈ ∆ // Set the tenure of any changed arcs to the tabu tenure parameter

 T ← T ∪ ∆ // Add the changed arcs to the tabu list

end

6.3.7.1 Tabu Search instances for experimentation

Six instances of Tabu Search are considered, each the same except for the tabu tenure. These are listed

in Table 6.1.

Table 6.3: Configuration settings for the Tabu Search MLS instances

Name Tabu tenure

Tabu3 3

Tabu5 5

Tabu7 7

Tabu10 10

Tabu15 15

Tabu20 20

6.3.8 Variable Neighbourhood Search

Variable Neighbourhood Search proceeds like Steepest Ascent until a local optimum is reached, at

which point the set of move-types is changed so that the current solution may no longer be a local

optimum with respect to the new search topology and the search may continue. Our variation of this

metaheuristic uses the change of neighbourhood structure as a temporary diversification phase; the set

of move-types is changed for a certain number of iterations and then changed back. For the ASRP

implementation we utilize two sets of move-types: the basic move-types (ADD, DROP, SHORTCUT and

DETOUR) and the extended move-types (NADD, NDROP, NSHORTCUT and NDETOUR).

Variable Neighbourhood Search is expressed with the configuration in Algorithm 6.25.

180 Applying MLS to the ASRP Chapter 6

Algorithm 6.25 MLS configuration VARIABLE NEIGHBOURHOOD SEARCH

 Move-types: basic, extended

 Admissibility conditions:

 IMPROVING (Algorithm 6.4)

 FEASIBLE (Algorithm 6.3)

 Candidate list size: unlimited

 Triggers and responses:

 Trigger-1: LOCAL OPTIMUM (Algorithm 6.7) - active

 Response: SWITCH TO EXTENDED MOVE-TYPES (Algorithm 6.27)

 Response: DEACTIVATE TRIGGER (trigger-1) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-2) (Algorithm 6.13)

 Trigger-2: ITERATIONS SINCE LAST TRIGGER (trigger-2) (Algorithm 6.8) - inactive

 Response: SWITCH TO BASIC MOVE-TYPES (Algorithm 6.26)

 Response: DEACTIVATE TRIGGER (trigger-2) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-1) (Algorithm 6.13)

 Trigger-3: TOTAL ITERATIONS (Algorithm 6.9) - active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Lookahead: {4, 8, 12}

 Iterations in diversification phase: {1, 3, 5}

end

Note that the memory parameter iterations in diversification phase is the threshold used in Trigger-2.

This implementation of Variable Neighbourhood Search requires an additional two response modules,

Algorithm 6.26, which swaps the move-types from the extended set to the basic set, and Algorithm 6.27

that performs the opposite operation.

Algorithm 6.26 MLS response SWITCH TO BASIC MOVE-TYPES

 // Activates the basic move-types and deactivates the extended move-types.

 // The basic set consists of {ADD, DROP, SHORTCUT, DETOUR};

 // the extended set consists of {NADD, NDROP, NSHORTCUT, NDETOUR}.

 Scope: ASRP problems

 Set the extended move-types inactive

 Set the basic move-types active

end

6.4 Experimentation and analysis 181

Algorithm 6.27 MLS response SWITCH TO EXTENDED MOVE-TYPES

 // Activates the extended move-types and deactivates the basic move-types.

 // The basic set consists of {ADD, DROP, SHORTCUT, DETOUR};

 // the extended set consists of {NADD, NDROP, NSHORTCUT, NDETOUR}.

 Scope: ASRP problems

 Set the basic move-types inactive

 Set the extended move-types active

end

6.3.8.1 Variable Neighbourhood Search instances for experimentation

Nine instances of Variable Neighbourhood Search are considered, crossing three levels for the two

parameters, as shown in Table 6.4.

Table 6.4: Configuration settings for the Variable Neighbourhood Search MLS instances

Name Lookahead
Diversification

iterations

VNS4_1 4 1

VNS4_3 4 3

VNS4_5 4 5

VNS8_1 8 1

VNS8_3 8 3

VNS8_5 8 5

VNS12_1 12 1

VNS12_3 12 3

VNS12_5 12 5

6.4 Experimentation and analysis

The experimentation phase was conducted as a number of tournaments. The number of instances

(1440) and heuristics (45) precluded running every heuristic on every problem instance, although this

was the original intention. In total, 43,765 experiments were performed, requiring a combined duration

of 4,569 computer hours, or 27 computer weeks. In actuality the duration was less than this because the

experiments were spread across a number of machines, however it still required several months of

computation. It was decided that this subset of experiments constituted a large enough population to

enable meaningful analysis.

Unfortunately, because the experiments were run on a number of different computers, direct

comparison of the exact running times is not possible, however all of the machines were approximately

similar in terms of processor speed and RAM, so some qualitative analysis can be performed; all

machines were Intel Core2-Duo processors running Windows XP, with 4GB of RAM. In particular, all

of the heuristics of each type were performed on the same machine (e.g. all the Tabu Search heuristics

were performed on the same machine), so these may be compared with each other more directly. Note

182 Applying MLS to the ASRP Chapter 6

that the problem instances were randomized before being assigned to the heuristics, in order to get a

good mix of problem types.

We begin the analysis with a general comparison of the performance of the heuristics, and then analyze

each heuristic family in more detail, including some attempts to model the relationship between

problem characteristics and heuristic performance, attacking the problem in several ways.

6.4.1 Predicting relative performance of heuristics

When solving real world combinatorial optimization problems, one of the questions that an Operations

Research practitioner must answer is that of which solution methodology to use. If the problem is of

such a size or complexity that exact algorithms are impractical then a metaheuristic must be chosen.

Many of the “case studies” in the literature seem to choose a particular heuristic with no justification.

From a certain perspective this is understandable; practitioners do not always have the time to compare

multiple methods, and it is not always necessary to find the “best” method; sometimes any heuristic will

give solutions that are “good enough”.

However a methodology for systematically determining which types of heuristics are suited for which

problems would be a useful addition to the field, especially combined with a standardized way to

describe metaheuristics. We do not attempt to develop such a methodology, but we do provide some

validation of the feasibility of such an approach.

Our goal, in the analysis of the computational results of this chapter, is to determine whether it is

possible to train a predictive model such that on a separate test set of problem instances it is able to

predict which of two heuristics will perform the best.

We attempt several methods, however the general idea is to get a set of problem instances where on

approximately half of the instances heuristic A outperforms heuristic B, and on half the instances

heuristic B outperforms heuristic A. This balanced dataset prevents the model simply using the prior

probabilities to pick one heuristic over the other. We then divide the dataset into training and test

subsets. The predictive model is trained on the training set, and then the model is applied to the test set

to determine the classification accuracy. The only variables available to the predictive model are the

problem characteristics.

Our success criterion for these experiments is whether the model has a better accuracy than we would

expect from a random selection. This both validates the approach, and is a potentially valuable result in

itself. Even a small increase in performance over a random selection might cause valuable insights in

the “real world”, where often the same problem must be resolved regularly with different data.

For the classification models we deliberately use a range of standard modelling techniques from the

statistical software packages SAS and SPSS Clementine. The techniques include neural networks,

logistic regression, and decision trees. All models were created using the default settings in the

modelling software.

6.4 Experimentation and analysis 183

6.4.2 General comparison

There were 246 problem instances that were solved by all 45 heuristics, for a total of 11,070

experiments. Figure 6.1 shows the sum of all reward collected for these instances, by heuristic.

Figure 6.1: Sum of reward collected by heuristic for 246 instance overlap set

Results from one problem instance are not directly comparable with results from another instance, since

the amount of reward collected will be directly proportional to a number of factors in addition to the

performance of the heuristic: the number of arcs, the cost budget, and the amount of reward on the

graph. We define a new measure, which we call the score, Z:

 Z = reward collected / (total reward on graph * budget to cost ratio)

The denominator of this equation is a crude proxy for how much reward we might “expect” to be

collected, all other things being equal. Figure 6.2 reproduces the above graph for the mean score

values, also giving 95% confidence bands for the mean, which are calculated automatically by SAS.

184 Applying MLS to the ASRP Chapter 6

Figure 6.2: Score means for Steepest Ascent heuristics with 95% confidence bars

We are able to make some general observations about these results:

• The derived score metric appears to result in the same rankings and relative shape as the raw

reward.

• Several of the Simulated Annealing heuristics performed very well (including the best), but a

large number of Simulated Annealing heuristics performed very poorly.

• All of the Tabu Search heuristics performed well, and the higher the tabu tenure the better the

performance. Overall, the Tabu Search family of heuristics performed the most consistently well.

• All of the Variable Neighbourhood Search heuristics performed very similarly.

• One of the Steepest Ascent heuristics performed quite well, the others not as well.

We restrict consideration to the “competitive” heuristics, making a cut-off point after SA16, due to the

step change in performance (excluding all but four of the SA heuristics and the RN heuristic), and

consider the average running time of each heuristic family. The VNS and SA heuristics had running

times on the order of 20 minutes, compared to 2 minutes for the TS heuristics and 20 seconds for the

StpAsc heuristics.

6.4.3 Analysis of Steepest Ascent results

The four Steepest Ascent heuristics were run on all 1440 problem instances. Recall that the four

heuristics are the same, except for the move-types that are allowed. Three heuristics had the extended

ASRP move-types, with different lookahead parameters (4, 8 and 12), and one heuristic had the basic

6.4 Experimentation and analysis 185

move-types, which are equivalent to the extended move-types with lookahead = 1. So any differences

are due to the effect of the different lookahead parameter.

6.4.3.1 General performance of Steepest Ascent heuristics

The first consideration is the overall performance of the heuristics. Figure 6.3 shows the total reward

collected, and Figure 6.4 shows the mean score, for all 1440 problem instances. It seems clear that, in

aggregate, increasing the lookahead parameter worsens the performance of Steepest Ascent, with two

clear levels of performance. This seems counter-intuitive, but can possibly be explained by reference to

the default limit of 5000 on the number of moves examined. The higher the lookahead, the less of the

neighbourhood that can be examined.

Figure 6.3: Total reward for Steepest Ascent

Figure 6.4: Mean score for Steepest Ascent

We next check whether the order of heuristic performance is a strict dominance relation, or whether it

varies depending on the problem instance. For each instance, the heuristics are ranked 1-4 and then the

proportion of the 1440 instances that the heuristic has each rank is calculated. In the event of a tie, both

heuristics receive the better rank.

Table 6.5: Proportion of problem instances at each rank for Steepest Ascent

Rank

Heuristic 1 2 3 4

StpAscBasic 52% 24% 11% 13%

StpAscExt4 37% 51% 10% 3%

StpAscExt8 8% 16% 48% 28%

StpAscExt12 4% 9% 31% 55%

Table 6.5 shows that there is no strict dominance of the heuristics. Note that the same rank proportions

were obtained for reward and score. Each of the heuristics is best, and worst, on some instances.

However, there is a clear relationship between a low lookahead parameter and higher performance.

From our perspective, the interesting aspect of this is to determine if there is a systematic reason

relationship between heuristic performance and the characteristics of the problem instance.

186 Applying MLS to the ASRP Chapter 6

6.4.3.2 Modelling relative heuristic performance of Steepest Ascent

Several initial attempts to use decision trees and neural networks to predict relative heuristic

performance failed. The models had a predictive accuracy barely above random. Multiple variations

were explored, including using the problem characteristics and the rank to classify the observation as

the correct heuristic, and using the problem characteristics and the heuristic to predict the rank.

Although it appears that we cannot easily predict relative heuristic performance for four heuristics, it is

interesting to consider whether this can be achieved in a restricted sense.

6.4 Experimentation and analysis 187

Table 6.6: Combinations of ranks for Steepest Ascent

StpAscBasic StpAscExt4 StpAscExt8 StpAscExt12 freq Percent

1 2 3 4 401 27.8%

1 2 4 3 247 17.2%

2 1 3 4 220 15.3%

2 1 4 3 85 5.9%

3 1 2 4 78 5.4%

4 1 2 3 67 4.7%

1 3 2 4 47 3.3%

4 1 3 2 42 2.9%

3 2 1 4 37 2.6%

1 3 4 2 28 1.9%

4 2 1 3 26 1.8%

3 1 4 2 25 1.7%

4 3 2 1 24 1.7%

4 3 1 2 17 1.2%

2 3 1 4 14 1.0%

4 2 3 1 11 0.8%

1 4 3 2 9 0.6%

2 3 4 1 8 0.6%

2 4 1 3 8 0.6%

1 4 2 3 7 0.5%

3 2 4 1 7 0.5%

3 4 1 2 6 0.4%

3 4 2 1 6 0.4%

2 4 3 1 3 0.2%

1 2 2 2 2 0.1%

2 1 3 3 2 0.1%

4 1 1 3 2 0.1%

4 1 2 2 2 0.1%

1 1 4 3 1 0.1%

1 2 2 4 1 0.1%

2 3 3 1 1 0.1%

3 1 1 4 1 0.1%

3 1 4 1 1 0.1%

3 4 1 1 1 0.1%

4 1 1 1 1 0.1%

4 1 3 1 1 0.1%

4 2 1 2 1 0.1%

We now attempt to determine whether we can learn to predict which heuristic will perform better, based

purely on problem characteristics. Table 6.6 gives all the combinations of ranks in the 1440 problem

instances executed by the Steepest Ascent heuristics. So, for example, the top row indicates that there

are 401 problem instances where the heuristics performed in the following order of performance:

StpAscBasic, StpAscExt4, StpAscExt8, StpAscExt12. In total there are 449 instances where

188 Applying MLS to the ASRP Chapter 6

StpAscBasic performs best and StpAscExt12 performs worst (case A), and 37 instances where

StpAscExt12 performs best and StpAscBasic performs worst (case B), where best means rank=1 and

worst means rank=4. Our method is to use these extreme cases to train a prediction algorithm, and then

apply this algorithm to the remainder of the instances (where the difference in performance is not so

extreme) to test if it can predict relative performance. The objective here is to determine whether

predicting relative heuristic performance is possible, rather than to analyze the nature of these particular

Steepest Ascent heuristics, hence the choice of only the these two cases.

We include all 37 instances for case B and randomly select 37 instances from case A to obtain a set of

74 instances that is balanced such that there are the same number of instances where each heuristic

outperforms the other. A balanced training set ensures that the prediction algorithm does not simply

base its classifications on the relative proportions of the cases.

A neural network was built using half of the input dataset for training and half for testing. The neural

network was built using the default settings of the statistical modelling software package SPSS

Clementine, which automatically trains a multilayer perceptron (artificial neural network) to the given

data. On the test dataset it achieved a classification accuracy of 88.6%, which is extremely good

compared to a random classification. One of the outputs of the neural net procedure is the relative

importance of the input variables; these importance values are given in Table 6.7.

Table 6.7: Relative importance of input characteristics to neural net

Characteristic Importance

Budget_to_cost_ratio 0.4396

Nodes 0.2362

Avg_shortest_path 0.2322

Pendant_arcs 0.2191

Avg_node_degree 0.2179

Budget 0.1829

Avg_arc_adjacency 0.1812

Mean_node_incidence_reward 0.1218

Straightline_arcs 0.1188

Depot_degree 0.1115

Min_reward 0.1008

Mean_reward 0.0886

Avg_depot_shortest_path 0.0716

Grid_arcs 0.0706

Arcs 0.0680

Grid_cols 0.0469

Total_cost 0.0444

Depot_rows_from_side 0.0261

Density 0.0254

Grid_rows 0.0207

Std_dev_reward 0.0196

Max_reward 0.0090

Total_reward 0.0023

6.4 Experimentation and analysis 189

The next step is to test the heuristic on the remainder of the instances. Recall that 74 problem instances

were used in the training of the neural network algorithm. That leaves 1366 instances that have had no

input to the neural network. These instances form our test set.

Table 6.8: Classification results on the test set

 Classified A Classified B

Case A 530 209
 71.7% 28.3%

Case B 50 165
 23.3% 76.7%

Table 6.8 presents the results of the test; the results are extremely positive. The percentages displayed

are the proportion of the instances for each case that are classified in each bucket. For example, of the

739 problem instances that were case A, 530 were correctly classified as case A (71.7%), and 209 were

classified incorrectly as case B (28.3%). The overall classification accuracy of the prediction algorithm

is 72.9%.

6.4.3.3 Summary of Steepest Ascent results

There is a clear inverse relationship between look-ahead period and heuristic performance, when

considered in aggregate over the whole set of problem instances. However, this is not a strict

relationship; there are a number of instances where each of the heuristics performs better than the

others. An interesting question is whether this is a random or a systematic effect.

A trial experiment was conducted to determine whether a neural network could predict which of two

heuristics, StpAscBasic and StpAscExt12, would perform best on a sample of problem instances that

the neural network had not been trained on. The neural network had a classification accuracy of 72.9%

on the test set, which clearly proves our hypothesis that it is possible to predict relative heuristic

performance based solely on an analysis of the problem characteristics.

6.4.4 Analysis of Simulated Annealing results

The 25 Simulated Annealing heuristics were run on a total of 546 common instances. Recall that the

heuristics had four varying parameters, each with five values. Instead of the full factorial design of 625

heuristics, an experimental design of 25 was chosen, as listed in Table 6.2.

6.4.4.1 General performance of Simulated Annealing heuristics

Figure 6.5 gives the total reward collected by each heuristic, and Figure 6.6 gives the mean score, with

95% confidence limits. Recall that the score is defined as:

reward collected / (total reward on graph * budget to cost ratio).

190 Applying MLS to the ASRP Chapter 6

Figure 6.5: Total reward for Simulated Annealing

Figure 6.6: Mean score for Simulated Annealing

Note that the top four Simulated Annealing heuristics perform better than the others, with the top two a

clear step above the second two.

It is interesting to consider how well each heuristic performs in relation to the others. For each problem

instance we rank the heuristics based on their performance, and then count the number of times they

achieved each rank. Table 6.9 displays the counts of these ranks, ordered by decreasing total reward,

and heat-mapped to indicate the magnitude of that frequency (dark cells correspond to higher values).

Table 6.9: Distribution of ranks for Simulated Annealing heuristics ordered by total reward

Heuristic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Total Reward

SA1 384 144 7 1 2 1 1 3 2 1 598,064

SA6 152 359 23 3 1 1 2 1 2 1 1 588,424

SA2 6 10 230 210 47 19 6 6 2 3 2 1 1 2 1 504,672

SA16 5 17 228 203 52 16 9 3 2 1 3 1 3 1 1 1 497,777

SA23 1 3 17 26 147 131 80 47 36 15 16 9 2 1 2 1 2 3 2 1 4 395,484

SA12 2 8 28 120 135 94 48 39 27 20 7 2 3 2 2 1 3 2 1 1 1 389,617

SA21 6 15 36 68 79 107 82 63 43 22 8 5 3 2 1 1 1 2 2 359,921

SA7 1 2 8 19 48 45 70 106 96 66 32 20 9 7 5 1 2 2 3 2 1 1 343,728

SA18 2 5 12 28 53 74 88 79 79 61 29 13 9 2 2 2 3 1 1 1 1 1 328,618

SA11 1 2 21 27 38 38 57 66 57 52 45 41 28 23 14 15 5 8 3 3 1 1 312,159

SA14 2 3 5 20 30 53 64 75 90 81 54 28 19 9 4 5 1 2 1 293,417

SA22 2 12 13 30 43 62 70 88 42 54 36 28 30 9 11 4 3 1 2 5 1 284,794

SA10 2 1 10 14 21 38 66 72 103 96 51 33 12 14 5 4 2 1 1 254,692

SA17 1 1 4 2 6 11 21 38 42 63 102 84 84 35 24 6 8 6 2 3 2 1 248,934

SA3 1 3 8 13 16 20 40 70 94 98 95 35 23 9 5 7 2 4 2 1 245,016

SA24 1 1 2 4 4 7 22 26 47 61 103 65 65 48 34 24 19 10 1 2 201,732

SA20 3 2 7 6 21 26 48 77 79 58 74 47 47 24 21 4 2 191,918

SA15 3 3 8 18 24 65 93 85 66 65 41 41 25 7 2 184,101

SA13 1 1 1 3 1 4 6 14 34 39 53 82 76 86 64 34 35 11 1 180,695

SA19 1 2 1 3 5 8 17 23 45 55 64 64 66 89 56 34 11 2 177,415

SA9 1 1 1 3 4 2 5 13 16 43 47 59 70 78 74 87 35 7 167,434

SA8 1 2 2 5 2 8 6 20 31 45 46 73 61 99 89 48 8 163,708

SA4 2 1 1 1 2 4 5 18 25 38 50 60 75 116 101 38 9 162,395

SA25 1 1 1 1 1 2 3 1 5 7 8 16 12 28 37 88 287 47 137,471

SA5 3 3 3 7 2 7 2 8 2 11 18 72 408 117,169

Rank

Note that the strong diagonal band in Table 6.9 indicates that there is a clear hierarchy of performance

among the heuristics. Table 6.10 recalls the parameters for the best 4 heuristics.

6.4 Experimentation and analysis 191

Table 6.10: Parameters for top 4 Simulated Annealing heuristics

Parameter SA1 SA6 SA2 SA16

Temp 1500 1000 1500 250

Rate 0.99 0.99 0.95 0.99

Iterations 80 50 50 10

Threshold 0.001 0.2 0.05 0.05

There is no single parameter value that all four of the best heuristics have in common. There are some

commonalities, however. The first three have a high temperature, and high iterations between

temperature reductions; they all have a high cooling rate, and they all have a relatively low threshold.

These are conceptually the settings that correspond to a longer, slower annealing process. We also note

that SA1, which had the highest score of all heuristics considered, has the longest annealing process.

An oddity appears to be SA16, which is ranked in the top tier of heuristics, even though most of its

parameters are low. This suggests that the cooling rate, which is the highest value of 0.99, dominates

the other parameters in terms of defining performance.

We now consider each of the parameters separately, and find the mean score for the heuristics with each

of the parameter values over the subset of 546 problem instances that all the SA heuristics were

executed on. Recall that the score is the reward collected divided by the product of the total reward on

the graph and the budget-to-cost ratio.

Figure 6.7: Mean score by “temp”

Figure 6.7 shows the performance of the Simulated Annealing heuristics, grouped by their value for the

initial temperature. A higher initial temperature generally correlates to a higher mean score, except for

where the initial temperature is 500, which leads to worse results than the other temperatures.

192 Applying MLS to the ASRP Chapter 6

Figure 6.8: Mean score for each problem instance by “temp”

Figure 6.8 illustrates that there is not a major difference in mean score as a result of the temperature

parameter. For each problem instance, the mean of the scores of the five heuristics with each

temperature value were found, and plotted against each other in a scatter matrix. So, for example, a

point on the top right scatter graph represents one problem instance, and the mean score of the

heuristics where temp=100 is plotted against the mean score of the heuristics where temp=1500. The

strong linear relationships imply that, generally, it is not possible to distinguish between the

performances of the heuristics based on the value of the initial temperature parameter; a high score on a

problem instance with one parameter value implies a high score with the other values. The slight

relationship between aggregate performance and temperature seen in Figure 6.7 is not enough to

distinguish between heuristics for a given problem instance.

6.4 Experimentation and analysis 193

Figure 6.9: Mean score by “rate”

Figure 6.9 shows a much stronger relationship between cooling rate and performance; the slower the

cooling rate, the better the performance of Simulated Annealing.

Figure 6.10: Mean score by “iterations”

Figure 6.11: Mean score by “threshold”

Figure 6.10 shows that there is a performance difference based on the number of iterations between

temperature reductions. Those heuristics with a high number of iterations, 50 and 80, perform the best,

and it seems that above a certain point there may not be any gain in additional iterations. There is a

clear step down to the heuristics with 10 and 20 iterations, where again there is not much difference.

There is another clear step down to the heuristics with only 5 iterations. It seems that, generally, more

iterations between temperature reductions results in better performance.

Figure 6.11 again shows that heuristics with lower thresholds have better performance. A lower

threshold means that the heuristic proceeds for longer before terminating, so the better performance of

these heuristics implies that many of the final improvements are in the last iterations, when the

temperature is very low and the probability of accepting non-improving moves is very low.

194 Applying MLS to the ASRP Chapter 6

6.4.4.2 Principle components analysis of the problem instance characteristics

A useful activity is to attempt to produce a smaller number of explanatory variables to describe the

problem instance characteristics. Principle Components Analysis (PCA), developed by Pearson [209],

transforms a set of (possibly) correlated variables into a new set of uncorrelated variables, such that the

new variables are linear functions of the original variables. The first component explains as much of

the variability in the data as possible, and the next component as much of the remaining variability, etc.,

so that a smaller number of principle components can explain a majority of the variability in the data.

PCA is a standard method of variable dimensionality reduction in multivariate data analysis.

A PCA was performed on the 22 problem instance characteristics on the full set of 1440 problem

instances. The PCA was performed using the default settings in SAS, which uses the correlations

matrix and the degrees of freedom as the divisor for variance. Table 6.11 gives the proportion of the

variability explained by each principle component.

Table 6.11: Proportion of problem characteristic variation explained by each principle component

Component Eigenvalue Proportion Cumulative

1 7.4882 0.3404 0.3404

2 5.0011 0.2273 0.5677

3 3.0082 0.1367 0.7044

4 1.3541 0.0616 0.7660

5 1.3068 0.0594 0.8254

6 1.0184 0.0463 0.8717

7 0.7323 0.0333 0.9050

8 0.6636 0.0302 0.9351

9 0.4710 0.0214 0.9565

10 0.4212 0.0191 0.9757

11 0.1857 0.0084 0.9841

12 0.0946 0.0043 0.9884

13 0.0837 0.0038 0.9922

14 0.0759 0.0035 0.9957

15 0.0403 0.0018 0.9975

16 0.0385 0.0018 0.9993

17 0.0059 0.0003 0.9995

18 0.0044 0.0002 0.9997

19 0.0028 0.0001 0.9998

20 0.0019 0.0001 0.9999

21 0.0014 0.0001 1.0000

22 0.0001 0.0000 1.0000

It can be seen that the PCA was extremely successful. 87% of the variability in the data was captured

by only six components. A varimax rotation was performed on the principle components. This is an

operation that maximizes the sum of the variances of the squared loadings, which aids in their

6.4 Experimentation and analysis 195

interpretability. The coefficients of these six components under varimax rotation and standardization of

inputs are given in Table 6.12.

Table 6.12: Coefficients of the first six principle components under varimax rotation

 Component

Characteristic PC1 PC2 PC3 PC4 PC5 PC6

Nodes -0.9320 0.1680 -0.0549 0.1150 -0.0098 0.0589

Avg_arc_adjacency 0.8900 0.3970 0.0840 -0.0213 0.0262 -0.0881

Avg_depot_shortest_path -0.8790 -0.0075 -0.0770 0.2250 -0.0066 0.0480

Mean_node_incidence_reward -0.8660 0.2050 -0.0291 0.1130 -0.0025 -0.2460

Budget 0.8410 0.4900 0.0815 0.0754 0.0309 -0.0858

Budget_to_cost_ratio 0.7470 0.4560 -0.0185 0.4450 0.0259 -0.0885

Grid_arcs -0.6550 0.1220 -0.0670 -0.2500 -0.0155 -0.0076

Mean_reward 0.5570 0.7500 0.0316 0.1300 0.0483 -0.1910

Straightline_arcs 0.4790 0.1120 0.0554 0.1710 0.0564 0.4540

Arcs 0.0124 0.9710 0.0309 0.0397 0.0297 -0.0258

Avg_node_degree 0.3290 0.9320 0.0662 0.0576 0.0328 -0.0198

Depot_rows_from_side 0.3190 0.9190 0.0234 0.1960 0.0309 -0.0209

Grid_rows -0.3840 0.7970 0.0889 -0.0856 -0.0203 0.3380

Total_reward -0.3440 0.7140 0.0471 -0.0858 -0.0178 0.2820

Avg_shortest_path 0.2350 0.7060 0.0476 0.0370 0.6430 -0.0067

Depot_degree -0.3430 0.6760 0.1050 -0.0894 -0.0214 0.3330

Min_reward 0.0895 0.0837 0.9620 0.0034 0.0057 0.0175

Density 0.0919 0.1030 0.9490 -0.1530 0.0064 0.0151

Std_dev_reward -0.0812 -0.0078 -0.7280 0.6310 -0.0015 -0.0628

Max_reward -0.0289 0.0679 -0.2020 0.9310 -0.0026 -0.0326

Grid_cols -0.0286 -0.0192 -0.0038 -0.0103 0.9910 0.0147

Pendant_arcs -0.0289 0.1130 0.0158 -0.0924 -0.0050 0.8730

Interpretation of principle components is not always easy; sometimes it is obvious what they represent,

other times it is not as straightforward. To assist interpretation, all coefficients less than 0.4 have been

greyed out in Table 6.12, and then the variables have been sorted. Although it is not really necessary

for our purposes to have a convenient label, a rough interpretation can be attempted:

1. A mix of several aspects that is not straightforward to interpret, but seems to reflect a budget-

cost effect. High values of BUDGET, BUDGET_TO_COST_RATIO, and MEAN_REWARD

suggest a connection to how much reward is possible to collect. High negative values of

NODES, GRID_ARCS, AVG_DEPOT_SHORTEST_PATH, and

MEAN_NODE_INCIDENCE_REWARD suggest a contrast with the size and connectedness of

the graph. The greyed-out values with magnitude greater than 0.3 also seem related to these

aspects.

2. This component seems to reflect a depot effect, and to capture aspects relating to the size and

connectedness of the graph, and the amount of reward available. It seems that together PC1

196 Applying MLS to the ASRP Chapter 6

and PC2 capture the size and shape of the graph, which accounts for 57% of the variability in

the data.

3. A contrast between the MIN_REWARD and DENSITY vs. STD_DEV_REWARD. Capturing

some of the subtlety in the reward distribution in combination with the density of the graph.

4. Captures the remainder of the variability concerning the reward distribution, with an influence

of the BUDGET_TO_COST_RATIO, which is a rough proxy for the expected amount of

reward that could be collected.

5. Captures some additional information concerning how reachable parts of the graph are.

6. The remaining information about the shape of the graph; the number of straight-line and

pendant arcs

6.4.4.3 Modelling relative heuristic performance of Simulated Annealing

In this exercise we take a different approach than with the Steepest Ascent heuristics. Using the score

as a basis for comparison, we again calculate the “rank” of each heuristic. We then use the graph

characteristics in combination with the Simulated Annealing parameters to create a predictive model of

the rank.

The predictive model chosen for this analysis was a CHAID decision tree, with which we attempted to

predict the score for each heuristic using the problem instance characteristics and the Simulated

Annealing parameters as inputs to the model. A CHAID decision tree differs from other common

decision tree approaches in that it can generate non-binary trees; the default settings in the SPSS

Clementine modelling package were used. CHAID is one of the oldest decision tree algorithms,

introduced in 1980 by Kass [155]. The ordered predicted scores for each problem instance were then

used to generate predicted ranks for each heuristic. The main predictive variables used in the decision

tree are listed below:

• Cooling rate

• Avg depot shortest path

• Initial temperature

• Budget to cost ratio

• Iterations between temperature reductions

• Min reward

• Avg node degree

• Avg arc adjacency

• Mean node incidence reward

Note that the only non-predictive SA parameter is the threshold.

With 546 problem instances and 25 heuristics there are 546 × 25 = 13,650 rank estimates. If the model

predicts no better than random then we would expect the proportion of successes to be 1/25 = 0.04. The

model under the null hypothesis is Binomial(13650, 0.04), with mean 546 and variance 524. The model

6.4 Experimentation and analysis 197

predictions resulted in a very high 1836 successful rank predictions out of 13,650 possible predictions

(13%). Clearly, the predictive model is better than random.

The number of exact successes in our modeled prediction of ranks is a point of interest, however this is

not the main criterion for success of the predictive model. Instead our objective is to achieve a high

success rate in the pair-wise comparison of relative ranks. For example, if heuristics A and B actually

have ranks of 4 and 13, respectively, on a given problem instance, and we predict ranks of 2 and 5, then

this counts as a success; the model correctly predicted that A would outperform B on that problem

instance.

The results of this analysis were even more positive. Consider that with 25 heuristics there are 300

pairs of heuristics. There are 546 problem instances, so for each pair we calculate the proportion of

correct relative rank predictions out of 546. In total there were 546 × 300 = 163,800 possible successes,

and the decision tree model achieved 147,155 (90%).

Figure 6.12 shows the distribution of the results for each heuristic pair, where each data point gives the

proportion of problem instances correct (out of 546) for a heuristic pair. Note that all heuristic pairs

were predicted correctly more than half the time.

Figure 6.12: Proportion of problem instances correct for each heuristic pair

6.4.4.4 Summary of Simulated Annealing results

The 25 Simulated Annealing heuristics formed a relatively strict hierarchy of performance, and there

was a clear relationship between certain parameter values and performance.

A predictive model was developed that was able to predict relative heuristic performance extremely

well, using only problem instance characteristics and the Simulated Annealing parameters: initial

temperature, cooling rate, iterations between temperature reductions and minimum temperature

threshold. The decision tree achieved a much better predictive accuracy than a random selection.

However, this result must be interpreted cautiously; since the relative performance of the heuristics is so

198 Applying MLS to the ASRP Chapter 6

strictly hierarchical, most of the predictive accuracy may be attributed to the dominance of certain SA

parameter values over others, rather than the interaction effect of the problem instance characteristics.

In other words, it is possible to predict that heuristic A will perform better than heuristic B on problem

instance p, but primarily because heuristic A usually performs better than B.

6.4.5 Analysis of Tabu Search results

The six Tabu Search heuristics were run on a total of 1050 common problem instances. Recall that the

only difference between the heuristics was the tabu tenure parameter.

6.4.5.1 General performance of Tabu Search heuristics

Figure 6.13 gives the total reward collected by each heuristic, and Figure 6.14 gives the mean score,

with 95% confidence limits.

Figure 6.13: Total reward for Tabu Search

Figure 6.14: Mean score for Tabu Search

There is a slight direct and positive relationship between the tabu tenure and the overall performance,

however there is not a large difference between any of the heuristics; they all perform similarly in

aggregate. Note that since the best aggregate performance was achieved with the highest tabu tenure

examined, it is possible that even higher tabu tenures would result in better performance still. Recall

that the purpose of the experiments in this chapter is not to design the best possible heuristic, but simply

to test the relationship between problem instance characteristics and heuristic performance. To examine

the distribution of their relative performances, we rank each heuristic based on its performance on each

problem instance, and count the number of problem instances on which it achieved that rank. The

results are presented in Table 6.13. Note that these are presented as raw numbers rather than

percentages as in Table 6.5 because the percentages were too small and the raw numbers are clearer.

6.4 Experimentation and analysis 199

Table 6.13: Distribution of ranks for Tabu Search heuristics ordered by total reward

 Rank

Heuristic 1 2 3 4 5 6 Total reward

Tabu20 485 271 123 88 50 33 1321931

Tabu15 345 337 177 100 62 29 1314610

Tabu10 177 188 309 177 119 80 1301794

Tabu7 114 112 222 285 176 141 1293825

Tabu5 74 77 140 210 337 212 1287788

Tabu3 42 47 106 152 262 441 1281924

There seems to be a good distribution of ranks, which means that each heuristic is better than the others

on some problem instances, and worse on others. In the next section we examine whether this is a

systematic difference that is predictable based on an analysis of the problem characteristics.

6.4.5.2 Modelling relative heuristic performance of Tabu Search

For the Tabu Search heuristics, we wish to determine whether it is possible to predict for a given

problem instance which of two Tabu Search heuristics will perform better.

We define set A to include the problem instances where Tabu3, Tabu5 and Tabu7 all performed better

than Tabu10, Tabu15 and Tabu20; for these instances lower tabu tenures were preferable. We define

set B to include the problem instances where Tabu3, Tabu5 and Tabu7 all performed worse than

Tabu10, Tabu15 and Tabu20; for these instances higher tabu tenures were preferable.

Our approach, then, is to use an equal number of problem instances from sets A and B to train a

predictive model, and then to apply this model to the remainder of the problem instances to test its

accuracy. There were 39 problem instances in set A and 85 problem instances in set B, so our training

set consists of 39 problem instances from each set: 78 instances in total. Several models were

attempted and the best was chosen: a classification and regression decision tree using the A/B flag as

the dependent variable and the problem instance characteristics as the predictors. A Classification and

Regression Tree (CART) is a common non-parametric classification technique; the default settings

within SPSS Clementine were used.

For the testing of the model, we perform pair-wise tests of the heuristics; each problem instance yields

15 pairs of heuristics.

A concern was removing the effect of the dominance of each heuristic over the others. For example, if

heuristic H1 outperforms heuristic H2 on 75% of the problem instances in the test dataset, then a model

could achieve 75% accuracy simply by always predicting H1. To eliminate this effect we consider each

pair of heuristics separately, and randomly select a subset of the problem instances so that each heuristic

outperforms the other on the same number of problem instances. This allows us to judge the predictive

ability of the model fairly; given a random selection we would expect the model to be correct 50% of

the time, so 50% is our baseline. For each pair of heuristics we randomly sample (without replacement)

50 problem instances where Heuristic 1 outperforms Heuristic 2, and 50 instances where the reverse is

200 Applying MLS to the ASRP Chapter 6

true (the minimum number of instances we can choose from for any pair is 92). The proportion correct

gives one data point for that heuristic pair, and we repeat the sampling process 500 times for each pair

to find the distribution of the mean. According to the Central Limit Theorem, this distribution is

normal.

Table 6.14: Results of pair-wise Tabu Search prediction

Heuristic 1 Heuristic 2 Steps Mean Std dev

Lower 95%

CL for mean

Upper 95%

CL for mean

Tabu3 Tabu20 5 61.62% 4.06% 61.26% 61.97%

Tabu3 Tabu15 4 59.78% 4.18% 59.42% 60.15%

Tabu5 Tabu20 4 59.14% 4.40% 58.75% 59.52%

Tabu5 Tabu15 3 58.49% 4.52% 58.09% 58.89%

Tabu3 Tabu10 3 56.00% 4.51% 55.61% 56.40%

Tabu7 Tabu15 2 55.94% 4.47% 55.55% 56.34%

Tabu7 Tabu20 3 55.56% 4.60% 55.16% 55.97%

Tabu5 Tabu10 2 55.00% 4.62% 54.60% 55.41%

Tabu7 Tabu10 1 53.96% 4.69% 53.55% 54.38%

Tabu10 Tabu20 2 52.98% 4.75% 52.57% 53.40%

Tabu5 Tabu7 1 52.56% 4.69% 52.15% 52.98%

Tabu3 Tabu7 2 52.22% 4.55% 51.82% 52.62%

Tabu10 Tabu15 1 52.20% 4.69% 51.79% 52.61%

Tabu3 Tabu5 1 50.67% 4.69% 50.26% 51.08%

Tabu15 Tabu20 1 50.00% 4.51% 49.61% 50.40%

Table 6.14 gives the results of the analysis, which are encouraging. For all pairs of heuristics except the

last, the lower 95% confidence limit is above 50%, which means that we are 95% certain that our model

performs better than a random selection. The confidence limits are calculated by the statistical software

and represent the two-sided confidence limits for the mean with n-1 degrees of freedom. The column

labeled “Steps” describes how many “heuristic steps” the pair are away from each other. Bearing in

mind that the step sizes are not equal increments of the tabu tenure, we can see that generally, the more

different the heuristics are, the better the model is able to predict which will outperform the other.

6.4.5.3 Summary of Tabu Search results

The Tabu Search heuristics all performed approximately equally, at least in aggregate, although there is

a clear relation between a higher tabu tenure and better performance.

An experiment was conducted, in which a decision tree model was created using a carefully selected

training dataset, and then this model was used to predict which heuristics would perform best on each

problem instance, for all pairs of heuristics.

The results of this were positive; for all pairs of heuristics except one the model performed better than a

random selection, with 95% confidence.

6.4 Experimentation and analysis 201

6.4.6 Analysis of Variable Neighbourhood Search results

The nine Variable Neighbourhood Search (VNS) heuristics were run on a total of 552 common problem

instances. Recall that the VNS heuristics varied on two parameters: the number of diversification

iterations in the diversification phase, and the maximum look-ahead distance for the extended move-

types used in the diversification phase.

6.4.6.1 General performance of Variable Neighbourhood Search heuristics

Figure 6.15 gives the total reward collected by each heuristic, and Figure 6.16 gives the mean score,

with 95% confidence limits.

Figure 6.15: Total reward for VNS

Figure 6.16: Mean score for VNS

As can be seen from the two graphs, there is very little difference between the performances of the

heuristics. This is confirmed in Table 6.15, which shows the number of problem instances for each

rank distribution, where the ranks can be tied (for example the second row shows that three heuristics

were first equal, implying the same solution, and the remaining six heuristics shared another solution).

This table shows the first seven rows, representing 75.91% of the problem instances; the full table

contains an additional 92 rows with various combinations.

202 Applying MLS to the ASRP Chapter 6

Table 6.15: Partial summary of rank distribution of VNS heuristics

Lookahead=4 Lookahead=8 Lookahead=12

n=1 n=3 n=5 n=1 n=3 n=5 n=1 n=3 n=5 Freq Pct Cum Pct

1 1 1 1 1 1 1 1 1 286 51.81% 51.81%

1 1 1 4 4 4 4 4 4 60 10.87% 62.68%

7 7 7 1 1 1 1 1 1 35 6.34% 69.02%

4 4 4 4 4 4 1 1 1 14 2.54% 71.56%

1 1 1 1 1 1 7 7 7 9 1.63% 73.19%

4 4 4 7 7 7 1 1 1 8 1.45% 74.64%

1 1 1 4 4 4 7 7 7 7 1.27% 75.91%

Based on the results above, it does not seem that the VNS heuristics distinguish themselves from each

other sufficiently to justify trying to model their relative performance.

6.4.7 Modelling relative heuristic performance of two different heuristics

The previous sections examine each of the “families” of heuristics separately. In this section we

perform a brief analysis to determine if we can predict the relative heuristic performance of two

heuristics from different families, based solely on problem characteristics, and using the techniques

developed in the previous sections.

The heuristics were chosen based on the following criteria:

• They must both be relatively successful heuristics (in the top group from Figure 6.1),

• They must both be similar in aggregate performance, and

• They must both have a sufficient number of relative “wins”

The heuristics selected were SA6 and Tabu10. These heuristics were executed on a total of 516

common problem instances, and the distribution of “wins” for each heuristic are presented in Table

6.16.

Table 6.16: Frequency of ranks between SA6 and Tabu10

Heuristic rank1 rank2

SA6 337 179

Tabu10 181 335

In order to keep the proportions balanced, 179 problem instances were randomly chosen on which SA6

outperformed Tabu10, and 179 instances were chosen where Tabu10 outperformed SA6. This set was

further divided into balanced subsets of 89 problem instances for training the model, and 90 instances

for testing.

A neural network model was constructed on the training dataset, and scored on the test dataset. This

model was built using the default settings in the SPSS Clementine data modelling software. The results

of this test are presented in Table 6.17.

6.5 Hybrids 203

Table 6.17: Classification results on the test set for TS and SA

 Predicted winner

Actual winner SA6 Tabu10

68 22
SA6

75.6% 24.4%

18 72
Tabu10

20.0% 80.0%

This experiment provides clear evidence that it is possible to predict relative heuristic performance,

based on problem characteristics. The overall classification success rate is 77.78%.

6.5 Hybrids

One of the design imperatives and strengths of the Modular Local Search framework is the ease with

which hybrid heuristics can be defined. If modules have been created for particular heuristics, then

these can be combined in new ways simply by specifying the combination of modules, to create new

heuristics with no new development effort.

The purpose of this section is to demonstrate this capability of the MLS framework, using the modules

developed in the early part of the chapter. Note that our goal here is not to develop the best possible

heuristic or hybrid, but only to demonstrate the procedure by which these are defined.

We develop five hybrid heuristics, based on combinations of the key modules for the heuristic

“families” defined in Section 6.3. We develop one hybrid of Tabu Search and Simulated Annealing,

and two each of Simulated Annealing with Variable Neighbourhood Search, and Tabu Search with

Variable Neighbourhood Search.

We may draw a conceptual distinction between two types of hybrid: those which have multiple phases,

each phase associated with the characteristics of one source heuristic; and hybrids which actually use

the modules of multiple source heuristics within a single iteration of the search scheme. The hybrids

we introduce that use Variable Neighbourhood Search are phased hybrids, and the hybrid of Tabu

Search and Simulated Annealing is a mixed hybrid. These could also be considered sequential hybrids

and parallel hybrids.

Some results are presented, and interesting features highlighted.

6.5.1 MLS configurations

Note that the settings and parameters for the following heuristics were chosen quite arbitrarily, in order

to demonstrate the use of the hybridization process, rather than to create the most effective heuristic.

Given the quite dramatic performance difference of the original heuristics with different parameter

values, it seems reasonable to assume that the same situation would apply to the hybrids, and that

combinations with “better” parameter values could exist.

204 Applying MLS to the ASRP Chapter 6

6.5.1.1 Hybrid of Simulated Annealing and Tabu Search

Simulated Annealing and Tabu Search both modify the search primarily through influencing the

admissibility of neighbouring solutions; in MLS they each have their own characteristic admissibility

condition modules.

The MLS configuration for the hybrid of Simulated Annealing and Tabu Search is given in Algorithm

6.28. Note that this configuration has two admissibility conditions; recall that both of these

admissibility conditions must be satisfied to make a solution admissible. This heuristic is primarily a

version of Simulated Annealing, with the extra Tabu Search admissibility condition and the memory

parameter and memory update module required to support this. The candidate list size is 1, as in

Simulated Annealing, so the first admissible neighbour examined is accepted, although it would be an

easy extension to increase this parameter.

Algorithm 6.28 MLS configuration HYBRID – SA & TS

 Move-types: basic

 Admissibility conditions:

 ANNEALING PROBABILITY (Algorithm 6.19) – active

 TABU ARCS WITH ASPIRATION (Algorithm 6.23) – active

 FEASIBLE (Algorithm 6.3) – active

 Candidate list size: 1

 Memory update: UPDATE TABU ARCS (Algorithm 6.24)

 Triggers and responses:

 Trigger-1: ITERATIONS SINCE LAST TRIGGER (trigger-1) (Algorithm 6.8) – active

 Response: REDUCE ANNEALING TEMPERATURE (Algorithm 6.20)

 Trigger-2: TEMPERATURE THRESHOLD (Algorithm 6.21) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Annealing temperature: 1000

 Cooling rate: 0.95

 Iterations before temperature reduction: 30

 Temperature threshold: 0.001

 Tabu tenure: 10

end

6.5.1.2 Hybrids of Simulated Annealing and Variable Neighbourhood Search

The usual usage of Variable Neighbourhood Search (VNS) is as a method of diversification when a

local optimum is reached; the neighbourhood structure is changed so that the search can continue. The

implementation we introduced in this chapter for the Arc Subset Routing Problem, in Section 6.3.8,

uses the change of neighbourhood as a temporary diversification phase; the neighbourhood is changed

to the extended move-types for a set number of moves, and then changed back.

6.5 Hybrids 205

In Simulated Annealing (SA), the search does not “get stuck” in a local optimum; solutions are

examined until one passes the admissibility conditions and is then accepted, even if it worsens the

objective function value. Technically, the point where the temperature is low enough that no non-

improving solutions are accepted, and there are no improving solutions available, could be considered

an apparent local optimum, however it is usually treated as the termination criterion for the heuristic.

In our hybrid of Simulated Annealing and Variable Neighbourhood Search, VNS is used as a distinct

diversification phase after the SA heuristic has reached its usual termination point, and then the SA

phase is repeated. This hybrid is a multi-phase, or sequential, hybrid. The MLS configuration,

presented as Algorithm 6.29, is the most complicated we have yet seen, since it describes a quite

sophisticated multi-phase procedure.

206 Applying MLS to the ASRP Chapter 6

Algorithm 6.29 MLS configuration HYBRID – SA & VNS

 Move-types: basic, extended

 Admissibility conditions:

 ANNEALING PROBABILITY (Algorithm 6.19) – active

 IMPROVING (Algorithm 6.4) – inactive

 FEASIBLE (Algorithm 6.3) – active

 Candidate list size: 1

 Triggers and responses:

 Trigger-1: ITERATIONS SINCE LAST TRIGGER (trigger-1) (Algorithm 6.8) – active

 Response: REDUCE ANNEALING TEMPERATURE (Algorithm 6.20)

 Trigger-2: TEMPERATURE THRESHOLD (Algorithm 6.21) – active

 Response: SWITCH TO EXTENDED MOVE-TYPES (Algorithm 6.27)

 Response: SET CANDIDATE LIST SIZE (100000) (Algorithm 6.30)

 Response: DEACTIVATE ADMISSIBILITY CONDITION (ANNEALING PROBABILITY)

(Algorithm 6.14)

 Response: ACTIVATE ADMISSIBILITY CONDITION (IMPROVING) (Algorithm 6.15)

 Response: DEACTIVATE TRIGGER (trigger-1) (Algorithm 6.12)

 Response: DEACTIVATE TRIGGER (trigger-2) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-3) (Algorithm 6.13)

 Trigger-3: ITERATIONS SINCE LAST TRIGGER (trigger-3) (Algorithm 6.8) – inactive

 Response: SWITCH TO BASIC MOVE-TYPES (Algorithm 6.26)

 Response: SET ANNEALING TEMPERATURE (1000) (Algorithm 6.31)

 Response: SET CANDIDATE LIST SIZE (1) (Algorithm 6.30)

 Response: DEACTIVATE ADMISSIBILITY CONDITION (IMPROVING) (Algorithm

6.14)

 Response: ACTIVATE ADMISSIBILITY CONDITION (ANNEALING PROBABILITY)

(Algorithm 6.15)

 Response: DEACTIVATE TRIGGER (trigger-3) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-1) (Algorithm 6.13)

 Response: ACTIVATE TRIGGER (trigger-2) (Algorithm 6.13)

 Trigger-4: TRIGGER TRIP COUNT (trigger-3) (Algorithm 6.10) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Annealing temperature: 1000

 Cooling rate: 0.95

 Iterations before temperature reduction: 30

 Temperature threshold: 0.001

 Lookahead: 4

 Iterations in diversification phase: {1, 3}

 Trigger trip count threshold: 3

end

6.5 Hybrids 207

We utilize two variations of this hybrid, varying the number of iterations in the VNS diversification

phase: one iteration (SA-VNS1) and three iterations (SA-VNS3).

Trigger-2 is the main trigger that switches from the SA phase to the VNS phase, and Trigger-3 is the

trigger that switches back from the VNS diversification phase to the next SA phase. Trigger-3 is

tripped three times before termination; there are three SA phases and three VNS phases, the heuristic

terminates after the last VNS phase.

This hybrid heuristic is the first example of which we are aware in which one of the core search scheme

modules, the admissibility conditions, being swapped in and out of activity. The

ANNEALING PROBABILITY admissibility condition starts out active, and then the responses make this

condition inactive and the IMPROVING admissibility condition active.

The candidate list size is given as 1 in the configuration, and this is what this parameter starts out as.

However, during the diversification phase this is increased to 100,000 (effectively unlimited) and then

decreased back to 1 again during the next Simulated Annealing phase. In this particular heuristic these

two values are predetermined, but this is not necessarily so; this mechanism allows the parameter values

to be set dynamically by the response modules, allowing the heuristic to “evolve” into a configuration

that was not explicitly anticipated during its design. The candidate list size is modified using Algorithm

6.30, although there are many alternative forms that this could take, such as a non-parametric “swap

candidate list size” module.

Algorithm 6.30 MLS response SET CANDIDATE LIST SIZE (size)

 Set the candidate list size to size

end

The annealing temperature memory parameter is modified during each of the Simulated Annealing

phases; it is reduced until it is below the threshold. This means that at the conclusion of each of the

VNS phases it needs to be reset to its initial value. In the interests of making this as simple as possible

while still meeting the needs of the heuristic, we use Algorithm 6.31 to set the temperature to the

amount specified, however an alternative method would be to have an additional memory parameter for

the initial temperature, and then have a nonparametric response module that resets the temperature.

Algorithm 6.31 MLS response SET ANNEALING TEMPERATURE (temp)

 Input: T // The annealing temperature

 T ← temp

end

6.5.1.3 Hybrids of Tabu Search and Variable Neighbourhood Search

The hybrid presented here of Tabu Search (TS) and Variable Neighbourhood Search (VNS) is a

sequential, or multi-phase, hybrid, similar to that described above for Simulated Annealing and VNS.

In Tabu Search there is no clear point at which to start the diversification phase; there is no apparent

local optimum reached, since non-improving solutions can be selected if they are the best available, and

208 Applying MLS to the ASRP Chapter 6

there is no natural termination point such as the temperature reaching its minimum threshold in

Simulated Annealing. Sophisticated detection mechanisms are possible to detect when the search has

“stagnated” and would benefit from diversification, however, for the purposes of demonstrating the

hybrids, a simple iteration count suffices.

Algorithm 6.32 MLS configuration HYBRID – TS & VNS

 Move-types: basic, extended

 Admissibility conditions:

 TABU ARCS WITH ASPIRATION (Algorithm 6.23) – active

 IMPROVING (Algorithm 6.4) – inactive

 FEASIBLE (Algorithm 6.3) – active

 Candidate list size: 100,000

 Triggers and responses:

 Trigger-1: ITERATIONS SINCE LAST TRIGGER (trigger-1) (Algorithm 6.8) – active

 Response: SWITCH TO EXTENDED MOVE-TYPES (Algorithm 6.27)

 Response: DEACTIVATE ADMISSIBILITY CONDITION

(TABU ARCS WITH ASPIRATION) (Algorithm 6.14)

 Response: ACTIVATE ADMISSIBILITY CONDITION (IMPROVING) (Algorithm 6.15)

 Response: DEACTIVATE TRIGGER (trigger-1) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-2) (Algorithm 6.13)

 Trigger-2: ITERATIONS SINCE LAST TRIGGER (trigger-3) (Algorithm 6.8) – inactive

 Response: SWITCH TO BASIC MOVE-TYPES (Algorithm 6.26)

 Response: DEACTIVATE ADMISSIBILITY CONDITION (IMPROVING) (Algorithm

6.14)

 Response: ACTIVATE ADMISSIBILITY CONDITION (TABU ARCS WITH ASPIRATION)

(Algorithm 6.15)

 Response: DEACTIVATE TRIGGER (trigger-2) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-1) (Algorithm 6.13)

 Trigger-3: TRIGGER TRIP COUNT (trigger-2) (Algorithm 6.10) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Tabu tenure: 10

 Lookahead: 4

 Iterations in diversification phase: {1, 3}

 Trigger trip count threshold: 2

end

This hybrid has a similar multi-phase structure to the SA-VNS variation. It highlights a key feature of

the MLS framework, that it is relatively easy to define extremely complex multi-phase heuristics that

can completely change their structure in response to certain stimuli, due to the trigger-response model.

6.5 Hybrids 209

There are two variations used in experimentation; the number of iterations in the diversification phase is

either one (TS-VNS1) or three (TS-VNS3). Note that the candidate list size is simply set to a large

number, 100000, for both phases of the heuristic.

6.5.2 Results for hybrids

The hybrid heuristics were executed on all 1440 of the problem instances in the test set. However, what

is interesting is how these hybrids compared with the “regular” heuristics, especially those from which

their modules were chosen. Recall that there were 246 problem instances on which all of the regular

heuristics were executed. Figure 6.17 presents the sum of the reward collected for each of these

problem instances; this is a copy of Figure 6.1, but with the hybrids added and excluding those

heuristics below SA16, which were clearly sub-standard and had a large drop-off on the graph.

Figure 6.17: Sum of reward collected by heuristic for 246 instance overlap set, including hybrids

Note that none of the hybrids is the “best” heuristic examined during the experimentation, which is as

expected. It is not a fair comparison to compare the Variable Neighbourhood Search heuristics with

their hybrid counterparts, since in the hybrids we limited the number of VNS diversification phases to

three and two respectively for the SA and TS variants, in order to limit the execution time. However, it

is meaningful to compare the Tabu Search hybrids with their regular counterparts, and the same for the

Simulated Annealing heuristics.

In particular, note that the three Simulated Annealing hybrids perform relatively poorly, at least in

aggregate. Recall from the Simulated Annealing results in Section 6.4.4.1, and particular Figure 6.9,

that the performance of the SA heuristics was strongly dependent on the cooling rate; heuristics with a

cooling rate of 0.99 dominated those with a rate of 0.95. The SA hybrids utilized a cooling rate of 0.95,

which is likely sub-optimal. It is worth noting that all three SA hybrids performed better than all the

other regular SA heuristics, except for SA1 and SA6, which both had a cooling rate of 0.99. It seems

that the low cooling rate for the hybrids is the controlling factor in determining their aggregate

performance.

210 Applying MLS to the ASRP Chapter 6

There is one main parameter in the Tabu Search heuristic, the tabu tenure, so the closest comparison

between a heuristic and the hybrids that use it is between Tabu10 and the two TS-VNS hybrids (which

have tabu tenure of 10). Note that the hybrids both outperform the regular heuristic, but only slightly.

Although Tabu10, TS-VNS1, and TS-VNS3 are close in aggregate reward for the 246 problem

instances above, it is interesting to consider the distribution relative performances. There were 1051

problem instances that these three heuristics were performed on; Table 6.18 presents the distribution of

relative performances, as ranks.

Table 6.18: Combinations of ranks for TS-VNS hybrids and Tabu10

TS-VNS1 TS-VNS3 Tabu10 Instances Percent

1 2 3 149 14.2%

3 1 2 141 13.4%

2 1 3 136 12.9%

3 2 1 126 12.0%

1 3 2 118 11.2%

2 3 1 116 11.0%

1 1 1 78 7.4%

2 1 2 38 3.6%

1 1 3 37 3.5%

3 1 1 37 3.5%

1 2 2 27 2.6%

2 2 1 25 2.4%

1 3 1 23 2.2%

Tabu10 is the best heuristic in 405 problem instances (39%). As can be seen in Figure 6.18 and Figure

6.19, there is a generally linear relationship between the scores of the hybrids and that of Tabu10; on

low-score problem instances this relationship is especially strong as on these instances the heuristics

achieved the same score and the same solution.

6.5 Hybrids 211

Figure 6.18: Scatter plot of scores:

TS-VNS1 vs Tabu10

Figure 6.19: Scatter plot of scores:

TS-VNS3 vs Tabu10

There is a slight, but clear, difference between the scores of the heuristics; each is better on some

instances and worse on others. The next step is to determine whether this difference is systematic and

predictable based on the problem instance characteristics.

We use the same procedure that we have used previously, comparing Tabu10 and TS-VNS3, and

attempting to create a predictive model that predicts which heuristic will outperform the other, based on

problem instance characteristics. Table 6.19 presents some summary information about these two

heuristics. Each row describes the cases where a particular outcome occurs, where an outcome is

defined in terms of one heuristic outperforming the other.

Table 6.19: Comparison of Tabu10 and TS-VNS3

Winner Sum reward Mean score Instances Pct wins

TS-VNS3 653514 0.800 501 47.7%

Tabu10 572420 0.818 408 38.8%

Draw 85435 0.621 142 13.5%

A number of predictive models were developed to attempt to distinguish between Tabu10 and TS-

VNS3, based on the problem instance characteristics, and none of them were able to perform better than

a random selection. This indicates that there is no systematic reason why Tabu10 performs better on

some problem instances and worse on others; this difference is likely due to random variation, since

these two heuristics are structurally very close to each other, and seem to perform similarly on similar

problem instances.

Table 6.20: Comparison of Tabu10 and SA-TS

Winner Sum Reward Mean Score Instances Pct wins

Tabu10 1304783 0.779 978 93.1%

SA-TS1 1112098 0.680 73 6.9%

212 Applying MLS to the ASRP Chapter 6

We briefly perform one more piece of analysis, comparing Tabu10 with the SA-TS hybrid. Table 6.20

summarizes the performance of these heuristics. Note that athough Tabu10 performs much better

overall than SA-TS1, there are still some problem instances on which SA-TS1 performs better.

We construct a balanced modelling dataset by taking all 73 of the instances where SA-TS1 “wins”, and

73 of the instances where Tabu10 wins, giving 146 problem instances. We divide this into a training set

of 85 instances (60%) and a testing set of 61 instances (40%). An artificial neural network was applied,

which achieved a 65.6% correct classification rate (correctly predicting which heuristic would achieve

better performance).

6.5.3 Discussion of hybrids

The purpose of this section on hybrids was to demonstrate the ease with which hybrids can be

developed with the MLS system. It requires no new programming to develop quite sophisticated multi-

phase hybrids, or heuristics that combine the characteristics of multiple source heuristics; they are

specified declaratively by listing the modules that are included and that are active at the first iteration.

A description of MLSML, and examples of MLSML code can be found in Appendix C.

The fact that a heuristic is a hybrid does not, of course, automatically make it a good heuristic. The

introduction of hybrids dramatically increases the size of the available “heuristic space”, but large

regions of that heuristic space are likely to be unsuited for any given problem instance. The heuristics

demonstrated here were chosen somewhat arbitrarily, so we would not expect them to be more effective

than the “regular” heuristics, which represent well developed heuristic paradigms. However, it is

interesting to note that there were, in fact, particular problem instances on which each of the hybrids

outperformed the regular heuristics.

6.6 Discussion

This chapter has presented the results of extensive computational experiments of Modular Local Search

heuristics on the Arc Subset Routing Problem. There were several objectives for this chapter.

The first objective was to demonstrate the use of MLS to specify some common types of

metaheuristics: Steepest Ascent, Simulated Annealing, Tabu Search and Variable Neighbourhood

Search. These heuristics have quite different modes of operation, but share a similar core in that they

are all local search-based approaches. Each requires several specialist MLS modules, but most of the

structure of the heuristic is common and is supplied by the MLS framework itself.

The next objective was to investigate the relationship between problem instance characteristics and

heuristic performance. One of the fundamental problems in the application of metaheuristics to real-

world problems is knowing which metaheuristic to use. Many research papers and case studies simply

apply one, or several, metaheuristics, with little justification as to why these were chosen. Over time a

body of knowledge can be assembled that indicates the general success of one method over another for

a particular problem class, but this approach suffers from several weaknesses. Firstly, there is no

consistency in how heuristics are specified and implemented; each researcher is free to implement the

heuristics according to their own interpretation, making direct comparisons between the heuristics

6.6 Discussion 213

difficult. Secondly, the goal in publishing new heuristics seems to be to show how the new technique is

better than existing methods. This tends to result in the researcher choosing comparison heuristics

against which the new technique excels.

The use of the MLS framework automatically compensates for the first problem. Heuristics are

expressed in the same framework, and share most of the same operational characteristics, so

comparisons between them can be focused on the modules where they differ.

In this chapter we have attempted to develop some basic methods by which a more scientific approach

can be taken to deciding which heuristic would be most suited for a given problem. Our focus has been

on demonstrating the validity of such an approach, rather than honing these methods. We leave further

development of these methods to future research.

Our demonstration-of-feasibility approach has been to consider heuristics in pairs, and to use the

problem instance characteristics as inputs to a classification model that predicts which of the two

heuristics will achieve better performance on each problem instance. A correct classification rate of

50% would mean that our models were no better than random, however we were consistently able to

achieve classification rates better than this. The analysis in this chapter has clearly demonstrated that it

is possible to perform prior analysis of ASRP problem instances, and determine which of two heuristics

would be most appropriate. The techniques at this stage are not able to make this selection with perfect

accuracy, however they provide enough of an edge that with a large number of problem instances they

would provide a significant advantage over a random selection, or simply using one of the heuristics.

The final objective of this chapter was to demonstrate the construction of several hybrid heuristics. The

goal here was to demonstrate the ease with which quite complex multi-phase heuristics can be specified

with no new programming; these heuristics simply used existing MLS modules combined in new ways.

These hybrids were run on the set of ASRP problem instances, and did manage to outperform the

“regular” heuristics on some instances.

Coda

▼ Summary

In this chapter we have performed extensive computational experiments using MLS expressions of

some fundamental metaheuristic families, on a variety of ASRP problem instances. Analysis of these

results provided evidence that it is possible to predict which heuristics will perform better on certain

problem instances based on an analysis of the characteristics of that problem instance.

▼ Link

In the next chapter we consider methods of generating “interesting” problem instances.

215

 C H A P T E R 7

7 Heuristic Problem Design

7.1 Introduction

7.2 New problem features

7.3 The Maximally Diverse Subset Selection Problem

7.4 A tiny illustrative problem

7.5 Measures of distance

7.6 Heuristics

7.7 Solving the tiny problem

7.8 Additional measures of diversity

7.9 A giant selection problem

7.10 Solving the giant problem

7.11 Using MLS to design problem instances

In this chapter we explore various methods for developing “interesting” sets of problem

instances. Several heuristics that select a subset of “maximally diverse” instances from a

larger set are developed and tested. A novel method of “designing” interesting problem

instances using a local search approach, is presented and executed as a proof-of-concept.

7.1 Introduction

One of the factors that became apparent from the experiments in Chapter 6 is that problem instance

design is an important consideration. Instead of using a large number of problem instances, more

insight can potentially be gained from a smaller set that has been carefully chosen. Creating this set is a

challenging problem in itself, even without the application of heuristics to these problem instances. The

intention of this chapter is to explore some ways that an interesting test set of problem instances can be

obtained.

The motivating goal is to derive a small set of problem instances that allow us to distinguish between

the behaviour of various heuristics. We do this by attempting to find a set of instances that are diverse

with respect to the problem characteristics defined in Chapter 6. A small set of instances is essential to

216 Heuristic Problem Design Chapter 7

make the cost of the computational experiments manageable. Recall that a problem characteristic is a

metric that can be calculated for a problem instance as part of a pre-processing step.

In order to increase the richness of the problem space, just for the purposes of developing the problem

selection techniques, we introduce another element to the basic Arc Subset Routing Problem: penalties

for non-service. The purpose of modifying the problem is to create a "richer" problem space, to allow

greater diversity.

Our approach is to generate a large number of trial instances and then select a maximally diverse subset

of these. We first test some of the methods on a tiny set of instances, and then extend the approach to a

giant set of instances.

The goal in this chapter is to explore several ideas briefly, testing their potential and moving on, rather

than investigating any particular idea in great detail. This chapter is structured as a series of small

investigations into different aspects of the problem design.

7.2 New problem features

For the experiments in this chapter we make several modifications to our approach. The introduction of

penalties prompts the development of techniques to assign those penalties to arcs during problem

instance generation. A number of new problem characteristics are developed.

7.2.1 The Arc Subset Routing Problem with Penalties

We define the Arc Subset Routing Problem with Penalties (ASRPP). This problem is equivalent to the

ASRP, except that any arc that is not included in the solution incurs a penalty for non-service. The

objective function becomes the sum of the rewards for all the arcs included in the solution, minus the

sum of the penalties for all the arcs that are not included in the solution.

We modify the formulation of the ASRP from Section 3.1.3 to give the following maximization

objective function for the ASRPP; the remainder of that formulation is the same.

 re xe
e∈E

∑ − pe 1− xe()
e∈E

∑

7.2.2 Problem characteristics

In Section 6.2.5, 22 problem characteristics were defined and used in the modelling and analysis for that

chapter; in this chapter we revise this set of characteristics, creating an improved list. The motivation

for this change was to make the characteristics more general and comparable across problem instances

of different sizes. For example, the number of pendant arcs has been changed to the proportion of

pendant arcs. Also, variables that previously measured the reward as minimums and maximums have

been changed to the coefficient of variation (the standard deviation divided by the mean). A number of

measures relating to the introduction of penalties have been added, and some redundant characteristics

have been removed, for example the budget is not necessary since the budget to cost ratio contains

more relevant information. The final 18 problem characteristics are listed below, and those that differ

from Chapter 6 are described.

7.2 New problem features 217

• ARCS. (Unchanged).

• AVG_ARC_ADJACENCY. (Unchanged).

• AVG_DEPOT_SHORTEST_PATH. (Unchanged).

• AVG_NODE_DEGREE. (Unchanged).

• AVG_SHORTEST_PATH. (Unchanged).

• BUDGET_TO_COST_RATIO. (Unchanged).

• CV_NODE_INCIDENCE_REWARD. The incidence reward for a node is the sum of the

rewards of all incident arcs. This metric is the coefficient of variation of these calculated across

all nodes.

• CV_PENALTY. The coefficient of variation of the penalties of all arcs.

• CV_REWARD. The coefficient of variation of the rewards of all arcs.

• DENSITY. (Unchanged).

• DEPOT_DEGREE. (Unchanged).

• DEPOT_ROWS_FROM_SIDE. (Unchanged).

• MEAN_REWARD_PENALTY_RATIO. For each arc the ratio of the reward to the penalty is

calculated and then the mean of these is found.

• NODES. (Unchanged).

• PROPORTION_PENDANT_ARCS. A pendant arc is incident on a node of degree one. This

metric is the count of these divided by the number of arcs in the graph.

• PROPORTION_STRAIGHTLINE_ARCS. A straightline arc is connected to only two other

arcs, one at either end. This metric is the count of these divided by the number of arcs in the

graph.

• STD_REWARD_PENALTY_RATIO. For each arc the ratio of the reward to the penalty is

calculated and then the standard deviation of these is found.

• STD_NODE_DEGREE. The degree of a node is the number of incident arcs, in {1,2,3,4}.

This metric is the standard deviation across all nodes.

7.2.3 Penalty assignment methods

The methods for assigning rewards that were defined in Chapter 6 can also be used to assign penalties:

uniform between a range, one reward seed with iterative deviation of adjacent arcs’ penalties within a

range, and multiple seeds with iterative deviation of adjacent arcs’ penalties within a range.

The additional method we introduce is that of assigning the penalties to be proportional to rewards, with

a random factor. This method has two parameters: the proportion and the maximum deviation. For an

arc a, with penalty pa and reward ra, the penalty is calculated as follows:

 pa = θ.ra (1 + δ)

where θ is the proportion of the reward for arc a that the penalty is set to, and δ is the deviation,

sampled from a uniform distribution δ ~Uniform(-maxDev,maxDev).

218 Heuristic Problem Design Chapter 7

7.3 The Maximally Diverse Subset Selection Problem

We define the Maximally Diverse Subset Selection Problem (MDSSP). Given a set of problem

instances, and a distance metric between every pair of instances, the MDSSP is to select a subset of a

specified size, such that the sum of the pair-wise distances is maximized.

The MDSSP can be formulated as a binary integer program. Given a set P of points p = (p1, p2, …, pN)

in N-dimensional space, and a distance dij between each pair of points i and j, select a subset S ⊂ P with

maximum total distance (the sum of the distances between all included points), where the size of S, |S| is

specified.

Max
, ,

pq pq
p q P
p q

d y
∈

<

∑ (1)

s.t. 2 0 (, |)p q pq pqx x y E p q P p q+ − − = ∈ < (2)

p

p P

x S
∈

=∑ (3)

 { }, , 0,1p pq pqx y E ∈ (4)

where xp represents whether point p is included in the selected subset S (xp = 1 if included, 0 otherwise).

ypq represents whether the distance between points p and q should be counted in the objective function

(1 if included, 0 otherwise), and constraint (2) forces ypq to the appropriate value; when xp and xq are

both 1 then ypq is 1, otherwise it is 0. The Epq variables are only included to balance the equations, their

values are not important otherwise (for example they are equal to 1 when xp = 1 but xq = 0; we want ypq

to be zero so we need to balance the equation). Constraint (3) sets the subset size.

Note that we only consider the distances dpq, not the reverse distances dqp. This is represented by setting

p < q. So for a set of points of size N, we have T distances, where

1

1

N

n

T n
−

=

=∑

With a set of points of size N there N + 2T variables and T+1 constraints (plus the binary constraints).

The MDSSP is similar to some other problems in the literature, specifically maximum weighted clique

problems. Urošević et al. [240] study a minimization problem where the number of arcs is specified,

rather than the number of vertices, which they call the Minimum Weighted k-Cardinality Tree Problem

(MWkCP), and present a Variable Neighbourhood Decomposition Search heuristic. Fischetti et al. [99]

show that this problem is NP-hard. The MDSSP can be transformed into the MWkCP, therefore the

MDSSP is also NP-hard. Macambira and de Souza [178] study the polyhedral properties of a variation

where the weights to be maximized are on the vertices rather than the arcs of the subgraph, and

Macambira [179] applies a basic Tabu Search heuristic to this same problem. More recently Pullan

7.4 A tiny illustrative problem 219

[215] applies a metaheuristic called Phased Local Search to a variation where the weights are on the

edges, but the size of the vertex set is not specified.

7.4 A tiny illustrative problem

In order to test and illustrate some of the concepts developed in this chapter we define a “tiny” problem.

A set of 216 instances was generated, using a range of generation settings, as defined below. The goal

of this exercise is to select the 20 most “diverse” instances.

The generation process has the following settings, which were varied factorially. These settings were

described in Chapter 6.

• 2 × Generation methods: GRIDDESELECT, GRIDGROW-3-SEEDS

• 3 × Generation densities: 40%, 60%, 80%

• 2 × Reward setting methods: Uniform(10, 20), 3 seeds max pct deviation(seed1=5, seed2=10,

seed3=20, maxDev=0.1)

• 3 × Penalty setting methods: Uniform(5, 10), 3 seeds max pct deviation(seed1=2, seed2=5,

seed3=10, maxDev=0.1), Proportional to rewards(proportion=0.4, maxDev=0.1)

• 2 × Depot assigning methods: most rich, least rich

• 3 × Budget proportions: 50%, 75%, 100%

7.5 Measures of distance

We define “diversity” with respect to the problem characteristics in a number of different ways. Central

to these definitions is the concept of the distance between two problem instances. We adapt two

common measures of distance between two points in a multi-dimensional space. There are two factors

that must be considered:

• Some characteristics are on a completely different scale to others. For example

TOTAL_REWARD can go into the thousands, whereas DENSITY varies between zero and one.

• Some characteristics are more important than others when distinguishing between problems. For

example DENSITY is one of the most obvious ways that two instances can differ, and a way that

it seems reasonable to assume would affect heuristic performance, whereas

DEPOT_ROWS_FROM_SIDE might not be so important.

7.5.1 Euclidean distance

The simplest distance measure is Euclidean distance (ED), treating each problem characteristic as a

dimension. The Euclidean distance between points P = (p1, p2, …, pn) and Q = (q1, q2, …, qn) is defined

as:

 2 2 2 2
1 1 2 2

1

() () ... () ()
n

PQ n n i i
i

ED p q p q p q p q
=

= − + − + + − = −∑

The Euclidean distance treats all dimensions equally, so characteristics that have a larger scale will

potentially have a larger impact. A way to account for the different scale of characteristics is to

220 Heuristic Problem Design Chapter 7

calculate the normalized Euclidean distance (NED) by first dividing each characteristic value by its

standard deviation.

2

2
1

()n
i i

PQ
i i

p q
NED

σ=

−
= ∑

where σi is the standard deviation of the values of characteristic i. Normalizing the Euclidean distance

introduces the new disadvantage that it is dependent on the set of problem instances being examined,

since the standard deviation is calculated from these instances. Nevertheless, it may be used as a valid

measure to compare the distances between any pair of problem instances in a given set.

If we calculate the NED for the 216 instances of the tiny problem, using the characteristics defined in

Section 7.2.2, we get 23,220 individual distances, with the following normal distribution:

Figure 7.1: Distribution of normalised Euclidean distances for the tiny problem

Consider that some characteristics are more important than others when distinguishing between

problems. We can further extend the ED and the NED by introducing weights for each characteristic,

representing their relative importance, to obtain the weighted Euclidean distance (WED):

 2

1

()
n

PQ i i i
i

WED w p q
=

= −∑

where wi is the weight associated with characteristic i, which subsumes the standard deviation if

necessary.

7.5.2 Interpoint distance

An alternative measure of distance is known as the Mahalanobis distance (MD). It differs from the

Euclidean distance in that it takes into account the correlations of the data set and is scale-invariant. It

is commonly used in discrimination analysis and clustering. The Mahalanobis distance is calculated as

a measure of the distance from the point of observation to the mean of the distribution, rather than as

the distance between two points. For this reason it is not as suitable for our purposes. However, there

is a variation that does seem appropriate.

7.5 Measures of distance 221

Mahalanobis distance is usually defined from a group of values with mean µ = (µ1, µ2, … µN)T and

covariance matrix S for a multivariate vector x = (x1, x2, … xN)T as

 1() ()T
xMD x S xµ µ−= − −

The alternative version, sometimes known as the generalized interpoint distance (GID), is defined

between two points from the same distribution P = (p1, p2, … pN)T and Q = (q1, q2, … qN)T as

 1() ()T
xyGID p q S p q−= − −

If the covariance matrix is the identity matrix then the generalized interpoint distance reduces to the

Euclidean distance. If it is diagonal then it reduces to the normalized Euclidean distance defined above.

The interpoint distance would be a potential alternative to the Euclidean distance, and it accounts for the

problem of different variable scales of the characteristics, however still does not incorporate the

importance of characteristics.

The generalized interpoint distances were calculated between all instances of the tiny problem. An

important point to remember is that the covariance matrix must be invertible, so none of the

characteristics can be a linear combination of the others. The following distribution of interpoint

distances was obtained:

Figure 7.2: Distribution of generalized interpoint distances for the tiny problem

An interesting question is whether the normalized Euclidean distance and the generalized interpoint

distance give the same ranking to the instances. Plotting the interpoint distance against the Euclidean

distance gives the following scatter plot:

222 Heuristic Problem Design Chapter 7

Figure 7.3: Scatter plot of GID vs NED for the tiny problem

The shape is broadly linear, and the two distributions have a correlation coefficient of 0.52, but it can be

seen that there are considerable differences between the rankings given by the two distance measures.

Note that the values of the Euclidean distance and interpoint distance measures are not directly

comparable as they have different scales.

One final note is that like the normalized Euclidean distance, which is dependent of the problem set

under consideration through the standard deviation of each characteristic, the generalized interpoint

distance is dependent on the specific problem set under consideration too, via the covariance matrix.

7.5.3 Inter-instance metrics

The Euclidean and interpoint distances, and their variations, give a measure of the similarity of two

specific instances. In addition we define several aggregate metrics for a particular subset of arcs. If we

are selecting s instances from a set of n instances, S ⊆ N, then the set of individual distances between

the elements of S is DS = {dpq | p,q ∈ S}, and the cardinality of DS is given by the following formula:

1

1

s

S
i

D i
−

=

=∑

The total distance (TD) for a subset S of problem instances is the sum of the distances between every

pair of instances:

\

S ij
i S j S i

TD d
∈ ∈

=∑∑

The total individual distance (TID) of an instance p for a subset S is the sum of the distances from p to

each of the other instances in S:

\

S
p pi

i S p

TID d
∈

= ∑

7.6 Heuristics 223

7.6 Heuristics

As discussed in Section 7.3, the Maximally Diverse Subset Selection Problem is NP-hard, which means

that we expect large instances to be unsolvable by standard integer programming algorithms. However,

even the tiny problem of selecting 20 instances from 216 is too large to solve optimally on a desktop

computer. There are 8.7×1027 possible subsets, so explicit enumeration is not a valid solution method.

With the integer programming formulation presented in section 7.3, the tiny problem requires 46656

variables, 23221 constraints, and 93096 constraint coefficients, and the commercial-grade solver built

into the optimization software SAS/OR was unable to find a solution. For this reason we develop some

basic heuristics. Each of the following four heuristics can be performed using any measure of distance

available.

7.6.1 Heuristic H1

Heuristic H1 uses selection based on total individual distance.

1. Calculate the set DN of distances between all pairs of instances in N.

2. For each instance, sum the distances from this instance to every other instance to calculate its

total individual distance.

3. Sort the instances in N by descending order of total individual distance.

4. Select the top s distances.

7.6.2 Heuristic H2

Heuristic H2 uses selection based on ranking individual distances.

1. Calculate the set DN of distances between all pairs of instances in N.

2. Sort all of these distances in descending order.

3. Process the list, one distance dij at a time, adding both instance i and instance j to S, until there

are s distinct instances in S.

7.6.3 Heuristic H3

Heuristic H3 iteratively discards a “non-promising” instance, and recalculates the remaining distances.

1. Calculate the set DN of distances between all pairs of instances in N.

2. For each instance, sum the distances from this instance to every other instance to calculate its

total individual distance.

3. Sort the instances by ascending order of total individual distance.

4. Discard the instance p at the top of the list (lowest total individual distance), to give the

remaining subset R = N \ p.

5. Return to step 2 and recalculate the total individual distances with respect to the remaining

subset R. Repeat until the list of remaining instance R contains s instances, and R becomes S.

224 Heuristic Problem Design Chapter 7

7.6.4 Heuristic H4

Heuristic H4 performs the opposite process to H3; it iteratively includes the “most-promising” instance,

and recalculates remaining distances.

1. Calculate the set DN of distances between all pairs of instances in N.

2. For each instance, sum the distances from this instance to every other instance to calculate its

total individual distance.

3. Sort the instances by descending order of total individual distance.

4. Select the instance p at the top of the list (highest total individual distance). Include p in S; the

remaining instances are in R = N \ p.

5. Return to step 2 and recalculate the total individual distances with respect to the remaining

subset R. Repeat until S contains s instances.

7.7 Solving the tiny problem

The tiny problem of choosing 20 maximally diverse instances from the set of 216 instances server was

solved using each of the four heuristics H1-H4, with two separate distance measures; normalized

Euclidean distance and generalized interpoint distance. In addition, 1000 random subsets were selected,

to benchmark the heuristics’ performance. Selecting the best of these could be considered another

heuristic.

Table 7.1 gives the results of the computational experiment. The running times are dependent on the

implementation used, but can be effectively compared to each other. The heuristics were coded in the

SAS data analysis language, and were run on a laptop computer running Windows XP Pro with a

2.4Ghz processor and 3GB RAM.

7.8 Additional measures of diversity 225

Table 7.1: Results for the tiny problem

Distance measure Heuristic Rank
Total

distance
Time (s)

normalised Euclidean distance Best random 4 1588.92 182.2

normalised Euclidean distance Worst random 7 1202.51

normalised Euclidean distance Mean random 5 1405.66

normalised Euclidean distance H1 2 1647.97 0.2

normalised Euclidean distance H2 6 1272.24 0.2

normalised Euclidean distance H3 1 1814.85 48.6

normalised Euclidean distance H4 3 1639.11 6.3

interpoint distance Best random 5 15050.29 188.4

interpoint distance Worst random 7 7358.55

interpoint distance Mean random 6 10608.13

interpoint distance H1 2 (equal) 22809.28 0.1

interpoint distance H2 4 20752.69 1.5

interpoint distance H3 1 22968.60 28.3

interpoint distance H4 2 (equal) 22809.28 6.1

The heuristics all perform better than all the random selections for the GID, and mostly for the NED.

Heuristic 3 performed the best under both distance measures, although it required significantly more

computation time, as expected since the distances have to be recalculated at each iteration. The time for

the “best” random metric is the time required to generate all 1000 instances.

Heuristic 2 performed quite poorly under both distance measures, but especially with the NED. This

poor performance is possibly due to the fact that H2 does not consider the total distance associated with

a particular problem instance; if it has one very large distance then it is likely to be included, even if all

its other distances are small. As a general rule, heuristics that rank items individually are outperformed

by those which rank on more global bases.

It appears that the two distance measures give quite different subsets. Even though Heuristic 3 was the

best in both cases, there was only a 50% overlap in the instances selected (10 instances).

7.8 Additional measures of diversity

The normalized Euclidean distance and the generalized interpoint distance (based on Mahalanobis

distance) are measures between pairs of instances. These can be used to describe subsets of instances

by calculating the total distance, which was our measure of diversity in the previous section. The

heuristics developed above provide methods to get a subset of instances that have maximal total

distance. We now introduce some other measures that describe how diverse these instances are. The

following metrics are calculated for each characteristic, with respect to a set of instances.

The following metrics also refer to the standardized values of each characteristic, found by dividing

each value by the standard deviation of values for that characteristic. This avoids the problem of having

characteristics with different scales.

226 Heuristic Problem Design Chapter 7

7.8.1 Total absolute difference for a characteristic

The total absolute difference (TAD) for a characteristic is the sum of the absolute differences between

the values of that characteristic, for all instance pairs:

1

1 1

s s
c c

c j i
i j i

TAD x x
−

= = +

= −∑∑

where TADc is the total absolute difference for characteristic c, xi
c is the value of characteristic c for

instance i.

7.8.2 Average consecutive difference for a characteristic

If all the values for a characteristic are ordered, and the differences between consecutive values are

found, then let the average consecutive difference (AvgCD) for a characteristic be the mean of these:

()
1

1

1

s
c c
i i

i
c

x x

AvgCD
s

−

+

=

−

=
∑

where AvgCDc is the average consecutive difference for characteristic c, s is the number of instances

(and hence s-1 is the number of consecutive ordered differences), xi
c is the value of characteristic c for

instance i, and the instances are in ascending order of the values of c.

7.8.3 Standard deviation of consecutive differences for a characteristic

If all the values for a characteristic are ordered, and the differences between consecutive values are

found, then let the standard deviation of consecutive differences (StdCD) for a characteristic be the

sample standard deviation of these:

()()
1 2

1

1

1

s
c c
i i c

i
c

x x AvgCD

StdCD
s

−

+

=

− −

=
−

∑

where StdCDc is the standard deviation of consecutive differences for characteristic c, s is the number

of instances (and hence s-1 is the number of consecutive ordered differences), xi
c is the value of

characteristic c for instance i, and the instances are in ascending order of the values of c.

7.8.4 Coefficient of variation of consecutive differences for a characteristic

The coefficient of variation of a sample is the ratio of the standard deviation to the mean. It is a

dimensionless number that can be used to compare the amount of variance between populations with

different means. If all the values for a characteristic are ordered, and the differences between

consecutive values are found, then let the coefficient of variation of consecutive differences (CVCD)

for a characteristic be the coefficient of variation of these:

7.8 Additional measures of diversity 227

c
c

c

StdCD
CVCD

AvgCD
=

where CVDCc is the coefficient of variation of consecutive differences for characteristic c, StdCDc is

the standard deviation of consecutive differences for characteristic c, and AvgCDc is the mean of

consecutive differences for characteristic c.

7.8.5 Maximum consecutive difference for a characteristic

If all the values for the characteristic are ordered, and the differences between consecutive values are

found, then let the maximum consecutive difference (MaxCD) for a characteristic be the largest of

these:

()1
1..(1)
max c c

c i i
i s

MaxCD x x+
= −

= −

where MaxCDc is the maximum consecutive difference for characteristic c, s is the number of instances,

xi
c is the value of characteristic c for instance i, and the instances are in ascending order of the

characteristic values.

7.8.6 Discussion of the diversity measures

The diversity measures defined above for a characteristic attempt to quantify whether the values for that

characteristic are finely grained and non-clumped. In a maximally diverse subset, we would expect the

TAD and the AvgCD to be maximized for each characteristic, which would mean they were finely

grained. We would expect MaxCD, StdCD and CVCD to be minimized for each characteristic, which

would mean the values are evenly spread, with little “clumping” of values.

Suppose we have are selecting four problem instances, and these are measured with two characteristics.

Figure 7.4 plots some possible scenarios for the values of the characteristics.

Figure 7.4: Examples of problem instances with differing diversity

The three scenarios all have the same total distance, however they are not all equally desirable.

228 Heuristic Problem Design Chapter 7

Figure 7.4(a) has two clusters of points; these points clearly do not have evenly spread and finely

grained characteristic values. Figure 7.4(b) and Figure 7.4(c) are identically “shaped”, and have the

same total distance, as well as each point having the same total individual distance; there are no

clusters. Table 7.2 gives the values of the diversity measures for these example sets. These are based

on a normalized Euclidean distance, where (a) is based on a rectangle with sides of length 10 and 60,

and (b) and (c) are based on a square with sides of 38.3 (chosen to make the total distances equal). Note

that the diagrams are representative only, but the calculations of the metrics are all consistent; the

consecutive differences in each characteristic for (c) are evenly spaced.

Table 7.2: Diversity measures for the example sets

Metric Characteristic a b c

TD 261.7 261.7 261.7

TAD C1 115.7 163.8 171.4

 C2 227.4 163.8 171.4

AvgCD C1 11.2 14.7 17.1

 C2 19.6 14.7 17.1

StdCD C1 3.5 14.5 0.0

 C2 27.0 14.5 0.0

CVCD C1 0.3 1.0 0.0

 C2 1.4 1.0 0.0

MaxCD C1 15.2 31.5 17.1

 C2 50.8 31.5 17.1

The cells highlighted in the table are those with the best values. Although (a) has some best values for a

single characteristic, overall (c) has the best diversity measures, and this confirms the impression by eye

that the characteristic values are finely grained and evenly spaced.

7.9 A giant selection problem

We now present a much larger selection problem to test the ideas developed in this chapter, and using a

much more finely grained generation mechanism. In this “giant” problem we desire to select 300

instances from a set of 150,000.

The generation process has the following settings, which were varied factorially. These settings were

described in Chapter 6.

• 3 × Generation methods: GRIDDESELECT, GRIDGROW-1-SEED, GRIDGROW-3-SEEDS

• 17 × Generation densities: 40% to 80% by 3% increments

• 7 × Reward setting methods:

o Uniform: (10, 20), (5, 20), (5, 50)

o 1 seed max pct deviation: (seed=20, maxDev=0.05), (seed=20, maxDev=0.1),

(seed=20, maxDev=0.25)

o 3 seeds max pct deviation: (seed1=5, seed2=20, seed3=50, maxDev=0.1)

• 10 × Penalty setting methods:

o Uniform: (5, 20), (5, 20), (5, 50)

7.10 Solving the giant problem 229

o Proportional to rewards: (proportion=0.1, maxDev=0.1), (proportion=0.3,

maxDev=0.3), (proportion=1.1, maxDev=0.3)

o 1 seed max pct deviation: (seed=20, maxDev=0.05), (seed=20, maxDev=0.1),

(seed=20, maxDev=0.25)

o 3 seeds max pct deviation: (seed1=5, seed2=20, seed3=50, maxDev=0.05)

• 3 × Depot assigning methods: random, most rich, least rich

• 18 × Budget proportions: 40% to 108% by 4% increments

This gives a total of 3×17×3×18×7×10 = 192,780 instances. The generation procedure generated the

instances for the GRIDGROW-1-SEED and GRIDGROW-3-SEEDS graph generation methods quickly –

within a day. The GRIDDESELECT instances took much longer, however. The instances with lower

densities were produced first, and these were taking a minute each! This time slowly decreased as the

density increased (fewer arcs to remove in the deselection process), however it reduced only to 38s.

Time constraints forced the decision after several weeks to stop the generation at 150,000 instances

overall, corresponding to all the instances for the GRIDGROW-1-SEED and GRIDGROW-3-SEEDS graph

generation methods and those instances for the GRIDDESELECT method with the lowest densities. This

decision was justified by the fact that the difference in graph structures between the GRIDDESELECT and

GRIDGROW-1-SEED methods is most dramatic at low densities.

7.10 Solving the giant problem

The tiny problem revealed that Heuristic 3 seems to be the most effective. Unfortunately this heuristic

is impractical for large problems like the giant problem, and the same limitation applies to all the

heuristics from Section 7.6. The difficulty is that they all involve the calculation of the distance

between all pairs of instances. This involves a join of the problem characteristic dataset to itself; for a

set of 150k instances this would give 11,249,925,000 distances to compute, and would take more

computing time and resources than were available.

We develop a modified version of the heuristic to cope with large data volumes. The general approach

is to break the superset of instances into smaller samples and select a diverse subset from each using

Heuristic 3, then combine these subsets and repeat the process until a subset of the desired size is

obtained. The normalized Euclidean distance was chosen as the distance measure, since it requires

much less computational effort to calculate.

We use terms “sample” and “subset” in this section as follows:

• A sample is a random selection from the current superset, used to break the superset into

manageable pieces.

• A subset is the diverse selection chosen from the sample using the heuristic.

The first configuration that was attempted was to select 50 samples of 3000, choosing 100 from each.

This would result in a new superset of 5000 instances. However, the process of choosing 100 from

3000 still took prohibitively long; the heuristic was taking half a minute for each discard, which would

have taken almost a whole day just to process the first 3000 instance sample. The samples need to be

smaller.

230 Heuristic Problem Design Chapter 7

After considerable trial and error, three different methods were performed:

Method 1. Samples of 500, choosing subsets of 100. This progressed in five iterations for a total

time of approximately 13 hours.

Method 2. Samples of 100, choosing subsets of 20. This progressed in 5 iterations for a total time

of approximately 1.5 hours.

Method 3. Samples of 20, choosing subsets of 15. This progressed in 19 iterations for a total time

of approximately 1.8 hours.

For some of the iterations, a slightly different number of selections was made, where this made sense.

For example, the fourth and fifth iterations of Method 1 selected 300 instances from the samples of 600.

There are clearly many other possible configurations possible, however for our purposes these three are

sufficient to achieve the goals of performing the selection, and understanding whether there is an impact

of using different selection methods.

7.10.1 Results

The results from the three selection methods are remarkably close. Each method selected 300 instances

from 150,000 and Figure 7.5 shows the overlap of instances selected.

Figure 7.5: Overlap of instances for the three methods on the giant problem

These results are extremely surprising. 274 instances were selected by all three methods. Consider that

each of these methods involved many iterations of taking different random samples and repeated

remixing the remainders. This strong overlap implies two things:

1. The choice of sampling method is not hugely important, since very similar subsets get selected

anyway.

2. The subsets are close to being the most diverse possible, with respect to the diversity measure

being used for selection: total distance.

7.10 Solving the giant problem 231

If we consider total distance, which is the measure used in the selection heuristics, we see that the total

distance is very close, with Method 1 producing a slightly better result, but the other two methods are

within 0.1% of Method 1. Table 7.3 gives the total distances of the subsets selected, along with the best

of 100 random selections. By this measure, all of the heuristics are almost twice as effective as the

random samples.

Table 7.3: Total distance for the results of giant problem

Method Total distance

1 528910

2 528875

3 528461

Random 272190

The next step is to consider the results using the characteristic-based diversity measures from

Section 7.8. For these results the three methods are considered, along with the “best” random sample,

to provide some basis of comparison.

232 Heuristic Problem Design Chapter 7

7.10.2 Total absolute difference

Table 7.4 shows the total absolute difference values for each characteristic, and for each selection

method. The best (highest) TAD for each characteristic is highlighted.

Table 7.4: Total absolute distance by characteristic for the giant problem

Characteristic Random Method 1 Method 2 Method 3

Arcs 48131 63430 63475 63844

Avg_arc_adjacency 41893 72039 72169 72123

Avg_depot_shortest_path 46696 110355 110588 110490

Avg_node_degree 47397 69039 68949 69257

Avg_shortest_path 39915 94150 94155 94255

Budget_to_cost_ratio 52912 57050 57110 57098

CV_node_incidence_reward 40494 132562 132416 131838

CV_penalty 48953 115719 115619 115357

CV_reward 46902 120909 121072 120751

Density 48282 69321 69361 69593

Depot_degree 49129 53898 54038 54159

Depot_rows_from_side 49108 68573 68630 68292

Mean_reward_penalty_ratio 38723 70847 70966 71052

Nodes 48937 57086 57073 57185

Proportion_pendant_arcs 46314 68469 68529 68580

Proportion_straightline_arcs 40015 95409 95024 94995

Std_reward_penalty_ratio 40817 206124 206040 205845

Std_node_degree 50206 52364 52750 53112

Average 45824 87630 87665 87657

The three heuristic methods are significantly better than random with this measure, which is reassuring

since total absolute difference is related to the total distance measure used to make the selections.

7.10 Solving the giant problem 233

7.10.3 Average consecutive difference

Table 7.5 shows the average consecutive difference values for each characteristic, and for each

selection method. The best (highest) AvgCD for each characteristic is highlighted.

Table 7.5: Average consecutive distance by characteristic for the giant problem

Characteristic Random Method 1 Method 2 Method 3

Arcs 0.01075 0.01075 0.01075 0.01075

Avg_arc_adjacency 0.01136 0.01136 0.01136 0.01136

Avg_depot_shortest_path 0.02385 0.02694 0.02694 0.02704

Avg_node_degree 0.01236 0.01236 0.01236 0.01236

Avg_shortest_path 0.01725 0.02225 0.02225 0.02225

Budget_to_cost_ratio 0.01096 0.01096 0.01096 0.01096

CV_node_incidence_reward 0.02297 0.03107 0.03107 0.03107

CV_penalty 0.01879 0.02509 0.02509 0.02509

CV_reward 0.01794 0.02473 0.02473 0.02475

Density 0.01164 0.01164 0.01164 0.01164

Depot_degree 0.00958 0.00958 0.00958 0.00958

Depot_rows_from_side 0.01544 0.02008 0.02008 0.02008

Mean_reward_penalty_ratio 0.01203 0.02083 0.02083 0.02083

Nodes 0.01290 0.01359 0.01359 0.01359

Proportion_pendant_arcs 0.01261 0.01428 0.01428 0.01428

Proportion_straightline_arcs 0.01643 0.02027 0.02027 0.02027

Std_reward_penalty_ratio 0.02406 0.10329 0.10329 0.10329

Std_node_degree 0.01277 0.01428 0.01428 0.01457

Average 0.01520 0.02241 0.02241 0.02243

The most obvious observation here is that the selection methods are the same for most of the

characteristics, and the same as the random version for some also. This is initially surprising, however

after consideration it makes some sense. The first factor is that most of the instances from each

selection method overlap (274 out of 300), so the variation is already limited. The other factor is that

many of these characteristics take a discrete set of values, so there are only so many consecutive

distances that are possible; once these are represented then any new instances will contribute a

consecutive distance of zero. For example, suppose there are five discrete values that a characteristic

may take, then there are only four consecutive distances, and the remainder will be repeats with

consecutive distances of zero. For that reason, this metric may not be very useful.

234 Heuristic Problem Design Chapter 7

7.10.4 Standard deviation of consecutive differences

Table 7.6 shows the standard deviation of consecutive differences for each characteristics and selection

method. The best (lowest) StdCD for each characteristic is highlighted.

Table 7.6: Standard deviation of consecutive differences by characteristic for the giant problem

Characteristics Random Method 1 Method 2 Method 3

Arcs 0.04534 0.04818 0.04818 0.04818

Avg_arc_adjacency 0.11305 0.11305 0.11305 0.11305

Avg_depot_shortest_path 0.13516 0.04453 0.04469 0.04468

Avg_node_degree 0.15085 0.15085 0.15085 0.15085

Avg_shortest_path 0.05416 0.06742 0.06742 0.06573

Budget_to_cost_ratio 0.04084 0.04098 0.04098 0.04085

CV_node_incidence_reward 0.09312 0.06004 0.06005 0.05976

CV_penalty 0.05357 0.05545 0.05540 0.05531

CV_reward 0.04523 0.03662 0.03667 0.03740

Density 0.03727 0.03951 0.03946 0.03914

Depot_degree 0.09531 0.09531 0.09531 0.09531

Depot_rows_from_side 0.08316 0.09432 0.09432 0.09432

Mean_reward_penalty_ratio 0.10871 0.09305 0.09305 0.09307

Nodes 0.01928 0.02854 0.02854 0.02783

Proportion_pendant_arcs 0.02059 0.02465 0.02469 0.02496

Proportion_straightline_arcs 0.04740 0.04278 0.04278 0.04313

Std_reward_penalty_ratio 0.14331 0.51419 0.51419 0.51437

Std_node_degree 0.02101 0.02457 0.02471 0.02886

Average 0.07263 0.08745 0.08746 0.08760

Again, many of the selection methods have similar values, possibly due to the overlap in instances. The

ones that are all the same are those have a very limited range of values (such as the average arc

adjacency). Surprisingly, the random selection has a lower standard deviation of consecutive

differences for many characteristics. It is not immediately obvious why this would be the case,

however it is possibly related to the discrete nature of the problem instance generation settings.

7.10 Solving the giant problem 235

7.10.5 Coefficient of variation of consecutive differences

Table 7.7 shows the coefficient of variation of consecutive differences for each characteristic and

selection method. The best (lowest) CVCD for each characteristic is highlighted.

Table 7.7: Coefficient of variation of consecutive differences by characteristic for the giant problem

Characteristics Random Method 1 Method 2 Method 3

Arcs 4.21597 4.47977 4.47977 4.47977

Avg_arc_adjacency 9.94976 9.94976 9.94976 9.94976

Avg_depot_shortest_path 5.66718 1.65262 1.65864 1.65214

Avg_node_degree 12.20649 12.20649 12.20649 12.20649

Avg_shortest_path 3.13926 3.03004 3.03029 2.95417

Budget_to_cost_ratio 3.72575 3.73897 3.73901 3.72716

CV_node_incidence_reward 4.05434 1.93238 1.93285 1.92355

CV_penalty 2.85133 2.20987 2.20801 2.20417

CV_reward 2.52066 1.48073 1.48283 1.51128

Density 3.20277 3.39598 3.39141 3.36377

Depot_degree 9.94976 9.94976 9.94976 9.94976

Depot_rows_from_side 5.38488 4.69828 4.69828 4.69828

Mean_reward_penalty_ratio 9.04021 4.46797 4.46796 4.46872

Nodes 1.49501 2.09995 2.09995 2.04711

Proportion_pendant_arcs 1.63349 1.72567 1.72859 1.74735

Proportion_straightline_arcs 2.88487 2.11099 2.11099 2.12818

Std_reward_penalty_ratio 5.95759 4.97805 4.97810 4.97981

Std_node_degree 1.64521 1.72004 1.73013 1.98035

Grand Total 4.97358 4.21263 4.21349 4.22066

There are no obvious patterns here, except to note that the random selection has a lower CV for many

characteristics than the selection methods, due to the standard deviation measure.

236 Heuristic Problem Design Chapter 7

7.10.6 Maximum consecutive difference

Table 7.8 shows the maximum consecutive difference for each characteristic and selection method. The

best (lowest) value for each characteristic is highlighted.

Table 7.8: Maximum consecutive difference by characteristic for the giant problem

Characteristics Random Method 1 Method 2 Method 3

Arcs 0.20695 0.39798 0.39798 0.39798

Avg_arc_adjacency 1.13242 1.13242 1.13242 1.13242

Avg_depot_shortest_path 2.24667 0.51810 0.51810 0.51810

Avg_node_degree 1.84755 1.84755 1.84755 1.84755

Avg_shortest_path 0.61867 1.00926 1.00926 0.97636

Budget_to_cost_ratio 0.19617 0.19515 0.19515 0.19515

CV_node_incidence_reward 1.40347 0.74225 0.74225 0.74225

CV_penalty 0.71582 0.76569 0.76569 0.76569

CV_reward 0.36813 0.23695 0.23695 0.25875

Density 0.22390 0.22390 0.22390 0.22390

Depot_degree 0.95473 0.95473 0.95473 0.95473

Depot_rows_from_side 0.46174 0.46174 0.46174 0.46174

Mean_reward_penalty_ratio 1.85237 1.48891 1.48891 1.48891

Nodes 0.10421 0.20842 0.20842 0.20842

Proportion_pendant_arcs 0.19588 0.15339 0.15339 0.15339

Proportion_straightline_arcs 0.41380 0.38354 0.38354 0.38354

Std_reward_penalty_ratio 2.35709 7.71205 7.71205 7.71205

Std_node_degree 0.21333 0.20436 0.20436 0.32387

Average 0.86183 1.03536 1.03536 1.04138

These are the same for many characteristics, which makes sense for the same reasons as the AvgCD.

There are some dramatic exceptions, for example the AVG_DEPOT_SHORTEST_PATH for the

selection methods is more than four times that of the random sample, and the

STD_REWARD_PENALTY_RATIO is three times larger. The significance of this not clear.

7.10.7 Discussion

The characteristic-based metrics were not used as part of the selection. We can make several inferences

from the above results.

It seems that the total distance metric used in the selection heuristic does not guarantee that the

characteristics will be much more finely grained and evenly spread than a random selection of

instances. Some measures were better, others were worse; the TAD was clearly better for the heuristics

rather than the random selection, which makes sense since this measure is linked to the total distance.

This confirms our initial findings from the thought experiment in section 7.8.6, where all three

scenarios had the same total distance, and (b) and (c) even had the same total individual distance for all

point, but they had quite different characteristics distributions.

7.11 Using MLS to design problem instances 237

The consecutive difference measures all suffered from the flaw that once the available discrete values

have been satisfied, the remainder of instances simply contribute a zero consecutive difference, making

the aggregate measures very similar for all the subsets. Even where there are not fixed discrete values

that the consecutive differences can take, in a well-distributed subset the differences will all be very

small, so the aggregate measures are working on a very small range.

With hind-sight, there is also a question of whether there was sufficient diversity even in the set of

150,000 problem instances. Although the problem instances generated here were much more “finely

grained” than previous generation attempts, they potentially still suffer from the inherent shortcomings

of parameterized problem instance generation. In the next section we develop a completely new

approach which may have more promise to meet the goal of producing "interesting" problem instances.

7.11 Using MLS to design problem instances

This section takes a completely different approach to creating a set of interesting problem instances.

The previous approach in this chapter was to generate a large number of instances, and then select the

most diverse; the motivation being that a diverse set of instances would be the best way to detect

features that predict relative heuristic performance, by running the heuristics on the instances, and then

focusing on those that seem interesting (if any).

An alternative strategy is to actively force the instances to be "interesting", rather than hoping that some

will be after the fact. We propose a new combinatorial problem, and use a Modular Local Search

heuristic to solve it. This both attacks our goal in a new way and demonstrates the flexibility of the

MLS framework to be applied easily to a new problem.

For our purposes, interesting problem instances are those that result in quite different relative

performances between heuristics. There are an extremely large number of possible problem instances

in “problem space” – our goal here is to find those that show the greatest difference in heuristic

performance; those that some heuristics perform well on and that others perform poorly on. We could

attempt to do this by hand, however we have another tool at our disposal which is more suited for this

type of task. Local search heuristics are designed to find good regions of a search space, and the

Modular Local Search framework is a flexible way to design and implement local search heuristics.

A brief investigation into this problem was performed, more as a proof-of-concept than to study it

intensively.

7.11.1 The Problem Instance Creation Problem

We define the ASRP Problem Instance Creation Problem (APICP). The objective of this problem is

to create a problem instance that makes a nominated MLS heuristic A perform better than another MLS

heuristic B.

At the risk of using confusing terminology, a problem instance for the APICP consists of the two

heuristics A and B. A solution to the APICP is an ASRP problem instance. If we let z(A) and z(B) be

238 Heuristic Problem Design Chapter 7

the reward collected from the execution of heuristics A and B, respectively, then the objective function

to be maximized is:

 Z(A,B) = z(A) – z(B)

7.11.2 MLS modules and configuration

Conceptually, the modules required to support this problem are very simple. Almost all of the structure

of the MLS algorithm stays the same. Exactly the same MLS heuristics as for the ASRP can be used,

with a very few modifications.

Programmatically, there were almost no changes required to the MLS program to solve the APICP.

The main changes were that a new Solution class was written and new move-types and admissibility

conditions needed to be written. These are classes that need to be specifically written for each new

problem domain.

A problem-specific MLS solution class is a subclass of the generic Solution class, and it has to

implement one method, getObjective, which returns the value of the objective function. For the

ASRP, a solution consists of an ordered sequence of nodes and arcs; these ordered lists need to be

stored in the Solution class, and the getObjective method goes through these arcs and adds up the

reward. For the APICP, the solution subclass is slightly more complicated. Instead of a list of nodes

and arcs, it contains an ASRP instance. The getObjective method performs quite a complicated

operation. It generates a completely new ASRP version of MLS, based on heuristic A, and evaluates it.

The final best solution resulting from this is stored as rewardA. It then repeats this whole process for

heuristic B to produce rewardB. The objective function returned is rewardA – rewardB. In order to

accomplish this quite strict object-oriented programming was required, but it illustrates the power of the

MLS framework that this is possible – a “solution” can be anything at all, as long as there is a way to

evaluate its objective function.

Recall that a solution for the APICP is an ASRP instance, consisting of a graph of arcs of unit length,

distributed on a nominal grid, reward values for each of those arcs, a maximum cost budget, and a depot

node. There are many possible move-types that could be considered for this problem. The following

list gives some examples:

• Add an arc to the graph (from the underlying grid) – small change

• Delete an arc from the graph (must not disconnect the graph) – small change

• Add an arc (from the underlying grid) and delete an arc (must not disconnect the graph) – small

change

• Delete an arc from the graph (if this disconnects the graph then all arcs no longer connected to

the depot are also deleted, effectively deleting a whole section of the graph) – large change

• Move the depot in a random direction to an adjacent vertex – small change

• Move the depot to another randomly selected vertex – large change

• Increase the budget by a small amount – small change

• Increase/decrease the budget by a small amount – small change

• Randomly select a budget between 20% and 120% of the total graph cost – large change

7.11 Using MLS to design problem instances 239

Many others are possible, including compound moves combining multiple elements of the above.

Admissibility for APICP solutions is simply whether the graph is connected.

7.11.3 A proof-of-concept trial

To prove the validity of using MLS to design problem instances with desired characteristics we

implement a small example. We select two heuristics from the experiments in Chapter 6 and attempt to

“design” problem instances that result in the greatest performance difference between them.

Two instances of Steepest Ascent (Algorithm 6.17) were chosen: StpAscBasic and StpAscExt12. These

heuristics were selected for this experiment because the analysis in Section 6.4.3 suggested that their

relative performance was dependent on problem structure. They were also among the heuristics with

the fastest running times; in this problem the examination of every neighbour involves the application

of both heuristics, so a quicker running time is desirable.

For a solution to the APICP (which is an ASRP problem instance), let the objective function Z be the

difference between the reward collected by the two heuristics:

Z = rStpAscBasic – rStpAscExt12

Recall that these two heuristics were executed on all 1440 problem instances from Chapter 6, and

StpAscBasic outperformed StpAscExt12, in aggregate. To limit the degrees of freedom for this

experiment, we fix the budget at 0.75 of the total number of arcs in the graph. Figure 7.6 gives the

distribution of Z for the 360 problem instances that had this budget ratio. There 62 problem instances

(17%) where Z was negative, i.e., for which StpAscExt12 outperformed StpAscBasic.

Figure 7.6: Distribution of Z for instances where budget = 0.75 * arcs

As an initial investigation we propose a very simple experiment. We generate a grid with reward

randomly distributed from Uniform(5, 20) and randomly select 20 connected arcs from this grid. This

activity constitutes the construction phase. Then we perform a simple local search that only has one

move type, which is adding an arc; the MLS heuristic assembles a graph one arc at a time.

240 Heuristic Problem Design Chapter 7

The MLS heuristic we use is a version of Iterative Sampling Local Search (ISLS), which to our

knowledge has not been explored in the literature, but which we introduced briefly in Section 4.7.5.

ISLS is suited as a simple heuristic where the neighbourhood is either very large or very expensive to

evaluate. Our simple variation has the following properties:

• Only one move-type: add arc

• The only admissibility condition is that the resulting graph be connected, so moves that worsen

the objective function are possible.

• The move-list size is set to unlimited. This is not a limiting factor since a 15×15 grid has at

most 420 arcs that can be added.

• The candidate list size is set to 10.

• The examinations maximum is set to 50.

This represents a very simple local search routine. By limiting the possible move-types to adding an arc

we limit the size of the neighbourhood, but even so examining the full neighbourhood at each iteration

is not possible because the evaluation of each neighbour is computationally expensive. Instead we

sample from the neighbourhood, examining at most 50 neighbours for admissibility to get a candidate

list of 10 solutions, on which both heuristics are performed to calculate the objective function, and the

best of these is selected as the target solution.

Figure 7.7: Trajectory of Z when adding arcs (StpAscBasic – StpAscExt12)

Figure 7.7 gives the objective function trajectory. At each iteration an arc is added to the graph, and the

budget is adjusted; the process was stopped manually after 210 iterations (approximately 8 hours). The

objective function on the graph represents the best of the solutions examined, with a maximum

difference of 303.38 achieved at 205 arcs. It seems clear from this experiment that it is possible to

design problem instances where StpAscBasic outperforms StpAscExt12, but since 83% of the randomly

generated instances from Chapter 6 resulted in this outcome, it is not a surprising or impressive result.

Consider now the reverse problem, to find problem instances where StpAscExt12 outperforms

StpAscBasic. These were much rarer in the experimental problem set from Chapter 6. The two

7.11 Using MLS to design problem instances 241

approaches, changing the objective to a minimization problem, and redefining Z, are equivalent; for

convenience we redefine Z as Z* and retain the maximization objective:

Z* = rStpAscExt12 – rStpAscBasic

Figure 7.8 gives the objective function trajectory for Z*. The heuristic was stopped at the same point

as the previous experiment, at 210 arcs. The most obvious feature of this graph is that it was much

harder for the MLS heuristic to find ASRP instances that maximized the objective function; the search

spent much of the time at zero, which means that the two heuristics found the same solution. However

the search was able to find some solutions that satisifed the criteria, with a maximum difference of

44.84589 being found when the number of arcs was 129 and 130.

Figure 7.8: Trajectory of Z* when adding arcs (StpAscExt12 – StpAscBasic)

The neighbourhood for this MLS heuristic was simplistic. Arcs could only be added; arcs added in the

early stages of the search when the size of the graph was small could not be removed later.

The next investigation instead focuses on iterative improvement of a graph of a fixed size. Figure 7.9

shows the spread of Z values (the difference between the rewards of StpAscBasic and StpAscExt12) for

the 360 problem instances from Chapter 6 that have a budget of 75% of the total cost.

242 Heuristic Problem Design Chapter 7

Figure 7.9: Distribution of Z by number of arcs

Of the three density settings only the two lower settings, 105 arcs and 210 arcs, corresponding to 25%

and 50% of the complete grid, have a significant number of problem instances where StpAscExt12

outperformed StpAscBasic. Figure 7.10 and Figure 7.11 show the distributions of these differences.

Figure 7.10: Distribution of Z (105 arcs)

Figure 7.11: Distribution of Z (210 arcs)

For the purposes of this experiment, we fix the number of arcs in the graph at 105 (25% of the complete

grid), since this setting has a higher proportion of problem instances where StpAscExt12 outperforms

StpAscBasic. We change the move-type from adding an arc to swapping two arcs; so an arc from the

complete grid that is not currently included becomes included, and an included arc gets removed,

keeping the total number of arcs at 105. The initial set of arcs is selected randomly, until a connected

subgraph is obtained.

In the restricted subset of 120 problem instances shown in Figure 7.10 the highest value of Z was

144.64 and the lowest value was -229.30, so these become the targets to beat for the MLS heuristic.

Two variations of the MLS heuristic were used. Both versions are essentially the same as the version

used earlier, except with a different move-type. The first variation kept the same candidate list size of

10, and the second variation increased this to 20. The increase was attempted because the maximization

7.11 Using MLS to design problem instances 243

of Z* did not yield great results; an increased candidate list size means that each iteration takes longer,

but should result in better improvements.

Figure 7.12: Trajectory of Z with 10 candidates

Figure 7.13: Trajectory of Z* with 10 candidates

Figure 7.12 and Figure 7.13 give the trajectories of the objective function for Z and Z*, respectively.

With Z, the search was stopped after 84 iterations when the upwards momentum had stalled and the best

value of 317.36 had clearly exceeded the target of 144.64. With Z*, the search was stopped after 315

iterations when it had returned to zero. The best value of 42.61 was much less than the target of 229.30.

Figure 7.14: Trajectory of Z with 20 candidates

Figure 7.15: Trajectory of Z* with 20 candidates

Figure 7.14 and Figure 7.15 give the trajectories for Z and Z* with the candidate list size increased to

20. Both experiments resulted in better search trajectories, dramatically so for Z*. For Z the search was

stopped after 440 iterations, and the best objective function value of 367.56 was achieved after 222

iterations. For Z* the search was stopped after 180 iterations and the best value of 233.34 was achieved

after 157 iterations.

7.11.4 Discussion

It seems clear that the objectives were met, and this validates the approach of using a local search-based

design process to design problem instances that meet certain criteria. Our specific example involved

designing problem instances that favour one heuristic over another, and vice versa.

There are several ways that seem promising to explore this direction of investigation in future research.

244 Heuristic Problem Design Chapter 7

It would be interesting to generate a large number of problem instances that have the desired

characteristics of creating a large difference in the performance of two heuristics, and then to analyze

the characteristics of those instances to determine if there are any features that high Z or high Z*

problem instances have in common.

Another approach would be to plot the changes in characteristics, at each iteration, to see if the

techniques are “selecting for” certain characteristics. It would seem probable that there is a high level

of noise in this data, so some summary measures could be developed and combined over multiple runs.

It would also be instructive to examine the instances where there is a large change in the objective

function from one instance to the next during the search. The slight change that was made to the

problem instance had a large effect, so the arcs modified in the change must have been important.

In general, the goal of such research would be to better understand the relationship between problem

instance characteristics and heuristic performance, which relates to one of the main research questions

of this thesis. The results from the previous chapter indicated that there is a systematic relationship, and

the design experiments in this chapter further validate that idea. The next step would be to understand

what about the characteristics influences the heuristics, and how sensitive this is. If successful, this

type of investigation would provide a framework for selecting heuristics for new problems, based on

analysis of their characteristics, and their similarity to previously-studied problems.

7.11 Using MLS to design problem instances 245

Coda

▼ Summary

In this chapter we explored a number of different methods for obtaining “interesting” sets of problem

instances.

The main approach was to extend the random generation procedure of previous chapters, and to

augment it with attempting to select a maximally diverse subset of the generated problem instances.

This problem is similar to the class of maximum weighted clique problems that have proven difficult in

the literature. We introduce several novel measures of distance and diversity, and develop some

heuristics. These heuristics are further extended to some computational approaches to manage

extremely large problem sets.

The second approach focused on actually constructing individual instances that exhibited the desired

outcomes. We used local search, through the MLS framework, to iteratively modify problem instances

to maximize the difference in performance of two heuristics. The approach was very successful; even

with quite simple MLS heuristics guiding the search, we were able to exceed the performance gap

found in the generated instances from the previous chapter, and we were also able to optimize the other

way. This was an introduction of a novel technique that seems to have some promise. It was also a

demonstration of the ease with which MLS can be adapted to new problem domains.

▼ Link

In the next chapter we conclude the research with a brief investigation of several “advanced” MLS

techniques that could provide promising areas for future research.

247

 C H A P T E R 8

8 Advanced MLS Applications

8.1 Introduction

8.2 Using MLS to design MLS heuristics

8.3 Adaptive Diversification Local Search

Some advanced applications of the MLS framework are briefly explored. A multi-level MLS

structure is developed to allow one MLS heuristic to guide the development of another, and an

adaptive learning mechanism is introduced. Both new concepts are intended as

demonstrations, however the results of some brief computational experiments suggest that

they are powerful techniques.

8.1 Introduction

The major contribution of this thesis is the introduction of Modular Local Search (MLS), a framework

that allows easy and sophisticated hybridization of metaheuristics, especially multi-phase hybridization,

where the structure and operation of the metaheuristic change significantly during its execution. The

previous chapters have presented demonstrations of MLS on the Arc Subset Routing Problem (ASRP),

illustrating common metaheuristic paradigms and some basic hybrids of these. However, the true

benefits of using a system such as MLS only become apparent when attempting to implement more

sophisticated metaheuristic ideas.

This chapter presents two demonstrations of how MLS can be used to develop more sophisticated

metaheuristic approaches. Each of these ideas is potentially a very rich area of investigation by itself.

We examine each briefly to demonstrate the usefulness of MLS in exploring this type of metaheuristic

research. In all cases the actual experiments are performed on the ASRP, and the results are intended to

demonstrate the technique rather than provide the most robust realization of the ideas, however we have

concentrated on demonstrating ideas that should work for any problem domain, rather than ones which

are specific to the ASRP.

248 Advanced MLS Applications Chapter 8

8.1.1 Test problems

A small set of problem instances were chosen to test the advanced heuristics in this chapter. Five

problem instances were chosen from those generated for the tiny problem in Section 7.4. The instances

for the tiny problem were generated with three density settings (40%, 60%, 80%), and three budget-to-

cost ratio settings (50%, 75%, 100%). The chosen instances had the following properties, as shown in

Table 8.1.

Table 8.1: Density and budget characteristics for the test set of problem instances

Instance Diagram Arcs Density Budget Budget-to-cost

P1 Figure 8.1 168 40% 84 50%

P2 Figure 8.2 168 40% 126 75%

P3 Figure 8.3 252 60% 126 50%

P4 Figure 8.4 252 60% 189 75%

P5 Figure 8.5 336 80% 336 100%

For illustrative purposes, the graphs for each of these problem instances are displayed in the figures

below.

Figure 8.1: Graph for problem instance P1

Figure 8.2: Graph for problem instance P2

8.1 Introduction 249

Figure 8.3: Graph for problem instance P3

Figure 8.4: Graph for problem instance P4

Figure 8.5: Graph for problem instance P5

8.1.2 Comparison heuristics

To provide some benchmarks against which the new procedures can be measured, we apply several of

the heuristics from Chapter 6 to the test problem instances. One heuristic was chosen from each of the

following types: Steepest Ascent, Simulated Annealing, Tabu Search, and Variable Neighbourhood

Search. The selection was made based on which had the best aggregate performance (as shown in

Figure 6.1): StpAscExt4, SA1, Tabu20, and VNS8_1. In addition, the construction heuristic that builds

the initial solution for all methods, RN1 (see Algorithm 6.16), was included.

Finally, we include a new metaheuristic, Iterative Sampling Local Search (ISLS). ISLS was introduced

in Section 4.7.5, and a variation was utilized in Section 0. The MLS configuration for ISLS is presented

in Algorithm 8.1.

250 Advanced MLS Applications Chapter 8

Algorithm 8.1 MLS configuration ITERATIVE SAMPLING LOCAL SEARCH

 Move-types: basic

 Admissibility conditions:

 FEASIBLE (Algorithm 5.1)

 Candidate list size: 200

 Examinations maximum: 200

 Triggers and responses:

 Trigger: TOTAL ITERATIONS (Algorithm 6.9) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Iteration threshold for termination: 1000

end

Note that the candidate list size and examinations maximum are both set to 200. This means that up to

200 neighbours are evaluated, and the best of these is chosen at each iteration, even if it worsens the

objective function value.

Table 8.2: Reward collected by each heuristic on the test problem instances

Heuristic P1 P2 P3 P4 P5

RN 243.34 185.19 762.75 480.23 1112.96

ISLS 654.01 1008.72 1294.88 1828.90 3859.00

StpAscExt4 673.69 1006.81 1490.92 2278.17 4212.57

SA1 679.18 *1045.63 1428.13 2023.50 4231.97

Tabu20 *683.00 1024.58 1412.66 1928.89 4183.91

VNS8_1 662.35 1014.62 *1512.26 *2322.16 *4324.54

Table 8.2 presents the results of applying the benchmark heuristics on the test problems. In this chapter

we treat the objective as maximizing the reward collected subset to the distance budget, and ignore the

penalties associated with the arcs of these problem instances. The best-performing heuristic is

highlighted for each problem instance.

8.2 Using MLS to design MLS heuristics

The set of possible heuristics is infinite. The use of the MLS framework provides some structure,

however even with the limited set of modules and parameters introduced in this thesis, the heuristic

space is vast; there are more combinations of modules and parameter values than can be fully explored.

It is possible to consider the problem of designing an MLS heuristic, that of selecting the best choice of

modules and parameters, to be a combinatorial problem itself. The concept in this section is to use a

particular MLS initial configuration as a “solution” that can be acted on by a higher-level MLS

heuristic, moving through heuristic space to attempt to find the best MLS configuration for a given

problem instance. In this problem, which we call the MLS Design Problem (MDP), the objective

8.2 Using MLS to design MLS heuristics 251

function is the value of the ASRP solution obtained by executing the MLS configuration on a given

problem instance.

8.2.1 MLS structure

The implementation of the MDP utilizes the existing MLS framework. As with any new problem

domain, a new set of problem-specific classes were developed to model the MDP. These primarily

consisted of a new Solution class, and new MoveType and Move classes.

Taking advantage of the object-oriented structure of the MLS framework, the new MDP Solution class

is mainly a container for an ASRP MLS configuration. The evaluation of the objective function for this

solution involves creating a new MLS heuristic and executing this heuristic on the given problem

instance, and the best solution obtained from this execution becomes the MDP solution value.

There are many possible move-types that could be considered to move through the MLS heuristic

space. They can be broadly classed as adding or removing a module, or increasing or decreasing a

parameter. Note that some modules have dependencies, for example if the Annealing Probability

admissibility condition is added then the appropriate memory parameters and triggers need to be added

also.

We draw a necessary distinction between MDP modules and ASRP modules; the MDP move-types and

other modules are those that the high-level control mechanism uses to search heuristic space, the ASRP

modules and parameters are those that constitute the MDP solution.

The following sections describe the move-types that were included for this demonstration problem.

8.2.1.1 Adding and removing modules

MDP move-type(s): add (or remove) an admissibility condition. There are four ASRP admissibility

conditions considered:

• All admissible

This is a new admissibility condition that allows all solutions to be admissible, even if they are

infeasible (cost exceeds the budget). Note that this is the first time we have allowed

infeasibility for the ASRP.

• Improving fitness and feasible OR infeasible but decreasing cost

This is a combination admissibility condition. The first part is a union of Algorithm 6.4 and

Algorithm 6.3. The second part is a new condition that allows the search to accept solutions

that move in the direction of returning to feasibility.

• Annealing probability and feasible

This is a combination of the main Simulated Annealing module (Algorithm 6.19) and the

feasibility condition (Algorithm 6.3). In addition, when this module is added (or removed)

there are a number of other changes that are made to the MLS configuration:

252 Advanced MLS Applications Chapter 8

o Activate (or deactivate) the SA memory parameters: annealing temperature and

cooling rate.

o Activate (or deactivate) the SA triggers: temperature reduction iteration count and

temperature threshold termination.

• Tabu arcs with aspiration and feasible

This is a combination of the main Tabu Search module (Algorithm 6.23) and the feasibility

condition ((Algorithm 6.3). In addition, when this module is added (or removed) the following

change is also made to the MLS configuration:

o Activate (or deactivate) the TS memory parameter: tabu tenure.

o Add (or remove) the TS memory update function: UPDATE TABU ARCS (Algorithm

6.24).

Note that if all admissibility conditions are removed then the default result is that no neighbours are

admissible. This would be a particularly ineffective local search heuristic, and such a configuration is

unlikely to be selected as the best neighbour.

MDP move-type(s): add (or remove) an ASRP move-type. There are eight ASRP move-types; the

four basic move-types (ADD, DROP, SHORTCUT, and DETOUR), and the four extended move-types

(NADD, NDROP, NSHORTCUT, and NDETOUR). When an extended move-type is added the look-ahead

memory parameter is automatically activated, and when the last extended move-type is removed then

look-ahead is automatically deactivated. The reason that it is necessary to activate and deactivate the

memory parameter, rather than simply leaving it active but unused, is that a deactivated memory

parameter is not available to be modified as an MDP move, as we discuss later.

Any combination of ASRP move-types can be active at any time. If no move-types are active then the

MLS configuration will not have any neighbours to select; again, this would be a particularly bad

heuristic and is unlikely to be selected by the MDP search process.

MDP move-type(s): add (or remove) an ASRP trigger. In general any desired trigger could be added

or removed. In our specific case we add two triggers, corresponding to defining a VNS diversification

phase that follows local optima in the ASRP MLS heuristic. This particular MDP move-type has the

following features:

• The first trigger converts the ASRP heuristic into a phase of VNS diversification (as defined for

the VNS heuristics in previous chapters). The trigger condition is that an apparent local

optimum is reached. This trigger may not be tripped for many iterations, until an apparent local

optimum is reached, if ever. Recall that an apparent local optimum is where no admissible

candidates were found by the search scheme in the current iteration, so if the admissibility

conditions allow all neighbours this trigger may never be tripped. This first trigger is added in

an active state.

8.2 Using MLS to design MLS heuristics 253

• When tripped the main response is that the set of active move-types is changed. All basic

move-types become inactive, and all extended move-types become active, regardless of what

their initial states are.

• The secondary responses for the first trigger are to deactivate itself, and to activate the second

trigger.

• The second trigger converts the heuristic back into a non-diversification phase. The trigger

condition is the number of iterations since it was last tripped, with a threshold of one. This

trigger has the effect that after a single iteration of the VNS diversification phase, the trigger is

tripped and its responses convert the heuristic back. This trigger starts out inactive when added,

and is specifically activated by the response of the first trigger.

• When tripped the main response is that the set of active move-types is changed, with the

opposite “direction” to the first trigger. All extended move-types become inactive, and all basic

move-types become active. Note that regardless of what move-types were specified initially for

the heuristic, after one round of the VNS diversification phase the move-types are standardized

back to basic. There are potentially other ways of modelling this interaction, but this was the

most straightforward for the purposes of this demonstration. In addition, the look-ahead

parameter for the extended move-types is deactivated.

• The secondary responses for this trigger are to deactivate itself, and the reactivate the first

trigger, which will then continue to wait for the next apparent local optimum.

8.2.1.2 Increasing and decreasing memory parameters

The next set of MDP move-types are modifications to memory parameters. For this problem an

additional set of attributes were added to the definition of memory parameters. The standard MLSML

definition of a memory parameter specifies only the name, its value, and whether it is initially active, as

shown in the following MLSML fragment.

<memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>coolingRate</parameterName>

 <parameterValue>0.75</parameterValue>

</memoryParameter>

This parameter is an example of the cooling rate for Simulated Annealing heuristics. For the MDP we

extend these attributes, as shown below:

254 Advanced MLS Applications Chapter 8

<memoryParameter>

 <parameterActive>false</parameterActive>

 <parameterName>coolingRate</parameterName>

 <parameterValue>0.75</parameterValue>

 <increaseType>Multiply</increaseType>

 <increaseValue>1.1</increaseValue>

 <minValue>0.1</minValue>

 <maxValue>0.99</maxValue>

</memoryParameter>

The additional attributes define how the memory parameter should be modified during an MDP move.

There are only two memory parameter move-types for the MDP: increasing and decreasing the

parameter. The additional attributes allow us to specify how these increases and decreases occur.

• The parameter value attribute defines the initial value of the parameter when the ASRP

heuristic begins.

• The increase type may take the values “Add” or “Multiply”. If the increase type is “Add” then

the increase value is added to, or subtracted from, the current memory parameter value. If the

increase type is “Multiply” then the calculation is slightly more complicated. For an increase

the current value is multiplied by the increase value, and for a decrease the current value is

divided by the increase value.

• A minimum value and a maximum value are also specified, if an increase would push the

parameter value higher than the maximum, then it is set to the maximum instead. Likewise, if a

decrease would push the parameter value lower than the minimum, then it is set to the

minimum instead.

Memory parameters are only available to be increased or decreased by the MDP moves if they are

currently active. Memory parameters are inactive if they are not required by any of the currently active

modules. For example, the cooling rate above is activated when the annealing probability admissibility

condition is added, and deactivated when this module is removed.

For our demonstration, the memory parameters that we allow to be modified are listed below.

• Candidate list size, the maximum number of admissible neighbours that are evaluated;

• Examinations maximum, the total number of neighbours that can be evaluated;

• Look-ahead, the parameter that defines the scope of the extended move-types;

• Annealing temperature, a parameter for the Simulated Annealing modules;

• Cooling rate, a parameter for the Simulated Annealing modules;

• Tabu tenure, a parameter for the Tabu Search modules.

8.2 Using MLS to design MLS heuristics 255

8.2.1.3 Summary of MDP moves

The following lists summarize the moves that are included in the demonstration problem. Recall the

distinction between a move and a move-type. The general move-types for the MDP are: add module,

remove module, increase parameter, and decrease parameter. The actual moves are the possible

realizations of these on the current problem.

Each of the following modules may be either added (if they are not currently included) or removed (if

they are currently included):

• Admissibility condition: All admissible

• Admissibility condition: Improving fitness and feasible OR infeasible but decreasing cost

• Admissibility condition: Annealing probability and feasible

• Admissibility condition: Tabu arcs with aspiration and feasible

• Move-type: Add

• Move-type: Drop

• Move-type: Shortcut

• Move-type: Detour

• Move-type: nAdd

• Move-type: nDrop

• Move-type: nShortcut

• Move-type: nDetour

• Triggers: VNS diversification (a pair of triggers)

The following memory parameters may be either increased or decreased, if they are currently active:

• Candidate list size

• Examinations maximum

• Look-ahead

• Annealing temperature

• Cooling rate

• Tabu tenure

8.2.2 MLS configurations

This section describes the specific MLS configurations that were used in the experiments for the MDP.

Two distinct MLS configurations are defined; one for the MDP control mechanism, and one that forms

the template for the ASRP versions. The template heuristic is modified by the MDP procedure, but

most of the modules are defined in the configuration and these are simply activated or deactivated by

the MDP process.

Two variations of the MDP control heuristic are used, with slightly different settings. The first version,

MDP1, is a version of Steepest Ascent; only improving solutions are accepted. This forces each ASRP

heuristic selected to be better than the previous one. The second version, MDP2, is more of an ISLS

approach, where a subset of neighbours are examined and the best chosen, regardless of whether it is

256 Advanced MLS Applications Chapter 8

improving or not. Both versions have limitations on the move-list size and the examinations maximum;

each neighbour evaluation is expensive since it involves the full execution of an ASRP heuristic.

8.2.2.1 The MLS template for the ASRP heuristics

Algorithm 6.29 presents the MLS template for the ASRP heuristics. Note the following features:

• All of the potential modules and parameters are specified, but most are declared inactive

initially. These will be activated or deactivated by the MDP control procedure to create what

are equivalent to new heuristics, since an MLS configuration with a module that always stays

inactive is equivalent to the same configuration without that module.

• Trigger-3 and Trigger-4 are the triggers associated with the VNS diversification phase.

• The move-list size is set to 1000. We do this to limit the run time of each iteration. Similarly,

the total number of iterations has been set to 1000 (Trigger-5), again to limit the run time of the

heuristic.

• Some memory parameters have been fixed, and others are able to be modified as part of the

MDP moves. For those that can be modified there is extra information in the form:

(“Increase type” increase value, min value, max value).

• The initial configuration is a very primitive heuristic, essentially a random walk; all neighbours

are admissible, the first neighbour examined is selected, and the search continues for 1000

iterations then stops.

8.2 Using MLS to design MLS heuristics 257

Algorithm 8.2 MLS configuration ASRP TEMPLATE FOR MDP

 Move-types:

 basic – active

 extended – inactive

 Admissibility conditions:

 ALL ADMISSIBLE (Algorithm 8.3) – active

 IMPROVING FITNESS AND FEASIBLE OR INFEASIBLE BUT DECREASING COST

(Algorithm 8.4) – inactive

 ANNEALING PROBABILITY AND FEASIBLE (Algorithm 8.5) – inactive

 TABU ARCS WITH ASPIRATION AND FEASIBLE (Algorithm 8.6) – inactive

 Memory update: UPDATE TABU ARCS (Algorithm 6.24) – inactive

 Triggers and responses:

 Trigger-1: ITERATIONS SINCE LAST TRIGGER (trigger-1) (Algorithm 6.8) – inactive

 Response: REDUCE ANNEALING TEMPERATURE (Algorithm 6.20)

 Trigger-2: TEMPERATURE THRESHOLD (Algorithm 6.21) – inactive

 Response: TERMINATE (Algorithm 6.11)

 Trigger-3: LOCAL OPTIMUM (Algorithm 6.7) – inactive

 Response: SWITCH TO EXTENDED MOVE-TYPES (Algorithm 6.27)

 Response: DEACTIVATE TRIGGER (trigger-3) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-4) (Algorithm 6.13)

 Trigger-4: ITERATIONS SINCE LAST TRIGGER (trigger-4) (Algorithm 6.8) – inactive

 Response: SWITCH TO BASIC MOVE-TYPES (Algorithm 6.26)

 Response: DEACTIVATE TRIGGER (trigger-4) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-3) (Algorithm 6.13)

 Trigger-5: TOTAL ITERATIONS (Algorithm 6.9) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Move-list size: 1000

 Iterations in VNS diversification phase: 1

 Iterations before temperature reduction: 12

 Total iterations before termination: 1000

 Temperature threshold: 0.001

 Candidate list size: 1 (“Add” 3, min=1, max=1000) – active

 Examinations maximum: 100 (“Add” 5, min=6, max=1000) – active

 Annealing temperature: 1000 (“Multiply” 1.2, min=100, max=2500) – inactive

 Cooling rate: 0.95 (“Multiply” 1.1, min=0.1, max=0.99) – inactive

 Tabu tenure: 7 (“Add” 1, min=3, max=30) – inactive

 Lookahead: 4 (“Add” 1, min=2, max=10) – inactive

end

258 Advanced MLS Applications Chapter 8

A number of new modules are used in the template and need to be defined. These are described below.

Algorithm 8.3 is the most fundamental admissibility condition. All solutions are admissible, even if

they are infeasible. The opposite of this admissibility condition is having no admissibility conditions at

all, since the default outcome is to deny admissibility unless specifically granted.

Algorithm 8.3 MLS admissibility condition ALL ADMISSIBLE

 return admissible

end

Algorithm 8.4 defines a complex admissibility condition. Neighbours are admissible if they are feasible

and improve the fitness function, or if they are infeasible but have decreasing cost. Since

feasibility/infeasibility is purely a function of the cost of the solution exceeding the budget, a reduction

in the cost of a solution is a movement towards feasibility.

Algorithm 8.4 MLS admissibility condition IMPROVING FITNESS AND FEASIBLE OR INFEASIBLE

BUT DECREASING COST

 Scope: ASRP problems

 Input: s, s′, B // The current solution, the trial solution and the cost budget

 if c(s′) ≤ B then // The solution is feasible with respect to the cost budget

 if f(s′) > f(s) then

 return admissible

 else

 return inadmissible

 end

 else // The solution is infeasible

 if c(s′) < c(s) then

 return admissible

 else

 return inadmissible

 end

 end

end

Algorithm 8.5 is a compound admissibility condition; it is a logical conjunction of Algorithm 6.19 and

Algorithm 6.3. A solution is admissible if it satisfies the Simulated Annealing admissibility condition

and it is feasible.

8.2 Using MLS to design MLS heuristics 259

Algorithm 8.5 MLS admissibility condition ANNEALING PROBABILITY AND FEASIBLE

 Scope: ASRP problems

 Prerequisites: A memory parameter must be defined for the annealing temperature

 Input: f(s), s′, T, B // The fitness of the current solution, the trial solution, the

 annealing temperature, and the cost budget

 if c(s′) > B then // The trial solution is infeasible with respect to the cost budget

 return inadmissible

 else

 δ ← f(s′) – f(s)

 if δ > 0 then

 return admissible

 else if Uniform(0,1) < e –δ / T then

 return admissible

 else

 return inadmissible

 end

 end

end

Algorithm 8.6 is another compound admissibility condition, a logical conjunction of Algorithm 6.23

and Algorithm 6.3. It allows a feasible solution to be admissible if it does not add or remove any arcs

on the tabu list, or if a feasible solution satisfies the aspiration criterion of being better than the best-so-

far solution.

260 Advanced MLS Applications Chapter 8

Algorithm 8.6 MLS admissibility condition TABU ARCS WITH ASPIRATION AND FEASIBLE

 Scope: ASRP problems

 Prerequisites: The tabu tenure memory parameter, and the tabu list memory element

 must be defined

 Input: s*, s, s′, T, B // The best-so-far solution, the current solution, the trial solution,

the tabu list, and the cost budget

 if c(s′) > B then // The trial solution is infeasible with respect to the cost budget

 return inadmissible

 else

 ∆ ← {s ∪ s′} \ { s ∩ s′} // Find all the arcs that have changed from s to s′

 if ∆ ∩ T = ∅ then // No tabu arcs are changed

 return admissible

 else if f(s′) > f(s*) then // Tabu arcs are changed but the aspiration criterion is met

 return admissible

 else

 return inadmissible

 end

 end

end

8.2.2.2 MDP control heuristics

Two variations of a MDP control heuristic are presented. Both are relatively simple, and both make use

of the MLS features that allow control of the search process by limiting the number of neighbours

examined. This is necessary for the MDP because each neighbour that is evaluated requires the full

execution of an ASRP metaheuristic, which can become very computationally expensive.

Algorithm 8.7 presents the first MDP control heuristic (MDP1). The key feature that distinguishes

MDP1 from MDP2 is that MDP1 is a hill-climbing heuristic; it has the improving admissibility

condition, so only solutions that improve the objective function value are permitted. MDP1 is a hybrid

of Ascent Search and Steepest Ascent. Ascent Search selects the first admissible neighbour, which can

be thought of as choosing the “best of 1” admissible neighbours; Steepest Ascent selects the best of all

admissible neighbours, which can be thought of as choosing the “best of all” admissible neighbours.

MLS abstracts this concept to allow a hybrid of these: “best of n”, where n is the candidate list size.

For the MDP we set the candidate list size to 3. Recall that there is an implicit maximum of 25 moves

that can be performed at any time (13 modules that may either be added or dropped depending on their

current status, and 6 memory parameters that may be increased or decreased). The final important

feature of MDP1 is that it runs until it reaches a local optimum, where there are no single moves

(modules added or removed or memory parameters increased or decreased) that result in an ASRP MLS

heuristic that performs better than the current solution. Interestingly this is a true local optimum, rather

than merely an apparent local optimum, since all neighbours are examined if no admissible solutions

8.2 Using MLS to design MLS heuristics 261

are found. If the heuristic reaches 80 iterations it also stops. This termination condition is mostly

present as a “safety switch” to ensure that the heuristic does not run longer than MDP2, which does run

until the full 80 iterations have elapsed; it would be surprising for MDP1 to reach 80 iterations without

terminating due to a local optimum.

Algorithm 8.7 MLS configuration MDP CONTROL HEURISTIC 1

 Move-types:

 Add module

 Remove module

 Increase parameter

 Decrease parameter

 Admissibility conditions:

 IMPROVING (Algorithm 6.4)

 Candidate list size: 3

 Triggers and responses:

 Trigger-1: LOCAL OPTIMUM (Algorithm 6.7) – active

 Response: TERMINATE (Algorithm 6.11)

 Trigger-2: TOTAL ITERATIONS (Algorithm 6.9) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Iteration threshold for termination: 80

end

Note that even for a completely different problem domain than the ASRP many of the MLS modules

are reusable, such as the IMPROVING admissibility condition, and all the triggers and responses.

Algorithm 8.8 presents the second MDP control heuristic (MDP2). The main difference from MDP1 is

that all moves are admissible, so the search never reaches an apparent local optimum; it selects the best

neighbour of the first five that are examined (randomly). The candidate list size is increased slightly,

but is still kept relatively low. Because only five neighbours are examined, it is likely that none of these

would be improving, so we would expect MDP2 to have a very “jagged” objective function trajectory.

MDP2 is a much more diversifying search process than MDP1. The heuristic is allowed to run for 80

iterations, which in trials allowed the process to be competitive with the benchmark heuristics (full

results are presented in Section 8.2.3).

262 Advanced MLS Applications Chapter 8

Algorithm 8.8 MLS configuration MDP CONTROL HEURISTIC 2

 Move-types:

 Add module

 Remove module

 Increase parameter

 Decrease parameter

 Admissibility conditions:

 ALL ADMISSIBLE (Algorithm 8.3)

 Candidate list size: 5

 Triggers and responses:

 Trigger: TOTAL ITERATIONS (Algorithm 6.9) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Iteration threshold for termination: 80

end

8.2.3 Results

The MLS Design Problem (MDP) has the objective of designing a good MLS heuristic for the ASRP,

and the objective function value is the objective function value of the best ASRP solution found by the

various ASRP heuristics that are created and modified by the MDP control procedures. Because of this

we are able to compare the performance of the MDP heuristics and the regular ASRP heuristics that are

described in Section 8.1.2.

Table 8.3: Reward collected by the MDP heuristics and benchmark heuristics on the test problems

Heuristic P1 P2 P3 P4 P5

RN 243.34 185.19 762.75 480.23 1112.96

ISLS 654.01 1008.72 1294.88 1828.90 3859.00

StpAscExt4 673.69 1006.81 1490.92 2278.17 4212.57

SA1 679.18 1045.63 1428.13 2023.50 4231.97

Tabu20 683.00 1024.58 1412.66 1928.89 4183.91

VNS8_1 662.35 1014.62 1512.26 *2322.16 *4324.54

MDP1 *685.70 *1085.63 1542.07 1881.06 3834.23

MDP2 *685.70 1061.72 *1629.85 2175.30 4140.61

Table 8.3 presents the results for the MDP heuristics, along with the results of the benchmark heuristics.

The MDP heuristics achieve the best solution on three of the problem instances, the three “smallest”

problem instances.

It is interesting to speculate on why the MDP heuristics are so successful on the smaller instances, and

not so successful on the largest instance. Consider the building blocks of the ASRP heuristics that the

MDP heuristics have to work with. Although many of the parameters are able to take a much broader

range of values than their “regular” counterparts, others are deliberately restricted to streamline the

8.2 Using MLS to design MLS heuristics 263

search; for example, the move-list size is restricted to 1000 moves, which is a small fraction of those

available, especially with the extended move-types. On smaller instances, these restrictions have less of

an effect. Another insight into this difference is that the 80 iteration limit may be more of a limit on the

larger problem instances where there are more potential ASRP routes.

The other interesting factor when considering the performance of the MDP heuristics is the objective

function trajectory; how the objective function changes at each iteration over the execution of the

heuristic. In the following figures the shorter black line is MDP1, which terminates at a local optimum,

and the longer grey line is MDP2, which terminates after 80 iterations.

610

620

630

640

650

660

670

680

690

R
e

w
a

rd

Iterations

Figure 8.6: Objective function trajectories for MDP1 and MDP2 on P1

Figure 8.6 shows the trajectories for P1. MDP1 reaches its best of 685.70 at iteration 8 and MDP2

reaches the same best after 67 iterations.

0

200

400

600

800

1000

1200

R
e

w
a

rd

Iterations

Figure 8.7: Objective function trajectories for MDP1 and MDP2 on P2

Figure 8.7 shows the trajectories for P2. MDP1 reaches its best of 1085.63 at iteration 6 and MDP2

reaches its best of 1061.72 at iteration 80. It seems possible that MDP2 could have climbed higher if

the execution had been extended, since it achieved its best on the final iteration. It is interesting that on

P2 the hill-climbing variation (MDP1) very quickly arrived at a good solution.

264 Advanced MLS Applications Chapter 8

0

200

400

600

800

1000

1200

1400

1600

1800

R
e

w
a

rd

Iterations

Figure 8.8: Objective function trajectories for MDP1 and MDP2 on P3

Figure 8.8 shows the trajectories for P3. MDP1 reaches its best of 1542.07 at iteration 7 and MDP2

reaches its best of 1629.85 at iteration 38.

0

500

1000

1500

2000

2500

R
e

w
a

rd

Iterations

Figure 8.9: Objective function trajectories for MDP1 and MDP2 on P4

Figure 8.9 shows the trajectories for P4. MDP1 reaches its best of 1881.06 at iteration 4 and MDP2

reaches its best of 2175.30 at iteration 27. On this problem instance MDP2 shows a clear improving

trend until it reaches its best, and then declines as it moves into less promising regions of the solution

space.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

R
e

w
a

rd

Iterations

Figure 8.10: Objective function trajectories for MDP1 and MDP2 on P5

8.2 Using MLS to design MLS heuristics 265

Figure 8.10 shows the trajectories for P5. MDP1 reaches its best of 3834.23 at iteration 6 and MDP2

reaches its best of 4140.61 at iteration 50. One observation is that MDP1 reached a good solution on P5

very quickly, whereas on P1 MDP1 had a slower climb. This is perhaps related to the size or density of

the graph, or is perhaps just a random variation.

Table 8.4: MDP move frequencies for MDP2

Move-type Move detail P1 P2 P3 P4 P5 Total Percent

Add module All admissible 2 2 1 3 2 10 2.50%

 Annealing probability 2 1 3 1 7 1.75%

 Compound admissibility 2 1 2 5 1.25%

 Tabu arcs with aspiration 1 2 3 2 8 2.00%

 VNS triggers 2 1 1 1 1 6 1.50%

Remove module Add move-type 1 1 1 1 1 5 1.25%

 All admissible 3 2 1 3 2 11 2.75%

 Annealing probability 2 1 2 1 6 1.50%

 Detour move-type 1 1 1 1 1 5 1.25%

 Drop move-type 1 1 1 1 1 5 1.25%

 Compound admissibility 1 2 3 0.75%

 Shortcut move-type 1 1 1 1 1 5 1.25%

 Tabu arcs with aspiration 1 3 1 5 1.25%

 VNS triggers 1 1 0.25%

Increase parameter Candidate list size 10 9 13 14 18 64 16.00%

 Annealing temperature 2 7 6 1 16 4.00%

 Cooling rate 1 3 6 10 2.50%

 Examinations maximum 11 14 8 6 12 51 12.75%

 Lookahead 1 1 2 0.50%

 Tabu tenure 12 7 5 4 28 7.00%

Decrease parameter Candidate list size 9 6 5 8 10 38 9.50%

 Annealing temperature 1 2 10 13 3.25%

 Cooling rate 3 4 5 12 3.00%

 Examinations maximum 9 14 13 7 11 54 13.50%

 Tabu tenure 15 7 2 6 30 7.50%

Because there are only 32 different moves available to the MDP heuristics, we are able to count the

number of times that each move was performed. Table 8.4 summarizes the move frequencies for

MDP2 (since MDP1 terminated after only a few iterations it did not provide enough data to provide

insight). Note that the “compound admissibility” rows in the table refer to the IMPROVING FITNESS AND

FEASIBLE OR INFEASIBLE BUT DECREASING COST admissibility condition. Several observations can be

made from these data:

• All of the possible moves were executed at least once, although not always on every problem

instance. The frequencies are relatively sparse, especially for the change-of-module moves;

running the heuristics for more than 80 iterations could provide more reliable proportions.

• A large majority of the moves are of the change-parameter move-types, rather than the change-

module move-types, even though we would expect the change-module move-types to be

evaluated more frequently since the selection is random and there are more of them. The

266 Advanced MLS Applications Chapter 8

proportions for each move-type are: add module (9%), remove module (11.5%), increase

parameter (42.75%), and decrease parameter (36.75%).

• Collectively, 51.75% of the moves related to the candidate list size and examinations maximum

parameters. This implies that these parameter settings have a large impact on the effectiveness

of an ASRP heuristic, especially since they are both increased and decreased (if they were only

increased it would imply that they were simply too low). This is an interesting result, since

these two parameters reflect the focus of MLS on limiting the way that the search is conducted

– an approach that is relatively unexplored in the literature.

8.2.4 Discussion

We introduced the MLS Design Problem (MDP), which uses high-level MLS heuristics to guide the

design of “regular” MLS heuristics for the ASRP, by adding and removing modules, and increasing and

decreasing parameters.

Although the experiments were intended primarily to demonstrate the concept, they were surprisingly

successful. On a test set of 5 problem instances of various sizes they managed to find the best solution

on three of the instances; their strong performance validates the potential of this technique.

The comparable success of MDP1, which quickly converged to its local optimum heuristic suggests that

the design approach need not be an exhaustive computational exercise; good heuristics are able to be

designed relatively quickly. It is interesting that MDP1 reached a local optimum by iteration 8 for all

the test problem instances. When combined with the very “jagged” appearance of the MDP2

trajectories, this implies that a more sophisticated local search procedure guiding the search it seems

likely that even better heuristics could be constructed, since avoiding and escaping from local optima is

the motivation and strength of modern metaheuristics such as Tabu Search and Simulated Annealing.

The MDP also highlights one of the main strengths of the MLS framework; since all the components

are modular and may be mixed and matched, it is possible for a heuristic to modify itself, or, in this

case, to modify another heuristic. This section has barely hinted at the potential of this approach, which

could provide an extremely rich area of future research.

A number of extensions immediately suggest themselves. The focus of this approach was to design a

stand-alone MLS heuristic for the ASRP, although we then used the value of the best ASRP solution,

found individually by these heuristics, as the objective function for the MDP. If we alter this focus

slightly away from designing a stand-alone heuristic to actually solving the ASRP in the most effective

way, then the MDP procedure becomes a two-layer MLS process. Instead of each ASRP heuristic

starting from the same initial solution, an elite solution from the previous iteration could feed into the

next heuristic. This would be analogous to Iterated Local Search, but with perturbation of the heuristic

rather than perturbation of the solution. Such a two-layer approach, with a base layer that finds the

solutions to the main problem, and a control layer that guides the modification of the base layer,

becomes a framework for true self-adaptive heuristics. This idea can be extended to even more layers,

with another layer controlling the modification of the second level control layer. It would be an

interesting investigation to research the benefits and limitations of extra layers. One limitation is that it

8.3 Adaptive Diversification Local Search 267

is likely to become very computationally expensive; the aspects of the MLS framework that allow the

search logic to be controlled will likely be crucial, as we saw in a slight way in our demonstration of the

MDP: the move-list size, the candidate list size, and the examinations maximum.

Another interesting modification would be to give each ASRP heuristic an actual time-limit at which it

is terminated, unless it has already terminated for another reason. Careful attention would need to be

paid to ensuring consistent processing power, but this approach could prompt some interesting insights.

It would force trade-offs between neighbourhood size and complexity and number of iterations per unit

of time, and the MLS search logic parameters would be crucial.

8.3 Adaptive Diversification Local Search

Section 8.2 demonstrated how a two-layer MLS procedure can be used to guide the modification

structure of an MLS heuristic, with the example of the MLS Design Problem. In that example the

structure of the heuristic is made to evolve using local-search-based principles. In this section we

introduce another concept: learning.

An adaptive MLS heuristic is one that is able to draw directly from memory structures that are updated

as the heuristic progresses, to inform changes to the MLS structure based on past experience. There are

many possible ways that learning could be implemented in the MLS framework; in this section we

demonstrate one example.

We introduce Adaptive Diversification Local Search (ADLS). ADLS is a multi-phase metaheuristic

that has a relatively straightforward local search heuristic as the “main phase”, and has a number of

different diversification phases available. When an apparent local optimum is reached by the main

phase of the heuristic, a short diversification phase follows. The type of diversification phase is

selected probabilistically from a weighted list of methods. When a diversification phase is judged to be

successful the weighting of that diversification method is increased, and when it is unsuccessful the

weighting is decreased. The probability of selecting each type of diversification phase depends on its

weighting, so that successful methods become more likely to be selected.

Note that the MLS implementation of ADLS is closer to the “regular” metaheuristics utilized

throughout the thesis than the two-layer MDP approach of Section 8.2; it is not a new problem domain

and requires no new classes. A “solution” is simply an ASRP route, and ADLS is simply another

metaheuristic for the ASRP (although it is has the potential for general application). The only change is

the development of some additional responses and memory structures.

The purpose of introducing ADLS is to demonstrate a simple example of using MLS to implement self-

adaptive metaheuristics that are capable of learning. Far more sophisticated applications are possible,

but are left for future research.

There are some parallels in this technique to Ant Colony Systems, population-based metaheuristics that

are inspired by the foraging behavior of ants, where fruitful paths are given more “pheromone” and

paths with more pheromone are more likely to be selected in the future (see Dorigo and Blum [73] for a

survey of the theory of Ant Colony Optimization).

268 Advanced MLS Applications Chapter 8

8.3.1 MLS structure

The main phase of the ADLS heuristic is quite simple. The basic set of ASRP move-types are used,

along with the IMPROVING and FEASIBLE admissibility conditions. The candidate list size is set to 100,

with an examinations maximum of 100,000 (effectively unlimited). In addition, the UPDATE TABU ARCS

memory update function is active, even when the Tabu Search diversification phase is not being

executed. The purpose of this is that the list of tabu arcs is maintained so that when the Tabu Search

diversification phase starts it already has a pre-populated list of tabu arcs to work on.

For the purposes of this demonstration we define six diversification procedures, each of which is active

for three iterations before the heuristic changes back to the main phase:

• Small VNS. A VNS-type phase where the move-types are changed from the basic set to the

extended set. In addition the lookahead for the extended move-types is set to 6, and the

candidate list size is increased to 500. The intention of this phase is to allow a relatively

intense search of a broader region of the search space than the basic moves allow.

• Large VNS. A VNS-type phase similar to the Small VNS phase, except that the lookahead is

set very high, at 50, and the candidate list size is decreased to 20. The intention of this phase is

to allow relatively extreme moves to be performed to change the current region of the solution

space in a major way. The low candidate list size has two purposes; firstly to make the

computation quick, and secondly to force potentially worsening moves in order to increase the

diversification effect.

• Tabu acceptance. This diversification phase is modelled on Tabu Search. The list of tabu arcs

is automatically updated even during the main phase, so this phase simply replaces the

IMPROVING admissibility condition with the TABU ARCS WITH ASPIRATION admissibility

condition. In addition the candidate list size is reduced to 50. The tabu tenure is fixed at 15.

• Probabilistic acceptance. This diversification phase is modelled on Simulated Annealing.

The temperature memory parameter is fixed at 500, and there is no need for a temperature

threshold or cooling rate. This phase replaces the IMPROVING admissibility condition with the

ANNEALING PROBABILITY admissible condition. The candidate list size is reduced to 3.

• Sampling. This diversification phase removes the IMPROVING admissibility condition, leaving

only the FEASIBLE admissibility condition, so non-improving moves are allowed. The

candidate list size is decreased to 30.

• Change fitness. This diversification phase changes the fitness function from the objective

function to REWARD TO COST RATIO (a new fitness function defined below in Algorithm 4.1).

Note that this is the only example in this thesis of a change in the fitness function. Guided

Local Search (GLS) is the most common example of a change in fitness function, although

GLS adds penalty terms rather than changing the function completely. For our purposes the

temporary change in fitness function should allow the search to escape the apparent local

optimum.

8.3 Adaptive Diversification Local Search 269

The key MLS components that are necessary to support ADLS are two responses, one update-memory

function, and two memory structures.

The first memory structure is a list that contains the names of the six diversification procedures that the

heuristic should probabilistically select from, along with a weighting assigned to that procedure. The

weightings are all initially set to zero, so are not specified.

The two responses are used to change the structure of the heuristic from the main phase to the selected

diversification phase, and then back again.

The first response, START DIVERSIFICATION PHASE (Algorithm 6.12), is a relatively complex procedure.

It is a compound response that performs multiple tasks; in previous MLS heuristics these tasks would

have been specified as separate responses, for example activating a trigger and swapping move-types.

This response combines multiple activities into the single response, since the tasks to be performed

depends on the diversification phase being entered; the MLS framework allows the same process to be

performed in multiple ways, depending on the requirements of the particular process.

The first activity in the START DIVERSIFICATION PHASE response function is the selection of the

diversification phase. This procedure uses a memory parameter, which we call the diversification

alpha. The probability of selecting diversification method xi is given in the following formula:

1

max(0,)
()

max(0,)

i
i N

j
j

w
P x

w

α

α
=

+
=

+∑

where there are N diversification methods, wi is the weight of diversification method xi, and α is the

diversification alpha, which must be positive. The formula essentially calculates the proportion of the

total weight that each diversification method has. Initially, when all weights are zero, P(xi) = 1 / N. A

higher diversification alpha serves to discount the effect of a weighting difference.

For example, with six diversification methods the probability of selecting any particular method is

initially 1 / 6 = 0.167. Let α = 1 and suppose that the first diversification method is successful (we

define success later). In this case the weighting for that diversification method is incremented to 1. In

the next diversification phase the probability of selecting that method has increased to 0.286 and the

probability of selecting any other method has decreased to 0.143. This is a large movement in the

probabilities. If we let α = 10, then the probabilities change to 0.180 and 0.164, respectively, which is a

less dramatic change. For the purposes of this demonstration we set the diversification alpha to 6.

The max functions in the formula are present to ensure that no negative probabilities are calculated.

This has the effect that if wi decreases by α, so that wi + α = 0, then the probability of selecting xi

becomes zero.

The remainder of the START DIVERSIFICATION PHASE response is a conditional function that makes the

appropriate modifications depending on which diversification method was selected, such as swapping

admissibility conditions and changing the candidate list size. Algorithm 8.9 presents the MLS response

module logic.

270 Advanced MLS Applications Chapter 8

Algorithm 8.9 MLS response START DIVERSIFICATION PHASE

 Input: x, w, α // The vectors of diversification methods and their weights, and the

diversification alpha

 Select a diversification method x with probability

1

max(0,)
()

max(0,)

i
i N

j
j

w
P x

w

α

α
=

+
=

+∑

 if x = “Small VNS” then

 Deactivate the basic move-types

 Activate the extended move-types

 Set the lookahead memory parameter to 6

 Set the candidate list size to 500

 else if x = “Large VNS” then

 Deactivate the basic move-types

 Activate the extended move-types

 Set the lookahead memory parameter to 50

 Set the candidate list size to 20

 else if x = “Tabu acceptance” then

 Deactivate the improving admissibility condition

 Activate the tabu arcs with aspiration admissibility condition

 Set the candidate list size to 50

 else if x = “Probabilistic acceptance” then

 Deactivate the improving admissibility condition

 Activate the annealing probability admissibility condition

 Set the candidate list size to 3

 else if x = “Sampling” then

 Deactivate the improving admissibility condition

 Set the candidate list size to 30

 else if x = “Change fitness” then

 Deactivate the objective fitness function

 Activate the reward to cost ratio fitness function

 end

end

The second response, END DIVERSIFICATION PHASE (Algorithm 8.10), is another conditional function

that changes everything back to their initial values for the next main phase.

8.3 Adaptive Diversification Local Search 271

Algorithm 8.10 MLS response END DIVERSIFICATION PHASE

 Input: x // The diversification phase just ending

 if x = “Small VNS” then

 Deactivate the extended move-types

 Activate the basic move-types

 Set the candidate list size to 100

 else if x = “Large VNS” then

 Deactivate the extended move-types

 Activate the basic move-types

 Set the candidate list size to 100

 else if x = “Tabu acceptance” then

 Deactivate the tabu arcs with aspiration admissibility condition

 Activate the improving admissibility condition

 Set the candidate list size to 100

 else if x = “Probabilistic acceptance” then

 Deactivate the annealing probability admissibility condition

 Activate the improving admissibility condition

 Set the candidate list size to 100

 else if x = “Sampling” then

 Activate the improving admissibility condition

 Set the candidate list size to 100

 else if x = “Change fitness” then

 Deactivate the reward to cost ratio fitness function

 Activate the objective fitness function

 end

end

The ADLS heuristic also has an update-memory module that determines whether the diversification

phase was a success, and either increments or decrements the weight associated with that diversification

method appropriately. The update-memory function, UPDATE DIVERSIFICATION WEIGHTS, is inactive,

so is not executed automatically; it is called explicitly when an apparent local optimum is reached. This

function has no effect after the first main phase, but after subsequent main phases it updates the

diversification weights according to the following rules:

• The current objective function value (an apparent local optimum) is stored in memory. This is

used in the next execution of this module to compare with the new current value.

• The objective function at the end of the previous main phase is compared with the current

objective function after this just-ending main phase. If there has been an improvement, then

this is attributed to the diversification phase that occurred immediately prior, and its weight is

incremented. If there was no improvement then its weight is decremented.

272 Advanced MLS Applications Chapter 8

• If all weights have been reduced by α, then no diversification method can be selected, so all

weights are reset to zero.

Algorithm 8.11 presents the update-memory function that updates the diversification weights. This

function, along with the memory list containing the weights themselves, constitutes the mechanism by

which ADLS incorporates learning.

Algorithm 8.11 MLS update-memory UPDATE DIVERSIFICATION WEIGHTS

 Input: z*, s’, x, w // The previous objective value (from the last time this function was

executed), the target solution, the diversification method that executed prior to

this main phase, and the list of diversification weights.

 If x != null then // Check that a diversification phase has occurred

 if z(s’) > z* then // If the diversification phase was a success

 wx ← wx + 1

 else

 wx ← wx – 1

 end

 end

 if wi = -α ∀ i then // If the weights have all reached their limits then reset

 wi ← 0 ∀ i

 end

 z* ← z(s’) // Update z*

end

8.3 Adaptive Diversification Local Search 273

8.3.2 MLS configuration

Algorithm 8.12 presents the MLS configuration for the version of ADLS introduced in this chapter.

Algorithm 8.12 MLS configuration ADAPTIVE DIVERSIFICATION LOCAL SEARCH

 Move-types:

 basic – active

 extended – inactive

 Fitness functions:

 OBJECTIVE (Algorithm 6.5) – active

 REWARD TO COST RATIO (Algorithm 8.13) – inactive

 Admissibility conditions:

 FEASIBLE (Algorithm 6.3) – active

 IMPROVING (Algorithm 6.4) – active

 ANNEALING PROBABILITY (Algorithm 6.19) – inactive

 TABU ARCS WITH ASPIRATION (Algorithm 6.23) – inactive

 Memory update:

 UPDATE TABU ARCS (Algorithm 6.24) – active

 UPDATE DIVERSIFICATION WEIGHTS (Algorithm 8.11) – inactive

 Triggers and responses:

 Trigger-1: LOCAL OPTIMUM (Algorithm 6.7) – active

 Response: UPDATE DIVERSIFICATION WEIGHTS (Algorithm 8.11)

 Response: START DIVERSIFICATION PHASE (Algorithm 8.9)

 Response: DEACTIVATE TRIGGER (trigger-1) (Algorithm 6.12)

 Response: ACTIVATE TRIGGER (trigger-2) (Algorithm 6.13)

 Trigger-2: ITERATIONS SINCE LAST TRIGGER (trigger-1) (Algorithm 6.8) – inactive

 Response: END DIVERSIFICATION PHASE (Algorithm 8.10)

 Response: DEACTIVATE TRIGGER (trigger-2) (Algorithm 6.11)

 Response: ACTIVATE TRIGGER (trigger-1) (Algorithm 6.13)

 Trigger-3: TOTAL ITERATIONS (Algorithm 6.9) – active

 Response: TERMINATE (Algorithm 6.11)

 Memory parameters:

 Iteration threshold for diversification phase: 3

 Total iterations before termination: 1000

 Candidate list size: 100

 Annealing temperature: 500

 Tabu tenure: 15

 Lookahead: 4

 Diversification methods: {Small VNS, Large VNS, Tabu Acceptance, Probabilistic

Acceptance, Sampling, Change fitness}

 Diversification alpha: 6

end

274 Advanced MLS Applications Chapter 8

Algorithm 8.13 is a fitness function that calculates the reward to cost ratio of the solution. Note that

this is the first alternative fitness function introduced in this thesis.

Algorithm 8.13 MLS fitness function REWARD TO COST RATIO

 Input: s // The solution being evaluated

 f(s) ← r(s) / c(s) // The fitness is the reward divided by the cost

 return f(s)

end

8.3.3 Results

The results of executing ADLS on the test problems are presented in Table 8.5, along with the results

from the MDP heuristics and the benchmark heuristics, for comparison.

Table 8.5: Reward collected by the ADLS heuristic, compared with other heuristics on the test problems

Heuristic P1 P2 P3 P4 P5 Total

RN 243.34 185.19 762.75 480.23 1112.96 2784.47

ISLS 654.01 1008.72 1294.88 1828.90 3859.00 8645.51

StpAscExt4 673.69 1006.81 1490.92 2278.17 4212.57 9662.16

SA1 679.18 1045.63 1428.13 2023.50 4231.97 9408.41

Tabu20 683.00 1024.58 1412.66 1928.89 4183.91 9233.04

VNS8_1 662.35 1014.62 1512.26 2322.16 4324.54 9835.93

MDP1 *685.70 *1085.63 1542.07 1881.06 3834.23 9028.69

MDP2 *685.70 1061.72 *1629.85 2175.30 4140.61 9693.18

ADLS 682.99 1071.30 1569.46 *2378.83 *4327.56 *10030.14

The results are extremely encouraging. The new heuristic achieved a new best result on the two largest

problem instances, and high values for the other problem instances. If the total reward over all five

problem instances is calculated, then ADLS has the best performance, exceeding the previous best

heuristic VNS8_1. Our objective of demonstrating the effectiveness of an advanced MLS structure

seems a success.

Given that the implementation of ADLS was a very basic “first try”, with no attempt to optimize the

many parameter settings, these results seem to suggest that a learning-based approach such as ADLS

has potential. An interesting question would be whether a non-learning-based version that simply

selects the diversification method randomly with no updating of weights would perform as well; it is

possible that the effectiveness comes from the range of diversification procedures rather than the

learning aspect.

8.3 Adaptive Diversification Local Search 275

Coda

▼ Summary

Two novel metaheuristic approaches were introduced in this chapter, and both show promising

potential. On the five test problem instances, the best solution for all instances was found by one of the

advanced heuristics, outperforming the best of the “regular” heuristics from Chapter 6.

Either of the new approaches would provide ample opportunity for future research. The first concept,

which we called the MLS Design Problem (MDP), introduced a higher-level control mechanism to

modify the ASRP heuristic, treating the design of the modular heuristic as a combinatorial problem that

itself can be tackled using local search. This implementation also demonstrated the application of the

MLS framework to another problem domain, highlighting its generality and flexibility.

The second concept introduced a basic version of learning – utilizing the memory structures of MLS,

along with the flexible trigger-response model, to develop a sophisticated self-adaptive metaheuristic

that demonstrated learning. This experiment barely touched on what could prove to be an extremely

promising new field of research.

▼ Link

In the next chapter we discuss a number of research directions that could be explored to extend the

concepts introduced in this thesis.

277

 C H A P T E R 9

9 Conclusions and

Recommendations for

Future Research

9.1 Overview of research

9.2 Experimental design

9.3 Contributions and implications

9.4 Further research directions

9.1 Overview of research

In Chapter 1 we stated two main research questions that this research would attempt to address:

1. Is it possible to predict the relative performance of heuristics on a problem instance based on

analysis of the problem instance prior to running the heuristics?

2. Can we develop a modular metaheuristic system, that encapsulates most trajectory-based local

search methods, that allows easy hybridization of metaheuristics, and is not simply a

programming convenience but also supports the creation of new types of metaheuristics?

The concept of modelling the relationship between heuristic performance and problem instance

characteristics is a novel one, and lead the research down many paths. One of the key requirements is a

problem type that is suitable, one for which many metrics can be calculated to suitably specify the

characteristics of each problem instance, and one which is sufficiently difficult so as to allow for

heuristics to distinguish themselves. Part I of the thesis introduces a new problem to fill this role, the

Arc Subset Routing Problem (ASRP). The ASRP is introduced after a literature review of other arc

routing problems. Although its primary purpose is as a testing ground for the MLS heuristics and

problem-heuristic modelling done subsequently, it is first investigated as a traditional Operations

Research problem: it is formulated, some construction heuristics are developed, along with some local

search-based improvement procedures, and some tournaments are performed comparing the heuristics.

In this "preliminary investigation", some metrics are derived for the ASRP, and these are built upon in

later chapters. Also, the move types for the local search improvement procedures that are developed

here form the basis of all the local search metaheuristics used in later chapters. This investigation also

278 Conclusions and Recommendations for Future Research Chapter 9

serves as a pilot study for the more extensive experimentation later; it was decided that the 10×10 grids

used here should be extended to 15×15 grids. The ASRP was shown to be sufficiently easy to create

metrics for, and sufficiently interesting to be used as the problem-space for the remainder of the

research.

Part II of the thesis addresses the second research question above. We propose and introduce a novel

framework, Modular Local Search (MLS), which is designed to allow easy hybridization of various

existing metaheuristic concepts. Chapter 4 is a description of each of the components of MLS, and how

they work together. Although it is presented as finished concept, the final specification was the result of

many iterations of design and experiment until it met the research goals. The MLS framework is the

major contribution of this research, and much of the rest of the thesis is devoted to demonstrating its

utility: that it can be used to easily implement existing heuristics, that it can be used to create new

heuristics that are hybrids of existing concepts, that it is flexible and can be applied to new problem

domains, and that it is not simply a programming convenience, but can be used to create new types of

metaheuristics.

As discussed in Chapter 1, other metaheuristic frameworks tend to be simple programming structures

designed to implement existing metaheuristics. For example, they might have a Tabu Search class and a

distinct Simulated Annealing class. By contrast, MLS is a conceptual framework first, and a

programming structure second.

Local search heuristics can be thought of as a sequence of iterations of starting with one solution and

attempting to find the next solution. This process, the search iteration process, utilizes components that

all local search heuristics have in common, either implicitly or explicitly: the neighbourhood scheme,

the fitness function, the admissibility conditions, and the search logic. Most basic metaheuristics keep

these same components throughout their execution, and so each iteration uses the same rules and

process to choose the next solution in the path.

The key insight that motivates MLS is that these components do not need to be the same for each

iteration. MLS introduces the trigger-response model, a novel mechanism for modifying a heuristic

during its execution. After each iteration, any triggers that have been defined are checked, and if they

are "tripped", then the associated responses are performed. These responses typically modify the

heuristic in some way, for example by swapping admissibility conditions. This is a technique that

allows a heuristic to completely change itself partway through execution in response to search

conditions. When combined with adaptive memory structures, this is a very flexible system, easily

allowing new heuristics that were not previously possible, simply by declaring the desired behaviour.

Examples of these new types of heuristics are demonstrated in Chapter 8.

Part III of the thesis is devoted to exploring these new tools, bringing the ASRP together with MLS.

Chapter 6 is an attempt to address the first research question above, whether it is possible to predict the

relative performance of heuristics based on à priori analysis of the problem instance characteristics,

which we refer to as problem-heuristic modelling. To the best of our knowledge this has not been

previously studied, but the potential utility of such a procedure is obvious; if researchers or practitioners

could know in advance which solution methods are most likely to result in good solutions then this

9.1 Overview of research 279

could result in time and cost savings, and better solutions. Our aim was simply to determine whether or

not such an approach was possible, rather than to fully develop a methodology.

A large number of experiments were performed, running a number of metaheuristics on a large set of

problem instances. The experimental design is critiqued in a later section, so here the focus is more on

the results and what we can conclude from these. Since this type of analysis is novel, we experimented

with various analytical techniques, with some success. The general approach was to choose two

heuristics, A and B, and then form a balanced set of problem instances where heuristic A performed

best on half the instances and heuristic B performed best on the other half. Balancing the dataset like

this prevents the model from simply using the prior probabilities to choose one heuristic as the "winner"

over the other. The set of instances is then split into training and evaluation sets; the model is trained on

one set and tested on the other. The only variables available to the predictive model are the problem

instance characteristics that are obtained before any heuristics have been run. Our success criterion is

whether the model is able to predict which heuristic has better performance with better accuracy than

we would expect from choosing randomly. The results were positive and encouraging. The experiments

and analysis in Chapter 6 showed clear evidence that it is, indeed, possible to predict relative

performance of two heuristics using a model trained on previous applications of the heuristic to problem

instances, with the problem instance characteristics as input to the model.

The other function of Chapter 6 was to demonstrate the MLS framework in use. Versions of Tabu

Search, Simulated Annealing, and Variable Neighbourhood Search were specified and run. In addition,

a number of hybrids were created and demonstrated, to show that new heuristics can be easily created,

especially multi-phase heuristics, which are typically difficult to implement.

Although the experiments of Chapter 6 did produce a positive outcome validating the problem-heuristic

modelling concept, it was observed that the problem instances were somewhat clustered together, based

on their problem characteristic metrics. In retrospect, generating 30 instances with each generation

configuration was not the best way to get a good problem set; it would be better if the instances were as

evenly distributed across a conceptual problem space as possible. This is the focus of Chapter 7. The

goal was to build on the results of Chapter 6, and produce a set of problem instances that was more

suitable for the problem-heuristic modelling. Another driver was that the set of 1440 problem instances

was too large to reasonably experiment with, so the secondary goal was to derive a smaller set of

problem instances, but which were more suitable.

Chapter 7 developed some procedures to derive better problem instances, for input into the problem-

heuristic modelling. The concept is novel, so the research was exploratory. The first investigation

utilized a concept of diversity of problem instances. A number of diversity metrics were derived to

describe the diversity of a set of problem instances. The general idea was to generate an extremely large

number of random problem instances, since generation is a cheap process, and then select a maximally

diverse subset of these. An optimization problem was formulated, and some heuristics were developed

to solve this problem. Encouragingly, multiple selection heuristics seemed to result in subsets that had

substantial overlap, suggesting that these heuristics were close to optimality, at least with respect to the

diversity measure used. To make the problem space even richer for this exercise, the ASRP was

280 Conclusions and Recommendations for Future Research Chapter 9

extended to include penalties for non-service. Time constraints prevented these problem instances being

used for the problem-heuristic modelling, but a potential research plan is outlined in Chapter 7.

The approach up until this point had been to have a set of problem instances, run two heuristics on

these, create a predictive model on which heuristic would perform better based on the problem instance

characteristics, and then look at the model to see what about the problem instances is important in

making the distinction. The second part of Chapter 7 develops a completely different approach to

problem generation, and to the problem-heuristic modelling. Instead, we construct a problem instance

to exhibit the property we desire, namely a large performance difference between heuristic A and

heuristic B. This section develops a completely novel idea. A new combinatorial optimization problem

is defined, where a solution is an ASRP problem instance, and the objective function is the performance

difference between heuristic A and heuristic B. Then, MLS is used to solve this problem. Although only

simple move-types were used, adding or removing an arc from the underlying grid, the results were

very strong that this technique works. Problem instances were designed that strongly favoured heuristic

A over heuristic B, and then the reverse, favouring B over A. This avenue of research was not pursued

further, but there is significant potential with this technique. It also highlighted the utility and flexibility

of the MLS framework. Very little modification of the MLS program was required to solve this

problem, which was effectively a completely new problem domain. All of the metaheuristic control

logic was simply reused from the ASRP experiments, and only a wrapper-class was required to hold an

ASRP problem instance as a solution, and a move-type to add or drop an arc.

Chapter 8 moves away from the problem-heuristic modelling concept and explores some of the more

advanced heuristic ideas that MLS allows. Our research goal was to develop a modular framework that

was not simply a programming convenience, but which allowed the creation of new types of

metaheuristic; this chapter illustrates some of these new types of heuristics. In some sense, the rest of

the thesis is foundational work, leading up to this chapter; these techniques justify MLS. The

"advanced" concepts were explored briefly, establishing their validity and potential, leaving many areas

of further research open.

The first "advanced" MLS technique uses MLS to design other MLS heuristics. This is another new

problem domain: the MLS Design Problem (MDP). Because the MLS structure is modular, new

metaheuristics can be created simply by adding and removing modules, and changing parameter values.

This process of changing modules and parameters can be thought of as a search in heuristic space, and

metaheuristics are very efficient and effective search procedures. A simple version of this problem was

run, using performance on an ASRP problem instance as the objective function. Five test ASRP

problem instances were used, and the MDP-created heuristic outperformed the best results from our

other existing metaheuristics on some of the problem instances. This result was surprising, given that

the first MDP configuration attempted should not be expected to be the best, but still achieved such

good results. This type of technique is has significant promise to allow new types of heuristic

development. In the normal course of research, a heuristic can only be as good as the researcher who

created it, and has no guarantee to be optimized for a given problem domain. With the MDP approach,

metaheuristics are self-adaptive, becoming iteratively more tailored to the problem at hand.

9.2 Experimental design 281

The second advanced MLS technique, which we call Adaptive Diversification Local Search (ADLS)

uses the powerful memory structures in MLS to implement learning. There are many ways that learning

and memory could be incorporated into an MLS heuristic; for this investigation we designed a multi-

phase metaheuristic that procedes with basic local search until it reaches a local optimum, and then

executes a diversification phase. This repeats until a total iteration count is reached. The unique feature

of ADSL is that at each diversification phase the diversification method is chosen randomly from a list,

with probability related to that methods previous success. After each diversification phase the

probabilities are updated based on how well it worked. On the same five problem instances as used

previously, the ADLS heuristic outperformed all other heuristics on two of the instances, and best in

aggregate.

The two new advanced metaheuristics, that are only made possible by MLS, between them found the

best solution on all of the five test problems, outperforming the best versions of the other

metaheuristics. Five instances is not enough to draw any conclusions about these heuristics, but it is

certainly encouraging. These new metaheuristics were also only the first version of each that was

attempted, with basic settings and arbitrary parameters; it seems likely that these could be improved

further. Chapter 8 demonstrates that MLS allows the creation of new types of metaheuristics, which

answers one of the research questions for this thesis.

9.2 Experimental design

Upon critical reflection, there were some significant shortcomings with the experimental design for the

computational experiments throughout the research. There were three distinct phases of tournaments,

where heuristics were applied to problem instances.

The first set of tournaments was in Chapter 3, for the preliminary ASRP investigation. The first purpose

of these tournaments was to compare the various ASRP construction heuristics that had been designed,

both by themselves and with simple improvement procedures. The second purpose was to trial the

ASRP as a computational test problem, analysing simple random instance generation methods, and

creating the initial set of problem instance characteristic metrics. The tournaments followed a typical

Operations Research investigation pattern, where every heuristic was applied to every instance, and the

instances were generated using a full factorial design of the various generation settings. The heuristics

were deterministic, so no replications were necessary. The experimental design seems fit for its

intended purposes.

The next set of tournaments was in Chapter 6, and the experimental design here had some flaws. The

first problem was with the scale of experimentation. The goal was to produce a large dataset, with many

heuristics run on many problem instances, to enable modelling the relative performances of heuristics

based on problem characteristics. Since this had not been done before, the methodology was itself an

exercise in exploration. As it turns out, the volume of experiments was too ambitious, and needed to be

abandoned without completing them all after several months of computer processing on multiple

machines. Although enough tournaments were completed to enable successful analysis, at least to

validate the idea of modelling heuristic performance and problem characteristics, it would have been

better to have a more focussed experimental design. The approach was simply to generate a large

282 Conclusions and Recommendations for Future Research Chapter 9

number of data points, and then do the analysis, whereas better results would have been achieved by

performing a sequence of smaller experimental schedules, each one incorporating the learnings from the

previous.

The second problem with the Chapter 6 experiments concerned the lack of replications for the heuristics

that involved a random component. The Simulated Annealing configurations of the MLS heuristics

involve sampling from a random distribution, and so the result, even applying the same heuristic to the

same problem instance will be different each time it is run. Conventional experimental design dictates

that at least 30-50 replications should be performed, and the mean and variance of these be considered.

In retrospect, this should absolutely have occurred in our experimental design, although this would have

significantly increased the total number of tournaments. To understand why this was not performed

requires a subtle shift in perspective. The goal of the experiments in this chapter was to attempt to

model the relationship between a heuristic and the various problem characteristic metrics. In total there

were 48 different problem generation "settings" (see Section 6.2.4), representing problem instances with

similar characteristics. 30 problem instances were generated at each setting, so the idea was that each

heuristic would already be performed with 30 replications at each generation setting, and replications on

the individual problem instances would be unnecessary. This reasoning was flawed, and proper

experimental design dictates that the replications should have been performed. Indeed, one way that the

total volume of experiments could have been reduced was by generation a single problem instance at

each generation setting, and then performing multiple replications for the Simulated Annealing-based

heuristics.

The only mitigating factor is that the main purpose of Chapter 6 was not to objectively judge the

heuristics against each other and determine the best, in which case the experimental design was

ineffective, but rather to produce a large dataset for modelling, and this was achieved, although

haphazardly. The experimentation in Chapter 6 was very much an exploratory, learning, exercise, and

the key insight to be gained is that massive experimental schedules should be avoided. A series of

smaller experiments that built on each other, with more focus, is preferable.

The final set of tournaments was for Chapter 8, for the advanced MLS applications. The goal of this

chapter was to demonstrate some of the more interesting potential uses of MLS. Time constraints

dictated that these investigations were performed as a "proof-of-concept", rather than in any depth, and

the small scale of the experiments highlights this. Five problem instances were used to demonstrate the

new metaheuristic concepts. These five instances were sufficient for demonstration purposes, but it

should be noted that this is not a sufficiently comprehensive experimental design to properly evaluate or

compare the heuristics; at least 100 instances would be preferable, and the best, mean and variance of

the performances reported.

Overall, the experimental designs achieved the goals of the various experimental phases, however they

did not do so efficiently or elegantly.

9.3 Contributions and implications

There are many original contributions to the field expressed in this thesis. Indeed, perhaps the strongest

criticism is that it attempted to introduce too many new ideas, at the expense of in-depth study of any

9.3 Contributions and implications 283

one of them. However, as described in the previous section, each of these ideas do form a part of a

cohesive whole, which forms the foundations for significant new ways of studying combinatorial

optimization problems. In this section we summarise the contributions, and sketch briefly how these

might be developed further.

9.3.1 The MLS framework

The most significant contribution is the Modular Local Search framework itself. This framework is

significant in several ways.

The most obvious advantage that it conveys is the ease with which metaheuristics can be

implemented. Only the bare minimum of programming needs to be performed to implement new

heuristics, for example programming a new admissibility condition. The remainder of the metaheuristic

structure and control algorithm stays the same and is reused. Indeed, many new metaheuristics can be

expressed as MLS with no programming required at all; the Modular Local Search Markup Language

(MLSML) allows heuristics to be specified declaratively, rather than programmatically. This was

demonstrated clearly by the ease with which standard metaheuristics such as Tabu Search, Simulated

Annealing, and Variable Neighbourhood Search were implemented, and by how quite sophisticated

multi-phase hybrids were created from the component modules of these metaheuristics.

This ease of creating hybrids is made possible by a new conceptual model of local search-based

metaheuristics. Most prior research treats each type of metaheuristic as a distinct category, and this

leads to most other frameworks implementing each metaheuristic as a separate entity. MLS, by contrast,

treats all local search-based metaheuristics as simply versions of MLS that have a greater or lesser

number of modules in common. Each of the components that all local search techniques have in

common are abstracted out and made explicit: the neighbourhood scheme, the admissibility conditions,

the neighbourhood reduction process, the search logic, triggers and responses, etc. MLS also makes

some aspects of the search logic explicit that are usually not considered, allowing fine grained control

of the search process: the move-list size, the examinations maximum, and the candidate list size. Most

metaheuristics typically examine the whole neighbourhood at each iteration; MLS allows a subset of the

neighbourhood to be examined, and this is another means of controlling the intensity of the search,

making tradeoffs on computation time and number of iterations.

The flexibility of MLS is also demonstrated by how easily it is adapted to new problem domains. In

the course of the thesis it was applied to three quite distinct problems: the ASRP, the ASRP Problem

Instance Creation Problem, and the MLS Design Problem. In all these cases only a few supporting

classes needed to be programmed, representing a "solution", and the move-types, and all of the control

logic was unchanged. MLS can reduce the time and effort needed to implement metaheuristics on new

problems, allowing the researcher to focus on experimentation, and on designing new metaheuristic

innovations.

The most important contribution of MLS is that it allows completely new types of advanced

metaheuristics. This was demonstrated in Chapter 8, with an adaptive MLS heuristic that used learning

to progress through multiple phases and adapt itself to suit the problem instance at hand. Chapter 8 also

demonstrated what was arguably the part of the thesis with the most significant implications: using one

284 Conclusions and Recommendations for Future Research Chapter 9

MLS heuristic as a control mechanism to design other metaheuristics to suit a particular problem

instance. The potential of this type of technique is discussed in more depth later.

9.3.1.1 Limitations and tradeoffs of MLS

Although we believe that MLS is a very useful tool for combinatorial optimization research, it is not

necessarily the right tool for every purpose; there are some limitation and tradeoffs.

The main point of concern is whether an MLS version of a metaheuristic causes a significant

performance degradation over a metaheuristic programmed and optimized individually. Obviously the

best way to determine this would be to actually test it using some state-of-the art metaheuristics on

standard benchmark problems. However, we are able to reason about this topic and draw some tentative

conclusions.

The underlying assumption of this concern is that a framework such as MLS is necessarily slower than

a specially programmed algorithm. This is not true. First, we make the observation that two different

researchers implementing the same algorithm are likely to make quite different programming choices,

which will correspond to their skill level and past experience. We would argue that a framework such as

MLS, which has been carefully tuned is perhaps likely to run more efficiently overall than an algorithm

which is programmed from scratch and suffers from a "first version" set of bugs and inefficiencies.

There is a question of whether MLS performs many more operations than a specially programmed

algorithm, and again the answer is no. MLS has many more things that it can do, but these are not tasks

that are performed unless they are required by the algorithm. The actual path through the program takes

exactly the same steps that would be required for the specially-programmed version. For example,

consider a trigger that checks to see if a certain number of iterations have passed. In MLS this is a

trigger that is only checked if it is currently active, in a regular program it might be part of a while loop,

but in both cases the number of iterations is compared with some threshold after each iteration. This is

the same set of tasks.

There are some performance savings that could be made by performing extreme optimization on the

code; reducing the object-oriented nature of it, using fixed arrays rather than ArrayList objects, perhaps

attempting to use a language such as C, rather than Java. However, these savings would likely be

minimal, high-level programming languages such as Java are extremely efficiently optimized in the

current era. Also, the level of effort required to program, and then debug such a low-level algorithm

would far exceed the benefits. Algorithms that utilize linear algebra and matrix decompositions, such as

the Simplex algorithm, have to be programmed in languages such as C to achieve every possible milli-

second of computational time-savings, since they perform millions of iterations. Algorithms such as

metaheuristics are far more dependent on the specification of the algorithm, regardless of how it is

programmed.

And this is where MLS far exceeds individually-programmed heuristics. It is not only much quicker to

tweak the heuristics and experiment with different settings, but it enables methods that are definitely not

possible with individual heuristics - such as one MLS routine designing another.

9.3 Contributions and implications 285

There are other limitations of the MLS framework, such as the types of metaheuristics that can be

expressed with it; these were discussed in Section 4.8.4.

9.3.2 Problem-heuristic modelling

Chapter 6 validated the hypothesis that it is possible to predict relative heuristic performance based on à

priori analysis of problem instance characteristics, at least on problem types for which solution data had

previously been collected.

This type of analysis is the first step in what could prove to be a fruitful field of study. Even the

prototypical models developed in Chapter 6 could be of significant practical benefit; using the models

to choose a heuristic to run would result in better aggregate performance over time than a random

heuristic choice, or simply using one of the heuristics always. In case studies from the literature, one or

more metaheuristics are chosen to be applied to the problem at hand, usually with little or no

justification; where multiple heuristics are run, the one that performs the best in aggregate tends to be

selected as the "best". Incorporating this type of modelling could make the choice more sophisticated,

by identifying the characteristics of problems where each heuristic excels, and incorporating this model

into the solution methodology.

One direction that was not explored in depth in the thesis was attempting to model heuristics and

problem instance characteristics more generally. The modelling in Chapter 6 focussed on validating the

concept of problem-heuristic modelling, and so focussed on predicting which of two heuristics would

perform better. The actual similarity or otherwise of the heuristics was not taken into account. One of

the strengths of the MLS framework is that it provides a way to place heuristics in "heuristic space",

and qualitatively and, to a certain extent, quantitatively, describe their similarity. It would be interesting

to attempt a more broad model that also uses the modules and parameters of the heuristic as input

variables to the predictive models. Some research questions that would be interesting to answer is

whether we can find more general relationships between heuristic types and problem types. For

example, we might find that heuristics with more dramatic diversification techniques tend to do better

on sparse problem instances, or that heuristics that explore only a small subset of the possible

neighbourhood at each iteration (by controlling the search logic) tend to produce reasonable-quality

solutions quite quickly on large problem instances, but that later in the search process heuristics that

search more intensively have a tendency to perform better.

Those examples are completely arbitrary guesses, but they do suggest a new type of research that is

made possible by combining the two main elements of our research. The MLS framework provides a

structure that can be thought of as a "heuristic space", and heuristics can be grouped as similar or not

based on the combinations of modules and parameters that they have. The problem-heuristic modelling

can be used in combination with this to provide a methodology for systematically exploring these

relationships, allowing a more "scientific" approach than is usually possible; making hypotheses like

those suggested above, and then testing these hypotheses. It is hard to predict at this early stage where

this type of research could go, but it seems to have at least the potential to radically change our

understanding of why certain heuristics perform well on some problems and not others.

286 Conclusions and Recommendations for Future Research Chapter 9

9.3.3 The Arc Subset Routing Problem

The final contribution of this thesis is also the least novel. A new combinatorial optimization problem

was introduced, the Arc Subset Routing Problem (ASRP). A number of construction heuristics were

developed, including a family of greedy variants, and two based on iteratively modifying the problem

instance by removing arcs.

A number of problem instance characteristic metrics were developed and improved. In addition some

consideration was given to comparing problem generation methods.

One key contribution related to the ASRP, but also more generally applicable was the concept of

selecting a subset of problem instances that have maximum diversity, and the related concept of

generating problem instances to exhibit desired performance characteristics, as a combinatorial

optimization problem. Both of these ideas have the potential to assist a more systematic study of the

relationship between problem and heuristic, as discussed in the previous section.

9.4 Further research directions

There are a number of specific research directions that could be followed to extend the concepts

introduced in this thesis, and these can broadly be grouped into three categories:

• Extensions to MLS

• Further applications of MLS

• Other research directions, tangential to MLS

9.4.1 Extensions to MLS

The MLS framework, as described in Chapter 4, should be capable of implementing most trajectory-

based metaheuristics that currently exist. However, there are a number of extensions that could be

made to the framework.

9.4.1.1 Programming structure

The programming structure used in the experiments of this thesis is described in Appendix B. It is

noted there that this structure has been a work in progress over the course of the thesis, and some points

are made of how it could be slightly restructured to make it coincide more closely with the conceptual

structure of MLS.

Significant work could be done to make this structure more robust, and more accessible for other

researchers to use and extend it. There are some programming techniques that are designed for the

creation of frameworks, and these could be usefully enforced – things such as properly controlled

inheritance, interfaces, code documentation, etc.

The code is already relatively easy to use to run experiments, with the MLSML language being used to

define new heuristics using existing modules. The standarised structure of MLSML would lend itself

rather well to a Graphical User Interface (GUI) for the creation of heuristics, with drag-and-drop

capabilities; the program would then create the MLSML code from the graphical design.

9.4 Further research directions 287

A nice extension would also be to enable database support. Currently all the inputs to the MLS engine

are through text files, and the outputs are created as text files. These text files must then be parsed and

imported into a data analysis software package. It would be useful for analysis if the program was

connected to a database, and then analysis could be performed directly on these database tables.

9.4.1.2 Additional modules

During the experiments in this thesis we used a basic set of modules that originally came from the

metaheuristics Steepest Ascent, Simulated Annealing, Tabu Search and Variable Neighbourhood

Search. These were then recombined in different ways for the hybrids of Section 6.5, and even for the

advanced heuristics of Chapter 7. However, there are still many other metaheuristics that can be

expressed as MLS heuristics simply by the creation of the appropriate modules. For example, the many

variations of thresholding methods that were discussed in Section 5.3, such as Threshold Accepting,

Great Deluge and Record-to-Record Travel, each require only the creation of a slightly different

admissibility condition module.

Some of the components of MLS that were introduced and "architected" in Chapter 4 were not really

demonstrated at all. For example the neighbourhood reduction process is quite a rare feature; it does

not appear in most metaheuristics. Making it an explicit feature though, invites the creation of potential

modules that can then be tested against other methods.

Only a single variation of fitness function was explored, briefly as part of the advanced heuristic

Adaptive Diversification Local Search, and there was no investigation of the effectiveness of this

approach. In particular, fitness functions that get slowly modified according to the recent state of the

search show alot of potential, as indicated by the success of Guided Local Search approaches. Studies

comparing when fitness function modifications outperform neighbourhood modifications (Variable

Neighbourhood Search) or admissibility modifications (Tabu Search) would be interesting.

Perhaps the MLS component with the most interesting unexplored potential is the change-current-

solution component. This is a key component for many of the Iterated Search metaheuristics discussed

in Section 5.2. Having a change-current-solution module available as a response could add a valuable

tool to the MLS toolbox, especially since it can be used to provide a diversification effect that is as

small (e.g., slightly perturbing the current solutions), as large (e.g., completely randomising the

solution), or as targeted (e.g., revisiting a previous elite solution), as required.

The more modules that are added to the MLS library, the more combinations of these are possible, and

the more potential there is for interesting hybrids and advanced techniques.

9.4.1.3 Population-based metaheuristics

Metaheuristics can be classified as either trajectory-based or population-based; in this thesis we

restricted the scope of consideration to trajectory-based methods. Extending the MLS structure to

include population-based methods would require some architectural changes, and there are several ways

that this could be done.

288 Conclusions and Recommendations for Future Research Chapter 9

A completely population-based version of MLS could be designed; since most population based

methods are evolutionary perhaps this could be called Modular Evolutionary Search (MES). Instead

of a single current solution and target solution, the heuristic would maintain a population of these.

Instead of having a neighbourhood that contains solutions one move away from the current solution,

MES would have a neighbourhood containing all the solutions in the next potential generation, based on

all the possible “moves”, which in this case could include such things as combining two solutions

(genetic crossover) or those along the path from one solution to another (as in Scatter Search). From

this total “neighbourhood” a subset of solutions would be chosen for the next generation. These are all

analogous processes to those of the MLS search scheme, although Genetic Algorithms in particular

have a number of other quite sophisticated mechanisms that could also potentially be modelled. In

MES, as in MLS, the true power of our approach would be the trigger-response model, where the

structure of the search could be modified as the search progresses, in response to certain conditions. It

seems reasonable that with the expanded neighbourhood sizes that arise from introducing a population,

there would be considerable scope for neighbourhood reduction processes to intelligently reduce these

numbers, without simply limiting them as in a maximum move-list size.

What would perhaps be even more interesting would be a hybrid of MES and MLS. Instead of always

maintaining a population of solutions, this could be optional. Consider a regular MLS heuristic,

perhaps a simple Steepest Ascent configuration. When it reaches a local optimum a trigger is tripped

and the response is to call a change-current-solution module that generates a population of solutions by

slightly perturbing the current solution in a number of different ways, and also throwing in a set of

remembered elite solutions that have previously be visited. The same move-types could be retained, in

which case each of the solutions in the population would have the move-types applied to them

(multiplying the size of the neighbourhood), or some new move-types could be activated that

specifically deal with populations of solutions, perhaps by swapping solution features between

solutions. After some iterations of this another trigger is tripped, perhaps by a certain number of

iterations having occured, or perhaps because a new best-so-far solution is found. At this time another

change-current solution module is performed that collapses the population down to a single solution,

and the search configuration is also changed to facilitate an intensified search around this solution, for

example by changing the move-types and increasing the candidate list size. This hypothetical type of

heuristic, where an increase in population is just another of the modules available, and with a new set of

move-types, could be extremely powerful, especially when combined with the ability of the search to

“learn” what works over time.

9.4.1.4 Parallelization

Parallel metaheuristics are able to take advantage of multiple processors to perform tasks in parallel,

rather than sequentially. The modular nature of MLS could make it relatively easy to adapt to

parallelization. First, it is worth noting that there is not necessarily a qualitative advantage to

parallelizing a heuristic; any process that can be performed in parallel can be performed in an

equivalent way by a number of sequential processes, at least in theory. The main advantage offered by

parallelization is that tasks can be performed simulataneously, and therefore the elapsed duration (if not

the total processing time) can be reduced dramatically. For some of the more advanced heuristics such

9.4 Further research directions 289

as the MDP of Section 8.2, each neighbour evaluation and iteration can take a long time, and

parallelization offers a way to speed this up.

There are several points in the MLS process that would benefit from parallelization. The most obvious

is the neighbourhood evaluation. Say that there are 1000 moves in the move-list, and the candidate list

size and examinations maximum are set to unlimited, so all of these moves must be evaluated as

solutions and the best chosen. Each of these neighbour evaluations is independent of the others, so

instead of performing these sequentially, they could be performed by a number of processes, up to 1000

if there were that many threads available. The computation-time savings could be considerable,

especially if the evaluation of each neighbour were a significant exercise. In the case of the ASRP,

each neighbour evaluation is relatively quick, since it simply involves adding up the rewards of the arcs

in the new route. However, for the MDP each neighbour evaluation involves performing a complete

heuristic execution on the current problem instance, which could take minutes or even hours.

Population-based techniques are the most obvious candidates for parallelization, and indeed these seem

to be those in the literature that are most often parallelized, and most commonly for multi-objective

problems (for example, [9,13,148,153].

The more interesting potential for parallelization is for the more advanced techniques. Consider a

number of MLS heuristics, each operating independently, in parallel, on the same problem instance. If

they are able to share some memory structures then this approach becomes very interesting, and the idea

of cooperation becomes relevant. Bouthillier and Crainic [165] study a similar approach, where

multiple parallel metaheuristics cooperate asynchronously by sharing information on elite solutions. In

the MLS framework, each of these metaheuristics could be also changing its own structure over time,

and perhaps sharing information on which types of modules are effective. This type of asynchronous

sharing of information is very hard to replicate sequentially, without an even more complicated

structure and lots of changing backwards and forwards.

The other side of cooperation, where heuristics act to assist each other as part of a larger problem

solving metaheuristic engine, is competition, and evolution. Suppose we envisage an MLS

configuration as a genome; modules and parameter values are the specific genes. It would be possible

to create a population of MLS configurations, and let them all be executed and obtain a “best” solution

value in parallel. We can consider a type of Genetic Algorithm where the more successful MLS

configurations are “bred” together to create the next generation, and so on. This type of evolution of

algorithms is known as Genetic Programming, and MLS provides an ideal structure for metaheuristics

to be expressed as genomes (indeed, the MLSML and the MetaheuristicTemplate class described in

Appendices B and C are actually used this way in the MDP). This type of large-scale experiment – the

running of multiple metaheuristics for each iteration of a higher-level heuristic – is very suited for

parallelization, since otherwise the time taken could be prohibitive.

In terms of implementing such a parallel system, the author has recently been investigating a relatively

new service from Amazon, called the Elastic Compute Cloud (EC2). The concept is that a customer

can “hire” a number of computer instances running virtually on Amazon’s servers, for cents per hour

per instances. These can be set up once and then cloned as many times as required, and this process can

290 Conclusions and Recommendations for Future Research Chapter 9

be automated or controlled by an algorithm. The computing instances are able to communicate with

each other using standard HTTP protocols, and are able to access shared databases and drive space.

It seems ambitious, but perhaps the ultimate end-point of the development of MLS-based engines is the

following idea. A “master” MLS configuration controls the construction of others. Each of these

“child” MLS configurations operates on its own EC2 instance, but they share some memory structures.

The parent configuration peridodically shuts down poorly performing child heuristics, and sometimes

clones others that are promising in order to explore multiple variations. Some of the child

configurations are simple MLS routines, others are parallelized population-based techniques

themselves, that are able to spawn new EC2 instances as required to examine as many solutions as

needed. This whole structure could have multiple points where shared data can be disseminated and

shared, for example each of multiple heuristics could be contributing to a shared elite solution list, and

then a Scatter Search approach could be utilising this list to search the paths between these elite

solutions for promising regions.

Of course such a scheme would be slightly overkill for solving 15×15 instances of the Arc Subset

Routing Problem, but there are other problems on which existing heuristics do not perform adequately,

and for these perhaps such a system might be justified. Some of these more challenging problems are

discussed in the next section.

9.4.2 Further applications of MLS

As well as extending the MLS framework, as described in the previous sections, there is considerable

scope for future research to apply MLS to other problems.

9.4.2.1 Benchmark problems

The most immediate application would seem to be to some of the standard problems that are used as

benchmarks in the Operations Research literature. In the course of this thesis the Arc Subset Routing

Problem was used as a test problem, both due to the development of the research topic, which grew out

of this problem initially, and also because it allowed the creation of a large number of problem

characteristics, especially when restricted to grid graphs. It would be useful to apply some of the MLS

heuristics to benchmark instances of the Travelling Salesman Problem and the Capacitated Arc Routing

Problem, to see how they compare. Especially when some of the more advanced ideas are developed, it

would be informative to know if they are actually competitive with other state-of-the-art techniques.

9.4.2.2 Advanced heuristics

As demonstrated in Chapter 8, there is potential for the MLS framework to express extremely

sophisticated multi-phase metaheuristics, even with just the current structure, without any of the

extensions discussed above. Chapter 8 provided some proof-of-concept examples, but there is almost

unlimited scope for developing these ideas further. Self-adaptive metaheuristics could be extremely

powerful, especially combined with learning structures.

9.4 Further research directions 291

One example that was not examined, but which could prove interesting is loosely based on the

sequential fan technique that was described by Glover and Laguna [120]. In this approach, at each

iteration a number of different MLS configurations would be executed, starting from the current ASRP

solution. The configuration that terminates with the best solution becomes the “selected” configuration.

The search then moves to an ASRP solution from the solution trajectory of that configuration. One

extreme would be to take the best solution that it found (which makes it the best that any configuration

found). Another approach would be to move to the first ASRP solution in the search trajectory of the

“selected” configuration (so the target solution is actually a neighbour of the current solution using the

ASRP move-types). In this way the search would slowly progress, at each small step examining a “fan”

of solution trajectories. This approach would likely be very computationally expensive, although it

would be an ideal candidate for parallelization. In even more sophisticated variations, each of the

candidate configurations could be modified and adaptive, perhaps with some type of learning.

9.4.2.3 Continual optimization and the Eternity II puzzle

The Eternity II puzzle [1] is an edge-matching puzzle that was released in 2007 that has a US$2m prize

for the first complete solution, which is as yet unclaimed. It involves placing 256 square puzzle pieces

into a 16 by 16 grid, such that adjacent edges have matching patterns. Each piece has its edges on one

side marked with different shape/colour combinations. There are 4 corner pieces that are only matched

on two sides, 56 non-corner edge pieces that are matched on 3 sides, and 196 inner pieces that are

matched on all four sides. Each inner piece has four orientations. This is an extremely hard

combinatorial problem, that is not suited to a brute-force approach; there are approximately 1.15 × 10661

possible configurations.

One way of measuring the quality of a solution is to count the number of matches; there are a total of

480 edges that must match for an optimal, and winning, solution. The author briefly attempted this

problem in 2008 and achieved a score of 401 using only a basic tabu search heuristic; as of 31

December 2008 it was announced that the best partial solution was 467. All deadlines have passed

without a complete solution being found, so it remains unsolved, and in fact unproven that an optimum

exists.

This puzzle is described because it presents a new type of problem, one that a self-adaptive MLS

approach might be suited for. Typical research in combinatorial optimization follows the pattern of

studying a large number of problem instances for a given problem, and heuristic performance is

assessed on aggregate performance measures. The goal of metaheuristics for these problems is to

obtain a reasonable solution in a reasonable amount of time. The Eternity II puzzle has a different

objective: the goal is to find an optimum, regardless of how long it takes. It is in the class of NP

problems; a solution can be checked for optimality very quickly simply by counting the matches. This

offers an ideal testing ground for advanced MLS concepts.

Testing advanced heuristics on 15×15 instances of the ASRP has two problems. First, it is likely that an

optimum, or near optimum solution will be found relatively quickly; these problems may not offer a

hard enough problem for the extremely sophisticated heuristic methods that are possible with MLS,

such as those discussed in Section 9.4.1. Second, there is no benchmark against which the heuristics

292 Conclusions and Recommendations for Future Research Chapter 9

can be compared; the optimum is generally unknown. The puzzle seems better on both counts: the

problem is extremely hard, and there is an objective measure of progress, and knowledge of when an

optimum is found.

We define a continual optimization problem
1 to be a problem where the solution method must

continue trying to solve the problem, and not settle for any intermediate solution. We further consider

two types of continual optimization: static domain and dynamic domain.

A static domain problem has fixed problem data, and the search is for the best solution possible. The

Eternity II puzzle is an example of a static domain continual optimization problem where there actually

is an optimum, and this can be checked. If the optimum is found then the search can terminate, so it is

not necessarily infinitely continual. The alternative would be where it was not possible to verify the

optimum, in this case the search could continue indefinitely in the hope of finding a better solution.

A dynamic domain problem is where the problem data changes over time. In this case there is no

“optimum”, although there will be optima at any fixed point in time. The goal with this type of problem

is to continue improving the search, adapting to changes as they occur. An example of this type of

problem is that of optimising airline schedules. Let us suppose that an airline schedule must be

optimised via a metaheuristic each day. We further know that the best metaheuristic to solve this

scheduling problem has changed over time, as the global economy and travel patterns evolve. One

approach to this scenario is to apply the MDP approach, as introduced in Section 8.2. The

metaheuristic used to schedule the airline would be the “solution” for a higher-level MLS configuration

that guides the design of the heuristic. The interesting aspect would be considering how to assess the

“quality” of a given “solution”. Its quality should be tested on either real world data, or simulated data

with the same properties. However, which data? The premise is that this data changes over time, so

using the entire history would not give a clear picture of the current quality, however using only the

most recent day would “overtrain” the heuristic. Some type of data selection would need to be applied,

so that the testing data is representative of future data, so far as heuristic performance is concerned.

Returning our consideration to the Eternity II puzzle, which we may now class as a verifiable-optimum

static domain continual optimization problem, we see that the MLS framework has the potential to be

effective. It is not hard to design move-types; simple options include rotating a piece, swapping two

pieces, and swapping more than two pieces. Note that when swapping more than two pieces the

number of possible moves increases quickly; in this case the move-list size parameter of MLS will

potentially be essential, for example allow swaps of 7 moves, but only allow 100000 randomly chosen

swaps to be considered each iteration. This problem could offer a good opportunity to study the trade-

offs between large neighbourhood size and slower iterations, and smaller neighbourhood size with

faster iterations.

1 Not to be confused with a “continuous optimization” problem, which is optimization of a problem where the

variables have a continuous domain, as opposed to discrete, or combinatorial, optimization.

9.4 Further research directions 293

The usefulness of MLS for continual optimization will lie in its ability to completely change its

structure as required, with a range of different diversification options. Consider a version of Adaptive

Diversification Local Search, as introduced in Section 8.3. This heuristic would have a large number of

modules available to be activated in various combinations, and a series of increasingly influential

diversification techniques. A balance would be needed here; the solution should not be disrupted too

dramatically until its potential has been fully explored, in case potential paths to the optimum are

missed, but eventually it will become obvious that a plateau has been reached and the local region is a

“dead end”, in which case a diversification should be applied. The most dramatic diversification would

be a complete reshuffle, which should occur when all other methods fail to achieve progress.

A variety of learning mechanisms can be in place, both concerning which modules are effective, as in

ADLS, but also with solution elements. Consider a memory structure that keeps track of particular

combinations of tiles, and the quality of the solutions in which they appear. Clearly some sort of

filtering would need to occur to limit the number of combinations of tiles, however this type of memory

structure could be used to inform the probability of various moves occuring (in the nature of a dynamic

and probabilistic tabu list). Depending on the state of the search it may be desirable to favour keeping

groups together that have previously been in solutions, or perhaps at other times the opposite would be

preferred as having a greater dversification effect.

Although we discuss the Eternity II puzzle here, this is merely illustrative of the MLS ideas that could

apply to any continual optimization problem.

9.4.2.4 Automated trading systems

Many other problem domains could be considered as appropriate targets for advanced MLS heuristics.

We introduce the Automated Trading System Design Problem (ATSP). The goal is to develop a set

of trading rules that can be algorithmically applied to open and close trades on a trading market, such as

the foreign exchange (forex) market, which trades currencies. Trading strategies may be classed as

either fundamental or technical. Fundamental strategies consider the real-world events and factors that

should affect the prices of the instruments being traded, for example news releases and analysis of the

economic situation. Technical strategies are based on the premise that all the necessary information is

already captured in the time series of the prices by the activities of other traders; it looks purely at data,

and calculates a number of technical indicators on which decisions are made. Realistically, both

approaches have their strengths, however we consider only technical systems since they are amenable to

solution by computer to create automated trading systems.

We choose to illustrate some ideas with the ATSP because it has a number of interesting features:

• It is an example of a dynamic domain continual optimization problem, as defined in the

previous section. Although a system may be designed that is effective on historical data, this is

no guarantee that it will be effective in the future. In practice, systems would need to be

constantly reoptimised and refreshed. As has already been discussed, the ability of MLS to

modify itself over time suits it for continual optimization.

294 Conclusions and Recommendations for Future Research Chapter 9

• The evaluation of a particular trading system requires a simulation of the system against

historical data; it is not possible to express the ATSP as a mathematical program. Within

MLS this simply requires a more sophisticated fitness function module. There are many real

world problems where the objective function can only be calculated algorithmically, for

example a New Scientist article from 2001[187] discusses using Genetic Programming to

design electronic circuits, that must be processed through a simulator to test their performance.

Potvin et al. [211] study using Genetic Programming to devise trading rules for the Canadian

stock market, with encouraging results.

• This is an important problem; a good solution would equate to the potential for profits in the

real world.

The same advanced MLS approaches that were discussed previously in this chapter would also be

suited for the ATSP, so we do not repeat these. However we do discuss briefly how this problem could

be modelled in terms of what constitutes a solution, and what moves are possible. The author was

originally intending an investigation of this problem to be included in the thesis, but time constraints did

not permit the experimental phase to be started. However, much of the conceptual modelling and the

programming of the MLS class structures was completed, and the ATSP is the next research direction

that the author intends to pursue, eventually incorporating as many of the advanced features discussed

in this chapter as seem reasonable; the ATSP seems like a complicated enough problem to justify some

of the extremely sophisticated self-adaption, learning, and cooperative approaches, and it has a very

clear definition of success: consistent profitability.

Currency trading occurs against a currency pair, for example EUR/USD is the Euro/US dollar

currency pair. Every currency order involves buying one currency and selling another, and involves an

open where the buy or sell order is made for a certain volume, and a close where the order is realised

and any profit or loss is taken. For example, a 10000 unit buy order might be opened against EUR/USD

at a buy price of 1.2921 (so 1 Euro buys 1.2921 USD), and closed at a sell price of 1.2929. The raw

profit on this would be 10000*0.0008 = $8. There is a small difference in the buy and sell prices called

the spread that accounts for the profit of the broker, so any trading system already needs to be better

than this spread to be profitable in the long run. A trading system is a set of rules under which an

order is opened and closed, along with some other safeguards such as a stop loss, which sets a limit on

the amount of loss that can be made by the trade before the order is closed automatically.

The most granular unit of currency price data is called a tick. A tick represents a change in price rather

than a fixed unit of time. So there might be multiple ticks in a second, and then there might be no ticks

for several seconds. Tick data is often overwhelming, so is usually presented to traders in summarised

form, for example as candlestick charts. These are look like box-and-whisker charts with bars

representing a fixed period of time, for example, 1m, 5m, 15m, 1h, 4h, daily, weekly, or monthly. The

top and bottom of the “box” represent the open and close prices for that time period, and the top and

bottom of the “whiskers” represent the high and low prices. Traders will usually trade at a certain

timeframe, using a particular chart as their main view, glancing at others occasionally to incorporate

longer-term trends.

9.4 Further research directions 295

From a modelling perspective the only true way to test a trading system is to simulate it on tick data;

many online platforms, such as the MetaTrader platform allow users to create “systems” and then

backtest these, but this is done on simulated data rather than actual tick data, using the candlestick bars

to generate simulated tick data. For an automated trading system, the concept of time-frames, or charts,

should only be used as convenient reference points; all decisions should be made on a tick-to-tick basis.

We briefly describe the ATSP modelled as a problem for MLS; this is only one way of modelling this

problem, there are many design choices that will influence the ability of the search to find good

systems. The first modelling decision is to narrow the options that the trading system has. Instead of

allowing both buy and sell trades, we allow only buy trades, which should allow the trading rules to be

more focused. We do this without loss of generality by duplicating each currency pair and reversing the

order. Each pair is usually expressed the same way, for example EUR/USD refers to the price of 1 Euro

is US dollars. We duplicate and transform this data series to obtain USD/EUR, and a buy order on this

series is equivalent to a sell order on EUR/USD.

A solution for the ATSP is composed of the following elements:

• One order opening strategy, which defines the conditions under which a buy order should be

opened on the current currency pair.

• One or more order closing strategies, which each define a set of conditions under which an

open order should be closed. If any of the order closing strategies are satisfied then the order is

closed.

• An optional take profit, which is a parameter specifiying a threshold for profit; if the amount

of profit for a trade reaches this threshold then the order is automatically closed and the profit is

taken, regardless of whether the closing strategies are satisfied.

• An optional stop loss, which is a parameter specifiying a threshold for loss; if the amount of

loss for a trade reaches this threshold then the order is automatically closed and the loss is

taken, regarless of whether the closing strategies are satisfied.

• An optional time limit, which either closes the order after a certain amount of time has elapsed,

or if a certain time event occurs (such as the end of the trading week).

The key elements here are the order opening strategies and order closing strategies. Both of these

types of strategy are essentially the same; they are a set of one or more order decision components.

An order decision component is a boolean condition that evaluates to either true or false. For an

opening or closing strategy to be satisfied at least one order decision component must evaluate as true,

and no decision components must evaluate as false (all the decision components must be satisfied).

296 Conclusions and Recommendations for Future Research Chapter 9

An order decision component is satisfied if the following inequality is true:

 C1 * V1(T1) + A > C2 * V2(T2)

where the decision component has the following elements:

• Two variables V1 and V2. The order decision components are based on data variables that are

available. When a system is evaluated it is simulated against a dataset representing a certain

period of tick data from the past. This dataset contains the price of the currency pair being

traded and any number of derived variables. The simulation progresses through this dataset one

row (corresponding to a tick) at a time, evaluating whether to open or close an order according

to the rules of the system. The quality of the trading systems will heavily depend on the quality

of the derived variables being used as the building blocks; this is discussed later. Note that one

variable is always ONE, a variable that alway contains the value 1, allowing the decision

component inequality to reference an absolute threshold.

• Two tick references T1 and T2. These are used to determine which values of variables V1 and

V2 should be used for the comparison. There is a limited set of tick references that the system

may have; some examples include: the current tick, a tick a certain period of time ago (e.g.,

exactly one hour), a tick corresponding to a candlestick bar (e.g., the close price of the first H4

bar of the week). There are many possible options for tick references; the more options the

richer the search space becomes. Tick reference enable, for example, the comparison of the

current price against the moving average of the consumer price index (CPI), if this was

included as a variable.

• Two coefficients C1 and C2. These are used to scale the values of the variables.

• One constant ‘A’.

Note that the equality is always the same direction, since the opposite inequality can be obtained by

switching all the elements and choosing a new constant.

An order opening strategy or order closing strategy is then composed of a number of rules defined by

order decision components. The above system offers extreme flexibility in what these rules are, there

are an infinite number of decision components and an infinite combination of components and

strategies in a trading system; the challenge of the MLS heuristic is to search out good combinations.

The potential quality of the system depends heavily on the range and quality of the variables that are

available to the decision components. The best approach is possibly to include all the variables that can

be thought of and calculated, and then let MLS use a memory structure to slowly build up a record of

the variables that are most often in “good” solutions, and perhaps weight these so that they become

more likely to be included over time. Variables will include all the technical indicators that are

commonly used in trading analysis, for all currency pairs, not just the one currently being traded, since

there may be correlation or cointegration between pairs. These correlations and cointegrating

coefficients should also be included, along with any other variables that are available representing the

economies of the countries in question.

9.4 Further research directions 297

The solution space of potential systems is vast, and the challenge will be trying to find good ones. This

is where a local search approach that uses iterative improvement could be valuable. Possible move-

types inlcude, but are not limited to, the following:

• Adding a previously constructed order decision component from a “pool” of them to an order

opening strategy or order closing strategy.

• Changing a variable, coefficient, tick reference, or constant, in an order decision component.

• Swapping variables in an order decision component (possibly taking their tick reference and

coefficient with them, or possibly leaving them fixed in the inequality).

• Adding or removing one of the other solution elements: take profit, stop loss, or time limit, or

simply changing its value.

• Any combination of the above things.

Moves that involve changing a parameter can either big large or small. There is an almost infinite

number of moves possible, and this give a learning-based MLS approach significant scope to develop.

A trading sytem that is good on one currency pair, on one historical time period, will not necessarily be

profitable in the future, or on other currency pairs. Some thought needs to be given to how these

systems are evaluated so that they are not “overtrained” to the historical data. Perhaps a “problem

instance” could be a stretch of time, say 3 months, for a single currency pair. A good system will then

be one that is consistently good across multiple problem instances. Or perhaps each time the fitness

function is evaluated (via a simulation on a historical dataset) a different problem instance could be

used.

A real-world implementation of these systems would add another level of complexity. Slippage is a

concept that needs to be incorporated in the simulations. This is where the price on which the decision

is made is not necessarily the price that the broker is eventually able to settle the trade for, especially if

the market is in a high state of flux. Slippage can be included in the simulation.

A real-world trading platform would probably have hundreds of strategies being constantly optimized.

A higher-level control algorithm would monitor their performance and guide their optimization, and

assign weights to them based on their current performance. In general, many models each making

small trades are preferable to a single system making large trades – the profit curve is smoothed.

The MLS framework is, at least conceptually, capable of managing such a complicated system. Careful

design of triggers and responses, along with appropriate memory structures, have the potential to be a

powerful combination.

9.4.3 Other research directions

One of the ideas that provide continuity in Part III is that of ways to decide which heuristic should be

applied to which problem instance. This was discussed somewhat as a motivation in the Introduction.

The first method attempted, in Chapter 6, is to produce a large number of instances, and run a range of

298 Conclusions and Recommendations for Future Research Chapter 9

heuristics on these, then attempt to model the relationship between problem characteristics and

heuristics using multivariate techniques. This approach demonstrates some promise, but lack of

diversity in the problem set used prompts an investigation into methods for developing diverse problem

sets. Several heuristics were developed and tested in Chapter 7, and they show some promise.

The second method is to apply a variation of the MLS approach to actually designing problem instances

that cause heuristics to distinguish themselves. The point of this investigation is that problem instances

which cause quite different heuristic performance could potentially lead to insights about what about

those special instances is similar and what is unique. A proof-of-concept investigation in Section 0

proves that this technique has potential, and also demonstrates the flexibility of the MLS framework on

a new problem.

The third method comes at the problem from another angle. The first method attempts the problem like

a scientist studying data obtained through observation: certain data is available from the results of

previous experiments, and we attempt to model this data and try to understand it, with the hope of

applying that model in a valid way to future problem instances. The second method attacks the problem

in a more proactive way, actively performing experiments to obtain new data, but then still trying to fit

a model with the hope that it will be generally applicable. The third method approaches the problem

more directly. Instead of trying to model the heuristic that might be predicted to be best for a particular

problem instance or class, this method actually designs the heuristic specifically for that instance.

The third method again uses the MLS framework in an original way, this time to design MLS heuristics.

The modules and parameters that make up a MLS heuristic form the “solution” that is acted on by a

higher-level MLS heuristic. “Moves” cause modules to be swapped and parameters varied, over a

number of iterations designing the heuristic that is best suited for the instance under consideration. A

proof-of-concept implementation of this was designed – the MDP of Section 8.2.

Although none of these methods was explored in great depth during the thesis, they do validate the

concept of attempting to systematically understand the relationship of problem type to heuristic

performance. We briefly suggest and discuss several possible directions for future research.

9.4.3.1 Problem-heuristic modelling

In Chapter 6 we demonstrated that it was possible to predict which of two heuristics would perform

better on given problem instances, at least as an aggregate preference. The next step is understanding

why this is the case. The fact that predictive models were able to make this classfication implies that

there is some systematic effect that they are detecting. It would be an interesting and useful research

investigation to attempt to understand this.

One approach that was briefly demonstrated in Section 0 is using MLS to specifically design problem

instances that distringuish between the heuristics. Further developing this approach could involve

generating a large number of instances that are better for heuristic A than heuristic B, and then a large

number that are better for heuristic B than heuristic A, and then analysing the difference between these

two problem sets.

9.4 Further research directions 299

There is considerable room for further research simply extending the approaches that were explored in

Chapters 6 and 7; performing large numbers of experiments and analyses, then modelling and

understanding the underlying causes.

Coda

▼ Summary

In this chapter we have described some research ideas that could be undertaken in future to extend and

develop the concepts introduced in this thesis. This concludes Part III.

▼ Link

The remaining sections of the thesis are supplementary information: a glossary of MLS terms, a

description of the program structures used to implement MLS, and a description and some examples of

the MLSML code used to specify heuristics used in the experimentation. The bibliography concludes.

301

Appendices

303

 A P P E N D I X A

AGlossary of MLS Terms

The following terms have special definitions within the MLS framework and throughout this

thesis.

Admissibility condition

One of the components of the MLS search scheme. An admissibility condition determines

whether a neighbour solution is eligible to be selected as the target solution for the current

iteration. The admissibility conditions are only assessed for those neighbours that are chosen by

the search logic to be evaluated. See Section 4.3.4.

Best-so-far

An automatically maintained memory element that is the best solution found so far. There is

some discretion to the designer of the heuristic as to whether this is based on the objective

function or the fitness function; it will depend on which module is specified. See Section 4.4.3.3

and Section 4.5.5.

Candidate

A neighbour solution that has been selected by the search logic to be evaluated, and meets the

admissibility conditions. See Section 4.3.4.

Candidate list

The set of candidates that have been evaluated and are admissible. The best solution (highest

fitness) on the candidate list is always selected as the target solution for the current iteration. See

Section4.3.5.

Change-current-solution

A particular type of response module that changes the current solution. At the end of each

search iteration the current solution is set to the target solution that was just found. This type of

module overrides this default process. See Section 4.4.4.6.

304 Glossary of MLS terms Appendix A

Component

A particular aspect of the MLS framework that fulfils an architectural and functional role. Each

component will have specific modules that perform its role. See Section 4.2.

Control system

The collection of MLS components that are related to the “intelligence” of the heuristic,

primarily those which are involved in modifying the current state: the triggers and responses, the

update-memory functions, etc. See Section 4.4.

Examination order

The order in which moves are drawn from the move-list in order to be evaluated as solutions

(recall that moves simply describe the operation to occur without actually performing it), and

assessed against the admissibility conditions. See Section 4.3.5.

Examinations maximum

One of the components that controls the scope of the search in each iteration. The maximum

number of moves that may be evaluated as solutions and assessed against the admissibility

conditions. See Section 4.3.5.

Fitness function

One of the MLS components within the search scheme. The fitness function determines how a

solution is evaluated by the admissibility conditions, and may be used in other modules as

required. The most common fitness function is simply the objective function for the problem.

An MLS heuristic may only have one fitness function at a time. See Section 4.3.3.

Generate-initial-solution

A component of MLS that generates the initial solution on which the MLS search process acts. Is

treated as a black-box function, and specific modules could be construction heuristics, random

generation, or using some previously found solution. See Section 4.4.1.

Heuristic

A term used to refer to any local search approach. Used interchangeably with metaheuristic and

local search, and MLS configuration.

Hybrid

Any MLS heuristic that features a combination of modules that were originally associated with

different metaheuristic paradigms. A label of convenience rather than a strict classfication.

Initialize-memory

An optional component of the MLS control system. A heuristic might specify initialize-memory

modules to initialize any special memory strutures required, for example pre-populating a list of

interesting solution features. Automatic counters etc. are initialized by default and do not require

a specific initialize-memory module. See Section 4.4.2.

Glossary of MLS Terms 305

Local search

Any heuristic method that moves from solution to solution.

Memory element

A particular instance of an MLS memory structure, can be a parameter, a list, or some other

structure. Memory elements can be read by other modules, and can be modified by some

modules such as responses and update-memory functions. See Section 4.5.

Memory parameter

A memory element that takes a single value. Many of the MLS components are stored as

memory parameters, such as the candidate list size. See Section 4.5.

Memory structures

A collective term for all the user-specified and automatically maintained memory elements. See

Section 4.5.

Metaheuristic

Any local search technique. Used interchangeably with heuristic, local search, and MLS

configuration. Often used to refer to local search techniques with some mechanism for

intensifying or diversifying the search, especially to escape from or avoid local optima.

MLS

The Modular Local Search framework.

MLS configuration

A particular set of MLS modules that have been specified to be executed as a metaheuristic. Can

be thought of as a “family” of MLS instances, and might specify some modules that are initially

inactive, and a range of parameters settings.

MLS instance

A realization of a MLS configuration, which includes just those modules that are active at the

current time, with particular settings for the parameters.

MLSML

Modular Local Search Markup Language. MLSML is a language developed to express MLS

heuristics declaratively; it forms the blueprint for an MLS configuration. MLSML is what serves

as the input to the MLS program. See Appendix C.

Module

A packaged function of a specific type that fulfils a specific role in an MLS component. These

are the building blocks of MLS heuristics. See Section 4.2.

Move

A specific realization of a move-type. If a move-type is the swapping of two solution elements,

then a move might be swapping C and F. See Section 4.3.1.

306 Glossary of MLS terms Appendix A

Move selection order

The order and process by which moves are created. Since the total number of moves that are

defined might be less that the total number possible (especially if the search space is infinite), this

can affect the nature of the search. See Section 4.3.1.3.

Move-list

The set of moves that have been explicitly defined. The move-list forms the pool from which

moves are selected to be examined by the search logic. It is a (possibly equal) subset of all the

possible moves. See Section 4.3.1.

Move-list size

The number of moves that are defined and added to the move-list. This may be unlimited, or

may be limited in order to control the scope of the search. See Section 4.3.1.2.

Move-type

A procedure for transforming one solution into another. If a move-type is the swapping of two

solution elements, then a move might be swapping elements C and F, for example. See

Section 4.3.1.

Neighbour

Any solution that can be reached from the current solution be the application of one move.

Neighbourhood reduction process

An optional component of MLS. A neighbourhood reduction module starts with the move-list,

and transforms it to another move-list that is a (possibly equal) subset of the original move-list.

See Section 4.3.2.

Neighbourhood scheme

The collection of MLS components relating to the moves that are available: the set of move-

types, the move-list size, and the move selection order. See Section 4.3.1.

Response

A module that performs a specific action to modify the search or the heuristic. Responses are

associated with triggers, so that when a trigger is tripped, its associated responses are performed.

A response might be to perform some other MLS module, such as an update-memory module.

See Section 4.4.4.

Search characteristics

Automatically maintained memory parameter metrics relating the most recent iteration of the

search iteration process, such as the number of solutions examined, etc. These may be used

within other modules, such as triggers. See Section 4.5.4.

Glossary of MLS Terms 307

Search iteration process

The key MLS process that starts with a current solution and finds a target solution according to

the components that make up the search scheme. See Section 4.2.

Search logic

The collection of MLS modules that controls which moves are selected to be evaluated, and how

many. Consists of the candidate list size, the examinations maximum, and the examination

order. See Section 4.3.5.

Search parameters

These are technically “modules”, but they take the form of compulsory memory parameters: the

move-list size, the examinations maximum and the candidate list size. These MLS

components are stored as memory parameters so that they be used and modified like any other

parameters during the search. See Section 4.5.1.

Search scheme

The collection of MLS components that controls the seach iteration process. The modules of the

search scheme define which neighbours of the current solution will be examined to determine the

target solution. See Section 4.3.

Search space

The set of solutions that are reachable by the current heuristic configuration. May be a subset of

the solution space.

Set of move-types

The currently active move-types that are available to be be performed on the current solution.

Defines the neighbourhood. See Section 4.3.1.1.

Solution space

The complete set of solutions to the problem. Not all solutions are necessarily reachable by a

given heuristic.

Target solution

The solution that is selected as a result of the search iteration process. The target solution is

always the candidate with the highest fitness function value. If there are no candidates then the

current solution becomes the target solution. See Section 4.3.

Trigger

A MLS module that checks if a certain condition is satisfied (the trigger logic), and if so then

any associated responses are performed. Must evaluate to true or false (tripped or not tripped).

If the trigger is currently inactive then it is not evaluated. See Section 4.4.4.

308 Glossary of MLS terms Appendix A

Trigger logic

Also known as the trigger condition, this is the function that determines if a trigger is tripped or

not. Can refer to memory elements. Must evaluate to true or false (tripped or not tripped). See

Section 4.4.4.1.

Trigger memory element

A memory element that is specifically present to be used in the evaluation of the trigger logic.

May require additional update-memory modules to maintain. See Section 4.4.4.

Update-memory

A module that updates one or more memory elements. This can be after analysis or other

functions are performed. A common use of an update-memory module is as a response to a

trigger being tripped. If an update-memory module is active then it is performed automatically

immedidately after the search iteration process, every iteration. If it is inactive then it is only

performed when specifically called by a response. See Section 4.4.3.

309

 A P P E N D I X B

BProgrammatic Structure

In the following sections we describe the general structure of the programming code used to

implement MLS. This structure is a continual work-in-progress, and suggestions are made for

possible improvements.

B.1 Introduction

The major contribution of this thesis is the introduction of Modular Local Search (MLS), a framework

that allows easy and sophisticated hybridization of metaheuristics, especially multi-phase hybridization,

where the structure and operation of the metaheuristic change significantly during its execution. The

previous chapters have presented.

The MLS architecture presented so far is problem-agnostic; it deals simply with “solutions” and

“moves”. The implementation aspect must also be considered, in which the problem domain is

important. We have separated the two aspects. The core MLS engine is problem agnostic – the classes

pass around “solutions” and call functions such as getObjectiveValue. Then for each problem

domain a set of classes need to be written. These follow a standard template and have certain functions

they must implement.

The MLS structure has evolved over the course of the research (started out C++, now Java), and so has

the programming code. This Appendix documents the current state of the programming structure, but

we also make notes of which parts could be improved. The programming interface has grown over a

number of years, and has been rewritten several times, but still is in a state of constant improvement. It

has been getting steadily more general and robust, but there is still some work to be done; it is a work in

progress. There is not a perfect correspondence with the conceptual framework – there are some parts

that are lagging with previous ways of doing things, and if a workaround was functionally equivalent it

hasn’t always been updated yet.

This Appendix describes the general structure of the program, and lists the main classes. There are lots

of other supporting classes that are not discussed, and within each class lots of supporting functions

310 Programmatic Structure Appendix B

such as getters and setters for the variables. The full code base contains 90 classes (including all the

subclasses for each problem domain) and 16216 lines of code. This has been completely rewritten in

Java several times, and replaces an earlier C++ version, which replaced the C version used for the

ASRP investigation that was non-object-oriented. It took literally several months just to get Edmonds

blossom matching algorithm working properly, days of tracing graph matchings by hand until bugs

were discovered. There was no sufficiently detailed algorithmic descriptions of this algorithm – they all

dealt at a high level. Then this algoritm was reprogrammed, taking more months, for the new java

object-oriented arc and node structure. This motivates having a reusable programming structure like

MLS, so that this dosen’t need to be done every time.

B.2 Object-oriented programming structure

Object-oriented programming is method of programming that uses “objects”, data structures that

encapsulate a set of variables and methods. Each object is a member of a “class”. There are many

resources available that give good introductions to this style of programming, for example,

Schach [226].

One design decision was how to handle classes and subclasses. There were two main options. The first

is to abstract the classes completely, so for example each type of move is a class of its own, which are

subclasses of the Move class. The other way is to have a single Move class, with conditional logic that

executes the appropriate function based on the type of move, which is a parameter of the object. We

have used a hybrid, we contain all the functions for a particular problem domain within a single

subclass for each problem domain. We call this the container pattern. The following code gives an

example.

private String type;

public void execute(){

 if(type.equals(“Type 1”){

 executeType1();

 }

 else if(type.equals(“Type 2”)){

 executeType2();

 }

}

private void executeType1(){

 // Code for execution of Type 1

}

private void executeType2(){

 // Code for execution of Type 2

}

A future improvement to the code would be to create separate subclasses for each move-type (and every

other MSL component that uses the container pattern). This would complicate the code, but would

make the system more robust and extensible.

Programmatic Structure 311

B.2.1 Core MLS classes

These classes contain the core functionality of the MLS process, which is the same for any problem

domain. Their methods pass and act upon generic classes such as “Solution”, even though the actual

objects they are passing will belong to subclasses such as “AsrpSolution”.

• MetaheuristicTemplate. This class is the “blueprint” for a metaheuristic, or MLS

configuration. When the metaheuristic specifications are read from the MLSML file, each is

stored in a MetaheuristicTemplate object. All of the modules and parameters are stored as

String variables (plain text), rather than as the actual objects that they are converted to when a

Metaheuristic object is instantiated from a MetaheuristicTemplate object. For example the

admissibility conditions are stored in an ArrayList of Strings. The MetaheuristicTemplate class

contains a method to construct a MetaheuristicTemplate object from an XML Element, which is

passed when the class is instantiated.

• Metaheuristic. The Metaheuristic class contains the main structure of the procedure. It’s main

procedure is the executeMetaheuristic() function, which sets the current solution by

calling a construction heuristic, and then loops through the search iteration process until the

heuristic is terminated. It contains a Heuristic object, which performs most of the operations of

finding the target solution. After the Heuristic object is iterated, the automatic counters are

updated, along with any other update-memory objects that are required, and the best-so-far, and

then the triggers are processed.

• Heuristic. The heuristic class is actually the search scheme of the MLS process. The Heuristic

contains objects for all the components of the search scheme: the move-types, the fitness

function, the admissibility conditions, the search logic parameters, and the update memory

functions. It also contains all the procedures needed to perform the search iteration process.

The main control function is the iterate() function, which is called by the Metaheuristic that

contains it. The first step is that the move-list is generated, then the candidate list is generated

from the move-list, and then the target solution is selected.

• Trigger. Trigger objects belong to a Heuristic object. The Trigger class follows the container

pattern described above. When its main process method is called if checks to see what type

of trigger it is, and then calls the appropriate method to check whether it has been tripped.

Most of these methods perform some lookup of the memory parameters, such as the iteration

count. If the trigger detects that it has been tripped then it loops through its list of responses,

calling and executing each one in turn.

• Response. Response objects are contained in a list of responses within a Trigger object. The

Response class also follows the container pattern, although this class would perhaps be better

structured as a main response class, and a number of sub classes, one for each type of response.

When its main method is called it checks to see what type it is (it has a “type” variable), and

then the main method calls the appropriate method for this type.

312 Programmatic Structure Appendix B

• Neighbour. The Neighbour class contains information about a particular neighbour that has

been evaluated: the actual Solution object for this neighbour, whether it was found to be

admissible, the Move object that created it, the MoveType that created it.

• Memory. This class contains all of the memory elements (parameters, lists, etc) that are used

by the other classes. Each experiment has its own Memory object and this is referenceable by

every class. Because there is endless variety of memory elements, these are not explicitly

listed, instead they are stored in an extendable list actually a HashMap, that is dynamically

generated when the MetaHeuristic object is created from the memory elements specified in the

MetaheuristicTemplate (from the MLSML specification). The Memory class also stores all the

automatic counters.

B.2.2 Generic classes and factories

Many of the classes and modules used in the MLS framework are specific to a particular problem

domain. The core process is domain-independent, but the individual fitness function evaluations and

moves, for example, need to interact with the problem data and need to be developed especially. Some

classes, such as the admissibility conditions, can have some modules that are problem independent, and

others that depend on the problem data.

The way that this is handled is by using the factory design pattern. For each type of class, there is a

generic class and a factory class, and then each problem domain also has a subclass. We illustrate this

concept with the MoveType component.

There exists a generic MoveType class. This contains all the variables and functions that are required

by all MoveType objects: the number of moves remaining to be generated, a generateMove method that

returns a Move object when called by the Heuristic object, and some methods that handle randomising

the order of the moves.

Each problem domain then has its own MoveType class, for example AsrpMoveType and

MdpMoveType. These classes extend the generic MoveType class, which means that they are sub-

classes and inherit all the variables and methods in the MoveType class. Each domain-specific subclass

contains its own logic for generating Move objects when called, for example the AsrpMoveType class

can generate ASRP moves (add, drop, shortcut, etc.), whereas the MdpMoveType generatesMDP

moves (add module, increase parameter, etc.). Note that the MDP is introduced in Chapter 8.

Each type of class then has a “factory” class, for example MoveTypeFactory. A simplified version of

the code for the factory class is shown below:

Programmatic Structure 313

public class MoveTypeFactory {

 public MoveType generate(String problemType, String name){

 if(problemType.equals("ASRP")){

 MoveType moveType = new AsrpMoveType(name);

 moveType.setProblemType(problemType);

 return moveType;

 }

 else if(problemType.equals("MDP")){

 MoveType moveType = new MdpMoveType(name);

 moveType.setProblemType(problemType);

 return moveType;

 }

 else return null;

 }

}

When a Metaheuristic object is created from the MetaheuristicTemplate object, based on the MLSML

description, all that is specified is the name of the move-type to be added, for example “Shortcut”. The

system does not know from this template whether this move-type is an ASRP move-type, or an MDP

move-type. The key parameter that is used here is the problemType parameter. Every class has a

problemType parameter, which is simply a String that is set when the class is created, as can be seen

above. When a new move-type object needs to be created, a MoveTypeFactory object is created, and

its generate method is called, passing it the problem type, and the name of the move-type. The

factory class then checks to see what the problem type is and creates a MoveType object of the

appropriate subclass.

This pattern is used for many of the components of the MLS framework.

B.2.3 Domain-specific MLS classes

As described in the previous section, there are a number of problem-specific classes that are subclasses

of generic parent classes. The main MLS logic only cares that it is handling, for example, a MoveType

class with a generate method, whereas in reality there are a number of MoveType subclasses, each

with a different generate function.

Most of these domain-specific classes follow the container pattern, they are a single class with a control

function that looks up the appropriate method to call based on their “type” parameter. One

improvement that could be made to the this programming structure would be to convert these classes to

distinct classes. Currently we have an AsrpMoveType class (which extends the generic MoveType

class), with a master generate function that calls a different function based on the “type” parameter of

the AsrpMoveType (e.g., generateAddMove, generateDropMove, etc). Perhaps a better structure would

be to have a generic MoveType class, and then a whole series of specific subclasses, one for each

move-type, e.g., AsrpAddMoveType, AsrpDropMoveType, etc. This makes the code base slightly

more complicated, which is the reason it was not designed like this initially, but it makes it better for

extension. By having multiple subclasses, each one has a simpler structure, and is a distinct unit of

314 Programmatic Structure Appendix B

code. Other researchers can add new move-type classes to a library of classes without needing the

ability to modify a “master” class for that problem domain.

We briefly describe each of the domain-specific MLS classes:

• AdmissibilityCondition. Required only to have a single method, isAdmissible, that takes

as input a Neighbour and the current Solution. This function returns a boolean result of true or

false. The domain-specific subclass follows the container method, however this class is

perhaps the best candidate for a change to multiple subclasses as described above, since many

admissibility conditions are generic to all problems, whereas the current structure requires these

to be replicated for each new domain. An example of a generic admissibility conditions is the

Metropolis condition, which uses only a comparison of the fitness values of the current solution

and the neighbour, and some memory parameters such as the temperature.

• ConstructiveHeuristic. This should more properly be named GenerateInitialSolution, to bring

it in line with the MLS terminology; it is named like this since the only method of generating

initial solutions used was a constructive heuristic. This is clearly very different for each

problem domain, and again follows the container pattern, although could be split out into

separate classes, one for each construction heuristic. This class is only required to have one

method: constructSolution, which returns a Solution object.

• FitnessFunction. The only method a FitnessFunction subclass must have is a

calculateFitness method that takes as input a Solution object. This method does not

return anything, instead it modifies the Solution object, updating its fitness variable. Subclasses

follows the container pattern.

• Instance. This class contains the problem data. Subclasses will be very different from each

other, since each problem domain is different. The only method that is required is an

initialise method, but this does not necessarily need to do anything. For the ASRP the

AsrpInstance subclass contains a Graph object, a Node object for the depot, a variable for the

budget, and some supporting methods, for example the code required to instantiate the instance

by reading in the text file that contains the instance data.

• MoveType. This class was discussed as an example above. The way the MoveType class

works is that each iteration the Heuristic class that contains the MoveType calls its reset

method, which takes as input the current Solution. This function initialises the MoveType

object. This will potentially be a different process for each problem domain, and for each

move-type, so we illustrate the concept by describing the process for the ASRP move-types.

For the ASRP move-types (add, drop, shortcut, etc) the reset function calculates how many

moves of this move-type are possible. It does this by maintaining a number of lists. For the

add move-type, each move has two parameters: the index of the node on the route where the

addition starts, and the index of the node on the graph that is being added. This sets an upper

limit on the number of add moves that are possible: if there are p nodes on the route and q

nodes in the graph, then there is an upper limit of pq add moves. Of course not all of these will

Programmatic Structure 315

result in valid moves, since for the add move-type, p and q must be adjacent. The reset

function creates two lists of integers: list1 contains integers from 0 to p-1, and list2 contains

integers from q-1. The reset function then randomises the order of these lists, so that node 1

is not always examined before node 2.

When building the move-list, the Heuristic object then repeatedly calls the generateMove

method of the move-list (the MoveType object is also selected randomly from all the

MoveTypes available) until there are no moves remaining in all MoveType objects, or until the

move-list size threshold is reached. The generateMove function follows the container pattern,

and uses the lists that were randomised above to generate the next Move object. After it is

generated, the lists are updated so that they only contain unchosen moves.

• Move. A Move subclass needs only contain a method generateNeighbour, which generates

a Neighbour, following the container class. Move objects are generated by the MoveType

objects. For the ASRP, the AsrpMove class also contains a number of indexes that are required

to identify starting and ending nodes for the various ASRP move-types. Each Move has as a

variable the current Solution object. Each specific generateNeighbour function (e.g.,

generateAddNeighbour, generateDropNeighbour, etc), first creates a Neighbour object

and sets itself as the Move variable for the Neighbour. It then clones the current Solution and

sets this new Solution as the Solution variable for the Neighbour. This new Solution is then

modified according to the procedure of the move; for an add move it inserts an arc into the

route twice at a specified point. The fitness function is then calculated for the resulting new

solution.

• Solution. The Solution subclass will be different for each problem type. Solution subclasses

are required to have the following functions: getFitnessValue, which returns the fitness

value for the solution, isFeasible, which checks feasibility, and getObjectiveValue,

which returns the objective function value (which may be the same as the fitness function

value).

The AsrpSolution class is relatively complicated; it performs many of the problem-specific

tasks required to implement the ASRP. In addition to the required functions above, it contains

two lists that represent the current solution route: an ordered list of Node objects that represents

the nodes visited in the route, and an ordered list of Arc objects that represents the arcs visited.

Both lists are necessary, since each is suited for certain calculations. Whenever a change is

made to the route, both lists must be updated.

• UpdateFunction. This class should properly be named MemoryUpdate, in line with the MLS

component naming conventions. These classes follow the container pattern and perform

whatever calculations are required, updating any memory elements that are needed. One

AsrpUpdateFunction involves updating the tabu status of the any arcs that have been changed

from last solution, decrementing the remaining tenure of arcs already on the list, and removing

any arcs that have no remaining tabu tenure.

316 Programmatic Structure Appendix B

B.2.4 Domain-specific support classes

In addition to the MLS-specific classes described above, each problem domain requires a number of

other classes. These will vary depending on the problem type. For the experiments in this thesis, most

experiments were done on the Arc Subset Routing Problem (ASRP); even the other problem domains

that are explored that use MLS in more advanced ways are based around the ASRP.

We briefly describe the classes required to support ASRP problem instances. Recall that this structure

is completely object-oriented. All of the following classes are those that are required to use graphs; the

other elements of an ASRP problem instance (the budget, depot node, etc), are parameters of the

Instance class. The structure of the graph is maintained because each node and arc knows where it is in

relation to its neighbours. Note that these structures will apply equally well to any node or arc routing

problem, not necessarily based on grid graphs.

• Node. Represents a node of the graph. Contains a list of incident Arc objects, and a method

isIncident that takes an Arc as input and returns a boolean result for whether it is incident

on this Node. Also contains a method getIncidentArcFromAdjacentNode that takes

another Node as input and returns the Arc object that is between these nodes (or null if there

isn’t one). Similarly it contains a list of adjacent Nodes, and a method isAdjacent that

checks whether an input Node is adjacent.

• Arc. Represents an arc of the graph. The Arc class contains similar lists of adjacent Arcs and

incident Nodes to the Node class, and similar functions for checking incidence and adjacency.

It also contains variables for the reward, penalty and cost associated with the Arc.

• Graph. The Graph class is primarily a container for the list of Arcs and list of Nodes. It also

contains some special functions, such as a test for connectedness.

A separate set of classes are required to support the generation of problem instances, based on grid

graphs.

Of particular note are the classes and methods required to perform Edmonds matching algorithm (see

Edmonds and Johnson [78]). This algorithm finds a maximum weight perfect matching on a graph, and

is the preferred method for making a graph or subgraph Eulerian, a necessary step for finding a

minimum cost route through the arcs of the subgraph. Three special classes: Euler, EulerArc and Euler

node contain the logic required to implement this algorithm, which required significant development

effort to program and debug, resulting in approximately 1800 lines of code.

B.2.5 Environment classes and experimentation

There were numerous other classes required to support the execution of computational experiments. In

this section we briefly describe the files and procedure used to execute these experiments.

The inputs and outputs of the program are all text files:

• Input: MLS_Settings.ini. This is the first file read by the program, and it contains settings such

as the names of the other input files, paths to where these files are and paths to where output

Programmatic Structure 317

files should be placed, and the problem-type (ASRP, MDP, etc). None of the other files listed

below need to have the name given, these are instead specified in this file.

• Input: metaHeuristics.xml. Contains the MLSML code that specifies the heuristics being

experimented with.

• Input: ScheduleHeuristics.csv. Contains a list of names of the heuristics that should be applied

to the problem instances. These names must match names in the MLSML file, but not all

MLSML entries need to be listed in this file.

• Input: ScheduleInstances.csv. Contains a list of the filenames of all the problem instances that

should be solved. All the heuristics listed in the previous file are applied to all of these

instances.

• Input: instanceFilename.instance. There will be a number of these instance files, one for each

of the entries in the ScheduleInstances file. Each one contains the problem data for the problem

instance, starting with a section giving the budget, depot node, and number of arcs and nodes,

and then a section listing the nodes, along with their grid row and column, and then a section

listing the arcs with which nodes they are incident on, and their reward, penalty, and cost

parameters.

• Output: Result.Instance.Heuristic.txt. Contains the results of the application of one heuristic

to an instance. Each result produces its own file. The results include the time taken, the reward

collected by the best solution, and the cost of the route.

• Output: Route.Instance.Heuristic.txt. Contains the route for the best solution found.

An Experiment class handles the execution of the program; it reads in the schedules and then loops

through them, creating the Metaheuristics and Instances in turn, and executing them, then outputting the

results.

Another important tool was an Excel spreadsheet model that had macros to assist in visualising problem

instances and routes. The path to a instance file is entered into one cell of the spreadsheet, and the path

to a route is entered into another. Then, buttons can be pressed to execute VBA macros that construct

the problem instance visually, and then if desired display the route, pausing after each arc. Double lines

are used where the route traverses an arc twice.

318 Programmatic Structure Appendix B

Figure 9.1: An example of a route displayed with the route visualizer

Figure 9.1 gives an example of a route that traversed a subset of arcs twice, and no arcs once, due to the

sparse nature of the graph.

B.3 Extension to new problem domains

MLS is designed to be easily applied to new problem domains. In this thesis three distinct problem

domains were implemented: the ASRP, the MDP (discussed in Chapter 8) and the APICP (discussed in

Chapter 7). The main control logic of the MLS procedure remains completely unchanged; only

problem-specific classes need to be created:

• Admissibility conditions, if required. Ideally many of these can be reused from existing

classes.

• Construction heuristics. These will be dependent on the problem domain. If necessary a

simple random solution can often be easily constructed.

• Fitness functions. The default is simple “Objective”, which passes the calculation logic back to

the Solution class.

• Move-types and Moves. These follow a standard structure, but the specific logic to generate a

Move, and Neighbour, will be different for each move-type, as well as each problem domain.

• Solution. The Solution class is where the MLS algorithm interacts with the problem data.

• Update functions and other modules. If there are any specific module required for the

problem or solution techniques these must be developed.

• Output functions. These have not been explicitly discussed yet, but each problem domain will

need to output different things. For example the ASRP outputs the best route found... non-

routing problems will have other output requirements. Again, these follow the factory pattern,

Programmatic Structure 319

so that the control class (Experiment) only needs to execute the Output method of the Output

class, and the subclass function of the appropriate type is executed.

• Other problem data classes. These can potentially take the longest time to program. For the

ASRP, the Node, Arc, and Graph classes required significant development effort to perfect.

321

 A P P E N D I X C

CModular Local Search

Markup Language

(MLSML)

In the following sections we describe the structure of MLSML and provide examples of the

MLSML code used to specify the heuristics used in the experimentation. Only a single

example of each type of heuristic is presented, to illustrate the usage of MLSML.

C.1 Structure of MLSML

One of the design goals of the MLS framework is that new hybrid metaheuristics can be created simply

by specifying the combination of modules and parameters that should be used. We introduce a new

markup language, Modular Local Search Markup Language (MLSML) as the way that these

combinations of modules and parameters are specified.

Markup languages are a way of annotating text such that separate elements are structurally identifiable.

See Coombs et al. [59] for an introduction to markup systems. Modern markup languages, as well as

MLSML, tend to be modelled on XML (eXtensible Markup Language), which is a specific set of rules

for developing new markup langauges (see the World Wide Web Consortium XML homepage for more

details [2]). The most common markup language is HTML. Essentially, information is surrounded by

“tags” that label the information type. For example

 <moveType>Shortcut</moveType>

is an example of a piece of MLSML data. The tag <moveType> announces that the text following is

the name of a move-type. The tag </moveType> “closes” this tag, announcing the end of this piece of

data.

We briefly describe the structure of an MLSML file. Note that this structure represents only the most

recent iteration of MLSML; this strucure has constantly been in development, and it may be expected to

expand for future research. Examples of the MLSML specifications for the some of the MLS

configurations used during this thesis are given in subsequent sections..

The tags used in MLSML are described below. These are listed in the order in which they generally

occur in an MLSML specification file, although the order is not important; the MLSML parser is able to

322 Modular Local Search Markup Language (MLSML) Appendix C

extract the tags in any order. Each <tag> should be accompanied by a closing </tag>, although these

are not explicitly listed.

• <metaHeuristics>

This is the top level tag for the MLSML specification file. An XML-based file should have a

single root “node” or tag.

• <metaHeuristic>

The container tag for each individual MLS configuration.

• <name>

The name of the heuristic. This should match the name in the schedule file, and is used in

outputs to identify the heuristic, but otherwise has no effect.

• <admissibilityConditions>

A container tag for the other individual <admissibilityCondition> tags. This tag is

optional; multiple <admissibilityCondition> tags can be directly beneath the

<metaHeuristic> tag and the MLSML is still valid.

• <admissibilityCondition>

Contains the name of an admissibility condition that is active for this heuristic. This name must

match that programmed into the AdmissiblityCondition classes.

• <fitnessFunction>

Contains the name of the active fitness function for this heuristic. This name must match that

programmed into the FitnessFunction classes.

• <neighbourhoodScheme>

A container tag for the <moveType> tags. This tag is not optional.

• <moveType>

Contains the name of a move-type. This name must match that programmed into the

MoveType classes. Multiple move-types are usually specified.

• <memoryParameters>

A container tag for the <memoryParameter> tags. This tag is not optional if there are

memory parameters specified (if present, they must be contained in this tag).

• <memoryParameter>

Represents a memory parameter. Contains various child tags that represent the attributes of the

memory parameter: <parameterActive>, <parameterName>, <parameterValue>, and

optionally, <increaseType>, <increaseValue>, <minValue>, <maxValue>.

• <parameterActive>

Contains either “true” or “false” indicating whether the memory parameter is initially active.

Modular Local Search Markup Language (MLSML) 323

• <parameterName>

Contains the name of this memory parameter. This name may be anything desired, but if

modules reference this parameter is will be by name so these should match.

• <parameterValue>

The initial value of the memory parameter. Often memory parameter values are modified

during the course of the search.

• <increaseType>

An optional parameter that is used in self-adaptive MLS heuristics where memory parameters

are modified as “moves”. Defines the type of change that is made to the parameter when an

increase or decrease is called; either “Add” (the increase value is added to the current parameter

value) or “Multiply” (the increase value is multiplied with the current parameter value).

• <increaseValue>

An optional parameter that specifies how much the current memory parameter value should be

increased by (either additively or multiplicatively).

• <minValue>

An optional parameter than specifies the minimum value to which this memory parameter may

be reduced .

• <maxValue>

An optional parameter that specifies the maximum value to which this memory parameter may

be increased.

• <updateFunctions>

A container tag for the <updateFunction> tags (they must be contained in this tag, if

present).

• <updateFunction>

Contains the name of this memory-update function. This name must match that programmed

into the UpdateMemory classes.

• <triggers>

A container tag for the <trigger> tags.

• <trigger>

Represents a trigger. Contains a number of child tags representing attributes of the trigger, and

responses: <active>, <triggerName>, <triggerType>, <threshold>,

<triggerParameter>, <response>.

• <active>

Defines whether the trigger is initially active (true), or inactive (false).

324 Modular Local Search Markup Language (MLSML) Appendix C

• <triggerName>

The name of the trigger. The name is used to reference this trigger internally, for example

when a response is to deactivate a particular trigger, the parameter is the trigger name.

• <triggerType>

The type of the trigger. This determines which trigger function is executed, and must match the

name in the Trigger classes.

• <threshold>

Optional. Specifies the memory parameter value for the trigger threshold. Not all triggers are

comparisons against a threshold. An alternative formulation would be to simply have the

thereshold as a <memoryParameter> item.

• <triggerParameter>

Optional. If the trigger refers to another module, the name of the module is given here. For

example, one trigger condition is if a number of iterations have occured since a particular

trigger was last tripped. This name of the trigger is given here, and can be name of this trigger

itself.

• <response>

Represents a response that is executed when the trigger is tripped. Multiple <response> tags

may be children of each <trigger>. Contains the following tags: <responseName>,

<responseType>, and optionally, <responseParameter>.

• <responseName>

The name of this response. This is purely a label for convenience and has no functional effect.

• <responseType>

The type of response. Must match one of the response type in the Response classes.

• <responseParameter>

If the response takes a parameter then it is specified here. For example if the response is to

activate a trigger, then this would give the name of the trigger to be activated.

C.2 Examples of MLSML specifications

In the following sections we provide examples of the MLSML code used to specify the heuristics used

in the experimentation. Only a single example of each type of heuristic is presented, to illustrate the

usage of MLSML.

C.2.1 Steepest Ascent

 <metaHeuristic>

 <name>

 SteepestAscent

 </name>

 <admissibilityCondition>

Modular Local Search Markup Language (MLSML) 325

 Improving fitness and feasible OR infeasible but decreasing cost

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>nAdd</moveType>

 <moveType>nDrop</moveType>

 <moveType>nShortcut</moveType>

 <moveType>nDetour</moveType>

 </neighbourhoodScheme>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>NLookahead</parameterName>

 <parameterValue>4</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>admissibleSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 </memoryParameters>

 <triggers>

 <trigger>

 <active>true</active>

 <triggerName>Local optimum</triggerName>

 <triggerType>Local optimum</triggerType>

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 </triggers>

 </metaHeuristic>

C.2.2 Simulated Annealing

 <metaHeuristic>

 <name>

 SimulatedAnnealing

326 Modular Local Search Markup Language (MLSML) Appendix C

 </name>

 <admissibilityCondition>

 Annealing probability

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>Add</moveType>

 <moveType>Drop</moveType>

 <moveType>Shortcut</moveType>

 <moveType>Detour</moveType>

 </neighbourhoodScheme>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>admissibleSize</parameterName>

 <parameterValue>1</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>annealingTemperature</parameterName>

 <parameterValue>1500</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>coolingRate</parameterName>

 <parameterValue>0.99</parameterValue>

 </memoryParameter>

 </memoryParameters>

 <triggers>

 <trigger>

 <active>true</active>

 <triggerName>Iterations since last trigger</triggerName>

 <triggerType>Iterations since last trigger</triggerType>

 <threshold>80</threshold>

 <triggerParameter>Iterations since last trigger</triggerParameter>

 <response>

 <responseName>Reduce annealing temperature</responseName>

 <responseType>Reduce annealing temperature</responseType>

Modular Local Search Markup Language (MLSML) 327

 </response>

 </trigger>

 <trigger>

 <active>true</active>

 <triggerName>Temperature threshold</triggerName>

 <triggerType>Temperature threshold</triggerType>

 <threshold>0.001</threshold>

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 </triggers>

 </metaHeuristic>

328 Modular Local Search Markup Language (MLSML) Appendix C

C.2.3 Tabu Search

 <metaHeuristic>

 <name>

 TabuSearch

 </name>

 <admissibilityCondition>

 Tabu arcs with aspiration

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>Add</moveType>

 <moveType>Drop</moveType>

 <moveType>Shortcut</moveType>

 <moveType>Detour</moveType>

 </neighbourhoodScheme>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>admissibleSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>tabuTenure</parameterName>

 <parameterValue>20</parameterValue>

 </memoryParameter>

 </memoryParameters>

 <updateFunctions>

 <updateFunction>Update tabu arcs</updateFunction>

 </updateFunctions>

 <triggers>

 <trigger>

 <active>true</active>

 <triggerName>Iteration count</triggerName>

 <triggerType>Iteration count</triggerType>

 <threshold>1000</threshold>

 <response>

Modular Local Search Markup Language (MLSML) 329

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 </triggers>

 </metaHeuristic>

C.2.4 Variable Neighbourhood Search

 <metaHeuristic>

 <name>

 VariableNeighbourhoodSearch

 </name>

 <admissibilityCondition>

 Improving fitness and feasible OR infeasible but decreasing cost

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>Add</moveType>

 <moveType>Drop</moveType>

 <moveType>Shortcut</moveType>

 <moveType>Detour</moveType>

 </neighbourhoodScheme>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>admissibleSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>NLookahead</parameterName>

 <parameterValue>8</parameterValue>

 </memoryParameter>

 </memoryParameters>

 <triggers>

 <trigger>

 <active>true</active>

 <triggerName>Local optimum</triggerName>

330 Modular Local Search Markup Language (MLSML) Appendix C

 <triggerType>Local optimum</triggerType>

 <response>

 <responseName>Change moveset to extended</responseName>

 <responseType>Change moveset</responseType>

 <responseParameter>Extended</responseParameter>

 </response>

 <response>

 <responseName>Deactivate trigger</responseName>

 <responseType>Deactivate trigger</responseType>

 <responseParameter>Local optimum</responseParameter>

 </response>

 <response>

 <responseName>Activate trigger</responseName>

 <responseType>Activate trigger</responseType>

 <responseParameter>Iterations since last trigger</responseParameter>

 </response>

 </trigger>

 <trigger>

 <active>false</active>

 <triggerName>Iterations since last trigger</triggerName>

 <triggerType>Iterations since last trigger</triggerType>

 <threshold>1</threshold>

 <triggerParameter>Iterations since last trigger</triggerParameter>

 <response>

 <responseName>Change moveset to basic</responseName>

 <responseType>Change moveset</responseType>

 <responseParameter>Basic</responseParameter>

 </response>

 <response>

 <responseName>Deactivate trigger</responseName>

 <responseType>Deactivate trigger</responseType>

 <responseParameter>Iterations since last trigger</responseParameter>

 </response>

 <response>

 <responseName>Activate trigger</responseName>

 <responseType>Activate trigger</responseType>

 <responseParameter>Local optimum</responseParameter>

 </response>

 </trigger>

 <trigger>

 <active>true</active>

 <triggerName>Iteration count</triggerName>

 <triggerType>Iteration count</triggerType>

 <threshold>1000</threshold>

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 </triggers>

Modular Local Search Markup Language (MLSML) 331

 </metaHeuristic>

C.2.5 ASRP Design

 <metaHeuristic>

 <name>

 ASRPDesign

 </name>

 <admissibilityCondition>

 Connected and improving

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>Swap arcs</moveType>

 </neighbourhoodScheme>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>5000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>admissibleSize</parameterName>

 <parameterValue>1</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>100</parameterValue>

 </memoryParameter>

 </memoryParameters>

 <triggers>

 <trigger>

 <active>true</active>

 <triggerName>Iteration count</triggerName>

 <triggerType>Iteration count</triggerType>

 <threshold>500</threshold>

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 </triggers>

 </metaHeuristic>

332 Modular Local Search Markup Language (MLSML) Appendix C

C.2.6 MLS Design Control

 <metaHeuristic>

 <name>

 MLSDesignControl

 </name>

 <admissibilityCondition>

 All admissible

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>Add module</moveType>

 <moveType>Remove module</moveType>

 <moveType>Increase parameter</moveType>

 <moveType>Decrease parameter</moveType>

 </neighbourhoodScheme>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>100</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>admissibleSize</parameterName>

 <parameterValue>5</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>300</parameterValue>

 </memoryParameter>

 </memoryParameters>

 <triggers>

 <trigger>

 <active>true</active>

 <triggerName>Local optimum</triggerName>

 <triggerType>Local optimum</triggerType>

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 <trigger>

 <active>true</active>

 <triggerName>Iteration count</triggerName>

 <triggerType>Iteration count</triggerType>

 <threshold>80</threshold>

Modular Local Search Markup Language (MLSML) 333

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 </triggers>

 </metaHeuristic>

C.2.7 MLS Design – ASRP Template

 <metaHeuristic>

 <name>

 ASRPTemplate

 </name>

 <admissibilityCondition>

 All admissible

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>Add</moveType>

 <moveType>Drop</moveType>

 <moveType>Shortcut</moveType>

 <moveType>Detour</moveType>

 </neighbourhoodScheme>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>1000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>admissibleSize</parameterName>

 <parameterValue>1</parameterValue>

 <increaseType>Add</increaseType>

 <increaseValue>3</increaseValue>

 <minValue>1</minValue>

 <maxValue>1000</maxValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>100</parameterValue>

 <increaseType>Add</increaseType>

 <increaseValue>5</increaseValue>

 <minValue>6</minValue>

 <maxValue>1000</maxValue>

 </memoryParameter>

 <memoryParameter>

334 Modular Local Search Markup Language (MLSML) Appendix C

 <parameterActive>false</parameterActive>

 <parameterName>annealingTemperature</parameterName>

 <parameterValue>1000</parameterValue>

 <increaseType>Multiply</increaseType>

 <increaseValue>1.2</increaseValue>

 <minValue>100</minValue>

 <maxValue>2500</maxValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>false</parameterActive>

 <parameterName>coolingRate</parameterName>

 <parameterValue>0.75</parameterValue>

 <increaseType>Multiply</increaseType>

 <increaseValue>1.1</increaseValue>

 <minValue>0.1</minValue>

 <maxValue>0.99</maxValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>false</parameterActive>

 <parameterName>tabuTenure</parameterName>

 <parameterValue>7</parameterValue>

 <increaseType>Add</increaseType>

 <increaseValue>1</increaseValue>

 <minValue>3</minValue>

 <maxValue>30</maxValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>false</parameterActive>

 <parameterName>NLookahead</parameterName>

 <parameterValue>4</parameterValue>

 <increaseType>Add</increaseType>

 <increaseValue>1</increaseValue>

 <minValue>2</minValue>

 <maxValue>10</maxValue>

 </memoryParameter>

 </memoryParameters>

 <triggers>

 <trigger>

 <active>false</active>

 <triggerName>Simulated annealing temperature reduction</triggerName>

 <triggerType>Iterations since last trigger</triggerType>

 <threshold>12</threshold>

 <triggerParameter>

 Simulated annealing temperature reduction

 </triggerParameter>

 <response>

 <responseName>Reduce annealing temperature</responseName>

 <responseType>Reduce annealing temperature</responseType>

 </response>

 </trigger>

Modular Local Search Markup Language (MLSML) 335

 <trigger>

 <active>false</active>

 <triggerName>

 Simulated annealing temp threshold termination

 </triggerName>

 <triggerType>Temperature threshold</triggerType>

 <threshold>0.001</threshold>

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 <trigger>

 <active>true</active>

 <triggerName>Default termination</triggerName>

 <triggerType>Iteration count</triggerType>

 <threshold>1000</threshold>

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 <trigger>

 <active>false</active>

 <triggerName>VNS phase 1 trigger</triggerName>

 <triggerType>Local optimum</triggerType>

 <response>

 <responseName>Change moveset to extended</responseName>

 <responseType>Change moveset</responseType>

 <responseParameter>Extended</responseParameter>

 </response>

 <response>

 <responseName>Deactivate trigger</responseName>

 <responseType>Deactivate trigger</responseType>

 <responseParameter>VNS phase 1 trigger</responseParameter>

 </response>

 <response>

 <responseName>Activate trigger</responseName>

 <responseType>Activate trigger</responseType>

 <responseParameter>VNS phase 2 trigger</responseParameter>

 </response>

 </trigger>

 <trigger>

 <active>false</active>

 <triggerName>VNS phase 2 trigger</triggerName>

 <triggerType>Iterations since last trigger</triggerType>

 <threshold>1</threshold>

 <triggerParameter>VNS phase 2 trigger</triggerParameter>

 <response>

 <responseName>Change moveset to basic</responseName>

336 Modular Local Search Markup Language (MLSML) Appendix C

 <responseType>Change moveset</responseType>

 <responseParameter>Basic</responseParameter>

 </response>

 <response>

 <responseName>Deactivate trigger</responseName>

 <responseType>Deactivate trigger</responseType>

 <responseParameter>VNS phase 2 trigger</responseParameter>

 </response>

 <response>

 <responseName>Activate trigger</responseName>

 <responseType>Activate trigger</responseType>

 <responseParameter>VNS phase 1 trigger</responseParameter>

 </response>

 </trigger>

 </triggers>

 </metaHeuristic

C.2.8 Adaptive Diversification Local Search

 <metaHeuristic>

 <name>

 ADLS

 </name>

 <admissibilityCondition>

 Improving fitness and feasible

 </admissibilityCondition>

 <fitnessFunction>

 Objective

 </fitnessFunction>

 <neighbourhoodScheme>

 <moveType>Add</moveType>

 <moveType>Drop</moveType>

 <moveType>Shortcut</moveType>

 <moveType>Detour</moveType>

 </neighbourhoodScheme>

 <updateFunctions>

 <updateFunction>Update tabu arcs</updateFunction>

 </updateFunctions>

 <memoryParameters>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>NLookahead</parameterName>

 <parameterValue>4</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>movelistSize</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

Modular Local Search Markup Language (MLSML) 337

 <parameterName>admissibleSize</parameterName>

 <parameterValue>100</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>maxNeighbours</parameterName>

 <parameterValue>100000</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>diversificationAlpha</parameterName>

 <parameterValue>6</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>annealingTemperature</parameterName>

 <parameterValue>500</parameterValue>

 </memoryParameter>

 <memoryParameter>

 <parameterActive>true</parameterActive>

 <parameterName>tabuTenure</parameterName>

 <parameterValue>15</parameterValue>

 </memoryParameter>

 </memoryParameters>

 <triggers>

 <trigger>

 <active>true</active>

 <triggerName>Local optimum</triggerName>

 <triggerType>Local optimum</triggerType>

 <response>

 <responseName>Start diversification phase</responseName>

 <responseType>Start diversification phase</responseType>

 </response>

 </trigger>

 <trigger>

 <active>false</active>

 <triggerName>Iterations since last trigger</triggerName>

 <triggerType>Iterations since last trigger</triggerType>

 <threshold>3</threshold>

 <triggerParameter>Local optimum</triggerParameter>

 <response>

 <responseName>End diversification phase</responseName>

 <responseType>End diversification phase</responseType>

 </response>

 </trigger>

 <trigger>

 <active>true</active>

 <triggerName>Iteration count</triggerName>

 <triggerType>Iteration count</triggerType>

 <threshold>250</threshold>

338 Modular Local Search Markup Language (MLSML) Appendix C

 <response>

 <responseName>Termination</responseName>

 <responseType>Termination</responseType>

 </response>

 </trigger>

 </triggers>

 </metaHeuristic>

339

 A P P E N D I X D

DDiscussion of Possible

Extensions to the ASRP

In this appendix we explore some variations that could be applied to extend the ASRP. This

discussion was an early part of the research, when the development of MLS had not yet been

started, and one of the possible research directions was further development of the ASRP. It

has been moved to an appendix because it is no longer directly relevant to the main research

investigation, however may provide some ideas for future research.

D.1 Introduction

Subset selection has been extensively covered in the node routing literature, but as far as the author is

aware has yet to be systematically explored in the field of arc routing. We attempt to fill that void. We

begin by a discussion of what aspects of a routing problem could be modelled within a subset selection

framework, and then attempt to formalize the definition of some key problems within this field, which

we call subset selection arc routing (SSAR).

We first define an arc routing problem (ARP) to be a problem where there exists a graph, or network,

G, such that one or more vehicles are required to traverse the arcs of G, subject to some constraints.

Given this definition, an Arc Subset Routing Problem (ASRP) will therefore be defined as an arc

routing problem, such that in a solution, only a subset of the arcs of G need be traversed. There are

many different possible variations of this basic structure, which will duly be considered, but one of the

most fundamental questions to be explained is why the subset selection aspect needs to be introduced.

This may best be explained with the introduction of two concepts: rewards and costs. Both concepts are

central to existing routing models. The concept of cost is usually associated, in arc routing literature,

with the length of an arc; a related objective is to minimize either the distance travelled over the whole

solution, or the time taken to do so. Reward is introduced to make some arcs (or customers, in node

routing literature) more attractive than others. Subset selection problems naturally arise in two cases:

where there is a limited cost (time or distance) budget, and the maximum reward must be collected

within the confines of this budget, or where there is a minimum reward that must be collected, and a

minimum cost must be incurred during the collection. We call the former case a set cost, max reward

340 Discussion of Possible Extensions to the ASRP Appendix D

problem, and the latter case a set reward, min cost problem. The former problem is actually a

capacitated problem. Introducing capacities traditionally gives rise to multiple routes to satisfy demand

(as in the Vehicle Routing Problem (VRP)); we consider such a problem where only one of these routes

may be completed. Perhaps this implies that judicious truncation of certain vehicle routing heuristics

could provide efficient solution methods.

Interestingly, these two types of problems are actually the same problem; one can be transformed into

the other. We consider that there are two quantities associated with each arc: cost and reward. To

transform a set reward, min cost problem into a set cost, max reward problem, we simply let

reward ← -cost and cost ← -reward. Minimizing the cost now translates to minimizing the negative

reward, i.e., maximizing the reward, and having a set reward translates to having a set cost. Therefore,

we could consider only one of the variations, with no loss of generality. However, there are some

possible variations which make more sense one way or the other; for example, time variant rewards

make more intuitive sense than time variant negative costs. So, we will consider both problem

formulations.

Section D.1.1 defines a basic version of an arc subset routing problem, which is used as a point of

comparison throughout the remainder of this chapter. Sections 0 through D.5 explore possible

variations that could be applied to extend the basic problem. It is important to note that these sections

are in the nature of a brain-storming exercise; most of these variations are not incorporated in the ASRP

problem that is used throughout the remainder of the thesis. Section 3.1 explores various mathematical

programming formulations for the ASRP.

D.1.1 The basic problem

We define a basic problem, and then consider what modifications we could apply to make the problem

more interesting. In some sense, it doesn’t matter which problem we define to be our basic problem;

whether problem A is the basic problem and problem B the variation, or whether problem B is the basic

problem and problem A the variation is immaterial.

We define the Basic Arc Subset Routing Problem (BASRP) on a network, G, such that for each arc

on the network there is an associated cost for traversing the arc, and a reward for traversing the arc. We

have a single vehicle, stationed at a pre-located depot, which is to service some subset of the arcs on the

network, forming a route. The objective is to maximize the reward collected, while not incurring more

cost than some pre-specified limit, or budget.

D.2 Variations on the Basic ASRP

D.2.1 Multiple-vehicle variations

If we allow multiple vehicles within our framework, then the field widens considerably. We can define

subset-selective versions of all the vehicle routing problems in the node routing literature.

Discussion of Possible Extensions to the ASRP 341

D.2.1.1 The Multi- Selective Arc Routing Problem (MASRP)

We begin by defining the closest analogue with the Selective Arc Routing Problem, the Multi- Arc

Subset Routing Problem (MASRP). In this variation there exists a fleet of vehicles, of size k, with

which to do our reward collection. A solution will, therefore, consist of a set of k routes. For this

problem, we assume that all the vehicles are domiciled at the same depot, although a generalization

would be the case where each vehicle has its own depot (which may or may not be the same as another

vehicle’s depot). In the simplest case of the MASRP, the vehicle fleet would be homogeneous, i.e. all

vehicles have the same cost budget, as well as cost and reward structure. Variations would be where

the vehicles have different cost budgets (influencing route size) and/or reward and cost structures

(influencing route selection).

We made the analogy earlier between the BASRP and the VRP, where the BASRP may be considered

to select one of the routes created in a VRP solution. Similarly, the MASRP may be considered to take

k of the routes created in a VRP solution.

D.2.1.2 The capacitated MASRP

In some sense the BASRP and the MASRP are both capacitated problems, in that there is a restriction

on the cost that may be incurred by a single vehicle. We now introduce a variation which is not only

cost-restricted, but also reward-restricted; this problem is a generalization of the MASRP. In this

problem, which we call the Capacitated Multi- Arc Subset Routing Problem (CMASRP), a vehicle

may incur no more cost than its cost budget, and may collect no more reward than its reward capacity.

There are two ways of modelling this additional restriction: in the first model, the restriction forces the

routes to be shorter; a vehicle may not traverse an arc if it does not have the capacity to collect its

reward. In the second model, a vehicle may traverse an arc without collecting its reward, and so may

collect reward until its capacity is reached and then return to the depot without collecting any more (but

still incurring cost, which must stay within the budget). This latter model introduces the concept of

service variation, which we will consider in greater detail subsequently, but which has parallels in

vehicle routing literature, i.e., where split service is allowed. Split service is where a vehicle may

collect some of the reward from an arc (service variation), leaving the remainder for another vehicle (or

leaving it to be uncollected). Allowing split service would help to fill the vehicles to complete capacity,

eliminating wasted capacity. We will see later that split service is not exactly the same thing as service

variation, since when service variation is used to collect a fraction of the reward a corresponding

fraction of the cost is incurred.

D.2.2 Penalties and requirements

There are many possible variations on the BASRP which arise from slightly different objectives and

additional constraints.

D.2.2.1 Non-selection penalties

It is a natural extension, especially in a customer service framework, to incur a penalty for not servicing

an arc; this penalty could correspond to a loss of customer goodwill. Then, we could introduce another

342 Discussion of Possible Extensions to the ASRP Appendix D

constraint that does not allow such penalties to exceed a certain limit, or we could modify the cost

constraint to include penalties in the total cost evaluation.

After introducing penalties for non-inclusion, it is only a small step to make some arcs compulsory, and

some arcs optional; a compulsory arc would have an arbitrarily large non-inclusion penalty. Another

way of modelling compulsory arcs would be to add a constraint such that all the compulsory arcs are

required to be included:

i

ij

(v ,)

x 1
C

jv A∈

≥∑

where AC is the set of compulsory edges. Similarly, preferences for the inclusion/non-inclusion of arcs

can be specified by the adjustment of penalties, costs, and rewards.

D.2.2.2 Pickup and delivery

We can modify the reward structure to include pickups and deliveries; this is really defining two types

of service. There are many ways of modelling this. One method is to have each arc having a

“demand”. If this demand is positive, then the arc requires a delivery; if the demand is negative, then

the arc has surplus product to be “picked up”. A vehicle would then have a “stock level”, and enough

product to be delivered to the delivery customers must be present in the vehicle before delivery. The

simplest case would be where there is one homogeneous product, which can be picked up from one

customer and delivered to another. A more complicated case involves the existence of several different

product types, and a careful schedule must be maintained, so that each customer gets the type of product

he requires, and the vehicle’s capacity for product is not exceeded.

Variations on this problem abound; the depot can either be merely the starting place, or an unlimited

source of extra product. Of course, this problem immediately lends itself to the addition of penalties for

unsatisfactory service.

D.2.3 Depot location

There are two options for depot location: the depot can be pre-specified, or the depot location can be

chosen as part of the solution; either way is simple to model. The more interesting case is where the

location of the depot is a separate problem.

D.3 Reward structures

Reward structures can be simple or complicated. Varying the reward structure is one of the aspects of

subset selection arc routing that offers the most interesting avenues for study. Such reward structures

can be fitted to many real world applications, or can be highly artificial to provide interesting problems.

We refer to “reward structures”, although, in fact, we mean “reward and cost structures”; both will have

similar impacts on the type of problem. Unless stated otherwise, in the problems described below we

use a simple cost structure.

Discussion of Possible Extensions to the ASRP 343

D.3.1 Static reward structures

The simplest reward structure is where all arcs have the same reward. Assuming costs are the same this

problem is trivial, since all arcs are equally attractive. If costs vary, then the cost will be the deciding

factor.

We now define a static reward structure to be such that the reward for a given arc remains the same

until it is collected, and then it is reduced. Typically, it will be reduced to zero; this corresponds to a

prize-collection problem, i.e. once the reward is collected it is gone. Variations could be that the reward

is reduced by a certain fraction, or by a certain amount; thus, more reward can be collected from an arc

by traversing it repeatedly. Usually the rewards would be diminishing, but a special case would be

when the reward does not decrease, and may be collected in full multiple times. These are all static-

reward problems (because the reward does not vary by itself), the first sort we call static single-

reward problems and the second sort static multiple-reward problems.

D.3.2 Dynamic reward structures

We define a dynamic reward structure to be one where the reward for an arc changes without the arc

being traversed. There are endless possible variations of dynamic reward structures; we consider some

of the more obvious ones. We broadly group them into time-dependent reward structures and state-

dependent reward structures. We define an arc’s reward function to be the way it changes. Time-

dependent structures will incorporate a function of time, and state-dependent structures will incorporate

a function of the network state.

D.3.3 Time-dependent reward structures

Arcs which have time-dependent rewards are time-variant; the reward that is collected for the traversal

of an arc depends on when the arc is traversed. This involves the introduction and modelling of a new

concept, time, and has several effects on the way such problems will be investigated and studied. The

first effect is that it will matter in which direction the route is traversed; in most applications this makes

no difference, but the concept is not completely new, since in problems where the network has directed

arcs (arcs that can only be traversed in one direction) this is also the case. Another effect will be that

simple insertions (adding an arc somewhere in the middle of a route) have the potential to make

comparatively huge changes to the objective function evaluation, since all the traversal times and

dependent rewards must then be recalculated. With respect to modelling time, we must also make the

decision whether time and cost will be the same thing, and therefore define the cost of traversing an arc

to be the same as the time to traverse it, or whether time and cost will be separate. If time and cost are

separate, then we have, in effect, two different types of cost. We must then decide if time also has a

budget, or if it merely affects the reward structure. In our view, it serves no purpose to have both ‘time’

and ‘cost’ separate, since we believe that there will always be some new cost structure which is a

combination of ‘time’ and ‘cost’, and which results in effectively identical problems. So, in the

following pages, we assume that the time to traverse an arc and the cost of doing so are synonymous.

344 Discussion of Possible Extensions to the ASRP Appendix D

D.3.3.1 Linear reward functions

Given that we have a time-dependent reward structure, there are many available options. The simplest

is where the reward function for an arc is a linear function of time, either increasing or decreasing. An

increasing reward function creates a dichotomy. We want to collect the rewards when they are at their

highest, but we have a time budget that we must not exceed. This is an interesting problem, especially

if the coefficient of increase is different for each arc. If the coefficient is the same for every arc, then

the problem is really no different; we would still choose to traverse the same arc as if rewards were

static, since arc A would have increased by the same amount as arc B. We define the Arc Subset

Routing Problem with Increasing Rewards (ASRPIR). This is the same as the Selective Arc Routing

Problem we defined in Section D.1.1, but with the addition of linearly increasing rewards for the arcs.

Each of the arcs potentially has a different coefficient of increase; the ASRPIR is a dynamic problem,

and hence will result in unpredictable outcomes.

We may also consider the case where the rewards are decreasing linearly, and define the Arc Subset

Routing Problem with Decreasing Rewards (ASRPDR). Again, each of the arcs will have a different

negative coefficient of increase, and again, this is a dynamic problem and the behaviour of heuristics

cannot be predicted.

A generalization which includes both the ASRPIR and the ASRPDR is where the reward function for

an arc can either be increasing or decreasing. We define the Arc Subset Routing Problem with

Linear-Dynamic Rewards (ASRPLDR). Each of the previous two problems is a special case; the

ASRPIR has the requirement that the coefficient of increase is positive, hence,

let α ij be the coefficient of increase for arc v ij , then α ij ∈ℜ+
,

where
+ℜ is the set of positive real numbers. The ASRPDR similarly has the requirement that the

coefficient of increase is negative, hence,

let α ij be the coefficient of increase for arc v ij , then α ij ∈ℜ−
,

where
−ℜ is the set of negative real numbers. The ASRPLDR is simply a generalization of the two,

which will also include the possibility that an arc may have a static coefficient of increase, hence,

let α ij be the coefficient of increase for arc v ij , then α ij ∈ℜ ,

where ℜ is the set of real numbers. We can see that the static-reward problems discussed above are just

special cases of the ASRPLDR where all the coefficients of increase are zero. For the three problems

considered above, we also have the option of single-rewards or multiple-rewards. Single rewards are

gone when they are collected, multiple rewards reappear, possibly with a changed reward function. We

call the starting value and the reward function of an arc its initial state, and if it is regenerated, it is

reinitialized to a new starting value and reward function (which may be the same as the old one). We

list briefly some of the possible options for multiple linear rewards. There are two aspects to vary: the

new starting value and the new reward function. These can then be combined in any chosen manner.

First, the starting value options:

Discussion of Possible Extensions to the ASRP 345

• The arc is reinitialized to its original starting value.

• The arc is reinitialized to zero.

• The arc is reinitialized to some other starting value, perhaps some fraction of the initial starting

value, perhaps some fraction of the reward level of the arc at collection, or perhaps some

absolute amount less.

Now we consider the options for the reward function. For the ASRPLDR, a different reward function

corresponds to a different coefficient of increase:

• The coefficient of increase remains the same. This is the natural scenario for applications such

as snow falling.

• The coefficient of increase is set to zero. If this is the case for all the arcs, and the starting

value is also reinitialized to zero, then we have the single reward case.

• The coefficient of increase changes, perhaps increases/decreases by some fraction, or absolute

amount, perhaps changes sign.

Each combination of these options results in a unique problem with different characteristics.

D.3.3.2 Non-linear reward functions

Non-linear reward functions. The next obvious extension is to allow the reward function to be non-

linear. There are endless possibilities here, but we attempt to categorize them:

• The reward function could be increasing or decreasing, but instead of linearly, the rate of

increase could be accelerating/decelerating, the actual function would still be a function of time,

but it might be an exponential or parabolic function instead.

• The reward function could have peaks, or troughs. This implies that there is an optimum

time period to traverse an arc, and shares many features with time-windows, which are

discussed below. Sine functions would be the obvious choice for this option.

• Any other artificial function: polynomial functions, trigonometric functions, exponential

functions, combinations, etc.

Step-wise reward functions. We define step-wise reward functions to be functions where the type of

function changes at some point, or more than one point. Functions which change upon collection are

one realization of this, and we have discussed these briefly. Here we consider functions which change

either at a certain point in time, or when the reward for an arc reaches a certain level. We list some of

the possibilities below:

• We define a reward cap to be a limit to how far the reward for an arc may change. The first

possibility is where the reward function becomes static when the reward cap is reached. For

example, if teamed with a linearly increasing function, we might have a case where the reward

346 Discussion of Possible Extensions to the ASRP Appendix D

for an arc starts out at, say, 10 then increases at 1 unit per unit time until it reaches 25, and then

stays at 25.

• The reward cap can also signal a change in the reward function, for example, the reward

function may cause the reward to accelerate up to a certain point, then linearly increase to

another point, and then become static. Or perhaps the reward could increase linearly up to a

point, and then decrease linearly down to zero (from there it could change again, or stay at

zero).

• Instead of having a reward cap, we could have a step-wise function where the reward is static,

but changes at certain times. For example, the reward could increase by one unit after every ten

units of time. This type of function could be teamed with any of the other types; within one

‘step’ the function can vary as desired.

Time windows. These share many similarities with step-wise functions, but rate a separate section

because they have such an important role in vehicle routing problems. We model time windows by

having a stepwise function where before and after the ‘time window’ the reward is less. Time windows

are especially interesting when teamed with penalties. These penalties may be of two types: negative

rewards, in which case it would seem prudent not to traverse the arc at all (unless there is a requirement

to traverse the arc, or the penalty for not traversing the arc is even worse than that for missing the time

window). The other type is a time penalty, whereby the vehicle is forced to wait while the customer

processes an out-of-window traversal.

Weather / acts of God. We now consider some more advanced forms of the model, which involve

complicated effects. We include them for completeness. We list some alternatives below, but this list

is by no means exhaustive.

There may be an ‘agent’ or ‘agents’ of the model which travel around the network modifying the

reward structures of the arcs within their influence. These weather agents would be independent of the

current state of the graph and location of the vehicle. They could travel around the graph either

randomly, or according to certain rules (algorithmically). The influences they have on the network

reward structures could either disrupt the reward levels permanently (for example if a weather agent

causes the reward for an arc to increase tenfold then when it passes the reward will still be tenfold, and

keep being modified from there by its function), or temporarily (for example the reward for an arc could

be multiplied by ten for duration of the weather agents influence, and then resort to what it would have

been if the weather agent had not influenced it). The weather agents could similarly modify the cost

structures, making arcs more or less expensive to traverse.

There is an important concept which we introduce here and discuss more thoroughly in the section on

competition: information. So far, we have assumed that the vehicle is omniscient; it knows everything

about the problem. However, this is not necessarily true. Perhaps the vehicle knows only the initial

reward values, or it might also know the reward functions. It might not know about the weather, or it

might simply know the probabilities of its behaviour. In the section on competition we consider the

implications of this information, and situations when the vehicle can ‘buy’ additional information. It is

Discussion of Possible Extensions to the ASRP 347

worth noting here, though, that in dynamic problems, we separate the vehicle and ourselves; we are not

so much creating routes for the vehicle as providing him with strategies and rules with which to design

his own routes, and to modify them if necessary.

The other option for time-dependent reward structures, which is similar to weather, is that of acts of

god. These are where the reward structures for certain arcs (perhaps those within a set radius of a

certain point) are modified somehow, at either a random point in time, or a random point in space (or

both). If the point in time and space is known beforehand, then we can model the situation with a step-

wise function. In terms of information, the vehicle might know that such an event will occur, but not

know when, or where, or it might have no idea and be forced to modify its route at the time.

D.3.4 State-dependent reward structures

State-dependent reward structures have the same complications as time-dependent reward structures –

we must keep track of route direction, and everything must be recalculated when a change is made – but

that is the nature of dynamic problems and is unavoidable. State-dependent reward structures vary the

rewards of arcs depending upon the current state of the network, rather than time. The sections below

explore some of the options.

D.3.4.1 Group-dependent rewards

We can imagine an application such that only one arc in a group of arcs needs to be traversed, and then

the others become not as important, for example if a vehicle was clearing streets of snow, then as long

as there is one road into and out of a suburb, that is sufficient. We model this by introducing the

concept of groups. As soon as one of the arcs in the group is traversed, then the rewards of the others

are modified. Perhaps there could also be some modification in the rewards of other groups. We could

either have the requirement that arcs may only belong to one group, or allow them to belong to more

than one group. The modification could be to increase or increase the rewards of other arcs in the

group. Not all arcs need be in a group, for example maybe only the main arterial routes would be

included.

D.3.4.2 Precedence constraints

Another concept which has seen some interest in the node-routing literature is that of precedence

constraints. This can be modelled in three ways: constraints based on sets and all of one set being

traversed before any of the next set, penalties given for traversing an arc out of turn, or using state-

dependent reward structures. It is this last option we concentrate on. The first set of arcs to be

traversed would have high rewards, and the other arcs low rewards (or zero rewards) until all the class 1

arcs are traversed, and then the class 2 arcs would have increased rewards, etc. Penalties could also be

teamed with this formulation.

D.3.5 Reward structures that are both time- and state- dependent

We can also have reward functions that are functions of both time and state. These would simply be

combinations of the problem aspects considered above.

348 Discussion of Possible Extensions to the ASRP Appendix D

D.4 Service variation

We define a problem to allow service variation if there is more than one way a vehicle may traverse an

arc, thereby incurring less cost and/or greater reward.

D.4.1 Allowing traversal without service

This is the simplest realization of service variation. We separate the concepts of traversal and service

that, until now, we had treated as synonymous. This means that a vehicle may simply traverse an arc,

collecting no reward, or also service the arc, collecting the reward. The cost for the latter option would

naturally be more than for the former. We could model this in two ways:

• We could have two different costs: the cost of traversal and the cost of service. When a vehicle

merely traverses an arc it incurs the cost of traversal, and when it also services the arc it incurs

the cost of service instead.

• We could again have two different costs: the cost of traversal and the cost of service. However,

since a vehicle which services an arc also traverses it, in this formulation the cost of traversal is

incurred for both cases, and the cost of service is an additional cost, which is incurred only

when the vehicle services the arc.

The latter method seems to be more versatile, and can model all the same situations as the former

method (by making the cost of service the old cost of service minus the cost of traversal), so we

recommend using the second method.

We define the Arc Subset Routing Problem with 2-Service Variation (ASRP2SV) to be the Selective

Arc Routing Problem, with the addition of the above option: that a vehicle may choose to service an

arc, or merely traverse it without service. We introduce two new parameters: for arc vij, the cost of

traversal is
T
ijc and the cost of service is

S
ijc . The total cost for servicing arc vij is then the sum of

T
ijc

and
S
ijc . Of course, if the vehicle does not service the arc, then it does not collect the reward. We also

introduce another binary variable. For the BASRP, xij is 1 if arc vij is traversed, and 0 otherwise. For

the ASRP2SV, we keep this variable, but also define sij equal to 1 if arc vij is serviced, and 0 otherwise.

Of course, an arc cannot be serviced without being traversed, so we also need the following constraint .

 ij ij i js x (v A, v δ(i))≤ ∈ ∈

where sij and xij are both binary variables.

D.4.2 Discrete service variation

The next step is to allow a vehicle to service an arc at a fraction of full service. The previous section

considered the case where a vehicle could either traverse an arc at zero service (just traversal) or full

service, let us code this problem as S = 2, since there are two options.

Discussion of Possible Extensions to the ASRP 349

D.4.2.1 Half-service

We now consider the case where S = 3, so there are three options: zero service (just traversal), full-

service, and half-service.

Given that we are allowing half-service, we must now decide what is half service? We regard

‘servicing’ an arc to be synonymous with collecting its reward. Let us continue with that idea and say

that half-servicing an arc is collecting half its reward, giving rise to two questions:

• How will we deal with costs? Should the cost for half-servicing an arc be simply half the cost

for fully servicing the arc, or should we model the costs in another way?

• How will we deal with the remaining reward? We reconsider some of the ideas for dynamic

reward structures to see if they apply.

D.4.2.2 Costs of half-service

The easiest way is simply to say that the cost for half-service is half the cost of full service. The other

way of doing it is to make the cost some proportion of the full cost, or some absolute amount less than

the full cost. Any of these methods is easy to model. If we think of applications, then perhaps there

should be some fixed cost component to servicing the arc (analogous to the time it takes to set up the

servicing equipment), and then the additional amount could be halved, so the cost for half-servicing an

arc vij would be

λ
λ

+
−

2

S
ijc

where λ is the fixed cost of setting up service.

It seems reasonable that instead of having an absolute service cost, rather the service cost should be a

function of the reward. This would make collection consistent. Say we half-service an arc, collecting

half the reward and paying half the service cost. If we then return to that arc and collect the remaining

reward, we are collecting the same amount of reward, but are instead paying twice the cost (the full

service cost). To remedy this we can either make service cost a function of reward (leaving traversal

cost constant for each arc), or subtract the service cost already paid from the service cost for that arc. If

we choose the latter option, then for dynamic reward structures it is possible that the reward would have

regenerated up to the point it was at the previous collection, but we would only have to pay half the cost

of last time – another inconsistency. The only consistent option is to make service cost a function (not

necessarily linear) of reward.

Again, there are two options. We can make service cost a function of the full reward for the arc, and

then use whatever rule we want to choose a fraction of this, as above. Or, we can make the cost a

function of the reward collected, and only calculate this one amount.

350 Discussion of Possible Extensions to the ASRP Appendix D

D.4.2.3 Remaining rewards after half-service

After we have half-serviced an arc, and collected half its reward, there is still half the reward remaining.

We have several options as to how to treat this remaining reward.

• The reward is reduced to zero, and may not be collected again. This is analogous to the single

reward cases that we considered in Section D.3.

• The reward remains at the point it was when collection occurred, even if there was a dynamic

reward structure operating. This reward is collectable again.

• The reward is reinitialized to its starting value, and any dynamic reward structure continues

operating.

• The remaining reward is available for recollection, and any dynamic reward structure continues

operating.

• A different reward structure is introduced, either on the remaining reward, or on a reinitialized,

or zeroed, reward.

D.4.2.4 Fractional service

Half-service is the case where S = 3; there are three options for service. We now generalize this idea to

the fractional-service case. For any problem we simply specify S. For example, if S = n, then there are

n+1 options for service.

The costs are, similarly, modelled the same way as for half-service. Either the service cost is some

function of the reward collected, or it is a fraction of the service cost for full service (which is a function

of the full reward).

D.4.3 Continuous service variation

In the previous section we considered discrete service levels. Another possibility is continuous service

variation, which allows continuously variable service levels. The vehicle may then choose at what

fraction to service an arc – 0.456 if desired. If teamed with cost functions based on reward, then this

presents no additional difficulties. It is effectively equivalent to discrete service variation with S very

large, say 1000.

D.5 Competition

We define competition to be where there are two, or more, vehicles that are independent. This is not

the same case as the multiple vehicle problems because there the vehicles are adding reward to a

common pool, with competition they are each trying to maximize their own reward, perhaps each at the

expense of the others.

The number of potential problems is vast, and is limited only by the imagination. We consider some

that seem fundamental, and leave an in depth exploration to the future. When we say competition we

are really considering three scenarios:

Discussion of Possible Extensions to the ASRP 351

• Competition – the vehicles are purely competitive, with strategies to advance their own wealth

at the expense of their opponents. Objectives include maximizing their own wealth and

maximizing the difference between their own and their opponent’s wealth.

• Cooperation – the vehicles are still independent, but work together to achieve the best result for

both. This scenario is closest to multiple-vehicle routing. Objective is to maximize both

vehicles wealth.

• Coopetition – involves aspects of both competition and cooperation. Vehicles are trying to

maximize their own wealth, but sometimes the best way to do this is to cooperate. Still purely

selfish, but also rational.

Of course, all the problem aspects that have been considered so far may be included in competitive

problems. The problems are especially interesting with dynamic reward structures. In the case of

multiple vehicles we have teams; each team has a specified number of vehicles and works together as in

the non-competitive problems.

It is useful to think of a competitive problem instance as a game. Not strictly in the game-theoretic

sense, but in terms of having an opponent and strategies to ‘beat’ them.

D.5.1 Basic competitive problem

We start with a simple competitive problem, with two competing vehicles and static reward structures.

Let us define the Competitive Arc Subset Routing Problem (CASRP) to be the selective arc routing

problem with the addition of another, competing, vehicle. Each vehicle has its own depot node, and all

information is known to each vehicle regarding its opponent and the problem.

Competitive problems are inherently dynamic; we do not design a route a priori, we instead give the

vehicles strategies which guide their progress step by step. Similarly, we do not have a single objective

function, rather each competitor has its own objective (and they may be different). Because strategies

rather than heuristics are the tool used to decide routes for competitive problems, we define a new

space, strategy space which is the set of all strategies. The object of future study could be to study

strategy space and the mapping between strategy space and competitive problem space. Perhaps some

heuristic which guides the search in strategy space could be useful (following a hyper-heuristic or

genetic programming idea).

D.5.2 Information

As mentioned in an earlier section, information has a vital role to play in competitive problems.

D.5.2.1 Types of information

Information may be broadly grouped into two types: information about the problem and information

about the opponent. We list some of the things that are included in each type:

Information about the problem:

352 Discussion of Possible Extensions to the ASRP Appendix D

• Knowledge of the initial network state: arc rewards, costs, penalties.

• Knowledge of subsequent network states. Is the vehicle aware of changes in the network state

(acts of god, etc), or must he extrapolate? Does the vehicle know the reward function, from

which he can calculate rewards, or just the starting value?

• Knowledge of itself. This is usually assumed, but is not necessarily so. Factors include budget

and capacity.

Information about the opponent:

• Knowledge of opponent’s location. This is a fundamental item of information.

• Knowledge of opponent’s strategy. From this much can be extrapolated.

• Knowledge of opponent. Does the opponent have the same budget and capacity? Does the

opponent have the same reward, cost structures?

• Knowledge of opponent’s knowledge. This may seem to be getting a bit involved, but is a valid

point. “Does he know that I know where he is?”, “Does he know where I am?”… etc.

D.5.2.2 Access to information

We need not assume that knowledge is constant. As a vehicle traverses the network it gains knowledge

about the arcs it traverses. We list some other ways that information access could be modelled:

• Visual knowledge. Perhaps a vehicle could be given some ‘distance’ that it can ‘see’ and each

arc have some ‘distance’ associated with it. Then a vehicle could gain knowledge about the

arcs in its ‘radius’, and also the location of the opponent (if he were within range).

• Knowledge trade. Perhaps certain pieces of information could be traded with the opponent.

This presupposes the existence of a framework for communication between the competitors;

perhaps a competitor could ‘offer’ a trade of certain pieces of information and the opponent

would then ‘accept’ or ‘decline’. If accepted then both competitors ‘pool of knowledge’ would

be updated. The opponent might decline if he already has the information that is offered, or

might accept even so if he didn’t want his opponent to know he knows… all this would depend

on sufficiently complicated strategies.

• Knowledge purchase. Knowledge could be ‘purchased’ from some third party, at the price of

either reward or the use of some of the cost budget. Such knowledge could either be added to

the ‘pool’ instantly, or have some delay (while the third party goes away and finds it). Perhaps

there are only certain points on the network where knowledge can be purchased…

• Other knowledge acquisition. Perhaps if the vehicle returns to his depot (and maybe pays a fee)

he can be ‘updated’.

Discussion of Possible Extensions to the ASRP 353

D.5.3 Variations

We now briefly list some other potential about what could be included in a competitive problem.

• Strategies need not be constant for the whole ‘game’. Perhaps there could be a ‘meta-strategy’

which guides the choice of strategy used based on knowledge of the problem and opponent. It

is possible that certain strategies work well against certain opposing strategies, in which case

finding out what strategy the opponent is using could be quite important.

• ‘Dumb’ third parties. There could be other vehicles at work in the network. Perhaps they

‘repair’ arcs (increasing reward/decreasing cost). Perhaps they also compete for reward

(though using a transparent strategy). Perhaps they must be found and chased in order to ‘buy’

information from.

• Learning. It would be interesting to supply the ‘vehicle controller’ with the capacity to ‘learn’

and modify strategies from game to game. An obvious example of this would be the decision

of which strategy to pit against a known opponent strategy… this could be learned through trial

and error over several games. It would then be interesting to pit a ‘learned’ version against an

early version of the same controller. We would expect the smart version to win most times.

355

EBibliography

 1. Eternity II Puzzle Wikipedia Page (http://en.wikipedia.org/wiki/Eternity_II_puzzle).

 2. Extensible Markup Language (XML) (http://www.w3.org/XML/).

 3. B. S. Alprin (1975) A simulation approach to solve the snow and ice removal problem in an

urban area. MSc dissertation, The University of Tulsa.

 4. R. Alvarez-Valdés, E. Benavent, V. Campos, A. M. E. Corberán, J. M. Tamarit, and V. Valls

(1993) ARC, a computerized system for urban garbage collection, TOP 1(1), 89-105.

 5. A. Amberg, W. Domschke, and S. Voß (2000) Multiple center capacitated arc routing

problems: a tabu search algorithm using capacitated trees, European Journal of Operational

Research 124(2), 360-376.

 6. Andreatta, A. A., Carvalho, S. E. R., and Ribeiro, C. C. (2002) A framework for the

development of local search heuristics for combinatorial optimization problems, 59-79. In:

S. Voß and D. L. Woodruff (eds) Optimization software class libraries. Kluwer.

 7. C. Archetti, D. Feillet, A. Hertz, and M. G. Speranza (2010) The undirected capacitated arc

routing problem with profits, Computers & Operations Research 37(11), 1860-1869.

 8. E. Arkin, J. Mitchell, and G. Narasimhan (1998) Resource-constrained geometric network

optimization, Proceedings of ACM Symposium on Computational Geometry, 307-316.

 9. J. E. C. Arroyo and V. A. Armentano (2005) Genetic local search for multi-objective flowshop

scheduling problems, European Journal of Operational Research 167(3), 717-738.

 10. A. A. Assad, W. L. Pearn, and B. L. Golden (1987) The capacitated Chinese postman problem:

lower bounds and solvable cases, American Journal of Mathematics and Management Science

7, 63-88.

356 Bibliography

 11. B. Awerbuch, Y. Azar, A. Blum, and S. Vempala (1998) New approximation guarantees for

minimum-weight k-trees and prize-collecting salesmen, SIAM Journal on Computing 28(1),

254-262.

 12. N. Azizi and S. Zolfaghari (2004) Adaptive temperature control for simulated annealing: a

comparative study, Computers & Operations Research 31(14), 2439-2451.

 13. V. Bachelet and E.-G. Talbi (2000) A parallel co-evolutionary metaheuristic, Proceedings of

the 15 IPDPS 2000 Workshops on Parallel and Distributed Processing, 628-635.

 14. R. Bai, E. K. Burke, and G. Kendall (2008) Heuristic, meta-heuristic and hyper-heuristic

approaches for fresh produce inventory control and shelf space allocation, Journal of the

Operational Research Society 59, 1387–1397.

 15. E. Balas (1995) The prize collecting travelling salesman problem: II. polyhedral results,

Networks 25, 199-216.

 16. E. Balas (1989) The prize collecting travelling salesman problem, Networks 19, 621-636.

 17. R. Battiti and F. Mascia (2010) Reactive and dynamic local search for max-clique: engineering

effective building blocks, Computers & Operations Research 37(3), 534-542.

 18. J. Baxter (1981) Local optima avoidance in depot location, Journal of the Operational

Research Society 32(9), 815-819.

 19. I. R. Beale (2002) Subset selection routing: modelling and heuristics. PhD thesis, Massey

University.

 20. J. E. Beasley and E. M. Nascimento (1996) The vehicle routing-allocation problem: a unifying

framework, TOP 4(1), 65-86.

 21. E. L. Beltrami and L. D. Bodin (1974) Networks and vehicle routing for municipal waste

collection, Networks 4, 65-94.

 22. E. Benavent, V. Campos, A. Corberán, and E. Mota (1990) The capacitated arc routing

problem. A heuristic algorithm, QÜESTIIÓ 14, 107-122.

 23. E. Benavent, A. Corberán, E. Pińana, I. Plana, and J. M. Sanchis (2005) New heuristic

algorithms for the windy rural postman problem, Computers & Operations Research 32(12),

3111-3128.

 24. E. Benavent and D. Soler (1999) The directed rural postman problem with turn penalties,

Transportation Science 33(4), 408-418.

Bibliography 357

 25. P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden (2003) A guided local

search heuristic for the capacitated arc routing problem, European Journal of Operational

Research 147(3), 629-643.

 26. D. Bienstock , M. X. Goemans, D. Simchi-Levi, and D. Williamson (1993) A note on the prize

collecting salesman problem, Mathematical Programming 59, 413-420.

 27. Binato, S., Hery, W. J., Loewenstern, D., and Resende, M. G. C. (2002) A GRASP for job shop

scheduling, 59-79. In: C. C. Ribeiro and P. Hansen (eds) Essays and surveys in metaheuristics.

Kluwer Academic Publishers.

 28. L. D. Bodin, G. Fagin, R. Welebny, and J. Greenberg (1989) The design of a computerized

sanitation vehicle routing and scheduling system for the town of Oyster Bay, New York,

Computers & Operations Research 16, 45-54.

 29. L. D. Bodin and S. J. Kursh (1978) A computer-assisted system for the routing and scheduling

of street sweepers, Operations Research 26(4), 525-537.

 30. L. D. Bodin and S. J. Kursh (1979) A detailed description of a computer system for the routing

and scheduling of street sweepers, Computers & Operations Research 6, 181-198.

 31. G. E. P. Box and N. R. Draper (1987) Empirical model-building and response surfaces. Wiley.

 32. J. L. Bresina (1996) Heuristic-biased stochastic sampling, Proceedings of the Thirteenth

National Conference on Artificial Intelligence, 271-278.

 33. R. J. Brideau and T. M. Cavalier (1994) The maximum collection problem with time-dependent

rewards, Presented at TIMS International Conference, Alaska.

 34. P. Brucker (1980) The Chinese postman problem for mixed graphs, Proceedings of the

International Workshop on Graph Theoretic Concepts in Computer Science, 354-366.

 35. E. K. Burke, G. Kendall, and E. Soubeiga (2003) A tabu-search hyperheuristic for timetabling

and rostering, Journal of Heuristics 9(6), 451-470.

 36. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S. (2003) Hyper-

heuristics: an emerging direction in modern search technology, 457-474. In: F. Glover and

G. A. Kochenberger (eds) Handbook of metaheuristics. Springer.

 37. S. Butt and D. Ryan (1999) An optimal solution procedure for the multiple tour maximum

collection problem using column generation, Computers & Operations Research 26(4),

427-441.

 38. S. E. Butt and T. M. Cavalier (1994) A heuristic for the multiple tour maximum collection

problem, Computers & Operations Research 21(1), 101-111.

358 Bibliography

 39. S. E. Butt and D. Ryan (1996) Using column generation to solve the multiple tour maximum

collection problem, Proceedings of the 32nd Annual ORSNZ Conference, 143-148.

 40. A. Bölte and U. W. Thonemann (1996) Optimizing simulated annealing schedules with genetic

programming, European Journal of Operational Research 92(2), 402-416.

 41. E. A. Cabral , M. Gendreau, G. Ghiani, and G. Laporte (2004) Solving the hierarchical Chinese

postman problem as a rural postman problem, European Journal of Operational Research

155(1), 44-50.

 42. V. Cerny (1985) Thermodynamical approach to the traveling salesman problem: an efficient

simulation algorithm, Journal of Optimization Theory and Applications 45(1), 41-51.

 43. I. M. Chao, B. L. Golden, and E. A. Wasil (1996) A fast and effective heuristic for the

orienteering problem, European Journal of Operational Research 88, 475-489.

 44. I. M. Chao, B. L. Golden, and E. A. Wasil (1996) The team orienteering problem, European

Journal of Operational Research 88, 464-474.

 45. L. Chapleau, J. A. Ferland, G. Lapalme, and J. M. Rousseau (1984) A parallel insert method for

the capacitated arc routing problem, Operations Research Letters 3(2), 95-99.

 46. I. Charon and O. Hudry (2001) The noising methods: a generalization of some metaheuristics,

European Journal of Operational Research 135(1), 86-101.

 47. N. Christofides (1973) The optimal traversal of a graph, Omega 1, 719-732.

 48. Christofides, N., Benavent, E., Campos, V., Corberan, A., and Mota, E. (1984) An optimal

method for the mixed postman problem. In: P. Thoft-Christensen (eds) System Modelling and

Optimization. Springer.

 49. N. Christofides, V. Campos, A. Corberán, and E. Mota (1981) An algorithm for the rural

postman problem, Imperial College Report IC.O.R.81.5, London.

 50. N. Christofides, V. Campos, A. Corberán, and E. Mota (1986) An algorithm for the rural

postman problem on a directed graph, Math. Programming Study 26, 155-166.

 51. R. M. Clark and J. I. Gillean (1975) Analyses of solid waste management operations in

Cleveland, Ohio, Interfaces 6(1, part 2), 32-42.

 52. R. M. Clark and C. H. Lee Jr. (1976) Systems planning for solid waste collection, Computers

& Operations Research 3, 157-173.

 53. G. Clarke and J. W. Wright (1964) Scheduling of vehicles from a central depot to a number of

delivery points, Operations Research 12, 568-581.

Bibliography 359

 54. J. Clossey, G. Laporte, and P. Soriano (2001) Solving arc routing problems with turn penalties,

Journal of the Operational Research Society 52, 433–439.

 55. R. K. Congram (2000) Polynomially searchable exponential neighbourhoods for sequencing

problems in combinatorial optimisation. PhD thesis, University of Southampton.

 56. D. T. Connolly (1990) An improved annealing scheme for the QAP, European Journal of

Operational Research 46, 93-100.

 57. S. Consoli, K. Darby-Dowman, N. Mladenovic, and J. A. M. Pérez (2009) Greedy randomized

adaptive search and variable neighbourhood search for the minimum labelling spanning tree

problem, European Journal of Operational Research 196(2), 440-449.

 58. T. M. Cook and B. S. Alprin (1976) Snow and ice removal in an urban environment,

Management Science 23(3), 227-234.

 59. J. H. Coombs, A. H. Reenear, and S. J. DeRose (1987) Markup systems and the future of

scholarly text processing, Communications of the ACM 30(11), 933-947.

 60. A. Corberán, A. Letchford, and J. M. Sanchis (2001) A cutting plane algorithm for the general

routing problem, Mathematical Programming 90, 291-316.

 61. A. Corberán, R. Martí, and J. M. Sanchis (2002) A GRASP heuristic for the mixed Chinese

postman problem, European Journal of Operational Research 142, 70-80.

 62. A. Corberán, A. Romero, and J. M. Sanchis (1999) The general routing problem on a mixed

graph, Technical Paper, Department of Statistics and OR, University of Valencia, Spain.

 63. A. Corberán and J. M. Sanchis (1994) A polyhedral approach to the rural postman problem,

European Journal of Operational Research 79, 95-114.

 64. A. Corberán and J. M. Sanchis (1998) The general routing problem polyhedron: facets from the

RPP and GTSP polyhedra, European Journal of Operational Research 108(3), 538-550.

 65. J. Current, H. Pirkul, and E. Rolland (1994) Efficient algorithms for solving the shortest

covering path problem, Transportation Science 28(4), 317-327.

 66. J. R. Current and D. A. Schilling (1994) The median tour and maximal covering tour problems:

formulations and heuristics, European Journal of Operational Research 73, 114-126.

 67. J. R. Current and D. A. Schilling (1989) The covering salesman problem, Transportation

Science 23(3), 208-213.

 68. M. De Souza and P. Martins (2008) Skewed VNS enclosing second order algorithm for the

degree constrained minimum spanning tree problem, European Journal of Operational

Research 191(3), 677-690.

360 Bibliography

 69. M. Dell'Amico, F. Maffioli, and P. Värbrand (1995) On prize-collecting tours and the

asymmetric travelling salesman problem, International Transactions in Operational Research

2(3), 297-308.

 70. L. Di Gaspero and A. Schaerf (2003) EasyLocal++: an object-oriented framework for flexible

design of local search algorithms, Software Practice and Experience 33(8), 733-765.

 71. M. Diaby and R. Ramesh (1995) The distribution problem with carrier service: a dual based

penalty approach, ORSA Journal on Computing 7, 24-35.

 72. X. Dong, H. Huang, and P. Chen (2009) An iterated local search algorithm for the permutation

flowshop problem with total flowtime criterion, Computers & Operations Research 36(5),

1664-1669.

 73. M. Dorigo and C. Blum (2005) Ant colony optimization theory: a survey, Theoretical

Computer Science 344, 243-278.

 74. M. Dror and A. Langevin (1997) A generalized travelling salesman problem approach to the

directed clustered rural postman problem, Transportation Science 31(2), 187-192.

 75. G. Dueck (1990) New optimization heuristics: the great deluge algorithm and the record-to-

record travel, IBM Tech Report #89.06.011.

 76. G. Dueck (1993) New optimization heuristics: the great deluge algorithm and the record-to-

record travel, Journal of Computational Physics 104, 86-92.

 77. G. Dueck and T. Scheuer (1990) Threshold accepting: a general purpose optimization algorithm

appearing superior to simulated annealing, Journal of Computational Physics 90, 161-175.

 78. J. Edmonds and E. L. Johnson (1973) Matching, Euler tours and the Chinese postman problem,

Mathematical Programming 5, 88-124.

 79. J. Egeblad, B. K. Nielsen, and A. Odgaard (2007) Fast neighborhood search for two- and three-

dimensional nesting problems, European Journal of Operational Research 183(3), 1249-1266.

 80. R. W. Eglese (1990) Simulated annealing: a tool for operational research, European Journal of

Operational Research 46, 271-281.

 81. Eglese, R. W. and Letchford, A. N. (2000) Polyhedral theory for arc routing problems,

199-230. In: M. Dror (eds) ARC Routing: Theory, Solutions and Applications. Kluwer

Academic Publishers.

 82. R. W. Eglese and L. Y. O. Li (1992) Efficient routing for winter gritting, Journal of the

Operational Research Society 43(11), 1031-1034.

Bibliography 361

 83. R. W. Eglese and H. Murdock (1991) Routing road sweepers in a rural area, Journal of the

Operational Research Society 42(4), 281-288.

 84. H. A. Eiselt , M. Gendreau, and G. Laporte (1995) Arc routing problems, part I: the Chinese

postman problem, Operations Research 43(2), 231-242.

 85. H. A. Eiselt , M. Gendreau, and G. Laporte (1995) Arc routing problems, part II: the rural

postman problem, Operations Research 43(3), 399-414.

 86. E. Erkut and J. Zhang (1996) The maximum collection problem with time-dependent rewards,

Naval Research Logistics 43, 749-763.

 87. J. R. Evans and E. Minieka (1992) Optimization algorithms for networks and graphs. Marcel

Dekker.

 88. O. Faroe, D. Pisinger, and M. Zachariasen (2003) Guided local search for final placement in

VLSI design, Journal of Heuristics 9(3), 269-295.

 89. O. Faroe, D. Pisinger, and M. Zachariasen (2003) Guided local search for the three-dimensional

bin-packing problem, INFORMS Journal on Computing 15 (3), 267-283.

 90. D. Feillet, P. Dejax, and M. Gendreau (2005) The profitable arc tour problem: solution with a

branch-and-price algorithm, Transportation Science 39(4), 539-552.

 91. D. Feillet, P. Dejax, and M. Gendreau (2005) Traveling salesman problems with profits,

Transportation Science 39(2), 188-205.

 92. T. A. Feo and M. G. C. Resende (1989) A probabilistic heuristic for a computationally difficult

set covering problem, Operations Research Letters 8, 67-71.

 93. T. A. Feo and M. G. C. Resende (1995) Greedy randomized adaptive search procedures,

Journal of Global Optimization 2, 1-27.

 94. E. Fernandez , O. Meza, and R. e. Al. Garfinkel (2003) On the undirected rural postman

problem: tight bounds based on a new formulation, Operations Research 51(2), 281-291.

 95. Festa, P. and Resende, M. G. C. (2002) GRASP: an annotated bibliography, 325-367. In:

C. C. Ribeiro and P. Hansen (eds) Essays and surveys on metaheuristics. Kluwer Academic

Publishers.

 96. Fink, A. and Voß, S. (2002) HotFrame: a heuristic optimization framework, 81-154. In: S. Voß

and D. L. Woodruff (eds) Optimization software class libraries. Kluwer.

 97. Fink, A., Voß, S., and Woodruff, D. L. (2003) Metaheuristic class libraries, 515-535. In:

F. Glover and G. A. Kochenberger (eds) Handbook of metaheuristics. Springer.

362 Bibliography

 98. M. Fischetti , J. Gonzŕlez, and P. Toth (1998) Solving the orienteering problem through

branch-and-cut, INFORMS Journal on Computing 10(2), 133-148.

 99. M. Fischetti , H. Hamacher, K. Jörnsten, and F. Maffioli (1994) Weighted k-cardinality trees:

complexity and polyhedral structure, Networks 24, 11-21.

 100. K. Fleszar and K. S. Hindi (2004) Solving the resource-constrained project scheduling problem

by a variable neighbourhood search, European Journal of Operational Research 155(2),

402-413.

 101. G. Fleury, P. Lacomme, C. Prins, and W. Ramdane-Chérif (2005) Improving robustness of

solutions to arc routing problems, Journal of the Operational Research Society 56, 526–538.

 102. L. R. Ford and D. R. Fulkerson (1962) Flows in networks. Princeton University Press.

 103. G. N. Frederickson (1979) Approximation algorithms for some postman problems, Journal of

the Association of Computing Machinery 26, 538-554.

 104. P. W. Frizzell and J. W. Giffin (1995) The split delivery vehicle scheduling problem with time

windows and grid network distances, Computers & Operations Research 22(6), 655-667.

 105. C. G. Garcia, D. Pérez-Brito, V. Campos, and R. Marti (2006) Variable neighborhood search

for the linear ordering problem, Computers & Operations Research 33(12), 3549-3565.

 106. R. S. Garfinkel and I. R. Webb (1999) On crossings, the crossing postman problem, and the

rural postman problem, Networks 34(3), 173-180.

 107. L. F. Gelders and D. G. Cattrysse (1991) Public waste collection: a case study, Belgian Journal

of Operations Research, Statistics, and Computer Science 31, 3-15.

 108. M. Gendreau , G. Laporte, and F. Semet (1997) The covering tour problem, Operations

Research 45(4), 568-576.

 109. M. Gendreau , G. Laporte, and F. Semet (1998) A branch-and-cut algorithm for the undirected

selective travelling salesman problem, Networks 32, 263-273.

 110. M. Gendreau , A. Hertz, and G. Laporte (1994) A tabu search heuristic for the vehicle routing

problem, Management Science 40(10), 1276-1289.

 111. M. Gendreau , G. Laporte, and J.-Y. Potvin (1999) Metaheuristics for the vehicle routing

problem, Les Cahiers du GERAD G-98-52.

 112. D. H. Gensch (1978) An industrial application of the travelling salesman's subtour problem,

AIIE Transactions 10, 362-370.

Bibliography 363

 113. G. Ghiani and G. Laporte (2000) A branch-and-cut algorithm for the undirected rural postman

problem, Mathematical Programming 87(3), 467-481.

 114. G. Ghiani and G. Improta (2000) An efficient transformation of the generalized vehicle routing

problem, European Journal of Operational Research 122(1), 11-17.

 115. G. Ghiani, R. Musmanno, G. Paletta, and C. Triki (2005) A heuristic for the periodic rural

postman problem, Computers & Operations Research 32(2), 219-228.

 116. D. Ghosh and G. Sierksma (2002) Complete local search with memory, Journal of Heuristics

8(6), 571-584.

 117. F. Glover (1986) Future paths for integer programming and links to artificial intelligence,

Computers & Operations Research 13(5), 533-549.

 118. F. Glover (1989) Tabu search - part I, ORSA Journal on Computing 1, 190-206.

 119. F. Glover (1990) Tabu search: a tutorial, Interfaces 20(4), 74-94.

 120. F. Glover and M. Laguna (1997) Tabu search. Kluwer Academic Publishers.

 121. M. X. Goemans and D. Williamson (1995) A general approximation technique for constrained

forest problems, SIAM Journal on Computing 24, 296-317.

 122. Golden, B. L. and Assad, A. A. (1988) Vehicle Routing: Methods and Studies, 319-343. In:

M. Fischetti and P. Toth (eds) An additive appoach for the optimal solution of the prize

collecting travelling salesman problem. Elsevier Science.

 123. B. L. Golden, J. S. DeArmon, and E. K. Baker (1983) Computational experiments with

algorithms for a class of routing problems, Computers & Operations Research 10(1), 47-59.

 124. B. L. Golden, L. Levy, and R. Vohra (1987) The orienteering problem, Naval Research

Logistics 34, 307-318.

 125. B. L. Golden, Q. Wang, and L. Liu (1988) A multifaceted heuristic for the orienteering

problem, Naval Research Logistics 35, 359-366.

 126. B. Golden, L. Levy, and R. Dahl (1981) Two generalizations of the travelling Salesman

problem, Omega, The International Journal of Management Science 9(4), 439-441.

 127. B. L. Golden and R. T. Wong (1981) Capacitated arc routing problems, Networks 11, 305-315.

 128. P. Greistorfer (2003) A tabu scatter search metaheuristic for the arc routing problem,

Computers & Industrial Engineering 44(2), 249-266.

364 Bibliography

 129. A. Grosso, A. R. M. J. U. Jamali, and M. Locatelli (2009) Finding maximin latin hypercube

designs by iterated local search heuristics, European Journal of Operational Research 197(2),

541-547.

 130. M. Grötschel and Z. Win (1992) A cutting plane algorithm for the windy postman problem,

Mathematical Programming 55, 339-358.

 131. M. Guan (1962) Graphic programming using odd or even points, Chinese Mathematics 1,

237-277.

 132. M. Guan (1984) On the windy postman problem, Discrete Applied Mathematics 9, 41-46.

 133. A. Hamacher and C. Moll (1995) The Euclidean travelling salesman selection problem, Report

no 95-199, Zentrum für Paralleles Rechnen, Universität zu Köln.

 134. P. Hansen and N. Mladenovic (2001) Variable neighborhood search: principles and

applications, European Journal of Operational Research 130(3), 449-467.

 135. Hansen, P. and Mladenovic, N. (2003) Variable neighbourhood search, 145-184. In: F. Glover

and G. A. Kochenberger (eds) Handbook of metaheuristics. Springer.

 136. P. Hansen, C. Oguz, and N. Mladenovic (2008) Variable neighborhood search for minimum

cost berth allocation, European Journal of Operational Research 191(3), 636-649.

 137. E. Haslam and J. R. Wright (1991) Application of routing technologies to rural snow and ice

control, Transportation Research Record 1304, 202-211.

 138. M. Hayes and J. M. Norman (1984) Dynamic programming in orienteering: route choice and

the siting of controls, Journal of the Operational Research Society 35(9), 791-796.

 139. A. Hertz, G. Laporte, and P. N. Hugo (1999) Improvement procedures for the undirected rural

postman problem, INFORMS Journal on Computing 11(1), 53-62.

 140. A. Hertz, G. Laporte, and M. Mittaz (2000) A tabu search heuristic for the capacitated arc

routing problem, Operations Research 48(1), 129-135.

 141. A. Hertz and M. Mittaz (2001) A variable neighborhood descent algorithm for the undirected

capacitated arc routing problem, Transportation Science 35(4), 425-434.

 142. A. Hertz and M. Mittaz (2001) A variable neighbourhood descent algorithm for the undirected

capacitated arc routing problem, Transportation Science 35(4), 425-434.

 143. M. Hifi and M. Michrafy (2006) A reactive local search-based algorithm for the disjunctively

constrained knapsack problem, Journal of the Operational Research Society 57, 718–726.

Bibliography 365

 144. J. N. Hooker (1994) Needed: an empirical science of algorithms, Operations Research 42(2),

201-212.

 145. J. N. Hooker (1995) Testing heuristics: we have it all wrong, Journal of Heuristics 1, 33-42.

 146. H. H. Hoos and T. Stützle (2005) Stochastic local search: foundations and applications.

Morgan Kaufmann Publishers.

 147. T. C. Hu, A. B. Kahng, and C.-W. A. Tsao (1995) Old bachelor acceptance: a new class of non-

monotone threshold accepting methods, ORSA Journal on Computing 7(4), 417-425.

 148. C. L. Huntley and D. E. Brown (1996) Parallel genetic algorithms with local search, Computers

& Operations Research 23(6), 559-571.

 149. H. Ishibuchi, S. Misaki, and H. Tanaka (1995) Modified simulated annealing algorithms for the

flow shop sequencing problem, European Journal of Operational Research 81(2), 388-398.

 150. R. James (2000) A framework for search heuristics, Presented at the 35th Annual ORSNZ

Conference .

 151. M. R. Johnston and S. Chukova (2007) Rural postmen, rewards and grid networks, The 42nd

Annual Conference of the Operational Research Society of New Zealand.

 152. M. R. Johnston (1999) Dynamic routing with competition: foundations and strategies. PhD

thesis, Massey University.

 153. N. Jozefowiez, F. Semet, and E.-G. Talbi (2009) An evolutionary algorithm for the vehicle

routing problem with route balancing, European Journal of Operational Research 195(3),

761-769.

 154. M. G. Kantor and M. B. Rosenwein (1992) The orienteering problem with time windows,

Journal of the Operational Research Society 43(6), 629-635.

 155. G. V. Kass (1980) An exploratory technique for investigating large quantities of categorical

data, Applied Statistics 29, 119-127.

 156. S. Kataoka and S. Morito (1988) An algorithm for single constraint maximum collection

problem, Journal of the Operations Research Society of Japan 31(4), 515-530.

 157. Katayama, Kengo, and H. Narihisa (2001) Performance of simulated annealing-based heuristic

for the unconstrained binary quadratic programming problem, European Journal of

Operational Research 134(1), 103-119.

 158. C. P. Keller (1989) Algorithms to solve the orienteering problem: a comparison, European

Journal of Operational Research 41, 224-231.

366 Bibliography

 159. C. P. Keller and M. F. Goodchild (1988) The multiobjective vending problem: a generalization

of the travelling salesman problem, Environment and Planning B: Planning and Design 15,

447-460.

 160. S. Kirkpatrick, C. D. Jr. Gelatt, and M. P. Vecchi (1983) Optimization by simulated annealing,

Science 220(4598), 671-680.

 161. P. Kouvelis and W.-C. Chiang (1992) A simulated annealing procedure for single row layout

problems in flexible manufacturing systems, International Journal of Production Research

30(4), 717-732.

 162. G. Laporte and S. Martello (1990) The selective travelling salesman problem, Discrete Applied

Mathematics 26, 193-207.

 163. G. Laporte (1997) Modeling and solving several classes of arc routing problems as traveling

salesman problems, Computers & Operations Research 24(11), 1057-1061.

 164. G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet (2000) Classical and modern heuristics for

the vehicle routing problem, International Transactions in Operations Research 7, 285-3000.

 165. A. Le Bouthillier and T. G. Crainic (2005) A cooperative parallel meta-heuristic for the vehicle

routing problem with time windows, Computers & Operations Research 32(7), 1685-1708.

 166. D. S. Lee, V. S. Vassiliadis, and J. M. J. M. Park (2004) A novel threshold accepting meta-

heuristic for the job-shop scheduling problem, Computers & Operations Research 31(13),

2199-2213.

 167. A. C. Leifer and M. B. Rosenwein (1994) Strong linear programming relaxations for the

orienteering problem, European Journal of Operational Research 73, 517-523.

 168. P. F. Lemieux and L. Campagna (1984) The snow ploughing problem solved by a graph theory

algorithm, Civil Engineering Systems 1, 337-341.

 169. J. K. Lenstra and A. H. J. Rinnooy Kan (1976) On general routing problems, Networks 6,

273-280.

 170. A. N. Letchford and R. W. Eglese (1998) The rural postman problem with deadline classes,

European Journal of Operational Research 105(3), 390-400.

 171. A. N. Letchford (1997) New inequalities for the general routing problem, European Journal of

Operational Research 96(2), 317-322.

 172. L. Levy (1987) The walking line of travel problem: an application of arc routing and

partitioning. PhD dissertation, University of Maryland.

Bibliography 367

 173. Levy, L. and Bodin, L. D. (1988) Scheduling the postal carriers for the United States postal

service: an application of arc partitioning and routing, 359-394. In: B. L. Golden and

A. A. Assad (eds) Vehicle routing: methods and studies. North-Holland.

 174. L. Y. O. Li and Z. Fu (2002) The school bus routing problem: a case study, Journal of the

Operational Research Society 53, 552–558.

 175. C. K. Y. Lin, K. B. Haley, and C. Sparks (1995) A comparative study of both standard and

adaptive versions of threshold accepting and simulated annealing algorithms in three scheduling

problems, European Journal of Operational Research 83(2), 330-346.

 176. Lourenço, H. R., Martin, O. C., and Stützle, T. (2003) Iterated local search, 321-353. In:

F. Glover and G. A. Kochenberger (eds) Handbook of metaheuristics. Springer.

 177. M. Lundy and A. Mees (1986) Convergence of an annealing algorithm, Mathematical

Programming 34(1), 111-124.

 178. E. M. Macambira and C. C. de Souza (2000) The edge-weighted clique problem: valid

inequalities, facets and polyhedral computations, European Journal of Operational Research

123(2), 346-371.

 179. E. M. Macambira (2002) An application of tabu search heuristic for the maximum edge-

weighted subgraph problem, Annals of Operations Research 117, 175-190.

 180. C. Malandraki and M. S. Daskin (1992) Time dependent vehicle routing problems: formulation,

properties and heuristic algorithms, Transportation Science 26, 185-200.

 181. C. Malandraki and M. S. Daskin (1993) The maximum benefit Chinese postman problem and

the maximum benefit travelling salesman problem, European Journal of Operational Research

65, 218-234.

 182. C. Malandraki and R. B. Dial (1996) A restricted dynamic programming heuristic algorithm for

the time dependent travelling salesman problem, European Journal of Operational Research

90, 45-55.

 183. J. W. Male and J. C. Liebman (1978) Districting and routing for solid waste collection, Journal

of the Environmental Engineering Division 104(1), 1-14.

 184. O. Martin, S. W. Otto, and E. W. Felten (1991) Large-step Markov chains for the traveling

salesman problem, Complex Systems 5(3), 299-326.

 185. O. Martin, S. W. Otto, and E. W. Felten (1992) Large-step Markov chains for the TSP

incorporating local search heuristics, Operations Research Letters 11, 219-224.

368 Bibliography

 186. Martí, R. (2003) Multi-start methods, 355-368. In: F. Glover and G. A. Kochenberger (eds)

Handbook of metaheuristics. Springer.

 187. R. Matthews (2001) The ideas machine, New Scientist.

 188. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953)

Equation of state calculations by fast computing machines, Journal of Chemical Physics 21(6),

1087-1092.

 189. L. Michel and P. Van Hentenryck (1999) LOCALIZER: a modeling language for local search,

INFORMS Journal on Computing 11(1), 1-14.

 190. L. Michel and P. Van Hentenryck (2001) Localizer++: an open library for local search,

Technical Report, CS-01-03, Brown University.

 191. H. H. Millar (1996) Planning fish scouting activity in industrial fishing, Fisheries Research 25,

63-75.

 192. H. H. Millar and M. Kiragu (1997) A time-based formulation and upper bounding scheme for

the selective travelling salesperson problem, Journal of the Operational Research Society 48,

511-518.

 193. J. Mittenthal and C. E. Noon (1992) An insert/delete heuristic for the travelling salesman

subset-tour problem with one additional constraint, Journal of the Operational Research

Society 43(3), 277-283.

 194. N. Mladenovic and P. Hansen (1997) Variable neighbourhood search, Computers & Operations

Research 24, 1097-1100.

 195. S. Mohan, M. Gendreau, and J.-M. Rousseau (2010) Heuristics for the stochastic Eulerian tour

problem, European Journal of Operational Research 203(1), 107-117.

 196. P. Moscato and J. F. Fontanari (1990) Convergence and finite-time behaviour of simulated

annealing, Advances in Applied Probability 18, 747-771.

 197. M. C. Mourăo and M. T. Almeida (2000) Lower-bounding and heuristic methods for a refuse

collection vehicle routing problem, European Journal of Operational Research 121(2),

420-434.

 198. Y. Nobert and J. C. Picard (1996) An optimal algorithm for the mixed Chinese postman

problem, Networks 27, 95-108.

 199. J. W. Ohlmann, J. C. Bean, and S. G. Henderson (2004) Convergence in probability of

compressed annealing, Mathematics of Operations Research 29(4), 837-860.

Bibliography 369

 200. J. W. Ohlmann and B. W. Thomas (2007) A compressed-annealing heuristic for the traveling

salesman problem with time windows, INFORMS Journal on Computing 19(1), 80-90.

 201. A. Olivera and O. Viera (2007) Adaptive memory programming for the vehicle routing problem

with multiple trips, Computers & Operations Research 34(1), 28-47.

 202. C. S. Orloff (1974) A fundamental problem in vehicle routing, Networks 4, 35-64.

 203. C. H. Papadimitriou (1976) On the complexity of edge traversing, Journal of the Association of

Computing Machinery 23, 544-554.

 204. W. L. Pearn (1991) Augment-insert algorithms for the capacitated arc routing problem,

Computers & Operations Research 18, 189-198.

 205. W. L. Pearn and J. B. Chou (1999) Improved solutions for the Chinese postman problem on

mixed networks, Computers & Operations Research 26(8), 819-827.

 206. W. L. Pearn and T. C. Wu (1995) Algorithms for the rural postman problem, Computers &

Operations Research 22(8), 819-828.

 207. W. L. Pearn (1989) Approximate solutions for the capacitated arc routing problem, Computers

& Operations Research 16(6), 589-600.

 208. W. L. Pearn and C. M. Liu (1995) Algorithms for the Chinese postman problem on mixed

networks, Computers & Operations Research 22(5), 479-489.

 209. K. Pearson (1901) On lines and planes of closest fit to systems of points in space, Philosophical

Magazine 2(6), 559-572.

 210. M. Pirlot (1996) General local search methods, European Journal of Operational Research 92,

493-511.

 211. J.-Y. Potvin, P. Soriano, and M. Vallée (2004) Generating trading rules on the stock markets

with genetic programming, Computers & Operations Research 31(7), 1033-1047.

 212. M. Prais and C. C. Ribeiro (2000) Parameter variation in GRASP procedures, Investigación

Operativa 9, 1-20.

 213. M. Prais and C. C. Ribeiro (2000) Reactive GRASP: an application to a matrix decomposition

problem in TDMA traffic assignment, INFORMS Journal on Computing 12(3), 164(13).

 214. J. Puchinger and G. R. Raidl (2008) Bringing order into the neighborhoods: relaxation guided

variable neighborhood search, Journal of Heuristics 14(5), 457-472.

 215. W. Pullan (2008) Approximating the maximum vertex/edge weighted clique using local search,

Journal of Heuristics 14(2), 117-134.

370 Bibliography

 216. B. Raghavachari and J. Veerasamy (1998) Approximation algorithms for the mixed postman

problem, Proceedings of 6th Integer Programming and Combinatorial Optimization, 169-179.

 217. R. Ramesh and K. M. Brown (1991) An efficient four-phase heuristic for the generalized

orienteering problem, Computers & Operations Research 18(2), 151-165.

 218. R. Ramesh, Y. S. Yoon, and M. H. Karwan (1992) An optimal algorithm for the orienteering

tour problem, ORSA Journal on Computing 4(2), 155-165.

 219. Resende, M. G. C. and Ribeiro, C. C. (2003) Greedy randomized adaptive search procedures,

219-249. In: F. Glover and G. A. Kochenberger (eds) Handbook of metaheuristics. Springer.

 220. F. Ricca and B. Simeone (2008) Local search algorithms for political districting, European

Journal of Operational Research 189(3), 1409-1426.

 221. A. M. Rodrigues and J. S. Ferreira (2001) Solving the rural postman problem by memetic

algorithms, MIC'2001 - 4th Metaheuristics International Conference, 679-683.

 222. S. Ropke and D. Pisinger (2006) An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows, Transportation Science 40(4), 455-472.

 223. B. D. Rosa, G. Improta, G. Ghiani, and R. Musmanno (2002) The arc routing and scheduling

problem with transshipment, Transportation Science 36(3), 301-313.

 224. S. Roy and J.-M. Rousseau (1989) The capacitated Canadian postman problem, INFOR 27(1),

58-73.

 225. M. P. Scaparra and R. L. Church (2005) A GRASP and path relinking heuristic for rural road

network development, Journal of Heuristics 11(1), 89-108.

 226. S. Schach (2006) Object-oriented and classical software engineering. McGraw-Hill.

 227. P. R. Sokkappa (1990) The cost-constrained travelling salesman problem. PhD thesis,

Lawrence Livermore National Laboratory, University of California.

 228. F. J. Solis and R. J. B. Wets (1981) Minimization by random search techniques, Mathematics

of Operations Research 6(1), 19-30.

 229. H. I. Stern and M. Dror (1979) Routing electric meter readers, Computers & Operations

Research 6, 209-223.

 230. R. Stricker (1970) Public sector vehicle routing: the Chinese postman problem.

MSc. Dissertation, Massachusetts Institute of Technology.

 231. T. Stützle (1998) Local search algorithms for combinatorial problems - analysis,

improvements, and new applications. PhD thesis, Darmstadt University of Technology.

Bibliography 371

 232. T. Stützle (2006) Iterated local search for the quadratic assignment problem, European Journal

of Operational Research 174(3), 1519-1539.

 233. L. Tang and X. Wang (2008) An iterated local search heuristic for the capacitated prize-

collecting travelling salesman problem, Journal of the Operational Research Society 59,

590-599.

 234. C. D. Tarantilis, C. T. Kiranoudis, and V. S. Vassiliadis (2003) A list based threshold accepting

metaheuristic for the heterogeneous fixed fleet vehicle routing problem, Journal of the

Operational Research Society 54, 65–71.

 235. C. D. Tarantilis, C. T. Kiranoudis, and V. S. Vassiliadis (2004) A threshold accepting

metaheuristic for the heterogeneous fixed fleet vehicle routing problem, European Journal of

Operational Research 152(1), 148-158.

 236. T. Tsiligirides (1984) Heuristic methods applied to orienteering, Journal of the Operational

Research Society 35(9), 797-809.

 237. S. Tsubakitani and J. R. Evans (1998) An empirical study of a new metaheuristic for the

traveling salesman problem, European Journal of Operational Research 104(1), 113-128.

 238. W. B. Tucker and G. M. Clohan (1979) Computer simulation of urban snow removal, Trans.

Research Board Special Research Report No 185.

 239. W. Turner and E. Hougland (1975) The optimal routing of solid waste collection, AIIE

Transactions 7, 427-431.

 240. D. Uroševic, J. Brimberg, and N. Mladenovic (2004) Variable neighborhood decomposition

search for the edge weighted k-cardinality tree problem, Computers & Operations Research

31(8), 1205-1213.

 241. R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra (1998) A local search template, Computers

& Operations Research 25(11), 969-979.

 242. J. M. Varanelli and J. P. Cohoon (1999) A fast method for generalized starting temperature

determination in homogeneous two-stage simulated annealing systems, Computers &

Operations Research 26(5), 481-503.

 243. J. L. G. V. Velarde and R. Marti (2008) Adaptive memory programing for the robust

capacitated international sourcing problem, Computers & Operations Research 35(3), 797-806.

 244. T. Volgenant and R. Jonker (1987) On some generalizations of the travelling salesman

problem, Journal of the Operational Research Society 38(11), 1073-1079.

372 Bibliography

 245. C. Voudouris and E. Tsang (1999) Guided local search and its application to the traveling

salesman problem, European Journal of Operational Research 113(2), 469-499.

 246. Q. Wang, X. Sun, B. L. Golden, and J. Jia (1995) Using artificial neural networks to solve the

orienteering problem, Annals of Operations Research 61, 111-120.

 247. T.-Y. Wang and K.-B. Wu (1999) A parameter set design procedure for the simulated annealing

algorithm under the computational time constraint, Computers & Operations Research 26(7),

665-678.

 248. D. P. Williamson (1993) On the design of approximation algorithms for a class of graph

problems. PhD thesis, Massachusetts Institute of Technology.

 249. Z. Win (1987) Contributions to routing problems. Doctoral dissertation, Universität Augsburg.

 250. Z. Win (1989) On the windy postman problem on Eulerian graphs, Mathematical Programming

44, 97-112.

 251. C. F. J. Wu and M. Hamada (2000) Experiments: planning, analysis, and parameter design

optimization. Wiley.

 252. J. Wunderlich, M. Collette, L. Levy, and L. D. Bodin (1992) Scheduling meter readers for

southern California gas company, Interfaces 22(3), 22-30.

 253. R. Wyskida and J. Gupta (1973) IE's improve city's solid waste collection, Industrial

Engineering 46, 12-15.

 254. E. Zachariadis, C. D. Tarantilis, and C. T. Kiranoudis (2010) An adaptive memory

methodology for the vehicle routing problem with simultaneous pick-ups and deliveries,

European Journal of Operational Research 202(2), 401-411.

