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Abstract

New Zealand is the world’s third biggest producer of kiwifruit, with 94 % of the
kiwifruit produced exported (NZ $ 1.0 bn in 2014). Forced-air cooling of the produce
(from the harvest temperature of about 20 °C to near storage temperature of 0 °C)
immediately after harvest improves storage potential and maintains produce quality
before transportation to market. The design of the kiwifruit packaging system influences
the rate of cooling and temperature achieved, mainly by affecting the airflow within and

throughout the package.

The typical kiwifruit package contains 10.5 kg of fruit and consists of a cardboard box
and polyliner bag to prevent the loss of moisture and fruit shrivelling. Individual boxes
are assembled onto pallets (10 boxes to a pallet layer, 10 layers high) Open areas or
vents (in the box) facilitate cooling by allowing cool air to enter and circulate
throughout the package. In forced-air cooling pallets are assembled into double rows
with an aisle between the rows. Cool air is sucked through the pallets by a fan in the
aisle, cooling the fruit and warming the air. The air is then either blown or ducted to the
refrigeration system to be re-cooled. The polyliner keeps the local humidity high near
the fruit, preventing weight loss due to evaporative cooling, but, as a barrier to direct
fruit to air contact, slows the cooling rate. This project investigated the impact of

operating conditions and package design on the cooling performance in such systems.

A numerical model was developed (a CFD model implemented using the Fluent CFD
software) that describes and predicts the temperature profiles of palletised kiwifruit

packages undergoing forced-air cooling. The capability of the model to predict the fruit



temperatures in each package was quantitatively validated against experimental data.
The numerical model was able to predict temperature profiles within experimental error

bars over 14 h of cooling.

The numerical model was used to determine the operating point (in terms of pressure
drop and flowrate across the pallet) to ensure rapid cooling of the produce without
incurring excessive operational costs due to the power requirements. Results from both
experimental work and the numerical model informed that there was an effective limit
to the volumetric flowrate of 0.243 L kg™ s™: flowrates in excess of the limit had no or
little effective benefit. This threshold flowrate is below the typical range recommended
in industry for the forced-air cooling of non-polylined horticultural produce, which is

05-20Lkg"s™

The numerical model demonstrated that the overall cooling performance (cooling rate,
uniformity, power consumption and pallet throughput per week) can be improved by
controlling the airflow distribution between the fastest and slowest cooling kiwifruit
packages. An alternative design that channels cool air through the pallet towards the
slowest cooling packages, located at the back of the pallet, by using two package

designs in the same pallet, was presented.

At 0.243 L kg™ s it was found that the pressure drop and power required to achieve
equivalent cooling rates with the new design was reduced (by 24 % each) compared to
the conventional design. Additionally, at the half-cooling time the cooling uniformity
was improved by 19 %. The key features of the new design can be expected to be

applicable for the cooling of horticultural produce involving an inner packaging liner.
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Nomenclature
English Symbols

A — area, m?

B — ratio of outer to inner diameter, dimensionless
Cp — discharge coefficient

C, — specific heat at constant pressure, J kg™ K™
d — inner diameter, m

D — outer diameter, m

Dy — hydraulic diameter (m)

E — energy per unit mass, J kg

g — gravity, m s

G — generation of turbulent kinetic energy, kg m™ s
Gr — Grashof number, dimensionless

h — specific enthalpy, J kg™

| — unit tensor

J — diffusion flux, kg m?s™

k — thermal conductivity, W m™ K*

| — length scale, m

L — characteristic length, m

m — mass, kg

n — number of replicates

p — pressure, Pa

P — power, W

Pr — Prandtl number, dimensionless

g — heat flow rate, W

Q — volumetric flowrate, m* s™

Re — Reynolds number, dimensionless

RH — Relative Humidity, %

t—time, s
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T — temperature, K

u, v, w —velocity magnitude, m s™

v — overall velocity vector, m s
X, Y, z — Cartesian coordinates, m
X —mass fraction, dimensionless

Y — Fractional Unaccomplished Temperature Change, dimensionless

Greek Symbols

B — thermal expansion coefficient, K™

¢ — turbulent dissipation rate, m? s

K — turbulent kinetic energy, m? s

A — latent heat, kJ kg™

p — density, kg m™

T — stress sensor, N m™

i — viscosity, kg m™* s

v — kinematic viscosity, m* s

o — Stefan Boltzmann constant, 5.67 x10®J m?s* K™
o, — turbulent Prandtl number for g, dimensionless
o — turbulent Prandtl number for k, dimensionless

o — turbulent specific dissipation rate, s*

Miscellaneous Symbols

€ - emissivity, dimensionless

Mathematical operators

d — total derivative
A — difference (i.e. change in variable)
dij — Kronecker delta function

0 — partial derivative
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V — partial derivative with respect to all directions in Cartesian space

Subscripts

a — species “a”

b — buoyancy

f — fruit

i, J, k —vector directions in Cartesian coordinates
t — turbulent

eff — effective

w — water

Constants

Cu Cig, Cyq, C3; — constants for k- turbulent model

Abbreviations

CAT- Computerized Axial Tomography

FUTC — Fractional Unaccomplished Temperature Change, -
h.t.c — heat transfer coefficient, W m? K™

HCT — Half Cooling Time, h

LSD - Least Squares Difference

MBP — Modular Bulk Pack

rpm — revolutions per minute (min™)

rps — revolutions per second (s™)

SECT - Seven Eights Cooling Time, h

TCR — Temperature Control Room

VSD - Variable Speed Drive
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