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Deep learning (DL) is an effective approach to identifying plant diseases. Among

several DL-based techniques, transfer learning (TL) produces significant results in

terms of improved accuracy. However, the usefulness of TL has not yet been

explored using weights optimized from agricultural datasets. Furthermore, the

detection of plant diseases in different organs of various vegetables has not yet

been performed using a trained/optimized DL model. Moreover, the presence/

detection of multiple diseases in vegetable organs has not yet been investigated.

To address these research gaps, a new dataset named NZDLPlantDisease-v2 has

been collected for New Zealand vegetables. The dataset includes 28 healthy and

defective organs of beans, broccoli, cabbage, cauliflower, kumara, peas, potato,

and tomato. This paper presents a transfer learningmethod that optimizes weights

obtained through agricultural datasets for better outcomes in plant disease

identification. First, several DL architectures are compared to obtain the best-

suited model, and then, data augmentation techniques are applied. The Faster

Region-based Convolutional Neural Network (RCNN) Inception ResNet-v2

attained the highest mean average precision (mAP) compared to the other DL

models including different versions of Faster RCNN, Single-Shot Multibox Detector

(SSD), Region-based Fully Convolutional Networks (RFCN), RetinaNet, and

EfficientDet. Next, weight optimization is performed on datasets including

PlantVillage, NZDLPlantDisease-v1, and DeepWeeds using image resizers,

interpolators, initializers, batch normalization, and DL optimizers. Updated/

optimized weights are then used to retrain the Faster RCNN Inception ResNet-

v2 model on the proposed dataset. Finally, the results are compared with the

model trained/optimized using a large dataset, such as Common Objects in

Context (COCO). The final mAP improves by 9.25% and is found to be 91.33%.

Moreover, the robustness of the methodology is demonstrated by testing the final

model on an external dataset and using the stratified k-fold cross-

validation method.
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Introduction
According to the guidelines of the World Health

Organization (WHO) and the Food and Agriculture

Organization (FAO), fruit and vegetable consumption should

be greater than 400 g/day to reduce the risk of heart disease, high

blood pressure, and stroke (Who and Consultation, 2003).

Therefore, adequate food supply must be achieved for human

well-being. In this regard, food security is essential to ensure

food demand. Plant diseases are a substantial threat to food

security (Gui et al., 2021) and affect crop productivity (Liu and

Wang, 2021). They also influence the quality of agricultural

products and are a source of economic loss.

Horticultural products are among the main contributors to

New Zealand (NZ) economy. According to a recent report by

Plant and Food Research, the export value of fresh and processed

vegetables was estimated to be NZ$724.5m in 2020 (Aitken and

Warrington, 2020). Among the most prominent vegetables,

onions, peas, potatoes, squash, sweetcorn, and beans were

exported in amounts of NZ$147.6m, NZ$115.4m, NZ$106.9m,

NZ$79.2m, NZ$47.6m, and NZ$42.0m, respectively. The highest

expenditures for imported vegetables were observed for

preserved tomatoes and frozen potatoes at around NZ$35.8m

and NZ$34.9m, respectively. A total of NZ$1.29b was recorded

for the vegetables consumed for domestic use, such as potatoes,

tomatoes, and brassicas (broccoli, cabbage, and cauliflower).

Furthermore, the largest horticultural land (among the

vegetables) was used for potatoes around 10,417 ha, 6,530 ha

for squash, 5,296 ha for onion, and 4,890 ha for peas and beans

(Aitken and Warrington, 2020). These statistics highlight the

importance of NZ vegetables to the country’s income. Therefore,

the challenges faced by the horticultural industry should be

addressed to increase the export value of horticultural

products further.

Plant disease detection is an important task in the

application of control treatments to the affected plants.

However, the timely and precise identification of plant diseases

is challenging. This is due to the similarity in the occurrence of

the disease in different plant species. Therefore, the traditional

methods for recognizing plant diseases have been replaced by

methods based on machine learning (ML). Among these

techniques, deep learning (DL) has gained considerable

attention from the scientific community in recent years, and

numerous DL methods, architectures, and approaches have been

proposed. However, current literature leaves a significant margin

for further investigating the strength of DL-based plant disease

identification in various ways.

The research done so far for plant disease detection has covered

various aspects of deep learning, such as DL-based visualization

techniques to identify the spots of plant disease (Brahimi et al.,

2018; Brahimi et al., 2019) and the application of the latest data

augmentation techniques (Bi and Hu, 2020; Abbas et al., 2021).
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Furthermore, some studies have focused on modifications in the

hidden layers of neural networks (Kamal et al., 2019; Liang et al.,

2019; Liu and Wang, 2020), improvement in the feature fusion

module (Bao et al., 2022), and the addition of attention modules

(Wang et al., 2021a; Bao et al., 2022). Moreover, few articles have

addressed the real-time assessment of the DL model for the

recognition of plant disease (Xie et al., 2020; Wang et al., 2021b)

and the evaluation of the usefulness of deep learning optimizers

(Saleem et al., 2020).

Transfer learning (TL) is a successful technique for

improving the performance of DL models. In TL, the

knowledge gained from the pre-trained weights of a large

dataset is utilized to extract the specific features of the dataset

that contains new classes. A few studies have presented the

significance of TL in plant disease identification. For example,

the effectiveness of the fine-tuning technique was shown for

plant disease classification (Brahimi et al., 2017; Too et al., 2019;

Hassan et al., 2021), using pre-trained weights in a large dataset

called ImageNet. Another study evaluated TL on synthetic

images (generated by a generative adversarial network) and

real images (Abbas et al., 2021). Although these articles

presented the importance of fine-tuning, the selected dataset

had a plain background/controlled environment. Only one study

has performed a plant disease identification task in a real

agricultural environment using a transfer learning approach

(Chen et al., 2020a). Another study considered field conditions

for the detection of diseases in maize plants using three models

inspired by Inception-v3 (Haque et al., 2022). The performance

of the proposed model was better than that of the pre-trained DL

models. However, the DL architecture required a longer

computation time. A study presented eggplant disease

detection using pre-trained weights of the visual geometry

group (VGG) model and created a new dataset with a

combination of controlled/laboratory and uncontrolled/real

agricultural environments (Krishnaswamy Rangarajan and

Purushothaman, 2020). Another study presented TL by

combining the DenseNet model and Inception module for rice

plant diseases under actual conditions (Chen et al., 2020c). A

two-phase approach to applying TL was presented by (Chen

et al., 2020b). The first phase was dedicated to training from

scratch for the new layers and using pre-trained weights for the

rest of the layers, whereas the second phase consisted of

retraining the model on the selected dataset using weights

obtained in the previous stage. Although a comprehensive

analysis was provided, the comparison of the proposed

method with other modified versions of the DL architecture

could further strengthen the quality of the work. In a similar

style, a recent study proposed a transfer-learning-based deep

feature descriptor (Fan et al., 2022). The authors demonstrated

the effectiveness of the approach on different datasets and

showed the novelty of this work. Another study presented the

significance of TL in tomato plant disease identification

(Thangaraj et al., 2021). In this work, a few of the models
frontiersin.org

https://doi.org/10.3389/fpls.2022.1008079
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saleem et al. 10.3389/fpls.2022.1008079
were included for comparative analysis with the proposed

model. A study evaluated the TL by splitting the data into the

source and target domains (Argüeso et al., 2020). This study

provided a new approach to exploring TL-based techniques.

However, it should be validated in other datasets related to plant

diseases. Another study evaluated TL based on domain splitting

and analyzed semi-supervised iterations and few-shot

parameters (Rukundo, 2021). This research presented

validation using three domain splits of the same dataset,

whereas a more comprehensive analysis could be included,

such as considering different datasets with diverse

environments. An article presented a multitask TL approach

to identify rice and wheat plant diseases at the same time,

compared to other techniques including a single task, a reuse

model, and some DL models (Jiang et al., 2021). Comparison of

TL using pre-trained weights on a large dataset consisting of

general objects and a dataset related to plant recognition was

presented by (Lee et al., 2020). This proved to be an innovative

method to demonstrate the importance of transfer learning. It

was also observed that a more in-depth analysis could be

performed using training profiles.

The literature references presented above have considerable

scope for exploring transfer learning methods to improve plant

disease detection. The use of image resizers, weight initialization,

and DL optimization methods have not been explored for

transfer learning purposes. In addition, weight optimization

has also not been performed using the datasets related to the

same and different agricultural operations. Moreover, most

articles have addressed the recognition of plant diseases in a

single vegetable under real agricultural conditions. However, the

effectiveness of deep transfer learning has not yet been evaluated

for different vegetables using the same optimized DL model.

This article addresses several concerns regarding deep

transfer-learning-based plant disease detection. The first

research question is how well can deep learning detect plant

diseases in various organs of vegetables? Can transfer learning be

applied for the simultaneous identification of multiple diseases

in various vegetable organs at the same time? How do the

different methods related to image processing and weight

optimization affect the performance of deep transfer learning?

Can the weights obtained from the agricultural datasets

contribute to improving the performance of the DL model?

Connected to the previous question, what are the circumstances

to obtain improvement in terms of the dataset conditions?

Finally, can the highlighted questions be validated by testing

on an external dataset with the same classes and retaining a high

mean average precision?

To answer these questions, this article presents a new dataset

(the second version in a series of datasets containing plant

diseases in various NZ horticultural crops), named

NZDLPlantDisease-v2. The generated dataset contains diseases

in eight important NZ vegetables, including potatoes, tomatoes,

beans, peas, kumara, and brassicas (broccoli, cabbage,
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and cauliflower). The dataset also contains diseases in different

plant organs (leaves, stems, and vegetables), along with multiple

diseases in plant organs at a time. Moreover, this study proposes

transfer-learning-based plant disease identification. For this

purpose, the weights of the best-obtained DL architecture are

optimized using a framework consisting of various techniques.

These methods include the evaluation of image resizers,

interpolators, weight initializers, batch normalization, and DL

optimizers. This framework has been derived from our recently

presented work on weed detection (Saleem et al., 2022b).

Furthermore, optimized weights are obtained using

agricultural (similar and/or other applications) datasets. In this

regard, three datasets are selected, two of which are related to

plant diseases in both laboratory and real field environments,

and the last is a weed-related dataset. In addition, weight

optimization is performed on a large dataset called common

objects in context (COCO). The mean average precisions of the

weights obtained using the agricultural and large datasets are

compared. Finally, the usefulness of the research is

demonstrated by testing on an external dataset and using the

stratified k-fold cross-validation method. Hence, this article

provides new insights into DL-based plant disease recognition

rather than overly explored open-source datasets such

as PlantVillage.

The main contributions of this research are as follows: (1) a

new dataset is presented consisting of eight prominent

vegetables of the NZ and it has been made publicly available

to the scientific community; (2) several conditions and problems

of the real horticultural field have also been considered,

including the presence of disease in various organs of the

vegetable plants, different environmental conditions, and the

occurrence of multiple diseases in a vegetable plant organ at a

time; (3) a new way of exploiting various techniques has been

provided by the integration of weight optimization and transfer

learning methods; (4) a high mean average precision (mAP) has

been achieved by comparing with the results obtained through

pre-trained weights of the COCO dataset; an average precision

(AP) of >80% for each class has also been achieved; (5) the

robustness of the presented work has been validated by two

methods: testing on an externally generated dataset in different

agricultural conditions and using the stratified five-fold cross-

validation method.
Materials and methods

A transfer learning-based approach

The proposed approach is based on transfer learning for the

extraction of features of plant diseases. The weights of the best-

obtained DL model are updated using the optimized weights

from the agricultural dataset. Performance optimization

techniques are applied as a bridge to update/optimize the
frontiersin.org
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weights of the DL model. The proposed methodology is divided

into two phases. Each phase comprises two steps, and the final

validation/effectiveness of the approach is presented using two

different methods.

The first step in the initial phase of the research was the

generation of the dataset called NZDLPlantDisease-v2. The

proposed dataset contains eight important vegetables from

New Zealand, including 28 healthy and diseased classes. This

dataset contains various practical problems in the horticultural

field. The second step was a comparative evaluation of various

DL meta-architectures to obtain the best DL model in terms of

training, validation losses, and mean average precision (mAP).

This step of the proposed methodology uses the TL technique by

training the models using pre-trained weights on the COCO

dataset to extract the basic features. The performance of the best-

obtained model was enhanced by applying category-wise data

augmentation techniques, including color change (brightness,

contrast, and sharpness), translational and rotational changes,

and the addition of noise to the color change.

The second phase began with the selection of agricultural

datasets. In this regard, two datasets of healthy and defective

plant organs and a dataset of weed images were selected. One of

the selected plant disease datasets has a plain background,

whereas the other has a natural/complex agricultural

background. This was done to analyze the effects of the

background elements for transfer learning purposes. The idea

was to extract the relevant features of plant disease by leveraging

the knowledge gained by the DL model from agricultural

datasets. In this regard, the next step was weight optimization

utilizing our recently presented weed-detection pipeline on these

three agricultural datasets.The pipeline/framework consists of

five steps (Saleem et al., 2022b): studying the effects of image

resizing techniques such as fixed-shape and aspect ratio resizers;

combining image interpolators such as bilinear, bicubic, area,

and nearest neighbor; application of weight initializers including

truncated normal, scaling variance, and random normal

initializers; understanding the effects of the absence/presence

of batch normalization; and use of DL optimizers such as

stochastic gradient descent (SGD) with momentum, root mean

square propagation (RMSProp), and adaptive moment

estimation (Adam). In this step, the weights of the DL model

are updated. Subsequently, the optimized weights of the best-

obtained DL model were used to transfer the knowledge for the

NZDLPlantdisease-v2 dataset. The mAP attained in this step

was compared with that obtained in the first phase of the study.

To validate the results, the same optimization pipeline was

applied directly to the NZDLPlantDisease-v2 dataset using

pre-trained weights on the COCO dataset. A higher AP of the

healthy/disease classes established the proposed hypothesis that

the best DL architecture is initially trained with a large general-

purpose dataset, optimized with image resizing techniques and

weight optimization algorithms through agricultural datasets,
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and retrained through updated weights on the proposed dataset

attained better identification of plant diseases.

Finally, the effectiveness of the research was demonstrated

by testing the optimized model with an externally generated

dataset and using a stratified five-fold cross-validation

technique. The research methodology is illustrated in Figure 1.
Proposed dataset

This research presents a new dataset called NZDL

PlantDisease-v2, which contains diseases in eight prominent

NZ vegetables, including tomato, potato, peas, beans, cabbage,

cauliflower, broccoli, and kumara. The Samsung Galaxy S10 Plus

smartphone with the following specifications was used to take

the dataset images: three cameras with 12MP f/1.5-2.4 (wide), 12

MP f/2.4 (telephoto), and 16 MP, f/2.2 (ultrawide). Dataset

images were collected from various local horticultural fields in

Auckland and Palmerston North, New Zealand. The working

distance of the images is 200-300 mm. The data collection period

was from December 2020 to May 2021.

The dataset was divided into three sub-datasets: training

(70%), validation (20%), and testing (10%). An open-source

tool LabelImg was used to annotate the dataset images.

According to the requirements of the TensorFlow object

detection API, the XML files were converted into CSV files

and then transformed into TFrecords. A sample of each

annotated class is shown in Figure 2A. Various real

agricultural conditions, such as the absence/presence of

shadows, different lighting conditions, and sudden weather

changes, were considered, as shown in Figure 2B. Moreover,

other practical conditions have been considered by imaging

plant organs with multiple diseases. For example, black rot and

ring spot disease in broccoli and cauliflower leaves were

present simultaneously (Figure 2C). However, some crops

contain the disease only in their leaves. The details of the

proposed dataset are presented in Table 1.
Data augmentation

The size of the dataset was initially increased by cropping a

group of healthy/disease classes containing more than one object

of interest. Several data augmentation methods were applied,

such as a 30% change (increase or decrease) in brightness,

sharpness, and contrast (Wang et al., 2021a). In addition, the

effects of noise, including Gaussian and Laplacian noise, were

evaluated. For this purpose, open-source software named

XnViewMP was used. The maximum intensities were 10.0,

and 50.0, out of which random intensities of 2.0 and 10.0 were

respectively selected. Furthermore, more diversity in the dataset
frontiersin.org
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was obtained by rotational/translational changes, such as 90°, -

90°, 180°, horizontal, and vertical changes. An example of

augmented images for the tomato late blight class is shown

in Figure 3.

For a comprehensive analysis, the data enhancement

methods were arranged into five groups. The first contains

only original (OO) images, then a combination of original

with translational/rotational changes (OT), original with color

variation (OC) (increase/decrease in brightness, contrast, and

sharpness), original with noise and variation in color change

simultaneously (OCN), and finally a combination of all the

methods (OTCN).
Frontiers in Plant Science 05
Agricultural datasets

Three agricultural datasets were selected to extract the

distinct features of different diseases in the plant species. The

first dataset was the commonly used plant disease dataset, called

PlantVillage (PV). The PV dataset contained 38 classes of healthy

and diseased plant leaves from 14 plant species (Hughes and

Salathé, 2015). The dataset images were generated in a laboratory-

controlled environment. The former version of the proposed

dataset series, NZDLPlantDisease-v1 (Saleem et al., 2022a), was

selected. This dataset comprises 20 classes of healthy and

defective plant leaves, stems, and fruits from New Zealand’s
FIGURE 1

Overall workflow of the proposed methodology.
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five important horticultural crops. All the dataset images were

collected in a real horticultural environment. The third dataset is

the DeepWeeds dataset, which contains eight classes of weeds and

a negative/non-weed class from northern Australia (Olsen et al.,

2019). The DeepWeeds dataset was also considered a real

agricultural background when collecting the dataset images. An

annotated example of each class from these agricultural datasets

is presented in Figure 4.
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Deep learning framework and models

In this study, TensorFlow object detection APIs 1 and 2 were

used to train the DL models. The pre-trained weights on the

Common Object in Context (COCO) dataset was used to train

the DL architectures in the first phase. To increase the training

speed, an NVIDIA Graphical Processing Unit GeForce GTX

1080 Ti was used with the following specifications: 11 GB
A

B

C

FIGURE 2

Samples of NZDLPlantDisease-v2 dataset. (A) Annotated example of each class. (B) Examples of healthy and defective organs of vegetables in
different environmental conditions. (C) Examples of multiple diseases in plant leaves.
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TABLE 1 Summary of NZDLPlantDisease-v2 dataset.

Crops Plant Organs Pathogens NZDLPlantDisease-v2 classes with number of images Simplified annotation labels

Bean Leaf – Healthy (52) B_healthy_l

Vegetable Bacteria Bacterial blight - Xanthomonas axonopodis pv. phaseoli (93) B_bac_blight_v

– Healthy (55) B_healthy_v

Broccoli Leaf Bacteria Black rot - Xanthomonas campestris pv. campestris (53) Br_blk_rot

Fungi Ring spot - Mycosphaerella brassicicola (83) Br_r_spot

– Healthy (74) Br_healthy

Cabbage Leaf Fungi Ring spot - Mycosphaerella brassicicola (192) C_r_spot

– Healthy (173) C_healthy

Cauliflower Leaf Bacteria Black rot - Xanthomonas campestris pv. campestris (144) Cf_blk_rot

Fungi Ring spot - Mycosphaerella brassicicola (48) Cf_r_spot

– Healthy (68) Cf_healthy_l

Vegetable Bacteria Soft rot - Erwinia carotovora subsp. carotovora (36) Cf_s_rot

– Healthy (96) Cf_healthy_v

Kumara Leaf Fungi Alternaria leaf spot - fungus Alternaria spp. (50) K_alt_lf_spot

– Healthy (103) K_healthy_l

Potato Leaf Fungi Ear blight - Alternaria solani (119) Po_ear_blight

Oomycete Late blight - Phytophthora infestans (57) Po_lt_blight

– Healthy (199) Po_healthy_l

Stem Fungi Ear blight - Alternaria solani (144) Po_ear_blight_s

Oomycete Late blight - Phytophthora infestans (89) Po_lt_blight_s

– Healthy (107) Po_healthy_s

Peas Leaf Fungi Ascochyta blight - Mycosphaerella pinodes (224) Ps_asc_blight

Bacteria Bacterial blight - Pseudomonas syringae pv. pisi (68) Ps_bac_blight

– Healthy (115) Ps_healthy_l

Vegetable Fungi Ascochyta blight - Mycosphaerella pinodes (143) Ps_asc_blight_v

– Healthy (101) Ps_healthy_v

Tomato Leaf Oomycete Late blight - Phytophthora infestans (133) T_lt_blight

– Healthy (220) T_healthy_l
Frontiers in Pl
ant Science
 07
A B D E F G

IH J K L M N

C

FIGURE 3

Examples of tomato late blight with all augmentation techniques (including original image). (A) Original. (B) 90°. (C) -90°. (D) 180°. (E)
Horizontal. (F) Vertical. (G) Gaussian noise, (H) Laplacian noise (I) High brightness. (J) Low brightness. (K) high contrast. (L) low contrast. (M) high
sharpness. (N) low sharpness.
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memory, 3584 CUDA cores, 484 GB/s memory bandwidth, and

a 1582 MHz boost clock. To accelerate training, the CuDNN

library was imported into the system.

For this research, various state-of-the-art DL models were

trained, including RetinaNet (Lin et al., 2017), EfficientDet (Tan

et al., 2020), faster region-based convolutional neural network

(Faster RCNN) (Ren et al., 2015), single-shot multibox detector

(SSD) (Liu et al., 2016), and region-based fully convolutional

network (RFCN) (Dai et al., 2016). Some models were trained

using different feature extractors, as available in the TensorFlow

API. The performance of the DL architectures was evaluated by

mean average precision (mAP), which was used to analyze the

performance of several DL models, such as Faster RCNN (Ren

et al., 2015), SSD (Liu et al., 2016), and RFCN (Dai et al., 2016).
Optimization techniques

Image resizers and interpolators
The first step in the performance optimization of the best-

obtained DL model was studying the effects of two image

resizing techniques: aspect ratio (AR) and fixed-shape (FS)

resizers. Image resizers were applied to the interpolators,

including bilinear, area, bicubic, and nearest neighbor.
Weight initializers
The next step was to evaluate the three weight initialization

methods. First, the truncated normal (TR) was analyzed to remove

dead neurons owing to the use of the ReLU activation function.

Then, scaling variance (SV) was applied, which was beneficial for

maintaining the variance of the output layer with the input layers

(He et al., 2015). The random normal (RN) was also tested, which

helped to create tensors through normal distribution.
Batch normalization
The effects of batch normalization (BN) were also analyzed

and used to solve the internal covariate shift. This neural

network (NN) problem occurs because of the variation in the

input of the NN distribution with the variation in the parameters

of the previous layer (Ioffe and Szegedy, 2015). Furthermore, this

method accelerates neural network training.

DL optimizers and hyperparameter selection
Three well-known DL optimization algorithms were used:

stochastic gradient descent (SGD) with momentum (Ruder,

2016), adaptive moment estimation (Adam) (Kingma and Ba,

2014), and root mean square propagation (RMSProp) (Hinton

et al., 2012). Hyperparameters were selected using the random

search method (Bergstra and Bengio, 2012), such as the learning

rate (LR), momentum (mom), epsilon (eps), and discounting

factor (rho), as presented in Table 2.
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Validation techniques

External dataset
The effectiveness of this study was validated by generating an

external dataset. This dataset contains the healthy and diseased

plant classes of NZDLPlantDisease-v2 using a random Google

search. This was done to ensure that the proposed methodology

is valid in different agricultural and environmental situations.

Cross-validation method
This method considers the class imbalance problem (the

number of samples is different for each class) in the dataset for

validation of the proposed method. The stratified five-fold cross-

validation technique was used to maintain the original sample

size of each class in each fold (He and Ma, 2013). Otherwise, a

biased distribution of the dataset images could have occurred if

all the samples had been randomly mixed and divided into a

certain number of folds.
Results

This study aimed to detect plant diseases using a newly

generated dataset named NZDLPlantDisease-v2. The proposed

approach is divided into two phases, each containing two steps.

The first step of the initial phase is dedicated to the collection,

augmentation, and annotation of the dataset, as explained in the

previous section. The subsequent steps are described in this

section. Following the methodology shown in Figure 1, the

results from the second step of the first phase to the second

step of the final phase are presented in this section.
Phase 1: Selection of the best DL
architecture and data augmentation
technique using NZDLPlantDisease-v2

Training through pre-trained
COCO weights

Initially, the DL architectures were trained on the original

images (without augmentation) of the proposed dataset. The two

best DL architectures that achieved the highest mAP were

selected. Further analysis of both DL models was performed

by training them using different augmentation techniques. As

default configurations, models such as Faster RCNN and RFCN

were trained with aspect ratio image resizing methods with a

minimum of 600 and a maximum of 1000 pixels, respectively.

However, in EfficientDet, the same resizer with dimensions of

512 was used. Furthermore, the RetinaNet and SSD models were

trained with a fixed shape resizer with 300 × 300 pixels.

The tradeoff between accuracy and training time was

addressed by testing different batch sizes; the most feasible was
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FIGURE 4

Annotated example of each class from agricultural datasets. (A) PlantVillage. (B) NZDLPlantDisease-v1. (C) DeepWeeds.
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found to be 4. SGD with momentum was the default optimizer

for training each model. Using empirical observations, all DL

models were trained for 200k iteration steps. However, the

required number of iteration steps for the training

convergence is different for each model. For example, Faster

RCNN Inception ResNet-v2 required the least number of

iterations, approximately 110k steps. SSD Inception-v2

required the highest number of iteration steps, approximately

190k steps. However, RFCN required 120k steps, Faster RCNN

ResNet-50, Faster RCNN ResNet-101, Faster RCNN

Inceptionv2 required 160k iteration steps, SSD MobileNet-v2,

and RetinaNet required 170k steps, whereas EfficientDet

required 180k steps. In terms of the computation/training

time, SSD MobileNet was the fastest model, requiring only 5.5

hours, and Faster RCNN Inception ResNet-v2 was the slowest

model, which took approximately 18 hours to complete the

training. The main observations from this step are as follows.
Fron
• The training and validation plots of all DL models did

not show any sign of overfitting, as the losses converged

and had no abrupt increase in the loss after the final

iteration step.

• The training and validation profiles of the DL

architecture are shown in Figure 5. The Faster RCNN

ResNet-101 had the lowest tra ining loss of

approximately 0-0.1%, followed by Faster RCNN

ResNet-50 and RFCN with 0-0.15% loss, Faster

RCNN Inception-v2 with 0-0.2% loss, and Faster

RCNN Inception ResNet-v2 with 0-0.25% loss. The

rest of the DL models attained a comparatively higher

training loss between 0-0.5%, 0-0.7%, 0-0.8%, and 0.5-

1% for RetinaNet, SSD Inception-v2, EfficientDet, and

SSD MobileNet-v2, respectively. Similarly, the lowest

validation loss was obtained by Faster RCNN ResNet-

101 followed by RFCN ResNet-101, Faster RCNN

ResNet-50, and Faster RCNN Inception ResNet-v2.
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• In terms of mAP, Faster RCNN Inception ResNet-v2

achieved the highest value of 63.74%, followed by Faster

RCNN ResNet-101 with 60.34%, as shown in Table 3.

This was due to the high (>80%) average precision (>

80%) of 11 and 10 classes by Faster RCNN trained with

Inception ResNet-v2 and ResNet-101 feature extractors,

respectively. The selection of the two best DL models

was validated by retraining each model using all

augmentation techniques. Similar models achieved the

best results; for example, Faster RCNN Inception

ResNet-v2 achieved 47.83% and Faster RCNN ResNet-

101 achieved 45.25% mAP.

• EfficientDet and RetinaNet achieved the lowest mAP

owing to several undetected classes, as indicated by the

zero AP in Table 3.

• It was also observed that few classes were successfully

detected with Faster RCNN Inception ResNet-v2 that

were undetected (false negative) or wrongly identified

(false positive) with other DL models, such as broccoli

ring spot (Br_r_spot) and cabbage healthy (C_healthy),

as shown in (Figures 6A, B). Similarly, potato early

blight attained the highest average precision with the

best-selected DL models (Figure 6C). However, SSD

MobileNet and EfficientDet were unable to detect

some of the early blight images of potatoes (Figure 6D).

• Some of the classes performed well in all or most of the

DL models, including bean bacterial blight, healthy

cauliflower (vegetable), healthy cabbage, healthy potato

stem, and healthy potato leaves.

• Although this step yielded the two best DL models, the

mAP was not satisfactory. There was a significant

margin in the performance improvement. This was

because a few classes could not be detected, including

the broccoli black rot, cauliflower ring spot, kumara

Alternaria leaf spot, and pea bacterial blight, by any of

the DL architectures. Several examples of the false
TABLE 2 Hyperparameters of deep learning optimizers.

DL optimizers DL meta-architectures Hyperparameters

SGD with momentum EfficientDet LR = 3 x 10-3, mom = 0.9

Faster RCNN ResNet-50 LR = 2 x 10-4, mom = 0.9

Faster RCNN ResNet-101 LR = 2 x 10-4, mom = 0.9

Faster RCNN Inception-v2 LR = 1 x 10-4, mom = 0.9

R-FCN ResNet-101 LR = 3 x 10-4, mom = 0.9

SSD Inception-v2 LR = 3 x 10-3, mom = 0.9

SSD MobileNet-v2 LR = 2 x 10-4, mom = 0.9

SSD ResNet-50 (RetinaNet) LR = 4 x 10-4, mom = 0.9

SGD with momentum Faster RCNN Inception ResNet-v2 LR = 3 x 10-4, mom = 0.9

Adam LR = 1 x 10-4, eps = 1.0-2

RMSProp LR = 2.5 x 10-4, rho = 0.9, mom = 0.9, eps = 1 x 10-3
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positive and false negative results of the different DL

models are presented in Figures 6E–H.

• After considering all data augmentation techniques,

some of the classes improved their AP, such as healthy

broccoli, healthy beans (leaves and vegetables), and

cabbage ring spots. However, the overall performance

(mAP) of the Faster RCNN Inception ResNet-v2 was

degraded due to the small AP of several classes. These

classes included healthy cauliflower (leaves and

vegetables), kumara leaves, healthy potato early
tiers in Plant Science 11
blight (leaves and stems), potato (leaves and stems),

potato blight, Ascochyta blight of peas, and healthy

pea leaves.
Category-wise study of data augmentation
techniques

To understand the effects of the data augmentation

techniques on the DL model, we divided them into five

categories, as explained in the previous section. The two best
A B

D

E F

G

I

H

C

FIGURE 5

Training and validation loss plots of various DL architectures. (A) Faster RCNN ResNet-50. (B) Faster RCNN ResNet-101, (C) Faster RCNN Inception-v2.
(D) Faster RCNN Inception ResNet-v2. (E) SSD Inception-v2. (F) SSD MobileNet-v2. (G) RetinaNet. (H) EfficientDet. (I) RFCN ResNet-101.
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DL architectures were retrained for each category. The results

are discussed below.
Fron
• Among the five augmentation categories, OT achieved

the best results in terms of the highest mean average

precision. The performance of the Faster RCNN

Inception ResNet-v2 model was significantly improved

as compared to the non-augmented categories, with a

difference of 18.34% in mAP.

• Nine classes were prominently detected after the application

of the OT category. These classes included healthy broccoli,

healthy beans, healthy cauliflower black rot, healthy

cauliflower (leaves), soft cauliflower rot, kumara Alternaria

leaf spot, potato late blight (stem) potato early blight (stem),
tiers in Plant Science 12
and Ascochyta blight, which improved the individual AP by

63.18%, 66.26%, 17.15%, 43.04%, 63.18%, 61.91%, 48.38%,

25.59, and 27.55%, respectively.

• The OT category also attained the best performance for

Faster RCNN ResNet-101. The mAP improved by

approximately 10.49% compared to the results

obtained with original/non-augmented images.

• It was further noticed that OTCN and OO achieved the

lowest mAP for both DL models, followed by OC and

OCN categories.

• The change in color/noise inclusion affected the detection

performance, as shown in Figure 7A. When the image of a

healthy broccoli leaf was tested, the background element

was wrongly identified as broccoli black rot disease, and
TABLE 3 Performance of deep learning meta-architectures in terms of average precision (%) of each class.

Classes of
NZDLPlantDisease-v2

Deep learning architectures with feature extractors

Faster RCNN SSD EfficientDet RFCN
ResNet-
50

ResNet-
101

Inception-
v2

Inception-
ResNet-v2

Inception-
v2

MobileNet-
v2

ResNet-50
(RetinaNet)

EfficientNet ResNet-
101

Br_blk_rot 3.84 2.59 3.38 13.64 0 0 0 0 3.06

Br_healthy 29.24 36.36 18.18 36.82 45.45 43.94 38.55 23.81 21.97

Br_r_spot 23.04 41.68 33.08 72.74 6.44 12.88 0 0 34.91

B_bac_blight_v 89.61 89.61 96.16 97.49 72.73 62.63 43.10 31.49 80.42

B_healthy_l 33.33 36.36 36.82 33.33 34.55 21.97 0 0 36.36

B_healthy_v 27.27 45.45 27.27 49.91 9.09 21.97 11.49 42.10 59.69

Cf_blk_rot 55.69 59.66 49.19 58.61 22.58 20.43 8.29 53.18 61.08

Cf_healthy_l 31.19 30.5 30.83 54.7 43.01 45.45 0 0 16.41

Cf_healthy_v 90.91 90.91 81.82 90.91 81.82 90.91 59.45 65.99 90.91

Cf_r_spot 17.77 4.85 0.91 14.77 0 0 0 0 3.62

Cf_s_rot 49.57 63.64 70.99 36.36 49.55 45.45 0 11.25 60.29

C_healthy 50.69 81.21 58.56 94.54 80.56 80.68 0 10.05 69.43

C_r_spot 66.67 98.61 72.03 96.72 22.98 23.03 35.57 30.13 100

K_healthy_l 81.82 80.17 90.08 81.82 56.01 80.91 42.98 27.65 81.82

K_alt_lf_spot 9.09 23.48 0 37.02 0 0 0 0 28.83

Po_lt_blight_s 57.52 36.01 28.44 32.55 34.22 32.83 0 0 51.27

Po_ear_blight 71.08 86.48 72.44 88.45 59.87 54.17 60.02 43.66 67.87

Po_ear_blight_s 42.17 59 67.65 69.19 24.84 23.97 21.33 28.18 57.85

Po_healthy_l 88.76 86.56 90.91 78.1 70.69 79.44 19.74 38.59 96.28

Po_healthy_s 90.08 90.91 80.17 89.39 72.73 72.73 77.73 53.88 88.16

Po_lt_blight 36.58 51.23 57.56 52.99 0 4.55 0 0 44.21

Ps_asc_blight 72.24 79.98 78.97 71.43 54.21 35.86 0 10.25 79.67

Ps_asc_blight_v 89.26 79.17 87 87.63 100 72.73 46.52 4.83 81.82

Ps_bac_blight 18.08 31.47 26.71 14.16 4.55 6.93 0 0 41

Ps_healthy_l 100 98.6 97.78 90.91 100 89.17 63.38 74.12 89.4

Ps_healthy_v 90.91 81.82 90.91 90.91 90.91 79.9 0 25.88 81.82

T_healthy_l 72.73 72.73 81.82 81.82 72.73 81.82 37.81 35.91 72.73

T_lt_blight 42.93 50.44 37.13 67.74 35.45 27.27 0 0 63.49

mAP (%) 54.72 60.34 55.96 63.74 44.46 43.27 20.21 21.82 59.44
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the blackness in the leaf was recognized as pea Ascochyta

blight. Some other examples of true positive and false

positive results with the respective augmentation

categories are presented in Figures 7B–E.

• Although this step of the study improved the

performance of the Faster RCNN Inception ResNet-v2,

few classes achieved a low AP <50%, such as broccoli

black rot, healthy beans (vegetables), cauliflower ring

spot, potato late blight, and peas bacterial blight.
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Phase 2: Performance optimization by
weights obtained from
agricultural datasets

This phase of the research was divided into two

steps: obtaining the optimized weights on agricultural

datasets using different techniques and using the knowledge/

features extracted from the agricultural datasets to the

proposed dataset.
A B

D E

F G

H

C

FIGURE 6

Detection results for the first step. (A) True positive by Faster RCNN Inception ResNet-v2 for broccoli ring spot and healthy cabbage (leaves).
(B) False positive for broccoli ring spot by Faster RCNN ResNet-50, SSD Inception, SSD MobileNet, and the last two are undetected (false
negative) by RetinaNet, EfficientDet for broccoli ring spot. (C) True positive by Faster RCNN Inception ResNet-v2 and ResNet-101 for potato
early blight. (D) False negative and false positive by SSD MobileNet and EfficientDet, respectively for potato early blight. (E) False negative and
false positive by Faster RCNN ResNet-101 and Inception ResNet-v2, respectively for broccoli black rot. (F) False positive by Faster RCNN
ResNet-50 and false negative by SSD Inception-v2 for cauliflower ring spot. (G) False positive by EfficientNet, RFCN ResNet-101, Faster RCNN
Inception ResNet-v2, and false negative by SSD MobileNet, RetinaNet for kumara Alternaria leaf spot. (H) False positive by Faster RCNN ResNet-
50, ResNet-101, Inception-v2, SSD with Inception-v2, and MobileNet-v2; false negative by EfficientDet for peas bacterial blight.
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Effects of image resizers, interpolators, weight
initializers, batch normalization, and DL
optimizers on agricultural datasets

First, the best-obtained DL model, Faster RCNN Inception

ResNet-v2, was trained on each agricultural dataset using default

settings. Subsequently, various image resizers, interpolators,

weight initializers, batch normalization, and DL optimizers are

applied to determine the most suitable combination. The

weights obtained through the best-performing configuration in

terms of the highest mAP and highest number of detected classes

(for each dataset) were saved for reuse in the later stage of this

phase of the research. A summary of the results by default and

optimized settings is presented in Table 4.

Optimization on the PlantVillage dataset

After training the Faster RCNN Inception ResNet-v2 with

default settings, the effects of the aspect ratio and fixed shape

resizer were studied on the PlantVillage dataset. Image resizers

were evaluated along with interpolators to obtain the best-suited

arrangement. In this regard, an aspect ratio resizer with a

bilinear interpolator achieved an mAP of 61.11%. It was

improved by 3.17% by training through a fixed-shape resizer

trained with a bilinear interpolator with a pixel size of 300 × 300

pixels. The reason for this was the true positive detection results
Frontiers in Plant Science 14
in the classes including apple scab, healthy peach, healthy

soybean, and squash powdery mildew. Furthermore, the

model performed well after adding pixels by taking the

average of the color values of the neighboring pixels by

bilinear interpolation.

Similarly, a performance enhancement of 4.95% in the mAP

was attained after the application of a random normal initializer.

Therefore, the Faster RCNN model initialized with tensors

having a normal distribution was found to be the best method

for initializing the weights of the neural network. Next, batch

normalization was applied with different values of epsilon and

decay. It was empirically found that a 0.9 value for decay and an

epsilon of 0.01 were the most suitable values. However, the mAP

did not improve and was 65.68%. Therefore, the next step was

applied in the absence of batch normalization. The last step was

to study the effects of DL optimizers on the Faster RCNN model

for the PlantVillage (PV) dataset. The Adam optimizer could not

extract the features of several classes and achieved a low mAP of

26.53%. However, RMSProp achieved an mAP of 61.695%,

which was not an improvement over the default (SGD with

momentum) optimizer. Therefore, the final settings for the PV

dataset were the use of a fixed-shape resizer with a bilinear

interpolator, random normal initializer, SGD with momentum

optimizer, and no batch normalization, as presented in Table 4.
A B

D

E

C

FIGURE 7

Plant disease detection by different augmentation techniques. (A) False positive by OC and true positive by OT and OTCN. (B) False positive by
OO, OC, and true positive by OT for healthy beans (leaves). (C) False positive by OC and true positive by OT and OCN for healthy tomato
leaves. (D) False positive by OO, true positive by OT, and false negative by OTCN for kumara Alternaria leaf spot. (E) True positive by OT and
OCN, and false positive by OC for tomato late blight.
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TABLE 4 Summary of each step of the proposed methodology.

Steps of the
proposed
approach

Training
Specifications (Image resizers,
interpolators, initializer, batch

normalization, and DL
optimizers)

Training and testing performance Analysis and remarks

DL
models

Training
time (h)

Training
loss (%)

Validation
loss (%)

mAP
(%)

Obtain the best-suited
DL architecture

AR with bilinear
TN, SV
No BN
SGD

Faster
RCNN
Inception
ResNet-
v2

18 0.13 0.35 63.74 Two of the best DL models
achieved the highest mAP; some
of the classes were not detected.

Faster
RCNN
ResNet-
101

12 0.06 0.2 60.34

Application of data
augmentation
techniques

Original and translation/rotational
changes
Default training settings

Faster
RCNN
Inception
ResNet-
v2

18 0.425 0.61 82.08 Both DL architectures achieved
better results after adding
translational/rotational images to
the training dataset.

Faster
RCNN
ResNet-
101

12 0.375 0.52 70.83

Training on
agricultural
datasets

PV Default settings Faster
RCNN
Inception
ResNet-
v2

18 0.54 0.75 61.11 The Faster RCNN Inception
ResNet-v2 was trained on
different datasets with default
settings.

NZDL-
1

Faster
RCNN
Inception
ResNet-
v2

18 0.42 0.62 71.48

DW Faster
RCNN
Inception
ResNet-
v2

18 0.63 0.75 80.81

Weight
optimization
on
agricultural
datasets

PV FS with bilinear, RN, without BN, SGD Faster
RCNN
Inception
ResNet-
v2

12 0.46 0.64 69.23 Different performance
enhancement techniques were
applied to the agricultural
datasets to obtain optimized
weights; the best combination of
image resizer/interpolator,
initializer, batch normalization,
and DL optimizers was found to
depend on the selected datasets.

NZDL-
1

FS with bicubic, RN, BN, SGD Faster
RCNN
Inception
ResNet-
v2

12 0.31 0.46 73.32

DW FS with bilinear, TR, SV, without BN,
RMSProp

Faster
RCNN
Inception
ResNet-
v2

12 0.49 0.66 84.36

Retrain through the
best-optimized

PV dataset:
FS with bilinear, RN, without BN, SGD

Faster
RCNN

12 0.34 0.50 91.33 Used optimized weights to train
Faster RCNN Inception ResNet-

(Continued)
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Optimization on the NZDLPlantDisease-v1 dataset

Like the PV dataset, the weights of the Faster RCNN

model were optimized using the NZDLPlantDisease-v1

dataset with the same framework/steps. The default

configurat ion reached 71 .48% mAP. However , an

improvement of 0.28% in the mAP was observed when the

input images were resized using the fixed shape method with a

bicubic interpolator. A few classes, such as apple mosaic virus

and healthy pear (leaves), achieved 17.01% and 50.49%,

respectively, higher AP with fixed shape (bicubic) compared

to aspect ratio (bilinear). However, only one class (pear scab)

achieved better output with the default resizer/interpolator

combination. Faster RCNN Inception ResNet-v2 also

performed well for the NZDLPlantDisease-v1 dataset with a

random normal initializer, and an enhancement of 1.1% mAP

was observed. There was a small difference in the AP of the

healthy/disease classes compared with the default initializer.

Batch normalization with epsilon and decay was applied at 0.5

and 0.01, respectively. The mAP improved from 72.86% to

73.32%. Again, SGD with momentum performed well

compared to the other two DL optimization algorithms.

Optimization on the DeepWeeds dataset

The last selected dataset is related to other agricultural

application (weed identification). It also started with an

evaluation using the default settings. Like the other two

datasets, the fixed-shape resizer worked well for this dataset.

The bilinear interpolation method achieved the highest mAP
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among all interpolators and achieved 84.20% mAP compared to

80.81% with the default resizer. However, in contrast to the

previous datasets, DeepWeeds performed better on truncated

normal and scaling variance initializers than on random normal

initializers. Thus, it can be said that a truncated normal

distribution and adaptation of the scale to the shape of weights

resulted in a better initialization for weed detection. However,

batch normalization did not work for this dataset, and a small

performance degradation was observed, with a difference of

almost 0.3%. When evaluating the DL optimizers, RMSProp

attained the best outcomes and slightly improved the mAP

to 84.36%.

Transfer learning by optimized weights

The last step of this research evaluates the Faster RCNN

Inception ResNet-v2 model on the proposed dataset using

optimized weights from each selected agricultural dataset. In

this regard, the training and testing performances are analyzed,

and the effects of updated/new weights are studied. The

significance of this step is presented by comparing the results

obtained in the previous phase (step 2) and optimizing the

weights using a large dataset (COCO). Some important

observations from this research are presented below:
• The mAP of the Faster RCNN model was increased to

91.33% by optimizing the weights through the PV

dataset and improved by a margin of 9.25% in mAP.

The total training loss was lower than 0.34% owing to a
TABLE 4 Continued

Steps of the
proposed
approach

Training
Specifications (Image resizers,
interpolators, initializer, batch

normalization, and DL
optimizers)

Training and testing performance Analysis and remarks

DL
models

Training
time (h)

Training
loss (%)

Validation
loss (%)

mAP
(%)

weights on
NZDLPlantDisease-v2

Inception
ResNet-
v2

v2 on NZDLPlantDisease-v2
dataset; achieved a significantly
higher mAP.

Compare the results
with optimized
weights on the COCO
dataset

FS with bilinear, TR, SV, without BN,
SGD

Faster
RCNN
Inception
ResNet-
v2

12 0.39 0.56 85.85 Another comparison was made
with the optimized weights on
the COCO dataset.

Validation of the
approach

External dataset – – – 93.20 Most of the classes attained a
high mAP with the optimized
weights.

Stratified k-fold cross-validation – 88.53 No noticeable differences in the
performance of the final model
were found; few classes can be
considered in future studies.
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considerable reduction of 0.12 and 0.16% in region

proposal network (RPN) localization and box classifier

classification losses, respectively. Moreover, a small

reduction in box classifier localization and RPN

objectness loss was observed at 0.05 and 0.01%,

respectively. Furthermore, the validation loss was

reduced to 0.5%. Almost all nine classes improved

their detection outcomes and attained > 80% AP.

These classes include broccoli black rot, broccoli ring

spot, bean healthy (vegetable), cauliflower black rot,

cauliflower ring spot, cabbage ring spot, kumara

healthy, potato late blight (leaves), and pea bacterial

blight. An example of each class is shown in Figure 8.

• In Table 4, the mAP with optimized weights by

NZDLPlantDisease-v1 (former version in the series of

the proposed plant disease dataset) was 87.68% and

therefore increased by 5.6% compared to the previous

step. There are several reasons for this improvement, as

observed by the training and testing profiles of the

model. First, the total training loss was reduced to

approximately 0.36%, which was 0.425% when the

model was trained using COCO weights. This

reduction in the total loss was due to a small decrease

in RPN objectness and localization loss of 0.01% and

0.055%, respectively. These losses produce a substantial
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improvement in the mAP. However, no noticeable

changes were observed in the box classifier losses.

Second, several classes were detected, or their

individual AP was improved, such as broccoli ring

spot, cauliflower black rot, cabbage ring spot, healthy

kumara, and pea bacterial blight, by 30.58%, 23.34%,

23.75%, 28.94%, and 24.56%, respectively.

• However, the performance of the Faster RCNN model

was not improved by using the weights obtained on the

DeepWeeds dataset. The mAP was 80.73% with

performance degradation in the classes such as

broccoli healthy, cauliflower healthy (leaf), and potato

early blight (stem).

• Finally, a similar weight optimization framework was

applied to the new dataset using pre-trained weights on

a large dataset (COCO). The best configurations were a

fixed image resizer with a bilinear interpolator,

truncated normal and scaling variance initializers

without batch normalization, and an SGD optimizer.

It was found that the Faster RCNN Inception ResNet-

v2 attained 85.85% mAP, which was improved by

3.77% compared to the previous phase, but 5.48%

and 1.83% lower than the mAP obtained through the

weights of the PV dataset and NZDLPlantDisease-v1,

respectively.
A B

D E F

G IH

C

FIGURE 8

Comparison of various healthy and disease classes by optimized final model and results obtained in the previous step. (A) Broccoli black rot.
(B) Broccoli ring spot. (C) Bean healthy vegetable. (D) Cauliflower black rot. (E) Cauliflower ring spot. (F) Cabbage ring spot. (G) Kumara healthy.
(H) Potato late blight. (I) Peas bacterial blight.
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Discussion

In this section, a comprehensive analysis is presented to

explain the substantial improvement in the mAP using the

proposed methodology for the detection of plant disease.

Finally, the effectiveness of the approach is highlighted using

two methods, along with describing some limitations of

the study.
Analysis of the results obtained
in the first and second phases of
the research
Fron
• The first phase of the research was dedicated to finding

the best-suitable DL model trained on the proposed

dataset using pre-trained weights on a large COCO

dataset along with the best data augmentation method.

The main finding of this step was that the Faster RCNN

Inception ResNet-v2 achieved the best results in terms of

the highest mean average precision in the absence and

presence of augmented images. However, some classes

achieved a low AP. Interestingly, several classes

performed worse when the model was trained using all

augmentation (OTCN) techniques. Therefore, different

data augmentation categories were investigated before

attempting any improvement in the performance of the

DL model.

• The Faster RCNN model attained the best results when

it was trained with the translational/rotational (OT) data

augmentation method. There could be several reasons

for obtaining unsatisfactory results in different

categories, except for the OT. First, the number of

training images for the OO category was insufficient to

extract the distinct features of the healthy and disease

classes. After a change in the brightness, contrast, and

sharpness of the images, the symptoms of the plant

disease might become similar to other healthy/diseased

classes of the same plant species or another, resulting in

false positive outcomes. Furthermore, the features of

plant diseases resemble the background elements after

the change in color or the inclusion of noise in the input

images as shown in Figure 7A (Barbedo, 2018).

Therefore, the Faster RCNN model might not be able

to extract specific features or symptoms of plant diseases.

• Furthermore, OT augmentation has practical

importance. This is because the location/position of

the disease spot and plant organs are different in real

agricultural fields. Therefore, if the DL model performs
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well on translated/rotated images, it can be used in a

complex agricultural environment.

• The second phase aimed to study the effects of several

performance optimization methods on the agricultural

datasets to obtain the optimized weights of the Faster

RCNN model. Finally, the optimized weights from these

agricultural datasets were tested on the proposed dataset.

• It can be observed from Table 4 that each of the selected

datasets required different specifications. The

combination of various techniques depended on the

dataset because all three datasets had several

fundamental dissimilarities, for example, background

environment, number of dataset images, number of

classes, and image quality. In addition, the optimized

weights produced a significant improvement in the

performance of Faster RCNN Inception ResNet-v2

for the three datasets. This demonstrates the

importance of the performance optimization pipeline

(Saleem et al., 2022b).

• From the results, it can be observed that the

performance of the Faster RCNN model was improved

using weights optimized by other plant disease datasets.

The weights from the weed datasets did not generate any

significant difference in the performance of the model.

• There are several ways to understand the reasons for

obtaining an ample improvement in the Faster RCNN

performance by weight obtained through the PV dataset.

First, PV has a greater variety of plant disease types.

Therefore, various symptoms/spots were extracted for

transfer learning. Next, the PV dataset had a greater

number of total samples that helped learn the distinct

features successfully. Hence, the useful information

through the PV dataset was more suitable as compared

to the pre-trained weights of the Faster RCNN by

NZDLPlantDisease-v1.

• The problems highlighted in the Introduction have

been addressed. This was because the final model

successfully detected all the disease classes in different

plant organs of various vegetables with multiple

plant diseases.

• On top of that, similar performance optimization

methods were applied to the proposed dataset using

the pre-trained weights of the COCO/large general-

purpose dataset to get the optimized weights. Then,

the Faster RCNN Inception ResNet-v2 model was

retrained on the proposed dataset using the new/

updated weights. The results show that leveraging the

knowledge learned from the agricultural dataset

performed better than leveraging from the large

general-purpose dataset.
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Validation of the research

The performance of the final model was validated using two

methods. First, a stratified cross-validation method was used

because of the class-imbalance problem. This method allows for

an unbiased distribution of class samples among all folds of a

dataset. The testing dataset was folded five times. The first fold

was assumed to be the default testing dataset, which attained

91.33%, as explained in the previous section. The mAPs obtained

from fold2, fold3, fold4, and fold5 were 91.57, 90.82, 91.14, and

91.17%, respectively. Therefore, the mAP varied with a small

difference of 0.16 to 0.51%.

Subsequently, another validation was performed by testing

the final model on an external dataset (generated through a

random Google search). Overall, 14 classes achieved an AP of

more than 90%, including broccoli black rot, broccoli healthy,

bean bacterial blight, cauliflower black rot, cauliflower healthy

(leaves and vegetables), potato early blight (leaves and stems),

potato late blight (stem), peas Ascochyta blight (leaves and

vegetables), peas healthy (vegetables), tomato healthy, and

tomato late blight. However, some classes achieved an AP of
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less than 83%, such as cauliflower ring spot, kumara Alternaria

leaf spot, kumara healthy, and potato healthy (stem). These

classes should be further studied in future research. Figure 9

presents a few samples of the true and false positive outcomes

from the external dataset.
Limitations of the study

The performance of the Faster RCNN model was more

significantly improved by using the weights optimized through

PV dataset compared to NZDLPlantDisease-v1 dataset.

Therefore, it is concluded that a dataset that contains a

higher number of plant disease classes can contribute to

improving outcomes more effectively. The proposed

hypotheses could be further explored in future studies by

considering at least one more plant disease dataset in both

real and laboratory environments. In this way, it can also be

established that the environment of the dataset (from where

optimized weights are obtained) also affects the performance of

the DL model.
A

B

FIGURE 9

Results with the external testing dataset. (A) True positive outcomes. (B) False positive and false negative results.
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The NZDLPlantDisease-v2 dataset contains healthy/disease

classes for various organs of plant species, including beans, peas,

potatoes, and cauliflower. However, some crops only contain the

disease in their leaves, such as broccoli, cabbage, kumara, and

tomato. Therefore, data collection should be continued with

other plant organs of these vegetables. Moreover, due to time

constraints and weather conditions, a few other important New

Zealand vegetables, such as onion, squash, and sweet corn, could

not be considered.

The problem of multiclass plant diseases in a single organ at

a time has been addressed for only four classes. Hence, this

problem has been analyzed in a limited manner. Moreover, the

data annotation method is a lengthy process for a large number

of classes. The more difficult part is to annotate the images with

the multiclass problem, as each image must be labeled multiple

times (for each disease). Therefore, if a plant organ suffers from a

greater number of diseases, annotation time increases

significantly which can lead to reducing the accuracy of data

annotation. Hence, DL-based research still requires human effort

before training/evaluating models to perform delicate tasks such

as plant disease detection.
Conclusions and future
recommendations

This research has addressed an important agricultural

problem of identifying plant diseases in New Zealand vegetables

by deep learning. In this regard, a new dataset named

NZDLPlantDisease-v2 was generated, which contains 28

healthy/disease classes in eight plant species. This dataset also

contains complex agricultural challenges, including multiple

diseases in a single vegetable plant organ, diseases in different

plant organs, and variations in real agricultural environments.

A two-step transfer learning approach based on weight

optimization using different techniques on agricultural datasets

was proposed. In the first phase, the best-suited DL architecture

was found to be Faster RCNN Inception ResNet-v2 which

attained the highest mAP using pre-trained weights on the

COCO dataset. Then, the Faster RCNN model with translated/

rotated data augmentation techniques improved the performance

of the DLmodel, with anmAP of 82.08%. In the second phase, the

knowledge/weights extracted from the agricultural dataset were

transferred to learn the features of the classes of the proposed

dataset. In this regard, three agricultural datasets were considered:

two plant disease datasets in a controlled and real environment

and a weed dataset in complex agricultural conditions. The

weights obtained using the PlantVillage dataset significantly

improved the performance of the Faster RCNN model. The

optimization of weights was obtained having the best

configurations consisting of a fixed-shape resizer along with a

bilinear interpolator, random normal initializer, without batch
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normalization, and the SGD optimizer. The final mAP was

91.33%, and each class attained more than 80% AP. The

optimized DL model outperformed the results obtained in the

first step and the optimized weights using a general-purpose

dataset (COCO). The effectiveness of the proposed approach

was validated using a stratified k-fold cross-validation method

and external testing dataset.

Overall, this research has demonstrated an extended

strength of deep transfer learning for plant disease detection.

The proposed methodology can be used in other agricultural

applications. To extend this work, various concepts can be

explored to visualize the feature extraction of healthy/diseased

plant organs, such as t-distributed stochastic neighbor

embedding (t-SNE) plots. Moreover, a modified DL model

should be proposed to reduce the training/computation time.

Furthermore, a similar approach can be tested for segmentation

tasks using the latest DL architectures, such as DeepLab-v3, U-

Net, feature pyramid network (FPN), and pyramid scene parsing

network (PSPNet). A more in-depth analysis can be performed

using other performance metrics (Wu and Zhou, 2017) for the

multiclass plant disease detection problem.
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Hughes, D., and Salathé, M. (2015). An open access repository of images on
plant health to enable the development of mobile disease diagnostics. arXiv
preprint arXiv:1511.08060. doi: 10.48550/arXiv.1511.08060

Ioffe, S., and Szegedy, C.. (2015) “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning (Lille, France: PMLR), 448–456.

Jiang, Z., Dong, Z., Jiang, W., and Yang, Y. (2021). Recognition of rice
leaf diseases and wheat leaf diseases based on multi-task deep transfer
l e a rn ing . Comput . E l e c t r on . Agr i c . 186 , 106184 . do i : 10 .1016 /
j.compag.2021.106184

Kamal, K., Yin, Z., Wu, M., and Wu, Z. (2019). Depthwise separable convolution
architectures for plant disease classification. Comput. Electron. Agric. 165, 104948.
doi: 10.1016/j.compag.2019.104948

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980. doi: 10.48550/arXiv.1412.6980

Krishnaswamy Rangarajan, A., and Purushothaman, R. (2020). Disease
classification in eggplant using pre-trained VGG16 and MSVM. Sci. Rep. 10, 1–
11. doi: 10.1038/s41598-020-59108-x

Lee, S. H., Goëau, H., Bonnet, P., and Joly, A. (2020). New perspectives on plant
disease characterization based on deep learning. Comput. Electron. Agric. 170,
105220. doi: 10.1016/j.compag.2020.105220

Liang, W.-J., Zhang, H., Zhang, G.-F., and Cao, H.-X. (2019). Rice blast disease
recognition using a deep convolutional neural network. Sci. Rep. 9, 1–10. doi:
10.1038/s41598-019-38966-0

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for
dense object detection. Proceedings of the IEEE international conference on
computer vision. (Venice, Italy: IEEE Computer Society) p. 2980–2988.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016)
“Ssd: Single shot multibox detector,” in European Conference on computer vision
(Amsterdam, Netherlands: Springer), 21–37.

Liu, J., and Wang, X. (2020). Tomato diseases and pests detection based on
improved yolo V3 convolutional neural network. Front. Plant Sci. 11, 898. doi:
10.3389/fpls.2020.00898

Liu, J., and Wang, X. (2021). Plant diseases and pests detection based on deep
learning: a review. Plant Methods 17, 1–18. doi: 10.1186/s13007-021-00722-9

Olsen, A., Konovalov, D. A., Philippa, B., Ridd, P., Wood, J. C., Johns, J., et al.
(2019). DeepWeeds: A multiclass weed species image dataset for deep learning. Sci.
Rep. 9, 1–12. doi: 10.1038/s41598-018-38343-3

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28,
91–99. doi: 10.48550/arXiv.1506.01497

Ruder, S. (2016). An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747. doi: 10.48550/arXiv.1609.04747

Rukundo, O. (2021). Effects of image size on deep learning. arXiv preprint
arXiv:2101.11508. doi: 10.48550/arXiv.2101.11508
frontiersin.org

https://doi.org/10.1016/j.compag.2021.106279
https://doi.org/10.1016/j.compag.2020.105542
https://doi.org/10.1016/j.compag.2020.105542
https://doi.org/10.1038/s41598-022-06181-z
https://doi.org/10.1016/j.biosystemseng.2018.05.013
https://doi.org/10.3389/fpls.2020.583438
https://doi.org/10.1080/08839514.2017.1315516
https://doi.org/10.1016/j.compag.2020.105393
https://doi.org/10.1007/s11042-020-09669-w
https://doi.org/10.1002/jsfa.10365
https://doi.org/10.1016/j.compag.2022.106892
https://doi.org/10.1016/j.compag.2021.106523
https://doi.org/10.1016/j.compag.2021.106523
https://doi.org/10.1038/s41598-022-10140-z
https://doi.org/10.3390/electronics10121388
https://doi.org/10.48550/arXiv.1511.08060
https://doi.org/10.1016/j.compag.2021.106184
https://doi.org/10.1016/j.compag.2021.106184
https://doi.org/10.1016/j.compag.2019.104948
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1038/s41598-020-59108-x
https://doi.org/10.1016/j.compag.2020.105220
https://doi.org/10.1038/s41598-019-38966-0
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.1038/s41598-018-38343-3
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.48550/arXiv.2101.11508
https://doi.org/10.3389/fpls.2022.1008079
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Saleem et al. 10.3389/fpls.2022.1008079
Saleem, M. H., Khanchi, S., Potgieter, J., and Arif, K. M. (2020). Image-based
plant disease identification by deep learning meta-architectures. Plants 9, 1451. doi:
10.3390/plants9111451

Saleem, M. H., Potgieter, J., and Arif, K. M. (2022a). A performance-
optimized deep learning-based plant disease detection approach for
horticultural crops of new Zealand. IEEE Access 10, 89798–89822. doi:
10.1109/ACCESS.2022.3201104

Saleem, M. H., Velayudhan, K. K., Potgieter, J., and Arif, K. M. (2022b) Weed
identification by single-stage and two-stage neural networks: A study on the impact
of image resizers and weights optimization algorithms. Front. Plant Sci. 920. doi:
10.3389/fpls.2022.850666

Tan, M., Pang, R., and Le, Q. V. (2020) “Efficientdet: Scalable and efficient object
detection,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (CVPR). (Seattle, WA, USA: IEEE) p. 10781–10790.

Thangaraj, R., Anandamurugan, S., and Kaliappan, V. K. (2021). Automated
tomato leaf disease classification using transfer learning-based deep
convolution neural network. J. Plant Dis. Prot. 128, 73–86. doi: 10.1007/
s41348-020-00403-0
Frontiers in Plant Science 22
Too, E. C., Yujian, L., Njuki, S., and Yingchun, L. (2019). A comparative study of
fine-tuning deep learning models for plant disease identification. Comput. Electron.
Agric. 161, 272–279. doi: 10.1016/j.compag.2018.03.032

Wang, X., Liu, J., and Zhu, X. (2021b). Early real-time detection algorithm of
tomato diseases and pests in the natural environment. Plant Methods 17, 1–17. doi:
10.1186/s13007-021-00745-2

Wang, P., Niu, T., Mao, Y., Zhang, Z., Liu, B., and He, D. (2021a). Identification
of apple leaf diseases by improved deep convolutional neural networks with an
attention mechanism. Front. Plant Sci. 1997. doi: 10.3389/fpls.2021.723294

Who, J., and Consultation, F. E. (2003). Diet, nutrition and the prevention of
chronic diseases. World Health Organ Tech Rep. Ser. 916, 1–149.

Wu, X.-Z., and Zhou, Z.-H. (2017) “A unified view of multi-label performance
measures,” in International conference on machine learning (Sydney, Australia:
PMLR), 3780–3788.

Xie, X., Ma, Y., Liu, B., He, J., Li, S., andWang, H. (2020). A deep-learning-based
real-time detector for grape leaf diseases using improved convolutional neural
networks. Front. Plant Sci. 11, 751. doi: 10.3389/fpls.2020.00751
frontiersin.org

https://doi.org/10.3390/plants9111451
https://doi.org/10.1109/ACCESS.2022.3201104
https://doi.org/10.3389/fpls.2022.850666
https://doi.org/10.1007/s41348-020-00403-0
https://doi.org/10.1007/s41348-020-00403-0
https://doi.org/10.1016/j.compag.2018.03.032
https://doi.org/10.1186/s13007-021-00745-2
https://doi.org/10.3389/fpls.2021.723294
https://doi.org/10.3389/fpls.2020.00751
https://doi.org/10.3389/fpls.2022.1008079
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	A weight optimization-based transfer learning approach for plant disease detection of New Zealand vegetables
	Introduction
	Materials and methods
	A transfer learning-based approach
	Proposed dataset
	Data augmentation
	Agricultural datasets
	Deep learning framework and models
	Optimization techniques
	Image resizers and interpolators
	Weight initializers
	Batch normalization
	DL optimizers and hyperparameter selection

	Validation techniques
	External dataset
	Cross-validation method


	Results
	Phase 1: Selection of the best DL architecture and data augmentation technique using NZDLPlantDisease-v2
	Training through pre-trained COCO weights
	Category-wise study of data augmentation techniques

	Phase 2: Performance optimization by weights obtained from agricultural&#146;datasets
	Effects of image resizers, interpolators, weight initializers, batch normalization, and DL optimizers on agricultural datasets
	Optimization on the PlantVillage dataset
	Optimization on the NZDLPlantDisease-v1 dataset
	Optimization on the DeepWeeds dataset
	Transfer learning by optimized weights



	Discussion
	Analysis of the results obtained in the first and second phases of the research
	Validation of the research
	Limitations of the study

	Conclusions and future recommendations
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


