Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SYNTHESIS AND PROPERTIES

OF FULLY CONJUGATED

PORPHYRIN ARRAYS

FOR LIGHT HARVESTING

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Chemistry

at Massey University, Palmerston North, New Zealand.

Fabio Lodato

August 2006

Abstract

This thesis presents the synthesis of porphyrin arrays for light-harvesting applications using Wittig chemistry, which allows the construction of covalently bound systems that are conjugated, stable and easy to characterize. This was achieved using a dendrimer strategy utilizing tetraarylporphyrins as building blocks. monofunctionalized with either aldehyde or phosphonium salt groups at the β -pyrrolic position, and benzenes, polyfunctionalized with either aldehyde or phosphonium salt groups; stepwise control of the addition of each porphyrin moiety was thus obtained. In this way, different porphyrins in different metallated states were arranged in a determinate geometrical relationship, which is of great importance in the investigations on electron/energy transfers. Arrays containing up to five metalloporphyrin units (two kinds of porphyrins coordinating two different metals) were synthesized and characterized.

The unexpected chromatography behaviour and ¹H-NMR spectra of a Zn porphyrin functionalized with a 1,3-bis(methyl(diethylphosphonate) benzene were the reason for an investigation, which uncovered, mainly with the use of NMR spectrometry, the first case of intramolecular coordination between the Zn centre and a phosphonate group of the same porphyrin. The dynamic nature of this coordination was characterized and chemical-physical parameters for Zn porphyrin/phosphonate binding were determined.

In order to establish the photophysical properties of our conjugated arrays, we synthesized a series of dyads containing Zn and free-base tetraphenylporphyrins (TPPs) connected through variable length phenylenevinylene-type bridges; along with this series, the preparation of the Zn and free-base homometallic homologue dyads and two series of monomers carrying the conjugated linker were realized. Collaboration with IFOS-CNR in Bologna, Italy was established in order to investigate the intramolecular photophysics of those systems, which involve efficient intramolecular energy transfer from the Zn to the free-base porphyrin.

Finally, dyads composed of Fe(III) and Zn porphyrin were prepared as part of a project in collaboration with the University of Pennsylvania for the investigation of new artificial photosynthetic systems. Two series of dimers were prepared in order to obtain incorporation in both the classes of hydrophobic and hydrophilic proteins. TPPs were used for the making of the hydrophobic dyads while hydrophilicity was achieved by employing tetraester porphyrin derivatives, which can be quantitatively hydrolyzed to afford the correspondent water soluble acids. A new monosubstituted porphyrin was also synthesized and incorporated in the arrays to minimize steric hindrance inside the protein binding sites.

Declaration

This is to certify that the work described in this thesis has not been submitted for a higher degree at any other university or institution.

Fabio Lodato

Acknowledgements

I'd like to thank the people who have had an influence on this experience, likely the most life-changing in my first 30 years.

First of all, all my family and friends from the other side of the world, their distance and support made me realize a lot of things, most of which I promise to improve.

My supervisor, David Officer, for the freedom of any kind on the work-place, the financial support and, most of the times, the understanding of my uses and moods.

My co-supervisor, Ken Jolley, who, without knowing it, made possible for me to complete this PhD.

My lab-mates Pawel Wagner and Sanjeev Gambhir for their great help with everything about synthetic chemistry, Wayne Campbell with porphyrins and Mark Vigneswaran with the Wittig-Horner chemistry. Thanks also to Adam Stephenson for the preparation of some starting material, to Klaudia Wagner for the attempts with electrochemistry and to everybody else in the NRC for every job I was spared to do and the attempts to make life more enjoyable.

Thanks to Pat Edwards (NMR), David Lun and Dave Harding (MALDI, electrospray) and to everybody else in Massey who has been too kind in helping me with anything. I also want to thank our overseas collaborators, Les Dutton, Bohdana Discher and Ron

Koder in Philadelphia (porphyrin/protein interactions) and Lucia Flamigni and Barbara Ventura in Bologna (photophysics) for making this thesis more interesting.

Finally, thanks to Massey University, Nanomaterials Research Centre, FRST MAUX0202 and the Marsden Fund for the financial support.

Table of Contents

1. Introduction

1.1.	Porphyrins	1
1.2.	Porphyrin arrays	3
1.3.	Covalently linked porphyrin arrays	6
1.4.	Porphyrin and porphyrin array applications	7
1.5.	Porphyrins and porphyrin arrays for light harvesting	11
1.6.	Object and structure of the thesis	18

2. Array syntheses

2.1.	Introduction to porphyrin array preparations	21
2.2.	Dendrimers	27
2.3.	Porphyrin synthesis and functionalization	30
2.4.	Wittig chemistry	32
2.5.	Dendrimer syntheses	37
2.6.	Mixed array preparations	44
2.7.	Array characterizations	47
2.8.	Experimental procedures	56

3. Coordination of pendant phosphonate groups in Zn porphyrins

3.1.	Introduction	74
3.2.	¹ H-NMR investigation of Zn coordination in	
	Zn-22 isomers	75
3.3.	Phosphonate coordination to Zn porphyrins	79
3.4.	Low temperature NMR experiments	84
3.5.	Identification of the coordination around the metal in	
	Zn porphyrins	88
3.6.	Conclusions	92
3.7.	Experimental procedures	93

4. Porphyrin photophysics

	4.1.	Introduction	100
	4.2.	Intramolecular photophysics	104
	4.3.	Time-resolved spectroscopy	109
	4.4.	Zn/fb and Zn/Fe(III) porphyrin dyads photophysics	113
	4.5.	Monomer models syntheses	114
	4.6.	Monomer models spectroscopy and photophysics	119
	4.7.	Zn/Zn, fb/fb, and Zn/fb dyad syntheses	127
	4.8.	Dyad spectroscopy and photophysics	133
	4.9.	Conclusions	137
	4.10.	Experimental procedures	138
5.	Porph	yrin arrays for Maquette incorporation	
	5.1.	Porphyrins in biological systems	162
	5.2.	Porphyrins and maquettes	163
	5.3.	Fe(III) porphyrins	167
	5.4.	Fe/Zn dyads syntheses	170
	5.5.	Water soluble porphyrins	173
	5.6.	Water soluble porphyrin dyads	180
	5.7.	Water soluble Fe/Zn dyads	186
	5.8.	Fe(III) porphyrin array characterizations	189
	5.9.	Preliminary investigation into porphyrin/maquette binding	190
	5.10.	Conclusions	190
	5.11.	Experimental procedures	191

6. References

224

Abbreviations

Ζ	
anal.	analysis
aq.	aqueous
Ar	aryl
calc.	calculated
CV	cyclic voltammetry or cyclic voltammogram
DMF	dimethylformamide
DSSC	dye-sensitized solar cell
Et	ethyl
EtOH	ethanol
3	extinction coefficient
ep	ethylphosphonate
eq.	equivalents
exc.	excitation
ext	extended
FAB-MS	fast atom bombardment mass spectroscopy
Fig.	Figure
НОМО	highest occupied molecular orbital
HRMS	high-resolution mass spectrometry
h	hour
ipp	isopropylphosphonate
IR	infrared
J	coupling constant
LUMO	lowest unoccupied molecular orbital
μL	microlitre
MALDI-MS	matrix assisted laser desorption of ions mass spectroscopy
max	maximum
Me	methyl
mep	meta-ethylphosphonate
min	minutes
Μ	molarity

mmol	millimole
mol	mole
NMR	nuclear magnetic resonance
pep	para-ethylphosphonate
Ph	phenyl
phos	phosphonate
Pr	propyl
ps	phosphonium salt
sat.	saturated
THF	tetrahydrofuran
TLC	thin layer chromatography
TPP	tetraphenylporphyrin
ТХР	tetraxylylporphyrin
UV	ultraviolet

Index of Compounds

1	benzaldehyde
2	xylylaldehyde
3	ТРР
4	ТХР
5	TPP-CHO
6	ТХР-СНО
7	TPP-CH ₂ -OH
8	TXP-CH ₂ -OH
9	TPP-CH ₂ -Cl
10	TXP-CH ₂ -Cl
11	TPP-ps
12	TXP-ps
13	terephthalaldehyde
14	TPP-Ph-CHO
15	TXP-Ph-CHO
16	1,3,5-tribromomethylbenzene
17	benzene-tricarboxaldehyde
18	(TXP) ₂ -Ph-CHO
19	mesitylenetris-(triphenylphosphonium bromide)
20	xylenebis-(triphenylphosphonium chloride)
21	1,3,5-mesitylenetris(diethylphosphonate)
22	TPP-Ph-(ep) ₂
23	(TPP) ₂ -Ph-ep
24	(TPP) ₃
25	(TPP) ₂ -Ph-CHO
27	(TPP-Ph) ₂ -Ph-ep
28	1,3,5-mesitylenetris(diisopropylphosphonate)
29	(TPP-Ph) ₂ -Ph-ipp
30	(TXP-Ph) ₂ -Ph-ipp
31	((TPP) ₂ -Ph) ₂ -Ph-ipp

32	(NiTPP-Ph)2-Ph-Ph-ZnTXP
33	(NiTPP-Ph)2-Ph-Ph-(ZnTXP)2
34	((NiTPP)2-Ph)2-Ph-Ph-ZnTXP
35	1,3-xylenebis(diethylphosphonate)
36	TPP-Ph-mep
37	toluene(diethylphosphonate)
38	toluene(diisopropylphosphonate)
39	TPP-ext-COOMe
40	TPP-ext-CH ₂ -OH
41	TPP-ext-CHO
42	TPP-ext-CH ₂ -Cl
43	TPP-ext-CH ₂ -ps
44	l,4-xylenebis(diethylphosphonate)
45	TPP-Ph-pep
46	TPP-Ph-TPP
47	TPP-Ph-Ph-CHO
48	TPP-CH=CH ₂
49	TPP-ext-CH=CH ₂
50	TPP-Ph-CH=CH ₂
51	TPP-Ph-Ph-CH=CH ₂
52	trans-4-stilbenecarboxaldehyde
53	trans-4-vinylstilbene
54	(TPP) ₂
55	TPP-ZnTPP
56	TPP-Ph-ZnTPP
57	TPP-ext-Ph-ZnTPP
58	TPP-ext-Ph-TPP
59	TPP-Ph-Ph-ZnTPP
60	TPP-Ph-Ph-TPP
61	FeTPP-Ph-TPP
62	FeTPP-ext-Ph-TPP
63	FeTPP-Ph-ZnTPP
64	FeTPP-ext-Ph-ZnTPP
65	FeTPP-Ph-Ph-ZnTPP

66	tetra(4-sulfonatophenyl)porphyrin, TSPP
67	tetra(4-pyridinyl)porphyrin, T4PyP
68	tetra(3-pyridinyl)porphyrin, T3PyP
69	tetra(4-methylpyridinium iodide)porphyrin, T4MPyP
70	tetra(3-methylpyridinium iodide)porphyrin, T3MPyP
71	TPyP-(Br) _n
72	3-bromomethyl benzoic acid
73	3-carboxaldehyde benzoic acid
74	3-carboxaldehyde-methylbenzoate
75	3-carboxaldehyde-ethylbenzoate
76	tetra(3'-(methylcarboxylate)phenyl)porphyrin, T3(M)EPP
77	tetra(3'-(ethylcarboxylate)phenyl)porphyrin, T3(E)EPP
78	T3(M)EPP-CHO
79	T3(E)EPP-CHO
80	T3(M)EPP-CH ₂ -OH
81	T3(E)EPP-CH ₂ -OH
82	T3(M)EPP-CH ₂ -Cl
83	T3(E)EPP-CH ₂ -Cl
84	T3(M)EPP-CH ₂ -ps
85	T3(E)EPP-CH ₂ -ps
86	4-bromobenzaldehyde acetal
87	terephthalaldehyde monoacetal
88	2-pyrrole methanol
89	dipyrrylmethane
90	dipyrrylthione
91	monoacetalporphyrin, MAP
92	para-diacetalporphyrin
93	porphine
94	monobenzylporphyrin, MBP
95	MBP-T3EPP
96	MBP-T3CPP
97	MBP-ZnT3EPP
98	FeMBP-ZnT3EPP
99	FeMBP-ZnT3CPP

100	T3(E)EPP-Ph-CHO
101	T3(E)EPP-Ph-ep
102	T3(E)EPP-Ph-Ph-ipp
103	FeMBP-Ph-ZnT3(E)EPP
104	FeMBP-Ph-Ph-ZnT3(E)EPP
105	FeMBP-Ph-ZnT3CPP
106	FeMBP-Ph-Ph-ZnT3CPP
107	FeTPP-Ph-ZnT3(E)EPP
108	FeTPP-Ph-ZnT3CPP

Index of Figures

		Page
Figure 1-1	Porphine	1
Figure 1-2	Aromaticity in free-base, dianionic and metallated porphyrins	2
Figure 1-3	UV-visible absorption spectrum of ZnTPP (Zn-3) in DCM	
	$(3.2 \times 10^{-6} \text{M})$ with the Q band region expanded	2
Figure 1-4	Fused porphyrin tapes by Tsuda and Osuka	3
Figure 1-5	Cofacial dimers by Collman et al. and Fletcher and Therien	4
Figure 1-6	Coordinated porphyrin arrays by Okumura et al. and Plieger et al.	5
Figure 1-7	Coordinated nonaporphyrin array by Mak et al.	5
Figure 1-8	Coordinated triporphyrin array by Slagt et al.	6
Figure 1-9	Covalently linked array by Sanders et al.	6
Figure 1-10	Chiral Ru porphyrin catalyst by Simonnaux and Le Maux	8
Figure 1-11	Triple-decker array by Schweikart et al.	9
Figure 1-12	Arrays for optoelectronics by Holten et al.	10
Figure 1-13	Linear arrays with controlled dihedral angles by Ahn et al.	10
Figure 1-14	Three-dimensional grid array by Nakano et al.	11
Figure 1-15	Model of the purple bacterial photosynthetic unit by Pullerits and	
	Sundtröm	12
Figure 1-16	Schematic representation of a Grätzel cell by Campbell	13
Figure 1-17	Schematic representation of an inverted photovoltaic device by	
	Borgström et al.	14
Figure 1-18	Polypeptide/porphyrin/fullerene photovoltaic device	
	by Hasobe et al.	14
Figure 1-19	Schematic representation of antenna effect in porphyrin arrays	15
Figure 1-20	Dendritic multiporphyrin antenna by Choi et al.	16
Figure 1-21	Mixed metal pentamer Ni ₄ Zn-34	19
Figure 1-22	Simulated 3-dimensional structure of Zn-22c	19
Figure 1-23	Series of Zn/free base porphyrin dyads	20
Figure 1-24	Fe(III)/Zn porphyrin dyads for protein binding	20

Figure 2-1 Meso-meso linked conjugated dimers by Osuka et al.	21
Figure 2-2 Precursor for polyphenylene dendrimers by Diez-Barra et al.	28
Figure 2-3 Polyphenylene dendrimer	29
Figure 2-4 ¹ H-NMR spectrum of 25	48
Figure 2-5 ¹ H-NMR spectrum of the aromatic region of 25	49
Figure 2-6 Signal attributions by ¹ H- ¹ H NMR correlations	50
Figure 2-7 ¹ H-NMR resonances of <i>trans</i> , <i>cis</i> and vinyl β -pyrrolic substituents	51
Figure 2-8 ¹ H-NMR spectrum of Ni-31	51
Figure 2-9 ¹ H-NMR and COSY spectra of Ni-31	52
Figure 2-10 ¹ H-NMR and COSY spectra of Ni ₄ Zn-34	53
Figure 2-11 MALDI spectrum of Ni ₄ Zn-34	54
Figure 2-12 UV-vis absorption spectra of 25, Zn-25 and Ni-25 in DCM	55
Figure 2-13 UV-vis absorption spectra of Ni-25 and Ni-31 in DCM	56
Figure 3-1 ¹ H-NMR (500 MHz) spectra of Zn-22t and Zn-22c	75
Figure 3-2 Ring current effect on proton chemical shifts in annulene	
and a general porphyrin	77
Figure 3-3 Empirical estimate of ring current shield in porphyrins	
by Riche <i>et al.</i>	78
Figure 3-4 Computer-generated models of the conformations in <i>trans</i>	
and <i>cis</i> isomers of M-22	79
Figure 3-5 Phosphonate coordination to a Zn porphyrin	80
Figure 3-6 ZnTPP titration of ligands containing P-O bonds using ³¹ P-NMR	80
Figure 3-7 ¹ H-NMR (500 MHz) spectra of Zn-22t and Zn-22c	
at concentrations of 10^{-2} M and 10^{-3} M	81
Figure 3-8 Simulated 3-dimensional structure of Zn-22c	82
Figure 3-9 Bond distortion effect on vinyl NMR resonances of Ni-22c	
and Zn 22c	82
Figure 3-10 ¹ H-NMR (400 MHz) resonance of methyl groups in Zn-36c	83
Figure 3-11 ¹ H-NMR (700 MHz) and ³¹ P-NMR (400 MHz) spectra of Zn-22c	
at various temperatures	84
Figure 3-12 Observed and calculated lineshapes for ¹ H-NMR spectra of	
Zn-22c at various temperatures	86
Figure 3-13 Arrhenius plot for phosphonate exchange in Zn-22c	87

Figure 3-14 Zn-3 ¹ H-NMR titrations of phosphonate 38	90
Figure 3-15 Zn-3 ³¹ P-NMR titration of phosphonate 37	90
Figure 3-16 Zn-O distances in complexes with $C.N. = 5$ and $C.N. = 6$	91
Figure 3-17 Possible difference in the coordination geometry between	
ZnTPP + phosphonate and Zn-22c	92
Figure 4-1 Porphyrin electronic transitions after excitation	
in the UV-visible region	100
Figure 4-2 Exciton coupling in non-conjugated linear porphyrin arrays	
by Piet et al.	102
Figure 4-3 UV-visible-near IR absorption spectra of a series of porphyrin	
'tapes' by Kim and Osuka	102
Figure 4-4 Zn and free-base dyads and monomers for	
photophysical investigation	103
Figure 4-5 Porphyrin-perylene dyad by Tomizaki et al. and	
porphyrin-fullerene dyad by Schuster et al.	104
Figure 4-6 Förster vs. Dexter energy transfer mechanisms	105
Figure 4-7 Homometallic dyads by Kadish et al.	106
Figure 4-8 Zn/free base dyads by Hsiao et al. and Osuka et al.	106
Figure 4-9 Zn/Fe(III) dyads by Helms et al.	107
Figure 4-10 Zn/Fe(III) dyad by Fujita et al.	108
Figure 4-11 β -Pyrrolic alkynyl linked porphyrin arrays by Therien <i>et al.</i>	108
Figure 4-12 Schematic representation of a ns time-resolved	
absorbance spectrometer	110
Figure 4-13 Schematic representation of a ps time-resolved	
absorbance spectrometer	111
Figure 4-14 Schematic representation of a ns time-resolved	
emission spectrometer	111
Figure 4-15 Schematic representation of single photon counting apparatus	112
Figure 4-16 Schematic representation of a ps time-resolved	
emission spectrometer	113
Figure 4-17 Photophysics of Zn/free base and Zn/Fe(III) porphyrin dyads	114
Figure 4-18 ¹ H-NMR spectrum of the vinyl region in Zn-45	119

Figure 4-19 Comparison between UV-visible absorbtion spectra of 51 and	
the sum of TPP and the conjugated substituent 53	120
Figure 4-20 UV-visible absorbtion spectra of free-base porphyrins 48-50	121
Figure 4-21 UV-visible absorbtion spectra of Zn porphyrins Zn-48-Zn-51	121
Figure 4-22 Emission spectra (at 295 K) of the series 48-50 in toluene	123
Figure 4-23 Emission spectra (at 295 K) of the series Zn-48-Zn-51 in toluene	123
Figure 4-24 Emission spectra at 77 K of the series Zn-48-Zn-51	124
Figure 4-25 Series of homometallic and heterometallic ($M = Zn \text{ or } 2H$)	
porphyrin dyads	127
Figure 4-26 ¹ H-NMR resonances of the butadiene linker in Zn-54	133
Figure 4-27 UV-visible absorbtion spectra of the series of free-base	
homometallic dyads 54, 46, 58 and 60 in toluene	134
Figure 4-28 UV-visible absorbtion spectra of the series of heterometallic dyad	S
Zn/fb-55, Zn/fb-56, Zn/fb-57 and Zn/fb-59 in toluene	134
Figure 4-29 Emission spectra of the of heterometallic dyad Zn/fb-59 and	
monomer model Zn-51 in toluene	136
Figure 4-30 Picosecond time-resolved emission spectra of Zn/fb-59 in toluene	: 137
Figure 5-1 Maquettes: porphyrin binding maquette and chemical-physical	
ductility. By Dutton	163
Figure 5-2 Maquette models for proton and electron pumps by Discher <i>et al.</i>	164
Figure 5-3 Model of a porphyrin array-maquette photoactive system	165
Figure 5-4 Fe/Zn porphyrin dyads for amphiphilic maquette binding	165
Figure 5-5 Fe/Zn porphyrin dyads for hydrophilic maquette binding	166
Figure 5-6 ¹ H-NMR spectrum of MAP 91	183
Figure 5-7 ¹ H-NMR spectrum of Zn/fb-97	185

xv

Index of Synthetic Schemes

	Page
Scheme 1-1 Schematic representation of Miyatami and Amao	
photosynthetic system	17
Scheme 1-2 Schematic representation of Amao and Okura	
photosynthetic system	17
Scheme 2-1 Array syntheses by Burrell and Officer and Nagata et al.	22
Scheme 2-2 Array syntheses by Anton <i>et al.</i>	22
Scheme 2-3 Array syntheses by Campbell	23
Scheme 2-4 Array syntheses by Prathaphan et al.	23
Scheme 2-5 Ag(I) promoted array syntheses by Park et al.	24
Scheme 2-6 Phenylene bridged dimer by Burrell and Officer	24
Scheme 2-7 Simmetrically functionalized porphyrin formation	
by Lindsey et al.	25
Scheme 2-8 Functionalized porphyrin formations by Wiehe et al.	
and Kadish et al.	25
Scheme 2-9 Example of porphyrin preparation by mixed aldehyde condensation	1 26
Scheme 2-10 Porphyrin Vilsmeier formylations by Inhoffen et al.	
and Momenteau et al.	26
Scheme 2-11 Dendrimer preparations by Freeman and Frichet,	
and Zeng and Zimmerman	27
Scheme 2-12 Dendrimer formation through Wittig chemistry	29
Scheme 2-13 Tetraarylporphyrins (TPP 3 and TXP 4) synthesis by Adler et al.	30
Scheme 2-14 Phosphonium salt TPP-ps 11 and TXP-ps 12 syntheses	
by Burrell and Officer	31
Scheme 2-15 Mechanism of the Wittig reaction	32
Scheme 2-16 Preparation of porphyrin aldehydes 14 and 15	
by Burrell and Officer	32
Scheme 2-17 Syntheses of trialdehyde 17 and porphyrin dimer 18	
by Burrell and Officer	33

Scheme 2-18	Synthesis of mesitylenetris-(triphenylphosphonium bromide)	
	19 by Storck and Manecke	33
Scheme 2-19	Wittig chemistry attempts involving mesitylenetris-	
	(triphenylphosphonium bromide) 19	34
Scheme 2-20	Wittig chemistry attempts involving of xylenebis-	
	(triphenylphosphonium chloride) 20	34
Scheme 2-21	Phosphonates syntheses by Michaelis and Haehne	35
Scheme 2-22	1,3,5-mesitylenetris-(diethylphosphonate) 21 preparation	35
Scheme 2-23	Triphosphonate 21 Wittig reaction with Zn-5	36
Scheme 2-24	Synthesis TPP dimer aldehyde 25	37
Scheme 2-25	Porphyrins Zn-metallation reversible reaction	38
Scheme 2-26	Porphyrin dimer syntheses involving trisphosphonate 21	39
Scheme 2-27	Comparison between Zn-22c and Zn-22t reactivity	39
Scheme 2-28	Porphyrin dimer syntheses involving triphosphonates	
	21 and 28	41
Scheme 2-29	Porphyrin dimer syntheses involving	
	triisopropylphosphonate 28	42
Scheme 2-30	Porphyrin tetramer M-31 syntheses	43
Scheme 2-31	Attempts to make 2 nd generation aldehyde dendrimers	44
Scheme 2-32	Mixed trimer Ni ₂ Zn-32 preparation	45
Scheme 2-33	Mixed tetramer Ni ₂ Zn ₂ -33 preparation	46
Scheme 2-34	Mixed pentamer Ni ₄ Zn-34 preparation	46
Scheme 3-1	Aldehyde Zn-5 reaction with triphosphonate 21	74
Scheme 3-2	Preparations of Ni-22 and free base 22	76
Scheme 3-3	Porphyrin phosphonate Zn-36 synthesis	83
Scheme 3-4	Synthesis of monophosphonates 37 and 38	88
Scheme 4-1	Retrosynthetic scheme for the synthesis of porphyrins	
	M-48-M-51	115
Scheme 4-2	Syntheses of "extended" aldehyde 41 and phosphonium salt 43	116
Scheme 4-3	Wittig reaction of aldehyde Zn-5 with diphosphonate 44	117
Scheme 4-4	Wittig reaction of phosphonate Zn-45 with dialdehyde 13	117
Scheme 4-5	Synthesis of vinylstilbene 53 via Wittig chemistry	118

Scheme 4-6	Syntheses of A series dyads 54, Zn-54 and Zn/fb-55	128
Scheme 4-7	Synthesis of heterometallic dyad Zn/fb-56	129
Scheme 4-8	Synthesis of heterometallic dyad Zn/fb-57	129
Scheme 4-9	Synthesis of homometallic dyads 58 and Zn-58	130
Scheme 4-10	Synthesis of heterometallic dyad Zn/fb-59	131
Scheme 4-11	Synthesis of homometallic dyads 60 and Zn-60	131

Scheme 5-1 In	ron insertion in free-base porphyrins	167
Scheme 5-2 In	ron porphyrin dimerization equilibrium	168
Scheme 5-3 I	ron porphyrin equilibria in presence of basic water	168
Scheme 5-4	lydrophobic Fe/free base porphyrin dimer syntheses	170
Scheme 5-5 H	lydrophobic Fe/Zn porphyrin dimer syntheses	171
Scheme 5-6 7	ransmetallation between Zn and Fe porphyrins	172
Scheme 5-7 S	Synthesis of a long chain hydrophobic dimer Fe/Zn-65	172
Scheme 5-8 S	Synthesis of TSPP 66	173
Scheme 5-9 S	Syntheses T4PyP 67 and T3PyP 68	174
Scheme 5-10	Syntheses of water soluble T4MPyP 69 and T3MPyP 70	174
Scheme 5-11	Attempts to insert sulphonic groups in TPP derivatives	175
Scheme 5-12	Attempts of Vilsmeier formylation on TPyP Cu-67 and Cu-68	175
Scheme 5-13	Reversible activation of pyridines by N-oxide formation	176
Scheme 5-14	Bromination of tetrapyridylporphyrins	176
Scheme 5-15	Attempt of CO insertion in 71	177
Scheme 5-16	Attempts to introduce formyl groups in 71 and Zn-71	177
Scheme 5-17	Synthesis of T3(R)EPP 76 and 77	178
Scheme 5-18	Syntheses of T3EPP aldehyde and phosphonium salt	179
Scheme 5-19	Syntheses of functionalized hydrophilic porphyrins	179
Scheme 5-20	Retrosynthetic scheme for monosubstituted porphyrin preparation	
	according to the procedure described by Wiehe et al.	180
Scheme 5-21	Preparation of the monoprotected terephthalaldehyde 87	181
Scheme 5-22	Syntheses of dipyrrylmethane 89 by Lin et al.(via alcohol) and	
	Brückner et al. (via thione)	181
Scheme 5-23	Synthesis of MAP 91	182
Scheme 5-24	Synthesis and Fe metallation of MBP 94	183
Scheme 5-25	Synthesis of water-soluble fb/fb porphyrin dimer 96	184

Scheme 5-26	Synthesis of water-soluble porphyrin dimer Zn/fb-97	184
Scheme 5-27	Synthesis of water-soluble Zn/Fe(III) porphyrin dimer Zn/Fe-99	186
Scheme 5-28	Synthesis of porphyrin aldehyde Zn-100	186
Scheme 5-29	Syntheses of Zn porphyrin phosphonates Zn-101 and Zn-102	187
Scheme 5-30	Synthesis of long chain Zn/Fe(III) porphyrin dimers	187
Scheme 5-31	Synthesis of long chain hydrophilic Zn/Fe(III) porphyrin dimers	188
Scheme 5-32	Synthesis of TPP containing water-soluble dyad Fe/Zn-108	188

Index of Tables

		Page
Table 2-1	Syntheses of porphyrin phosphonates M-23 and M-27	40
Table 2-2	Syntheses of phosphonates M-27 and M-29	41
Table 2-3	Syntheses of phosphonates Zn-29 and Zn-30	42
Table 2-4	Syntheses of phosphonates Zn-31 and Ni-31	43
Table 3-1	¹ H-NMR (400 MHz) chemical shifts of variously metallated	
	cis and trans M-22	77
Table 3-2	Temperature dependence of exchange rate τ^{-1} between coordinated	
	and uncoordinated phosphonate ligands in Zn-22c	87
Table 4-1	Syntheses of the series of terminal methylene porphyrins 48-51	118
Table 4-2	Absorption data for TPP, ZnTPP and porphyrin series 48-51	
	and Zn-48-Zn-51 in toluene and at room temperature	122
Table 4-3	Luminescence properties of series 48-51 and Zn-48-Zn-51	
	in toluene	125
Table 4-4	Absorption data for the series of heterometallic dyads Zn/fb-55,	
2	Zn/fb-56, Zn/fb-57 and Zn/fb-59 in toluene and at room temperature	135
Table 4-5	Absorption data for the series of Zn and free-base homometallic dyads	5
	M-54, M-46, M-58 and M-60 in toluene and at room temperature	135