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ABSTRACT 

The effect of clustering interval on design effect may be 

important in selection of alternative sampling designs by 

evaluating the cost-efficiency in the context of face-to­

face interview surveys. There has been little work in 

investigating this effect in New Zealand. This study 

attempts to investigate this effect by using data from a 

two-stage sampling face-to-face interview survey. 

Seventeen stimulated samples are generated. A simple 

method, design effect= msb , is developed to estimate design 
ms 

effects for 81 vari ables for both the simulated samples 

and the original sample . These estimated design effects 

are used to investigate the effect of clustering interval. 

This study also investigates the effect of cluster size. 

The results indicate that clustering interval has little 

influence on design effect but cluster size s ubstantial 

influence. The evaluation o f the cos t-efficiency in 

alternative clus tering intervals is discussed . As an 

improvement in the efficiency of a samp le design by an 

increase in clustering interval can not be justifie d by 

the increase in cost, it seems that the sampl e design with 

the smallest clustering interval is the best . An 

alternative method design effect""' mr2 is also discusse d and 

tested in estimating design effects. The result indicates 

that the applicability of design effect""' mr2 is the same as 

that of design 
ms effect = __ b • 

ms 
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1. INTRODUCTION 

Surveys using clustered multi-stage sampling designs are 

common in research in business and other social sciences. 

For a given sample size, these sampling designs may reduce 

the cost of data collection. However, such designs lead to 

increase in the sampling variances of estimates. 

This study investigates the way in which final stage 

clustering affects sampling variances in face-to-face 

interview surveys . 

In view of the need to make an adjustment to a sampling 

variance estimate from a complex sample design , Kish 

(1965) proposed a measurement which he called "design 

effect" to describe the sampling variance increase due to 

the complex sample design . He held the position that 

sample de signs affect variance estimation and statis tical 

analysis . However, Skinner, Holt & Smith (1989 chapter 2) 

argued that it was population s t ructure rather than sample 

designs that affected variance estimation and statistical 

analysis. These two positions are often consistent. For a 

given sample design, population structure may affect 

variance estimation and statistical analysis, and vice 

versa . 

Skinner et al (1989, p 24) also proposed an alternative 

measurement which they called "misspecification effect" 

instead of design effect . That is, the measurement of 

sample design efficiency is sampling variance of the 

actual sample design over the expected value of sampling 

variance of a simple random sample with the same size, 

rather than sampling variance of the actual sample design 

over sampling variance of a simple random sample with the 

same size. However, it is difficult in practice to obtain 

the expected value of a sampling variance estimate. Thus, 

design effect is likely to be more applicable in measuring 

the efficiency of sample designs than misspecification 
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effect. 

Sampling variance increase due to clustering in surveys is 

caused by similarity of elements within clusters. This 

similarity is measured by the homogeneity of within­

cluster elements. 

There is a voluminous body of literature concerning 

complex sample design, variance estimation, design effect 

and homogeneity. However, there has been little research 

into the relation between design effect and intervals of 

selecting elements within clusters in New Zealand.· The 

need to evaluate the cost-efficiency of the alternative 

sample designs with different clustering intervals 

requires to conduct an investigation into the effect of 

clustering interval on design effect. 

Data for this study is from a face-to-face interview 

survey conducted by ACNielsen-McNair. This is a two-stage 

sample {see Chapter 4 for specification of the sample). A 

number of simulated samples are drawn from it to 

investigate the effect of clustering interval (see Chapter 

~ for the detailed discussion in generating simulated 

samples). 

Based on the design effects estimated from both the 

original sample and the simulated samples, this study 

investigates the following: 

a . The relation between design effect and 

clustering interval; 

b. The relation between design effect and 

cluster size; 



c. The applicability of the formula: 

design effect= mr2 

(see Chapter 4 for both specification and 

derivation of this formula); 

d. The effect of clustering interval on cost­

efficiency of alternative sample designs . 

The results for both a and b should be t hat design effect 

decreases with either increase in clustering interv al or 

decrease in cluster size. The result for c should justify 

the alternative estimation method for design effect. The 

result ford should prov ide the guideline for selection of 

the alternative sample designs with different clustering 

intervals. 

3 



2. METHODS OF ESTIMATING SAMPLING VARIANCES 

Methods of estimating sampling variance of complex sample 

designs can be categorized into standard (mathematical) 

methods, subsampling methods, and modelling methods. This 

chapter reviews the construction of these methods in the 

literature. 

2.1 Standard (Mathematical) Methods 

4 

These methods have been developed by mathematical 

derivation in obtaining the expected values of estimates' 

variances. Such derivation is based on probability theory. 

These methods have been discussed in the standard sampling 

theory textbooks, for examples, Hansen, Hurwitz & Madow 

(1953), Kish (1965) and Cochran (1963 & 1977). 

Notation: 

K is number of clusters in the population; 

k is number of clusters in the sample; 

M is population of a cluster; 

rn is number of sampled elements in a sampled 

cluster; 

N = KM is number of elements 1n the population; 

n = km is number of elements 1n the sample; 

Y;; is the value of the ith element in the jth 

cluster; 

~ is mean of the elements within the jth cluster 

in the population; 

~ Y. . Y; = £..i....!!... is sample mean within the jth cluster; 
i=I m 

µr is mean of the population; 

j=I 
= 

k 
1s element mean for the 



sample; 

is the population 

variance; 

2 j=I 
a 8 = -'---K---1-- is between-cluster variance in 

the population; 

K M K M 

II<Y;; -µ j )2 II<Y;; -µ;)2 
2 j=l i=l = j=I i=I 

aw=-'---N---K-- K(M-1) is within-cluster 

variance in the population; 

n k m 

""' - 2 ""' ""' - 2 SS = ""'(Y; - Y) =""'""'(Yi; - Y) is total sum of squares 
i= I j=l i= I 

in the sample; 
k 

SS8 = 2tm(~ -Yl is sum of squares between 
j=I 

clusters in the sample; 
k m 

SSw = IIo:; - ~) 2 is sum of squares within 
j = I i=I 

clusters in the sample; 

SS 
=--

km-1 
is the sample 

variance (also called mean squares in the 

sample); 
k 

I<~ -PY 
s2 __ i=-'----= SSB 

B - k -1 m(k - 1) 
is between-cluster variance 

in the sample or variance among the means of 

sampling units selected in the first stage of 

two-stage sampling; 
l m 

LL(Y;; -~)2 

S
2 _ j=l i=I 
w-

k(m-1) 
is within-

n-k 

cluster variance in the sample (also called 

5 



mean squares within clusters in the sample) 

or variance in the second stage of two-stage 

sampling. 

One conunon standard method is to estimate sampling 

variance of an estimate in a two-stage sample with equal 

subsample size and epsm (equal probability selection 

method). Sampling variance is contributed by both the 

first stage and the second stage of the sample. That is, 

2.0 

where: 

J; = !:_ is sampling fraction at the first stage; 
K 

/ 2 = !!!:... is sampling fraction at the second stage; 
M 

1- f. and 1- / 2 are finite population corrections, 

corresponding to the first-stage and the second­

stage respectively. 

6 

This formula is mathematically derived by considering the 

expected values of estimates for a parameter from both the 

first stage and the second stage of the sample. The 

detailed derivation is in Cochran (1977, chapter 10). 

However, as it is difficult in practice to obtain both 

between-cluster variance in the population and within­

cluster variance in the population, these two variances 

can be estimated by between-cluster variance in the sample 

and within-cluster variance in the sample respectively. 

That is, a; can be estimated bys; and a~ by S;. As the 

second stage sampling is made within the clusters selected 

by the first stage sampling, both a; and a~ can not 

directly be replaced bys; and S; respectively in the 
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formula. The sampling fraction at the first stage f. must 

be taken into account in estimating the sampling variance 

at the second stage (i.e., within-cluster sampling 

variance). 

Thus, sampling variance in a two-stage sample can be 

estimated by: 

2.1 

This formula is mathematically proved by seeking the 

expected values of the estimate variances of a parameter 

from both the first stage and the second stage of the 

sample . The proof is in Cochran (1977, p 278). 

As f. ~ 0, the second term in this formula is negligible 

and 1-f. ~ 1 . This e s timator can therefore be replac ed by : 

k 

2 IcP;-rY 
A 2 _ SB _ j = l a - - - - -'-------

r k k(k-1) 
2.2 

Sudrnan (1976) suggested that finite population correction 

could be taken as 1 if sampling fraction was less than 

0 . 02. This estimator may overestimate sampling variance 

even if f. is not very small . Such overestimation leads to 

a conservative sampling variance estimate. 

Formula 2.2 will produce conservative sampling variance 

• i· f Ii s; estimates 
I k is 

sz 
larger than f. (1- / 2 )-.!L. That is, that 

km 

is larger than f. (1- / 2 ) S;, implies that the estimates 
km 

of formula 2.2 are larger than those of formula 2.1. 



S2 S2 
If T >-;;, that is, the sampling variance contributed by 

the first stage sampling is larger than the entire sample 

sampling variance estimated by using the method of simple 

random samples, .r s; . .r f S! 
11 will be larger than 111 (1- 2)-, and 

I k km 

formula 2.2 will produce conservative estimates. 

Proof: 

S2 S2 
f. f- f. (1- !2) k: > 0 ~ 

S2 
S2 
-~ > 0 ~ B 

m 

mS; > S! 

That is, if mS; > s; I f. s! is larger than 

And, 

SSB =(k-l)ms; 

SSw = k(m - l)S;, 

8 



m(k - l)Si > (k - l)S! ~ 

m(k - l)Si = SS 
8 

> (k - l)S! = SSw (k -1) = SS - SS 8 (k -1) ~ 
k(m -1) k(m -1) 

SS B ( 1 + k -1 ) > k -1 SS ~ 
l k(m-1) k(m-1) 

SS km - k + k -1 = km -1 SS > k -1 SS ~ 
8 k(m -1) k(m -1) 8 k(m -1) 

(km-l)SS8 > (k-l)SS ~ 

SSB SS 
-->--~ 
k-1 km-1 

SSB SS ---->----
km(k -1) km(km -1) 

s2 s2 s2 
. __!!_>-=-
.. k km n 

s2 s2 
There is often__!!_>- in such clustered samples as two­

k n 

stage samples and one stage cluster samples. 

Alsagoff, Esslemont & Gendall (1986) used formula 2.0 to 

estimate sampling variances for two variables (i.e., mean 

household income, and mean expenses on groceries). As the 

sample clusters (subsamples) were not of equal size, they 

used weights of cluster sizes to adjust sampling variance 

estimates. 

9 

Another method of estimating sampling variance in two­

stage simple random sampling is to use the method for one­

stage simple random cluster samples. That is, subsamples 



from the second stage are taken as clusters. These 

clusters are also called ultimate clusters (Hansen et al 

1953 & Kalton 1979). In a one- stage cluster sample, 

sampling variance of an estimate of mean is: 

(J 2 

C'J} = ~ [l+(M-l)p] 2.3 

where is the measurement 

of homogeneity (Co chran 1977, p 241). 

This formula is mathematically derived by deriving 

sampling v ariance from cluster totals to elements. The 

detailed derivation is i n Kish (1965) and Cochran (1963 & 

1977). 

In two-stage sampling, subsamples are formed within the 

clusters selected in the one- stage cluster sample . These 

subsarnples are taken as clus ters. Thus, sampling variance 

can be estimated by : 

A 2 S
2 

[ A] (Jr =- l+(m-l)p 
km 

2. 4 

k m 

2 L L (Y;; - Y)(Y;,. - Y) 
where p = -"-i _;_<,. ______ _ 

(m - l)(km- l)S2 

Formula 2.2 is equal to formula 2.4. From these two 

formulae, a method of estimating design effect can be 

constructed . 

10 
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2.2 Subsampling Methods 

The idea of variance estimation through replication of 

subsamples is to split at random a single sample into a 

number of subsamples. Estimates of a parameter are 

obtained from each subsample. It can be assumed that these 

estimates are from simple random samples. The variance of 

the entire sample estimate for the parameter can be 

estimated from variability between the subsample 

estimates. 

Several variance estimation methods have been developed. 

These methods are random group (sometimes called ultimate 

cluster), balanced repeated replication {BRR), jackknife, 

and bootstrap. Good introductions to these methods are in 

Lehtonen & Pahkinen (1995), Sarndal, Swensson & Wretman 

(1992), and Thompson (1997). Different calculation methods 

or different subsamplings in estimating sampling variances 

are used in these variance estimation methods. 

In multi-stage (including two-stage) sampling, these 

methods are applied on the basis of the primary sampling 

units (PSUs) selected in the first stage of multi - stage 

sampling without any attention paid to the subsampling 

within the PSUs (Lee, Forthofer & Lorimor 1986; Rao & Wu 

1988 and Sitter 1992). If PSUs are self-representing, then 

these PSUs are taken as strata. The sampling units 

selected at the first stage of subsampling within these 

PSUs are sampled into subsamples for variance estimation 

by replication methods. 

2.2.1 Random Group Methods 

The idea of these methods was originally suggested by 

Mahalanobis (1939, 1944 & 1946). Deming (1956), Hansen et 

al (1953), Kish (1965) and Sudman (1976) also discussed 

these methods. These methods split at random a single 

sample into a number of subsamples with the same sampling 



design as that of the entire sample. Estimates of a 

parameter are obtained from each subsample. Then, the 

following formula is applied to estimate the variance of 

the entire sample estimate for the parameter. 

where: 

v(0) is the sampling variance estimate of the 

entire sample estimate for a parameter 0 

0 is an estimate of 0 from the entire sample; 

0i is an estimate of 0 from the jth subsample; 

k is number of subsamples; 

0 in the right side of the formula is sometimes 
A 

k e 
replaced by I,_L (the average of the 

j=I k 

estimates from k subsamples). 

2.2.2 Balanced Repeated Replication Methods (BRR) 

12 

These methods are also called balanced half-sample 

methods. Based on Plackett & Burman (1946), McCarthy (1966 

& 1969) developed and applied the idea of balanced 

repeated replication for a sample comprising only two 

sampling units from each stratum, as random group methods 

have poor stability of variance estimation in such sample 

design. Kish & Frankel (1970) applied a balanced repeated 

replication method for estimating sampling variance of 

regression coefficients. 

The idea of these methods can be described as follows: 



First, random selection of one sampling unit is 

made from a pair of sampling units in each 

stratum, whenever a sample is stratified or 

post-stratified. These sampling units selected 

form a subsample (i.e., a half-sample). The 

remainder also forms a complementary subsample. 

This procedure is repeated a number of times. 

Thus, a number of pairs of subsamples are 

obtained. 

Second, pairs of estimates of a parameter are 

obtained from each pair of subsamples. 

Third, the difference between a subsample 

estimate and either its complementary subsample 

estimate or the average of this pair of sample 

estimates is squared. Then, the average of such 

squared differences for all pairs of subsamples 

is the variance estimate desired. 

This can be expressed in terms of the formula: 

k A 

L,(0j -0)2 

v(0) = .....;1-· ----, or 
k 

where: 

A 

k 

L,(0j -0/)2 
v(0) = -1

-· ----

4k 

v(0) is the sampling variance estimate of the 

entire sample estimate for a parameter 0; 
A 

0 is the estimate of 0 from the entire sample; 
A 

0j is an estimate of 0 from the jth subsample; 

A 

0j ' is an estimate of 0 from the jth 

complementary subsample; 
A 

ej is the average of both oj and 0j'; 

k is the number of pairs of subsarnples. 

13 



2.2.3 Jackknife Methods 

The idea of these methods was originally developed by 

Quenouille (1949 & 1956) for reducing the bias of an 

estimate, rather than estimating variance. Tukey (1958) 

suggested using this idea for estimating sampling 

variances. Durbin (1959) applied a jackknife method to 

variance estimation with a ratio estimator. 

This idea can be described as follows: 

First, a single sample is randomly split into k 

groups . The jth subsample is formed by random 

reduction of the jth group from these k groups. 

Second, k estimates can be obtained from these k 

subsamples. The variance estimate desired can be 

calculated by the formulae: 

k A 

Lcej-0)2 
V (0) - - 1

-· ---­
! - k(k-1) 

where: 

or 

k 

I<ej -e / 
V (0)--1

-· ----
2 - k(k-1) 

v/8) and v2 (8) are sampling variance estimates of 

the entire sample estimate for a parameter 8; 
A 

8 is the estimate of 8 from the entire sample; 
A 

A k £I 
- ~U · 
8 = L..-1 

; 

j=I k 
A 

8j is the estimate of a parameter from the jth 

subsample; 

k is the number of subsamples. 

A A 

v2 (8) is more conservative than v1(8), as 

v2 (8)=v1(0)+(8-8)2/ck-1) (Wolter 1985). 

14 
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2.2.4 Bootstrap Methods 

The idea of these methods was originally suggested by 

Efron (1979, 1981 & 1982). He used it to generate 

subsampling distributions as a means of obtaining 

approximate variance estimates and confidence intervals. 

Subsamples (also called bootstrap samples) are formed by 

drawing sampling units with replacement from a single 

sample and the subsample size is the same as this sample 

size. The same formula as used for random group methods is 

applied to calculate sampling variance for a parameter 

estimate with this sample design. 

2.3 Modelling Methods 

2.3.1 The Taylor Linearization Method 

This is an old and well-known method. It is applied in the 

context of a nonlinear estimator of a survey statistic of 

interest. Typical examples of such statistics are ratios, 

differences of ratios, correlation coefficients and 

regression coefficients . The idea of this method is to 

approximate the nonlinear estimator by a linear function 

of the observations. The linear function is produced by 

the Taylor series expansion. Then, other variance 

estimation methods are used to estimate the variance of 

the estimator. That is, the Taylor linearization method 

per se does not produce a variance estimator (Wolter 1985 

& Woodruff 1971). 

The Taylor series expansion expresses a nonlinear function 

in terms of linear terms plus remainder terms. This 

expression is produced by programming derivatives of the 

nonlinear function with respect to the observations. If 

the nonlinear function is of order 2 continuous 

derivatives, the Taylor series expansion can be expressed 

as linear terms plus a remainder term (Fuller 1996 and 

Wolter 1985). That is, 



0 = 0 + i dj ( f) ( }'. - fi) + Rn ( }', f) 
i=I dy j I 

where: 

~(Y,Y)= ±±(l/2!)cff(Y)(Y;-Y;)(~-½) is the remainder term; 
i=I j=I d'J/fjj 

A A 

0 = f(Y) is the nonlinear estimator of a parameter 

of interest 0 = f(Y) at y= Y; 

Y is the estimator of Y which is a sequence of 

population totals or means fork parameters 

i,;, ... ,¾; 

9;, ... ,Yk is the estimators of J,;, ... ,¾; 
A A 

Y and J,;, ... ,Yk depends on sample design and sample 

size; 

0 ~ 8 and the remainder term ~ 0 as n ~ oc; 

Y; and yj are the observations corresponding to 

J,;, ... ,Yk; 

Y is between Y and Y . 

16 

If the nonlinear function has orders (i.e., positive 

integer) continuous derivatives, the Taylor series 

expansion can express it as a polynomial of up to orders-

1 plus the remainder term (Fuller 1996, pp 224-245). That 

is, 

0 = (I) A 0 + f ( Y )( Y - Y) + ... 

+ 

where: 

t<iJ(Y) is the i th derivative of f(y) at y = Y; 
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i = 1, 2, • • • I s-1; 

and 0 -? 0 as n ~ oc 

The linear function is produced by only retaining the 

linear terms in the function of the estimator. Thus, for a 

nonlinear parameter of interest 0 with order 2 continuous 
A 

derivatives, the linear variance estimator of 0 of the 

A A 

covariance between Y; and Yi . This is the Taylor first 

order approximation to the variance estimator of a 

nonlinear estimator. As the Taylor first order 

approximation often produces satisfactory results, the 

first order expansion rather than higher order expansion 

is often used whenever the Taylor linearization method is 

applied (Sarndal et al 1992 & Wolter 1985). 

2.3.2 The Generalized Variance Function Method 

The generalized variance function method is to build a 

mathematical relation connecting the variance of an 

estimator of a survey statistic to the expectation of the 

estimator through estimating the parameters of the model 

from past survey data or a small subset of data (e.g., a 

pilot sample survey data). Then, the model can produce the 

variance of the estimator by entering the estimate of the 

statistic into the model, rather than directly and 

individually computing the variance (Wolter 1985). 

2.4 Discussion of Variance Estimation Methods 

Among the foregoing methods of estimating sampling 

variance for an estimate of a parameter, standard 

{mathematical) methods are mathematically derived by 

applying probability theory. Thus, standard {mathematical) 
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methods can produce the most accurate and reliable results 

if data satisfies their requirements. However, these 

methods are only applied to estimate design effect or 

sampling variance for the simplest statistics - means. 

Subsampling methods and modelling methods are used if 

standard methods are inapplicable. The following 

discussion is concerned with subsarnpling methods and 

modelling methods. 

Random group methods require that the sampling design of 

subsamples is the same as that of their parent sample. 

This leads to formation of random groups before data 

collection, that is, all random groups have to be designed 

in the sample scheme before the survey starts. This tends 

to reduce the degree of stratification, and thus the 

efficiency of the sampling scheme. Due to this drawback, 

actual formation of random groups is seldom used in 

practice (Lee et al 1986 & Sarndal et al 1992). 

As random groups are often formed after data collection 

has been completed, the restriction that sampling design 

of subsarnples is the same as that of their parent sample 

must be abandoned, that is, subsamples are not 

independent. Such non-independence causes underestimation 

of sampling variance, as there is covariance between 

estimates from random groups (subsamples). However, in 

many large-scale surveys, this covariance is not important 

(Wolter 1985, p 34) . 

On the other hand, the precision of estimates of sampling 

variances by random group methods depends on the number of 

subsamples. The number should be larger for more precise 

estimation. However, the number of subsamples is limited 

by the size of both the entire sample and the subsamples. 

If subsarnple size is too small, the subsarnple estimates 

may be of high variability. With a given number of 

subsamples, the high variability of the subsarnple 

estimates will lead to a larger sampling variance estimate 
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of the entire sample estimator for a parameter. That is, 

the small subsample size may lead to overestimation of the 

sampling variance of the entire sample estimator. A large 

number of subsamples may also lead to more costly and 

cumbersome calculation of the sampling variance estimate. 

Thus, sampling variance estimation faces the decision of 

the appropriate number of subsamples within a given size 

of a single sample. As there are no laws to follow in 

making such decision, researchers have to determine the 

number of subsamples on their own experiences. There are 

several examples of determining number of subsamples. 

Mahalanobis (1939, 1944 & 1946) preferred to use four 

subsamples. Deming (1960) suggested that 10 subsamples be 

appropriate . Sudman (1976) suggested that the number of 

subsamples is limited to four. 

Norlen & Waller (1979) suggested replication as a solution 

to overcome the difficulty in deciding the appropriate 

number of subsamples and reduce the variability of 

sampling variance estimates arising from different numbers 

of subsamples. That is, sampling variance estimates for 

the entire sample estimator of a parameter are obtained by 

repeating using a random group method where the subsample 

size is large enough and the number of subsamples small, 

and then the mean of these sampling variance estimates is 

the sampling variance estimate desired. This solution can 

be expressed in the formula: 

A 1 ~ A 

v(0) = - £..i v(0); 
r i=I 

where: 

A 

v(0) is the sampling variance estimate of the 

entire sample estimate for a parameter 8; 

r is the number of repeated replication; 
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,.. 
v(0); is the i th sampling variance estimate 

obtained by the formula 2.5. 

Random group methods are not useful if the number of PSUs 

is small at the first stage of multi-stage sampling 

(Hansen et al 1953). 

Random group methods also have poor stability of variance 

estimation, if there are only two sampling units in each 

stratum in the case of stratified sampling designs. This 

leads to the production of balanced repeated replication 

methods. 

Balanced repeated replication methods require that there 

is only a pair of sampling units within each stratum. 

These methods may not be applicable if it is difficult to 

stratify the sample into only two units in each stratum. 

The number of pairs of subsamples is also required to be 

integer and larger than the number of strata. However, the 

calculation with these methods is intensive if the number 

of strata is large. Thus, the appropriate number of 

subsamples is one of the decisions for application of 

balanced repeated replication methods. 

The main interest of balanced repeated replication methods 

lies in their application to variance estimation for more 

complex statistics, for examples, correlation coefficients 

and regression coefficients, as they can produce more 

accurate results for such complex statistics (Sarndal et 

al 1992). Balanced repeated replication methods can also 

lead to valid inference for both smooth and non-smooth 

statistics such as median and quantiles in complex 

sampling designs (Rao 1997). 

Jackknife methods are more applicable than balanced 

repeated replication methods, if there is a large number 

of sampling units within each stratum or it is difficult 

to stratify the sample. 
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However, as subsamples are formed by omitting one group 

(unit), these methods perform poorly with non-smooth 

statistics such as median and quantiles for which balanced 

repeated replication methods may have valid performance. 

This is supported by some literature with empirical 

evidence. For examples, Sitter (1992) found that the 

performance of jackknife methods with the median was poor 

in comparison with the performance of five other methods 

in stratified sampling, that is, a jackknife estimator is 

of asymptotic inconsistency for estimating variance of the 

median. Similarly, Kovar, Rao & Wu (1988) empirically 

found that jackknife methods performed poorly for 

estimating variance of the quantiles . 

Moreover, like random group methods, these methods have 

difficulty in deciding the appropriate number of 

subsamples. 

Bootstrap methods have both advantages and disadvantages 

over the other methods (Kovar et al 1988; Rao & Wu 1988; 

Sarndal et al 1992; & Sitter 1992). 

Rao & Wu (1988) and Sitter (1992) found that bootstrap 

methods might be better in estimating confidence interval 

with one-tailed error rate than the other replication and 

the Taylor linearization methods. Similarly, Kovar et al 

(1988) investigated the application of bootstrap methods 

in stratified random sampling with replacement. They found 

that bootstrap methods tended to produce better confidence 

interval for ratios and correlation coefficients than the 

Taylor linearization method and jackknife methods. 

However, the performance of bootstrap methods is less 

stable than those of the Taylor linearization method and 

jackknife methods (Kovar et al 1988; Rao & Wu 1988 & 

Sarndal et al 1992}. 

Moreover, like random group methods and jackknife methods, 
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these methods have difficulty in deciding the appropriate 

number of subsamples. 

The validity of the Taylor linearization method depends on 

that of the Taylor series expansion. The validity of the 

Taylor series expansion depends on two conditions. The 

first is the validity of the nonlinear function estimating 

a parameter of interest from observations. The second is 

the validity of a linear function approximating the 

nonlinear function. Thus, the validity of the Taylor 

linearization method depends on that of both the 

generation of nonlinear function from observations and the 

approximation of a linear function to this nonlinear 

function. 

The Taylor linearization method also requires that the 

sample is large enough. The larger is the sample, the more 

precise the estimator with this method. Otherwise, it has 

a tendency to lead underestimation of sampling variance 

(Sarndal et al 1992 & Woodruff 1971). The variance 

estimator may be unreliable in the case of highly skewed 

population distribution (Wolter 1985). 

The validity of the generalized variance function method 

also depends on that of the variance functions estimating 

the parameters of interest from observations. This method 

is usually applied for large-scale multi-stage sample 

surveys and large number of statistics where statistics 

are grouped as it is much more convenient and economical 

than the others (Wolter 1985). An example of application 

of this method is the Current Population Survey conducted 

by the US Bureau of the Census. 

Obviously, each sampling variance estimation method has 

both advantages and disadvantages. One common drawback of 

subsampling methods is the difficulty of deciding the 

appropriate number of subsamples, and the key in applying 

modelling methods is the validity of the nonlinear 

function of describing a parameter generated from 



observations. When subsampling methods and modelling 

methods are applicable, which of them is the best? 
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None of them is the best, according to such criteria as 

the accuracy of estimation, flexibility of application, 

the cost of calculation and convenience of administration. 

This is a common finding in the literature. 

Kish and Frankel (1974) investigated the performance of 

the Taylor linearization method, balanced repeated 

replication methods and jackknife methods by using these 

methods to estimate sampling variance of correlation 

coefficients, ratio means, and regression coefficients. 

They found that there was the variability of sampling 

variance estimation among these methods for a given 

statistic. Kish (1987) further discussed the application 

of these methods. He found out that none of these three 

methods was clearly superior. 

Wolter (1985) used the results from five empirical studies 

to investigate the performance of random group methods, 

balanced repeated replication methods, jackknife methods 

and the Taylor linearization method in estimating sampling 

variances. He also investigated the performance of 

generalized function method. He found that all these 

methods had advantages and disadvantages. He pointed out 

none of these methods was best. 

Similarly, Lehtonen & Pahkinen (1995) found that there was 

variability of performance with the Taylor linearization 

method, balanced repeated replication methods, jackknife 

methods and bootstrap methods in estimating sampling 

variances. 

The finding that none of subsampling methods and modelling 

methods is clearly superior to the others implies that it 

is difficult to make the selection among these alternative 

methods of estimating sampling variances when standard 

methods are inapplicable. 
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3. DESIGN EFFECT 

3.1 Introduction 

The methods discussed in the previous chapter are often 

used to estimate the sampling variance or design effect of 

an estimate from a complex design sample. 

Kish (1965) proposed "design effect" as a measurement of 

the efficiency of complex sample designs. This proposition 

is based on Hansen et al (1953) who pointed out that in a 

one-stage simple random cluster sample, sampling variance 

based on clusters tends to be larger than that based on 

elements. This sampling variance increase is caused by 

similarity of elements within clusters, which can be 

measured by within-cluster homogeneity p. 

Since then, there have been some common findings in the 

literature. These findings are: 

1. Design effect depends on sampling designs, 

that is, design effect varies from one 

sampling design to another; 

2. Design effect depends on the nature of 

variables measured for a given statistic, 

that is, design effect varies from one 

variable to another for a given sampling 

design; 

3. Design effect depends on statistics for a 

given variable, that is, design effect varies 

from one statistic to another for a given 

sampling design. 

This chapter reviews these findings in the literature. 
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3.2 Design Effects for Different Statistics and Variables 

3.2.1 Design Effect for Different Statistics 

For a given variable and a given sampling 

design, the design effect of one statistic is 

different from that of another. 

This is a common finding in the literature. Within a given 

sampling design, a number of authors have described design 

effect on various statistics for a given variable. 

Kish (1965) found that design effects for differences 

between subclass means were less than those for the 

corresponding subclass means. He pointed out that the 

covariance between subclass means was positive and this 

implied that design effects for subclass means were larger 

than those for differences between subclass means. This is 

consistent with the empirical result of Verma & Le (1996). 

Verma & Le (1996) used data from 48 nationally 

representative surveys under the Demographic and Health 

Surveys Programmes to investigate design effects for 

subclass means and those for differences between these 

subclass means. They found that design effects for 

differences between subclass means were usually lower than 

those for the corresponding subclass means. 

Kish & Frankel (1970) & Frankel (1971) further provided an 

empirical investigation on design effects for overall 

means and other statistics such as domain means, 

correlation coefficients and regression coefficients. They 

found that design effects for overall means are larger 

than those for domain means. The reason is that in a 

clustered sample, homogeneity p is nearly equal for both 

the original sample clusters and the crossclusters that 

are formed by subclasses across the original sample 

clusters, but the sizes of crossclusters are reduced. Such 

reductions in crosscluster sizes lead to decreases in 
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design effects for subclass means. They also found that 

within given variables or subclasses, the design effects 

for regression coefficient and correlation coefficient are 

less than those for the corresponding means. 

From these empirical findings, Kish & Frankel (1974) 

conjectured that the design effects for simple statistics 

such as means tend to be larger than those for more 

complex statistics such as difference between means, 

correlation coefficients and regression coefficients. Kish 

(1987) further provided detailed discussion of these 

findings and conjectures. He pointed out that relation 

among design effects for complex statistics was difficult 

to predict or conjecture. These conjectures about the 

relation between simple statistics and complex statistics 

are supported by Bebbitington & Smith (1977), Campbell 

(1977) and Scott & Holt (1982). 

Bebbitington & Smith (1977) found that design effects for 

means were larger than those for correlation coefficients. 

Campbell (1977) and Scott & Holt (1982) investigated the 

effect of clustering on ordinary least squares regression 

analysis. In order to explain the observation that design 

effects for regression coefficients of independent 

variables are smaller than that for the sample mean of the 

dependent variable, they analysed design effect for a 

regression coefficient in a simple ordinary least squares 

regression analysis (i.e., a simple regression equation 

y=bx+e, where y is the dependent variable; bis the 

regression coefficient; and e is error) with the 

assumption that the regression coefficient is the same in 

all clusters. They found that design effect for the 

regression coefficient was 1 + (m-l)P,Px (intracluster 

correlation coefficient of residual and independent 

variable respectively). As the product of p, and Px is 

often smaller than p (intracluster correlation coefficient 

of dependent variable), the design effect for the 



regression coefficient is smaller than that for sample 

mean of the dependent variable. 

3.2.2 Design Effect for Different Variables 

For a given statistic and a given sampling 

design, the design effect of one variable is 

different from that of another. 

In clustered samples, the homogeneity of elements within 

clusters varies from one variable to another. This leads 

to variability of design effect among variables. Such 

variability is a common finding in the literature 

(Ferringo, Valli, Groenerveld, Buch & Coetzee 1992; Kish 

1965 & 1987; Kish & Frankel 1974 and Verma & Le 1996). 

3.3 Design Effect and Stratification 
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Stratification may reduce design effect and thus improve 

the efficiency of sampling designs. Such improvement 

depends on both the within-stratum variance in a sample 

and the entire sample variance. If the latter is larger 

than the former, design effect is less than one. The 

efficiency of the sample design is improved. However, such 

improvement is usually small if the sample is 

geographically and proportionally stratified (Bebbitington 

& Smith 1977; Hansen et al 1953 & Kish 1965). This is also 

supported by the calculated result from Alsagoff et al 

(1986). 

3.4 Design Effect and Clustering 

The effect of clustering on design effect has been 

discussed in the literature for many years. The literature 

is directly related to what this study is concerned with. 

Face-to-face interview surveys often use multi-stage 
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sampling (clustering) designs, as such designs are much 

more economical than one-stage simple random sampling 

designs. Each stage of multi-stage sampling affects both 

survey cost and design effect. However, the final stage 

clustering designs are crucial in influencing survey cost. 

There are two components in clustering: cluster size and 

the ways of selecting elements to form clusters. Usually, 

there are three ways: selecting consecutive elements from 

a random start point (the randomly selected element), 

systematically selecting elements with some interval from 

a random start point, and simple random selection of 

elements, to form clusters within given sampling areas in 

final stage of multi-stage (included two-stage) sampling. 

These sampling areas are often city blocks or enumeration 

districts (i.e., "mesh blocks" in New Zealand). 

Simple random sampling is rarely used in practice to 

select elements to form clusters, as its application is 

not economical in face-to-face interview surveys. On the 

other hand, selecting consecutive elements to form 

clusters is the same as systematically selecting every­

first elements to form clusters. Thus, the decisions 

facing the final stage sampling designs of surveys are the 

cluster size and clustering interval. These decisions will 

affect both the design effect and the cost of data 

collection for a sample with given size. 

3.4.1 Design Effect and Cluster Size 

Design effect increases with increase in cluster 

size, no matter how clusters are formed. 

Increase or decrease in design effect is caused by cluster 

size m and homogeneity p. Hansen et al (1953) called this 

the effect of clustering on sampling variance in terms of 

l+{m-l)p. Kish (1965) expressed it as design effect. That 
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is, 

Design effect z l+(m-l)p. 3.0 

This effect is obtained by mathematically deriving from 

sampling variance based on cluster totals to sampling 

variance based on elements. The detailed derivation is 1n 

Hansen et al (1953), Kish (1965) and Cochran (1963 & 

1977) . 

This formula can be used to calculate either design effect 

or homogeneity if cluster size and either homogeneity or 

design effect is known. This formula is often used to 

calculate homogeneity in practice. 

Hansen et al (1953) empirically investigated the effect of 

clustering on homogeneity in the final stage of multi­

stage sampling. They used data from the 1940 Census of the 

Population in USA to form simulated clustered samples with 

fixed cluster number and various cluster sizes: 3, 9, 27, 

and 62 (or 252 for rural areas) for their study. These 

clusters are formed by selecting consecutive households 

within city blocks or enumeration districts. 

They found that homogeneity decreased with the increase of 

cluster size, but the rate of cluster size increase was 

much larger than the rate of homogeneity decrease. Such 

homogeneity decrease rate is so small that homogeneity can 

in practice be assumed to be unchanged with increase of 

cluster size (Sudman 1976). Thus, design effect increases 

with increase in cluster size. 

Similarly, Laniel & Mohl (1994) used data from the 

Canadian Labour Force Survey in Ottawa to investigate the 

effect of cluster size on the efficiency of sampling 

designs. They also created simulated samples for their 

study. With given entire sample size, three average sample 

cluster sizes: 4.7, 8.2 and 16.4, were formed within the 
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sampling areas with different sizes: 50, 100, 150, 200 and 

250. That is, there were three simulated samples with 

average sample cluster sizes: 4.7, 8.2 and 16.4 

respectively for each sampling area. This led to the 

formation of 15 simulated samples. They found that the 

efficiency of sample design is improved with the decrease 

of cluster size for given entire sample size. However, 

they did not consider the effect of variation in number of 

clusters, though such effect may be small. For given 

entire sample size, reduction in cluster size leads to 

increase in number of clusters. This increase in number of 

clusters leads to a reduction in the sampling variance of 

an estimate from this larger-cluster-size sample while the 

sampling variance of the estimate from a simple random 

sample is the same, as the entire sample size is the same 

in different cluster sizes. This leads to underestimation 

of the effect of cluster size. 

3.4.2 Design Effect and Clustering Interval 

For given sample cluster size, design effect 

decreases with the increase of clustering 

interval. 

Although this position is popular in the literature, for 

examples, Hansen et al (1953), Kish (1965) and Sudman 

(1976), there is little empirical investigation of it. 

Laniel & Mohl (1994) used data from the Canadian Labour 

Force Survey in Ottawa to investigate the effect of 

clustering interval on the efficiency of sampling designs. 

They formed 15 simulated samples for their study. As 

clustering interval is the size of sample areas over that 

of sample clusters, the minimum clustering interval is (50 

/ 16.4) = 3, and the maximum clustering interval (250 / 

4.7) = 53.2. They found that the efficiency of sample 

design is improved with increase in clustering interval. 
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They insisted that this effect was substantial. However, 

they did not take variation in number of clusters into 

account in estimating sampling variance from the simulated 

samples. For a given sample size and a given sampling area 

size, increase in clustering interval leads to both 

decrease in cluster size and increase in number of 

clusters. Both decrease in cluster size and increase in 

number of clusters reduce the sampling variance of an 

estimate from this larger-clustering-interval sample while 

the sampling variance of the estimate from a simple random 

sample is the same, as the entire sample size is the same 

in different clustering intervals. Thus, the effect of 

clustering interval is overestimated . 

Laniel & Mohl (1994) also found that the curve of the 

combination of the effect of cluster size and that of 

clustering interval is nearly linear. 
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4. METHOD 

4.1 Procedure 

In the first stage, a search of relevant literature was 

undertaken to identify variance estimation methods, 

homogeneity of elements within cluster, variability of 

design effects among both variables and statistics, the 

effect of stratification on design effect, and the effect 

of both cluster size and clustering interval on design 

effect. 

In the second stage, ACNielsen McNair was asked to provide 

data from a face-to-face interview survey with a clustered 

sample design for this study. The data included the 

following information: 

- The details of the coding; 

- Demographic information; 

- The method for selecting clusters; 

- A cluster id; 

- A description of the cluster sampling scheme. 

There are two reasons for obtaining this secondary data 

rather than the first hand data. First, the data for this 

study had to be from face-to-face interview surveys with 

clustered sample designs and should be large. This leads 

to the impossibility of conducting such surveys as 

resources were limited for this study. Second, it is 

unnecessary to conduct a face-to-face interview survey to 

collect the data for this study as the first hand data is 

not required. 



33 

4.2 Samples 

Data is used from a two-stage sample rather than a multi­

stage sample in this study. This is for the simplicity and 

accuracy of estimating sampling variances of estimates. If 

data is from a multi-stage sample, the estimation of 

sampling variances of estimates may be more complicated 

and less accurate. On the other hand, data from two-stage 

samples can satisfy the requirements of data for this 

study. 

4.2.1 Original Sample 

This is a two-stage sample for a face-to-face interview 

survey with the following design: 

The sampling elements (i.e., ultimate sampling 

units) are households. The sample is 

proportionally geographically stratified into 

urban and rural areas. 117 sampling areas are 

selected at the first stage sampling by simple 

random sampling. Eight households for each 

sampling area are selected by systematic sampling 

method with every third household from the random 

starting point. These eight households form a 

cluster. One adult is randomly selected from each 

household for the interview. 

In the data collection, interviewers are required to do 

callbacks to make up 8 responses for each cluster. If 

there are still less than 8 responses in a cluster after 

these callbacks, the interviewer is required to interview 

extra households until eight responses are included in the 

cluster (see table 1). This sample includes 936 

households. Almost all these households have responses 

except that some of them refuse for some variables (see 

table 2). 



In table 1 and table 2, there are: 

The maximum number in a cluster of households is 

50; 

The number of 90 % of households selected is 

between 1 and 21; 

A few variables have missing values; 

And the maximum number of missing cases is 45 out 

of 936, that is, less than 5%. 
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Very low missing value rate of this data leads to little 

effect of nonresponse on variance estimation and 

statistical analysis. As these clusters are of equal size, 

weights are not required to adjust the effect due to 

variation in cluster size on variance estimation. That 

distribution of selected elements is between the random 

start point and the 21st household may reduce the effect 

of geographical size on variance estimation. All these 

indicate that data of this sample is nearly perfect for 

this study. 

A large number of variables are included, involving 

newspaper and magazine readership, news preferences, 

social attitudes and activities, cigarette smoking, and 

mortgage on houses. 81 variables are selected for this 

study. The definition of these variables is Appendix A. 
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Table 1. Frequency of Households Interviewed 

Cumulative 
Household-number Frequency Percent Percent 

1 60 6.4 6.4 
2 52 5.6 12. 0 
3 47 5.0 17. 0 
4 55 5.9 22.9 
5 48 5.1 28.0 
6 48 5.1 33.1 
7 51 5.4 38.6 
8 54 5.8 44.3 
9 47 5.0 49.4 

10 51 5.4 54.8 
11 52 5.6 60.4 
12 47 5.0 65.4 
13 43 4.6 70.0 
14 36 3.8 73.8 
15 31 3.3 77.1 
16 26 2.8 79.9 
17 23 2.5 82.4 
18 24 2.6 84 . 9 
19 20 2.1 87.1 
20 18 1.9 89.0 
21 17 1.8 90.8 
22 15 1. 6 92.4 
23 12 1.3 93.7 
24 12 1.3 95.0 
25 10 1.1 96.0 
26 4 .4 96.5 
27 4 .4 96.9 
28 7 .7 97.6 
29 4 .4 98.1 
30 1 .1 98.2 
31 3 .3 98.5 
32 2 .2 98.7 
33 4 .4 99.1 
34 1 .1 99.3 
36 1 .1 99.4 
39 1 .1 99.5 
43 1 .1 99.6 
44 2 . 2 99.8 
47 1 .1 99.9 
50 1 .1 100.0 

------- -------
Total 936 100.0 
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Table 2. Response Rate for Designed Sample Size 936 

Response Response Variable Proportion of 

Number Rate Number Variable Number 

891 891/936 = 95.2% 4 5.0 

925 925/936 = 98.8% 1 1. 2 

932 932/936 = 99.6% 1 1. 2 

933 933/936 = 99.7% 9 11.1 

934 934/936 = 99.8% 9 11.1 

935 935/936 = 99.9% 16 19.8 

936 936/936 = 100% 41 50.6 

Total 81 100.0 

4.2.2 Simulated Samples 

Based on the original sample, 17 simulated samples were 

formed. The detailed procedures to form these simulated 

samples are in Appendix B. These simulated samples have a 

given number of clusters while cluster size and clustering 

interval vary. This is different from the formation of 

simulated samples of Laniel & Mohl (1994). The same 

cluster number avoids the effect of variation in number of 

clusters on design effect. Some of 17 stimulated samples 

and the original sample are used to investigate the effect 

of cluster size, and some other samples to investigate the 

effect of clustering interval. 

There are 4 cluster sizes in these samples and the 

original sample, that is, 2, 4, 6, and 8. The original 

sample is symbolized with CS8_1, and the simulated samples 

with S61, S62, S63, S64 and S65 for cluster size 6, CS4_2, 

S41, S42, S43, and S44 for cluster size 4, CS2_1, CS2_2, 

CS2_3, CS2_4, CS2_5, CS2_6, and CS2_7 for cluster size 2. 



The samples CS8_1, S61, S41 and CS2_1 are used to 

investigate the effect of cluster size. The clusters of 

S61, S41 and CS2 1 are also called "pseudo-compact" 

clusters as they are formed by selecting consecutive 

elements within the original sample's clusters. Thus, 

these four samples have different cluster sizes and the 

same clustering interval. 
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The samples S41, CS4_2, CS2_1, CS2_2, CS2_3, CS2_4, CS2_5, 

CS2 6 and CS2_7 are used to investigate the effect of 

clustering interval. The clustering intervals of these 

samples are multiples of the smallest clustering interval. 

That is, the clustering interval of CS4_2 is twice as much 

as that of S41, and those of CS2_2, CS2_3, CS2_4, CS2_5, 

CS2 6 and CS2_7 are multiples of the clustering interval 

of CS2 1. 

The samples S62, S63, S64, S65, S42, S43 and S44 are used 

to help investigate the effect of clustering interval. The 

clustering intervals of these samples are not a multiple 

of the smallest clustering interval. But the mean 

clustering interval of each sample is larger than the 

smallest clustering interval. That is, in S62, S63, S64 

and S65, each mean clustering interval is larger than the 

clustering interval of S61, and in S42, S43 and S44, each 

mean clustering interval larger than the clustering 

interval of S41. 

As it is unknown whether there are differences between 

these mean clustering intervals or not, the investigation 

on the effect of the clustering interval will be made by 

comparing the design effect of the smallest clustering 

interval with each design effect from S62, S63, S64, S65, 

S42, S43 and S44. That is, the design effects of S62, S63, 

S64, and S65 are compared with that of S61, and the design 

effects of CS4_2, S42, S43, and S44 with that of S41. 



4.3 Estimation for Design Effect 

4.3.1 Considerations of Simplicity 

Simplicity should be considered in estimating sampling 

variance estimates or design effect estimates, as it 

reduces cost of calculation. 
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First, sampling variance estimates or design effect 

estimates will be calculated over strata rather than in 

each stratum. That is, the effect of stratification is 

ignored. Thus, it is simpler to estimate sampling variance 

or design effect. The main reason for ignoring the effect 

of stratification is that this study is concerned with the 

effect of clustering. Another reason is that proportional 

and geographical stratification has little influence on 

design effect. The effect of stratification usually 

improves the efficiency of sample designs. Ignoring it may 

lead to overestimation of design effect. Moreover, the 

data used in this study is geographically and 

proportionally stratified into two strata: rural areas and 

urban areas. Such low degree of stratification may be of 

little effect on design effect. 

Second, this study only investigates design effect for the 

mean, the simplest descriptive statistic, rather than 

complex statistics. This leads to a larger number of 

alternative methods for selection in estimating sampling 

variance or design effect. On the other hand, 

investigating design effect for the mean is much simpler 

and less expensive than investigating those for complex 

statistics. Moreover, for a given sample and a given 

variable, the design effect for mean is larger than those 

for complex statistics. This leads to a conservative 

result if the design effect for mean is used, rather than 

those for complex statistics, to adjust these complex 

statistics in statistical analysis. 
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4.3.2 Estimation Method for Design Effect 

Although the literature suggested a great number of 

methods for the estimation of sampling variance or design 

effect, this study uses a simple standard method to 

estimate design effects for means if data satisfies the 

requirements of the method. This method is to estimate 

design effect for mean by the ratio of between-cluster 

mean squares in the sample and mean squares in the sample, 

that is, design effect= msb . It requires that the samples have 
ms 

clusters (subsamples) with equal size and both clusters 

and elements are selected with equal probability. The 

ms 
detailed derivation of design effect =--b is in Appendix C . In 

ms 

practice, the elements are by systematic sampling rather 

than simple random sampling. Thus, elements selected by 

systematic sampling are taken as the same as those 

selected with equal probability. 

d . ffi msb . . The method eszgn e ect =-- seems more reliable and simpler 
ms 

than other methods in estimating design effect for means. 

This is discussed in the following. 

First, subsampling and modelling methods of estimating 

sampling variances discussed in Chapter 2 are approximate. 

They are often used if standard mathematical methods are 

not applicable or the cost of applying these standard 

methods is tremendous. The chances to use these estimation 

methods are often those to estimate variance for complex 

statistics in complex designs. On the other hand, these 

approximate variance estimation methods are of variable 

performance. 

Second, data for this study is from a two-stage sample 

with the clusters of a given size selected by epsm (equal 

probability selection method) and with the elements 
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selected by systematic sampling from the random start 

point. Very high response rate is in the data collection. 

Thus, this data set satisfies the requirements of 

design 
ms 

effect =--b . 
ms 

With such data, the estimation of design effects for means 

can be carried out without attention paid to adjustments 

to the variation in sampling variance estimates arising 

from the effect of variation in both cluster size and 

probability of selection. 

Moreover, this method can use a single sample to estimate 

sampling variance for mean without concerning either the 

decision for the optimal number of subsamples in the 

subsampling methods or the validity of the functions of 

describing the parameters of interest from observations in 

the modelling methods. Both the decision for the optimal 

number of subsamples and the validity of the functions of 

describing the parameters of interest from observations 

affect the reliability and simplicity of estimating 

sampling variance or design effect. 

Therefore, the performance of this method is likely to be 

the most reliable and simplest, though it is also 

approximate. 

4.3.3 An Alternative Method of Estimating Design Effect 

One alternative method of estimating design effect for 

means is to build connection of the design effect with r 2 

= 
SSB 
SS 

(i.e., ratio of between-cluster sum of squares and 

total sum squares in the sample) and m (i.e., cluster 

size) , that is, design effect= mr2
• This idea is proposed by 

Don Esslemont (the adviser of this study). It can 



ms 
mathematically be derived from design effect=--b. The 

ms 

detailed derivation is in the following: 

Design 
ms 

effect =--b 
ms 

52 
B 
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n 

k 
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SSB 
k-1 
SS 

km-I 

= SSB * (km-1) 
SS (k-1) 

= SS8 * (n-1) 
SS (k-1) 

2*n = r -
k 

= mr 2
. 
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For testing the applicability of this alternative method 

in estimating design effect, the data is required to have 

not only a fixed number of clusters but also no missing 

values within clusters, in order to avoid the effects on 

design effect of the variation in both cluster size and 

cluster number. Thus, 41 variables with three samples 

CS8_1, S61 and S41 were selected (see Appendix F). 

4.4 Significance Tests 

T-tests will be applied to investigate significance of 

both the effect of clustering interval and the effect of 

cluster size on design effect. Such significance tests 

will be done by comparing design effects between either 

different cluster sizes or different clustering intervals. 

That is: 

The null hypothesis is no differences between 

two separate clustering intervals or cluster 

sizes; 

And the effect hypothesis is significant 

differences between these two clustering 



intervals or cluster sizes. 

4.5 Evaluation of Cost-Efficiency in the Sample Designs 

with Alternative Clustering Intervals 
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Evaluation of cost-efficiency in the sample designs with 

alternative clustering intervals provides the basis for 

selection of alternative sampling designs with different 

clustering intervals. As an increase in clustering 

interval leads to both a decrease in design effect and an 

increase in the cost of travelling between two interviews, 

the parameter to evaluate the cost-efficiency of sampling 

designs is the product of the travel cost between two 

interviews and the design effect. A smaller product of 

travel cost and design effect leads to a better sampling 

design. 

Whenever selection is made between two alternative 

clustering intervals A and B for a sample design, either A 

or B can be selected if: 

(Interview-cost+ Travel-cost A) Design effect A= 

(Interview-cost+ Travel-cost B) Design effect B 

where: 

Interview-cost is the cost of interviews; 

Travel-cost A is the cost of travelling 

within clusters for sample design A; 

Travel-cost Bis the cost of travelling 

within clusters for sample design B. 

Clustering interval A is better than clustering interval B, 

if: 

(Interview-cost+ Travel-cost A) Design effect A< 

(Interview-cost+ Travel-cost B) Design effect B. 
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5. RESULTS 

5.1 Design Effects 

Design effects for individual variables were estimated 

from the 18 samples (see Appendix D). Both the effect of 

cluster size and the effect of clustering interval can be 

observed from these estimated design effects. 

5.1.1 The Effect of Cluster Size 

There are several observations on the effect of cluster 

size. These observations are described in the following. 

First, design effects for individual variables tend to 

increase with an increase in cluster size. This is 

indicated by table 3 . That an individual design effect 

increases with an increase in cluster size is consistent 

among different quartiles of variables. 

Table 3. Design Effects for the Quartiles of Variables 

in Different Cluster Sizes 

Cluster Size 8 6 4 2 

Clustering* cse - 1 S61 S41 CS2 - 1 

Per~~ntil~ • 
25 1.08 1.07 1.04 .98 

so 1. 24 1.16 1.15 1.05 

75 1. 42 1. 36 1. 25 1.15 

100 3.91 3.05 2.19 1.25 

* See Chap ter 4: METHOD. 
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Second, the curve of mean design effect of variables tends 

to slope down from a larger cluster size to a smaller 

size, no matter what the clustering interval is. This is 

indicated by figure 1. That is, 

A mean design effect with cluster size 8 is 

always larger than those with cluster size 6; 

A mean design effect with cluster size 6 is 

always larger than those with cluster size 4; 

A mean design effect with cluster size 4 is 

always larger than those with cluster size 2. 

Third, within a given clustering interval, the curve of 

mean design effect of variables slopes down from a larger 

cluster size to a smaller size. This curve is linear. This 

is indicated by figure 2. 

Design Effect 

~ ::~ r=:.=.~~-~-=:.=.~~-:;_ :::;_=.=~- ~-;~;===~=========~=-=-=-=:-=· :-=-=-==· =- =-=-~-1 
1.00 - · · .:~, _._ - ~ .. ~- · - · .,. :.. _ • - · "- .... :~ · ~ ~ - .-· - - - ,· · ... , .. , - :" · ~,· . 

. 80 

.60 

.40 

.20 

.00+---~----+-----;._--'-1---'-----~---l 

CS8_1 S61 S41 CS2_1 

Cluster Size 

Figure 2. Relation between Design Effect and Cluster Size 

Figure 2 and table 4 illustrate that within pseudo-compact 

clusters with different cluster sizes, mean design effect 

of variables increases by about 0.04 as cluster size 

increases by one unit. The detailed observations of such 

design effect increase are: 

1. Mean design effect of variables with cluster 

size 8 is 0.08 greater than that with cluster 

size 6; 



2. Mean design effect of variables with cluster 

size 6 is 0.08 greater than that with cluster 

size 4; 

3. Mean design effect of variables with cluster 

size 4 is 0.09 greater than that with cluster 

size 2. 
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Fourth, the variability of individual design effect among 

variables is stronger with larger cluster sizes. This is 

reflected in table 4. 

The larger range, standard deviation, and coefficient of 

variation among individual design effects are with a 

larger cluster size. The smaller ones are with a smaller 

cluster size. 

Table 4. Variability of Design Effect among Variables 

in different Cluster Sizes 

Cluster Sizes 8 6 4 

Clusterings # csa - 1 S61 S6* S41 

Means 1. 32 1.24 1. 24 1.16 

Standard 0.40 0.31 0.30 0.19 
Deviation 

Coefficient 0.30 0.25 0.24 0.16 
of Variation 

Range 3.03 2.24 2.22 1. 31 

# see Chapter 4: METHOD . 

* S6 is the average of S61, S62, S63, S64 and S65; 

S4 is the average of S41, S42, S43 and S44; 

2 

S4* CS2 1 S2* -
1.15 1.07 1.06 

0 .20 0.11 0.12 

0.17 0.10 0.11 

1.40 0.54 0.65 

S2 is the average of CS2_1, CS2_2, CS2_3, CS2_4, CS2_5, CS2_6 and CS2 _ 7 . 

Fifth, the results from t-tests for the differences of 

design effects between cluster sizes indicate that the 

effect of cluster size on design effect is of high 

significance level. This is reflected in table 5. 

All these results are from t-tests which are applied to 
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test a level of differences between mean design effect of 

variables with a larger cluster size and that with a 

smaller cluster size. 

All results from these tests are the same. Their a levels 

are less than 0.005. 

Table 5. t-tests for Differences of Design Effects between 

Cluster Sizes 

Difference of Design Correlation t-Values Significance 

Effects between Coefficients between Level ( a.) 

Cluster Sizes* Cluster Sizes 

CS8 1 - S61 0.96 5.16 0.00 -

CS8 1 - S41 0 . 87 5.80 0.00 -

CS8 1 - CS2 1 0.48 6.36 0.00 - -

S61 - S41 0.91 4.82 0.00 

S41 - CS2 1 0.57 5.19 0.00 -

* See Chapter 4: METHOD. 

5.1.2 The Effect of Clustering Interval 

The observations on the effect of clustering interval are 

described in the following. 

First, within a given cluster size, design effects for 

individual variables are very similar in different 

clusterings. This is reflected in table 6. 

Individual design effects of the quartiles of variables 

are very similar for different clusterings within a given 

cluster size. 

Second, mean design effects of variables are very similar 

for clustering intervals with different multiples of the 

smallest clustering interval, though there are small 
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differences among these design effects. This is indicated 

by figure 3. 

"° f ,;g, Ell"! . _. :tfil . . 
1 .08 ••• . ••• . •• . e ••• _ • ••••• • ••••••• • , ••••••• 

1 . 0 6 . • · · • · • · · · • • · · · • -: · ' • . , • · · · : · • • • -. · • • • • .._. · • :::· ... -~-... = Cl"'"""' 
Interval 

CS2 _ 1 CS2_2 CS2 _ 3 CS2_4 CS2_5 CS2 _ 6 CS2 _ 7 

Figure 3. Relation between Design Effect and Clustering 

Interval with Cluster Size 2 

In figure 3, design effect increases with increase in 

clustering interval from CS2 1 to CS2_2, from CS2_3 to 

CS2_4 and from CS2_6 to CS2_7, but decreases with increase 

in clustering interval from CS2_2 to CS2_3 and CS2_4 to 

CS2_5. These increases and decreases are small. Their mean 

absolute deviation is 0.02. 

Third, design effects with the larger mean clustering 

intervals are very similar to one with the smallest mean 

clustering interval. This is reflected in figure 4, figure 

5 and table 4. 

Clustering 

S61 S62 S63 S64 S65 

Figure 4. Relation between Design Effect and Clustering 

Interval with Cluster Size 6 

In figure 4, design effects of S62, S63, S64 and S65 are 

larger or less than that of S61. The differences are small 

between design effect of S61 and each of the design 

effects with S62, S63, S64 and S65. Their mean absolute 

deviation is 0.01. 
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Table 6. Design Effects for the Quartiles of 81 Variables in Different Clusterings 

Cluater Size 8 6 4 2 

Clustering* CS8_1 S61 S62 S63 S64 S65 S41 CS4_ 2 S42 S43 S44 CS2_1 CS2_2 CS2_3 CS2_ 4 CS2_5 CS2_ 6 CS2_7 

Percentile: 

25 1.08 1.07 1.07 1.03 1. 09 1.07 1 .04 1. 01 1.00 1.04 .98 .9 8 . 98 . 97 .97 . 9 6 .9 6 . 99 

50 1. 24 1.16 1.17 1.17 1.21 1. 21 1.15 1.13 1.12 1.15 1.06 1.05 1.07 1.01 1. 0 3 1. 01 . 9 9 1.05 

75 1. 4 2 1.36 1. 35 1. 3 2 1. 34 1. 35 1. 2 5 1. 25 1. 23 1. 27 1.19 1.1 5 1.15 1. 1 0 1.12 1. 10 1.11 1.15 

100 3 . 91 3.05 3.19 3.06 3 .03 3. 08 2.19 2 . 30 2.20 2. 15 2 . 33 1.25 1. 41 1. 3 9 1.40 1. 44 1. 5 4 1. 55 

* See Chapter 4 : METHOD . 
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Interval with Cluster Size 4 
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In figure 5, design effects of S42, S43, S44 and CS4_2 are 

larger or less than that of S41. The differences are also 

small between design effect of S41 and each of the design 

effects with S42, S43, S44 and CS4 2. Their mean absolute 

deviation is 0.02. 

In table 4, mean design effect over clustering intervals 

is the same as that for the smallest clustering interval 

within a given cluster size. That is, design effects for 

S6, S4 and S2 are the same as those for S61, S41 and CS2 1 

respectively. 

Fourth, the variability of individual design effects tends 

to be the same in the different clustering intervals for a 

given cluster size. This is indicated by table 7. 

In table 7, range, standard deviation, and coefficient of 

variation among individual design effects are little 

different among clustering intervals for a given cluster 

size. 
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Table 7. Variability of Design Effect among Variables in Different Clusterings 

Clusterings* CS8 11 S61 S62 S63 S64 S65I S41 CS4 2 S42 S43 S441 CS2 1 CS2 CS2 CS2 4 CS2 5 CS2_6 CS2_ 7 

1 1 

Means 1.3211.241.241.211.251.2411.16 1.15 1.13 1.18 1.111 1.07 1.08 1.04 1.05 1.03 1.04 1.08 

Standard Deviation 0.4010.310.31 0.28 0.29 0.3010.19 0.20 0 . 20 0.20 0.211 0.11 0.11 0.10 0.11 0.11 0.15 0.12 

Coefficient of 0.3010.25 0.25 0.23 0.23 0.2410.16 0.17 0.18 0.17 0 . 191 0.10 0.10 0 . 10 0.10 0.11 0.14 0.11 

Variation 

Range 3.0312.24 2.32 2.17 2.112.2511.31 1.46 1.39 1.25 1.601 0.54 0.53 0.54 0.57 0.62 1.13 0.63 

* See chapter 4: METHOD. 
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Table 4 also indicates that the variability of individual 

design effects tends to be the same in the different 

clustering intervals for a given cluster size. Within a 

given cluster size, mean range, mean standard deviation, 

and mean coefficient of variation over clustering 

intervals are very similar to range, standard deviation, 

and coefficient of variation for the smallest clustering 

interval. That is, range, standard deviation, and 

coefficient of variation for S6, S4 and S2 are the same as 

those for S61, S41 and CS2 1 respectively. 

Fifth, the results from the t-tests for the differences of 

design effects between clustering intervals indicate that 

the effect of clustering interval on design effect tends 

to be of low significance level within a given cluster 

size. This is indicated by table 8. 

The a level of these t-test results tends to be larger 

than 0.05. Only three values of a are smaller than 0.05. 

Even if the increase in the clustering interval is 

substantial, the t-test result indicates that the 

difference of design effects between a larger clustering 

interval and a smaller one is likely to be of very low 

significance level. In the results oft-tests for S41 -

CS4_2, CS2_1 - CS2_2, CS2_1 - CS2_3, CS2_1 - CS2_4, CS2_1 -

CS2_5, CS2_1 - CS2 6 and CS2_1 - CS2_7, only the value of a 

for CS2_1 - CS2 5 is smaller than 5%. 



Table 8. t-tests for Differences of Design Effects 

between Clustering intervals 
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Difference of Correlation t-Values Significance 
Design Effects Coefficients Level ( a.) 
between Clustering between 
:Intervals* Clustering 

:Intervals 
S61 - S62 0.92 0.58 0.56 

S61 - S63 0.89 2.29 0.02 

S61 - S64 0.90 0.72 0.47 

S61 - S65 0.94 0.01 0.99 

S41 - CS4 2 0.77 0.38 0.71 -

S41 - S42 0.72 1.57 0.12 

S41 - S43 0.72 1.13 0.26 

S41 - S44 0.73 3.18 0.00 

CS2 1 - CS2 2 0.33 0.62 0.53 - -

CS2 1 - CS2 3 0.23 2.02 0.05 - -

CS2 1 - CS2 4 0.37 1.04 0.30 - -

CS2 1 - CS2 5 0.35 2.43 0.02 - -

CS2 1 - CS2 6 0.05 1.46 0.15 - -

CS2 1 - CS2 7 0.27 1.00 0.32 - -

* See Chapter 4: METHOD. 

5. 2 Applicability of design effect= mr1 

For testing the applicability of design effect= mr1
, the 

design effects estimated by design effect= mr1 are compared 

with those estimated by the method used in this study. The 

detailed comparison between these "alternative" design 

effects and the corresponding design effects by the method 

used in this study is in Appendix F. 

These results indicate both methods are consistent. The 

design effects by the alternative method are virtually the 
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same as those by the method used in this study. This is 

reflected in table 9. 

For almost all variables, the absolute difference between 

the alternative design effects and the used design effects 

within these three samples is less than or equal to 0.01. 

The mean absolute differences are also very small. They 

are between 0.008 and 0.011. Correlation coefficients of 

the alternative design effects and the used design effects 

for these three samples are 1.00. Thus, these two methods 

are consistent in estimating design effects. 

Table 9. Comparison of Two Design Effect Estimation 

Methods 

Samples CS8_1 S61 S41 
Mean Absolute 
Difference 0.011 0.009 0 . 008 
between 
Two Methods 
Correlation 
Coefficient of 1.00 1.00 1.00 
Two Methods 

Absolute 
Difference 
between Two 
Methods: 

Number of 0.00 2 9 8 
Variables 0.01 35 29 33 
with differences 0.02 3 
between Two 0.03 1 Methods 

5.3 The Effect of Clustering Interval on Cost­

Efficiency of Sample Designs. 

3 

The differences between design effects of different 

clustering intervals are small. Even in different 

significant clustering intervals, such differences of 

design effects are also small (see figure 3). Thus, it is 

difficult to use these samples for investigating the 

effect of clustering intervals on cost-efficiency of 

sampling designs. 
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Although this difficulty exists, the attempt in 

investigating the effect of clustering interval on cost­

efficiency of sampling designs is required as it is of 

interest in selection of the alternative sampling designs 

with different clustering intervals. On the other hand, 

such investigation is also of interest in investigating 

the effect of clustering interval on design effect. Two 

samples S41 and CS4_2 are used to investigate such effect. 

From section 4.5, if: 

(travel-cost CS4_2) (design effect CS4_2)­

(travel-cost S41) (design effect S41) > 

(interview-cost) (design effect S41)-(interview­

cost) (design effect CS4_2), 

the sampling design of S41 is better than that of CS4 2. 

As the clustering interval of CS4_2 is twice as much as 

that of S41, the travel cost of CS4_2 is supposed to be 

twice as much as that of S41. The interview cost is the 

same in both designs. Thus, if: 

(travel-cost S41) > 0.9% (interview-cost), 

the sampling design of S41 is better than that of CS4_2. 

That is, if the cost of travelling between two elements in 

S41 is larger than 0.9% of the cost of an interview in the 

survey. 

The cost of both travel and interview can be expressed in 

terms of the time which an interviewer spends on travel 

and interview. Thus, if the time an interviewer spends on 

travel from an interviewed household to next is more than 

0.9% of the time he or she spends on an interview, S41 is 

of a better sampling design. 

Usually the travelling time is more than 0.9% of the 

interview time. Thus, whenever the effect of clustering 

interval is included in selection of alternative sampling 



57 

designs, the smallest clustering interval will be selected 

on the balance of the cost-efficiency . 
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6. DISCUSSION 

An increase in clustering intervals seems to lead to 

little reduction in design effect. This is at odds with 

the finding of Laniel & Mohl (1994) who insisted that an 

increase in clustering interval led to an improvement in 

the efficiency of a sample design, that is, a reduction in 

design effect. 

Within a given cluster size, increasing some of intervals 

between within-cluster elements, that is, an increase in 

mean clustering interval, does not lead to a reduction in 

either mean design effect of variables or an individual 

design effect. Even if the clustering interval is 

increased by a multiple, either the mean design effect or 

the individual design effect still tends to be unchanged. 

On the other hand, within a given cluster size, the 

variability among individual design effects tends to be 

the same with either an increase in mean clustering 

interval or a multiple of increase in clustering interval. 

Moreover, the results oft-tests indicate that differences 

of design effects between different clustering intervals 

are of very low significance level. Such low significance 

level seems to indicate the insignificance of the effect 

of clustering interval on design effect. 

Attempting to improve sampling designs by increasing 

clustering interval seems pointless. 

The result of investigating the effect of clustering 

interval on evaluating cost-efficiency of alternative 

sampling designs indicates that an improvement in the 

efficiency of sampling designs by an increase in 

clustering interval is so small that it can not be 

justified by the increase in cost. 

Even if there is a larger improvement in the efficiency of 
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sampling designs by an increase in clustering interval, it 

seems that this improvement can not be justified by an 

increase in cost. Suppose a larger improvement in the 

efficiency of a sampling design is the reduction of 0.05 

in design effect by doubling the clustering interval, that 

is, five times of the improvement in the efficiency of 

sampling design from S41 to CS4_2 in this study. Thus, the 

ubreakevenw time of travelling between two elements is 

4.5% of the time of an interview. If the time of an 

interview is 60 minutes, the breakeven time will be 2.7 

minutes. As the time of travelling between two elements is 

usually larger than 2.7 minutes, the improvement is not 

justified by the increase in cost. 

An increase in cluster size leads to a larger design 

effect. This is consistent with the finding of Laniel & 

Mohl (1994) who claimed that the efficiency of a sample 

design was reduced by an increase in cluster size. 

For a given clustering interval, either mean design effect 

of variables or an individual design effect increases with 

an increase in cluster size. The mean design effect is 

likely to increase with an increase in cluster size 

following a straight line. Even in different clustering 

intervals, either mean design effect or an individual 

design effect also increases with an increase in cluster 

size. 

On the other hand, the variability of design effect among 

individual variables is stronger with a larger cluster 

size, no matter what the clustering interval is. 

Moreover, the results oft-tests indicate that differences 

between different cluster sizes are of high significance 

level. This high significance level seems to indicate the 

significance of the effect of cluster size on design 

effect. 

The alternative method of estimating sampling variance, 



that 1.s, design effect= mr2
, is consistent with the method 

used in this study. Both the extremely high correlation 

coefficients and the extremely small mean absolute 

differences between design effects by these two methods 

indicate the validity of this alternative method. 
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This alternative method design effect= mr2 is applicable for 

two-stage simple random sampling or one-stage simple 

random cluster sampling, if sum of squares between 

clusters and sum of square between elements in the 

population can be estimated and cluster size is nearly the 

same. However, like the method used in this study, this 

method is only used to estimate design effect for means. 



7. CONCLUSION 

The foregoing discussion leads to the following 

conclusions: 

1. The effect of clustering interval has little 

influence on design effect. That is, design 

effect does not sensibly decrease with 

increase in clustering interval. This effect 

is consistent on the mean design effect of 

variables and the individual design effects. 

Such effect does neither strengthens nor 

weakens the variability of design effects 

among individual variables. 

2. In face-to-face surveys, a sampling design 

with a smaller clustering interval is better 

than one with a larger clustering interval on 

the balance of the cost of data collection 

and the design effect. 

3. The effect of cluster size has a substantial 

influence on design effect. This effect 

increases either the mean design effect of 

variables or the individual design effects by 

increasing cluster size, no matter what the 

clustering interval is. This effect also 

strengthens the variability of design effects 

among variables. 

4. The formula design effect= mr2 is applicable for 

estimating design effect for means in both 

two-stage simple random sampling and one­

stage simple random cluster sampling with the 

same cluster size. 
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APPENDICES 



Appendix A. Definition of Variables Selected 

Table 10. Variables Selected (1) 

Variables Definition of variables 

AGE age of respondent. 

YEARMOUT 

REPAYTM 

MOR_PAPS 

EVE_PAPS 

NTRUNTVE 

SUN_NEWS 

SUN_STAR 

NEW_IDEA 

LTV_N_RT 

NZ_W_WK 

TIME 

TV_GUIDE 

WOM_DAY 

E_W_WKLY 

House ownership and mortgage. 

how long ago took out mortgage. 

repayment term. 

How many copies have you read in the last 7 

days? 

morning daily newspapers. 

evening daily newspapers. 

Have you read it in the last 7 days? 

weekly newspapers- New truth and TV extra. 

weekly news papers. 

weekly news papers-Sunday star times. 

weekly magazines-New idea. 

weekly magazines-Listener TV and radio 

times. 

weekly magazines-New Zealand women weekly. 

weekly magazines-Time. 

weekly magazines-TV guide. 

weekly magazines-Woman's day. 

weekly magazines-English woman's weekly. 
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Table 10. Variables Selected (2) 

Variables Definition of variables 

AIRNZPW 

BOAT_NZ 

CLEO 

NZ_BUSI 

AUS_W_WK 

GRAPEVIN 

H_BLUEBK 

METRO 

SHENMORE 

NTH_N_SH 

R_DIGEST 

TEARAWAY 

H_N_BUIL 

LIT_TREA 

ADVENTUR 

CUISINE 

FASHIONQ 

NZ_GEOGR 

STYLE 

Have you read it in the last four weeks? 

monthly magazines-Air NZ Pacific Wave. 

monthly magazines-Boating NZ. 

monthly magazines-Cleo. 

monthly magazines-NZ Business. 

monthly magazines-Australian Woman's Weekly. 

monthly magazine-Grapevine. 

monthly maganzines-Harcout's Blue Book. 

monthly magazines-Metro. 

monthly magazines-She & More. 

monthly magazines-North and South. 

monthly magazines-Readers Digest. 

monthly magazines-Tearaway. 

Have you read it in the last two months? 

bi-monthly mags.-Home & Building. 

bi-monthly mags.-Little Treasures. 

bi-monthly mags.-Adventure Magazines. 

bi-monthly mags.-Cuisine. 

Have you read it in the last three months? 

quarterly mags.-Fashion Quarterly. 

quarterly mags.-NZ Geographic. 

quarterly mags.-Style. 
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Table 10. Variables Selected (3) 

Variables Definition of variables 

B_NEWS 

SP_NEWS 

NEWSCOMM 

ACCIDENT 

LNEWSCOM 

POLICTIC 

R_ACTIVI 

WORKHOME 

DINEROUT 

DRINKOUT 

H_KIDSTD 

P_YOUTH 

WINEMEAL 

VISITCLU 

WOMANISS 

VISITGAL 

H_IMPROV 

CONCERT 

BOOK 

How much do you like reading it? 

business news. 

sports news and results. 

news and conunentary about other parts of the 

world . 

news about accidents or crime . 

local news and conunentary. 

political news. 

How often do you do that in the last 12 

months? 

attended church or religious activities . 

brought work home to comp l ete. 

dined at a restaurant or brasserie. 

gone to a hotel, club or bar for a drink . 

helped your children with their school work . 

talked about problems of youth or education. 

had wine with a meal. 

gone to a club or nightclub. 

talked about women's issue. 

visited an art gallery or museum. 

have undertaken home alterations or 

improvements. 

gone to live theatre or classical music. 

bought yourself a paper back or hard back 

book. 
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Table 10. Variables Selected (4) 

Variables Definition of variables 

TOUGHLAW 

SUCCESS 

KEEPFIT 

MARI.JUAN 

RAWDEAL 

C_WOMAN 

ENDSMEET 

FAMILYTO 

H_FOOD 

WELLBRAN 

NEWIDEAS 

RACEPROB 

MONEYMAT 

LONELY 

NEWPRODU 

NONPOLLU 

W_FAIRGO 

CHANGING 

MYOPINIO 

SPECIAL 

MAORICUL 

TRUSTFUL 

How much do you agree or disagree it? 

the law should be tougher on law breakers. 

success is very important to me. 

I exercise regularly to keep fit. 

smoking marijuana should be allowed. 

I generally get a raw deal out of life. 

it is important that a woman should have a 

career. 

I find it hard to make ends meet. 

as a family we spend a lot of time together. 

I try to avoid foods that are unhealthy. 

I mostly buy well-known brand names. 

I am attracted to new ideas . 

racial problems are getting worse. 

I find it easy to deal with money matters. 

I often feel quite lonely. 

I like to try new and different household 

products . 

I try to buy household products that won't 

pollute the environment. 

women do get fair go in NZ . 

everything in NZ is changing too fast. 

other people take my opinions seriously. 

I shop a lot for specials and bargains. 

we should make sure NZ keeps its maori 

culture. 

you don't know who to trust these days. 
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Table 10. Variables Selected (5) 

Variables Definition of variables 

MMADECIG 

OWNCIGAR 

CIGARS 

PIPE 

N_MMCIGA 

N_OWNCIG 

Do you do that? 

products ever smoked-ready made cigarettes. 

products ever smoked-roll your own cigarettes. 

products ever smoked-cigars, cigarellos. 

products ever smoked-pipe. 

number of ready made cigarettes you smoke per 

day. 

number of roll your own you smoke per day. 
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Appendix B. Formation of Simulated Samples 

The detailed procedures to form simulated samples are as 

follows: 

Sample with cluster size 8: 

CS8 1: this is the original sample. That is, 8 

elements each cluster are selected from every 

3rd household within sampling areas. These 8 

elements are the basis for forming the other 

simulation samples . 

Samples with cluster size 6: 

S61: formed by the selection of the first 6 

elements within clusters, that is, 6 

households with the least number each cluster 

are included; 

S62: formed by dropping the 2nd and 4th of the 8 

elements within clusters; 

S63: formed by dropping the 3rd and 5th of the 8 

elements within clusters; 

S64: formed by dropping the 4th and 6th of the 8 

elements within clusters; 

S65: formed by dropping the 5th and 7th of the 8 

elements within clusters. 
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Samples with cluster size 4: 

S41: formed by the selection of the first 4 

elements within clusters; 

CS4_2: formed by dropping the 2nd, 4th, 6th and 

8th of the 8 elements within clusters; 

S42: formed by dropping the 1st, 3rd, 5th and 7th 

of the 8 elements within clusters; 

S43: formed by dropping the 3rd, 4th, 6th and 7th 

of the 8 elements within clusters; 

S44: formed by dropping the 1st, 2nd, 5th and 6th 

of the 8 elements within clusters. 

Samples with cluster size 2: 

CS2_1, CS2_2, CS2_3, CS2_4, CS2_5, CS2_6, and 

CS2_7: these samples are formed by the first 

element and each of the others from the 8 

elements each cluster. 
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ms 
Appendix C. the Mathematical Derivation of design effect =--b 

ms 

ms 
The mathematical derivation of design effect =--b is as 

ms 

follows: 

From formula 2.2 and formula 2.4, 

Then, 

sz sz sz 
&~ =_!!_=-[l+(m-l)p]=-[l+(m-l)p] . 

k km n 

5 2 
B 

-;-=[l+(m-l)p] s 
n 

j=I 

k(k-l) 
=----'---

n 

Ii<Y; -f)2 
i=l 

n(n-l) 

j=I 

k(k-l) 

j=I i=I 

km(km-l) 



j=I 

k-I ------

j=l i=l 

km-I 

j=I 

k-I 

j = l i=l 

km-I 

SSH 

k-I 
SS 

km-I 

SSH 
k-1 
ss 
n-1 

ms 

*km 
k 

From formula 3.0, the method of estimating 

design effect is: 

Design effect = [I+ (m - l)p] 
s2 

H 

k = s2 
n 

msb 
=--

ms 
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Appendix D. Design Effects of Variables in Different 

Clusterings 
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Table 11. Design Effects of Variables in Different Clusterings (1) 

Cluater Size 8 6 4 2 

Cluaterin11a* CS8 1 S61 862 863 864 865 CS4 2 S41 S42 S43 S44 CS2 1 CS2 2 CS2 3 CS2 4 CS2 5 CS2 6 CS2_ 7 

Variables: 

STYLE .88 .92 .90 .90 .92 .90 .96 .96 . 94 .94 . 96 .98 .98 . 98 .98 .97 .98 .97 

SHENMORE .93 .86 1.00 1.06 .92 1. 01 . 87 . 91 1.00 1.01 .91 .96 .96 .96 .94 .95 .97 1. 22 

TEARAWAY .96 .80 1. 01 1.08 .98 .83 1. 01 .90 . 93 . 90 1.08 .98 .95 .99 . 96 .97 .97 .97 

LTV_N_RT . 97 .92 .88 1.07 .96 . 93 .84 .96 1. 02 1. 09 1.00 1. 03 .97 1. 01 1.01 .87 .96 1.02 

YEAROUT .99 .93 1.04 .97 1.05 .96 1.01 .93 1.00 .99 .96 1.00 .97 .97 1 . 02 1. 01 .96 1.00 

NEW_IDEA .99 .99 1.05 .98 1. 04 .93 1. 25 1. 03 .97 . 94 1.01 1. 04 1. 09 1.00 1. 02 .97 1.17 1. 02 

BOAT_ NZ 1.00 .93 .93 1.07 1. 02 .93 .9 6 .96 .95 .93 .96 .98 1.00 1.00 .99 1. 01 .99 .99 

AUS_W_WJC 1.00 1. 04 .93 1.02 .96 1.10 . 92 1.07 1.15 1.05 1.01 .96 1.05 . 97 .92 1.03 1.03 1.05 

W_FAIRGO 1.01 1. 02 1.00 .99 1 . 09 .97 1.13 .97 1. 04 1.11 . 81 1.13 1.05 .88 1. 02 1.01 .96 1.10 

H_N_BUIL 1.01 1.01 1.07 . 96 1. 09 .95 1. 23 . 98 .93 1. 04 .74 .97 1.01 1.00 1.08 .99 1.15 1.05 

R_DIGEST 1.02 1.17 1.06 .93 .99 1.12 1.11 1.15 1 . 03 . 95 .96 1.01 1.11 1.07 .97 1. 04 .97 .97 

FASHIONQ 1. 03 1.11 1.01 .93 .97 .92 .97 1.06 .92 .93 .92 .94 1. 22 1. 04 . 92 .94 .94 .92 

SUN_STAR 1. 03 .94 1.12 . 89 1.05 1.07 . 94 .97 .97 1.05 1.12 .86 1.11 .99 .96 .99 .89 1.06 

CIGARS 1. 04 1.00 .93 1. 04 1. 09 1.17 . 93 1.12 1.13 1. 04 .96 .95 

ACCIDENT 1.05 1.07 1.07 .93 1. 01 .98 . 88 . 88 .91 . 98 1.01 .86 1.00 1. 03 .88 .99 .84 1.05 

PIPE 1.05 .97 1. 03 1.08 1.16 1. 09 1.11 1.04 1.13 1.04 .93 .96 .94 .95 .94 .95 1. 95 .95 

NZ_W_WJC 1.07 1.10 1.05 1.03 1.13 1.07 1.25 1.07 .95 1.07 1.00 .95 1.08 1.15 1.10 1. 03 1.18 1.11 

WOMAN_WJC 1.07 .95 .9 2 1.11 1.11 1.13 1.05 1.11 1. 23 1.18 1.06 1.02 .98 1.05 .96 1.04 .99 1. 02 

MONEYMAT 1.07 1.11 . 87 1.16 1.00 1.16 .99 1.09 1. 21 1.10 .84 1.00 .9 0 .97 .98 1.15 1.12 1.10 

E_W_WJCLY 1.08 1.09 1. 09 1.02 1. 04 .91 . 96 .95 .93 1.15 .93 .98 1.00 .99 .99 1.00 .98 .99 

H_KIDSTD 1. 09 1.07 1.20 .97 1.14 1.11 1.10 1 . 10 1.01 1.06 .90 1.08 1.13 .87 1.00 1.13 .95 1.12 
I 
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Table 11. Design Effects of Variables in Different Clusterings (2) 

Cluster Size 8 6 ' 2 

Clustering* CS8 1 S61 S62 S63 S64 S65 CS4 2 S41 S42 S43 S44 CS2_ 1 CS2 2 CS2 3 CS2 4 CS2 5 CS2 6 CS2 7 
Variables: 

R_ ACTIVI 1.10 1.07 1.20 1.01 1. 33 1.09 1. 20 1.15 .95 1.12 .94 1.06 1.17 .99 1.05 1. 02 1.12 .9 5 

WELLBRAN 1.10 1. 08 1.00 1. 04 1.14 1. 23 1. 02 1.12 1. 24 1.25 1.06 1.18 1.10 .98 1. 09 .82 . 90 . 98 

CUISINE 1.10 1.06 . 9 9 1. 15 1.03 1.07 1.01 . 93 1.06 1 . 01 .94 .9 7 .98 .9 7 .9 5 .96 1. 27 1. 32 

RAWDEAL 1.10 1.14 1.00 1. 01 1.10 1.13 1.06 1.22 .91 .96 1.08 .93 1.05 1.03 . 83 .9 7 1.14 1. 1 5 

METRO 1.12 1.12 1.08 1. 23 1.06 1. 27 . 95 1.14 1.13 1.18 . 94 1.17 .96 1.13 .9 5 . 9 6 . 9 6 1.3 0 

POLICTIC 1. 13 1. 0 9 1.18 .89 1.15 1.05 1.13 .95 .99 1.03 1.12 .89 1 . 02 1 .02 1. 28 .95 .93 1. 0 9 

MAORICUL 1. 13 1. 04 1.26 1. 03 1.11 . 93 1.17 .95 .93 1.06 1 .02 1.00 1.05 .92 1. 15 . 99 1. 0 7 . 9 2 

NZ_BOSI 1.15 .9 9 1.10 1.17 1.13 1.19 . 91 1.05 1.12 1.05 1.10 .96 .97 . 97 .9 7 .98 . 96 1. 2 3 

AIRNZPW 1.15 1.06 1.10 1.10 1.29 .96 1.08 1.05 1.00 1. 35 1. 01 1.17 .96 . 97 1.11 . 9 6 1.17 . 94 

SUN_NBWS 1. 16 1. 1 5 1. 22 1. 02 1. 21 1.14 1. 2 1 1. 09 1. 04 1. 24 1. 04 1.10 1.19 . 96 1.19 1.06 1.03 1.01 

ADVBNTOR 1.17 1. 4 0 1. 0 9 1.17 . 93 1. 23 .97 1. 25 1.17 .9 5 . 96 .98 . 99 .98 .99 1. 3 2 .98 .97 

WOIIANISS 1. 20 1 . 18 1.14 1.07 1 . 25 1.16 1. 20 1. 28 1.15 1.18 1. 02 1.13 1.16 .93 1.05 .93 . 82 1. 02 

CLEO 1.21 1.16 1.27 . 96 1. 04 1.13 . 99 .99 1.10 .95 1.18 .96 . 96 . 95 . 94 .95 .97 .9 5 

BNDSMBBT 1. 21 1.12 1.16 1.12 1. 20 1 .38 1.01 1.18 1.10 1.11 1.08 1. 1 7 1. 21 . 92 .86 .98 .96 1. 17 

LONELY 1. 2 1 1.19 1.20 1.19 1.23 1 . 22 1.27 1.22 1.11 1. 01 1.18 1.00 1. 09 1.07 1. 11 . 94 1.16 1.00 

NTB_ N_SH 1. 23 1. 2 9 1. 29 1. 19 1. 02 1. 22 1.13 1. 01 1.13 1.07 .92 1.03 1.04 . 95 1.10 1. 13 1. 0 3 1. 2 0 

NZ_GEOGR 1. 23 1. 13 1.21 1. 17 1. 27 1. 21 1.16 1. 25 1.18 1.28 .97 1.05 1.18 1. 09 1. 09 .9 2 . 94 1. 15 

TV_GOIDB: 1. 23 1.2 3 1. 08 1. 21 1. 09 1. 22 .96 1.15 1.13 1. 02 1.20 1. 01 .9 3 1.14 1.05 1. 15 . 90 .98 

FAMILYTO 1. 2 4 1.15 1.18 1.22 1.08 1. 29 1.19 1.12 1. 33 .99 1.11 . 78 1.1 5 . 9 5 1.10 . 97 1.04 1.12 

N_MMCIGA 1. 24 1. 2 4 1.09 1. 24 1.15 1. 32 1.07 1. 25 1. 25 1.14 1. 02 1.10 1.12 1. 01 1. 02 1. 2 0 .97 .99 

C_ WOMAN 1. 25 1. 1 5 1.11 1. 17 1. 25 1.18 1. 09 1.05 1.14 1. 25 1.01 1.12 1. 22 .9 5 1. 0 9 1.03 .98 1. 0 1 
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Table 11. Design Effects of Variables in Different Clusterings (3) 

Cluster Size 8 6 4 2 

Clustering* CSS 1 S61 S62 S63 S64 S65 CS4 2 S41 S42 S43 SU CS2 1 CS2 2 CS2 3 CS2 4 CS2 5 CS2_6 CS2 7 

Variables: 

NTRUN'l'VE 1.25 1. 28 1.17 .99 1.12 1. 02 1. 24 1.17 .93 1.12 1. 36 .99 .98 .97 1. 27 .98 . 97 .97 

NEWPRODU 1. 26 1.11 1. 27 1. 09 1. 26 .98 1.12 1. 01 .95 1. 23 1.16 1.09 1.05 . 91 1.05 .92 1. 01 1.03 

MMADECIG 1. 27 1. 36 1.16 1.19 1 . 30 1. 30 1.17 1.35 1.08 1. 27 .98 1. 21 1.13 1.10 1.13 1.18 1.06 .96 

Ll:T_'l'REA 1. 28 1.12 .88 1. 28 1.23 1. 27 .89 .98 1. 49 1. 27 1.06 . 93 .96 . 95 .94 .92 .95 1.07 

H_IMPROV 1.29 1.13 1. 31 1. 31 1. 36 1.13 1.13 1.10 1.07 1. 39 .89 1. 27 .97 1.00 1. 01 1.08 1. 09 1. 23 

NBWSCOJIM 1. 29 1.16 1.14 .99 1.12 1. 26 1. 06 1.11 1.10 1.05 1. 28 1.00 1.06 .97 .91 1. 03 . 86 1.08 

Tl:ME 1. 29 1. 22 1.16 1.18 1. 23 1. 22 1.12 1.19 1.11 1. 20 .99 1.15 1.08 1. 09 1. 03 .95 1.17 1.03 

SP_NBWS 1. 30 1.23 1. 37 1.00 1. 38 1. 01 1. 51 1.07 .81 1. 20 1.10 1. 06 1. 22 . 91 1.13 1.12 1.16 1.15 

OWNCl:GAR 1. 31 1. 09 1.15 1. 38 1.15 1. 27 1.01 1.09 1. 30 1.13 1. 23 1.00 .93 1. 22 .92 .83 .93 1. 27 

BOOIC 1.32 1.18 1. 30 1 . 14 1. 29 1.16 1.27 1.16 .99 1. 35 1.05 1. 22 1.10 1.05 1.15 1. 01 . 97 1.15 

SPECIAL 1. 32 1.19 1.14 1.28 1. 25 1.21 1.10 1. 22 1. 09 1.16 1. 36 1. 28 .97 .93 .99 .93 1.05 1. 04 

NONPOLLU 1. 32 1. 37 1.23 1.10 1. 31 1. 07 1. 24 1. 22 .85 1.40 .98 1.14 1.11 1.15 1.19 1.06 1.07 1.19 

ICBEPJ'l:T 1. 33 1. 33 1.10 1. 30 1.15 1. 33 1.10 1. 34 1.13 1. 02 1.16 1.07 1.07 1.06 .95 1.05 1.11 1.15 

N_OWNCl:G 1. 34 1.06 1.17 1. 44 1.19 1. 28 .99 1. 09 1.26 1. 22 1.25 1. 03 .92 1. 23 .90 .89 .97 1. 36 

SUCCESS 1. 34 1. 23 1. 34 1.23 1. 46 1. 34 1.12 1. 21 1. 09 1. 24 1.25 1. 04 1. 09 1.12 1.17 1. 01 1. 04 1.08 

REPAY'l'M 1. 38 1. 39 1. 38 1. 34 1. 29 1. 49 1.13 1. 32 1. 23 1. 29 1.02 1. 32 1. 21 1. 06 1.00 1.15 .95 1.23 

LNEWSCOM 1.40 1. 21 1. 20 1. 3 6 1. 28 1 . 26 1. 21 1.19 1.12 1.09 1. 28 1. 03 . 94 1.11 1.08 1. 22 1.16 1. 02 

MYOPl:Nl:O 1.41 1.28 1. 30 1. 39 1.24 1. 36 1.12 1. 07 1. 40 1.19 1.12 1.07 1.00 1.12 1.03 1.03 1.11 .97 

CHANGING 1.42 1.18 1. 40 1.18 1.50 1. 26 1. 24 1. 03 1.08 1.34 1. 20 1. 21 1.13 .93 1.03 1.05 .98 1.10 

MARIJUAN 1.43 1. 28 1. 22 1. 31 1. 34 1. 26 1. 28 1. 23 1. 27 . 95 1. 32 . 91 . 98 1.08 .98 .81 1.09 .94 

RACEPROB 1. 44 1. 29 1. 36 1.26 1. 38 1.19 1. 20 1.19 1.05 1.15 1.17 1.08 1.17 1.14 1.03 1.05 .98 1. 02 
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Table 11. Design Effects of Variables in Different Clusterings (4) 

Cluster Size 8 6 ' 2 

Clusterincr* CS8 l S61 S62 S63 s6, S65 cs, 2 s,1 s,2 s,3 SU CS2 1 CS2 2 CS2 3 CS2, CS2 5 CS2 6 CS2 7 
Variables: 

H_FOOD 1. 46 1.43 1. 44 1. 21 1. 31 1. 38 1. 25 1. 24 1.14 1.18 1. 07 1.07 1.10 1.11 1.17 1.05 1.07 1.09 

NBWl:DBAS 1.47 1. 34 1. 37 1. 31 1. 30 1. 23 1.27 1.16 1.07 1. 22 1.04 1.12 1. 25 1.10 1.00 1.01 .96 1.08 

B_NEWS 1.53 1. 41 1.35 1. 25 1. 37 1. 35 1. 31 1. 20 1.14 1. 25 1.05 1.11 1.11 1.03 1.13 1.10 1.15 1.10 

DR:INltOUT 1. 55 1. 51 1. 39 1. 32 1. 33 1.45 1 . 29 1. 29 1. 25 1.17 1. 36 1.15 1.07 1. 23 1.11 .98 .95 1.04 

P_YOOTH 1. 55 1. 42 1.44 1. 37 1.32 1. 47 1.17 1. 26 1. 21 1.15 1.29 1.17 1.12 .98 1.01 1.14 1.00 .97 

AGE 1. 55 1. 57 1. 33 1. 34 1. 54 1. 51 1. 42 1. 62 1.16 1. 20 1.17 1. 28 1.19 1. 20 1.17 .94 1.13 1.03 

WORJOIOME 1. 57 1. 54 1. 27 1. 42 1. 36 1. 52 1.17 1. 33 1. 38 1. 41 1.18 1. 20 1.05 1.06 1.09 .98 .97 1.25 

Vl:S:ITGAL 1. 61 1. 52 1.47 1. 38 1.44 1. 38 1. 31 1. 26 1.13 1.44 1.06 1. 25 1.15 1.15 1.15 1.19 1.16 .99 

GRAPEV:IN 1. 66 1. 41 1. 59 1. 40 1. 65 1. 56 1. 47 1. 29 1. 39 1. 32 1.24 .95 1. 36 1. 04 1.16 1.11 1.07 1.08 

D:INEROUT 1. 68 1.45 1.63 1. 36 1. 54 1. 49 1 .14 1. 21 1.23 1. 54 1.18 1.19 1. 01 1.05 1.17 1.05 1.00 1.23 

TRUSTFUL 1. 73 1. 73 1.46 1. 48 1. 51 1. 57 1 . 33 1. 40 1.29 1. 44 1.19 1. 25 1.16 1.12 1.18 1. 20 1.01 1.23 

TOUGBLAW 1. 73 1. 55 1. 56 1. 43 1. 56 1. 43 1. 37 1. 34 1. 29 1. 27 1. 33 1.12 1. 26 1.00 1.07 1.04 1.00 1. 04 

CONCERT 1.74 1. 52 1. 59 1. 44 1. 56 1. 48 1. 29 1. 25 1. 21 1. 44 1.27 1.11 1.04 1. 23 1.11 1.08 .99 1. 23 

V:IS:ITCLU 1. 75 1. 69 1.53 1. 50 1. 53 1. 52 1. 54 1. 27 1. 49 1. 34 1.23 1. 02 1.18 1.11 1. 23 1.12 1.14 .99 

H_BLU!:B!t 1. 90 1.92 1. 78 1. 54 1. 69 1. 96 1. 30 1. 46 1. 42 1. 52 1.16 1.15 1. 44 1. 04 1.16 1. 40 .93 1. 28 

W:INEMBAL 1. 95 1. 64 1. 72 1. 64 1. 78 1. 59 1. 41 1. 40 1. 28 1. 64 1. 44 1. 24 1.05 1.12 1. 26 1.13 1.13 1.20 

MOR_PAPS 2.42 2.12 1. 91 1. 90 1. 99 2.04 1. 48 1. 67 1. 56 1. 61 1. 59 1. 23 1.13 1.14 1.18 1. 20 1.01 1.11 

BVE_PAPS 3.91 3.05 3.19 3.06 3 . 03 3.08 2.30 2 . 19 2 . 20 2.15 2.33 1. 25 1. 41 1. 39 1. 40 1. 44 1. 54 1. 55 

Average 1.32 1.2, 1.23 1.21 1.25 1.24 1.15 1.16 1.13 1.18 1.11 1.07 1.08 1.04 1.05 1.03 1.04 1.08 

* See Chapter 4: METHOD. 
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Appendix E. Homogeneity 

1. Calculation Method of Homogeneity 

It is cumbersome to calculate the measurement of 

homogeneity p by its definition. In practice, the 

definition of p is never used to calculate it. Thus, it is 

necessary to search for a simple solution to calculating 

p. The most common solution is to estimate p if cluster 

size is known and design effect can be estimated. That is, 

p is estimated by: 

p = (design effect - 1) I (m - 1), 

where m is cluster size (average cluster size) . 

This formula is derived from formula 3.0. From formula 

3 • 0 / 

Design effect - 1 
A 

= (m-1) p. 

Then, 

A 

p = (design effect - 1) I (m - 1). 
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2. Results 

All values of homogeneity for each variable estimated from 

18 samples are displayed in table 12. These values are 

between -0.215 and 1.000. The observations from these 

values are described in the following. 

First, the average homogeneity over variables tends to be 

the same among clusterings, though there is variability. 

This is reflected in figure 6 from which the curve of the 

average homogeneity values over variables across these 18 

samples varies around a horizontal line. This is also 

reflected from table 12. The average homogeneity values 

for each cluster size are 0.045 for cluster size 8, 0.047 

for cluster size 6, 0.048 for cluster size 4, and 0.055 

for cluster size 2. 
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Table 12. Homogene;ty across Variables and Clusterings (1) 

Cluster Size 8 6 4 2 

Clusterinas cse 1 S61 S62 S63 S64 S65 S41 CS4 2 S42 S43 S44 CS2 1 CS2 2 CS2 3 CS2 4 CS2 5 CS2_ 6 CS2 7 
Variables : 

STYLE -0.017 -0 . 016 -0.019 -0.020 -0.016 -0.020 -0 . 015 -0. 013 -0.020 -0.020 -0.015 -0.019 -0.019 -0.024 -0 . 019 -0 . 026 -0.019 - 0 . 032 

SHENMORE -0.010 - 0.028 0.000 0.011 -0.015 0.002 -0.031 -0.043 0.000 0.002 -0.031 -0.036 -0.044 -0.036 -0.064 -0.055 -0. 032 0 .2 22 

TEARAWAY -0.006 - 0.03 9 0.003 0.017 -0 . 004 -0.034 -0.033 0.002 -0 . 022 -0.033 0.028 -0.019 -0 . 055 - 0.010 -0.041 - 0 .02 6 -0. 03 2 - 0.026 

LTV_N_ RT -0.005 -0.017 -0.024 0.014 -0.008 -0.014 -0.013 -0.054 0 . 006 0.031 -0.001 0.030 -0 . 034 0.010 0 . 010 -0.127 -0.043 0.021 

YEAROUT -0.002 0 . 004 0.000 -0.003 0.018 -0.005 -0.010 0.033 0 . 014 0 . 036 -0.063 0.107 0 . 052 -0.120 0.0 1 6 0.013 -0.070 0 . 105 

NB:W_ :IDB:A - 0 .002 - 0. 01 4 0.008 -0 . 007 0.010 -0.007 -0.022 0.004 -0 . 001 -0.005 -0.014 0 . 003 -0.030 - 0.025 0.022 0.007 - 0 .04 0 0. 00 3 

BOAT_ NZ - 0 . 002 - 0.001 0.010 - 0.005 0.008 -0.014 0.011 0.083 -0.009 -0 . 018 0 . 002 0.042 0.08 9 0 . 00 1 0 . 020 - 0. 02 5 0 . 169 0 . 020 

AtrS_W_ WJC 0.000 - 0 .01 5 -0 . 015 0.014 0.004 -0 . 015 -0.015 -0.015 -0.018 -0.024 -0.015 -0.024 -0.001 -0.00 1 -0 . 01 0 0.00 6 - 0. 010 - 0.010 

W_ PllROO 0.001 0 . 008 -0.014 0.005 -0.008 0.021 0.022 -0 . 025 0.049 0.016 0 . 004 -0.037 0.051 -0 . 031 -0.082 0 . 029 0 .029 0.051 

H_N_ Btr:IL 0.002 0.003 0.015 -0.009 0.018 -0.011 -0.005 0 .078 -0.023 0.012 -0.087 -0.034 0 . 010 0.001 0.0 7 6 -0 . 008 0.154 0 .053 

R_DJ:Gll:ST 0 .002 0. 03 5 0 . 013 -0.015 -0.003 0.024 0.050 0.037 0.010 -0.017 -0.013 0.010 0.110 0 . 074 -0.0 34 0 .042 -0.0 25 - 0 . 03 4 

PASH:IONQ 0 . 00 4 0.0 2 3 0. 002 -0.014 -0 . 006 -0.017 0.020 -0.011 -0.026 -0.023 -0 . 026 -0.060 0.222 0.04 2 -0 . 0 84 -0.064 - 0 . 060 - 0.080 

StrN_STAR 0 .004 -0.012 0 . 024 -0.022 0.011 0.015 - 0.009 -0 . 021 -0.008 0 . 016 0 . 039 -0.14 3 0.110 -0.010 -0.042 -0 .01 0 - 0 . 113 0 . 064 

CIGARS 0 . 006 0.001 -0.01 5 0.009 0 . 020 0.036 0.041 -0.026 0.044 0.015 0.000 -0.043 -0. 0 61 

ACC:IDBN'l' 0. 007 0.013 0.014 - 0.013 0.003 -0.004 -0.039 -0.040 -0.029 -0.007 0 . 005 -0. 142 0.000 0 . 02 8 -0.12 1 -0 .00 7 - 0 . 160 0 . 053 

PIPB 0.008 -0. 00 6 0 . 00 7 0 . 017 0.034 0.020 0.015 0.039 0.044 0.015 -0.024 -0.043 -0.073 - 0.058 -0.0 69 - 0.051 1 .000 - 0 . 06 1 

NZ_W_WJC 0 . 010 0. 019 0.010 0.006 0.025 0.013 0.022 0.082 -0.016 0.022 0.001 -0.051 0.080 0 . 154 0.1 01 0 . 026 0 . 176 0 . 108 

WOMAN_ WJC 0.01 0 -0 . 009 -0.01 6 0 .022 0.022 0 . 025 0.036 0.018 0 . 076 0.059 0.020 0.01 9 -0.02 4 0 . 054 - 0. 044 0. 03 8 -0.013 0.018 

MONBYMAT 0.0 10 0. 014 0 .040 -0.006 0 . 028 0 . 023 0 . 033 0.034 0 . 005 0.019 -0 . 034 0 . 093 0.096 - 0. 1 54 0.004 0.104 - 0 . 039 0 . 141 

E_W_WJCLY 0 .010 0. 022 -0.025 0.031 0 .0 00 0.031 0.030 -0.004 0.069 0.032 -0.052 -0.002 -0.097 -0.030 -0.02 3 0.151 0.115 0.100 

H_ ltIDSTD 0.011 0.018 0.018 0 . 004 0.007 -0.018 -0.018 -0. 015 -0.022 0.048 -0.022 -0.019 -0.001 - 0.010 -0.00 9 -0.001 - 0 . 01 9 - 0 . 010 

R_ACT:IV:I 0.012 0 . 01 7 0.001 0.008 0.029 0.046 0.041 0.008 0.079 0.085 0.020 0.171 0.10 1 -0.015 0 . 09 5 - 0 . 18 0 - 0.104 -0.017 
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Table 12. Homogeneity across Variables and Clusterings (2) 

Cluater Size 8 6 ' 2 

Cluateringa CS8_1 S61 S62 S63 S64 S65 S41 cs, 2 S42 S43 S44 CS2 1 CS2 2 CS2 3 CS2 4 CS2 5 cs:z 6 CS2_7 
Variable•: 

WELLBRAH 0.014 0.011 -0.002 0.030 0.007 0.014 -0.024 0 . 005 0.021 0.005 -0.020 -0.026 -0.024 -0 . 026 - 0 . 050 -0.041 0. 270 0.323 

CUISINE 0.015 0.018 0.036 -0.022 0.031 0.011 -0 .016 0 .0 45 -0 . 002 0.010 0 . 041 -0.137 0.000 0.000 0.284 -0.062 -0.087 0.076 

RAWDBAL 0.016 0.008 0.052 0 . 006 0.022 -0.014 -0 . 018 0.049 -0.024 0 . 020 0.007 0.002 0.038 -0.081 0.145 -0.007 0.045 -0 .078 

METRO 0.017 0.013 0.039 0.003 0 . 066 0.018 0.049 0 . 073 -0.017 0.040 -0.021 0.055 0.181 -0.009 0.045 0.019 0.124 -0.050 

POLIC'l'J:C 0.017 0 . 025 0.016 0 . 046 0.012 0.054 0.048 - 0.016 0.042 0.059 -0.019 0.168 -0.041 0.126 -0.055 -0.036 -0.036 0.304 

MAORJ:COL 0.018 0.028 0.000 0.001 0.021 0.026 0 .072 0.020 -0.029 - 0.014 0.026 -0.027 0.069 0.121 -0.177 -0.074 0.098 0.103 

NZ_BUSJ: 0 . 021 -0.002 0 . 021 0.034 0.026 0 . 039 0 . 015 -0.028 0.041 0.015 0 . 033 -0.041 -0.032 -0 . 026 -0.026 -0.024 -0.036 0.227 

AIRNZPW 0.022 0.011 0.019 0.020 0.059 -0.008 0 . 015 0 .028 0 . 000 0 . 115 0. 005 0.168 -0.036 -0.032 0.108 -0.041 0 . 168 -0.060 

SUN_NBWS 0 . 022 0.031 0.044 0.005 0.042 0.028 0 . 02 8 0 . 069 0.012 0.079 0.015 0.097 0.188 -0 . 037 0 . 195 0.062 0.030 0.009 

ADVlfflTl1R 0.024 0.079 0 . 018 0 . 034 - 0 . 015 0.045 0.084 - 0.010 0.058 -0.018 - 0.015 -0.019 -0.010 - 0 . 024 -0.010 0.323 -0.024 -0.032 

WOMANJ:SS 0.029 0.032 0.055 -0.008 0.008 0.027 -0.0 04 -0.004 0 . 033 -0.016 0.061 - 0.041 -0.044 -0.050 -0.060 -0.055 -0.032 -0.050 

CLBO 0.030 0.033 0.028 -0.002 0.024 0.052 0.037 0.010 0.034 0 .017 0.092 0.003 0.061 -0.029 -0.086 0.005 -0.167 0.057 

EHDSMEET 0.030 0.036 0.027 0.015 0.050 0.032 0 . 093 0 . 066 0.050 0.059 0 . 006 0.126 0.156 -0 .065 0.053 -0.073 -0.185 0.008 

LONELY 0.032 0.024 0.032 0.024 0 . 040 0 . 077 0 . 059 -0.004 0 . 033 0.036 0.027 0.172 0.196 - 0 . 079 -0 .13 6 -0 . 024 -0.043 0.172 

N'l'H_N_SB 0.033 0.059 0.059 0.039 0.004 0.043 0.005 0.044 0.042 0.023 - 0 . 026 0 . 030 0.042 -0.049 0.101 0.130 0 . 027 0.203 

NZ_ GEOGR 0.033 0.027 0 . 042 0.033 0 . 054 0.043 0 . 086 0.053 0.060 0.094 -0 . 009 0.052 0.181 0.092 0.092 -0.080 -0.064 0.145 

TV_GUIDE 0.033 0.046 0.017 0.042 0.019 0 . 044 0.050 - 0.014 0.043 0.008 0.067 0 . 008 -0.066 0 . 140 0.051 0.147 -0.096 -0.024 

l"AMILY'l'O 0.034 0.029 0.036 0.044 0.016 0 . 057 0. 041 0.064 0.109 -0.004 0.036 -0 . 215 0.153 -0 . 043 0.100 -0.026 0.038 0 . 118 

N_MIICIGA 0 . 035 0.047 0.017 0.048 0.030 0.063 0 . 082 0 .025 0 . 084 0 . 047 0.005 0.105 0 .116 0 . 014 0.021 0.200 -0.027 -0.006 

C_WOMAN 0.035 0.031 0.021 0 . 035 0 . 053 0.036 0 . 017 0.031 0 . 047 0 . 085 0.002 0.139 0.217 -0.052 0.093 0.033 -0.020 0.015 

NTRUN'l'VE 0.036 0.056 0.034 -0.002 0 . 025 0.004 0.058 0.079 -0 . 022 0 . 041 0.119 -0.009 -0.019 -0.026 0.270 -0.024 -0.026 -0.026 
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Table 12. Homogeneity across Variables and Clusterings (3) 

Clu•ter Size 8 6 4 2 

Clu•terina CS8 1 S61 S62 S63 S64 S65 S41 CS4 2 S42 S43 S44 CS2 1 CS2 2 CS2 3 CS2 4 CS2 5 CS2 6 CS2 7 
Variables: 

NEWPRODtJ 0.037 0.021 0.053 0.018 0.052 -0.004 0.003 0.039 -0.016 0.075 0.053 0.088 0.048 -0.085 0.045 -0.079 0 . 006 0.027 

MMADECIG 0 . 038 0 . 037 0.060 0.029 0.058 0.031 0.053 0 .0 85 -0.004 0 .115 0.017 0.216 0.062 0.020 0.150 0.009 -0.035 0.145 

LIT_TR.EA 0.038 0.039 0.041 0.038 0.047 0.043 0.075 0 . 093 0.036 0.004 0.061 -0.032 0.107 0.102 0.098 -0.053 0.178 0 .011 

H_IMPROV 0.039 0 .04 5 0.074 0.001 0.077 0.001 0.025 0.167 -0.062 0.068 0.033 0.056 0.216 -0.095 0.133 0.107 0 . 140 0.150 

NEWSCOMM 0.040 0.027 0.061 0.063 0.073 0.027 0.033 0.042 0.023 0.129 -0.035 0.265 -0.030 -0.034 0.013 0.081 0.094 -0.040 

TIME 0.041 0.025 -0.025 0.056 0.046 0.053 -0.008 -0.038 0.162 0.091 0.021 -0.070 -0.041 -0.050 -0.060 -0.080 -0.050 0.230 

SP_NEWS 0.041 0 . 076 0 .034 0.039 0.063 0.064 0.126 0 . 061 0.030 0.097 -0.007 0.231 0.146 0.109 0.151 0.200 0.064 0.066 

OWNCIGAR 0.042 0.045 0.032 0.035 0.046 0.045 0.064 0.040 0.035 0 .067 -0.002 0.145 0.079 0.092 0.030 -0.055 0.168 0.030 

BOO!t 0.046 0 .07 3 0.046 0.020 0.062 0.015 0. 072 0.080 -0.050 0.134 -0.006 0.142 0.114 0.151 0.194 0.064 0.069 0 . 307 

SPECIAL 0.046 0 . 065 0.021 0.060 0.029 0.067 0 .112 0.035 0.043 0.008 0.053 0.069 0.070 0.097 -0.051 0 .0 54 0 . 109 0.187 

NONPOLLtJ 0.047 0.019 0.032 0.080 0.033 0.058 0.031 0.005 0.106 0.047 0.082 -0.004 -0 .076 0.250 -0.090 -0.187 -0.080 0.154 

l!CBB:PP'IT 0.049 0.012 0.035 0.088 0.037 0.057 0.029 -0.005 0.087 0.074 0.083 0.031 -0.079 0.230 -0.099 -0.108 -0.030 0.358 

N_OWNCIG 0.051 0.039 0.027 0.056 0.050 0.043 0.075 0.035 0.029 0.054 0.121 0.237 -0.030 -0.019 -0. 013 -0.068 0.054 0.048 

SUCCESS 0 . 055 0.078 0.077 0.069 0.058 0.100 0.110 0.045 0.076 0.099 0.006 0.330 0.214 0.058 0.005 0.154 -0.056 0.232 

REPAYTM 0.056 0.047 0 .06 8 0.047 0.093 0.069 0 . 070 0.075 0.029 0.082 0.085 0.054 0.161 0.090 0.187 -0.023 0.054 0.107 

LNEWSCOM 0.058 0.041 0.041 0 .072 0.055 0.053 0.063 0.072 0.040 0.032 0.095 0.030 -0.065 0 . 112 0.079 0 .22 4 0.163 0.018 

MYOPINIO 0 . 058 0 . 036 0.081 0.037 0.100 0.052 0 .011 0.077 0.026 0 .113 0.068 0.208 0 . 111 -0.073 0.031 0.050 -0.018 0.095 

CHANGING 0 . 059 0.057 0 . 061 0.077 0.047 0.072 0.022 0.042 0 .132 0.062 0.039 0.080 -0.026 0.103 0.035 0.005 0.128 -0.026 

MARIJtJAN 0.061 0.058 0.073 0.053 0.076 0.039 0.064 0.068 0.018 0.050 0.058 0.085 0.169 0.139 0.033 0.052 -0.016 -0.008 

RACEPROB 0 . 066 0 .086 0.089 0.043 0.061 0.076 0.081 0.084 0.046 0.060 0.024 0 . 066 0.099 0.109 0.168 0 .05 1 0.068 0.089 

H_FOOD 0.066 0.083 0 . 071 0.051 0.075 0.071 0.066 0.085 0.046 0.083 0.017 0.144 0.119 0.010 0.101 0 . 108 0.094 0.105 
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Table 12. Homogeneity across Variables and Clusterings (4) 

Clu•ter Size 8 6 4 2 

Clu•terina CS8 1 S61 S62 S63 S64 S65 S41 CS4 2 S42 S43 SU CS:.il 1 CS:.il 2 CS:.il 3 CS:.il 4 CS:.il 5 CS:.il 6 CS:.il 7 
Variable•: 

NBWl:DKAS 0 .067 0.057 0 . 043 0.062 0.068 0.052 0.078 0.103 0.089 -0.015 0.109 -0 . 10 1 -0.025 0 . 113 -0 . 016 -0. 1 65 0.125 - 0 . 065 

B_NBWS 0.070 0.068 0.07 4 0 . 062 0.061 0.047 0.055 0.090 0.024 0.074 0.014 0 .114 0 . 247 0.098 -0 . 002 0 . 0 1 0 -0. 0 42 0.080 

DR'.rNltOO'l' 0.078 0 . 084 0.088 0.073 0.064 0.094 0 . 088 0.058 0.071 0.050 0.096 0.166 0 .119 -0.020 0.00 9 0 . 136 - 0 .0 02 - 0. 027 

P_ YOUTJI 0 . 079 0.113 0. 067 0.069 0.107 0 . 103 0.207 0.140 0.054 0.067 0.057 0.283 0 . 193 0 . 200 0. 171 - 0 . 0 64 0. 1 3 2 0 . 025 

AGE 0 . 08 2 0 .102 0 . 078 0 . 063 0 . 066 0 . 089 0.096 0.098 0.084 0.056 0.11 9 0 .147 0.071 0.228 0.092 - 0 .016 - 0.0 48 0 . 031 

WORmONE 0.08 2 0 .108 0 . 05 5 0.083 0 . 071 0 . 104 0.109 0.058 0.126 0.136 0.059 0. 199 0 .0 46 0. 0 63 0 .0 94 - 0 .0 21 - 0 . 030 0 . 249 

v:rs:r'l'GAL 0 . 084 0.10 5 0 .0 94 0.075 0.089 0.077 0 . 088 0 . 104 0.045 0.146 0.019 0.252 0 . 1 55 0.078 0. 14 6 0 . 1 8 5 0.158 0 . 055 

GRAPEV:rN 0 . 094 0.082 0 . 118 0.080 0.129 0 . 112 0.095 0.158 0.128 0.107 0.080 -0 . 05 5 0. 364 0.04 3 0.163 0 . 108 0.066 0.079 

D:rNEROO'l' 0. 097 0 . 091 0.126 0. 071 0.108 0.098 0 .071 0.047 0.077 0.181 0 . 061 0 . 191 0.010 0.048 0 . 16 8 0 .0 53 0.000 0.227 

TRUSTl'UL 0. 1 03 0 .1 03 0 .117 0.088 0.111 0.096 0.085 0.096 0.071 0.146 0 . 090 0 . 108 0 .037 0.240 0.106 0 . 083 - 0 . 01 2 0 . 232 

TOtJGHLAW 0 . 104 0.14 6 0 . 092 0.096 0.102 0.115 0 .134 0.108 0 . 096 0 . 147 0.065 0.2 5 0 0 . 179 0.122 0 .178 0 .2 00 0 . 01 0 0 .2 26 

CONCERT 0 .1 04 0 . 1 09 0.113 0.086 0.111 0.087 0.112 0.124 0.096 0 . 089 0.109 0.124 0 . 262 -0.002 0.075 0 . 04 1 - 0. 00 2 0 . 036 

v:rs:rTCLtJ 0 .111 0 . 137 0.10 7 0.1 00 0.106 0.105 0.089 0.178 0.164 0.115 0.078 0 . 0 1 9 0 . 178 0 .13 6 0.2 30 0. 123 0.145 0 . 006 

H_BLtJBBJli: 0.129 0 . 18 4 0 . 155 0 .107 0.138 0.192 0.153 0. 100 0 .139 0.172 0 . 053 0.145 0.4 37 0.042 0.163 0.4 0 4 -0 . 075 0 .2 83 

WJ:NENEAL 0 . 13 6 0 . 1 28 0.144 0 .128 0.156 0 .117 0.132 0 .137 0 . 092 0. 213 0 . 147 0.23 8 0.054 0.12 5 0. 259 0.129 0 .13 1 0.199 

MOR_PAPS 0 . 203 0 . 223 0 . 181 0 . 180 0.198 0.209 0.225 0.159 0.188 0.204 0.196 0 . 22 9 0 .134 0.13 7 0.1 8 2 0. 201 0 . 012 0 . 108 

EVE_ PAPS 0 .416 0 . 41 0 0 . 439 0 .411 0.407 0.415 0.397 0.433 0.400 0.383 0.445 0.2 5 4 0 .409 0. 392 0 . 3 99 0 .4 42 0 .542 0 . 548 

Average 0.045 0.048 0.047 o. ou 0.051 0.048 0 . 053 0 . 051 0.044 0.059 0.035 0.066 0.075 0 . 038 0 . 051 0.031 0.037 0.083 
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Second, the relation between homogeneity and cluster size 

is reverse to that between design effect and cluster size. 

This is reflected in figure 2 & 7. 

Awrage Homogeneity 
.07 ~-----------------------~ 

.06 

.05 L--------------

.04 

.03 

.02 

.01 

.00+---------+----------+------------1 
CS8_1 S61 S41 CS2_1 

Cluster Size 

Figure 7. Relation between Homogeneity and Cluster Size 

with a Given Clustering Interval 

Third, the rate of homogeneity increases with decrease of 

cluster size. This increase rate is accelerated by 

decreasing cluster size. This is reflected in figure 7 and 

table 12. 

In table 12, within a given clustering, the increase rate 

of homogeneity is 0.003 from cluster size 8 to cluster 

size 6, 0.005 from cluster size 6 to cluster size 4, and 

0.013 from cluster size 4 to cluster size 2. 

Fourth, the variability of the average homogeneity values 

over variables across clustering within a larger cluster 

tends to be weaker than that within a smaller cluster. 

This is reflected in figure 8, 9 & 10. 
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Figure 8. Relation between Homogeneity and Clustering with 

Cluster Size 6 
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Figure 9. Relation between Homogeneity and Clustering with 

Cluster Size 4 
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Figure 10. Relation between Homogeneity and Clustering 

with Cluster Size 2 
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Appendix F. Comparison of Two Variance Estimation Methods. 
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Table 13. Comparison of Two Design Effect Estimation Methods with 41 Variables (1) 

Samples CS8_1 S61 S41 

Methods* Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

Variables 

AIRNZPW 1.15 1.14 1. 06 1.05 1.05 1. 04 

ACCIDENT 1.05 1. 04 1. 07 1. 06 .88 .88 

P_YOUTH 1. 55 1. 54 1.57 1. 56 1. 62 1. 61 

MOR_PAPS 2.42 2.40 2.12 2.10 l. 67 1. 66 

EVE_PAPS 3.91 3.88 3.05 3 . 03 2.19 2.18 

NTRUN'l'VE 1. 25 1. 24 1. 28 1. 27 1.17 1.17 

BOAT_NZ .99 .98 .99 .99 1. 03 1. 03 

LTV_N_RT .97 .96 .92 .91 .96 .95 

NZ_W_WK 1. 07 1. 06 1.10 1. 09 1. 07 1. 06 

OWNCIGAR 1. 29 1. 28 1.22 1. 21 1.19 1.18 

TV_GUIDE l. 23 1. 22 1. 23 1. 22 1.15 1.14 

WOMAN_WK 1.07 1.06 .95 .95 1.11 1.10 

H_KIDSTD 1.08 l. 07 l. 09 1.08 .95 .94 

AUS_W_WK 1.00 .99 .93 .92 .96 .95 

WOMANISS 1. 21 1. 20 1.16 1.15 .99 .98 
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Table 13. Comparison of Two Design Effect Estimation Methods with 41 Variables (2) 

Samples CSB_l S61 S41 

Methods* Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

Variables 

NZ_BUSI 1.15 1.14 .99 .98 1.05 1. 04 

W_FAIRGO 1.00 1.00 1. 04 1. 03 1. 07 1. 06 

GRAPEVIN 1. 66 1. 64 1. 41 1. 40 1. 29 1. 28 

H_BLUEBK 1. 90 1. 89 1. 92 1. 91 1. 46 1. 45 

POLICTIC 1.12 1.11 1.12 1.12 1.14 1.14 

SHENMORE .93 .92 .86 .86 . 91 .90 

R_DIGEST 1. 02 1. 01 1.17 1.16 1.15 1.14 

TEARAWAY .96 .95 .80 .80 .90 .89 

H_N_BUIL 1.01 1.01 1.01 1. 01 .98 .98 

SP_NEWS 1.28 1. 27 1.12 1.12 .98 .97 

ADVEN'l'UR 1.17 1.16 1. 40 1. 39 1. 25 1. 24 

WELLBRAN 1.10 1. 09 1. 06 1.05 . 93 .92 

FASHIONQ 1. 03 1. 02 1.11 1.11 1. 06 1.05 

NZ_GEOGR 1. 23 1.22 1.13 1.13 1. 26 1. 25 
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Table 13. Comparison of Two Design Effect Estimation Methods with 41 Variables (3) 

Samples CS8 1 S61 S41 

Methods* Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

Variables 

STYLE .88 .87 .92 .91 .96 .95 

WORKHOME 1. 57 1. 56 1. 54 1. 53 1. 33 1. 32 

DINEROUT 1. 68 1. 66 1. 45 1. 44 1. 21 1. 21 

DRINKOUT 1. 55 1. 54 1. 42 1.41 1. 26 1. 25 

WINEMEAL 1. 95 1. 94 1. 64 1. 63 1. 40 1. 39 

CONCERT 1. 73 1. 72 1. 55 1. 53 1. 34 1. 33 

FAMILYTO 1.24 1. 23 1.15 1.14 1.12 1.12 

RACEPROB 1. 46 1. 45 1. 43 1. 42 1. 24 1. 23 

E_W_WKLY 1.07 1. 06 1.11 1.10 1.09 1.08 

NEWPRODU 1. 26 1. 25 1.11 1.10 1. 01 1.00 

SPECIAL 1. 32 1. 31 1. 37 1. 36 1. 22 1. 21 

NEW_IDEA .99 .98 .93 .92 .93 .93 

design 
ms 

* Method 1: the method used in this study, that is, effect =--b ; 
ms 

Method 2: the alternative method, that is, design effect= mr2 
• 
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