Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

GROWHTH AND COMPENTRION SNU:IES WTY SITAP EEANS (Dhaseolus, mul, rio. I,)

A Thesis presented in partial fulfilment of the requirenente for a Nasterate in Horticultural Science a亡 Messey University.

PRAMDA LALLU

1980

ACKNONLEDGLIENTS

I wish to thank ny supervisor Dr. M.A. Nichols for his guidance and encouragement; the staff of the Department of Horticulture for their help; the staff of the library for help with reference materisl; the D.S.I.r. and Arthur Yates Company for financial assistance, elso my friend: who helped se with this project, and my sister Domenti for tyiine the thesis.

RAPI OF COMETS

Page
Acinowledoener.ts it
Table of Contente iii
Iist of Taとles v
Iist of Figures vii
Aンstract vili
INMRCDUCTICN 1
CKA: TZR ON:E: Revie\% of the Literature

1. Srap bear physiology 3
1.1 Introduction 3
1.2 Seed Aspects 4
1.3 Fertilizer use 5
1.4 Harvesting 5
1.5 Guality 6
1.6 Wlowering 10
1.? Photosynthesis 12
2. Plant Spacine 15
2.1 Introduction 15
2.2 Ilant density 75
2.3 Plent arraneenent 16
2.4 Competition 17
2.5 Effecta of Zensity or the plant 18
2.6 IIrnt density and competition nouels 25
3. Growth Analysis 21
MATMER MNO: Voterials end Metnoús
?.1 Expritaent one202.? Eaperzant Tro$3 \cdot$

3.1 Resuly ミ3
3．1．1 Growth AnaZusis ミラ
3．＾．Morpholosy 34
z．1．z Viel： 36
3.2 Discussion 37
z．2．1 Yiel－density relationshigs 汽
Crame FCUR：zueriment 2
4．1 Results 43
4．1．1 Growth Analysis 43
4．1．2 Morpholouy 49
4．1．3 Yield 54
4．2 Discussion 57
4．2．1 Yiela－density relationships 60
conciusions 65
FUTURE WCAK 6.7
BIBIIOCRAFEY ह8
Teble Fage
1.1 Sieve size Errdings
1.2 Seed lencth, sieve sizes, \%seed weicht and seed indicies for various size grades 9
2.1 Plent dersity and spacing of the four treatments 29
2.2 Sample size and plot size of each density 29
2.3 The fertilizer level of each density 31
4. 1 Tine trends of $\overline{R G R}, \overline{N A R}, \overline{L A R}, \overline{S L A}, \overline{\text { LWK, }}$, and $\overline{L A I}$ 33
3.2 Effects of density on $\overline{\text { RCR }}, \overline{\text { NAR }}, \overline{\text { LAR }}, \overline{\text { SLA }}, \overline{\text { LWR, and }} \overline{\text { LAI }} 34$
3.3 Effects of density on the morpholosy of plants 35
3.4 Mature bean data at harvest 10 35
3.5 Effects of density on the morpholozical components of yield/unit area 36
3.6 Total bean yield/plant (gm) and per ha (tonnes) at harvest 9 and 10 36
3.7 Nature bean yield/plent (m) and per ha (tonnes) at harvest 10 37
3.8 B and lo\& $\frac{1}{B}$ at harvest 4 to 10 41
3.9 A and $108 \frac{1}{\mathrm{~A}}$ at harvests 4 to 10 41
3.10 A and B paraneters for bean dry weights at harvests
9 and 10 42
4.1 FGR at each harvest for each derisity 43
$4.2 \overline{\operatorname{Ar}}\left(a 10^{-7}\right)$ at each harvest for each density 44
5. $3 \overline{\mathrm{IAR}}$ at each harvest for each density 45
6. $\overline{\text { SIA }}$ at each harvest for each dersity 46
4.5 Whe at each harvest for each density 46
4.6 IAI at eac:i harvest for each density 47
4.7 IWR for each level of fertilizer at each density 48
7. $\overline{\text { LAR }}$ for each level of fertilizer at each density 48
8. 3 Effect of fertilizer level on SIA and IAI c9
4.10 Effect of density on the gurpholocy of the plant 50
9. 11 Tean mature bean date from hervests 7 to 10 50
4.12 Effect of density on the morpholosical conponents pern^{2}51
4.13 Effect of fertilizer on the number of beans per ilent 51
4.14 Flowers/plant at each harvest date for each fertilizer level 51
4.15 Plowers/plant at each density for each harvest date 52
4.16 Beans/plent for each. density at each harvest 53
4.17 Mean total bean weight (6) for each density at eachhervest 534.18 Number of nature beans/ulant at each harvest for each
density 54
4.19 Weeks to maturity fron first harvest for each density 55
4.20 Components of yield at optinum maturity for eachdensity56
4.21 Yield of mature and total beans (tonnes/ha) a.t optimun.
naturity 57
4.22 A and $\log \frac{1}{\mathrm{~A}}$ at harvests? to 10 62
4.23 B and $\log \frac{1}{3}$ at harvests 3 to 10 63
$4.24 \mathrm{~A}, \log \frac{1}{\mathrm{~A}}, 3$ and $\log \frac{1}{3}$ for bean dry weight data 64

IIST OF RTCOATS

F-sure1.1 Moryology of e. plant grown at a wise syacing$(20 \mathrm{~cm} \times 20 \mathrm{~cm})$$10-11$1.2 Moryolooy of a ylant erom at a cloee specino(5 cm x $\overline{\mathrm{cm}}$)$13-20$
4.1 See? Ieneth ve time for 400 plents $/ \mathrm{m}^{2}$ 5 $\div-55$
4.2 Seed Iengti ve tine for 100 ylente/ ${ }^{2}$ 54-55
4.3 Seed Ienuth vs time for 44.44 plants/m² $54-53$
4.4 Seed lensth vs time for 25, lents/n ${ }^{2}$ $54-55$

Overseas work suggests that substantial yieli increasee can occur when the dersity is increased ond the rectangularity is chenged to unity. Two trials were carried out to examine some effects of growing snap beans ot four densities.

The R.G.i. fell with time until pod swell whore it showed a slight increase and then fell acain. The N.A.R. followed a similar pattern whereas the L.K.R. increased and ther fell earlier than either the $\overline{N . A . R}$. or the $\overline{R . G . R ., ~ i n d i c a t i n g ~ t h e ~ d e p e n d e n c e ~ o f ~ t h e ~}$ R.G.n. on the $\overline{\text { N.i.f. The } \overline{\text { I.A. }} \text {. appears to be dependent on the }}$ I.W.R. component rather then the S.L.A. component.

Fertilizer had no effect on the R.f.f. or the N.f.n. is the I vel of fertilizer increases, t.ie S.L.A. decreases and the m. increases, indicating that nore lesves are roduced and the leaves are 'thicker'. Both the L.f.f. and the I.A.F. are Izintained et a higher level with increasing onounts of fertilizer.
 whereas the I.A.A., $\overline{\text { S.I.A. and I.A.I. }} 2$ Il increase. This shows that st the higher densities, nore leaves are groduced but they are less efficient at iroducing end/on utilizing assinilates.

As density incresses, $t=m$ turity oi the beans tend to be zelsyed, yiela/, Iant zt wieh Jersity is zecreased timough fever
 weict, all zobobly due to the "oner M..A.... There ̇z also e
neeztive conrelstion between the rumber of nods nd pod size.

The recipricol yield density reletionships showed fertilizer to have no effect on the A and B perameters for either totel plat dry matter or bean dry metter. The allometric loe plent weight to log bean weicht slowed the ratio of beans to total plant weight decreases with increasin氏 density.

Fertilizer had no effect on the yield of beans. Density was also shown to heve no effect on the yield of beens when the yields were compared at the same seed length. When yields were comrered at the same chronological time, density did have an effect. The mean mature bean yield was 13.95 tonnes/ha but the mean harvestable yield was 18.6 tonnes/ha,

1518 ha. of snap beans (Phaseolus vulganis L.) were grown in New Zealsnd in 1978. 1416 ha of these were grown for rocessing; 67% for quick freezing and 33 for canning. The average yield of snap beans in 1978 was 7.98 t/ha. 21% of the frozen snap beans were exported to 22 countries with Australia importing 50% of the exported beans. The area of beans grown for processing has almost doubled between 1971 and 1977 as has the gross yield, but the yield per ha has shown littie change over this period. (Anon, 1978).

Horticulture has moved towards systems of high yield and intensive production. The rapid increases in the cost of production must be net by more efficient production and higher yields. The scarcity of good land close to proeessing factories, with an abundant supply of water, tends to put a premium on high productivity per unit area. According to Bleasdale (1969), this is one incentive for having a comprehensive knowledge of the yield-density relationships of vegetable crops and to use the knowledge to devise highly productive cultural systems.

Overseas work has suggested that yields may be increased significantly by reducing the rectangularity and increasing the plant population (Jones, 1967, Mack and Hatch, 1968). A parabolic relationship between pod yield and density is apparent. The density at which maximum yield occurs will vary with the environment, cultural practices anccultivar. The time taken for the crop to mature, which varies with density, irrigation practices, and other factors, must be taken into consideration when comparing yield differences.

Often there is an interactive effect between density end fertilizer, and between fertilizer san other cuiltures and environmental factors; for exemple, as plant dersity inoreases, a greater poount of fertilizer is recuired to proiuce the maxinum yiela (Lang, Pendleton and Duncan, 1936). This factor, combined with the effect of soil type on fertilizer response, has made the interpretation of fertilizer trisil results difficult.

Growth enalysis is a technique that may be used to gain an insight into the physiological basis for yield differences using relative growth rates, net assimilation rates. leaf area ratios, specific leaf areas and leaf weight ratios. Yield differences may also be analysed norpholozically using the number of pods m^{2} an the mean weight per bean.

The aim of the project was to attempt to relate yield differences due to density and fertilizer to physiolowical and morphological changes.

CHAPTER ONE

REVIEW OF TEE IITERATURE

1. Snap Bean Phisiology
 1.1 Introduction

Snap beans are known as green beans, French beans, and dwarf beans. Present day snap bean varieties have been developed from types which originate from Central America. This is reflected in the requirement of the crop for a warm, frost free climate for effective growth. Snap bears will not grow below $10^{\circ} \mathrm{C}$ and, between $10^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$, flowering is delayed. Snap beans require well drained, moisture retentive, light soils with a pH of around 6.5. Heavy acid soils generally produce poor yields. The seeds are usually sown into rows 60 to 90 cm apart with a 3-4 cm spacing within the row, resulting in a density of about 40 plants m^{-2}.
weeds must be effectively controlled in snap bean crop. Williams, Crabtree, Mack and Derby-Lawes (1973), found that yields were reduced by up to 36% by ineffective weed control. They also found that as plant spacing decreased, the crop had to be kept weed free for a progressively shorter period of time. This is because the crop achieved total canopy cover sooner as spacing was decreased and this choked out smell weeds. Weeds will alter the effective density and rectangularity and affect the crop through competition, the effects of which will be discussed later.

Snap beans suffer from a wide range of pathogens. Gane, fing and Gent (1975) recommend a 5 year rotation to reduce pathogen
build-up in the soil. Closer spacings may provide an ideal environment for pathogens. Nichols (1974), found that Sclerotinie sclerotiorum was more prevalent at closer spacings than at wider spacings. A comprehensive spray progranme is essential to prevent the establishment of pathocens.

1.2 Seed aspects

Snap bean seed is expensive and it can be difficult to achieve the desired plant stand. The seed is very easily damaged and can be readily attacked by soil borme pathogens through damaged tissue, although careful handing and dusting with a fungicide will help to prevent this. Barriga (1961) found an inverse relationship between the percentage injury and the moisture content, showing the need to handle dry seed carefully. Most of the damage was in the form of transverse cotyledon cracking. All the food reserves of the bean seed are contained in the cotyledons. If the cotyledons are dama.ge or severed from the radical and plumule, then the emerging plants are small and usually do not reach the pod jearing stage. Damage may also result in a loss in vigour, the degree of which may be ascertained by usine the electrical conductivity test of Matthews and Bradnock (1968). Seeds of low vigour should not be planted.

Dickson, Duczmal and Shannon (1973) found that there was a positive relationship between the rate of imbibition and transverse cotyledon cracking. This relationship was very strong with very dry seed. Thus, irrigation after sowing would have to be carefully controlled. Poor irrigation can also lead to soil capping and, as beans have epigeal gernination, soils that are
lumpy or capped can either prevent emergence or damage the cotyledons. Thus, to achieve a good plant stand snap beans should be sown into a well drained, moisture retentive, light soil.

1.3 Fertilizer use

Shoemaker (1947) reported that on most soils, beans were relatively light feeders, although increased yields did result from the addition of fertilizer. Although beans are legumes, they will respond to nitrogen ap lication (Gane, et e.l., 1975; Edge, Mughogha and Ayonoadu, 1975). Smittle (1976) found that bean plants grown in soil with too much water, or soil that is too free draining, will also respond to nitrogen application. Nodules may occasionally be found on bean roots but they do not appear to be effective in fixing atomospheric nitrogen. Effective strains of Rhizobium phaseoli are not usually present in the soil, or if they are, they are short lived.

The increased revenue resulting from the increase in yield from higher fertilizer application must be weighed against the cost of the fertilizer. Also, as the rate of fertilizer application increases, the yield also increases but the proportion of beans to total weight will decrease (Nichols, 1974).

1.4 Harvesting

The harvesting of snar beans for processing is a highly mechanised operation. Crops must be of uniform high quality, with no suggestion of overnaturity in the form of objectionable string, fibre or hard seed. With mechanical single pick
harvesting, it is not possible to reject old pods and it is important that as high a proportion of the pods possicle are in the acceptable size and maturity range. That is, a highly determinate crop is required with a very low spread of maturity.

The pods must also be able to withstand harvesting dsmage. Hoffmon (1971) found that machine harvesting damaged all pods a. though the extent of the damace differed with the cultivar. The pods should be aole to be easily detached from the plant to minimise damace. Willianson and Smittle (1976) found that although an increased reel speed resulted in more efficient pod removal, it also increased damage. Pod detachment force is positively related to damage.
1.5 Quality

The assessment of snap bean quality has posed problems. Optimum quality accurs before maximum yield has been achieved (Gane et., al; 1975). That is, maximum yield occurs when the crop is overmature.

Several methods of quality assessment have been devised. Quality in snap beans is related to the amount of fibre present in the pods, the ereater the mount of fibre, the lower the quality. Direct measurement of the amount of fibre is tedious and cannot be carried out in the field. According to Gane et al. (1975), there are three stages in the maturation of beans. In stage one there is a rapid increase in pod lergth with relatively slow seed development. Stage two, during which optimum maturity occurs, consists of the enlargement of the pod and a more rapid enlargement of the
seed. The final stage involves lignification, senescence and the drying of the pod, and the drying and hardening of the seed.

```
1.5. 1 Seed length
```

Seed length is one parameter that has been widely used in quality assessment. It is positively related to the firre content of the pod and is ascertained by measuring, in millimetres, the total length of ten seeds, each being the largest seed from the largest pod from a ten plant sample (Gane et al, 1975). Bean cultivars do not have the same seed length for optimum quality as for large seeded cultivars it is between 80 mm and 100 mm and for large seeded cultivars it is between 100 mm and 120 mm . At the lower end of both ranges, the beans are frozen whilst beans from the higher end of the ranges are canned. Canned beans require a higher amount of fibre to retain their structure after processing than do frozen beans. Dehydrated beans require an even greater amount of fibre to retain their structure so even more mature beans axe needed for dehydration.

1.5. 2 Seed weicht

Seed weight is another parameter used in quality assessment in the united States. Samples are obtained in a similar manner as for seed length. The weight of the seed is expressed es a fercentage of the total pod wei ڤht.
1.5: 3 Sieve size

The size of the pod is often used as a parmeter for
measuring snap bean quality. There are six size grades. (Table 1.1)

Table 1.1: Sieve size gradings. (From Asgrow Seed Co., 1977)

Sieve size grade	Pass through	Retained on
1	4.76 mm	5.76 mm
2	5.76 mm	7.34 mm
3	7.34 mm	8.34 mm
4	8.34 mm	9.53 mm
5	9.53 mm	9.93 mm
6	10.92 mm or larger	

Sieve size is used in conjunction with seed length. Within each size grade there are maximum seed lengths for optimum quality. (See table 1.2)
1.5. 4 Seed index

Robinson, Wilson, Mayer, Atkin and Hand (1964) found that if seed length, seed weight or sieve size was used alone in quality assessment, then this resulted in processed beans with excessive seed and/or fibre. Silbernagel and Drake (1978) derived a formula that uses all three quality parameters called seed index.

$$
\text { ycez index } \left.=\frac{(\text { seed weight }}{\text { total pod weight } x \text { 100 }}\right) \times \operatorname{length} \text { of } 10 \text { seeds- }-1
$$

Seed index values for various sievę size grades are shown in taclet.2. Silbernasel and Drake (1978) found that the seed index
showe better correlation with the amount of fibre then did seed
length, seed weight or sieve size.

Table 1.2: Seed length, sieve sizes, $\%$ seed weight and seed indicies for various size grades.

		$\frac{\text { Maximum } 10}{\frac{\text { sed length }}{}(\mathrm{mm})} \text { sieve size }$			$\begin{gathered} \frac{\text { Maximum seed index }}{\text { values }} \\ \text { sieve size } \\ \hline \end{gathered}$		
Grade	$\frac{\text { maximum } \%}{\text { seed weight }}$	4	5	$\underline{6}$	4	2	6
Extra fancy	4	80	90	100	320	360	400
Fancy	8	90	100	110	720	800	880
Extra Standard	12	100	110	120	1200	1320	1440
Standard	16	110	120	130	1760	1920	2080
Stendard	24.9	120	130	140	2988	3237	3486

1.5. 5 Laboratory method

The most accurate nethod of determining the fibre content is a laboratory technique in which 100 g of de-seeded pods are ground in water for 5 minutes. The u ulp is then washed through a 30 mesh monel wire screen. The retained material is dried and then weighed, with the amount of fibre beiñ expressed as a percentage (Silbermagel and Drake, 1978). Although this method is accurate, it is also time consuming ar? cannot be carried out in the field. It is often used to calibrate the other quality assessment methods.
1.5. 6 Fhysiology

Kemp, Kroeman and Hoobs (1974) found that high temperatures and dry soil conditions were correlated with a high pod fibre content, with water stress having a greater effect than temperature. Littman (1974 a, 1974 b$)$ found that the fibre content of pods increased at a faster rate at high temperatures. Based on the Queensland grading system, he found that three days storage at $27^{\circ} \mathrm{C}$ resulted in a change from grade A to grade B . With storage at $13^{\circ} \mathrm{C}$, the change from grade A to grade B took six days, whilst there was no change in grade with storage at $3^{\circ} \mathrm{C}$. Therefore, it is important to process the beans as soon as possible after harvesting to maintain quality.

1.6 Flowering

Snap beans generally produce 4 to 6 trifoliate leaved nodes, ending in a terminal inflorescence. There are usually 2 vegetative buds in the axil of each main stem leaf. Usually only one of the buds will form a lateral branch. Each lateral branch will grow out from the alternate side of the mainstem to the one below it. Fron the cotyledonary and primary leaf nodes, 2 lateral branches may appear. Each lateral oranch has a varying number of nodes, with a trifoliate leaf at each node. Flower shoots are situated in the axil of each stem and subtending trifoliate leaf, and at the end of each lateral tranch (see figure 1.1).

The sequence of flower opening is described by wivutvonvana and Mack (1974). (See fieure 1.1). The first flower buds to open are the lowermost on the terminal inflorescence, followed ty the

primary leaves
\triangle secondary axis trifoliate leaves
(III) mainstem trifoliate leaves
(1) node number
apo mainstem flowers
ald \%
secondary axis or lateral flowers.

FIG 1.1: Morphology of a plant grown at a wide spacing. ($20 \mathrm{~cm} \times 20 \mathrm{~cm}$).
middle buds on the terminal inflorescence and the mainstem buds. the rest of the flower buds open last, that is, the upermost on the terminal inflorescence and those on the lateral branches. According to Jones (1967), flowering can last from one week to several weeks.

Temperature has an effect on flowering. Smith and Pryor (1962) found that plants in bloon during hich temperatures had a decreased flower set and the number of beans per pod also decreased in dry beans. Mack ard Singh (1969) found that temperatures in excess of $35^{\circ} \mathrm{C}$ resulted in a 42% decline in yield. Bean plants were subjected to 5 days at $35^{\circ} \mathrm{C}$ two days after the first bloor. appeared. The 42% reduction in yield was due to decreased percentage flower set and a decreased number of pods per plant. No reduction in flower set or pods per plant occured if the high temperature treatment was given seven days after the first bloom appeared. Fadda and Munger (1969) noted that low temperatures, below $15^{\circ} \mathrm{C}$, only delayed flowering but did not prevent it altogether. The flower primordia were present but did not open at the normal rate. Fisher and Weaver (1974) found that high night temperatures of around $27^{\circ} \mathrm{C}$ promoted good flower opening but caused a decrease in pods set. They also found that humidity reading of greater than 80% increased flower set and pod retention probably by promoting good pollen germination.

Snap beans are very sensitive to water stress, especially over the flowering period. Stoker (1974) found that the greatest yield reduction due to water stress occured when the water stress was applied over the flowering period. The yield reduction was in the form of fewer pods per plant and fewer seeds per pod.

This may be linked to the temperature effect as, in both cases, the reduction may be due to poor pollen gemination.

1.7 Photosynthesis

In beans, the majority of the photosynthates are produced in the leaves. Crookston, O'Toole and Ozbun (1974 b) found, using the dry bean variety "Redkote", that the jod was not an important source dry matter for the seed. However, they did find that the pod was very efficient in re-fixine CO_{2} evolved fron respiration.

Crookston, O'Toole, Lee, Ozbun and Wallace (1974 a) found that exposure to one night of cold temperatures of less then $5^{\circ} \mathrm{C}$ led to a decrease in the photosynthetic rate if the roots were chilled as well as the aerial portion of the plant. The cold temperaturecauses an increase in the resistance to water uptake, which put the whole plant into a water stressed state. This caused the closure of the stomata and, hence, increased the resistance to CO_{2} uptake an: the subsequent decrease in the photosynthetic rate. Water stress prior to flowering can cause a 53% decrease in pod weight (Iubetz and Maialle, 1969).

The photosynthetic capacity of the leaves can be approached in terms of the source-sinh theories of Warren - Wilson (1972), which state that tre rate of assimilation per plant is equal to the leaf area per plant multiplied by the rate of assimilation Эer unit leaf area. The second term is the net assimilation rate (N.A.R.) usez alsc in orowth snalusis. Trus, theoreticelly if either the leaf erea or the .A. increase then the. photosyrthetic capacity of t e plant should also increase. wsllace
and Munger (1965) noted that the higher yielding cultivars of beans tended to have a larger leaf area but this was not always true. Wallace, Peet and Ozbun (1976) also found that a high N.A.R. is not always associated with a high yield. There appears to be a negative correlation betweer leaf area and N.A.R. As the leaf area increases, the lower leaves become shaded, cause the level of photosynthesis in those leaves to decrease through competition for light and level of respiration to increase. Thus, the overall N.A.R. will decrease as the N.A.R. is the difference between photosynthesis and respiration.

Crookston, Treharne, Ludford and Ozkun (1975) demonstrated the effect of shading on beans by growing bean plants at 2 light intensities, 22,000 Iu and 3,200 $1 u x$, and found that at the lower light intensity there were fewer leaves, decreased leaf area, and thickness, and a 38% decrease in the N.A.R. Treharme, Ozbun, O'Toole, Crookston and Feet (1973) found the net CO_{2} exchance rates, photorespiration and enzyme activity all increase with increasing light intensity, up to light saturation.

The arrangement of the leaves can also affect the N.A.R. Watson and Wits (1959) noted that cultivated beets have more erect leaves than wild beet and, that this allows for greater light penetration into the canopy, resulting in a greater effect tive leaf area and also a greater N.A.R. wallace (1973; reported an unique method of leaf orientation in bears. He found that the pulvinule was receptive to light. Licht inpinging on the top of pulvinule caused it to bend upwards, which caused the leaflets to orientate themselves parallel to the light source. Thus, while the sun is overhead, the upper leaves allow a greater penetration
of light into the canopy. However, when the light impinges on the side of the pulvinule, it twists so that the leaflets point downwards and so are perpendicular to the light source. In this case, that is, early morning and late afternoon, the outer leaves make maximum use of the available light and allow very little light penetration into the canopy.

Increasing the photosynthetic efficiency alone may not result in an increase in yield (Evans, 1975), the extra assimilated produced may not bepartitioned into economic yield, that is, bean pods. The various sinks, for example, pods, stems, leaves, roots etc., have different strengths. If present, the pods are the strongest sinks and will attract a major portion of the assimilates produced. Yield increases due to an increase in the photosynthetic capacity of a plant would occur if yield was being limited by the sur, ly of assimilates. One cannot generalise as to whether it is the supply of assimilates of the partitioning of it into useful sinks is limiting yield (Evans, 1975), because of the ability of plants to adart to different environmental conditions. Work reviewed by Neales and Incoll (1968) demonstrated that leaves appear not to be operating at their full capacity, that is, under normal field conditions the capacity for storage could be limiting yield. Also the N.A.R. of plants is not constant as shown by Moorby (1968) with potatoes. He found that the N.A.R. may rise and the proportion of assimilates exported may increase as soon as tubers are initiated.

Photosynthesis during the storage phase, that is, pod swell in beans, is an important yield deterninant. Fhotosynthesis

Abstract

prior to the storage phase determines the size of the storage system (Evans, 1975) as well as the capacity for assimilate prou duction, that is, leaf area. However, once the flowers are set, it is desireable for vegetative growth to cease and for the majority of the assimilates to be diverted into pod growth. Wallace et.al., (1976) have screened many bean vareties to determine their harvest indicies. They define harvest index as the economic yield divided by the biological yield. Their aim is to breed cultivars with a high photosynthetic capacity early in the life of the plant and a high capacity for pod storage after flowering.

2. Plant spacing

2.1 Introduction

According to Bleasdale (1973), the spacing of plants within a crop determines more than any other single factor the resources available to each plent and whether these resources are fully utilised. Spacing can influence not only yield but also quality and earliness.

Plant spacing eonsists of:2 components,
(a) Plant density - the number of plants per unit area, and
(b) Plant arrangement - the spatial distribution of these plants.

2.2 Flant Jensity

It can be shown that as plant density increases, the yield from each plant will decrease but the yield per unit area will
increase, up to a point. Holliday (1960 a) proposed 2 yield-density relationships.
(a) An asymptotic relationship where yield rises to a maximum with increasire density and the remains constant at higher dersity, and
(b) a parabolic relationship where yield rises to a maxinum with increasine density and the decreases with further increasing density.

Holliday (1960 b), found that total crop dry matter always follows an asymptotic relationship. This has been shown not to be true. in all cases, as a fall off in total crop dry matter may occur at high dersities (Bleasdale, 1966). In most cases, the asymptotic relationship between density and total dry matter is valid, although the whole plant is rarely marketed. Usually only a part of the plant is marketed or harvested, for example, bean pods, corn cobs, potato tubers etc.

Experimental results have supported the suggestion of Holliday (1960 b) that reproductive forms of yield always follows a parabolic patterm with density. Certain forms of vegetative yield also follow this parabolic relationship, for example, the sprout yield of Brussel sprouts and the root yield of red beet.

2.3 =lant arrangement

Plant arrangenent can be divided into 3 conponents
(a) Rectangularity,
(b) Crientation of the rows, and
(c) The regularity of spacing within the rows.

Rectangularity is the ratio of the distance between the rows to the distance in the row. Experiments have shown that at any given density, beans planted on a square pattern, that is, a rectangularity of 1 , will have a greater yield than beans planted on a non-square pattern (Jomes, 1967, Mack and Hatch, 1968).

Loomis and Williams (1969) have suggested orientating rows in a N - S direction, rather than in a E - W direction, will result in a greater amount of photosynthesis due to better light utilization. However, this may be nullified by local conditions such as the direction of the revailing wind or the slope of the land. Also, if the crop is planted with a rectangularity of 1 , then orientation of the 'rows' would not have an effect on yield.

Spacing in the row is more difficult to control than spacing between the rows. Irregular spacing in the rows can reduce the potential yield and lead to an unevenly maturing crop that would be unsuitable for once-over machine harvesting.

2.4 Competition

The reduction in yield per plant as density increases is due to competition for light, soil nutrients, soil moisture and occasionally CO_{2} in the air and O_{2} in the soil. Competition begins when the immediate supply of one essential factor is exceeded by the demands of the crop (Doneld, 1963).
itself or its neighbour, is present in most crops except in the case of very widely spaced crops or newly energed crops. There is very little that can be done to overcome competition for light except by altering plant arrangement and leaf orientation.

Generally, applications of fertilizer will increase yieids at all densities. Lanğ, Pendleton end Duncan (1956) found grain yield of meize increased with applications of nitrogen at all densities, and that the higher the plant density, the greater was the increase. Also, the greater the application of nitrosen, the higher was the density at which maximum yield occured.

Work carried out by Salter (1961) demonstrated the interaction between plant density and soil moisture. Cauliflowers were grown at 4 densities with and without irrigation and showed an increase in total yield with increasing density, regardless of irrigation. However, the highest marketable yields were from the higher densities that received irrigation, due to a much higher level of quality. With the non-irrigated plots, marketable yield decreased as density increased.
2.5 Effects of density on the plant

As plant density increases the yield per plant will decrease although yield per unit area will increase, up to a point, as shown by Jones (1967) with snap beans, Fery and Janick (1970, 1971) with tomatoes and Mack (1972) with sweet corn. Competition for the various growth requirements linits the size of each plant a.s density increases. In snap beans, this is nanifest in the suppression of lateral branches at high density (Jones, 1967),
thus, reducing the number of pods per plant. With onions, as density increases, the bulb size decrease, thus reducing yield per plant.

Bleasdale and Thompson (1966) have demonstrated that when some form of size grading is practised, the yield-density relationship is always parabolic. With vegetative structures, the size of each ecoromic unit will decrease with increasing density. With reproductive structures, the size of each economic unit may decrease with increasing density and/ or there may be fewer economic units per plant (Jones, 1967, Fery and Janick, 1970, 1971, Mack, 1972).

Bleasdale (1973) states that horticulturalists are looking for unifomity within a crop. With once-over harvesting, a very low spread of maturity is required (Jones, 1967) as it is usually not possible to reject overmature portions of the crop. It is possible to obtain an evenly maturing snap bean crop by planting at a righer density. This restricts lateral development so that only mainstem flowers develop. (c.f. figures 1.1 and 1.2). This will reduce the flowering period to less than one week and reduce the spread of maturity. Fery and Janick (1970) found similar results with tomatoes.

Density can also have an effect on the time to optimum maturity. Thomas (1966) found that Brussel sprouts grown at a high density mature leter than syrouts grown at a low density. Blessdale (1969) found similar result with cabbeces. With orions, however, a high density will result in the esrlier maturity of the bulbs. Fery and Janick (1970) found this to be the case with

tomatoes also.

2.6 Plant density and competition models

Mathematical equations have been developed to help in the analysis and interpretation of plant density experiments. Shinozaki and Mira (1956) related density and plant yield by equation 2.

$$
\begin{equation*}
\frac{1}{w}=A \rho+B \tag{2}
\end{equation*}
$$

Where w is the mean weight per plant at density P. A and B are constants. Inherent in the model is an asymptotic yielddensity relationship.
$\frac{1}{A}$
\bar{A} is considered the measure of the yield potential of the environment
that is, as $\rho \longrightarrow \infty$; then $w \rho \longrightarrow \frac{1}{A}$ $\frac{1}{B}$ \bar{B} isconsidered the genetic potential of the plant growing free of competition, that is, as $\mathrm{C}^{\longrightarrow} \longrightarrow \mathrm{O}, \mathrm{w} \longrightarrow \frac{1}{\mathrm{~B}}$

This model adequately describes the relationship for the whole plant. However, this model does not apply to a plant part, which has a parabolic relationship with density. Thus, Bleasdale and Nelder (1960) modified equation 2vand derived equation 3 .

$$
\mathrm{w}^{-\theta}=A P^{\phi}+B
$$

\qquad 3

Where θ and ϕ are constants as are A and $B . W$ and P are the same as in equation 2. With experience, Bleasdale and Thompson (1966) found that it was reasonable to assume that
ϕ was one, thus, equation 3 becomes,

$$
w^{-\theta}=A P+B
$$

This equation can be applied to the whole plant, in which case $\theta=1$ and, thus, equation 4 reverts to equation 2 , or, it can be applied to a plant part, in which case $\theta<1$. Bleasdale (1967) found a simple method to calculate θ based on allometry. The total weight $\left(W_{T}\right)$ and the weight of the plant part $\left(W_{p}\right)$ at 2 densities are required for use in equation; 5.

$$
\log _{10} W_{T}=\log _{10} \mathrm{~K}+\theta \log _{10} W_{p}
$$

Both K and θ are constant with θ being more important. Jones (1967), Nichols (1974) and Stang (1974) all found θ to be less than unity for a plant part. This indicates that as density increases, a smaller portion of the assimilates is partitioned to the plant part in question, that is, a parabolic yield-density relationship. When θ is equal to unity then the relationship of yield and density would be asymptotic.

These equations have only one variable, density, and the constants will apply to one set of conditions only. Different fertilizer rates or moisture levels, for example, may alter these constants. Bleasdale (1969) states that as only 2 densities need be grown, in order to use these equations, then it is practicable to include plant density as a variable in variety, fertilizer or irríation trials.

3. Growth Analysis

(a) The component approach, or
(b) The classical approach.

The component approach divides the plart into components of yield. One of the first attempts to analyse yield in terms of antecedent growth was made by Balls and Holton in 1915 on the cotton crop in Egypt (Cited by Watson, 1952). They measured the daily growth in height of the mainstem, the deily rate of flowering and the weekly rate of boll production throughout the latter part of the growing seasor. The flowering and bolling curves were used to interpret variations in yield produced by differences in spacing, sowing date, water supply, climatic factors and boll worm attack.

Engledow and Wadhan (1923) made a census of plant characteristics assumed to affect the yield of cerals, for example, density, grains per ear, ears per plant, weight per grain etc. These results gave a quantitative description of the morphological changes occuring during crop growth but they do not add to the understendin Milburn (1967) used a similar method, for peas, in which the final yield for the whole plant is factorised into components, that is, weight per pea, peas per pod, pods per node, and podding nodes per plant. Jones (1967) used a similar technique on snap beans.

The classical approach to growth analysis involves the use of a series of large harvests to follow the growth of a plant. Yield is usually expressed as wieght per unit area of land but watson (1952) points out that it would be nore logical to base
the analysis of yield on the weight changes that occur during growth rather then on changes in morphological characters.

Watson's (1952) aproach to growth analysis involves the calculation of the Relative Growth Rate (R.G.R.), and its components, the Net Assimilation Rate (N.A.R.) and Leaf Area Ratio (L.A.R.). Redford (1967) defines the growth analysis formulae, at an instant of time (t) when
(a) Wis a measure of plant material present, and
(b) A is a measure of the size of the assimilatory system as follows:

The relative growth rate is the rate of increase of plant materdial per unit of material present.

$$
\begin{equation*}
\text { i.e. } \text { R.G.R. }=\frac{1}{w} \cdot \frac{d w}{d t} \tag{6}
\end{equation*}
$$

The net assimilation rate is the rate of increase of plant material per unit of assimilatory material

$$
\text { i.e. } \quad N \cdot A \cdot K .=\frac{1}{A} \cdot \frac{d w}{d t}
$$

\square
The leaf area ratio is the ratio of the assimilatory material per unit of plant material present

$$
\text { i.e. L.A.K. }=\frac{A}{W}
$$

It can be seen that if the N.A.r. is multiplied by the I.A.R., then the product is R.G.R., that is, N.A.R. and L.A.R. are the 2 components of R.G.r. The L.A.R. can be divided into 2 components (Evans and Hughes, 1961)
(a) The specific leaf weight which is the amount of leaf area present per unit of assimilatory material present $\left(W_{L}\right)$

$$
\text { ie. S.L.A. }=\frac{A}{W_{I}}
$$

\qquad
and (b) The leaf weight ratio which is the ratio of the assimilatory material to the plant material
i.e. L.W.R. $=\frac{W_{L}}{W}$ \qquad 10

Multiplyine the S.I.A. by the L.iw.R. will give the I.A.R.

The traditional use of these formulae involves the calculation of mean R.G.R's, N.A.R's, L.A.R.'s, S.L.A.'s and L.W.R.'s over the time periods between harvests using the following formulae:
$\overline{\mathrm{RGR}}=\frac{\left(\log _{e} W_{2}-\log _{e} W_{1}\right)}{\left(t_{2}-t\right)}$ \qquad

12
$\overline{\overline{N A R}}=\frac{\left(w_{2}-W_{1}\right)}{\left(t_{2}-t_{1}\right)} \times \frac{\left(\log _{e} A_{2}-\log _{e} A_{1}\right)}{\left(A_{2}-A_{1}\right)}$
\qquad
$\overline{\operatorname{IAR}}=\frac{\left(A_{2}-A_{1}\right)}{\left(W_{2}-W_{1}\right)} \times \frac{\left(\log _{e} W_{2}-\log _{e} W_{1}\right)}{\left(\log _{e} A_{2}-\log _{e} A_{1}\right)}$
$\overline{S I A}=\frac{\left(A_{2}-A_{1}\right)}{\left(W_{L 2}-W_{L 1}\right)} \times \frac{\left(\log _{e} W_{L 2}-\log _{e} W_{L 1}\right)}{\left(\log _{e} A_{2}-\log _{e} A_{1}\right)}$
$\overline{L W R}=\frac{\left(W_{I 2}-W_{L 1}\right)}{\left(W_{2}-W_{1}\right)} \times \frac{\left(\log _{e} W_{2}-\log _{e} W_{1}\right)}{\left(\log _{e} W_{L 2}-\log _{e} W_{L 1}\right)}$
where W_{1} and W_{2} are the plant dry weights, A_{1} and A_{2} are the leaf areas and $W_{\text {Ll }}$, and $W_{\text {L2 }}$ are the leaf dry weights all at times t_{1} and t_{2} respectively.

Radford (1967) states that it is more important to find out the relationships between W and time. Vernon and Allison fitted 2nd order polynomials to W and A, but the method suffered from a statistical drawback in that progessions of W and A a.gainst time seldom show the uniform variability, with increasing: time that is required if W and A are subjected to regression analysis.

To overcome the statistical problems, Hughes and Freeman (1967) useत polynomial regression to fit curves to logged data:

$$
\begin{aligned}
& \log _{e} W=a+b t+c t^{2}+d t^{3} \\
& \log _{e} A=a^{1}+b^{1} t+c^{1} t^{2}+d^{1} t^{3}
\end{aligned}
$$

\qquad 16
\qquad 17
where $a, a^{1}, b, b^{1}, c, c^{1}, d$ and d^{1} are constants. Using these equations
$R G R=\frac{1}{w} \cdot \frac{d w}{d t}=\frac{d\left(\log _{e} w\right)}{d t}=b+2 c t+3 d t^{2}$ \qquad 18
$\operatorname{LAR}=\frac{A}{W}=\operatorname{antilog}_{e}\left(\log _{e} A-\log _{e} W\right)$ \qquad 19

NAR $=\underline{\text { RGR }}$
LAR

These equations, $18,19,20$, enable instantaneous measures of R.G.R., H.A.R. and L.A.R. to be calculated.

Nichols and Calder (1973) demonstrated that increasine complexity of the regressions used to describe the changes with tine in losged plant variables increases the standard errors of the derived Erowth aralysis quantities. They also stated that over fitting is a real trap. Hunt and Parsons (1974) suggested
that test should be made to determine the polynomial order that best describes the relationships of W and A with time.

The relationship between the dry weight of the leaf $\left(W_{\mathcal{L}}\right)$ and time can also be determined and the instantaneous SLA and Lwh deternined

$$
\log _{e} W_{L}=a^{\prime \prime}+b^{\prime \prime} t+c^{\prime \prime} t^{2}+d^{\prime \prime} t^{3}
$$

\qquad 21
from which

$$
\text { SLA }=\frac{A}{W_{L}}=\operatorname{Antilog}_{e}\left(\log _{e} A-\log _{e} W_{L}\right)
$$

\qquad

$$
\begin{equation*}
L W R=\frac{W_{L}}{W}=\operatorname{Antilog}_{e}\left(\log _{e} W_{L}-\log _{e} W\right) \tag{23}
\end{equation*}
$$

Differences in the yield of various treatments may be explained by changes in the R.G.R. The R.G.R. variations could be due to its components N.A.R. or L.A.R. or both. N.A.R. can be con= le sidered as the difference between photosynthesis and respiration. A change in either will lead to a change in the N.A.R. However, photosynthesis and respiration cannot be easily measured in the field without altering the environment. Similarly, any changes in L.A.R. may be due to a change in the S.L.A. or L.W.R. or both.

The leaf area index (L.A.I.) is a term that has been used to define the leafiness of a crop, (Watson 1947) and is defined as the leaf area per unit area of land. In effect, L.A.I. is the number of layers of leaves of the crop, expressed as an average for the whole crop. This is a crude concept as leaves seldom form complete unbroken layers and are often at varying angles to
to the horizontal (Hunt, 1978), however, it is still a useful measure of the leafiness of a crop.

2.1 Experiment 1

The experimental area, $20 \mathrm{~m} x 18 \mathrm{~m}$ was situated in the Massey University Vegetable Crop Research Area on a Manawatu silt loam. It was sprayed with paraquat on the 26 th of January, 1977 and ploushed on the 29th of January, 1977. Cultivation was carried out on the 2nd of February, 1977 along with fertilizer and herbicide application. The fertilizer, Ammophos $12: 10: 10$, was broadcast over the whole area at the rate of 2.5 t.ha ${ }^{-1}$ and rotary hoed in. 12 beds, 1.5 m wide and 20 m long, were marked out and Irifluralin, 1:0 litres.ha ${ }^{-1}$, was sprayed onto the beds and immediately rotary hoed in to a depth of $6-8 \mathrm{~cm}$.

The experimental design was a randomised complete block with 3 replications, 4 densities and 10 harvest dates. Traditional growth analysis techniques which calculate $\overline{\mathrm{RGR}}, \overline{\mathrm{NAR}}, \overline{\mathrm{LAR}}, \overline{\mathrm{SLA}}$ and $\bar{L} \overline{W R}$ require independent samples, for example, the same t_{2} figures cannot be used in both $t_{2}-t_{1}$, and $t_{3}-t_{2}$ calculations. This doubles the number of plots harvested at each harvest except for the first and last harvests. Consequently, this experiment comprised 216 plots. The 4 densities each had a rectangularity of 1.0 (see table 2.1)

Densities 1, 3, and 4 had a 10 plant sample and density 2 had as plant sample. There was at least 20 cm of guard plants around each sample (see table 2.2).

Treatment	Spacing	Plants. n^{-2}
1	$5 \mathrm{~cm} \times 5 \mathrm{~cm}$	400
2	$10 \mathrm{~cm} \times 10 \mathrm{~cm}$	100
3	$15 \mathrm{~cm} \times 15 \mathrm{~cm}$	44.44
4	$20 \mathrm{~cm} \times 20 \mathrm{~cm}$	25

Table 2.2: Sample size and plot size of each density

Plants $\cdot \mathrm{m}^{-2}$	Rows long		Rows wide	
				Sample size
400	13	10	10	
100	7	7	9	
44.44	9	6	10	
25	7	,	4	10

Frames were made up for each density to facilitate planting, with the area of each frame corresponding to each plot. The frames were laced with nylon twine spaced for each density. The position of each plot was marked out before planting. At planting, the appropriate frame was placed over the plot and one seed was planted to a depth of 3 cm in the centre of each square formed by the nylon twine.

All replications were planted on the 5 th of February, 1977 with the cultivar 'Galatin 50,' and then irrigated. Water was then applied as and when necessary. Pest and disease control was achieved by spraying weekly with cartaryl at 1.7 kE $\cdot \mathrm{ha}^{-1}$
and benomyl at $1.4 \mathrm{kE} \cdot \mathrm{ha}^{-1}$, both applied with a 'Solo' motorised̉ knapsack sprayer.

Hand weeding was necessary to remove Solanum nigrum and Chenopodium album. After weeding, the plots were gapped up on the 28 th of February, 1977 using the guard plants froin plots already harvested. Plants gapped up within the sample area were marked with a bamboo cane and were not included in the sampled plants.

A total of 10 harvests were taken on a weekly basis, commencing on the 17th of February, 1977. The following data were recorded from each plot:
(a) Number of plants harvested,
(b) Total leaf area,
(c) Dry weights of leaves, roots, stems, total beans and mature beans,
(d) Fresh weight of total and mature beans,
(e) Total number of flowers and flower shoots,
(f) Total number of beans,
(g) Total number of mature beans,
(h) Seed lencth of mature beans.

Dry weights were obtained by drying in an air oven for 2 days at $80^{\circ} \mathrm{C}$. Leaf area was measurea by a Lambda LI 3000 area meter. The maturity of the beans was initially assessed by sizing to sieve size grade 4 (8.34 mm to 9.53 mm).

2.2 Experiment 2

The cultivar 'Galatin 50 ' was also used for this experiment. The design was again a randomised complete block with 2 replications, 4 densities, 3 fertilizer levels and 10 harvest dates. The densities were the sane as in experiment 1. The 3 fertilizer rates are shown in table 3.3. The compound fertilizer *Ammophos' 12:10:10 was again used.

Table 3.3: The fertilizer level of each treatment

Fertilizer level	Tonnes.
1	0
2	1.25
3	2.50

The experimental area, $80 \mathrm{~m} x 11 \mathrm{~m}$, again sited on the Massey University Vegetable Crop Research Area, was sprayed with paraquat on the 9 th of December 1977 and then ploughed on the 15 th of December 1977. It was then cultivated to provide a fine tilth on the 22nd of December 1977 and marked out into 7 beds. Trifluralin, 1.0 litres . ha^{-1}, was rotary hoed into the top 6-8 cm of the soil on the 23rd of December 1977. The position of each plot was also marked out and the appropriate anount of fertilizer was applied and raked into the plot. The area was then left for 2 weeks and planting commenced on the 7 th of January 1978. Replicate 1 was planted on the 7 th of January and replicate 2 was planted on the 8th of January. Irrigation was applied after replicate 2 was plented and then applied as considered necessary, The whole area was sprayed with paraquat
on the 9 th of Jenuery 1978 to kill existing weeds. The use of this stale seed bed technique provided excellent weed control and no: hand weedine was necessary. Pest and disease control were again controlled by weekly sprayings with carbaryl, $1.7 \mathrm{~kg} \cdot \mathrm{ha}^{-1}$, and bencnyl; $1.4 \mathrm{Kg} \cdot \mathrm{ha}^{-1}$.

Harvesting conmenced on the 25th of January 1978 and the same data as in experiment 1 was collected.

CHAPTER 3
EXPERIMENT 1
3.1 Results
3.1. 1 Growth Analysis

An analysis of variance on the relative growth rates ($\overline{\mathrm{r} \cdot \mathrm{G} \cdot \mathrm{R} .)}$), net assinilation rates ($\overline{\Pi \cdot A \cdot R .}$), leaf area ratios (I.A.R.), specific leaf areas ($\overline{\text { S.I.A. }}$) and leaf weight ratios ($\overline{\text { L.W.R. }}$) showed that both harvest date and density had a significant effect on these parameters but there were no significant interactions between harvest date and density.

Table 3.1: Time trends of $\overline{\text { KGR, }} \sqrt{A P R}$, AAR, SIA, INR and TAI (all $\mathrm{p}<.01$)

Harvest

$\frac{\sqrt{\mathrm{RGR}}}{\sqrt{\mathrm{g} / \mathrm{day}}}$

 $\frac{\text { NAREx } 10^{-3}}{8 / \mathrm{cm}^{2} \text { cay }}$

$1-2$	0.0575	0.540	105	303	0.345	0.52
$--2-3$	0.1041	0.596	176	314	0.565	1.35
$3-4$	0.1262	0.804	162	278	0.588	2.38
$4-5$	0.0750	0.536	145	261	0.559	3.28
$5-6$	0.0606	0.437	138	274	0.515	4.58
$6-7$	0.0561	0.457	127.	257	0.509	6.24
$7-8$	-0.0029	-0.009	111	244	0.463	6.36
$8-9$	0.0179	0.200	95	237	0.403	6.51
$9-10$	0.3524	0.459	81	244	0.341	7.11
$5 . \mathrm{E} .(70 \mathrm{Af})$	0.02048	0.1710	5.5	12.8	0.0150	2.272

The time trends presented in table 3.1 show that the K.G.र., after an initial increase, continued to fall until flowering (harvest 8), after which it increased. The F.A.R. followed as similar pattern with time but the L.A.R. followed a parabolic pattern with time. The L.W.R. followed a similar time trend to the L.A.R., whereas, the S.L.A. did not follow a smooth pattern with time.

Table 3.2: Effects of density on $\overline{\mathrm{KGR}}, \overline{\mathrm{NAR}}, \overline{\mathrm{LAR}}, \overline{\mathrm{SLA}}, \overline{\mathrm{LWR}}$, and $\overline{\mathrm{LAI}}$ ($2.110<.01$)

Plants.m ${ }^{-2}$	$\frac{\overline{\mathrm{RGR}}}{\mathrm{~g} \sqrt{\mathrm{~g} / \mathrm{day}}}$	$\frac{\sqrt{\text { Narx }} 10^{-3}}{\mathrm{~g} / \mathrm{cm}^{2} / \mathrm{day}}$	$\begin{gathered} \frac{\overline{L A R}}{2} \\ c \pi^{2} / \mathrm{E}: \mathrm{I} \\ \hline \end{gathered}$	$\frac{\overline{\mathrm{SLA}}}{2}$	$\frac{\overline{L W R}}{E / E}$	IAI
400	0.0306	0.207	137	321	0.422	7.01
100	0.0576	0.425	127	279	0.469	4.29
44.44	0.0650	0.498	123	246	0.502	3.11
25	0.0824	0.652	119	235	0.512	2.34
S.E. (70df)	$0: 01366$	0.1140	3.7	8.5	0.0100	1.437

Table 3.2 shows that 3.5 density increases, the $\overline{K C R}, \overline{N A R}$, and $\overline{\text { LWK }}$ all decrease, whereas, the $\overline{I A R}, \overline{I A I}$ and $\overline{S I A}$ increased.

```
3.1.'2 Morpholosy
```

Table 3.3 shows that as density increases, there is a decrease in the number of beens/ flowerine shoot, flowering shoots/plant, flowers/plent, beans/ylant and the percentage of flowers that are set. The number of flowers/shoot shows a slicht increase with increasino density.

$\begin{aligned} & \text { Plants/ } \\ & \mathrm{m}^{2} \\ & \hline \end{aligned}$	Flowers shoot	Beens/' shoot	Plowering shoots \qquad	$\begin{aligned} & \text { Plowers/ } \\ & \text { plart } \\ & \hline \end{aligned}$	Beans/ plant	$\begin{aligned} & \% \\ & \text { set } \end{aligned}$
400	$4 \cdot 3$	2.3	1.8	7.6	3.9	52.8
100	4.1	2.5	5.0	20.7	12.4	60.1
44.44	4.2	2.8	8.4	35.4	23.4	66.2
25	4.0	2.9	11.9	47.1	34.7	73.7

Table 3.4: Mature bean da.ta at harvest 10

Plants Mature beans Mature beans \%beans seed Mean fresh weight $/ \mathrm{m}^{2}$ /shoot /plant mature length(*) /pod (gm)

400	0.05	0.08	2.0	51	4.4
100	0.16	0.82	6.6	57	5.1
44.44	0.24	2.00	8.6	60	5.5
25	0.28	3.21	9.2	68	5.9

(*) in mm from aethod descriled by Gane et. al. (1975).

Table 3.4 shows that as the density increases, the number of mature beans/flowering shoot and per plant, the percentage of beans, that are mature, the seed length and the meen fresh weight/pod all decrease.

Wher some of the data in tables 3.3 and 3.4 are converted to an area basis (table 3.5), some of the trends are reversed. As density increases, the number of flowering shoots $/ \mathrm{m}^{2}$, the number of flowers $/ \mathrm{m}^{2}$ and the number of beans $/ \mathrm{m}^{2}$ all increase. The number of nature beans $/ m^{2}$ shows a parabolic pattern with density.

Taile 3.5: Effects of density on the morohological components of yield/unit area

Flants $/ \mathrm{m}^{2}$	Flowering shoots $/ \mathrm{m}^{2}$	Number of flowers $/ \mathrm{m}^{2}$	Number of beans $/ \mathrm{m}^{2}$	Number of mature beans $/ \mathrm{m}^{2}$
400	704	3020	1582	32
100	500	2065	1241	82
44.44	373	1573	1042	89
25	295	1177	867	80

3.1. 3 Yield

Because of cold weather in the latter part of the trial, the resulting slow growth delayed the maturity as reflected in the seed length figures in table 3.4. With the need for weekly harvests, the experiment came to an end before full maturity had been reached.

Table 3.6: Total bean yiela/riant (gm) and per ha (tonnes) at harvests 9 and 10.

Plants	Yield/plant (gm)			Yield/ha (tonnes)		
$1 \mathrm{~m}^{2}$	Harve	Harves	Mean	Harvest 9	Harvest 10	Mean
400	2.1	5.0	3.6	8.4	20.0	14.2
100	6.3	18.4	12.4	6.3	18.4	12.4
44.44	12.7	40.4	26.6	5.6	17.9	11.8
25	16.1	66.6	41.4	4.0	16.6	10.3
Mear	9.3	32.6	21.0	6.1	18.3	12.2

```
S.E. of Harvest (14af)=1.92
S.E. of Harkest (14df)=1.33
S.E. of Density (14af) = 2.72 S.E. of Density (14:f) = N.S.
S.E. of Harvestxaensity (14Af) S.E. of Hervestxdensity (14&f)
```

Table 3.6 shows that as density increases, the yield of total beans/plant decreases at both harvest times. All densities, except the highest, show a significant increase in total bean yield/plent from harvest 9 to harvest 10 , with the lowest density showing the grestest increase.

Table 3.7: Mature bean yield/plant (m) and per ha (tonnes) at hervest 10

Plants μ^{2}	Mature yield Lplant (gm)	Mature yield /ha (tonres)
400	0.5	2.1
100	4.2	4.2
$44.44-$	11.0	4.9
25	19.0	4.7
S.E. (6df)	$3.43(p<.01)$	N.S.

As density increases, the mature bean yield/plent decreases markedly. Although not significant the nature bean yield/ha shows a parabalic pattern with density. The nean bear yield in this trial was 3.975 tonnes/ha.

3.2 Discussion

The results presented in table 3.1 shows thot the F.G.... to be iependent on the $\overline{\mathrm{N} \cdot \mathrm{A} \cdot \mathrm{R}}$, which shows a similar pattern with tine, rather than the L.A.... The efficiency of the leaves as producers of photosynthetes (i..........) starts to decline with age after intra-plant congetition for light begins. Snce the pods are set,
the $\bar{N} \cdot A \cdot R$. increases rapidly, with the rise at this stage probebly due to a strong sink effect of the pods. This is similar to the results found by Moorby (1968) with potatoes, where, after tuber initiation, the $\overline{\mathrm{N} \cdot \boldsymbol{R} .}$ showed a rapid increase.

The $\overline{\text { L.A.K. }}$. after an initial slight increase fell steadily with time. In proportion, greater structural growth (stems) is required to support the leaves as time goes on and the lower leaves will begin to senesce, leading to a reduction in the I.A.F., brought about by a reduction in $\overline{\text { L.W.K. and }} \overline{\text { S.L.A. }}$.

The efficiency of the leaves as producers of assimilates falls with increasing density due to competition for light caused by shading, which in turn is due to a higher I.A.I. The $\overline{\text { S.I.A. }}$. also increases with increasine density and may play a part in the lower ர্ৰ.A.r.'s. Flants with a low S.l.A., that is, 'thick' leaves, may absorb more radiation or convert it to photosynthates more efficiently than leaves with a high $\overrightarrow{\text { S.I.A., that is, 'thin' leaves. }}$

The decreasing $\overline{\mathrm{N} \cdot \mathrm{n} \cdot \mathrm{A}}$. with increasing density is also nanifest in the decreasing seed lengths, that is, as density increases, the maturity of the pods is delayed.

The potential for yield/plant at high density is recuced by fewer flowers/plant, decreased, flower set end a reduced fresh weight/ pod. The decreased fresh weight/yod at the high density may be due to a difference in the relative maturity of the beans 3.t each density.

The reduction in the number of flowers/plant with increasing density is due to a reduction in the number of flowering shoots/ plant because as density increases, lateral branching is suppressed and so the number of flowering shoots/flant will decrease (Jones, 1967). The number of flowers/flowerine shoot are relatively unaffected by changes in density. The reduction in the number of beans/ plant and number of mature beans/plant with increasing density is due to a higher flower abortion and jod abortion rate.probably caused by a lower N.A.K., that is, a reduced assimilate supply.

Based on the number of flowers produced $/ \mathrm{m}^{2}$, there is a higher potential for yield at the higher densities, even though, on a per plant basis there are less flowers. However, for the reasons above; the actual yield is lower. Also, at a density of $400 \mathrm{plents} / \mathrm{m}^{2}$ there were some plants that did not produce any flowers and / or beans. Every plant at $100 \mathrm{plants} / \mathrm{m}^{2}$ produced flowers but not all produced mature beans. Thus, some plants at the higher densities may be classed as 'weeds' because they contribute nothing to marketable yield but still compete for resources. All plants at the lower densities produced mature beans.

3.2. 1 Yield-density relationships

The total dry matter yield/plant was fitted to the yielddensity equation.

$$
w^{-\theta}=A P+B
$$

Where A and B are constents and w is the dry matter yield/plant at density ρ. For the whole plant, θ was assumed to equal unity as the total dry matter usually exhibits an asymptotic relationship

Abstract

with density (Bleasdale an2 Thompson, 1966; Jones, 1967, Nichols, 1974). Equation 4 is a cometition model, and as such, is only applicable where competition is occurine (Nichols, 1970). Thus, before the data was fitted to this model, an enalysis of veriance $w=s$ carried out on the dry natter yield a.t each harvest to determine if there were any significent differences in the dry natter yield between the densities. The results showed that there were no significant differences until the fourth harvest date. Tre total dry matter data from harvest 4 to $1 C$ were then fitted to equation 4 using the weighted least squares method.

An analysis of variance on the A and B perameters showed that both fell with time. $\frac{1}{B}$ can be considered as the genetic yield potential of a plant growing free of competition. The loge $\frac{1}{B}$ figures were analysed using orthogonal polynonials and was found to have a sienificant quadratic relationship with tine (table 3.8). This indicates that the genetic potential increases with time up to a point and then decreases, which describes closely the growth of an annual plant. $\frac{1}{A}$ can be considered as the yield potential of the environment. The loge $\frac{1}{A}$ figures were also analysed usine orthogonal polynomials and a linear relationship with time was found (table 3.9) indicating that with time, the environmental potential yield increases.

The total bean dry weioth data from harvests 9 and 10 was also fitted to ecuation 4. The yield of a plint part usually follows a parabolic relationship with time and, hence, a θ value of less thnn unity is appropriate. Jones (1967) was not able to detect a θ of less then unity (using fresh weights) althoush he states thet a lesser velue would be appropriot=. Stonc (1374) and

Nichols (1974) who also used fresh weight, using equation 5, have found values of less than unity.

$$
\log _{10} w_{T}=K+0-108_{10} w_{p}
$$

where W_{T} is the total plant weight and W_{p} the weight of the plant part. Table 3.8: E and lose $\frac{1}{B}$ at harvests 4 to 10

Tine (Harvest)	$\underline{\mathrm{B}}$	$\underline{\text { loge } \frac{1}{\mathrm{~B}}}$
4	.383	0.966
5	.202	1.611
6	.103	2.424
7	.045	3.145
8	.032	3.491
9	.032	3.474
10	. .014	4.740
S.E. (13df)	$.0243(p<.01)$	$2.46(p<.01)$

The relationship of loge $\frac{1}{B}$ to time was found to be described by $y=-2.795+1.008 x-.039 x^{2}$
Table 3.2: A and loge $\frac{\text { A }}{}$ at harvests 4 to 10

Tine (Harvest)	$\frac{A\left(\times 10^{-3}\right)}{1.626}$	Inge $\frac{1}{A}$
4	1.495	6.432
5	1.305	6.509
6	1.121	6.715
7	1.179	6.795
8	0.792	7.146
9	0.09	7.142
10	$.2494(\mathrm{l}<.05)$	$.2160(p<.05)$

The relationship of loge $\frac{1}{A}$ was found to be described by

$$
\overline{\mathrm{y}}=5.9238+0.1232 \mathrm{x}
$$

Analysis of variance on the 's ortained with this equation (using dry weights) showed no significant difference between the two harvest times so a mean θ value of 0.8745 was used to fit the bean dry weight to equation 4 using the weighted least squares method.

Analysis of variance showed no sienificant difference in the A parameter but the B parameter fell significantly with time ($\mathrm{p}<.05$) $($ table 3.10$)$.

Table 3.10: A and B parameters for bean dry weight at rarvests 2 and 10

Harvest	A Paraneter	B Paraneter
9	0.009183	0.5163
10	0.005497	0.0949
S.E. $(13 \mathrm{df})$	N.S.	$0.07920(\mathrm{p}<.05)$

The lack of time data do not enable clear conclusions to be drawn.

CHAFTER 4

ENGRIMRTI 2

4.1 Results

```
4.1. 1 Growth Analysis
```

The $\overline{R . G . R}$. (lable 4.1) was sicnificantly affected by harvest ($\mathrm{p}<.01$) and density ($\mathrm{p}<.01$) but there was no significant interaction.

Table 4.1: RGR at each harvest for each density cid /aOy

Plants $/ \mathrm{m}^{2}$	1-2	2-3	\%-4	rves't	$\frac{\text { period }}{5-6}$		$7-8$		--10	Density Mean
400	. 0731	0.235	. 0206	. 0186	. 0314	. 0225	. 0173	. 0247	-. 0060	. 0256
100	. 1190	. 1026	. 0562	. 0716	. 0542	. 0409	. 0451	. 0079	. 0022	. 0555
44.44	. 1141	. 1064	. 1335	. 0328	.0421	. 0368	. .725	. 0012	. 0263	. 0626
25	. 1292	. 1225	. 0903	. 0787	. 0637	. 0663	. 0596	. 0102	. 0008	. 0690
Mean	. 1101	. 0888	. 0751	. 0504	. 0471	. 0416	. 0486	. $010<$	$\therefore 0058$	
```S.E. of harvest \(\underset{(p<.01)}{(107 \mathrm{df})}=.01236 \quad\) S.E. of density \(\begin{aligned} & (107 \mathrm{df}) \\ & (p<.01)\end{aligned}=.008\) S.E. of harvest by density (107df) \(=\mathrm{N} . \mathrm{S}\).```										

The results presented in table 4.1 show that the $\overline{R . G . R}$. falls with tine until pod set (harvest 6-7), wher it shows a slieht increase, and then continues to fall. This is similar to the results in experinent 1. As density increases, the $\overline{\text { R.G.R }}$ falls mariedly which is also similar to the results of the first experiment. Although there was no sicnificant horveat by density interaction,

```
as density increases, the rise in \.G.F. at pod swell is occurine
at a later tine.
```

The $1 . A . \pi . ~(T a b l e ~ 4.2)$ was also significantly affectea by harvest ( $p<.01$ ) and density ( $p<.01$ ) and there was no sienificant interaction between harvest and density.

Table 4.2: $\overline{\text { IA. }, ~} 10^{-7}$ ) at each harvest for each density $\varepsilon / \mathrm{cm}^{2} /$ day

$\begin{aligned} & \text { Plants } \\ & / m^{2} \\ & \hline \end{aligned}$	1-2	2-3	Harvest period			6-7	7-8	8-9	2-10	$\begin{aligned} & \text { Density } \\ & \text { - Mean } \\ & \hline \end{aligned}$
			3-4	4-5	5-6					
400	529	141	136	125	250	217	263	386	-263	198
100	873	720	412	525	486	476	674	165	107	493
44.44	845	768	1126	268	383	429	880	-197	603	587
25	986	891	771	666	623	776	907	174	171	646
Mean	808	630	611	396	435	475	681	176	116	

S.E. of harvest $(107 \mathrm{df})=1657.7\left(\times 10^{-7}\right)(p<.01)$
S.E. of density $(107 \mathrm{df})=1105.1\left(\times 10^{-7}\right)(\mathrm{E}<.01)$
S.E. of harvest by density $(107 \mathrm{df})=$ N.S.

The result in table 4.2 show that the $\overline{\mathbb{N} \cdot A \cdot R}$. decreases with time until flowering (harvest 5-6) when it increases up to maturity and then decreases again, which is a similar trend to the R.G.R. except that the rise occurs earlier. As density increases, the IV.A.F. falls markedly.

The I.A.R. was significantly affected by harvest date ( $p<.01$ ), density ( $\mathrm{p}<.01$ ) and ther'e was a harvest by density interaction ( $\mathrm{p}<.01$ ) (table 4.3). The $\overline{\text { L.A.R. after an initial slight increase }}$ continued to fall throughout the period of the trial, that is, it followed a parabolic pattern with time. As density increased, the
$\overline{\text { I.A.R. also increased. The harvest by density interaction shows }}$ that at the beginning, the high density plents have a higher $\overline{\mathrm{L} \cdot \boldsymbol{A} \cdot \mathrm{R}}$. and the initial increase is also greater than with the low density plants, but, as time goes on, the difference in I.A.f. between densities becomes less until finally they are all very similar.

Table 4.3: $\overline{\text { LAR }}$ at each harvest for each density $\mathrm{cm}^{2} / \mathrm{s}$

$\begin{aligned} & \text { Plants } \\ & / \mathrm{m}^{2} \\ & \hline \end{aligned}$	Harvest period									DensityMean
	1-2-	2-3	3-4	4-5	2-6	6-7	7-8	8-9	2-10	
400	148	166	154	132	123	98	80	66	53	113
100	136	142	134	132	112	86	67	58	44	101
44.44	136	141	119	123	110	87	67	57	47	98
25	131	137	121	117	102	86	66	54	47	96
Mean	137	146	132	126	112	89	70	59	48	

S.E. of harvest $\left(\begin{array}{l}107 \mathrm{df}) \\ \text { S.E. of density }(107 \mathrm{df})\end{array}=2.2(\mathrm{p}<.01)\right.$
$=1.5(\mathrm{p}<.01)$
S.E. of harvest by density $(107 \mathrm{df})=4.5$ ( $\mathrm{p}<.01$ )

The S.L.A. was significantly affected by harvest ( $p<.01$ ), density ( $p<.01$ ) and there was a significant harvest by density interaction ( $p<.01$ ) (table 4.4).

The results in table 4.4 shows that the S.L.E. to vary in an erratic manner with time, decreasing until harvest $3-4$ then increasing until flowering (harvest 6-7), then another fall until it finally increases at the end. The lowest density fluctua,ted the least throughout the trial whilst the plants at $44.44 / m^{2}$ fluctuated the most. As density increased, the $\overline{\text { S.I.A. }}$. 2150 increased.

Plants	Harvest period									Vensity
$\mathrm{m}^{2}$	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	2-10	Mean
400	288	313	311	303	318	315	287	284	308	303
100	239	245	241	259	259	248	240	231	261	248
44.44	234	234	200	234	245	240	225	232	253	233
25	226	226	205	217	225	226	213	216	236	221
Mean	247	254	240	254	262	257	241	243	265	

S.E. of harvest $(107 \mathrm{df})=4.7(p<.01)$
S.E. of density $(107 \mathrm{df})=3.1(p<.01)$
S.E. of harvest by density $(107 \mathrm{df})=9.3$ ( $\mathrm{p}<.05$ )

The L.W.K. was significantly affected by harvest ( $p<.01$ ), density ( $p<.01$ ) and there was also a harvest by density interaction ( $p<.01$ ) (table 4.5).

Table 4.5: I.W... at each harvest for each density $\mathrm{g} / \mathrm{g}$

Plants$1 m^{2}$	7-2 -2-3		Hervest period					8-9	2-10	DensityMean
				4-5	5-6	6-7	7-8			
400	. 5733	. 5319	. 4946	. 4368	.3867	. 3125	. 2760	. 2317	. 1751	. 3732
100	. 5694	. 5828	. 5570	. 5095	. 4340	. 3478	. 2771	. 2390	.1689	. 4095
44.44	. 5805	. 6017	. 5982	. 5227	. 4496	. 3632	. 2961	. 2459	. 1844	. 4269
25	. 5800	. 6057	. 5952	. 5426	. 4566	. 3786	. 3079	. 2512	. 2002	.4353
Mean	. 5608	.5805	. 5612	. 5029	. 4317	. 3505	. 2897	. 2419	.1821	
S.E. of	f harve	est (10	7df)	. 2057	6 (p<	<.01)				
S.E. O	densi	ty (10)	$7 \mathrm{df})=$	. 005	4 2	(.01)				
S.E. Of	f harve	est by	densi	y (107	(df) $=$	. 01152	(2く.	c1)		

The results of table 4.5 show that the $\overline{\text { L.W.f. after an initial }}$ increse falls throughout the rest of the erowing period. As the density increases, the L.w.R. also increases. The harvest by density ficures are very sinilar to those of the L.A.R. figures.

The I.A.I. was significantly affected by harvest ( $p<.01$ ), density ( $p<.01$ ) and there was also a harvest by density interaction ( $p<.01$ ) (table 4.6).

Table 4.6: $\overline{\text { LAI }}$ at each harvest for each density

Plants	Harvest period									Density
$1 \mathrm{~m}^{2}$	1-2	2-3	-4	4-5	5-6	6-7	7-8	8	2-10	
400	3.48	5.51	6.72	8.01	8.54	7.52	7.19	7.02	6.27	6.44
100	1.13	2.48	3.77	5.33	6.71	6.52	6.12	5.09	4.13	4.37
44.44	0.57	1.25	2.39	3.63	4.65	5.03	5.35	5.24	4.76	3.55
25	0.31	0.86	1.61	2.74	3.94	4.56	4.89	4.94	4.91	3.13

$\begin{array}{llllllllll}\text { Mean } & 1.37 & 2.53 & 3.62 & 4.93 & 5.96 & 5.91 & 5.89 & 5.57 & 5.02\end{array}$
S.E. of harvest (107df) $=0.246(p<.01)$
S.E. of density ( 107 df ) $=1.55$ ( $\mathrm{p}<.01$ )
S.E. of harvest by density (107df) $=.491$ ( $p<.01$ )

The results in table 4.6 show that I.A.T. increases in the beginning and then decreases in the latter part. As density increases the $\overline{\text { L.A.I.I. increases. From the hervest by density }}$ figures, it can be seen that as density increases, the I.A.A. peaks earlier, that is, leaf production ceases at and earlier stare with increasing density.
the I.W.R. ( $p<.01$ ) and there was a significant fertilizer by time interaction ( $p<.05$ ) (table 4.7).

The resuits presented in table 4.7 show that the $\overline{\text { L.w.in. }}$. increases with the level of fertilizer applied. From the fertilizer by time figures it can be seen that as time goes on, the higher fertilizer is maintaining a hicher $\overline{\text { L.W.R.R. }}$

Table 4.7: IWR for each level of fertilizer at each harvest.g/g

Fertilizer				Harv	st ier	iod				til
tonnes/ha	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	2-10	Mean
$\bigcirc$	. 5512	. 5733	. 5651	. 5098	. 4179	. 3367	. 2720	. 2359	. 1617	. 4028
1.25	. 5617	. 5798	. 5585	. 5117	. 4345	. 3499	. 3014	. 2403	. 1853	. 4137
2.50	. 5694	. 5885	. 5602	. 4871	. 4411	. 3650	. 2944	. 2497	. 1955	. 4172

S.E. of fertilizer $(107 \mathrm{df})=.00353$ ( $\mathrm{p}<.01$ )
S.E. of harvest $(107 \mathrm{df})=$ N.S.
S.E. of harvest by fertilizer $(107 \mathrm{df})=.00998(p<.05)$

There was also a sienificant harvest by fertilizer effect on the $\overline{\text { I.A.K. }}(\mathrm{p}<.05)($ table 4.8).

Table 4.8: $\overline{L A R}$ for each level of fertilizer at each harvest $\mathrm{cm}{ }^{2} / \mathrm{g}$

Fertilizer	Harvest period								
tonnes/ha	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	2-10
0	140	153	137	130	109	88	65	58	42
1.25	138	145	130	124	116	90	74	58	49
2.50	134	142	134	124	110	90	70	60	52

```
S.E. of harvest (107df) = N.S.
S.2. of fertilizer (107af) = N.E.
S.Z. of harvest by fertilizer (107df) = 3.9(p<.05).
```

The results in table 4.8 show that initially the lover fertilizer level hes the hiohest I.f. . but with time, the highest fertilizer level daintains tine $\overline{\text { L.A. }}$. at a higher level compred to the lower fertilizer level.

```
 Fertilizer also had a significant effect on the J.I.H. (p<.01)
and the I.A.I. (p<.01) (table 4.9).
```

Table 4.3: Effect of fertilizer level on SLA end IAI (both $\ll .01$ )

Fertilizer   tonnes/ha	SIAcm $^{2} / \mathrm{e}$	IAI
0	256	4.14
1.25	251	4.42
2.50	247	4.55
S.E. $(107 \mathrm{~d})$	2.7	0.135

Table 4.9 shows that as the level of fertilizer increases the L.A.I. increases but the S.L.A. decreases, that is, more leaves are produced with the application of fertilizer and they are also 'thicker' than leaves of a low fertilizer level.
4.1. 2 Morpholozy

The data presented in table 4.10 shows that as density increases the number of flowers/shoot, ceans/shoot, flowering shoots/ plant, flowers/plant, beans/plant end the percent set all decrease.

Plants $\mathrm{Im}^{2}$	Flowers   /shoot	Eeans   Lshoot	Flowering Shoots $\qquad$	Flowers Lplant	Beans   $\angle$ plant	\% Flower   set $\qquad$
400	3.07	1.84	2.58	7.92	4.7.4	60
100	4.22	3.51	4.39	18.51	15.43	83
44.44	4.59	4.01	6.22	28.54	24.92	87
25	5,76	4.93	7.93	45.70	39.12	86

Table 4.11: Mean mature bean data from harvests 7 to 10

Plants   $/ \mathrm{m}^{2}$	Mean mature   beans/shoot	Mean mature   beans/plant	\% mature   beans	Mean mature   bean weight $(\mathrm{g})$	
400	0.39	1.01		21.3	4.49
100	0.80	3.50	22.7	7.15	
44.44	1.15	7.13	28.6	6.95	
25	1.59	12.59	32.2	8.44	

As density increases, the mean number of mature beans/shoot, mean number of mature beans/plant, fercent of beans that are mature, and the mean mature bean weight all decrease (table 4.11).

When some figures in tables 4.10 and 4.11 are converted to an area basis (table 4.12), as density increases, so does the number of flowering shoots $/ \pi^{2}$, the number of flowers $/ m^{2}$, the number of beans $/ m^{2}$. and the mean number of mature beans $/ m^{2}$.

In general fertilizer had very little effect on the morphology of the plant. Table 4.13 shows that fertilizer had a significant
effect on the number of beans/plant (p<.01) but when these figures were converted to an area basis, there was no significant differences. As the level of fertilizer increases, the number of beans/plant, also increases.

Table 4.12: Effect of density on the morphological components per m ${ }^{2}$

Plents $\mathrm{lm}^{2}$	Flowering shoots $/ \mathrm{m}^{2}$	$\begin{aligned} & \text { Flowers } \\ & / \mathrm{m}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Beans } \\ & / \mathrm{m}^{2} \end{aligned}$	Mean mature   beans/m ${ }^{2}$
400	1032	3168	1896	404
100.	439	1851	1543	350
44.44	276	1268	1107	317
25	198	1143	978	315

Table 4.13: Effect of fertilizer on the number of beans per plant

Fertilizer (tonnes/he)	Numker of beans/plant
9	16.8
1.25	17.1
2.50	19.1

S.E. of fertilizer $(47 \mathrm{~d} f)=0.79(p<.01)$

The level of fertilizer also had a significant interactive effect with time on the number of flowers/plant (p<.01) (table 4.14).

Table 4.14: Flowers/plant at each harvest date for each fertilizer level

Fertilizer

(tonnes/ha)	4	5	$\underline{6}$
	7.12	11.96	4.09
1.25	7.65	12.12	6.23
2.50	5.94	11.93	8.48

S.E. of harvest by fertilizer $(35 d f)=1.056$ ( $2<.01$ )

The results in table $4.1 \angle$ show that as the level of fertilizer increases, the flowerine period is prolonged and the peak flowering period occurs at a later stát.

Density had a significent effect with tine on the number of flowers/plant $(p<.01)($ table 4.15).

Table 4.15: Flowers/plant at each density at each harvest date

$\begin{aligned} & \text { Plants } \\ & i / \mathrm{m}^{2} \\ & \hline \end{aligned}$	Harvest		
	4	5	6
400	2.72	4.86	0.35
100	$7 \cdot 32$	9.42	1.78
44.44	7.77	$14 \cdot 36$	6.41
25	9.81	19.37	16.52

S.i. of harvest by density $(35 \mathrm{df})=1.221$ ( $\mathrm{p}<.01$ )

The results in table 4.15 show that the flowering period becomes more compact as density increases. This is similar to the results of Jones (1967).

Density also had a significant effect with time on the number of beans/plant ( $p<.01$ ) (table 4.16). The results show that the lower densities retain more pods on the plant, or converselj, the plants at the hioher densities have a higher pod abortion rate than the plants at the lover densities.

There was a significant harvest by density interaction on the nean total bean weight $(p<.05)(4.17)$.

$\begin{aligned} & \text { Plants } \\ & / \mathrm{m}^{2} \\ & \hline \end{aligned}$	Harvest			
	1	8	2	12
400	5.1	4.4	3.7	2.9
100	16.2	13.9	10.9	9.8
44.44	25.0	24.8	18.7	17.3:
25	40.2	35.2	29.8	25.0

S.E. of harvest by density $(47 d f)=1.591$ ( $p<.01$ )

Table 4.17: Mean total bean weight ( $\tilde{1}$ ) for each density at each harvest

Plants			vest	
$1 \mathrm{~m}^{2}$	1	8	2	10
400	$\cdots 0.73$	1.40.	1:72	. 2.03
100	1.35	2.28	$=3.08$	3.57
44.44	1.75	2.55	2.90	3.88
25	1.99	2.59	3.75	4.61

S.E. of harvest by density ( $47 \mathrm{~d} f)=0.314$ ( $p<.05$ )

The results in table 4.17 show that the pods at the lower densities are still increasing in weight in a linear fashion, whereas with the pods at the high density, the increase in weight is slowin, down, that is, at high density the maturity is more compact.

There was also a significant harvest by density interaction on the number of nature beans/plant ( $p<.01$ ) (table 4.18). The results show that the number of beans reaching maturity at the
high density is starting to decrease, whereas, at the low density, the numier of beans reaching maturity is still increasing.

Table 4.18: Number of mature beans/plant at harvest for each density

Plants $1 \mathrm{~m}^{2}$	Harvest			
	1	8	2	10
400	0.30	0.89	1.44	1.39
100	1.44	3.99	4.06	4.50
44.44	2.90	8.41	7.55	9.67
25	5.25	12.50	15.64	16.95

### 4.1. 3 Yield

The yield of beans was looked at in terms of crop maturity. Using the orthogonal polynomial approach, it was found that the seed lengith, which was determined using the method described by Gane et. al. (1975), varied in a quadratic manner with time. Analysis of variance showed that density and time had a significant effect on the seed length (both $p<.01$ ) but there was no significant interactions on significant fertilizer effects. Plots of seed length against time for each density are shown in figures $4.1,4.2,4.3,4.4$.

The quadratic equations describing the relationship that seed length had with time were determined using polynomial curve fitting for each density and replicate. The time of 110 mm seed leneth, the optimum seed length for 'Galatin 50', was then ascertained from these equations. Although not sienificant, the trend wes for maturity to

Fig.4.1: seed length vs time for 400 plants/m $/ \mathrm{m}^{2}$ : Fig. 4.2: Seed length vs time for 100 plants $/ \mathrm{m}$



Fig 4.3: Seed length vs time for $44 \cdot 4 \mathrm{~h}$ plants $/ \mathrm{m}^{2}$
Fig 4.4: Seed length us time for 25 plants $/ \mathrm{m}^{2}$

be delayed with increasine density (table 4.19), which is similar to the results of Tompkins, Sistrunk and Horton, (1972).

Ta.ble 4.19: Weeks to taturity from first harvtst for each density

Plants $/ \mathrm{m}^{2}$	Optinum maturity date_(weeks)
	7.5
100	7.3
44.44	7.3
25	7.2

S.E. of harvest by density (3df) = N. S.

The relationship between time and the mean total bean weight, the number of mature beans, and the nean mature bean weight were also found to be quadratic. Density and harvest date were the only factors to affect these parameters. With the total numicer of beans/ plant, however, the fertilizer rate also had a significant effect ( $p<.01$ ) (see table 4.13). However, when these figures were converted to an area basis it was found that the total number of beans $/ \mathrm{m}^{2}$ was affected by density and time only, with the relationship between the number of beans $/ \mathrm{m}^{2}$ and time being linear. From the polynomial equations, the total number of beans $/ \mathrm{m}^{2}$, mean total bean weight, the number of mature beans/plant and the mean mature bean weight were 'calculated for each density and replicate at the time of optimum naturity as deternined from table 4.19. The results are shown in table 4.20 with the number of mature beans/plant converted to an area basis.

## density (al1 p<.01)

$\begin{aligned} & \text { Plants } \\ & / \mathrm{m}^{2} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Total Eeans } \\ \quad / \mathrm{m}^{2} \\ \hline \end{gathered}$	Mean Total Eean $\qquad$ weight (E)	$\begin{aligned} & \text { A.ture Beans } \\ & \quad / \mathrm{m}^{2} \\ & \hline \end{aligned}$	Vean Nature   bean weight (a)
400	189,6	1.06	266	4.54
100	1:43	1.68	222	6.52
44.44	1108	2.14	206	7.02
25	978	2.41	183	8.01
$\begin{aligned} & \text { S.I. of } \\ & \text { sity (4 } \end{aligned}$	$\begin{aligned} & \text { den- } 84.2 \\ & \text { df) } \end{aligned}$	0.052	16.4	0.215

At maturity, the total number of beans $/ \mathrm{m}^{2}$ and the number of mature beans $/ \mathbb{m}^{2}$ both increase with increasine density. However, the mean total bean weight and the mean mature bean weight both decrease with increasine density.

The total number of beans $/ \mathrm{m}^{2}$ was multiplied by the mean total bean weight at optimum maturity an: the result converted to yield/ ha (table 4.21). The number of mature beans was multiplied by the nean mature bean weight, at optinum maturity, with the result again being converted to yield/ha (table 4.21).

Analysis of variance on the data in table 4.21 showed that density had no effect on either the total or mature been yield/ha at optimum maturity. The nean total bear. yield was 23.3 tonnes/ha ant the mean meture bean yield was 13.95 tonnes/ha. The total yield of beans/unit area shows a parazolic relationship with tine.

Plants$\ln ^{2}$	optinum meturity		
	Total beans	Mature beans	Harvestable Yield
400	20.1	12.10	16.1
100	25.9	14.57	20.2
44.44	23.7	14.47	19.1
25	23.6	14.68	19.1
\%ean	23.3	13.95	18.6

S.E. of density (4df) = N.S. (for both total and mature beans)

The nature bean yield is a measure of beans that were oreater than sieve size 4 but would still add to the total yield. The harvestable yield in table 4.21 is an approximation of the yield that could have been obtained by macrine harvesting by using the following formula:

$$
\begin{aligned}
\text { Hervestable yield }= & \text { (Motal yield - Meture yield) } / 2 \\
& + \text { Nature Yield }
\end{aligned}
$$

4.2 Discussion

The results of experinent 2 aeree with those of experinent 1 and showed the $\overline{\mathrm{R} \cdot \mathrm{G} \cdot \overline{\mathrm{n}}}$. to bu dejendant on the $\overline{\mathrm{N} \cdot \mathrm{A} \cdot \mathrm{M}}$. confonent rather than the $\overline{\text { L.A.R. conponent. The } \overline{\text { M.A. }} \text {. acain shows a rise at the }}$ flowering stace (hervest 6) probably due to the sink effect of the pois. It is unliaely that the ability of the pods to re-fix $\mathrm{CO}_{2}$ Srom resfiration to ply an inportent part in tiee initial increase In the ….... around flowerinelyod set.
As iengity increases, the T.... els increases and it eaiks
earlier. The $\overline{\bar{\hbar} A \cdot h}$, however, decreases with increasing lensity probabiy iue to the siadin, effect ceusine inter and intra-plent comptition for liont. The S.L.A. also may play a role in thet it increases with increasine density - the 'thicker' leaves of the lower dersity may absorb nore radiation or convert it aure efficiently to photosynthates. The lower densities maintain the L.W.K.. at a hieher level than do the hicher densities. Thus, leaf produc-tion is being maintained at the lower densities for a longer period whilst at the hieher densities leaf procuction ceases at an earlier stage. Thus, although there is a greater leaf area at high densities, those leaves are not as efficiert in producing assiniletes.

The level of fertilizer had very little effect on the growth analysis perameters. As the level of fertilizer increases, the leaves comprise a. Ereater proportion of plant weight(l.k.R.) through on increased area ( (L.A.I.) and 'thickness' (今.I.A.). Also, at later harvest, the kicher fertilizer levels maintain a hicher


The potential for yield/plant at high density is reduced in 3 ways
(a) Firstly by a lower number of flowers/plant, and
(b) Secondly, a hicher flower abortion rate, and
(c) Thirdly, the beans are of a lesser weight when nature.

It is likely that all of the above reasons for a lower yield are broueht about by the 1 wer $\overline{\text { M.A.R. }}$ at the hicher density. Inter and intraplant competition limit the supply of assimilates available for growth. The reduction in the nubber of flovers/ifont is due to a reduction in the number: of flowering shoots/plert and in the number of flowers/Elowering shoot with increseine density. In
the first experiment, the number of flowers/flowering shoot showed a slicht increase. The decrease in flowers/flowerine shoot would be due to the lower $\overline{N A \cdot R}$. as would the hioher flower abortion rate and the lower mean bean weight. The decreases in the number of total beans and nature beans/alent would be zue to the higher flover abortion rate initially, alone with the lower N.A.R.

Again, on an area basis, the higher dessities have the potential for the highest yield. However, due to ti e reasons. above the actual yield is lower. As density increases, the number of total beans and mature beans increases but their meen weight decreases, that is, there is a negative correlation between pod number and pod weight. This decreasing size of each economic unit with increasing density also occurs with onions (Eleasdale and Thompson, 1966), tomatoes (Fery and Janick, 1970, 1971), and sweet corn (Mack, 1972). The level of fertilizer a: plied did not increase the N.A.R. and this is probably why it did not affect the mean bean weight; it only increased the number of beans/plant.

Density also had a effect on the time to meturity and the spread of maturity. As density increases, the flowering periou occurs at a later stace. Increasine the level of fertilizer applied also had the same effect. This effect of a nore compact but del-yed. flowering pattern due to increased density carried thr unh to the maturity of the pods, that is, o, timum maturity occurs at a leter date but is nore conpect ot the hish density. The resuced size of esch vean woul之 offset the benefite of = nore cong=ot maturity whicin facilitates once over nachine harvesting.

In this trial, not ell samile plente ot the hieh zencity
produced flowers and some 引id not produce nature beans, al thouch the 'average' flart zia. Thus, again some plante, at the high density could be considered $\varepsilon$ es :eeds becsuse the: add nothino to the rarietacle vield.

Althouch optimum maturity is delayed at high dersities, when yieli comprisons of beth tutal and mature bears/ha ere aede ot the same seed length, density hes no significant effect, which it does when yield comparisons are made at the sane chronclogical time.

There were differences in the morphology between the plants of the two experinents. In experiment 1, as density decreased, the number of flowers/shoot decreased from 4.3 to $4: 01$ whereas in experment 2 they increased from 3.07 to 5.76 . The percentage set also showed a difference. In experiment 1 it fell from 73.7 . to $52.8 \%$ with increasing density whereas in experiment 2 it fell from $86 \%$ to $60 \%$. The higher percentage iset in experiment 2 is probably due to warmer temperatures during the flowering period. The number of flowering shoots/plant in experiment 1 ranged from 1.8 at 400 . . plants $/ \mathrm{m}^{2}$ to 11.9 at 25 plants $/ \mathrm{m}^{2}$. In experiment 2 the number of flowering shoots/plant ranged from 2.58 at 400 plants $/ \mathrm{m}^{2}$ to 7.93 a.t $25 \mathrm{plants} / \mathrm{m}^{2}$. However, the plants at densities of 25 to 100 in experiment 1 had more flowers than the corresponding plants in experiment 2. However, the lower percentage set of the plents in experiment 1 led to the plants in experiment 2 to have a greater number of beans/ifient.

### 4.2. 1 Yield-èensity rel-tionships

be a sienificant difference due to iensity from the first hervest but only between the hiohest density and the other 3 densities, that is, the lower three densities did not vary sigificantly. It was not until the third harvest was there a significant difference between all densities. The total dry natter fig res from harvests 3 to 10 were fitted to equation 4 using the weighted least scuares nethod.

$$
w^{-\theta}=A \rho+B
$$

$\qquad$
4
where $w$ is the total dry matter at density or, $A$ and $B$ are constants. $\theta$ is assumed to be unity for the whole plant.

Analysis of variance on the constants, $A$ and $B$, showed them to be significantly affected by the time only. Because the rate of fertilizer had no significant effect on the constant $B$, the total dry matter data was re-fitted to equation 4 using a constant intercept (B) for each harvest date. Analysis of variance on the resulting constant $A$ 's showed that they were significantly affected by time only. Nichols (1974) found the A paraneter to have a sienificant decreasing linear relationship with increa ine amounts of fertilizer.
$\frac{1}{A}$ can be considered as the yield iotential of the environment. Loge $\frac{1}{A}$ was found to have an increasing linear rel tionship with time (table 4.22).

The figures is table 4.22 are very similar to those is tible 3.9. The equations which describe the relationshis oi loce $\frac{1}{A}$ aith tine are similar for boti. experinents.

Toble 4.22: A and loce $\frac{1}{\text { A }}$ at harvest? to 10

Tiqe   (Harvest)	A	$\underline{\text { loee } \frac{1}{A}}$
3	.001941	6.2444
4	.001728	6.3608
5	.001454	6.5337
6	.001269	6.6697
7	.00143	6.7745
8	.000957	6.9515
9	.000866	7.0516
10	.000813	7.1144
S.E. (20af)	$.0002131(\mathrm{p}<.01)$	$.23196(\mathrm{I}$ 人.01)

The relationship between loee $\frac{1}{A}$ and tine was found to be described by :

$$
y=5.8690+0.1298 x
$$

$\frac{1}{B}$ can be consiaered as the Eenetic yield potential of $a$ plant orowing free of competition. Ioge $\frac{1}{E}$ was found to have a quadratic relationship with time (table 4.23).

The fioures in table 4.23 shows the genetic potentiel, loge $\frac{1}{2}$, increases ith time up to a point and then decrlases. The lobe $\frac{1}{2}$ figures in table 4.23 are higier then the corresponding fioures in table 3.8.

Table 4.23: Band loge $\frac{1}{2}$ at harveste 3 to 10

Time   (Earvest)	$\underline{B}$	$\underline{\text { loee }} \mathbf{E}$
3	.2362	1.4438
4	.0984	2.3195
5	.0515	2.9682
6	.0242	3.7381
7	.0122	4.4091
8	.0046	5.3638
9	.0041	5.5110
10	.0031	5.8131
S.E. (6df)	$.2611(\mathrm{p}<.01)$	$2.5193(\mathrm{p}<.01)$

The bean dry matter for each replicate by fertilizer rote by harvest date was fittei to equation 4. $\theta$ was calculated usine the fornula derived by Bleasdale (1967) using linear regression.

$$
\log _{10} W_{T}=W+\theta \log _{10} W_{p}
$$

where $W_{T}$ is the total plent dry weight, $W_{p}$ is the bean dry weient and K is a constant.

Analysie of variance showel $\theta$ to vary significantly ( $p<.01$ ) with tine only and a nean $\theta$ of 0.2505 is very similar to that for experiment 1, where $\theta$ was 0.8745 . Nichols (1074) using fresh weicht deta found a $\theta$ value of 0.096 .

Analysia of variance on these $A^{\prime}$ s nd $B^{\prime}$ s showed then to vary significarity with time only $(i<01)$. If $\theta$ is less than unity, this sugeests that ilit increasino plent iensity, a smellor yroportion of assimilats: ispratitione to the poas and nore to tile
sterns and leaves (richuls, 1974). A, loge $\frac{1}{A}$, ard D loge $\frac{1}{3}$ for bean $d r_{j}$ weight data are shown in taille 4.24.

Table 4.2L: A, $10 \varepsilon e^{\frac{1}{A}}, E$ and $10 e^{\frac{1}{2}}$ for bean Ar... weicitt data


The figures in table 4.24 show that both $A$ and $E$ decrease with time loge $\frac{1}{A}$ and loge $\frac{1}{B}$ were both found to have a quadratic relationship with time, indicating that both the environmental potential bean yield and the genetic bean yield of a plant growing free of competition both increase and then decrease.

## CONCLUSIONS

Snap beans were grow at 4 Zensities in two experinent. Three fertilizer levela were also included in the second experinent. Cold weather in the latter part of the growing season in experiment 1 resulted in slow growth and delayed maturity. With the need for weekly harvests, the experiment cane to an end before pod maturity had occured.

The K.G.R. fell with time until pod swell when it showed an increase and then fell again. The $\sqrt[N]{\cdot A \cdot r}$. followed a similar trend but the increase occured at flowering rather than pod swell, demonstrating the dependence of the $\overline{\text { R.G.R. }}$. on the $\overline{N \cdot A \cdot K}$. component rather than I.A.K. component, which followed the normal ontogenetic drift of an initial increase followed by a steady decrease through the rest of the growing period. The I.W.K. followed a similar trend to the I.A.I. whilst the $\overline{\text { S.L.A. followed an erratic path with time. }}$

Fertilizer had a significant effect on the S.L.A. which fell with increasing level of fertilizer and the $\overline{\text { L.n.n. }}$, which increased, indicating that nore leaves are produced with the application of fertilizer and these leaves are 'thicker'. A higher rate of fertilizer will also maintain the I.A... and I.in. $\overline{\text { I. }}$ at a higher level.

The K.G.K., $\overline{\text { K.A.H. and I.W.F. fell with increasing density }}$ whereas the I.A.R., $\overline{\text { S.I.h. and I.A.I. all increased with increasine }}$ density, indicating that at the higher densities the leaves are less efficient in producing essimilates.

Yield results from the first experinent are incomplete as exploined previously. As density increases the maturity of the
yods is delayed, probably of the lower N.A.R. As density increases, the number of flowers/plant, beans/plant, and mature beans/plent and flower set all decrease but the number of flowers $/ \mathrm{m}^{2}$, beans $/ \mathrm{m}^{2}$ and the nu ber of nature beans $/ m^{2}$ all increase with increasing density. However, the mean bean and mean mature bean weight both decrease, thus, there is a negative correlation between the number of pods and pod size. As density increases, the flowering period becomes more compact as does the maturity of the pods.

Fertilizer had very littlle effect on the morphology of the plant. The number of beans/plant increases with increesine fertilizer application, but righer levels of fertilizer delay flowering.

The reciprical yield-density relationships showed that fertilizer had no effect on the A or B parameters for total plant weight of for the bean dry weight. The allometric log plant weight to log bean weight relationship showed that the ratio of beans to total plant weight decreases with increasing density, that is, at higher densities, nore plant material is required to roduce 1 unit of pods than at lower densities, due probably to a change in the dry matter partitioning.

Lang et. $21 .(1956)$ founc yield differences due to fertilizer and many other workers have found yield differences due to density. In this trial, when yields were compared at the same stace of maturity, it was found that fertilizer and density had no effect.

Thus, although a : inker Jensity will lave a nore compect meturity it elso results in a delay in raturity and a decresse in the size of each pod. Also at Kich densities sone plente do not produce pods.

## FUMURZ WORX

Further work is required to deternine the full effects of density.
(a) Mrat percentafe of pods are in the various maturity erades at each aensity end how do the vercentaE€s change with time?
(b) What is the effects of density on crops sown at different times?
(c) What is the effect of density on various cuiltivars?
(d) Is it eccromical to sow at a high density when the cost of seed is high?
(e) Is chenical weed control adequete or will cultivation be required?

## BIBLIOGR. LHY

```
A1.ON., (1,78) "N.2. Yorticulture Statistics 197心"
 A.A.'. Informetion Services.
ASGRCN SEND COMLANY, (1977) "SEed for Today"
 Descriptive Catalogue of Veattable Vari\epsilonties No. 22
 Asgrow Seed Company
BARRICA, C. (1961) Effects of mechanical abuse of Navy bean seed
 at various noisture levels.
 Agronomy Journal 53: 250-1
BLEASDALE, J.K.A. (1966) The effects of plant spacing on the yield
 of bulb onions frown from seed.
 J. Hort. Sc. 41: 145-53
BLEASDALE, J.K.A. (1967) Tie reletionship between the weight of a
 plant part and the total w\inight as affected by plant
 density.
 Ibid 42: 51-8
BLEASDALZ, J.I.A. (1969) "Plant Spacine"
 A paper presented by Dr. Bleasdale at the Australian
 Vegetable Research Conference, 1969.
BLEASDAII, J.K.A. (1973) "Plant Physiology in Relation to
 Horticulture"
 Science in Horticulture series. Macnillan, Iondon.
```

```
BIEASDALE, J.:.A. and NNLDER, J.A. (1960) Plant population and crop
 yield.
 Nature, London. 128: }34
BLEASLALE, J.N.A. and THOMESON, R. (1966) The effects of plent:
 dersity and the pattern of arrangement on the yield
 of parsmips.
 J. Fort. Sc. 41: 371-8
CRCOKSTON, R.K., O'TOOLE, J., LNE,R., OZBUN,, J.L. and WAILACE, D.H.
 (1974.a.)
 Photosynthetic depression in beans after exposure to
 cold for one night.
 Crop Sci. 1L: 457-64
CROOKSTON, R.K̈., O'TOOLE, J., and OZBUN, J.L. (1974.b.)
 Characterization of the bean pod as a photosynthetic
 organ.
 Crop Sci. 14: 708-12
CROOMSTON, R.E., TREHARNE, E.J., LUDFORD, F. and OZBUN, J.L. (1975)
 Response of beans to shading
 Crop Sci. 15: 412-6
DICKSON, M.H., DUCZVAL, K., and SHANMON, S. (1973)
 Inbibtion rate and seed conrosition as factors
 affecting transverse cotyledon cracking in bean
 (P. valamris. I.) seck.
 J. Amer. Soc. Hort. Sci. 22: 50j-1?
```

```
DONALD, C.M. (1S6z) Conjetition anonez crop and pasture plants.
 Ajvances in Agronony 15: 1-118
nUBETZ, S. and MAPALLE, P.S. (1969) Bffect-of soil vater stress
 on bush beans (I.vulosris. L.) at three stages of
 growth.
 J. Amer. Soc. Hort. Sci. 24: 479-81
ENGLEDOW, F.C. and WhDEA:, S.N. (1923) Investigations on yield in
 cereals.
 J. Ag. Sci. 13: 390-439
```

EVANS, G.C. and HUCEIS, A.F. (1961) Plant Erowth and the aerial environnent. I. Effect of artificial shading on Impatiens parvifiora. New Fhytcl. 61: 322-7

EVANS, L.T. (1975) The physiological basis of crop yield pp 327-55. In "Crop Physioloey" edited by L.T. Evans. Cambriage. U. Press.

FEKY, R.L. and JAMICK, J. (1970) Reszonse of tomatoes to population pressure...
J. Amer. Soc. Hort. Sci. 22: 61 $4-24$

FURY, R.I. and JANICK, J. (1971) Effect of time of hervest on the resyonse of tomstoes to population pressure. J. Amer. Soc. Hort. Sci. 96: 172-6

FISHER, V.J. and WEAVEh, C.K. (1974) Flowerine, pod set and pod retention of Lima beans in response to niget temperature, hunidity and soil moisture. J. Aer. Soc. Hort. Sci. 22: 448-54

GANE, A.J., KING, J.f. and GEIT, G.r. (1975) "Fea and Eean Growing Handbook Vol. II. - Beans. Processors and Growers Research Organisation.

HARDWICK, R.C. and MILBURN, G.M. (1967) Yield analysis in the vinine јеа. Agric. Progress: 42: 24-43

HOFFMAN, J.C. (1971) Injury of sna. bean pods associated with machine harvesting and handling. J. Amer. Soc. Hort. Sci. 26: 21-4

HOILIDAY, R. (1960a) Plent population and crop yield. Nature, London. 186: 22-4

HOLIIDAY, R. (1960b) Plant population and crop yield. Fiel Crop Abst. 13: 159-67 and 247-54

HUCHES, A.F. and PREMAN, P.R. (1967) Growth analysis using frecuent small harvests. J. A.pl. Ecol. 4: 553

HUNT, R. (1978) "Flent Growth Analysis" Eward Amola (Publiskers) Itd.

HUYT, R. and PARSONS, I.T. (1574) A computer programme for deriving erowth functions in plant growth ana ysis. J. Appl. Ecol. 11: 297

JONLS, L.F. (1967) Fectors affectine the productivity of dwerf French reans. Ag. Progress. 42: 32-52

KEMP, G.A., KROCMAN, K, K. and HOBBS, E.H. (1974) Eifect of sprinkler irrigation and cooling oneyjeld and quality of snap beans.

Can. J. Plant. Sci. 54: 521-8

LITMMAN, M.D. (1974a) Effect of stage of development of bean pods at harvest on post harvest changes. Queensland J. of Agr, and Animal Sciences. 24: 261-70

LITMMAN, M.D. (1974b) Effect of temperature on the post harvest deterioration in quality in beans. Queensland J. of Agr. and Animal Sciences. 2L: 271-8

LOOMIS, R.S. and WILIIAMS, W.A. (1969) Productivity and the morpholozy of crop stands: Patterns with leaves. p27-47. In Piysiological aspects of crop yield, proceedines of a symposium, ed. by J.D. Eastin and others. Aner. Soc. Agronomy, Madison

MACK, H. (1973) Effects of population density, plant arrengement and fertilizers on yield of sweet com. J. of Amer. Soc. Hort. Sci. 27: 757-60

```
MACK, H.J. and HATCN, D.I. (1968) Effects of plant arrangenent and
 poyulation density on yield of snap beans.
 Proc. for the Amer. Soc. for Hort. Sci. 22: 418-25
MACK, H.J. and SINGH, J.N. (1969) Effects of high temperature on
 yield and carbohydrate composition of bush snap beans.
 J. Amer. Soc. Hort. Sci. 24: 60-2
MATTHEWS, S. and BRADNOCK, W.T. (1968) Relationship between seed
 exudation and field emergence in peas end French beans.
 Hort. Sci. 8: 89-93
```

MEAD, R. (1970) Plant density and crop yield
Appl. Stats. 12: 64-81
MOOREY, J. (1968) The influence of carbohydrate and mineral
nutrient surply on the growth of potato tubers.
sAnn. Bot. 32: 57-68
NEALES, T.C, and INCOLL, L.D. (1968) The control of the leaf photo-
synthesis rate by the level of assimilate concentration
in the leaf: A review of the hypothesis.
Bot. Review. 34: 107-25
NICHOLS, K.A. (1970) "Growth sutdies with lettuce"
PhD Thesis, Massey University.
NICHOIS, M.A. (1974) Effect of sowing rate an fertilizer applica-
tion on yiel: of dwerf beans.
N.Z. J. of Exp. Agric. 2: 155-8

```
NICFOLLS, A.O. and CALDER, D.M. (1973) Comments on the ise of
 recression analysis for the study of plant growth.
 New Fhytol. 72: 571
FADDA, D.S. and MUNGEil, H.M. (1969) Photoperiod, temperature and
 genotyre interactions affecting time of flowering
 in beans. (P. vulgeris. L.)
 J. Amer. Soc. Hort. Sci. 94: 157-60
RADFORD, P.J. (1967) Growth analysis formulae - their use and
 abuse.
 Crop Sci. 7: 171-175
ROBINSON, W.G., WILSON, D.E., MAYER, J.C., ATYIN, J.D. and HAND, D.B.
 (1964)
 Quality versus yield of snar beans for processing.
 Proc. Amer. Soc. Hort. Sci. 84: 3$9-47
SALTER, P.J. (1961) The irrigation of early summer cauliflower in
 relation to stage of growth, plant spacing and nitrogen
 level.
 J. Hort. Sci. 36: 241-55
SHINOZAKI, K. and KIRA, T. (1956) Intra-specific competition among
 higher zlants. VII. Logistic theory of the C-D effect.
 J. Inst. Polytech. Osaka City Univ. Ser. D. Biol.I: 35-72
```

SHOMMAKer, J,S, (1947) Vegetable growing

SILPERNAGEL, A.J. and DHAKE, S.R. (1978) Seed index, an estimate of snap bean quality.
J. Aner. Soc. Hort. Sci. 103: 25?-60

SMIMY, F.L. and PRYOR, R.H. (1962) Effects of maximura temperature and age on flowering and seed population in three bean varieties.

Hilgardia zz: 669-88

SMITMLE, D.A. (1976) Resionse of snap beans to irrigation, nitrogen fertilization and plant population.
J. Amer. Soc. Hort. Sci. 101: 37-40

STANG, J.i. (1974) Influence of nitrogen fertilizer and plant density on the pod yield of green beans. Hort. Sci. 2: 281

STCKER, R.E. (1974) Effect on dwarf beans of water stress at different phases of erowth. N.Z. J. of Exp. Agric. 2: 13-15

THOMAS, T.H. (1966) Competition studies. Report. N.V.r.s. 1965 pp 40-42

TOMPMINS, D.R., SISTRUNI, W.A. and HORTON, R.I. (1972) Snap bean yield and quality as inflüenced by high plant population.

ARK. MARA. RES. 21(1): 4

```
MREF:MNT, K.U., OZSUN, J.L., O'TOOIE, J., CRCOMSTCN, R...., amd
 FBZT, N. (197シ) gefect of light irtensity during
 orowth of P. vuleris on chotosunthesis, photorespi-
 ration, activity of related erzymes an之 lesf snatomy.
 Hort. Sci. &: }25
WAILACE, D.H. (1973) Plant architecture and physioloüicel efficiency
 in the field bean. in "Potentials of fiela beans and
 other food lecumes in Latin America".
 C.I.A.T. series seminars No. 22.
WALLACE, D.H. and MUNGER, H.N. (1965) Studi\ins of the physiological
 basis for yield differences I. Growth analysis of
 six dry bean varieties.
 Crop Sci. 5: 343-8
WALLACE, D.H., PEEF, M.M. and OZPUN, J.I. (1976) Studies of CO
 m\intabolism in P. vulgaris L: and applications for
 breedinEE. pp 43-58. In. "Harry Steebock Symposiun
 'CO
 Edited by R.B. Eurris and C.C. Black.
WARHEN-WILSON, J. (1972) Control of crop processes. pp 7-30. In
 "Crop Processes in Controlled Environmerts" eds.
 A.R. Rees, K.E. Cockshull, D.%. Fand and R.C. Furd.
 Acad. Iress. N.Y.
```

```
WETSON, D.J. (1947) Comprrarative phesiologicel stuaies on the
 Growth of fiela crops. I. Variation on net assimi-
 lation rate and leaf area between species and
 varieties ent within and between years.
 Ann. Bot. N.S. II: 41-76
WATSON, D.J. (1952) The physiological basis for veriation In
 yield.
 Adv. in Agron. 4: 101-45
WATSON, D.J. and WITTS, K.J. (1959) The net assimilotion rates of
 wild and cultivated beets.
 Ann. Eot. N.S. 23: 431-9
WIILIAMS, C.F., CRAETREE, G., MACK, H,J, and DEREY-IAWES, w. (1973)
 Effect of specin% on weed competition in sweet
 corm, snap beans and onions.
 J. Amer. Soc. Hort. Sci. 28: 526-9
WILLIAMSON, R.E. and SMITMLE, D.A. (1976) Trials with a cammercial
 hich density bean harvester.
 Hort. Sci. 11: 227
WIVOTVONVANA, M. an? MACE, H.J. (1974) FToral anatomy of
 P. vularis. I. cultivars 'Galatin 50' and
 'Orecon 58'.
 Hort. Sci. 2: 462-4
```

