Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Packaging Sterilization: Aseptic Filling Technology

A report presented in fulfillment of the requirements for the degree of Master of Technology in Food Technology at Massey University

Yin Zhang

2009

ACKOWLEDGEMENT

Massey University and Yin Zhang acknowledge the financial, technical, and other support provided by Xenos Limited, Palmerston North. I am grateful to Professor Gerrit Meerdink and Dr. Jon Palmer for their continuous guidance. I also wish to express my appreciation to Mr. John Pedley and Dr. Richard Love for their technical help. We appreciate these valuable inputs to the educational processes of the University.

TABLE OF CONTENT

AC	KOWLEDGEMENT	2
TAI	BLE OF CONTENT	3
AB	STRACT	5
1.	INTRODUCTION	7
2.	AIM AND OBJECTIVES	9
	2.1 Aim	9
	2.2 Objectives	9
3.	LITERATURE REVIEW	10
	3.1 Introduction	10
	3.2 Aseptic Packaging in Beverages Manufacturing	12
	3.3 Sterilization of Packaging Materials with Hydrogen Peroxide, Peracetic Acid, UV	, and
	their Combinations	14
	3.3.1 Hydrogen Peroxide	15
	3.3.2 Peracetic Acid	17
	3.3.3 Combination of Hydrogen Peroxide and Peracetic Acid	18
	3.3.4 Ultra Violet Radiation	20
	3.3.5 Combination of Hydrogen Peroxide and Ultraviolet Radiation	22
	3.3.5.1 The Synergistic Effect of Hydrogen Peroxide and Ultraviolet Radiation	22
	3.3.5.2 Factors Affecting the Lethal Effect of UV plus Hydrogen Per-	oxide
	Treatment	27
	3.4 Resistances to UV plus Hydrogen Peroxide Treatment of Common Spoilage Ca	ısing
	Microorganisms in Beverage Manufacturing	31
	3.4.1 Common Spoilage Causing Microorganisms in Beverages	31
	3.4.2 Comparison of Resistance among Species	33
	3.4.3 Comparisons of Resistances among Stains	33
	3.5 Conclusions	36
4.	CHALLENGE TESTS	38
	4.1 Introduction	38
	4.2 Experimental	39
	4.2.1 Spore Generation and Spore Suspension Preparation	39
	4.2.2 Inoculation of Spore Suspension on Packaging Materials	41
	4.2.3 Decontamination of Spore Inoculated Bottles by UV and Perform Treatment	45
	4.2.4 Enumeration of Survivals	49
	4.3 Results and Discussions	51
	4.3.1 Decontamination Test of the Pilot Plant Scale Aseptic Packaging System	51
	4.3.2 Relationship between Log Reduction with Perform Loading Quantity per H	sottle
	and Penetration Time	54
	4.3.3 Relationship between UV Insertion Time and Log Reduction of B. subtilis S	pores
		57
	4.4 Conclusion and Recommendations	58

5. VALIDATION OF THE UPGRADE PACKAGING STERILIZATION S	YSTEM 60	
5.1 Introduction	60	
5.2 Experimental	61	
5.3 Results and Discussions	61	
5.4 Conclusions and Recommendations	66	
6. MODIFICATION AND RE-VALIDATION OF THE UPGRADE	ASEPTIC	
PACKAGING (PACKAGING STERILISATION) SYSTEM	67	
6.1 Modification of the Steaming Unit	67	
6.2 Re-validation of the Upgrade Packaging Sterilization System	69	
6.2.1 Introduction	69	
6.2.2 Method	69	
6.2.3 Results and Discussions	70	
6.2.4 Conclusions and Recommendations	72	
7. OVERALL SUMMARY	73	
REFERENCES	75	
APPENDIX	83	
Appendix 1 - Challenge Test of Aseptic Packaging System	83	
Appendix 2 - Spore Recovery Using the Current Spore Preparation and Enumera	tion Method	
	87	
Appendix 3 - Test on the Performance of the Modified Steamer for the Upgr	ade Aseptic	
Packaging System	90	
Appendix 4 - Final Challenge Tests Results (Re-validation of the Upgrade Aseptic Packaging		
System)	94	

ABSTRACT

Xenos Ltd. is a technology driven food company, that specializes in aseptic processing and packaging beverage products in bottles. Their aseptic filling technology is based on packaging sterilization with combined treatments of oxidizing agents and Ultraviolet radiation. Recent research studies have suggested that there is a synergistic effect of hydrogen peroxide (0.5 - 1 %) plus UV on inactivation of microorganisms including spores. Advantages of the combined treatment include rapid inactivation, minimum hydrogen peroxide residue in products, with the method being applicable to a wide range of packaging types. Based on this principle, a unique aseptic packaging technique has been developed by Xenos Ltd., which utilizes the combination of vaporized Perform (a commercial sterilizing agent manufactured by Orica Chemnet containing 25% hydrogen peroxide and 5% peracetic acid) and UV radiation at 7.5 – 12.5 W/m².

The aim of the project was to improve and validate the effectiveness of the packaging sterilization process through challenge tests. Challenge tests were conducted using *Bacillus subtilis* spores as the test microorganism to determine the log reductions delivered by the packaging sterilization system. The tests were firstly carried out on a pilot plant scale aseptic filling machine, in order to test the sterility of the small scale system, and investigate processing parameters (operational conditions) which could

affect and improve sterility. The established operational conditions for achieving target sterility were used for designing and modifying an upgrade aseptic packaging system. Finally validation of the upgrade packaging sterilization system was conducted through challenge tests to prove sterility.

It is highly recommended that in order to ensure sterility, the packaging sterilization system with vaporized Perform plus UV treatment must meet the requirements listed below during the sterilization process:

- Hydrogen peroxide concentration of Perform condensate on bottles (after steaming) is best within 0.5 1 %;
- Perform loading level should be minimum 300 mg/bottle after vaporized Perform treatment;
- UV treatment time applied is greater than 2 seconds during UV treatment;
- At least 20 seconds of penetration time (time between Perform treatment and UV treatment) should be allowed.

The upgrade sterilization system used by Xenos Ltd. has been improved to meet the above operational conditions. With spore loading level of 10^6 per bottle and 10^5 per cap, the system is able to deliver at least a 6 log reduction of *B. subtilis* spores on PET or glass bottles and a 5 log reduction on bottle caps. Moruzzi et al. (2000) stated that at least a 4 log reduction is commercially required for an aseptic packaging process. Therefore, the system's sterility would meet the commercial acceptable sterility.