Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

THE IMPLEMENTATION OF

ALGOL W

ON A

e

BURROUGHE B6700 COMPUTER

Henry D. Meekin

A thesis presented in partial fulfilment

of the requirement for the degree of

Master of Science in Computer Science

at

Massey University

May 1976

ABSTRACT

This thesis describes an implementation of a revised version
of ALGOL W on a Burroughs B6700 computer, and was written so
that excerpts can be made to produce a user manual and a
system documentation manual. The first part is a brief
discussion of the language as implemented and discusses the
main features of the language and the differences from
ALGOL 60. The remainder of the thesis gives a detailed

description of the compiler.

e
e

ACKNOWLEDGEMENTS

In presenting this thesis I would like to take this opportunity

to express my thanks to the following people:

To my supervisor, Lloyd Thomas, whose guidance and encouragement

helped at all times.

To Neil James for helping with those niggling program errors.

To the Computer Unit operators, especially Colin Read, for

performing their job so well in helping me run my program.

Finally to my family and the group, for their persistence in

prodding me to finish.

Massey University Harry Meekin

May 1976

iii.

Chapter 0

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

TABLE OF CONTENTS

INTRODUCTION

BRIEF DESCRIPTION OF THE LANGUAGE

14
1.2
1.3
1.4
i B
1.6
1.7

Data Types

Statement Sequencing
Procedures and Parameters
Data Structures

Block Expressions

Assert Statement

Input/Output

GENERAL ORGANIZATICN

PASS ONE

3.1 Internal Pass One Tables

3.2 Pass One Output String
Representing the Source Program

8.8 Pass One Table Output

PASS TWO

4.1 The Parsing Algorithm

4.2 Error Recovery

4.3 Storage Allocaticn

4.4 Value Stack

4,5 Interpretation Rules

4,6 Pass Two Tables

4.7 Pass Two Output

PASS THREE

5.1 B6700 Architecture

5.2 Program Structure in Memory

5.3 Stack Operation

5.4 Example of Simple Stack Operation

5.5 Syllable Format and Types

5.6 Addressing

5.7 Block and Procedure Entry

iv,

Page

0w W o U F W W

=
o

QY
NN

iy
16

20
20
29
23
24
25
30
33

41
41
yy
47
48
50
51
52

Chapter 6

REFERENCES

APPENDICES

5.8

Block and Procedure Exit

5.9 Array Declaration

5.10 Subscripted Variables

5.11 Passing Sub-Arrays as Parameters

5.12 Operands

5.13 Branching

5.14 Record and Field Designators

5.15 Further Examples of Pass Two Tree
Output as Received by Pass Three

SUMMARY

A Simple Precedence Grammar for
Extended ALGOL W

B Full Description of Extended

ALGOL W
Compile-time Options

Error Messages

56
56
58
60
61
62
63

65

T2

73

76

FIGURE

a F w N

0 0o N3 O

10
11

LIST OF FIGURES

Reserved Tables

Identifier Tables

Pass One Output Codes

Example of BLOCKLIST and NAMETABLE
Format of NAMETABLE and Field
Contents After Pass Two

Pass Two Output Vocabulary

B6700 Word Formats with Tag Mnemonics
Object Program in Memory '
Stack Arrangement

Stack Operation

Syllable Types

Page
13
14
iy
17

30
36
u2
L6
47
49
50

Chapter 0

INTRODUCTION

The language ALGOL W was first described in a report drafted

by Niklaus Wirth (hence the 'W'), asked for by IFIP Working

Group 2.1 at its May meeting at Princeton, 1965. The report

was distributed to members of the group as a "Proposal for a

Report on a Successor of ALGOL 60" [1]. However, at its October
meeting, 1965, at Grenoble, the group decided the report did not
represent a significant advance on ALGOL 60 so it was dropped as

an official Working Document of the Group. VWirth then collaborated
with C.A.R. Hoare and revised and supplemented the draft. This

revised report can be found in Wirth and Hoare [2].

Why then was it felt to be of sufficient interest to implement
ALGOL W? ALGOL W is similar in many aspects to ALGOL 60 but some
concepts have been simplified and some extensions have been
intrcduced. The most important extension is the introduction in
the language of the concept of generalised data structures. To
supplement the array concept, which is virtually unchanged from
ALGOL 60, there is a new data structure, the record ([3] and [4]).
This makes ALGOL W a more powerful language than ALGOL 60 in its
ability to handle data structures and therefore a more suitable

language for use in the commercial field.

The language described by Wirth and Hoare, with a few changes [5],
was first implemented on an IBM 360 at Stanford University [6]
in 1968.

In 1971 further revisions were made to the language at Stanford [7]
and an improved implementation was developed. ALGOL W has since
gained only slowly in popularity being used mainly at University

sites but also at a few commercial installations.

This thesis describes an implementation of ALGOL W as revised in
1971, with some further modifications to be described in
subsequent chapters, on a Burroughs B6700 computer. Chapter 1
gives a brief description of the language as implemented.
Subsequent chapters describe the organization in detail of the

compiler.

This thesis has been written so that excerpts may be made to

produce both a user manual and a system documentation manual.

Chapter 1

BRIEF DESCRIPTION OF THE LANGUAGE

As the name suggests, a large part of the language is taken
directly from ALGOL 60 [8]. As ALGOL 60 has been in extensive
use for some time and is therefore fairly well known, this chapter
will only discuss the major changes to ALGOL 60. A full
description of the Extended ALGOL W implemented by the author may
be found in Appendix B.

1.1 Data Types

As is the case in most modern languages there has been an
increase in the number of primitive data types from the three in
ALGOL 60. The types included in the language are integer,

real, long real (double precision real), complex, long complex

(double precision complex), logical (equivalent to ALGOL 60's

boolean), bits, string, and reference. The ALGOL 60 concept

of own variables has been dropped as it doesn't add any power to

the language and leads to semantic ambiguities in many cases.

The type complex is internally represented as two real words,
one for the real part of the complex value, and one for the

imaginary part. The type long complex is intermally represented

as two long real words with the same meanings as in the case of

comElex.

The type bits is one word containing a sequence (i.e. an ordered
number of elements) of binary digits. Operations defined for
bit sequences include the logical operations =3, A (and), and

V (or), and those of shifting left (shl) and shifting right (shr).

To represent an ordered sequence of characters the type string
has been included. When this type is declared, the maximum

number of characters able to be held in the sequence must be

explicitly stated, e.g.

string (10) A

declares a variable A which represents a character sequence of

up to 10 characters. The string type is internally represented
in an analogous way to the Burroughs Extended ALGOL EBCDIC
arrays. Originally the operations for string sequences included
the catenation operator cat, but with the addition of the concept
of substrings the cat operation was found to be redundant and

so was abandoned.
The type reference will be discussed in section 1.4.

An interesting and very useful aspect of the design of the

language is that the type and length of the result of evaluating
every expression or subexpression can be uniquely determined at
compile-time, so no type testing, except possibly on procedure
entry, is needed at run-time, thereby not wasting execution process

time for non-compatible type testing.

With the increase in the number of data types there is a greater
number of possible type conversions. Automatic type conversion
(i.e. conversion performed by the compiler) is confined only

to cases where no confusion about the required conversion is

possible, 1i.e. from integer to long real, and real to complex,

and from shorter to longer variants of the types. All other
conversions must be programmed explicitly by the programmer with
the use of standard functions. This is so the programmer knows
exactly what fype of result he is getting rather than relying

on a default conversion which he may only have vague or even

mistaken ideas about.

1.2 Statement Sequencing

The concept for control of statement sequencing has been simplified.

The switch declaration, switch designator, designational

expressions, integer labels, and label parameters have all been
abolished.

The switch declaration and switch designator have been replaced
by the case statement and case expression. These allow the
selection and execution (or evaluation) of one of a list of
statements (or expressions) due to the value of an integer
expression. As the case construction is in use in a number of
modern languages and is fairly well known, the reader is referred

to Appendix B for more detail if required.

A goto statement can not lead from outside into any if statement,

case statement, or iterative statement.

There are three types of iterative statements:
(1) for<id>:=<for list>do<statement>,
(ii) for<id>:=<int.exp.>step<int.exp.>until<int.exp.>do<statement>,

(iii) while<log.exp.>do<statement>.

These are the simple and most common cases of iterative statements
and more complex cases can be easily dealt with by explicit program
instructions using labels. There are a few points to notice.

The <for list> and step-until parts can no longer be mixed. The
"step <int.exp.>" is opticnal and if missing a default step of 1

is used. The <id>, called the control identifier, is implicitly
declared at the start of the for statement and is undefined

outside the scope of the for statement. No explicit assignments

are allowed to be made to the control identifier.

1.3 Procedures and Parameters

There are a few changes towards clarification and efficiency of

implementation, to the ALGOL 60 concept of procedures.

The meaning of parameters is unchanged, i.e. they can be

explained in terms of the "copy rule". In addition to the

"name parameter" and "value parameter'" there has been added the
concept of a '"result parameter'. This formal parameter, like
the value parameter, can be thought of as a local variable.

Upon the termination of the procedure the actual parameter, which
must always be a variable, is assigned the value of the pseudo

formal parameter.
Array parameters can only be called by name.

An actual parameter may be a statement (or expression) providing
the corresponding formal is procedure (or <simple type> procedure).
This statement (expression) is considered as a proper procedure
body (function procedure body) without parameters. This enables
a procedure (function) to be specified in the actual place it

is to be used rather than in the head of an embracing block.

As mentioned in 1.2, the label parameter has been abolished.
This results in no loss of power because the result of the old
label parameter can be achieved by writing a goto statement in

an actual parameter position as outlined in the preceding paragraph.

In this implementation the concept of virtual parameters has

been included. A programmer may optionally specify parameters of
formal procedures and thus enable compile-time formal procedure
parameter checking. In the cases that this facility is used, no
run-time parameter checking is needed on procedure entry. This

concept is used extensively in ALGOL 68.

The specification of all formal parameters (except parameters of
formal procedures) and the correct matching of actuals to formals
has been made compulsory. The number of dimensions of an array
parameter must also be shown. The specifications are included

in the formal parameter list rather than in a separate specification
part as in ALGOL 60. This is a much tidier form of specification

as it has the attributes of the parameters in their actual position.

1.4 Data Structures

The only changes to the ALGOL 60 array concept are notational.
The type of the array must always be specified and only arrays
of the same type and dimension may be contained in the same

array declaration.

There has been a major addition of another type of data structure,
the record [4]. Like the array, records consist of one or more
elements (called fields), but unlike the array the fields do

not have to be of the same simple type, so that each field may
occupy a different amount of storage. Because of this to select
a particular field a computed ordinal number cannot be used.

Each particular field is given a name (identifier) which is used
in the program whenever that field is referred to. Also,

unlike arrays, records are created dynamically by statements in
the program rather than by declarations (gee ﬁppépé%g B, section
65

The normal data types (see 1.1) are sufficient to represent the
properties of the fields of records, but a new type,-ggfgggﬂgg,
is required to represent relationships between the rg?bfds, For
example, if a record which represents a person has a field

named "father", then this is likely to be used to contain a

reference to the record which represents that person's father.

References are also used to provide programmers access to records.
For this purpose, variables of type reference should be declared

in the head of an embracing block, e;g.

reference(<record class lisr>)<id ;iSF).
The <record class list> is a list of the record classes to whigh
the identifiers in the <«id list> may refer. Thus reference

variables are somewhat analogous to a restricted form of pointer

variables.

A record class is a group of records which are similar, i.e. records

which have the same number of fields and corresponding fields

have the same names and types. Each record class is introduced
in a program by a record class declaration which associates a

name with the class and specifies the names and types of the fields

of that class.

So that any particular field of a particular record of a record
class can be referred to, a field designator must have associated
with it a reference expression which is a reference to the required
record (see Appendix B, section 6.8). This is checked for

compatibility at compile-time.

Because a reference variable may refer to more than one record
class, it is sometimes necessary to know at a particular part of
a program to which class the reference is then referring. To

achieve this knowledge there is-a logical expression,
<reference primary>is<record class identifier>,

which is true if the reference primary is referring to a record

of that record class and false otherwise.

There is also a null reference, null, which points to no record,

i.e. 1if a reference has the value Ey}&_it is undefined.

1.5 Block Expressions

There has been the introduction of a typed block which is a block
that has a value (see Appendix B, section 6). The block acts
like a function procedure body with nc parameters and is a useful
notational convenience because like the statement parameter, it
allows the function to be specified actually in the place where

used, rather than disjointly in the head of an embracing block.

1.6 Assert Statement

During the running of many programs it is useful to terminate

any further execution of the program if some condition arises.

This is achieved by the use of the assert statement,
assert <logical expression>,

(see Appendix B, section 5.1) which will terminate the program

if the <logical expression> is not true.

1.7 Input/Output

In the original implementation of the language input/output

was achieved by the use of primitive standard procedures READ,
READON, READCARD, WRITE, WRITEON, and IOCONTROL [7]. These
procedures did not allow for programmer formatting. In 1971,

the University of Manitoba developed format-directed input/output
facilities for ALGOL W [9]. Upon study of these facilities

it was found that they were not as versatile as those employed

by Burroughs Extended ALGOL [10 and 11]. Because of this and
because of the desire to make the implementation compatible

with the existing system on the Burroughs B6700, a slightly
simplified version of the input/output facilities used by Burroughs
Extended ALGOL [12] was adopted. These facilities include the
file statement, read statement, write statement, space statement,
rewind statement, scek statement, close statement, and lock
statement, It is planned to add the standard ALGOL W input/output
procedures so that this implementation is compatible with other

ALGOL W implementations.

Chapter 2

GENERAL ORGANIZATION

In writing this ALCOL W compiler it was decided to follow the
original implementation and have three passes with the syntax
being checked by the use of a simple precedence matrix. This

decision was made because of the following reasons:

1. It was felt that to be most useful to programmers
using ALGOL W, better and clearer diagnostics
were needed than those able to be given by a one-

pass compiler using recursive descent.

2. ALGOL W was designed as a precedence grammar
(one of the effects of this being the use of a

double colen in array declarations

array A(0::6,0::6)).

3. It is planned at a later time to add debugging
alds similar to those developed by Satterthwaite
[13], and the three pass organization is best

suited for this.

The compiler is written in Burroughs Extended ALGOL and each pass

is represented by an internal procedure.

Pass One is the scanner of the source program. It performs

the following:

(i) Reads the source program

(ii) Converts the symbols to an internal code to be
passed to Pass Two with blanks and comments
deleted

(iii) Converts numeric constants to internal machine
form

(iv) Builds a block-structured nametable

(v) Lists the source program if a listing is required.

10.

Pass Two does the syntactic analysis of the source program as
passed to it from Pass One. In most cases the analysis is
performed by means of a simple precedence analyzer thus allowing
extensive error checking. However, in the case of file
declarations and read/write statements the analysis is performed
by recursive descent. This was done since these features are
extensions to the language, and the conversion of their syntax
to a simple precedence form was found to be difficult when

these extensions were embedded in an already simple precedence
ALGOL W grammar (see Appendix A). For these statements a
simple precedence form would not add any great error checking
ability anyway. Pass Two also completes the nametable and
forms a binary tree representing the parts of the source program

for which code needs to be generated.

Pass Three scans the tree produced by Pass Two and generates the
object program in Burroughs B6700 machine code. The Pass Three
procedure is only called if no non-warning errors were found

in Pass One or Pass Two.

i1.

12,

Chapter 3

PASS ONE
Pass One reads the source program in 80 character records. It
assigns coordinate numbers beginning at 1 as follows. The

coordinate number is incremented once for each ";" (except end-

of-comment), begin or else. This number is used in error

messages to pinpoint the part of the program where the error
occurred and is more useful than line or card numbers. The
source program is listed if desired. The basic entities of
the language are recognized and replaced, minus blanks and
comments, in an output string with byte (8 bit) internal codes.
Constants are converted into internal machine form and a
number of tables are either initialized or filled for use in

Pass Two and/or Pass Three.

b ! Internal Pass One Tables

There are separate "reserved" tables, initialized at entry to
Pass One, to hold the ALGOL W symbols (alphabetically) by length.
RESERVED1 contains all of the legal symbols of length 1 such as
[s s £y 5 % RESERVED2 contains all of the legal symbols

of length 2 such as do, go, if, and so on until RESERVEDS which
contains all of the legal symbols of length 9 such as procedure
and reference. For each symbol the entry consists of the
EBCDIC representation of the symbol, followed by a 1 byte cutput
code to be passed to Pass Two, followed by an index to a case
statement which performs any other action required for example

the processing of declarations.

13.

Figure 1

Reserved Tables

Table Entry (in hexadecimal) Symbols represented
RESERVED1 4A87004BCO014CAL1204DBY 1B [.<(
RESERVED2 CLDE6DOOCTDEEFO2CICEA300 do go if
RESERVEDQ D7DSD6C3CSCHELDIC5A808 procedure

As the source program is scanned and a basic entity is recognized
the reserved tables are scanned to see if this basic entity is

a reserved entity. If found the output code is put into the
output string and any action needed to be taken is selected by a
case clause using the last byte of the entry in the table. An
index of hexadecimal 00 means no action needs to be taken. In
figure 1, the first entry in RESERVED2 is the entry for do. The
first 2 bytes contain the hexadecimal representation of do. The
next byte, hexadecimal 6D, is the output code for do, and the last
byte of the entry, hexadecimal 00, means no further action needs

to be taken.

Two other tables are partially initialized at entry to Pass One
and filled during the execution of the pass. They are available to
Pass Two for use in error routines. They are the identifier
directory table, IDDIR, and IDLIST which indexes IDDIR. IDDIR

is a character array containing all identifiers both predefined
and those occurring in the source program. For example, if the
only identifiers appearing were SQRT,A,SEC, then IDDIR would look
like SQRTASEC and the index to the table would be 8 (i.e. the
number of relevant characters). IDLIST is a list of entries,

one for each identifier, that indexes IDDIR. Each entry consists
of the length of the identifier minus 1 and a pointer to the first
character of the identifier in IDDIR. Hence in Figure 2, the
entry (2)(5) corresponds to SEC with the length part of 2 and

pointer (i.e. index) value of 5.

Figure 2

Identifier Tables

IDDIR: SQRTASEC IDDIRINDX = 8
IDLIST: (3) (0) IDLISTINDX = 3
(0) (W)
(2) (5)
3.2 Pass One Output String Representing the Source Program

The source program minus blanks and comments, is passed to Pass
Two in a coded form by way of a character array, BETWPASS. The
codes correspond to the syntactic elements to be parsed in Pass

Two, for example in Figure 3 if is represented by hexadecimal A3.

Figure 3

Pass One Output Codes (in hexadecimal)

[87 ABS 9D ARRAY 89 SPECCOLON(::) 85

CO AND 94 BEGIN 78 SPECCOMMA 79
< A1 DIV 92 CLOSE BS ASSIGNMENT(:=) B1
(84 END 6E FALSE SA END-OF-FILE 00
+ 8B FOR BB PURGE 74 EXPONENTIATION(:#:) 96
| 9F REM 93 SHORT 9C COORDINATE BF
] 8 SHL 97 SPACE B3 NUMBER 83
%= 90 SHR 98 UNTIL BD IDENTIFIER 6C
) 7 VALUE A9 SIMPLE TYPE 13
;s 77 CASE A6 WHILE BE INITIAL ATTRIBUTES AF
= 95 ELSE A5 WRITE 73 READ/WRITE STATE B2
/ 91 FILE AE

88 GOTO 6F ASSERT 70
- 8C LOCK B9 CRUNCH 76
> A2 LONG 9B RECORD AD
BO NULL 8F RESULT AA
9E OPEN BA REWIND B4
= A0 READ 72
u 8E REEL 75 PROCEDURE A8

-

4.

DO
Ir
1S
or
OR

6D
A3
8A
A7
8D

15.

SEEK BS REFERENCE 82

STEP BC
THEN Al
TRUE 99

There are some special cases where a modification of the source

program is required and these are the following:

[

The reserved words and word pairs, integer, real,

long real, complex, long complex, logical, bits,

and string, receive the code for SIMPLE TYPE.

In a reference declaration, the left parenthesis
preceding the record class list specification part

is omitted.

In a string declaration, if the length is explicitly
specified, the entire length specification part is
omitted.

A comma appearing in the identifier list of a
declaration or in the record class specification part
of a reference declaration, receives the code for
SPECCOMMA.

Each identifier is replaced by a 3 byte code. The
first byte is a code for IDENTIFIER. The following
twoe bytes contain the unique identifier number
(starting from 0). In Figure 2, the identifier A
has an identifier number of 1 corresponding to its
index in IDLIST.

Each number is represented by a 1 byte code for NUMBER,
followed by a 1 byte indication of the type of the
number, followed by the number (not split across word
boundaries).

Each bit sequence (for example #FA12C02D31E6 (in
hexadecimal)) is represented by a 1 byte code for

#, followed by the 12 byte literal.

16.

8. Each string sequence is represented by a 1 byte
code for " followed by a 1 byte indication of the
length of the sequence minus 1, followed by the
string sequence.

9. In a file declaration, if there are any attributes
explicitly declared, a code for INITIAL ATTRIBUTES
is inserted after the left parenthesis and before
any attributes. |

10. In a read/write statement a code for READ/WRITE
STATE is inserted after the reserved words read
or write.

11. Each new coordinate is indicated in the output
string by a 3 byte code. The first byte specifies
COORDINATE and the following 2 bytes give the
coordinate number.

12. The reserved word comment and all characters up
to and including the next semicolon are omitted.

13. An identifier following the reserved word end

is omitted.

3.3 Pass One Table Output

As well as the coded string of the source program, there are
three tables that Pass One partially fills to output to Pass Two.
They are the NAMETABLE, BLOCKLIST, and RCCLIST.

The BLOCKLIST table has a word entry for each block in the source
program in the order of block opening. Each program has a pre-
defined outer.block numbered 0, containing predefined identifiers,
for example SQRT. Each full-word entry is divided into thirds
(i.e. 16 bit parts). The first 16 bits contain the number of
identifiers declared in that block. The second 16 bits contains
a pointer (i.e. index) to the entry in NAMETABLE which contains
the first identifier declared in the block. If no identifiers
are declared these first two parts will contain zero. The

remaining 16 bits contains the block number of the immediate

Lt

surrounding block of the current block. In figure 4, the first
BLOCKLIST entry points to LONGSQRT and takes in both LONGSQRT
and SQRT which are both predefined. The second BLOCKLIST

entry points to i, and takes in i, j and L which are declared in
the outer block of the source program and the third entry points

to the control variable 1.

E}gura 4

Example of BLOCKLIST and NAMETABLE

BLOCKLIST NAMETABLE

9 0 0 > entry for LONGSQRT

3 3 0] K\‘\\\\X entry for SQRT
1 2 il > entry for i
_x

entry for i

entey for J

entry for L

begin

integer 1,33

j:=0;
for i:=1 until 7
de J1=1+1
L:
end.

Blocks are entered and closed by the following rules:
1. Each begin is the entrance to a block and the

matching end is the close of the block.

i8.

2. Each statement in a for statement is surrounded by
a block in which the control variable is implicitly
declared.

3. Each procedure body is surrounded by a block in

which any formal parameters are declared.

The NAMETABLE has all entries of identifiers declared in a block
grouped together, Thus permanent entries are not made until the
block has been closed. For example in Figure 4 the entry for
the control variable is before the group of entries of the

identifiers declared in the scope of the outer block.

The full layout and field contents of NAMETABLE are given in

Figure 5 (see neét chapter). Pass One only puts in enough

information so that Pass Two can check for any semantic errors

(for example type compatibility in expressions) in the source

program. The information entered by Pass One consists of the

following attributes appropriate to the variable

IDNO - The number assigned to the

identifier. This number
is equal to the number of
the IDLIST entry. Virtual

parameters have idno O.

SIMPLETYPE
TYFE
TYPEINFO - If a procedure (not formal
or virtual) then the block
number of the formal parameters.
VR - If formal or virtual parameter
1 if value
2 if result
3 if value-result
RCCLNUM - If record class identifier or

record field identifier then

the record class number.

SIMTYPEINFO - If string then length-1.
If reference then pointer

to RCCLIST

All predefined identifiers, for example SQRT, are entered
permanently into NAMETABLE with all fields filled, upon entering

Pass One.

Each entry of RCCLIST is 1/3 word (i.e. 16 bits) and contains
the IDNO of a record class (or classes) to which the reference
is bound. A zero entry shows the end of a group. The
NAMETABLE entry for a reference contains a pointer (i.e. index)
to the first entry of RCCLIST for that reference. For example,
reference (nodeil, node2)p
would cause the entry in NAMETABLE for p to have a pointer in
SIMTYPEINFO to RCCLIST as follows:

pointer from entry

Aﬁtl for p in NAMETABLE

RCCLIST 2 6 0

where nodel has been assigned an IDNO of 2 and node2 has been

assigned an IDNO of 6.

19.

20,

Chapter 4

PASS TWO

Pass Two performs the following tasks:
1. A complete syntax analysis of the source program as
passed to it from Pass One.
2. A thorough error analysis.
3. Completes the NAMETABLE entries.
L. Builds constant tables.
5. Converts the program to an intermediate language

to be passed to Pass Three for the generation of code.
The syntax analysis is mainly done by means of a simple precedence
analyzer, but in the case of file declarations and read/write

statements the analysis is done by recursive descent.

The interpretation rules which are associated with the syntax

rules of the grammar specify the other actions of Pass Two.

4,1 The Parsing Algorithm

The parsing algorithm used in the compiler is a bottom up simple
precedence method. The ALGOL W grammar was rewritten in a
simple precedence form (see Appendix A) and a separate program
was developed to check the precedence relations ([14] and [15])
of the rewritten grammar and that it was, in fact, simple
precedence. This program for checking for simple precedence

had a large process-time but after some manipulation a precedence
matrix was produced. This matrix is already initialized on

entry to Pass Two.

The algorithm for using this matrix for the syntactic analysis
is, with a couple of modifications, that used by Wirth in
Euler [16]. When looking up to see if a string is the right
part of a productiocn, the lengths of the string and right part

21-

are checked before the matching is checked. This makes it
easier to search through the production array. Also, the full
precedence matrix is used as opposed to using precedence functions
so that errors are detected soconer and thus providing for better
error recovery. The third change is that the relations found
when scanning tc the right looking for °> are stacked. This
makes them easily retrieved when scanning to the left for <.
rather than having to be refetched from the precedence matrix.
The precederice matrix is packed four elements to a byte in order
to save space, so a fetch from the matrix is slower than a
retrieval from a stack. However, every time a reduction is
made, the relation of the new symbol to the symbol below it on
the parsing stack has to be fetched from the precedence matrix
and stacked. This gives a gain in efficiency with right parts
of length greater than two, but no significant gain with right

parts of length one or two.

Every syntax rule has a corresponding interpretation rule which

is executed when the reduction is made. This interpretation

rule checks semantics, for example type compatibility in expressions.
Associated with the parsing stack is a parallel value stack

(see 4.4) which contains information used by the interpretation

rules.

U,2 Error Recovery

There are two ways in which syntactic errors are detected when
using simple precedence analysis:
1. A reducible string (i.e. one delimited by <. and :>)
is not the right part of any production.
2. The top of the parsing stack has no relation (<:,=,:>)
to the incoming symbol.

To recover from the first case, the statement in which the error
occurred is deleted from the program. This is achieved by

backing up the parsing stack until <block body>, <block hd>,

22,

<caseseg>, or <endfile>, and the input string is advanced to
end, ";", begin, or <endfile>. If end is deleted from the
parsing stack, it becomes the next incoming symbol, else the
next symbol in the input string is taken. Special care is
taken to keep the block numbers the same as those assigned in
Pass One, so if a nonterminal which affects the value of the
block number is removed from the parsing stack, the block number

is correspondingly adjusted.

In the second error case, a number of recovery actions are

possible:
1. A symbol can be inserted.
2 The top of the parsing stack can be deleted.

3. Another symbol can replace the top of the parsing
stack,

4. The incoming symbol can simply be stacked on the
parsing stack (this is done if the other three can

not be done).

If a symbol is to be inserted, it must have a relation to the
incoming symbol, and the top of the parsing stack must have a
relation to it. If the inserted symbol is .> the incoming

symbol, the input string is backed up and the inserted symbol
becomes the incoming symbol, otherwise the inserted symbol is

stacked on the parsing stack.

If a symbol is to replace the top of the parsing stack it must
have a relation to the incoming symbol, and the next-to-top of
the parsing stack must have a relation to it. If the replacing
symbol is .> the incoming symbol, then the top of the parsing
stack is deleted, the input string is backed up and the replacing
symbol becomes the incoming symbol, otherwise the replacing

symbol just replaces the top of the parsing stack.

If the top of the parsing stack is to be deleted, then the

next-to-top of the parsing stack must have one of the relations

23.

<+ or = the incoming symbol.

An inserted or replacing symbol can be the cause of other error
messages especially in type compatibility, for example an

undefined identifier is always assumed to be of type integer.

Special care has to be taken so that the same action is not
attempted the next time through. For example, if the top of

the parsing stack is <block body> and it has no relation to the
incoming symbol, a ";" may be inserted. "<block body>;" reduces
to <block body>, so if the error routine is called again before
the input string has advanced, another ";" must not be inserted.
This is achieved by the use of a flag which indicates the last
symbol inserted.

4.3 Storage Allocation

Program segment numbers are assigned by Pass Two. Each program,
block with declarations, or procedure with a body that is a

block with declarations, is a separate program segment and is
assigned a unique segment number. SEGNO contains the current
segment number. SEGINDX contains the largest segment number
currently assigned. SEGLIST is an array with entries indexed by
SEGNO and SEGINDX and holds the immediate surrounding segment

number.

All addresses of variables, array descriptors, files, and other
data are also assigned by Pass Two and are indicated in NAMETABLE.
An address consists of the hierarchy number (i.e. the lexical
level) plus the address relative to the beginning of the data
segment (the displacement).

Fields of records are given addresses relative to the origin of
the record. The length in words of any record in a record class

is indicated in the NAMETABLE entry for that record class.

24,

The dimension of an array is inserted in NAMETABLE when the
array declaration is encountered. This information is used to
compute the descriptor and to check the number of dimensions

each time that array designator occurs.

Addresses are allocated in the program segment of a procedure
for descriptors of its formal parameters. Descriptors of
actual name parameters are assigned addresses relative to the
beginning of the data segment of the procedure. Addresses
are allocated in the data segment for values of the actual
value and result parameters, since they are treated as local

variables while control is within the procedure body.

L.y Value Stack

The value or interpretation stack consists of 4 row by 2 byte

elements, and works in parallel with the parsing stack.

Vi Row 0O
V2
Row 1
V21 V22
V3y
Row 2
V3 vy
V5 Row 3
<——16 bits >

The standard uses of the fields are given below, but the actual

use depends on the construction being parsed.

25..

Vi Simple type information (see SIMTYPEINFO field
in NAMETABLE, Figure 5).

V21 Type

V22 Simple type

V3t 0 (used in certain special cases detailed in 4.5)

V5 OQutput pointer

When an identifier is looked up in NAMETABLE, a pointer (i.e. index)
to its entry in NAMETABLE is put in V1 and V2 is filled. When
any node is put in the output array TREE (see 4.7), the tree

pointer (i.e. index to the TREE array for that node) is put in
V5.

4.5 Interpretation Rules

For every syntax rule of the grammar there is a corresponding
interpretation rule which performs the semantic actions for that
syntactic construction. These interpretation rules are contained
in a procedure INTERPRET and are accessed via a case statement

which is indexed by the production rule number. The interpretation

rules use the value stack (see 4.4) for working storage.

The semantic actions and value stack layouts for the major
syntactic constructions are:
1. Simple variable declaration
a. Value stack layout is standard.
b. Each identifier is found in NAMETABLE, checked
for multiple declaration and allocated an address.
No output is generated.
25 Array declaration
a, Value stack layout
Vi Pointer to NAMETABLE entry of first identifier.
V2 ©
V3 Number of identifiers
V4 Dimension

V5 Qutput pointer

Identifiers in the list are counted, the simple types
of the bound pair expressions are checked, the bound
pairs are counted, addfesses for descriptors are
allocated, the array dimension is inserted in
NAMETABLE for all the identifiers, and output is

generated.

3. Procedure declaration

a.l Value stack layout for procedure head

Vi Simple type information (if typed procedure)
V21 Type

V22 Simple type (if typed procedure)

V3 and V4 Used when scanning virtual parameters

V5 Output pointer

a.2 Value stack layout for procedure body
Vi Simple type information of expression (if
typed procedure)
V2 0
v34 0
V5 Output pointer
b. Addresses are allocated for the descriptors of the
formal parameters, the simple types (for a typed
procedure) are compared, output is generated.
L, Record class declaration.
a. Value Stack layout
V1l Pointer to NAMETABLE for current field
V2 0
V3 0
V5 Pointer to NAMETABLE entry of record class
identifier
b. The identifiers are located in NAMETABLE and

checked for multiple declaration, an address is
allocated for the record class descriptor, relative
addresses are assigned to the fields and the
nunber of fields is inserted in the NAMETABLE

entry for the record class identifier.

26.

5.

27,

File declaration
a. Value stack layout
V1 Pointer to NAMETABLE entry of first identifier
V2 0
V3 Number of identifiers
vy 0
V5 OQutput pointer

b. The identifiers are located in NAMETABLE and checked
for multiple declaration, addresses are allocated,

attributes checked, and output generated.

Substring designator

a., Value stack layout is standard

b. The simple types of the simple variable, the index
expression and the length are checked, the length

is checked against the length of the simple variable,

and output is generated.

Array designator

a. Value stack layocut
Vi Simple type information
V21 Type
V22 Simple type
V3 Number of dimensions
V4 Number of dummy subscripts
V5 Output pointer

b. The number of dimensions and simple type of subscripts

are checked, output is generated.

Field designator
a. Value stack layout is standard

b. Simple type of the expression is checked, output is

generated.

Procedure designator

a. Valuve stack layout
Vi Simple type information (if typed procedure)
V21 Type

105

i1,

12.

134

14,

V22 Simple type (if typed procedure)
V34 Pointer to NAMETABLE entry for current parameter
V5 Output pointer

If expression

a. Value stack layout is standard

b.. Simple types of then expression and else expfession
are checked for type compatibility, simple type
of expression in if clause is checked, output is

generated.

Case expression
a. Value stack layout
Vi Simple type information
v21 Number of cases
V22 Simple type
v3h 0
V5 Output pointer

b. The simple type of the expression in the case clause
is checked, cases are counted, simple types are

checked for compatibility, and output is generated.

avgumentl [=, >=, <, <=, >, and, or, +, -y %, /, shr, shl,

div, rem, ==, ii} argument?

a. Value stack layout is standard

b. Simple types of arguments are checked for type
compatibility, output is generated.

{-, m, long, short, abs} argument

a. Value stack layout is standard
b. Simple type of argument is checked for type

compatibility, output is generated.

Record designator
a. Value stack layout (replaced by standard layout
after structure is parsed)
V1l Pointer to NAMETABLE entry for current field
V21 Number of fields
V22 Record class number
V3 0
V4 Number of fields glready parsed
V5 Output pointer

28,

15.

16.

17

18.

19

20.

29'

b. The number of fields is checked, the simple type of
each field is checked for compatibility, output is
generated.

Blockbody

a. Value stack layout
Vi 0
V2 0 if no declarations, #F if enclosing block of

procedure body (with declarations), #FF otherwise
viu 0

V5 Output pointer

b. At begin the block number and hierarchy number are
stepped, V2 and displacement are set. At end the
displacement and hierarchy number are restored.
Cutput is generated.

Label definition

a. Value stack laycut is standard

b. The segment number and hierarchy number are inserted

in NAMETABLE, output is generated.

Assignment statement
a. Value stack layout is standard
b. Simple types are checked for type compatibility,

output is generated.

Case statement
a. Value stack layout is the same as for case expression

b. Cases are counted, output is generated.

For statement

a. Value stack layout is standard

b. Simple types of expressions are checked, an address
is allocated for the control identifier, output

is generated.

While statement
a. Value stack layout is standard
b. The simple type of the expression in the while clause

is checked, output is generated.

21. Assert statement
a. Value stack layout is standard
b. The simple type of the expression is checked, output

is generated.

4.6 Pass Two Tables

Pass Two completes the NAMETABLE and creates a literal table.
The information entered in NAMETABLE is that in Figure 5 that
was not entered in Pass One. Note that the TYPE entry for a
formal or virtual parameter is changed from its contents at the

end of Pass One.

Figure 5

Format of NAMETABLE and Field Contents After Pass Two

30-

idloc1 idloc2 simtypeinfo Row 0
hierarchy |prog.seg.
typeinfo
dimen type |[simpletype idno Row 1
vr rccl.number

16 bits 2 <€ 16 bits'——|S 186 hits ——>

31.

Field Kind of Entry Contents
IDLOC1 simple variable hierarchy number
label program segment number
array hierarchy number
file hierarchy number

record class identifier hierarchy number

record field hierarchy number
control identifier hierarchy number
standard function simtypeinfo of argument
formal parameter hierarchy number
HIERARCIHY procedure hierarchy number
PROGSEG procedure program segment number
IDLOC2 simple variable relative address
array relative address of descriptor
file relative address
label relative address in label table

record class identifier relative address

record field address relative to start of record
control identifier relative address |
procedure relative address
formal parameter relative address
SIMIYPEINFO string length-1
reference peinter to RCCLIST

record class identifier record length
TYPEINFO label hierarchy number

procedure (not formal block number of formal parameters

or virtual)

standard function simpletype of parameter

VR record class identifier number of fields
formal procedure number of virtual parameters
virtual procedure number of virtual parameters
standard procedure vr for parameters
formal parameter 1 if value, 2 if result, 3 if

value-result
virtual parameter 1 if value, 2 if result, 3 if

value-result

32.

DIMEN array dimension
formal procedure 1 if has virtual parameters
virtual procedure 1 if has virtual parameters
RCCLNUM record class identifier record class number

record field identifier record class number

standard function 1 if inline
TYPE simple variable 0

label 1

array 2

procedure 3

record class B

record field 5

control identifier 6

standard function T

file 8

standard procedure 9

formal parameter 16 + TYPE

virtual parameter 32 + TYPFE
SIMPLETYPE integer 1

real 2

long real 3

complex L

long complex b

logical 6

string 7
X bits 8

reference 9
IDNO the unique identifier number
Two tables for literals are constructed by Pass Two. The literal

table (LITTABLE) contains all literals (numbers, character

strings, and bit sequences). The literal pointer table (LITPOINT-
TABLE) contains the simple type, the length (if a character
string), and a pointer (i.e. index) to the literal table for

each literal.

33.

The tables PRODUCTIONS, PRODINDX, and MATRIX are used by the

syntactic analyzer and are initialized upon entry to Pass Two.

MATRIX contains the simple precedence relations of the Extended
ALGOL W (simple precedence) grammar (see Appendix A). The

entries are packed four/byte.

PRODUCTIONS contain the productions of the simple precedence
grammar grouped so that all productions having the same leftmost
symbol of the right part are together. The format for a production

is the following:

production L ::= R(1) R(2) ... R(N) 0<N<#®8
representation in PRODUCTIONS (12 bits/entry)
N-1
R(1)
R(2)
R(N)
L

production number
The symbol #FFF indicates the end of a production group.
PRODINDX is an index to PRODUCTIONS. The entry for a given
symbol indicates the beginning of the group of productions of

which that symbol is the leftmost symbol of the right part.

L.,7 Pass Two Output

The output of Pass Two is an array called TREE which represents

a linearization of a modified structural tree of the program being
parsed. Each nonterminal node has either one or two subtrees.
Each nonterminal binary node contains a pointer to its left
subtree; its right subtree directly precedes it. In the array
TREE, the subtrees of a node precede that node. Each element

of TREE consists of two 3-byte entries with the format:

-

34,

lee——14 bits——=|=—28 bits—=|

Flag - Opcode Conv Row 0

Pointer Row 1

«——+— 24 bits

FLAG is on (i.e. 1) if the right subtree is to be compiled first
and off (i.e. 0) if the left subtree is compiled first. Conversion
of arithmetic type is indicated in the source program implicitly,

by mixed-type expressions, or explicitly, by long or short.

In either case, the simple type to which the expression is to be
converted is given in CONV, For a terminal node POINTER points
to NAMETABLE or the literal pointer table (LITPOINTTABLE). For
a nonterminal node POINTER points to the last node of the first
subtree. The first node in TREE only uses the POINTER field
which points to the end of TREE. '
Example from [2].
program fragment:F(B,5,C+D,G0TO X)

-F is a procedure

C is integer

D is real

tree:
AP)

/\
AP, GOTO
\
Ap,/ \, X
2N AN
AP, 5 C D
/N
F B
For meanings of nodes see

Figure 6.

35,

TREE:
FLAG OPCODE CONV POINTER
FUNCID points to NAMETABLE entry for F
VARID points to NAMETABLE entry for B
0 AP,
NUMBER points to literal table entry for 5
0 AP,
VARID 2 points to NAMETABLE entry for C
VARID points to NAMETABLE entry for D
0 +
0 AP,
LABELID points to NAMETABLE entry for X
GOTO
0 AP)

Operator

A:Binary Operators

+

&0 o
1]

7
STEPUNTIL

1

v > =]
Honoon
NN

"

R:=2

36.

Figure 6

Pass Two Output Vocabulary

Code

w <= O U F W N

9
10
11
12
13
14
15
186
17
18
19
20
21
22

(Conversion field may

AP)

INDX

26

217

Remarks

exponentiation

logical assignment

arithmetic assignment

string assignment - conversion
field contains string length

reference assignment

conversion bits indicate length

for string comparisons

multiple assignment

contain string length for string arguments)

Indicates end of actual parameter
list. Conversion bits indicate
conversion of result of function call.
Indicates subscripting operation.
Conversion bits can occur only with

last such operator and indicate that

resulting array element must be converted.

37.

REFX 28 Indicates computation of field
(first argument) of record reference
(second argument)

IFEXP 29 Indicates that label should be
issued for end of if expression and
unconditional jump patched.
Conversion bhits indicate that

resulting expression must be converted.

PCL 30 Indicates end of procedure declaration
SUBSTRING 31

SHL 32 left shift

SHR 33 right shift

BB 34 Indicates end of declarations,

beginning of blockbody

END 35
| 36
AP, 37 for actual parameters
Ry 38 for record designators
AR, 39 for array declarations
AR) 40 indicates end of array declaration
R) L1 indicates end of record designator
LOGOR 42 OR of logical arguments
BITOR L3 OR of bit sequences
LOGAND Ly AND of logical arguments
BITAND 45 AND of bit sequences
ITERST 46 indicates generation of transfer
to iteration test for simple for
statement
ITERST2 u7 indicates generation of transfer to
iteration test for for statement with
for list
FORLIST u8
FORCL 49 links control assignment and
step-until

ENDFORLIST 50

UJIFEXP

uJg

CL

IFST

IS

>
WHILEOP
WHILEST

IFg

SPACE
SEEK
CLOSE
LOCK
INIT)
INIT,
LIST,
EDITSPECS
FORMLIST
FILEPT
RWHEAD
CARCONT
B:Unary Operators
UMINUS
ABS

51

53

54

55
56
57
58
59
60

61
62
63
B4

66
67
68
69
70
Al
72

73
7y

38.

indicates unconditional jump in

if expression

indicates issue jump to end of
case list or if statement to be
patched

indicates label should be issued
for end of case statement and jump
addresses patched

indicates label should be issued
for end of if statement and addresses
patched

array bounds colon

indicates NOOP (statement separator)

indicates issue jump on condition
false to end of if expression or

if statement

indicates end of initial attributes
for file declarations

I/0 list separator

unary minus

absolute value

LOG —
BIT =
GOTO

STACKADDR

ASSERT
READ
WRITE
CLOSEST
LOCKST
OPEN
REWINDST
LISTPART
COORD

CASE

SEG

C:Terminal Nodes

BEGIN

NUMBER

VARID
LABELID
ARRAYID
FUNCID
RCCLID
FIELDID
CONID
PROCDC

77
78
72
80
81

82
83
8L
87
88
89
90
91
93

Sh

95

a7

98

99
100
101
102
103
i0u
105
106

39,

negation of logical value

negation of bit sequence

label colon
For implicit subroutine. If block
expression conversion bits indicate

if value of block is to be converted

Pointer is the coordinate number.
Unary operator for BEGIN, PROCDC,
ARRAYDC, ",", FILEDC nodes

Conv field is the simple type if

expression. Pointer is the number
of cases,
Indicates program segment. Pointer

contains segment number

Conv contains block number if
begins data segment

Pointer points to literal pointer
table

procedure declaration

FILEID
ATTRIB
ATTRIBMNEMON

BIT

STRING

TRUE
FALSE
IF
WHILE
NULL
NULLST
ARRAYDC

AR
EILEDC

PURGE
REEL
CRUNCH
SPACEV
LINE
SKIP
NO
STFUNCID
STPROCID

107
108
109
o 1

112

113
11y
115
116
117
118
119

120
124

122
123
12y
125
126
127
128
129
130

Lo,

Pointer points to literal pointer
table
Pointer points to literal pointer
table

indicates undefined reference
indicates empty statement

Array declaration. Pointer points

to first identifier. Conv is the
number of identifiers

indicates dummy array subscript

File declaration. Pointer points to
first identifier, Conv is the number

of identifiers

used in carriage control

uil

Chapter 5

PASS THREE

The essence of Pass Three is the algorithm for scanning the
linearized tree, beginning at the root node. The flag with

each binary node indicates which branch the scan should follow.
The operator nodes are not otherwise examined at this stage.
Pointers to the nodes are stacked in STACK as they are encountered
in the scan for easy retrieval. Code generation begins with

the first terminal node encountered and the tree is traversed

by the generating routines.

The code produced is Burroughs B6700 machine code [17] and is
put into standard B6700 code files [18]. Before a discussion on
the code produced can be meaningful, some understanding of the
operating system and the stack (not to be confused with the

array STACK) operation is required. The first part of this
chapter gives a brief insight to these features, and if a more
detailed description is required the reader is referred to [17]
and [19].

5.1 B6700 Architecture

The B6700 follows the design of the simulated machine of Randell
and Russell [20], and has a typed memory (i.e. there are a few
bits of each word which are used as a tag indicating what type of
information the word holds) consisting of 51 bit words. The
bits 50, 49, 48 are the tag bits, bit 48 is a memory protection
bit which if on indicates the word can not be written into by the
normal store operators, and the remaining 48 bits (47 to 0)

contain the information (see Figure 7).

Figure 7

42.

B6700 Word Formats With Tag Mnemeonics

DATA WORDS
000 EXPONENT MANTISSA
010 EXPONENT MANTISSA
010 EXPONENT MANTISSA
L5~6 bits 3ke—-39 bits-—

DESCRIPTOR WORDS

101

LENGTH

ADDRESS

011

LENGTH

ADDRESS

le20b i ts 20 bits)

SPECIAL CONTROL WORDS

Single-precision operand

Double-precision operand

- 1st word

Double-precision operand

- 2nd word

Data Descriptor (DD)

Segment Descriptor (SD)

011 STACK nTSPLACEMENT | LL DF Mark Stack Control Word
NO.
i (Mscw)
111 STACK | OPERATOR ADDRESS : ,
NO. S E LL AOUPLE Program Control Word (PCW)
011 OPERATOR 1L, | ADDRESS Return Control Word (RCW)
INDEX COUPLE

43.

001 ADDRESS Indirect Reference
COUPLE Word (IRW)
001 SEQCK CISPLACEMENT| |DELTA Stuffed Indirect
- eI IS I (I (I Reference Word (IRWS)
etobitssfete bits—s] |fean bitsy

The memory is of the segmented virtual type. The user may use a
number of linear memory segments of varying lengths so there may
be more main memory required than is available. Although the
user assumes all his segments are in high speed memory, it is
likely some are being held on secondary storage such as a disk.
The Master Control Program (MCP) brings the required segment into
the main memory when it is needed. So that it can do this, each
segment is described by at least one tag 5 word (descriptor) and
any reference to a segment must be made through a descriptor. As
seen in Figure 7, descriptors contain the main memory or disk
address of the segment described plus a presence bit whichlif on
indicates the segment is in main memory. If a segment is referred
to that is not in main memory, the MCP fetches it and changes

the descriptor to show that the segment is then in main memory.

If the MCP removes a segment from main memory it turns off the
presence bit in all descriptors of that segment, and replaces the
memory address by a disk address. Program segments are read-only

so they are not removed to disk, just removed from main memory.

A program segment has only one descriptor. A program (Burroughs
literature calls these processes) may have more than 1 segment
and all their descriptors are kept in a stack pointed to by the
level 1 display register. The stack proper for a process starts

at level 2, MCP programs have descriptors in the level 0 stack.

Y,

Data segments are more complicated because as they are arrays
there can be many references to them held in the stack. When
a data segment is removed from main memory all stacks in the
system are searched for references into the data segment and
all presence bits are turned off. One descriptor is chosen

as the master descriptor and holds the disk address of the data
segment and all the other descriptors are copies and contain the
stack address of the master. If a descriptor is a copy the
copy bit (C in Figure 7) is turned on. When a reference is
made to an absent data segment the MCP fetches it back from
disk and all other references use the copies to obtain the main

memory address from the master descriptor.

Two other methods for addressing data or program code is provided.
They are the Indirect Reference Word (IRW) and the Stuffed
Indirect Reference Word (IRWS). These address data located
within the process's stack and their address fields both hold
relative addresses. The IRW addresses information which is
global or local to the particular active procedure. The IRWS
is used for addressing across stacks and for handling parameters
where the actual parameters are not necessarily within the
addressing envircnment of the procedure to which they are passed
and can not be accessed by an IRW. The IRW has in its Address
Couple field a Display Register number and a Displacement, The
IRWS holds three bits of information: (a) a Stack Number,

(b) the start of the addressing space of the process within that
stack, and (c) the displacement of the information within that
addressing space. An IRW can be changed to an IRWS by the use

of the operator stuff environment-STIF.

5.2 Program Structure in Memory

A program in memory occupies separately allocated areas, i.e.
each part of the program can be anywhere in memory with the

actual address determined by the MCP.

45.

The separately allocated areas of a program are (see Figure 8):

1. Program Segments. These hold a sequence of
instructions (syllables) which the processor
executes. The program segments hold no

data and are never modified.

2. Segment Dictionary. This is a table containing

the descriptors of the program segments.

3. Stack Area. This is the pushdown stack storage,
which contains the variables associated with a
program and the control words which indicate
the dynamic status of the program as it is

being executed.

Figure 8

Object Program in Memory

Object Object
D[4] - program program
stack code
containing segment
D[3]— variables (n+1)
and >
dynamic
status
D[2] = Object
program
code
Object segment
program (n)
segment ; =
dictionary
S.D. prog.
S5.D. prog.
Seg.Des.0.B. Object
D[1])— program
code
MCP stack outer
and block
segment code
dictionary segment
D{0]—>

u?.

5.3 Stack Operation

The stack arrangement (see Figure 9) has two top-of-stack
registers (A and B) with associated validity bits. With each
top-of-stack register there is a companion register (X and Y)
which is used tc hold the second half of a double-precision
operand. When held in the memory stack a double-precision
operand is held in two adjacent stack words. For simplicity

in this discussion it is assumed all operands are single-precision.
The necessary changes for double-precision operands will be
fairly cbvious, for example when an operand is moved from the
stack into the top-of-stack register the tag bits are checked
and if a double-precision operand then two stack words are moved
into A and X which are then concatenated. The stack top is
pointed to by the S register and the address-chain is given by
the F register. The machine also has a check to see that the

stack bounds are not wviolated.

Figure ¢

Stack Arrangement

i
s = | K
(top) (address-chain)

™
T B
[
|
n
6._
; D[u]
| D[23]
i D[2)

o (display)

u8.

The stack operates as a last in, first out storage area. An
operand is stored into register A with consequent push-downs

into register B and into the memory location pointed at by
register S. Extraction of data is from register A with
consequent pop-ups from B and the location pointed at by S.

The contents of S are incremented by 1 on a push-down and
decremented on a pop-up. These actions are performed
automatically by the processor to the requirements of the operator

currently being executed.

5.4 Example of Simple Stack Operation

In the program segments the instructions are kept in the order
of executing the source program in reverse Polish order. In
this section, a simple example of the stack operation when
executing the statement D:=6%(W+V) will be discussed but the
explanation of the syllable types will be left to later sections.

qgl

Figure 10

Stack Operation

ALGOL W Statement: D:=6x%(W+V)

Polish String Notation: s t* =

MAMC VALC VALC ADD MULT STOD

D 6 W v

A INV IRW DHh 6 W Y INV INV INV
B I_INV INV IRW D 6 W (W+V) | [6=(w+v)| | TNV
Core Stack Area
N+5
N44 3 6 A 6 6 6
N+3 2 IRW D IRW D] |IRW Di{= IRW D IRW D
N+2Sa» W |3 W 3 W W W W W o W
N+1 D D ¥ D D D D D 6 (W+V)
N Vv Vv Vv v vV Vv Vv v

Syllable Types: NAMC Name Call
LT8 Literal (8 bit)
VALC Value Call
STOD Store Destructive

When D:=6%(W+V) is changed to Polish notation the result is
DEWV+#:=, Each element causes a syllable type to be placed in
the machine language program during Pass Three (see Figure 10).

D is to receive a value so the address of D must be put in the
stack before the store command. This is done by a name call
syllable (NAMC) which puts an IRW in the stack. The IRW contains
the address of the stack location of the wvariable D. The value

6 is then put in the stack by using an eight-bit literal syllable

50.

(LT8). Since W and V are to be added, the variables are put

in the stack by Value Call syllables. The ADD operator adds
the two top operands and places the sum in the top of the

stack (in this case register B). The multiply operator (MULT)
then multiplies the two top stack operands and places the result
in the top of the stack. The store syllable (STOD) examines
the two top of stack operands looking for an IRW or Data
Descriptor. In this example it finds an IRW which addresses
the location where the computed result is to be stored and

stores it.

5.5 Syllable Format and Types

A machine language program is a string of syllables which are
usually executed sequentially. Each word in the memory contains
six 8-bit syllables with the first labelled syllable 0 and

is contained by bits 47 to 40 inclusive.

There are three types of syllables (see Figure 11):
(a) Name Call, (b) Value Call, and (c) operators. The
two high-order bits (bits 7 and 6) determine which type a sYllable 18,

Figure 11

Syllable Table

(Bits 7 and 6) Syllable No. of Function
Identification Type syllables
00 Value Call 2 Brings an operand

into the stack

01 Name Call 2 Brings an IRW into
the stack
1X Operators =1 e T Performs the

specified operation

51.

Name Call builds an Indirect Reference Word in the stack. Stack
adjustment takes place so that the A register is empty. The

six low-order bits of the first syllable are concatenated with

the eight bits of the following syllable to form a 14-bit address-
couple. The address-couple is placed right-justified in the A
register, with the remainder of the A register filled with zeros.
The TAG field (bits 50, 49, u48) of the A register is set to 001

and the register is marked full.

Value Call loads into the top of the stack the operand referenced
by the address-couple. The operator is formed in the same way
as the Name Call operator. If the referenced memory location is
an Indirect Reference Word or a Data Descriptor, memory accesses
are made until thé operand is found. The operand is then placed
in the top-of-stack registers. The operand may be either
single- or double-precision, causing either one or two words to

be loaded intoc the stack.

Operators vary from one to seven syllables long. The first
syllable determines the number of following syllables which, with
the first syllable, forms the operator. Operators work on

data as either full words (48 data bits plus tag bits), or as
strings of data characters. Word operators work with the
cperands in the top of the stack. String operators are used

for transferring, comparing, or translating strings of characters.
There is also a set of micro-operators providing a means of

formatting data for input/output.

5.6 Addressing

An address-couple consists of two parts: (a) the addressing
level (LL) of the variable, and (b) an index value (delta) used

to locate the variable within its addressing level,

The B6700 processor contains an array of display registers

52.

(DO to D31) and these registers address the base of each
addressing level segment. The local variables of all procedures
are addressed relative to the D registers (thus delta is a
relative displacement value). The address-couple is converted
to an absolute memory address when a variable is referenced.

The addressing level field of the address-couple selects the

D register. The index value field of the address-couple is then
added to the contents of the specified D register to get the

absolute memory address.

5.7 Block and Procedure Entry

The tree output of Pass Two for a block with declarations is

declarations

requiring code
to be emitted,
COORD e.g. array

/// declaration

BEGIN statements

If there are only declarations which do not need code emitted the
declarations branch of node BB is node NULLST. Blocks without

declarations have the following tree:

53.

\

END

/

COORD

/

BEGIN statements

and the tree for procedure or function declaration is:

N\

PCL
COORD
PROCDC procedure body

The discussion on block and procedure entry can be combined
because on the B6700 the mechanism is the same in both cases.

A block is treated as a procedure which is called where it
appears and a procedure is always considered to contain a block.
This section will refer only to procedure but remember this is
synonymous with block. In ALGOL a procedure as a value and a
procedure as a thunk [21] can not occur in the same context,
therefore the B6700 has only one type of program address word
called a PCW-Program Control Word (see Figure 7). A PCW is
created by the instruction MPCW which must be followed in the
instruction stream by a 48 bit literal which has the stack number

and tag inserted to make the PCW which is pushed on the stack.

The tree output of Pass Two for a call on a procedure or functicn

is:

Sk,

\\\\\
AP)
AP, tree for
\\\\ parameter n
FE T tree for

// parameter n-1
AP,

FUNCID tree for

parameter 1

The tree for a proper procedure without parameters is:

]
/// FUNCID
When a procedure is called the operator MKST (Mark Stack) pushes
a skeleton MSCW (see Figure 7) onto the stack. The MSCW contains
the DF field, i.e. the environment pointer F. Then an IRW or

IRWS pointing to the PCW of the procedure is pushed cnto the stack

followed by any actual parameters.

The Enter operator (ENTR) is then pushed onto the stack. The
following occurs due to ENTR:
1. The F register is made to point to the new MSCW.
2. The lexical level at which the procedure's PCW
appears is found by:
(a) If the PCW is referenced by an IRW it is obtained
directly from the address-couple of that IRW.

55.

(b) If the PCW is referenced by an IRWS it is obtained
from the LL field of the MSCW pointed at by the
Delta field of the IRWS.
Note that a procedure declared at level n must run at level
n+l, Display Register Dn+1 is set to point to the new
MSCW, 1i.e. is given the same value as the F register.
The number n+1 is inserted in the LL field of the MSCW.

3. The Stack Number and Displacement fields of the new MSCW
are set to point to the MSCW pointed at by Dn' Hence
there is a static link (Burroughs calls this a Displacement
link) which expresses the lexical structure of a program.

4. If necessary, the static link in the MSCW pointed at by

Dn is examined and Display Register D is reset. The

static link is followed and all requireé registers are
reset. (Note D0 is never reset).

5. The new IRW or IRWS is changed to a RCW (see Figure 7).
Note that the RCW is similar to the PCW except it has a
tag of 3. The RCW references the program code of the
calling procedure ons operator past the point of call via
a Segment Descriptor. The LL field of the RCW contains the

lexical level of the calling procedure.

The called procedure is now active.

The calling sequence for a procedure such as P(1,1) is:

MKST

NAMC to P's PCW
ONE {'initialize
ONE parameters
ENTR

Standard functions (called intrinsics by Burroughs) are treated
as if declared within procedures that execute at display level 0.

Hence they always execute at display level 1.

56.

5.8 Block and Procedure Exit

There are two instructions for returning from procedures (blocks),
EXIT and RETN. They both operate in the same way except that
RETN leaves the top of the stack as a value and EXIT does not.
Also, if the value bit of the MSCW pointed to by F is 1, RETN
operates a VALC instruction sequence because the value bit is

turned on when a VALC causes a thunk.

Each MSCW is linked to the prior MSCW through the DF field so

that the point in the stack where the prior procedure began can

be found. When a procedure is exited, its part of the stack is
discarded. This is done by the S register being set to address
the memory location preceding the last MSCW. This topmost

MSCW is deleted from the stack history list by changing the

F register to point to the prior MSCW.
Finally, the code segment and the next operator for the procedure
exited to are accessed via the RCH. Operation resumes at the

point following the procedure call.

5.9 Array Declaration

The tree format for the array declaration <simple type> array

X1’X2""’Xm(zo"“0’11“”1""’£n-1"”nnl) is:

57,

/ 'eo/ bo

ARRAYDC

A B6700 array is a segment and therefore has a segment descriptor.
This data descriptor (DD) contains the base address, maximum index
(from zero), size of elements (double-precision, single-precision,
8 bit characters), etc. When the descriptor is indexed, the
indexing integer is checked against the size and if allowable
replaces the size field, a bit being set in the descriptor
indicating that it has been indexed. An indexed data descriptor

may be used in most places where an address is required by other

instructions.

Two dimensional arrays may be handled by defining arrays of

descriptors, for example A(0::2,0::1) is set up as:

A
ACO,%) e
A(?,:‘:)

5.10 Subscripted Variables

58.

A(0,0)

A(0,1)
A(1,0)
AC1,3)
A(2,0)

A(2,1)

The tree format of a subscripted variable from an array A of

n dimensions:

A(Xy %y e e s X

n-1

where Xi is an integer expression is:

%

INDX

/ N\

INDX

A
/// n-2

INDX/qus\k
/N

ARRAYID XO

Xn—i

)

59,

The B6700 indexing instruction is INDX (not to be confused with
tree node INDX). It handles an operand and an array descriptor
in any order on top of the stack. It will fetch a descriptor
pointed to by an IRW. INDX interprets the length field of a

DD as being in units of the correct size and the indexed DD
contains the pointer to the appropriate character or word, for
example if the DD peints to a double—pﬂecision array the

indexing operand is decubled.

If location (4,6) contains the unindexed descriptor of array A

and (5,3) is i, then

A(i) is NAMC (4,6)
VALC (5,3) i.e. NAMC(5,3),LOAD

INDX

or
VALC (5,3)
NAMC (1,6)
INDX

If j is (5,4), then

A(i,3) is NAMC (u4,6)

VALC (5,3)
INDX
LOAD
VALC (5,4)
INDX

The pair INDX, LOAD can be replaced by NXLN if another descriptor

is expected (as above), or NXLV if an operand is required.

Because of the virtual memory it is advisable to keep segments
small. Therefore usually large arrays are segmented and treated
as two dimensional although the programmer sees it as linear. In

this case the main descriptor of the array has a special bit set.

60.

On indexing, the index value is divided by a constant depending

on the data item's length (double-precision 128, single 256,

8 bit characters 1536) to give a row number and index within the
row. The array is treated as 2 dimensional and indexed twice,

for example a single-precision array descriptor indexed with

1040 would actually fetch word 15 of row 4 (counting from zero).

Sivalidl Passing Sub-Arrays as Parameters

The user may pass any generalized row or column, i.e. any
subarray of dimension 1,2,..,n-1 of an n-dimensional array, as
a parameter to a procedure. Since all array parameters are
passed by name, all that is needed is to copy certain parts or

all of the array descriptor.

According to the syntax of subarrays, an asterisk (%) is put in
the positions of the actual subarray parameter to indicate which

dimensions are to be included in the formal array.

In the positicns in which % occurs in subarrays in the source
code, the Pass Two tree output is the ncde AR:H. For example the

tree corresponding to the actual parameter

ACh)

1s: \

INDX

/\

INDX AR

/\

ARRAYID L

indicating that the second dimension of the two dimensional array
A is unspecified and the 4th row correspends to the one dimensional

formal array.

61.

5:12 Operands

Arithmetic operands are regarded as floating point numbers -
integers have zerc exponents. There are two instructions,
NTGR and NTIA, for rounding or truncating the top of the stack
to an integer. There are a few arithmetic operators (for
example ADD) which gives a double-precision result if one of

the top two stack words is double-precision.

For logical values, an operand with a 1 in bit zero is regarded
as true, an operand with a 0 in bit zero is regarded as false.
Relational operators GRTR, GREQ, EQUL, LSEQ, LESS, NEQL operate
on the top two words in the stack and produce a logical wvalue
result. Logical operators LAND, LOR, LNOT operate bitwise

on the top of the stack words extending a single-precision word

with zeros to double-precision if one operand is double-precision,

Constants are put in the stack by one of 5 instructions:

LT8 "Literal Calls" followed by an 8, 16, or
LT16 48 bit constant which is put in the

LTL8 stack as a 48 bit operand

ZERO puts on the stack an integer 0 constant
ONE puts on the stack an integer 1 constant

String operands are treated as arrays.

The NAMC (Name Call) instruction creates an IRW. The contents
of any location addressed by the IRW on the top of the stack may
be put in to the top of stack by using the LOAD instruction,

i.e. a value is put on the top of the stack by using

NAMC (lev,disp)
LOAD

62.

The main operand fetching instruction is VALC (lev,disp). It
follows indirect references, enters thunk procedures, etc. It
also indexes a non indexed array descriptor with the top of
stack operand. Thus the A(i,j) of section 5.10 also translates
as:

VALC (5,4) puts j in stack

VALC (5,3) puts i in stack

VALC (4,6) fetches A and indexes it twice

The EVAL instruction examines the address on top of the stack
and follows any references and perfeorms thunks until it gets an

address of an operand or an unindexed array descriptor.

The store instructions are STON and STOD (store "nondestructive"
and store "destructive'"). They do an EVAL on the address on the
top of the stack. Actually the top two elements of the stack may
be an operand and an address in any order. The store instructions

put the address on top, EVAL it, and then performs the store.

5,13 Branching

The "instruction counter'" of the B6700 is a collection of
registers which keep the base address (and limit) of the program
segment being executed and of the syllable address within that
segment. The simple branch instructions - branch on false,
BRFL, branch on true, BRTR, and branch unconditionally, BRUN -
are followed by two syllables giving the destination address
within the current segment. If a destination in another segment
is required, a PCW is put on top of the stack and the dynamic
branch instructions DBFL, DBTR and DBUN are used.

5.14 Record and Field Designators

ALGOL W permits records toc be created in two ways. The name
of the record class may stand alone or the name of the record

class may be followed by a list of initial values of the fields.

63.

Both creaticns are reference expressions.

Example RECORD A (INTEGER I,J);
REFERENCE(A)R;
R:=A;

R RCCLID A

ﬁ//Ri:\R)
é{‘\\ﬂ
/\

RCCLID A 5

R:=A(5,8);

In this implementation, each record class is held in a separate
array. When a new record of a record class is created, the
length of the array is increased by the length of the new record.
This is achieved in an analogous way to the resize statement

in Burroughs Extended ALGOL [12] and entails only changing the
length field in the array's descriptor. Thus no memory space

is allocated before it is required. No garbage collection has
been implemented as it is thought that with this method of
allocating storage for record classes in arrays, the B6700 memory
management will remove arrays that are not referenced. Also
when the descriptor disappears on block exit the array is

deallocated by the system.

Since a reference points to a record with fields of any of the
nine simple types, field designators of the form F(R), where F
is a field name and R a reference expression, select the desired
field of the simple type of F. The loading of the reference

value is analogous to getting an' address from a subscript

calculation. This address is then used as a base to index the
proper element of the record while the displacement is the

relative displacement of field F within the record.

Example RECORD A(REFERENCE(A)X,Y;INTEGER I);

INTEGER J;
REFERENCE(A)R;
J:=I(R); \
A\
J REFX
I R
I(Y(R)):=J;

\A-=
/\

REFX J

/\

I REFX

Y/ \R

6u.

5.15 Further Examples of Pass Two Tree Output as Received

by Pass Three

FOR STATEMENT \\\\\

ITERST

FORCL statement

STEPU fIL

/\nt exp. int.exp.

int.exp.

CONID
\
ITERST2
2N
ENDFORLIST statement
7\
FORLIST int.exp
N\
FORLIST int.exp.
/
SEG int.exp.

/

CONID

65.

66.

WHILE STATEMENT

e

WHILEST
WHILEOP statement

2

WHILE log.exp.

IF STATEMENT

N

IFST
IFJ statement

o\

IF log.exp.

N

IFST

UJ// \\\\

statement

/%

UFJd statement

IE// \\\\

log.exp.

CASE STATEMENT
CL
UJ statement

Py statement
UJ\\\\\
uJ statement
CASE
int.exp.
GOTO STATEMENT
GOTO
LABELID
LABEL DECLARATION
LABELID
ASSERT STATEMENT \\
ASSERT

log.exp.

68.

SPACE STATEMENT

X

SPACE

i

FILEID int.exp.

REWIND STATEMENT

N\

REWIND

N\

FILEID

SEEK STATEMENT

N

SEEK

7\

FILEID int.exp.

CLOSE STATEMENT

\ Y

CLOSE CLOSEV
FILEID FILEID close option

LOCK STATEMENT

\ N

LOCK LOCKV

'

FILEID FILEID lock option

OPEN STATEMENT

OPEN

\

FILEID

IF EXPRESSION

uJ expression

IFJ expression

Y

IF log.exp.

CASE EXPRESSION

CL

/N

ud expression

Vi expression
UJ

4

UuJ expression

/

CASE

/

int.exp.

69,

LOGICAL EXPRESSIONS

70.

N\ N\ N\
LOGQ&\\\ LOG\:L\ BITOR
log.exp. log.exp. log.exp. bit.exp. Dbit.exp.
= > I8
exp. exp. exp. exp. ref.exp. RCCLID
ARITHMETIC EXPRESSIONS
b REM ABS
expf/// exp. int.exp. int.exp. exp.

SUBSTRING

\

SUBSTRING

N\

str.var.

int.exp.

NUMBER

ASSIGNMENT STATEMENT

\ %
A= A:=
7N /\
var, exp. var, A:=
/\
var. exp
FILE DECLARATION
b
INIT)
RN
INIT, attribute
N\
T attribute
INI<
/N
COORD attribute
/
FILEDC
READ/WRITE STATEMENT
REA;\OP WRITE
RWHEAD
/
FILEPT format and list

N

FILEID CARCONT

/ O\

carriage NUMBER

control

T

72-

Chapter 6

SUMMARY

At the time of writing this thesis Pass One had been extensively
checked and was working very well although with more use by
programmers errors may be found. Pass Two was working well
although had not been extensively checked. Pass Three was

still causing some trouble but was expected to be in good working

order in a very short time.

There was times when it was felt that it might have been far
easier to write a recursive descent compiler but with the inclusion
of debugging features along the lines of those devised by
Satterthwaite [13], the three pass compiler will have proved its

worth.

Apart from the inclusion of debugging features it is hoped to
have the standard ALGOL W I/O procedures included so making it
compatible with other ALGOL W implementations.

REFERENCES

WIRTH, Niklaus
Proposal for a Report on a Successor of ALGOL 60.

MR75, Mathematical Centre, Amsterdam, August 1965.

WIRTH, Niklaus and C.A.R. Hoare
A Contribution to the Development of ALGOL. Comm. ACM
9, (June 1966), pp 413-431.

ROSS, D.T.
A Generalised Technique for Symbol Manipulation and
Numerical Calculation. Comm. ACM 4, (March 1961),
pp 147-150.

HOARE, C.A.R.
Record Handling. Pp 291-347. In Genuys, F. ed.

Programming Languages. Academic Press, 1968.

BAUR, H.R. et al.
ALGOL W Language Description. Technical Report

CS 89, Computer Science Department, Stanford Univefsity,

March 1968.

BAUR, H.R. et al.
ALGOL W Implementation. Technical Report CS 98,

Computer Science Department, Stanford University,
May 1968.

SITES, Richard L.
ALGOL W Reference Manual. Computer Science Department,

Stanford University, August 1971.

NAUR, P. (ed.)
Revised Report on the Algorithmic Language ALGOL 60,
Comm. ACM 6, (January 1963), pp 1-17.

MOIR, D.A.K. and J.M. Wells
Format-Directed Input/Output For Algol W. Scientific
Reports No. 23, Department of Computer Science, The

University of Manitoba, April 1971.

73.

10.

11-

12.

13.

b,

15

16.

17.

18.

4.

PATEL, Rajini M.
Basic I/0 Handling on Burroughs B6500.
Proceedings of 2nd ACM Symposium on Operating

Systems Principles, (Octcber 1969), pp 120-1289.

THE BURRQUGHS CORPORATION
Burroughs B6700 Input/Output Subsystem Information
Manual. No. 5000185, 197u

THE BURROUGHS CORPORATION
Burroughs B6700/B7700 ALGOL Language Reference
Manual, 1974,

SATTERTHWAITE, E.
Debugging Tools for High Level Languages.
Technical Report No. 29, University of Newcastle

upon Tyne, December 1971.

FLOYD, R.W,
Syntactic Analysis and Operator Precedence.
JACM 10, (July 1963), pp 316-333.

MARTIN, D.F.
Boolean Matrix Methods for the Detection of Simple
Precedence Grammars. CACM 11, (Octcber 1968),
pp 685-687.

WIRTH, Niklaus and Helmut Weber
EULER: A Generalization of ALGOL and its Formal
Definition: Part I. Comm. ACM 9, (January 1966),
pp 13-23,25.

THE BURROUGHS CORPORATION
Burroughs B6700 Information Processing Systems Reference
Manual, 1972.

THE BURRQUGHS CORPORATION
Burroughs B6700 Code File Formats

75.

19, ORGANICK, Elliott I.
Computer System Organization, The B5700/B6700

Series. Academic Press, 1973.

20. RANDELL, B. and L.J. Russell
ALGOL 60 Implementation. Academic Press, 1974.

21. INGERMANN, P.Z.
Thunks. CACM 4, (January 1961), pp 55-58.

APPENDICES

76.

Appendix A

SIMPLE PRECEDENCE GRAMMAR FOR ALGOL W

1. <T var id> ::= <id>
2. <label id> ::= <id>
3. <T array id> ::= <id>
b <proc id> ::= <id>

5. <rec cl id> ::= <id>
6. < £14 id> = <id>
T <cont id> ::= <id>

8. <T func id> ::= <id>
g, <file id> ::= <id>
10. <prog> ::= <statement>
11, = <proc dec>

12 <statement> ::= <state>

13, <state> ::= <si st>

14, 1:= <for cl> DO

15. 1:= <for cl> DO <state>

16. ::= <while cl> DO

17 ::= <while cl> DO <state>

18. sa= <A ol

19. 1= <if cl> <state>

20, 1= <if el> <true pt>

L 11= <if cl> <true pt> <state>
22 ::= <case seq> END

23. 1:= <case seg> <statement> END
24, <si st> ::= <blck>

25. ::= <T ass st>

26. ::= GOTO <label id>

27 ::= ASSERT <T exp*

28. 1:= <proc id>

29. ::= <proc hd> <T exp>)

30. 1= <proc hd> <statement>)
31. ::= <proc hd>)
32. ::= READ <rw hd>

33.
34,
35.
36.
38.
39.
40.
41,
2.
L3,
Ly,
45,
46.
47,
48.
49,
50.
51.
52,
53,
54,
55.
56.
57.
58.
59.
60.
61.
62.
72.
73.
76.
72
78.
79.
80.

A2.

::= WRITE <rw hd>
::= <space hd> <T exp>)
1:= <rewind hd> <file id>)
1:= <seek hd>)
1:= <close hd> <file id>)
::= <close hd#> <ast>)
::= <close hd*> PURGE)
::= <close hd:> REEL)
1:= <close hd=s> CRUNCH)
::= <lock hd> <file id>)
::= <lock hd#> <ast>)
::= <lock hd:#> CRUNCH)
::= <open hd> <file id>)
<bleckbody> END

::= <blockbody> <statement> END
<blockbody> ::= <block hd>
<blockbedy>;

<blck> ::

n

<blockbody> <statement>;
<blockbody> <label def>
BEGIN

<block hd> <si var dc>;
<block hd> <array dec>;

L}

n

<block hd> ::

n

1

<block hd> <proc dec>;
<block hd> <re cl dec>;
<block hd> <file dec>;

<si var dc> ::= <si var dei>

<si var de#> ::= <simp type> <id>

<si var de%> ,, <id>

<simp type> ::= <ref type>)

<ref type> ::= REFERENCE <id>

<ref type> ,, <id>

<bnd list hd> <T exp> :: <T exp>)
::= <bnd list hd> <T exp> :: <T exp>)

<bnd 1list hd> ::= <array hd>(

<array hd>[

<bnd list hd> <T exp> :: <T exp>,

<array dec> ::

81. <array hd> ::
82.
83. <T exp> ::= <T exp#>

<simp type> ARRAY <id>
<array hd> ,, <id>

11

84, <T ‘exp#> 1:
85,

86. 1:= <case hd> <T exp>)
87. <si T exp>» ::= <si T exp#

<si T exp>

<if cl> <true exp> <T expi>

88. 1:= <si T exp##> <eql op> <si T exp#>
89. 1:= <si T exp##> <rel op> <si T exp#>
90. 14= <si T exp#xd> IS <rec cl id>
91. <si T exp#> ::= <si T exp##>

92, <si T exp#i> 1:= <I term>

93. ‘ 1:= + <T term>

94, : 1i= - T ‘term>

95, 1:= <si T expst> + <T term>
96. ::= <si T expit> - <T term>
97. 1:= <81 T exp#i> OR <T term>
a8, ::1= <rec cl id>

99, 1:= <rec des hd>)

100, 1:= <rec des hd> <T exp>)
101. (1= <string>

102, ::= NULL

103. <T term> ::= <T term>

104, <T term®> ::= <T fact>

105. 1:= <T term:> & <T fact>

106. 1:= <T term#> / <T fact>

107. ::= <T terms> DIV <T fact>

108. 1:= <T terms> REM <T fact>

109. b 1:= <T term:> AND <T fact>

110, <T fact> ::= <T second>

g = i<T fact>

112. <T second> ::= <T prim>

113. 1:= <T second> #% <T prim>

114, ::= <T second>» SHL <T prim>
115 ::= <T second> SHR <T prim>

116, <T prim> ::= <T var>
117. 1:= <T func id>

118.
119.
120.
121.
122.
123.
124,
125,
1286.
127,
128.
329,
130.
131.
132,
133.
134,
135.
136.
137.
138.
139.
140,
141.
142,
143,
144,
145,
146.
147.
148.
149,
150.
151.
152.
153.
154,

Ab,

<T func hd> <T exp>)

<T func hd> <statement>)
<T func hd>)

<left paren> <T exp>)
TRUE

FALSE

<cont id>

LONG <T prim>

SHORT <T prim>

ABS <T prim>

<T numb>

<bit seg>

<blockbody> <T exp> END

<T var> ::= <si T var>
1:= <sub strng hd> <T exp> <lngth>)
::= <sub strng hd> <T exp> <lngth>]

<si T var> :

1= <si T vars>

t:= <T array id>

<si T vars> ::

<T fld had> ::

<T sub des> ::

<T sub hd> ::

<ast> ::= =%

<sub strng hd> ::

n

"

<T var id>

<T fld hd> <T exp>)
<T sub des>

<T f14d id>(

<T sub hd> <T exp>)
<T sub hd> <T exp>]
<T sub hd> <ast>)
<T sub hd> <ast>]
<T arvay id>(

<T array id>[

<T sub hd> <T exp>,
<T sub hd> <ast>,

<si T var>(

1:= <si T vard>[
<Ilngth> ::= | <T numb>
<T func hd> ::= <T func id>(

<T func hd> <T exp>,

::= <T func hd> <statement>,

1685
1555
157,
158.
159
160.
161,
162,
163,
i64.
165
166,
167.
168.
169,
1705,
L7
173.
174.
175,
176
177,
178.
179,
180.
181.
182.
183,
184,
185.
186.
187.
188.
189.
190.
191.
192,

<T func hd>,
<left paren> ::= (

<rec des hd> ::= <rec cl id>(

1

<rec des hd> <T exp>,

n

<rec des hd>,

<egl op> ::= =

= =
<rel op> ::= <

==

= &2

= > =
<if el> :1:= IF «T exp> THEN
<trie exp> !:= <T exp> ELSE
<case hd> ::= <case cl>(

<case hd> <T exp>,
CASE <T exp> OF

<case cl> ::

<proc dec> ::= <proc head> <state>
::= <proc head>
::= <proc head> <T exp>
<proc head> ::= <proc heads>;
<proc head#> ::= <proc>
1:= <proc> <f par hd>)

<proc> ::= PROCEDURE <id>
= <simp type> PROCEDURE <id>
<f par hd> ::= <f par hd«>
= <f array dec>
= <f proc dec>
<f par hd#> ::= (<simp type> <id>

::= (<simp type> VALUE <id>

::= (<simp type> RESULT <id>

::= (<simp type> VALUE RESULT <id>

::= <f par hdx> ,, <id>

1:= <f par hd##> <simp type> <id>

1:= <f par hd#&> <simp type> VALUE <id>
::= <f par hd##:> <simp type> RESULT <id>

A5,

::= <f par hd#:> <simp type> VALUE RESULT <id>

<f par hd##> ::= <f par hd#>;

193, 1:= <f array dec>;

194, 1:= <f proc dec>;

195. <f array dec> ::= <f bnd hd> <ast>)

196. ::= <f bnd hd> <ast>]

197. <f bnd hd> ::= <f array hd>(

198. ::= <f array hd>[

139. ::= <f bnd hd> <ast>,

200. <f array hd> ::= (<simp type> ARRAY <id>
201. ::= <f par hd##> <simp type> ARRAY <id>
202. ::= <f array hd> ,, <id>
203. <f proc dec> ::= <f proc hd>

204, ::= <f proc hd> <v par hd>)

205. <f proc hd> ::= (<simp type> PROCEDURE <id>

206. = (PROCEDURE <id>

207. = <f proc hd> ,, <id>

208, ::= <f par hd#%> <simp type> PROCEDURE <id>
209. ::= <f par hd#:> PROCEDURE <id>
210. <v par hd> ::= <v par hdx>

211, = <v array dec>

232, = <v proc dec>

213. <v par hds> ::= <left paren>

214, 1:= (<simp type>

215, ::= (<simp type> VALUE

216. ::= (<simp type> RESULT

217. 1:= (<simp type> VALUE RESULT

218. 1:1= <v par hd#%> <simp type>

219. 1:= <v par hd#%> <simp type> VALUE
220. ::= <v par hd#*> <simp type> RESULT
221, | :1= <v par hd##> <simp type> VALUE RESULT
222. <v par hd&:s> ::= <v par hd#>;

223, 1:= <v array dec>;

224, = <v proc dec>;

225. <v array dec> ::= <v bnd hd> <ast>)

226. ::= <v bnd hd> <ast>]

227. <v bnd hd> ::= <v array hd>(

228, 1:= <v array hd>[

229, 1= <v bnd hd> <ast>,

230.
231.
282.
2383.
234,
235..
236,
237
240,
241,
242,
243,
244,
245,
246,
247,
248,
249,
2505
251,
252.
253.
254,
255,
256.
257,
258,
259,
260.
261,
262.
263.
264.
265,
269.
270,
2L

A7.

I

<v array hd> ::= (<simp type> ARRAY

<v par hd#&> <simp type> ARRAY

<v proc dec> ::= <v proc hd>
= <v proc hd> <v par hd>)
<v proc hd> ::= (<simp type> PROCEDURE
::= (PROCEDURE

1:= <v par hdst> <simp type> PRCCEDURE
<v par hds#> PROCEDURE
<rec hd>)

<re cl dec> ::

<rec hd> ::= <records> (<simp type> <id>
1:= <rec hd> ,, <id>
1:= <rec hds> <simp type> <id>
<record:s:> ::= RECORD <id>
<rec hd#> ::= <rec hd>;
<file dec> ::= <file part>
::= <file part hd> <init>
<file part> ::= FILE <id>
= <file part> ,, <id>
<file part hd> ::= <file part>(
<init> ::= <init attrib>
<label def> ::= <dd»
<l ass st> ::= <T var> := <[exp#>

ti= <T var> := <T ass st>
<proc hd> ::= <proc id>(
1= <proc hd> <T exp>,

::= <proc hd> <statement>,

::= <proc hd>,
<rw hd> ::= <rw state>
<space hd> ::= SPACE <space hd:>
<space hd®> ::= <left paren> <file id>,
<rewind hd> ::= REWIND(

<seek hd> ::= <seek hd#*> <T exp>)
<seek hd#> ::= <seek hd##> <file id>[

<seek hd#®%> ::= SEEK(
<close hd> ::= CLOSE(
<close hd#*> ::= <close hd> <file id>,

<lock hd> ::= LOCK(

272,
273.
274,
275.
276.,
277,
2784
278.
280.
281.
282.
283.
284,
285.
286,
287,
288,

<lock hd#> ::= <lock hd> <file id>,
<open hd> ::= OPEN(
<for cl> ::= <for hd> <step until> <T exp>
1= <for hd>
11z <for list> <T exp>
<for hd> ::= <fors> ::= <T exp:>
<for#> ::= FOR <id>
<step until> ::= STEP <T exp> UNTIL
t:= UNTIL
<for list> ::= <for hd>,

<while cl>

<Erue pts ==

<case seq> :

.
..

1:= <for list> <T exp>,
::= WHILE <T exp>

<si st> ELSE

ELSE

:= <case cl> BEGIN

n

1

11= <case seq> <statement>;

1i= Lcase segr;

A8.

Appendix B

FULL DESCRIPTION OF EXTENDED ALGOL W

METALANGUAGE DEFINITION
L.l Notation

125 Definitions
LANGUAGE COMPONENTS

2 Basic Symbol

22 Identifiers

2.3, Numbers

2.4, Remarks

2,5, Strings

PROGRAM STRUCTURE

DECLARATIONS

4.1, Array Declaration
4.2, File Declaration

L, 3. Procedure Declaration
b.4, Record Class Declaraticn
4,5, Simple Variable Declaration
STATEMENTS

Sy Assert Statement

8.2, Assignment Statement
w3 Blocks

B, Case Statement

5.5, Close Statement

5.6 Go Teo Statement

5.7 If Statement

5.8. Iterative Statement
5.9, Lock Statement

5.10, Procedure Statement

5.4 Read Statement

5,42, Rewind Statement
L L Seek Statement
5.14, Space Statement

5.15., Write Statement

6. EXPRESSIONS

Gii A Arithmetic Expressions
6.2, Bit Expressions

6434 Function Designators
6.4, Logical Expressions
G5, Operator Precedence
5.6, Reference Expressions
657 String Expressions
B85 Variables

6.9. Standard Functions

pra SYNTACTIC ENTITIES WITH SECTION NUMBERS

1. METALANGUAGE DEFINITION

The Reference Language is a phrase structure language, defined by
a formal metalanguage. This metalanguage makes use of the
notation and definitions explained below. The structure of the

language ALGOL W is determined by:

CL) V, the set of basic constituents of the language,
(2) U, the set of syntactic entities, and

(3) P, the set of syntactic rules, or productions.

Lt NOTATION

A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form
WOADE 8B R

where <A> is a member of U, x is any possible sequence of basic
constituents and syntactic entities, simply to be called a

"sequence". The form

<A> ::= xlyl...lz

is used as an abbreviation for the set of syntactiec rules

B2.

B3.

<A> = X
<A> 1= y
<A> ::= z

d 2 DEFINITIONS

1. A sequence x is said to directly produce a sequence y if

and only if there exist (possibly empty) sequences u and w,
so that either (i) for some <A> in U, x = u<A>w, y = uvw,
and <A> ::= v is a rule in P; or (ii) x = uw, y = uvw and

v is a "comment" (cf. 2.4)

.0 A sequence x is said to produce a sequence y if and only if
there exists an ordered set of sequences s[0], s[1], ..., s[n],
so that x = s[0], s[n] =y, and s[i-1] directly produces

sfil €08 811 5l yenn s

3is A sequence x is said to be an ALGOL W program if and only
if its constituents are members of the set V, and x can be

produced from the syntactic entity <program>.

To provide explanations for the meaning of ALGOL W programs, the
letter sequences denoting syntactic entities have been chosen to

be English words describing approximately the nature of that syntactic
entity or construct. Where words which have appeared in this

manner are used elsewhere in the text, they refer to the corresponding
syntactic definitien. Along with these letter sequences the

symbol T may occur. It is understood that this symbol must be
replaced by any one of a finite set of English words (or word

pairs). Unless otherwise specified in the particular section,

all occurrences of the symbol T within one syntactic rule must be

replaced consistently, and the replacing words are

integer logical
real bit

long real string
complex reference

long complex

BL.

For example, the production
<T term> ::= <7 factor> (e, 6.1)
corresponds to

<integer factor>

<integer term> 35

<real term> 1:= <real factor>

<long real term> 3t

<long real factor>

<complex term> ::= <complex factor>

"

<long complex term> ::= <long complex factor>

The producticon

<7, primary> ::= LONG <7 primary> (cf. 6.1 and table for long)

corresponds to

n

<long real primary> LONG <real primary>

<long real primary> ::= LONG <integer primary>

<long complex primary> ::= LONG <complex primary>

It is recognized that typographical entities exist of lower order
than basic symbols, called characters. The accepted characters

are those of the Burrocughs B6700 EBCDIC code.

2 LANGUAGE COMPONENTS

2.1 BASIC SYMBOL
Syntax
<basic symbol> ::= <space>|
' <letter>|
<digit>]

<reserved words>
<special characters>
<space> ::= <single space>|
<space> <single space>
<single space> ::= <one blank position>
<letter> ::= AlB|c|p|E|F|c|u|1|o|x|L]u|n]olp|Q|rR]|s|T|ulv]w]|x]|Y]|2Z
ol1]|2]3]u|s|e|7]8]9-

<digit>

BS5.

<reserved words> ::= TRUE |FALSE |NULL |INTEGER |REAL |COMPLEX |
LOGICAL |BITS |STRING |REFERENCE |LONG REAL |
LONG COMPLEX |ARRAY |PROCEDURE |RECORD |BEGIN |
END |IF |THEN |ELSE |CASE |OF | DIV |REM |SHR |SHL |
IS |ABS |LONG | SHORT |AND |OR |GOTO |GO TO |FOR |
STEP |UNTIL |DO |WHILE |[COMMENT |[VALUE |RESULT |
ASSERT |READ |WRITE |PURGE |REEL |CRUNCH |FILE |
SPACE |REWIND |SEEK |CLOSE |LOCK |OPEN

<special characters> ::= "|[#|' |, [s]: |- 1CD +|-]%1/ |#%|=lB]=|-=]

<l|<=|>[>=[:: =0]D]

(Note: the E stands for the wvertical bar])

Semantics

<spacep>

Adjacent reserved words, reserved word pairs, identifiers and numbers
must include no blanks and must be separated by at least one blank
space. The multicharacter <special characters> (e.g. %&%,M=,:=)

must include no blanks.

Other than these restrictions, a <space> can appear, if desired,
between any two <basic symbol>»s to improve the readability of
the program.

<letter>s

Only uppercase <letter>s are permitted. Individual letters have
no special meanings except in the format part of a read/write
statement (cf. 5.11).

<digit>s

<digit>s are used for forming <number>s, <identifier>s and
<string>s.

<reserved words>

The <reserved words> are reserved for specific use in the language
and may not be used for any other use.

<special characters>

The purpose of the <special characters> is explained elsewhere

in the text in the syntax of the appropriate constructs.

BB.

2.2 IDENTIFIERS
Syntax
<identifier> ::= <letter>|

<identifier> <letter>|
<identifier> <digit>|

<identifier>
<T variable identifier> ::= <identifier>
<7 array identifier> ::= <identifier>
<procedure identifier> ::= <identifier>
<1 function identifier> ::= <identifier>
<record class identifier> ::= <identifier>

<T field identifier> ::= <identifier>

<file identifier> ::= <identifier>
<label identifier> ::= <identifier>
<control identifier> ::= <identifier>
<identifier list> ::= <identifier>|

<identifier list> , <identifier>

Semantics
An <identifier> can be no more than 63 <character>s long and

cannot include <space>s or <special characterss>

Variables, arrays, procedures, record classes and record fields
are said to be quantities. Identifiers serve to identify quantities,
or they stand as files, labels, formal parameters or control

identifiers.

Identifiers have no inherent meaning and can be chosen freely

except for the restriction that reserved words can't be used.

Every <identifier> used in a program must be defined in one of the

following ways:

(a) a declaration, (cf. section 4) if the <identifier>
identifies a quantity or file. It is then said to
denote that quantity or file and to be a T variable

identifier, T array identifier, procedure identifier,

B7,

7 function identifier, record class identifier,
T field identifier or file identifier, where T

stands for the appropriate type of the declared

quantity;
(b) a label definition, (cf. 5.3) if the <identifier>
stands as a label. It is then said to be a

label identifier;

(c) its occurrence in a formal parameter list
(ef. 4.3). It is then said to be a formal parameter;
(d) its occurrence following the symbol FOR in a for

clause (cf. 5.8). It is then said to be a control
identifier;

(e) its implicit declaration in the language (cf. 6.9).
Standard procedures, standard functions, and pre-

defined variables are considered to be declared in

a block containing the program.

The recognition of the definition of an <identifier> is determined

by the following rules:

Step 1, If the <identifier> is defined by a declaration

of a quantity or a file or by its standing as a label within
the smallest block embracing a given occurrence of that
<identifier>», then it denotes that quantity, file, or label.
A statement following a procedure heading or a for clause is

considered to be a block.

Step 2. Otherwise, if that block is a procedure body and
if the given <identifier> is identical with a formal parameter
in the associated procedure heading, then it stands as that

formal parameter.

Step 3. Otherwise, if that block is preceded by a for
clause and the identifier is identical to the control identifier

of that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest block

embracing the block which has previously been considered.

BS.

If either step 1 or step 2 could lead to more than one definition

then the identification is undefined.

The scope of a gquantity, file, label, formal parameter, or
control identifier is the set of statements in which occurrences
of an identifier may refer by the above rules to the definition of

that quantity, file, label, formal parameter, or control identifier.

examples
legal identifiers illegal identifiers
E BEGIN
PERSON 49
X15 S5AD
D2PSBL4LZ &
A2 NUM,
A_ _B3
2.3 NUMEERS
Syntax
<number> ::= <long complex number>|
<complex numher)l
<long real number>|
<real nunber>[
<integer number>
<long complex number> ::= <complex number>L
<complex number> ::= <imaginary number>
<imaginary number> ::= <real number>I |

. <integer number>I
<long real number> ::= <real number)LI
<integer number>L
<real number> ::= <unscaled real>|
<unscaled real> <scale factor)l
<integer number> <scale factor>|
<scale factor>
<unscaled real> ::= <integer number> . <integer number>l
<integer number>|
<integer numbers>.

<scale factor> ::= '<integer number>|
'<sign> <integer number>

B9.

<integer number> ::= <digit>

<integer number> <digit>

<sign> ::= +]-

Note: a long complex constant may have the I and L in any
order.

Semantics

Numbers are interpreted according to the conventional decimal
notation. A scale factor denotes an integral power of 10 which
is multiplied by the unscaled real or integer number preceding
it. Each number has a uniquely defined type. (Note that all
<T number>s are unsigned). No <space> can appear within an
<integer number:. All numbers that do not contain the letter

L are considered to be single-precision.

NUMBER RANGES
The maximum and minimum integers and numbers that can be represented
are as follows (decimal versions are only approximate).
(a) Any integer between and including 0 and 54975581388# =
84%13-1 = #QO7FFFFFFFFF can be represented in integer

form.
(b) The maximum normalized single-precision number is
4,31359146674 68 = (8%:13-1):828863 = #1FFFFFFFFFIF.
(€) The minimum normalized single-precision number is

8.75811540203" -147 = 8#x(-51) = #3F9000000000. The
number zero and numbers with values between the
maximum and minimum values given above may be
represented in real form.

(d4) The maximum nermalized double-precision number is
1.94882938205028079124469' 29603L = (84%26-1)#84232767 =
#1FFFEFFFFFEEFEFEEFEEFEFE

(e) The minimum normalized double-precision number is

1.9385458571375858335564' - 29581L = Bax(-32742) =

#3F9000000000FF8000000000. The number zero and numbers

with values between the maximum and minimum values

given above may be represented in long form.

Blo -

COMPILER NUMBER CONVERSION

The ALGOL W compiler can convert a maximum of 24 significant
decimal digits of mantissa in double-precision. The "effective
exponent', which is the explicit exponent value following the

!

sign minus the number of digits to the right of the decimal

peint, must be less than 29604 in absolute value.

examEles
1.5 11
0100 13
0.671 3.1416
6.02486'+23 1IL

2.7182818284590452353602L 2.3%-6

2.4 REMARKS
Syntax
<remark> ::= <end remark>|

<comment remark>
<end remark> ::= <any unreserved identifier>
<comment remark> ::= COMMENT <any sequence of EBCDIC characters

not containing a semicolon>;

Semantics

Two methods are provided in the language to insert program
documentation at various locations throughout the source file.

The <end remark> is only allowed immediately following the reserved

word END.

The <comment remark> is allowed between any two <basic component>s.
The compiler considers the first semicolon encountered after the
reserved word COMMENT as the end of the <comment remark>. All.
characters in the <comment remark> plus the word COMMENT and the

semicolon are ignored during compilation and execution of the program.

255 STRINGS

Syntax
<string> ::= "<sequence of characters>"

B11.

Semantics

Strings consist of any sequence of at most 256 characters enclosed
by ", the string quote. If the string quote appears in the
sequence of characters it must be immediately followed by a

second string quote which is then ignored. The number of

characters in a string is said to be the length of the string.

examples
"THIS IS A STRING"
SO IS THIS:#/,)M"
Mt is the string of length 1 consisting of the string
quote,
3. PROGRAM STRUCTURE
Syntax
<program> ::= <statement>.l
<proper procedure declaration>. |
<7 function procedure declaration>.
Semantics

If the <statement> is not a <block> or <for statement> then it is
treated as though it was in a block with no declarations, 1i.e. it

is implicitly enclosed by the reserved words BEGIN and END.

L, DECLARATIONS

Syntax

<declaration> ::= <simple variable declaration>|
<array declaration>|
<procedure declaration>|
<record class declaration>|
<file declaration>

Semantics

Declarations serve to associate <identifier>s with the quantities

used in the program, to attribute certain permanent properties to

B12.

these quantities (e.g. type, structure), and to determine their
scope. Every <identifier> must be declared prior to using it
in an ALGOL W program and upon exit from a block, all quantities

declared within that block lose their value and significance.

4,1 ARRAY DECLARATIONS

Syntax

<array declaration> ::= <T array declaration>

<7 array declaration> ::= <simple type> ARRAY <identifier list>

(<bound pair list>)]
<simple type> ARRAY <identifier list>
[<bound pair list>]
<bound pair list> ::= <bound pair>|
<bound pair list> , <bound pair>
<bound pair> ::= <lower bound> :: <upper bound>

<lower bound> ::= <integer expression>

<upper bound> ::= <integer expression>

Semantics

Each <identifier> of the <identifier list> of an <array declaration>
is associated with a variable which is declared to be of type

array. A variable of type array is an ordered set of variables
whose type is the <simple type> preceding the symbol ARRAY. The

dimension of the array is the number of entries in the bound pair

list,

Every element of an array is identified by a list of indices. The
indices are the integers between and including the values of the
<lower bound> and the <upper bound>. Every expression in the
<bound pair list> is evaluated exaétly once upon entry to the block
in which the declaration occurs. The <bound pair> expressions

can depend only on variables and procedures global to the block in
wvhich the declaration occurs. In order to be valid, for every
<bound pairy, the value of the <upper bound> must not be less than
the value of the <lower bound>. The maximum value of a <lower
bound> is 131,071.

B13.

examgles
INTEGER ARRAY H(1::100)

INTEGER ARRAY J[1::IF B THEN M+N ELSE M)
REAL ARRAY A,B(1::M,1::N)
STRING(12)ARRAY STREET,TOWN,CITY(J::K+1)

4,2 FILE DECLARATIONS

Syntax

<file declaration> ::= FILE <file list>
<file list> ::= <file list part>|

<file identifier> , <file list part>
<file list part> ::= <file identifier>|
<file identifier> (<initial attribute list>)
<initial attribute list> ::= <initial attribute>

<initial attribute list> , <initial attribute>

Semantics

A <file declaration> associates a <file identifier> with a file.
The attributes for that particular file may or may not be specified
in the <file declaration>. For information regarding the file
attributes, refer to the B6700 Input/Output Subsystem Reference
Manual, form 5000185, and B6700/B7700 System Software Handbook,
form 5000722.

examgles
FILE A

FILE COM(KIND=DISK,FILETYPE=8,BUFFERS=2,INTMODE=EBCDIC)
FILE GOT(KIND=PRINTER,BUFFERS=3,0PEN=TRUE,TITLE="GONE")

Biu,

4.3 PROCEDURE DECLARATIONS
Syntax
<procedure declaration> ::= <proper procedure declaration>|

<7 function procedure declaration>
<proper procedure declaration> ::= PROCEDURE <procedure heading>;
<proper procedure body>
<7 functiocn procedure declaration> ::= <simple type> PROCEDURE
<procedure heading>;<T function procedure body>
<proper procedure body> ::= <statement>
<7, function procedure body> ::= <74 e¥pression>
<procedure heading> ::= <identifier>|
<identifier> (<formal parameter list>)
<formal parameter list> ::= <formal parameter segmenf>l
<formal parameter list>;<formal parameter
segment>
<formal parameter segment> ::= <formal type> <identifier list>
<formal array parameter> |
<formal preccedure parameter>
<formal type> ::= <simple type>|
<simple type> VALUE |
<simple type> RESULT|
<simple type> VALUE RESULT
<formal array parameter> ::= <simple type> ARRAY <identifier list>
(<dimension specification>) |
<simple type> ARRAY <identifier list>

[<dimension specification>)

<dimension specification> ::= #|

<dimension specification>,:

<formal procedure parameter> ::= <simple type> PROCEDURE <identifier
list> (<virtual parameter list>) |
<simple type> PROCEDURE <identifier
list> ()|
<simple type> PROCEDURE <identifier
list>|
PROCEDURE <identifier list>
(<virtual parameter list>)|
PROCEDURE <identifier list> ()|

PROCEDURE <identifier list>

B15.

<virtual parameter list> ::= <virtual parameter segment>
<virtual parameter list>;<virtual
parameter segment>
<virtual parameter segment> ::= <virtual type>l
<virtual array parameter>]

<virtual procedure parameter>

<virtual type> ::= <formal type>
<virtual array parameter> ::= <simple type> ARRAY (<dimension
specification>) |

<simple type> ARRAY [<dimension
specification>]
<virtual procedure parameter> ::= <simple type> PROCEDURE (<virtual
parameter list>)|

<simple type> PROCEDURE () |
<simple type> PROCEDURE |
PROCEDURE (<virtual parameter list>)|
PROCEDURE ()
PROCEDURE

Semantics

Tl must be assignment compatible (c.f. 5.2) with Ty

A procedure declaration associates the procedure body with the
identifier immediately following the symbol PROCEDURE. The principal
part of the procedure declaraticn is the procedure body. Other

parts of the block in whose heading the procedure is declared

can then cause this procedure body to be executed or evaluated. A
proper procedure is activated by a procedure statement (c.f. 5.10),

a function procedure by a function designator (c.f. 6.3). Associated
with the procedure body is a heading containing the procedure

identifier and possibly a list of formal parameters.

TYPE SPECIFICATION OF FORMAL PARAMETERS
All formal parameters of a formal parameter segment are of the
same indicated type. The type must be such that the replacement

of the formal parameter by the actual parameter of this specified

B16.

type leads to correct ALGOL W expressions and statements.

The effect of the symbols VALUE and RESULT appearing in a formal
type is explained by the following rule, which is applied to the

procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols
BEGIN and END if it is not already enclosed
by these symbols;

(2) For every formal parameter whose formal type
contains the symbol VALUE or RESULT (or both),
(a) a declaration followed by a semicolon is

inserted after the first BEGIN of the
procedure body, with a simple type as
indicated in the formal type, and with
an identifier different from any
identifier valid at the place of
declaration.

(b) throughout the procedure body, every
occurrence of the formal parameter
identifier is replaced by the identifier
defined in step 2a;

(3) If the formal type contains the symbol VALUE, an
assignment statement (cf. 5.2) followed by a
semicolon is inserted after the declaraticns of
the procedure body. Its left part contains
the identifier defined in step 2a, and its
expression consists of the formal parameter
identifier. The symbol VALUE is then deleted;

(4) If the formal type contains the symbol RESULT, an
assignment statement preceded by a semicolon is
inserted before the symbol END which terminates a
proper procedure body. In the case of a function
procedure, an assignment statement preceded by a
semicolon is inserted after the final expression
of the function procedure body. Its left part
contains the formal parameter identifier, and
its expression consists of the identifier defined

in step 2a. The symbol RESULT is then deleted.

B17.

SPECIFICATION OF ARRAY DIMENSIONS

The number of "a"'s appearing in the formal array specification

is the dimension of the array parameter.

SPECIFICATION OF VIRTUAL PARAMETERS

The optional facility of specifying virtual parameters allows
compile time checking of procedure parameters. When the virtual
parameter list is empty, i.e. there is nothing between the

left and right parentheses, then the procedure is specified to

have no parameters.

examgles

PROCEDURE INCREMENT;
X 1= X+1
REAL PROCEDURE MAX(REAL VALUE X,Y);
IF X Y
THEN Y
ELSE X
PROCEDURE COPY(REAL ARRAY U,V(w,®)3;INTEGER A,B);
FOR I := 1 UNTIL A
DO FOR J := 1 UNTIL B
DO U(I,J) := V(I,J)
LONG REAL PROCEDURE SUM(INTEGER K,N3;LONG REAL X);
BEGIN
LONG REAL Y3
¥ = 0%
K := N3
WHILE K >
DO BEGIN
Y :=¥ + X3
K =K ~1
END;

n
=Y

END

REAL PROCEDURE SERIES(INTEGER VALUE K; REAL PROCEDURE(INTEGER

BEGIN REAL SUM;

END

SUM := 03
FOR J := 1 UNTIL K DO

SUM := SUM + TERM(J):

SUM

VALUE)TERM) 3

REFERENCE (PERSON)PROCEDURE YOUNGESTUNCLE (REFERENCE(PERSON)R) ;

BEGIN

REFERENCE (PERSON)P,M;

P:=YOUNGESTOFFSPRING(FATHER(FATHER(R))) 3
WHILE(P— =NULL)AND(— MALE(P))OR(P=FATHER(R))

DO P:=ELDERSIBLING(?);

M:=YOUNGESTOFFSPRING(MOTHER(MOTHER(R)));
WHILE (M— =NULL)AND(— MALE(M))

DO M:=ELDERSIBLING(M);
IF P=NULL

THEN M

ELSE IF M=NULL

THEN P
ELSE IF AGE(P) < AGE(M)
THEN P
ELSE M
END
L, h RECORD CLASS DECLARATION
Syntax
<record class declaration> ::= RECORD <identifier>» (<field list>)
<field list> ::= <simple variable declaration>|
<field list> ; <simple variable declaration>
Semantics

A record class declaration serves to define the structural

properties of records belonging to the class.

The principal

B18.

constituent of a record class declaration is a sequence of simple

B19.

variable declarations which define the fields and their simple
types for the records of this class and associate identifiers
with the individual fields. A record class identifier can be
used in a record designator (cf. 6.6) to construct a new record

of the given class.

examples

RECORD NODE(REFERENCE(NODE)LEFT ,RIGHT)

RECORD PERSON(STRING NAME;INTEGER AGE;LOGICAL
MALE ;REFERENCE (PERSON) FATHER ,
MOTHER,YOUNGESTOFFSPRING,

ELDERSIBLING)
4.5 SIMPLE VARIABLE DECLARATION
Syntax
<simple variable declaration> ::= <simple type> <identifier list>
<simple type> ::= INTEGER|REAL|LONG REAL|COMPLEX|
LONG COMPLEX |LOGICAL|BITS |STRING |
STRING (<integer number>) |
REFERENCE (<record class identifier list>)

<record class identifier list> ::= <vecord class identifier>|

<record class identifier list> ,

<record class identifier>
Semantics

Each identifier of the identifier list is associated with a

simple variable which is declared to be of the indicated type. If
a variable is declared to be of a certain type, then this implies
that only values which are assignment compatible with this type
(cf. 5.2) can be assigned to it. It is understood that the value
of a variable is equal to the value of the expression most recently

assigned to it.

The value of each simple variable is as follows:

INTEGER: the value is a 48 bit integer,

REAL: the value is a 48 bit floating point number,
LONG REAL: the value is a 96.bit floating point number,

B20.

COMPLEX: the value is a complex number composed of two
nunbers of type real,
LONG COMPLEX: the value is a complex number composed of two

long real numbers,

LOGICAL: the value is a logical value,
BITS: the value is a linear sequence of U8 bits,
STRING: the value is a linear sequence of characters of

number equal to the specified number (default
length of 24 characters and maximum length is
256 characters),

REFERENCE : the value is a reference to a record and may
refer only to records of the record classes
whose identifiers appear in the record class
identifier list of the reference declaration

specification.

examples

INTEGER I,J,K,M,N

REAL X,Y,Z

LONG COMPLEX C

LOGICAL L

BITS G,H

STRING(10)S,T
REFERENCE (PERSON) JACK ,JILL

54 STATEMENTS

Syntax
<statement> ::= <simple statement>|

<iterative statement>|
<if statement>|
<case statement>
<simple statement> ::= <block>|
<7 assignment statement>|
<empty>|

<procedure statement>|

B21.

<goto statement>|

- <assert statement>l
<cleose statement>|
<lock statement)l
<read statement>]
<rewind statement>|
<seek statement>l
<space statement>]

<write statement>

Semantics

<statement>s are the active elements of an ALGOL W program. By
the execution of a <statement> is meant the performance of this
action, which may consist of smaller units of action such as the

evaluation of expressions or the execution of other statements.

Bl ASSERT STATEMENT

Syntax

<assert statement> ::= ASSERT <logical expression>
Semantics

The <assert statement> is equivalent to the <if statement> (cf. 5.7):
IF = (<logical expression>) THEN endexecution

where "endexecution" signifies a procedure which terminates the
execution of an ALGOL W program. The <assert statement> can be
used as a debugging aid asserting conditions which should be true,

but may not be if a bug exists.

5.2 ASSIGNMENT STATEMENT
Syntax
<T, assignment statement> ::= <1, left part> <74 expression>l

<T, left part> <r, assignment statement>

0
0 i |

<T left part> ::= <t variable> :

Semantics
In the above rules the symbols T and Ty must be replaced by words
as indicated in Section 1, subject to the restriction that the

type T4 is assignment compatible with the type 7. as defined below.

0

B22.

The execution of a simple assignment statement

<T,. assignment statement> ::= <r. left part> <7y expression>

0 0
causes the assignment of the value of the expression to the
variable. If a shorter string is to be assigned to a longer

one, the shorter string is first extended to the right with

blanks until the lengths are equal. In a multiple assignment
statement
<7, assignment statement> ::= <T, left part> <7y assignment statement>

the assignments are performed from right to left. For each left
part variable, the simple type of the expression or assignment
variable immediately to the right must be assignment compatible with

the simple type of that variable.

ASSIGNMENT COMPATIBILITY
A simple type Ti is said to be assignment compatible with a simple

type T if either

(1) the two types are identical (except that if 7. and T4

¢
are string, the length of the Ty variable must be greater
than or equal to the length of the Ty expression or

assignment), or

(2) To is real or long real, and 7, is integer, real or

1
long real, or

(3) T is complex or long complex, and T, is integer, real,

1
long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer
to a record of one of the classes specified by the record class

identifiers associated with the reference variable in its declaration.

examples
Z:=AGE(JACK):=28
X:=Y+ABS Z
C:=I+X+C

Pi=¥n =Y

B23.

5.3 BLOCKS

Syntax

<block> ::= <blockbody> <statement> END
<blockbody> ::= <block heads|

<blockbody> <statement>;

<blockbody> <label definition>
<block head> ::= BEGIN|

<block head> <declaration>;
<label definition> ::= <identifier>:

Semantics
Every <block> introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

Step 1. If an <identifier>», say A, defined in the <block head>
or in a <label definition> of the <blockbody> is
already defined at the place from which the <block>
is entered, then every occurrence of that <identifier>,
A, within the <block> except for occurrence in array
bound expressions is systematically replaced by
another <identifier>, say APRIME, which is defined
neither within the <block> nor at the place from
which the <block> is entered.

Step 2. If the <declaration>s of the <block> contain array

bound expressions, then these expressions are evaluated.

Step 3. Execution of the <statement>s contained in the
<blockbody> begins with the execution of the first
<statement> following the <block head>.

After execution of the last <statement> of the <blockbody>
(unless it is a <goto statement>) a block exit occurs, and the

<statement> following the entire <block> is executed.

B24.

example
BEGIN
REAL U;
U:i=X;
X:=Y;
Y:=Z;
Z:=U
END
5.4 CASE STATEMENT
Syntax
<case statement> ::= <case clause> BEGIN <statement list> END
<statement list> 1= <statement>|

<statement list> ; <statement>

1

<case clause> ::= CASE <integer expression> OF

Semantics

The execution of a <case statement> proceeds in the following

steps: _
Step 1. The expression of the <case clause> is evaluated
Step 2. The <statement> whose ordinal number in the
<statement list> is equal to the wvalue obtained
in Step 1 is executed. In order that the
<case statement> be defined, the current value
of the expression in the <case clause> must be
the ordinal number of some <statement> of the
<statement list>. The n <statement>s are
numbered from 1 to n.
examples
CASE I OF
BECGIN
X:=X+Y;
Yei=Y+Z3
Z:=7+X

END

5.5

CASE J OF
BEGIN

H(I):=-H(I);

BEGIN
H(I-1):=H(I-1)+H(I);
T:=1-1

END;

BEGIN
H(I-1):=H(T-1)=H(1);
L:i=I-1

END;

BEGIN
H(H(I-1)):=H(I);
1:=1I-2

END

CLOSE STATEMENT

Syntax

<clecse statement> :

CLOSE(<file identifier> , <close option>)

<close option> i:=

PURGE |
REEL |
CRUNCH

Semantics

1= CLOSE(<file idertifier>) |

B25.

For semantics see the B6700/B7700 Algol Language Reference Manual,

5.6

GO TO STATEMENT

Szntax

<goto statement> ::= GOTO <label identifier>|
GO TO <label identifier>

Semantics

An <identifier> is called a <label identifier> if it stands as a
label.

B26.

A <goto statement> determines that execution of the text be continued
after the <label definition> (cf. 5.3) of the <label identifier>.
The identification of that label definition is accomplished in the

following steps:

Step 1. If some <label definition> within the most recently
activated, but not yet terminated, block contains
the <label identifier>, then this is the designated
<label definition>. Otherwise,

Step 2. The execution of that block is considered as

terminated and Step 1 is taken as specified above.

5.9 IF STATEMENT
Syntax
<if statement> ::= <if clause> <statement>

<if clause> <simple statement> ELSE <statement>

<if clause> ::= IF <logical expression> THEN

Semantics
The execution of <if statement>s causes certain <statement>s to
be executed or skipped depending on the values of specified

<logical expression>s. An <if statement> of the form
<if clause> <statement>
is executed in the following steps:

Step 1. The <logical expression> in the <if clause> is

evaluated.

Step 2. If the result cf Step 1 is true, then the
<statement> following the <if clause> is
executed. Otherwise Step 2 causes no action

to be taken at all.
An <if statement> of the form
<if clause> <simple statement> ELSE <statement>

is executed in the following steps:

B27.

-

Step 1. The <logical expression> in the <if clause>

is evaluated.

Step 2. If the result of Step 1 is true, then the
<simple statement> following the <if clause>
is executed. Otherwise the <statement>

following ELSE is executed.

IF X=Y

THEN GOTO L

LE Xl ¥

THEN U:=X

ELSE IF Y < Z

THEN U:=Y
ELSE V:=Z
5.8 ITERATIVE STATEMENT
Syntax
<iterative statement> ::= <for clause> <statement>[
<while clause> <statement>
<for clause> ::= FOR <identifier> := <initial value> STEP <increment> WNTIL
<limit> DO |
FOR <identifier> := <initial value> UNTIL <limit> DO|
FOR <identifier> := <for list> DO
<for list> ::= <integer expression>l
<for list> , <integer expression>

<initial value> ::= <integer expression>
<increment> ::= <integer expression>
<limit> ::= <integer expression>
<while clause> ::= WHILE <logical expression> DO
Semantics

The <iterative statement> serves to express that a <statement> be
executed repeatedly depending on certain conditions specified by a
<for clause> or a <while clause>. The <statement> following the
<for clause> or the <while clause> always acts as a <block>, whether
it has the form of a <block> or not. The value of the <control

B28.

identifier> (the <identifier> following FOR) cannot be changed by
assignment within the controlled <statement>. The <control
identifier> doesn't need to be declared by way of a <declaration>

and is invalid outside the <iterative statement>.

(a) An <iterative statement> of the form
FOR <identifier>:=<E1>STEP<C2>UNTIL<E3>D0 <statement>
is exactly equivalent to the <block>
BEGIN
<statement-0>;
<statement-1>;
‘s 3
<statement-I>;
@ s 5
<statement-N>
END

In the I'th <statement> every occurrence of the <control
identifier> is replaced by the value of the expression
(E1+I%E2).

The index N of the last <statement:> is determined by

N s (E3-E1)/E2 < N+1. If N < 0, then it is understood
that the sequence is empty. The expressions E1, E2, and
E3 are evaluated exactly once, namely before execution of
<statement-0>, therefore, they can not depend on the

<control identifier>.
(b) An <iterative statement> of the form
FOR <identifier>:=<E1>UNTIL<E3>D0 <statement>

is exactly equivalent to the <jterative statement>

FOR <identifier>:=<E1>STEP 1 UNTIL<E3>DO <statement>.

B29.

(c) An <iterative statement> of the form
FOR <identifier>:=<E1>,<E2>,...,<EN>D0 <statement>
is exactly equivalent to the <block>
BEGIN
<statement-1>;
<statement-2>;

.
“ Y

<statement-I>;

"

L ;
<statement-N>
END

where in the I'th <statement> every occurrence of the

<control identifier> is replaced by the value of the expression
EI.

(d) An <iterative statement> of the form
WHILE <E> DO <statement>
is exactly equivalent to
BEGIN
L: IF <E>
THEN BEGIN
<statement>;
GOTO L
END
END

where it is understood that L represents an <identifier>

which is not defined at the place from which the while statement

is entered.

examples
FOR V:=1 STEP 1 UNTIL N-1
DO S:=S+A(U,V)
WHILE(J > 0)AND(CITY(J)™ =S)
DO J:=J-1
FOR I:=X,X+1,X+3,X+7
DO P(I)

BSO.

5.9 LOCK STATEMENT
Syntax
<lock statement> ::= LOCK(<file identifier>) |

LOCK(<file identifier> , <lock option>)
<lock option> ::= x|
CRUNCH

Semantics

For semantics see the B6700/B7700 Algol Language Reference Manual.

5.10 PROCEDURE STATEMENT
Syntax
<procedure statement> ::= <procedure identifier>|

<procedure identifier>(<actual parameter list>)
<actual parameter list> ::= <actual parameter>|
<actual parameter list> , <actual parameter>
<actual paraneter> ::= <T expression)l
<5tatement>l
<1 subarray designator>|
<procedure identifier>l
<1 function identifier>
<T subarray designator> ::= <T array identifier>]|
<7 array identifier>(<subarray designator
lists) |
<7 array identifier>[<subarray designator
list>]
<subarray designator list> ::= <subscript>|
|
<subarray designator list> , <Bubscript>|
<subarray designator list>,#

Semantics
The execution of a <procedure statement> is equivalent to a process

performed in the following steps:

B31.

Step 1. A copy is made of the body of the proper procedure
whose <procedure identifier> is given by the
<procedure statement>, and of the <actual parameter>s
of the latter. The <procedure statement> is

replaced by the copy of the procedure body.

Step 2. If the procedure body is a <block>, then a
systematic change of <identifier>s in its copy is

performed as specified by Step 1 of 5.3.

Step 3. The copies of the <actual parameter>s are treated
in an undefined order as follows: If the copy is
an expression different from a variable, then it is
enclosed by a pair cof parentheses, or if it is a
<statement> it is enclesed by the symbols BEGIN
and END.

Step 4. In the copy of the procedure body every occurrence
of an <identifier> identifying a formal parameter is
replaced by the copy of the corresponding <actual
paranater>. In order for the process to be defined,
these replacements must lead to correct ALGOL W

expressions and <statement>s.

Step 5. The copy of the procedure body, modified as

indicated in Steps 2-4, is executed.

ACTUAL-FORMAL CORRESPONDENCE

The correspondence between the <actual parameter>s and the

formal parameters is established as follows: The <actual parameter
list> of the <procedure statement> (or of the <t function
designator>) must have the same number of entries as the <formal
parameter list> of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two lists

in the same order.

SUBARRAY DESIGNATORS
A complete array may be passed to a procedure by specifying the

name of the array if the number of <subscript>s of the <actual

parameter> equals the number of <subscript>s of the corresponding
formal parameter. If the actual array parameter has more
<subscript>s than the corresponding formal parameter, enough
<subscript>s must be specified by <integer expression>s so that
the number of #'s appearing in the subarray designator equals

the number of <subscript>s of the corresponding formal parameter.
The <subscript> positions of the formal array designator are
matched with the positions with #'s in the subarray designator

in the order they appear.

PARAMETER CORRESPONDENCE

B32.

Formal Type Actual Parameter

<simple T type> <7 expression>

<simple Ty typex VALUE <'r1 expression>

<simple T, type> RESULT <1, variable>

<simple T types VALUE RESULT <T, variable>

<simple T type>> PROCEDURE <t function identifier>
<T expression>-

PROCEDURE <procedure identifier>
<statement>

<simple § type> ARRAY | <7 subarray designator>

The simple type T,

simple type To* The simple types T and Ty must be mutually

assignment compatible.

As <actual parameter>s, expressions and <statement>s may serve as

must be assignment compatible (cf. 5.2) with the

the implicit specifications of nameless and parameterless procedures.

examples
INCREMENT
COPY(A,B,M,N)
INNERPRODUCT (IP,N,A(I,*),B(J,K,% %))

B33.

5.11 READ STATEMENT
Syntax
<read statement> ::= READ(<file part> <format and list part>)
<file part> ::= <file identifier> <record number or carriage control>
<record number or carriage control> ::= <empty>|
[<integer number>] |
[LINE <integer number>]]
(o] |
[SKIP <integer numbers>]]|
[(SPACE <integer number>]
<format and list part> ::= <Empty>l
s<<editing specifications>>|
»<<editing specifications>>,<list>
,*,<1ist>l
of $Zlists]
,<integer number>,<7 subarray designator>
<list> ::= <7 variable>|

<control identifier>|
<list>,<T variable>|
<list>,<control identifier>
<editing specifications> ::= <editing segment>|
<editing specifications>/|
/<editing specifications>|
<editing specifications>/<editing segment>
<editing segment> ::= <editing phrase>|
<repeat part>(<editing specifications>) |

<editing segment>,<repeat part>(<editing

specifications>)
<editing phrase> ::= <repeat part> <editing phrase type> <field width part>
<repeat part> ::= <Empty>|
<integer number> |
<editing phrase type> ::= <string> IAICIDIEIPIGIHII]JIKILIOI

Rls|T|V|x

B34,

<field width part> ::= <Empty>]

<field width> <decimal places>
<field width> ::= <integer number>]
<decimal places> ::= <empty>l

<integer number>l

o

Semantics

For semantics see the B6700/B7700 Algol Language Reference Manual.

5.12 REWIND STATEMENT

Syntax

<rewind statement> ::= REWIND (<file identifier>)
Semantics

For semantics see the B6700/B7700 Algol Language Reference Manual.

5.13 SEEK STATEMENT

Syntax

<seek statement> ::= SEEK(<file identifier>[<record number>])
<record number> ::= <integer expression>

Semantics

For semantics see the B6700/B7700 Algol Language Reference Manual.

5.14 SPACE STATEMENT

Syntax _

<space statement> ::= SPACE(<file identifier>,<integer expression>)
Semantics

For semantics see the B6700/B7700 Algol Language Reference Manual.

5.18 WRITE STATEMENT

Syntax
<write statement> ::= WRITE(<file part> <format and list part>)

B3S.

Semantics

For semantics see the B6700/B7700 Algol Language Reference Manual.

6. EXPRESSIONS

Syntax
<T expression> ::= <simple 7T expression>]
<case clause>(<T expression list>)
<1, expression> ::= <if clause> <74 expression> ELSE <7, expression>
<T expression list> ::= <7 expression>
<71, expression list> ::= <74 expression list>,<12 expression>

<T block expression> ::= <blockbody> <r1 expression> END
Semantics
In the above rules the symbol T has to be replaced consistently
as described in Section 1, and the triplets 70,71,72 have
to be either all three replaced by the same one of the words
logical
bit
string

reference

or by any combination of words as indicated by ihe following table,

which yields Ty glven T, and Tyt
2
T, integer real complex
integer integer real complex
real real real complex
complex complex complex complex

Ty has the quality '"long" if either both T, and T, have that quality,

i 8
or if one has that quality and the other is "integer'.

B36.

Expressions are rules which specify how new values are computed
from existing onez. These new values are obtained by performing
the operations indicated by the operators on the values of the
operands. The coperands are either constants, variables or
function designators, or other expresslions, enclosed by parentheses
if necessary. The evaluation of operands other than constants

may involve smalleyr units of action such as the evaluation of
other expressions or the execution of <statement>s. The value

of an expreséion between parentheses is obtained by evaluating

that expressiocn.

The construction

<if clause> <7y expression> ELSE <T, expression>

causes the selection and evaluation of an expression on the basis
of the current value of the <logical expression> contained in

the <if clause>. 1f this value is TRUE, the expression following
the <if clause> is selected; if the value is FALSE, the expression

following ELSE is selected, Bl T, and T, are <simple type>

2
STRING, the shorter ewpression will be padded on the right with

blanks to make it the length of the longer one.

The construction

<case clause>(<T expression list>)
causes the selecticn of the expression whose ordinal number in the
expression list is equal to the current value of the <integer
expression> contained in the <case clause>. In order that the
case expression be defined, the current value of this expression
must be the crdinal number of some expression in the expression
list (> = 1). If 7 is <simple type> STRING, the <string
expression>s will be padded on the right with blanks to make all

alternatives the length of the longest one.

The construction
<blockbody> <7 expression> END
can be considered as a <t function procedure body> without

parameters. This represents a considerable notational convenience,

B37.

since it enables the function to be specified actually in the
place where it is to be used, rather than disjointly in the head

of some embracing block.

6.1 ARITHMETIC EXPRESSIONS
Syntax
<simple T expression> ::= <7 term>l
+<T term>|
-<T term>
<simple TO expression> ::= <simple Ty expression> + <12 term>|
<simple T, expression> - <T, term>
<T term> ::= <7 factor>
<1‘0 term> ::= <'r1 term> <1‘2 factor>
<T, term> ::= <7, term> / <1, factor>
<integer term> ::= <nteger term> DIV <integer factor>
<integer term> REM <integer factor>
<7, factor> ::= <7, primary)]
<7y factor> % <integer primary>
<7, primary> ::= ABS <74 primary>
<7, primary> ::= LONG <74 primary>
<7, primary> ::= SHORT <74 primary>
<T primapry> ::= <7T variable>[

<7 function designator}]
(<T expression>) |

<7 num.ber>|

<7 block expression>

<integer primary> ::= <control identifier>

Semantics
In any of the above rules, every occurrence of the symbol T must be
systematically replaced by one of the following words (or word

pairs):
integer

real
long real
complex

long complex

B38.

The rules governing the replacement of the symbols 7 and

ERRE
T, are given below.

An arithmetic expression is a rule for computing a number.

According to its <simple type> it is called an <integer expression>,
<real expression>, <long real expression>, <complex expression>,

or <long complex expression>.

The operators +, -, %, and / have the conventional meanings of
addition, subtraction, multiplication and division. In the

relevant syntactic rules above the symbols ¢ T

0° T and T2 have to

be replaced by any combination of words according to the following
tables which indicate To for any combination of T and Ty

Operators +] -

3
T, integer real cemplex
integer integer long real long complex
real long real real complex
complex leng complex complex complex

T, has the quality "long" if both Ty and T, have the quality

0
"long", or if one has the quality "integer'" and the other does not.

Operator

T

2
Ty integer real complex
integer integer long real long complex
real long real long real long complex
complex long complex long complex long complex

T, OF T, having the quality "long" does not affect the type of
the result.

B39.

Operator /
T2
T integer real complex
integer long real long real long complex
real long real real complex
complex long complex complex complex

To has the quality "long" if both T, and T, have the quality

1 2
"long", or if one has the quality "integer" and the other does

not, or if both are "integer'.

The operation "-" standing as the first symbol of a <simple
expression> denotes the monadic operation of sign inversion.

The type of the result is the type of the operand. The operatcr
"+" standing as the first symbol of a <simple expression>

denotes the monadic operation of identity.

The operator DIV is mathematically defined (for B # 0) as
A DIV B = SGN(A:B)=:D(ABS A,ABS B)
where the function procedures SGN and D are declared as
INTEGER PROCEDURE SGN (INTEGER VALUE A);
IF A<O
THEN -1
ELSE 13
INTEGER PROCEDURE D (INTEGER VALUE A,B);
. IF A<SB
THEN 0
ELSE D(A-B,B)+1;

The operator REM (remainder) is mathematically defined as
A REM B = A-(A DIV B)=B
A and B both must be <integer expression>s.

BuO.

The operator % denotes exponentiation of the first operand
to the power of the second operand. In the relevant syntactic
rule above the symbols To and T, are to be replaced by any of the

following combinations of words:

TO Tl
long real integer
long real real
long complex complex

Ty having quality "long" does not affect the type of the result.

The monadic operator ABS yields the absolute value or modulus of

the operand. In the relevant syntactic rule above the symbols
T, and : A have to be replaced by any of the following combinations
of words:
To Ty

integer integer

rezl real

real complex
If) has the quality "long", then so does Ty

In the relevant syntactic rules above the symbols To and Ty must
be replaced by any of the following combinations of words (or

word pairs):

Operator LONG

To T3
long real integer
long real real
long complex complex

BL41.

Operator SHORT

To T4
real long real
complex long complex

Note: It is illegal to apply LONG to an expression which is
already long; similarly for SHORT.

examEles
C + A(I) == B(I)

EXP(-X/(2SIGMA)) /SQRT(2:SIGMA)

6.2 BIT EXPRESSIONS
Syntax
<simple bit expression> ::= <bit term>|
<simple bit expression> OR <bit term>
<bit term> ::= <bit factor>|

<bit term> AND <bit factor>
<bit factor> ::= <bit secondary>|
—1 <bit secondary>
<bit secondary> ::= <bit primary>|
<bit secondary> SHL <integer primary>|
<bit secondary> SHR <integer primary>
<bit primary> ::= <bit sequence>]
<bit variable>|
<bit function designator>
(<bit expression>) |
<bit block expression>

<bit sequence> ::= # <hex digit>|

<bit sequence> <hex digit>
<hex digit> ::= of1]2|3|u|s|e|7]|8]o|a]B|c|D|E]|E
Semantics

The number of bits in a <bit sequence> is 48 or 12 <hex digit>s.
<bit sequence> is always represented by a 48 bit word with the

The

Bu2.

specified <bit sequence» right justified in the word and zeros
filled in on the left.

A <bit expression> is a rule for computing a <bit sequence>.
The operators AND, OR, and — produce a result of type BITS,

every bit being dependent on the corresponding bit(s) in the

operand(s) as follows:

X b § =1 X X AND Y XORY
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators SHL and SHR denote the shifting operation to the left
and to the right respectively by the number of bit positions
indicated by the absolute value of the <integer primary>. Vacated
bit positions to the right or left respectively are assigned

the bit value C.

examples
G AND H OR 38
G AND =2 (H CR G)SHR 8

B3 FUNCTION DESIGNATORS
Syntax

<T function designator> ::= <7 function identifier>|
' <7 function identifier>(<actual parameter

list>)

Semantics
A function designator defines a value which can be obtained by a
process performed in the following steps:

Step 1. A copy is made of the body of the function

procedure whose <71 function identifier> is

Bu3.

given by the function designator and of
the <sctual parameterp»s of the latter.

Steps 2,3,4 As specified in 5.10.

Step § The copy of the <7 function procedure body>,
modified as indicated in Steps 2-4, is
executed. Exscution of the expression
which constitutes or is part of the
modified procedure body consists of
evaluation of that expression and the
resulting value is the value of the function
designator. The <simple type:» of the
function designator is the <simple type>
in the corresponding function procedure

declaration.

examples
MAX(X2 Y%%2)
SUM(T,100,H(I))
SUN(I,M,SUM(J,N,A(T,T)))
YOUNGESTUNCLE(JILL)
SUM(T,10,X(I)aY (1))
HORNER(X,10,2.7)

6.4 LOGICAL EXPRESSIONS

Syntax

<simple logical expression> ::= <logical element>|
<relation>

<logical element> ::= <logical term>|

<logical element> OR <logical term>
<logical term> ::= <logical factor>|
<logical term> AND <logical factor>
<logical factory ::= <logical primary>|

-1 <logical primary>

BhlL,

<logical primary> ::= <logical values|
<logical variable>|
<logical function designator>
(<logical cxpression>)]

<logical block expression>

<logical value> ::= TRUE |
FALSE
<relation> ::= <simple To expression> <equality operator> <simple

T expression>|

<logical element> <equality operator> <logical element>|

<simple reference expression> IS <record class identifier>]

<simple T, exnpression> <relational operator> <simple

Ty expression>

<relational cperator> ::= < I < =] > =] >
<equality operator> ::= =|H1=
Semantics
In the above rules for <relation> the symbols Ty and T, must either
be identically replaced by any one of the following words:
bit
string
reference

or by any of the words from:
complex
long complex
real
long real
integer

and the symbols T, Or T4 must be identically replaced by
string

or must be replaced by any of
real
long real

integer.

A <logical expression> is a rule for computing a <logical value>.

BU5.

The <relational operator>s represent algebraic ordering for
arithmetic arguments and EBCDIC ordering for string arguments.
If two strings of unequal length are compared, the shorter string
is first extended to the right by blanks. The <relational
operatory»s yield the <logical value> TRUE if the relation is
satisfied for the values of the two operands; FALSE otherwise.
Two references are equal if and only if they are both NULL or
both refer to the same record. The operator IS yields the
<logical value> TRUE if the <reference expression> designates a
record of the indicated record class; FALSE otherwise. The
reference value NULL fails to designate a record of any record

class.

The operators = (not), AND, and OR, operating on <logical value>s,

are defined by the following equivalences:

= X IF X
THEN FALSE
ELSE TRUE
X AND Y IF X
THEN Y
ELSE FALSE
X OR Y IF X
THEN TRUE
ELSE Y

examples
P OR Q
(X < Y)AND(Y < Z)
YOUNGESTOFFSPRING(JACK)— =NULL
FATHER(JILL) IS PERSON

Bie 5 OPERATOR PRECEDENCE
The syntax of 6.1, 6.2 and 6.4 implies the following hierarchy

of operator precedences:

Bu6.

LONG,SHORT ,ABS
SHL,SHR , s

-

%,/ ,DIV,REM,AND
+,-,0R

R B e B S TS

example
A = B AND C is equivalent to A = (B AND C)

6.6 REFERENCE EXPRESSIONS
antax

<simple reference expression> ::

"

<null reference>|
<refercnce variable>|
<reference function designator>
<record designator>|
(<reference expression>) |
<reference block expression>
<record designator> ::= <record class identifier>[
<record class identifier>(<expression list>)

<expression list> ::= <7 expression>]

<expression list> , <T expression>|

<Empty>[

<expression list>,

<null reference> ::= NULL

Semantics

A <reference expression> is a rule for computing a reference to a

record.

The value of a <record designator> is the reference to a newly
created record belonging to the designated record class. If the
<record designator> contains an <expression list>, then the values
of the expressions are assigned to the fields of the new record.
The entries in the <expression list> are taken in the same order as
the fields in the <record class declaration> (cf.4.u4), and the

<simple type>s of the expressions must be assignment compatible with

B47.

the <simple type>»s of the record fields (cf. 5.2). The <empty>
entry in the <expression list> allows for selective initialization

of the record fields.

The reference value NULL fails to designate a record; if a
<reference expression> occurring in a field designator (cf. 6.8)

has this value, then the field designetor is undefined.

example
PERSON("CAROL" ,0 ,FALSE ,JACK ,JILL,NULL,
YOUNGESTOFFSPRING(JACK))

6.7 STRING EXPRESSIONS
Syntax
<simple string expression> ::= <string primary>
<string primary> ::7 <string>|
<string variable>|
<string function designator)l
(<string expression>) |
<string block expression>
<substring designator> ::= <simple string variable>(<integer expression>
E <integer number>) |
<simple string variable>[<integer expression>

<integer number>)

(Note: The E stands for the vertical bar character |).

Semantics

A <string expression> is a rule for computing a <string>.

A <substring designator> denotes a sequence of characters of the
<string> designated by the <string variable>. The <integer
expression> preceding the ﬁ selects the starting character of the
sequence. The value of the expression indicates the position in
the <string variable>. The value must be greater than or equal to
0 and less than the declared length of the <string variable>. The

first character of the <string> has position 0. The <integer

BLS,

numbery> following the E indicates the length of the selected
sequence and is the length of the <string expression>. The sum
of the <integer expression> and the <integer number> must be less

than or equal to the declared length of the <string variable>.

example
STRING(10)S;
s(uf3)
s(1+3fi1)
STRING(10)ARRAY T(1::M,2::N);

T(4,6)(3f5)
6.8 VARIABLES
Syntax
<simple T variable> ::= <7 variable identifier>|

<7 field designator>|
<T array designator>
<t variable> ::= <simple T variable>
<string variable> ::= <substring designator>
<7 field designator> ::= <7 field identifier>(<reference eﬁpression>)
<7 array designator> ::= <T array identifier>(<subscript list>)|
<T array identifier>[<subsecript list>]
<subsecript list> ::= <subscript>l
<subscript list> , <subscript>

<subscript> ::= <integer expression>
Semantics

An array designator denotes the variable whose indices are the current
values of the expressions in the <subscript list>. The value of
each <subscript> must lie within the declared bounds for that

<subscript> position.

A field designator designates a field in the record referred to
by its <reference expression>. The <simple type> of the field
designator is defined by the declaration of that field identifier

in the record class designated by the <reference expression> of the
field designator (cf. L.,uU),

Bhg,

X

A(I)

M(I+J3,I-J)
FATHER(JACK)
MOTHER(FATENR(JILL))

6.9 STANDARD YUNCTIONS
The following are the standard functions available. They are
considered to he declarad in & block which encloses each ALGOL W

progran,

real procedure ARCTAN (real value X);
comment arctangent (radians) of X;

THC

bits procedurc BITSTRING (integer value N);

comment two's compleiment representation of Nj

string (1) procedure CODE (integer velue N)j

comment character with numeric code given by abs (N rem 250);

real procedure C0S (real value X);

comnent cosine of X (radians);

integer procedure DECODE (string (1) valuve S)3

commeni numeric code for the character S;

integer proceduxe ENTIER (real value X)j

comment the integer 1 such that

<= X<i+ 13

real procedure EXP (real value X);
comment e®u¥;

complex procedure IMAG (real value X);

comment the complex number 0 + Xi;

real procedurs IMAGPART (complex value Z);

comment the imaginary component of Z;

‘real procedure LN (real value X);

comment logarithm of X to the base e;

real procedure LOG (real value X);

comment logarithm of X to the base 10;

long real procedure LONGARCTAN (long real value X);

comment arctangent (radians) of X;

B50.

long real procedure LONGCOS (long real value X);

comment cosine of X (radians);

long real procedure LONGEXP (long real value X);

comment efsdX;

long complex procedure LONGIMAG (long real value X);

comment the long complex number OL + X;L3

long real procedure LONGIMAGPART (long complex value Z);

comment the imaginary component of Z;

long real prbcedure LONGLN (long real value X);

comment logarithm of X to the base e}

long real procedure LONGLOG (long real value X);

comment logarithm of X to the base 10,

long real procedure LONGREALPART (long complex value Z)3;

comment the real component of Z;

long real procedure LONGSIN (long real value X);

comment sine of X (radians);

long real procedure LONGSQRT (long real value X);

comment the positive square root of X;

integer procedure NUMBER (bits value X);

comment integer with two's complement
representation X;

logical procedure ODD (integer value N);

comment the logical value

N rem 2 = 1;

real procedure REALPART (complex value Z);

comment the real component of Z;

integer procedure ROUND (real value X);

comment the value of the integer expression
if X < 0 then TRUNCATE (X-0.5)
else TRUNCATE (X+0.5);
real procedure ROUNDTOREAL (long real value X);

comment the properly rounded value of X;

real procedure SIN (real value X);

comment sine of X (radians);

real procedure SQRT (real value X);

comment the positive square root of X;

integer procedure TIME (integer value N);

comment N Result

11

12

13

14

le.

Returns as an integer value the
time of day, in sixtieths of a
second.

Returns as an integer value the
elapsed processor time cf

the program, in sixtieths of a
second.

Returns as an integer value the
elapsed I/0 time of the program,
in sixtieths of a second.
Returns as an integer value the
contents of a 6-bit machine
clock that increments every
sixtieth of a second.

Same as TIME (1), except time
is expressed in multiples of
2.4 microseconds.

Same as TIME (2), except time
is expressed in multiples of
2.4 microseconds.

Same as TIME (3), except time
is expressed in multiples of
2.4 microseconds.

Returns as an integer value the
elapsed time since the last
HALT/LOAD, in multiples of

2.4 microseconds;

integer procedure TRUNCATE (real value X);

comment the integer i such that

li] <= |x| < |i] + 1 and i # X > = 03

7. SYNTACTIC ENTITIES WITH
SECTION NUMBERS

<actual parameter>
<actual parameter list>
<array declaration>
<assert statement>
<basic symbol>

<bit factor>

<bit primary>

<bit secondary>

<bit sequence>

<bit term>

<block>

<block body>

<block head>

<bound pair>

<bound pair list>
<case clause>

<case statement>
<close option>

<clecse statement>
<comment remark>
<complex number>
<control identifier>
<decimal places>
<declaration>
<digit>

<dimension specification>
<editing phrase>
<editing phrase type>
<editing segment>
<editing specifications>
<end remark>
<equality operator>
<expression list>
<field list>

<field width>

5.10
5,10
b.1
5.1
24l
6.2
B2
6.2
6.2
6.2
5.3
5.3
5«3
h.1
4.1
5.4
5.4
5.5
5.5
2.4
2.3
2.2
5.11

]
4.3
5.11
5.11
5.11
5.11
2.4
6.4
6.6
T
5.11

B52.

<field width part>
<file declaration>
<file identifier>

<file list>

<file list part>

<file part>

<for clause>

<for list>

<formal array parameter>
<formal parameter list>

<formal parameter type>

<formal procedure parameter>

<formal type>

<format and list part>
<gote stiatement>

<hen digits>
<identifier>
<identifier list>

<if clause>

<if statement>
<imaginary number;>
<increment>

<initial attribute>
<initial attribute list>
<initial value>
<integer number>
<iterative statement>
<label definition>
<label identifier>
<letter>

<limit>

<list>

<lock cption>

<lock statement>
<logical element>
<logical factory>

Swld
4,2
2.2
u,2
4.2
5.11
5.8
5.8
4.3
4.3
4.3
4.3
4.3
5.1

(53]
o2l

6.2
2.2
2.2
5.7
57
2.8
5.8
4.2
4.2
5:8
2.3
5.8
5.3
242
2.1
5.8
514
5.9
5.9
6.4
6.4

B53.

<logical primary>
<logical. term>

<logical value>

<long complex numberi
<long real number:

<lower boundc>

<null referencex

<number>

<procedure declaration>
<procedure heading>
<preocedure identifier>
<procedure statement>
<program>

<proper procedure body>
<proper procedure declaration>
<read statement>

<real number:

<record class declaration>
<record class identifiers>
<record class identifier list>
<record designator>

<record number>

<record nunber or carriage control>

<relation>

<relational operator>
<remark>

<repeat part>

<reserved words>

<rewind statement>

<scale factor>

<seek statement>

<sign>

<simple bit expression>
<simple logical expression>
<simple reference expression>
<simple statement>

<simple string expression>

6.4
6.4
6.4
2.3
2.3
4.1
6.6
2.3
4.3
4.3
2Z
5.10

4,3
4.3
5.11
2.3
T
2.2
4.5
6.6
5.13
5.11
6.4
6.4
2.4
5.11
9.1
5.12
2.3
5.13
28
6.2
6.4
6.6

6.7

BSh,

<simple T expression>
<simple T variable>
<simple type>

<simple variable declaration>
<single space>

<space>

<space statement>
<special characters>
<statement>

<statement list>

<string>

<string primary>
<subarray designator list>
<subscript>

<subscript list>
<substring designator>
array declaration>
array designator>
array identifier>
assignment statement>
block expression>
expression>

expression list>
factor>

field designator>
field identifier>
function designator>
function identifier>
function procedure body>
function procedure declaration>
left part>

primary>

subarray designator>
term>

variable>

AAAAAAAAAAAALAAAAAAAAN

variable identifier>

B55.

4.3
5.2
6.1
5.10
6.1
6.8
2.2

<unscaled real>

<upper bound>

<virtual array parameter>
<virtual parameter list>
<virtval parameter segment>
<virtual procedure parameter>
<virtual type>

<while clause>

<write statement>

2.3
4.1
4.3
4.3
4.3
4.3
4.3
5.8
5.15

B56.

C1.

Appendix C

COMPTILE-TIME OPTIONS

The user is provided with compile-time ability to control the
manner in which the compiler processes the source input that

it accepts. The compiler control statement is entered into

the compiler by cards, containing only compiler control information,
in the same manner as source language statements and can occur

at any point in the compiler input files.

An optilen control card is reccgnised by the appearance of a
dollar sign ($) in the first or second column of the card. If
the $ is in column 2, the option control card image is placed in
the uvpdated symbolic file if such a file is generated. An
option control caerd with no compiler information causes the card
image in the secondary input file that has the same sequence

number, to be ignored.

Compiler options are invoked by the appearance of their names

on an optien centrel card. Two states are associated with the
majority of options: set and reset. Default states are assigned
to these compiler options and the desired state of such an option
can be specified on an option control card. The balance of

options are parameter opticns with which no states are associated.

OPTION CONTROL CARDS

Syntax
<option control card> ::= $<option list>
<option list> ::= <empty>|

<option action> <option>
" <option list> <option>

<option acticn> ::= <empty>|
POP |
RESET |
SET
<option> ::= CHECK|CODE |<dump option>|FORMAT |<goto option>
LIST |LISTDELETED |LISTOMITTED |LISTP |
MERGE |NEW |NEWSEQERR [OMIT |<outer levels|
PAGE |SEQ |SEQERR [SINGLE |TTME |<user option>|
VOID |VOIDT |$ [<parameters>

<dump option> ::= DUMP <dump value>

<dump value> ::= <integer number>

<goto opticn> ::= <go part> <sequence number>
<go part> ::= GOTO|GO TO

<sequence number> ::= <integer nunber>

<outer level> ::

il

<user option> ::

LEVEL <integer number>

{word used for specific user option}

<parameter> ::= <sequence increment>]

<sequence base>

<sequence increment>

::= + <integer number>

<sequence base> ::= <integer number>

Semantics

DUMP (default RESET)

The DUMP option causes the printout of internal compiler

tables, depending on the value of the <dump value>.
0 - all

1

o o F w N

-—

betwpass

nametable

tree

betwpass and nametable
betwpass and tree

nametable and tree

For any missing <dump value> or any illegal value then

of 0 is taken.

value

C3.

FORMAT (default RESET)

If the FORMAT option is SET while the LIST option is
SET, the printout is spaced to the top of the next
page after each procedure in the input printout.

This aids readability.

For the semantics of the other options the reader should refer
to Burroughs B6700/B7700 ALGOL Language Reference Manual, Appendix
D.

Appendix D

ERRCR MESSAGES

PASS ONE ERROR MESSAGES

All pass 1 error messages are of the form:

yyyy corresponds to one of the ccordinate numbers in the first

column on the program listing.

statement on a card, only the coordinate of the first statement
is listed.

fixup action taken is listed below, and the program proceeds to

pass

ERROR 1xxx NEAR COORDINATE yyyy - message.

2.

The messages are:

(Note errors 1000 to 1006 inclusive are all to do with compile-

time

maximums.

occur, only experience with the compiler will indicate this.)

1000

1001

1002

1003

table sizes. These are actually set at the specified

ERROR TABLE OVERTLOW

Maximum number of erreor messages is 75. Something
is drastically wrong with the program. To save
time and paper the rest of the program is ignored.
TOO MANY RECORD CLASSES

This is actually an overflow of the record class
list array which has a maximum number of entries
of 65535.

ID TABLE OVERFLOW

Maximum of 65535.

TABLE OF ID POINTERS OVERFLOW

Maximum of 65535. If most of the identifiers are
short (less than 4 characters) this table may fill
up before the id table.

If there is more than one

Some messages are only warnings, in which case the

It would be hoped that these messages would never

D1.

1004

1005

1006

1007

1008

1008

1010

1011

1012

1013

1014

D2,

NAME TABLE OVERFLOW

Maximum of 65535,

TEMPORARY NAME TABLE OVERFLOW

More than 65535 identifiers in current unclosed

blocks.

BLOCK LIST OVERFLOW

Maximum of 513.

UNEXPECTED END OF INPUT

End of input encountered before an END matching each BEGIN.
The coordinate indicated may be two or three more than the
last coordinate in the listing. Check the block numbers
in the second column of the program listing.
WARNING:ILLEGAL CHARACTER

A strange character accidently keypunched (or overpunched).
It is likely that the character will print as a blank, so
it may be necessary to inspect the card.

Fixup:treated as a blank.

WARNING:UNEXPECTED "."

An apparently final "." before expected, such as in a
constant with an inadvertant space:. 123.

Fixup:treated as a blank.

WARNING:EXPONENT LARGER THAN 5 DIGITS

Exponent in a constant is too large.

Fixup:exponent treated as 0.

WARNING:EXPONENT UNDERFLOW

Exponent in a constant is too small.

Fixup:exponent treated as 0.

WARNING:EXPONENT OVERFLOW

Exponent in a constant is 5 digits but too large.
Fixup:exponent treated as 0.

WARNING:UNEXPECTED "'"

Fixup:treated as a blank.

WARNING:INTEGER TOO LARGE

Integer constant too large.

Fixup:treated as 0.

1015 WARNING:MISSING "TO"
Missing TO after GO.
Fixup:supplied.
1016 WARNING:INVALID BITS LENGTH
(a) "#" not followed by hex digits.
(b) "#" followed by more than 12 hex digits.
Fixup:replaced with #0.
1017 WARNING:INVALID STRING DECLARATION
(a) STRING (n) where n is not a number
(b) STRING (0) or STRING (> 256)
Fixup:treated as STRING (24).
1018 WARNING:MISSING ")"
STRING (n with no closing ")".
Fixup:supplied.
1019 WARNING:MISSING "("
REFERENCE not followed by a "(".
Fixup:supplied.
1020 WARNING:UNMATCHED END (DELETED)
An END encountered with no matching BEGIN.
Check the block numbers in the second column of the program
listing.
Fixup:END deleted.
1021 WARNING:INVALID STRING LENGTH
(a) A string constant of length > 256. The closing string
quote has probably been omitted.
(b) An empty string constant ("").
Fixup:replaced by "?2".
1022 WARNING:TOO MANY DIGITS
More than 256 digits in a digit sequence.
Fixup:treated as 0.
1023 WARNING:ID LENGTH > 64
One of the identifiers in the program is too long.
Fixup:truncated to first 64 characters.
1024 WARNING:MISSING FINAL "."
Program not terminated by ".". The coordinate indicated

may be two or three more than the last cne on the listing.

D4,

May occur if the program ends with an unterminated
string constant or comment,

 Fixup:suppiied.

PASS TWO ERROR MESSAGES
All pass 2 error messages have the format:

ERROR Z:xx NEAR COORDINATE yyyy - message
(FOUND NEAR "...")

yyyy corresponds te one of the coordinate numbers in the First
colunn on the program listing. "..." is a pair of symbols in
the program text being scanned at the time the error is detected,
which mey be somewhat after the actual point of error. In
general, the first symbol terminates the phrase in which the

error was detected, the second is the next symbol to be scanned.

If any pass 2 crror messages occur (other than warnings), then

compilaticn stops at the end of pass 2.

The messages are:

2000 ERROR TABLE OVERFLOW
Something is drastically wrong with your program. To
save time the rest of your program is ignored.
Maximum is 75.

2001 xxxxzxx CANNOT FOLLOW yyyyyy HERE
There are no legal programs in which xxxxzxxx and yyyyyy
can be written together. A semi-coclon, a comma, or
an operator may have been omitted.

2002 INCORRECT PARENTHESIZATION
This often occurs in conjunction with 2020 or 2021.
Usually, additional parentheses are required in the
expression.

2003 WARNING: ";' SHOULD NOT FOLLOW EXPRESSION

In BEGIN ... expression; END, the semi-colon is incorrect.

Fixup:";" ignored.

2004

2005

2006

2007

2008

2009

2010

2011
2012

2013

2014

2016

D5.

SYNTAX ERROR

This is a "catch-all'" message that is produced when the
compiler cannot find anything more meaningful to say.

The current context will point to the part of the program
being parsed when the error was detected, but in general
the real error may be much earlier in the program. If
the current context is at or near a semi-colon and no
errors can be found there, look at the beginning of the
statement which ends at that semi-colon. If the current
context is at or near an END, look at the corresponding
BEGIN. For example, if ELSE BEGIN ... END; occurs,

but not after an IF, the compiler will not detect the
error until it reaches ENDj;.

INCOMPATIBLE NUMBER TYPE

In most cases an integer number is required.

xxxxxx IS UNDEFINED

The variable or label xxxxxx has not been declared in

the current block or in one ccntaining it.

ILLEGAL ATTRIBUTE

Illegal initial attribute in a file declaration.

SYNTAX ERROR IN ATTRIBUTE LIST

Syntax error in initial attribute list in a file declaration.
ILLEGAL MNEMONIC

Illegal mnemonic in initial attribute list in a file
declaration.

INCOMPATIBLE MNEMONIC

Mnemonic not recognized for attribute used.

SYNTAX ERROR IN READ/WRITE STATEMENT

INCOMPATIBLE IDENTIFIER

Identifier of wrong type.

INDEX OF ARRAY OR STRING MUST BE INTEGER

(a) In S(x]y), x is not an integer expression.

(b) In Array id (...x...), x is not an integer expression.
WARNING:NUMBER IN EDITING SPECIFICATIONS TOO LARGE

Number > 2:##%39-2

ILLEGAL LIST ELEMENT IN READ/WRITE STATEMENT

2017

2018

2019

2020

2021

D6.

TOO MANY DIFFERENT LITERALS IN PROGRAM

No more than 16383 different constants are allowed.

MORE THAN ONE DECLARATION OF zxxxxx IN THIS BLOCK

The variable xxxxxx has been declared more than once in

the same block.

IDENTIFIER MUST BE RECORD CLASS ID

In a declaration REFERENCE (xyz), xyz is not the name

of a record class.

INCORRECT OPERAND TYPE FOR xXxXxXXXx

xxxxxx is a unary operator.

(a) LONG is applied to something which is already LONG, or
to STRING, BITS, LOGICAL, or REFERENCE.

(k) SHORT is applied to something which is neither LONG REAL
nor LONG COMPLEX.

(c) =1 (not) is applied to something which is neither LOGICAL
nor BITS.

(d) Prefix + cor - applied to something which is LOGICAL,
STRING, BITS, or REFERENCE.

(e) ABS applied to something which is LOGICAL, STRING, BITS,
or REFCRENCE.

(f) In Record variable (x), % is not a REFERENCE.

(g) In FOR I:=x,...,x is not an integer expression.

(h) In various other contexts, an INTEGER or LOGICAL operand
is required.

INCORRECT OPERAND TYPE(S) FOR Xxxxxx

XXx¥XX is a binary operator. Even when the error is in

the first operand, the error is detected after both operands

are inspected.

(a) AND or OR applied to expressions which are not both
BITS or both LOGICAL. This case often happens in an
IF statement when necessary parentheses are left out:

IF X<YORZ =3 THEN ...

As written, Y is to be ORed with Z before anything
else is calculated. Try instead:

IF (X < Y) OR (2 = 3) THEN ...

2022

2023

2024

2025

2026

2027

2028

D7.

(b) A relational operator (like >) is applied to something
which is COMPLEX, LOCICAL, or REFERENCE.

(¢) SHL or SHR is applied to something which is not BITS,
or the shift amount is not INTEGER.

(d) In x IS Recordclass, x is not a REFERENCE.

(e) In x%%y,x is LOGICAL, STRING, EITS, or REFERENCE, or
y is not INTEGER.

(f) In a FOR statement, the UNTIL expression is not INTEGER.

(g) In various other contexts, an INTEGER operand is
required.

INCORRECT NUMBER OF FIELDS

In creating a record, too many initial values have been

specified.

SIMPLE VARIABLE USED INCORRECTLY

In x(, % is a simple variable and not STRING

INCORRECT STRING LENGTH

In S(x|y), vy is negative, zerc, or greater than 256.

INCOMPATIBLE STRING LENGTHS

(a) In STRING1 := STRING2, STRING2 is longer than STRING1.

(b) In STRING3 (x]y), y is larger than the declared size
of STRINGS.

(c) A long string has been passed to a shorter formal
string parameter.

ARRAYS USED INCORRECTLY

A simple variable must be used here.

INCORRECT DIMENSION

(a) The number of dimensions of an actual parameter does not
equal the number of dimensions declared for the corresponding
formal parameter.

(b) The wrong number of subscripts have been used in an
array element reference.

(¢) Dimensions in virtual parameters don't agree.

EXPRESSION MISSING IN PROCEDURE BODY

A function PROCEDURE must have its final value specified

by an expression standing alone immediately before the END.

2029

2030

2031

2032

2033

2034

2035

2036

n8.

PROPER PROCEDURE ENDS WITH AN EXPRESSION

A procedure which returns no value nonetheless ends with

an expression. This sometimes happens when a final

assignment statement has been mis-punched, e.g. A=B,

instead of A:=B.

IMPROPER COMBINATION OF TYPES

Mixing incompatible types as alternatives of a conditional

or case expression.

LEXICAL LEVEL EXCEEDS 31

Non-trivial blocks, i.e. blocks with declarations, are

nested too deeply.

MISMATCHED PARAMETER

(a) A procedure call is passing an actual parameter
which is not of the same type as the formal
parameter in the procedure declaration.

(b) Virtual parameters not of the same types.

INCORRECT NUMBER OF ACTUAL PARAMETERS

(a) The number of actual parameters in a procedure call
does not equal the number of formal parameters in
the procedure declaration.

(b) The number of virtual parameters do not agree.

INCOMPATIBLE REFERENCES

A reference variable refers to 2 wrong record class.

RESULT PARAMETER MUST BE A VARIABLE

In a procedure declaration, a formal parameter is

declared ... RESULT xyz, but a call to that procedure

has passed an expression which is not a variable.

ASSIGNMENT INCOMPATIBILITY

An attempt to assign an expression of one type to a

variable of a different type, or pass an actual

parameter to a formal parameter of a different type.

The only automatic conversions allowed are INTEGER

to REAL, INTEGER to LONGREAL, REAL to/from LONGREAL,

INTEGER/REAL/LONGREAL to COMPLEX/LONGCOMPLEX,

COMPLEX to/from LONGCOMPLEX.

DS,

PASS THREE ERROR MESSAGES
Pass 3 error messages are of the form:
ERROR 3xxx NEAR COORDINATE yyyy - message

yyyy corresponds to one of the coordinate numbers in the first

column on the program listing.

Unless a warning error, compilation terminates immediately on a

Pass 3 error.

Messages are:
(Note messages not shown are compiler error messages).
3000 ERROR TABLE OVERFLOW
3001 DISPLACEMENT TCO BIG
3002 TOO MANY STACK CELLS AT THIS LEVEL
3003 PROGRAM SEGMENT TOO LARGE
3004 PROGRAM TOO LARCE
3006 COMPILE AND GO ILLEGAL WITH THIS PROCEDURE
3007 WARNING:PROCEDURE VALID FOR BINDING ONLY
For other use recompile at level 2.
3008 PERIOD EXPECTED ENDING STRING
String in initial attributes should end with a period
3009 JILLEGAL ATTRIEUTE VALUE
3010 LOWER BOUND EXCEEDS UPPER BOUND
In an array declaration an upper bound is less than
the specified lower bound.
3012 SUBSCRIPTS MUST PRECEDE ASTERISKS
In a generalised subarray A(n,%) the specified subscripts
must precede the asterisks.
3013 NOT ENOUGH SUBSCRIPTS
A generalised subarray is being used with not enough
specified subscripts, i.e. too many asterisks.
3014 TOO MANY SUBSCRIPTS
A generalised subarray is being used with too many specified
subscripts, i.e. not enough asterisks.
3015 TOO MANY STATEMENTS

Only 1280 statements are allowed in a Case Statement.

