
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

THE I MPLEMENTATION OF

ALGOL W

ON A

BURROUQIS B6700 COMP UTER

by

Henry D. Meeld.n

A thesis presented in partial fulfilment

of the requirement for the degree of

Master of Science in Computer Science

at

Massey University

May 1976

ABSTRACT

This thesis describes an implementat ion of a revised version

of ALGOL Won a Burroughs B6700 computer, and was written so

that excerpts can be made to produce a user manual and a

system documentation manual. The first part is a brief

discussion of the language as implemented and discusses the

main fea.tui~es of the language and the differences from

ALGOL 60 . The remainder of the thesis gives a detailed

descriptio:1 of the compiler .

ii.

ACKNOWLEDGEMENTS

In presenting this thesis I would like to take this opportunity

to express my thanks to the following people:

To my supervisor, Lloyd Thomas , whose guidance and encouragement

helped at all times.

To Neil James for helping with those niggling program errors.

To the Computer Unit operators, especially Colin Read, for

performing their job so well in helping me run my program .

Finally to my family and the group , for their persistence in

prodding me to finish.

Massey University Harry Meekin

May 1976

iii.

Chapter 0

Chapter 1

Chapter 2

Chapte r 3

Chapter t~

Chapter 5

TABLE OF CONTENTS

INTRODUCTION

BRIEF DESCRIPTION OF THE LANGUAGE

1,1 Data Types

1. 2

1. 3

1.4

1.5

1.6

1. 7

Statement Sequencing

Procedures and Parameters

Data Structures

Block Express ions

Assert Statement

Input/Output

GENERAL ORGANIZATION

PASS ONE

3,1 Internal Pass One Tables

3.2 Pass One Output String

Representing the Source Program

3.3 Pass One Table Output

PASS TWO

4.1 The Parsing Algorithm

4.2 Error Recovery

4.3 Storage Allocat ion

4.4 Value Stack

4.5

4.6

4.7

Interpretation Rules

Pas s Two Tables

Pass Two Output

PASS THREE

5.1

5.2

5.3

5.4

5.5

5.6

5.7

B6700 Architecture

Program Structure in Memory

Stack Oper at i on

Example of Simple Stack Operation

Syllable Format and Types

Addressing

Block and Procedure Entry

iv.

Page

1

3

3

4

5

7

8

8

9

10

12

12

14

16

20

20

21

23

24

25

30

33

41

41

44

'+7
48

50

51

52

Chapter 6

REFERENCES

APPENDICES

5.8 Block and Procedure Exit

5.9 Array Declaration

5.10 Subscripted Variables

5.11 Passing Sub-Arrays as Parameters

5.12 Operands

5.13 Branching

5.14 Record and Field Designators

5.15 Further Examples of Pass Two Tree

Output as Received by Pass Three

SUMMARY

A Simple Preceden ce Grammar for

Extended ALGOL W

B Full Description of Extended

ALGOL W

C Compile-time Options

D Error Messages

v.

56

56

58

60

61

62

63

65

72

73

76

FIGURE

1

2

3

4

5

6

7

8

9

10

11

LIST OF FIGURES

Reserved Tables

Identifier Tables

Pass One Output Codes

Example of BLOCKLIST and NAMETABLE

Format of NAMETABLE and Field

Contents After Pass Two

Pass Two Output Vocabulary

~6700 Word Formats with Tag Mnemonics

Object Program in Memory

Stack Arrangement

Stack Operation

Syllable Types

vi.

Page

13

14

14

17

30

36

42

46

47

49

50

Chapter 0

INTRODUCTION

The language ALGOL W was first described in a report drafted

by Niklaus Wirth (hence the 'W'), asked for by IFIP Working

Group 2.1 at its May meeting at Princeton, 1965. The report

was distributed to members of the group as a "Proposal for a

Report on a Successor of ALGOL 60" (1). However, at its October

meeting, 1965, at Grenoble, the group decided the report did not

represent a significant advance on ALGOL 60 so it was dropped as

1.

an official Working Document of the Group. Wirth then collaborated

with C.A.R. Hoare and revised and supplemented the draft. This

revised report can be found in Wirth and Hoare [2].

Why then was it felt to be of sufficient interest to implement

ALGOL W? ALGOL Wis similar in many aspects to ALGOL 60 but some

concepts have been simplified and some extensions have been

introduced, The most important extension is the introduction in

the language of the concept of gener a lised data structures. To

supplement the array concept, which is virtually unchanged from

ALGOL 60, there is a new data structure, the record ([3) and [4]).
This makes ALGOL W a more powerful language than ALGOL 60 in its

ability to handle data structures and therefore a more suitable

language for use in the commercial field .

The language_ described by Wirth and Hoare, with a few changes (5],

was first implemented on an IBM 360 at Stanford University (6)

in 1968.

In 1971 further revisions were made to the language at Stanford [7]

and an improved implementation was developed. ALGOL W has since

gained only slowly in popularity be ing used mainly at University

sites but also at a few commercial installations.

This thesis describes an implementation of ALGOL Was revised in

1971, with some further modifications to be described in

subsequent chapters, on a Burroughs B6700 computer. Chapter 1

gives a brief description of the language as implemented .

Subsequent chapters describe the organization in detail of the

compiler.

This thesis has been written so that excerpts may be made to

produce both a user manual and a system documentation manual .

2 .

Chapter 1

BRIEF DESCRIPTION OF THE LANGUAGE

As the name suggests, a large part of the language is taken

directly from ALGOL 60 [8]. As ALGOL 60 has been in extensive

use for some time and is therefore fairly well known, this chapter

will only discuss the major changes to ALGOL 60 . A full

description of the Extended ALGOL W implemented by the author may

be found in Appendix B.

1.1 Data Types

As is the case in most modern languages there has been an

increase in the number of primitive data types from the three in

ALGOL 60. The types included in the language are inte ger ,

real, long real (double precision real), complex, long complex

(double precis ion complex), logical (equivalent to ALGOL 60's

boolean), bi ts, string , and reference . The ALGOL 60 concept

of own variables has been dropped as it doesn't add any power to

the language and leads to semantic ambiguities in many cases.

The type complex is internally r epresented as two real words,

one for the real part of the complex value, and one for the

imaginary part . The type long complex is internally represented

as two long real words with the same meanings as in the case of

complex.

The type bits is one word containing a sequence (i.e. an ordered

number of elements) of binary digits. Operations defined for

bit sequence s include the logical operations-,, A (and), and

V (~), and those of shifting left (shl) and shifting right (shr).

To represent an ordered sequence of characters the type string

has been included. When this type is declared, the maximum

number of characters able to be held in the sequence must be

3.

explicitly stated , e.g.

string (10) A

declares a variable A which represents a character sequence of

up to 10 characters. The string type is internally represented

in an analogous way to the Burroughs Extended ALGOL EBCDIC

arrays . Originally the operations for string sequences included

the catenation operator cat , but with the addition of the concept

of substrings the cat operat ion was found to be redundant and

so was abandoned.

The type reference will be discussed in section 1.4.

An interesting ana very useful aspect of the des i gn of the

4.

language is that the type and length of the result of evaluating

every expression or subexpression can be uniquely determined at

compile - time, so no type testing , except possibly on procedure

entry, i s needed at r un-time , thereby not wasting execution process

time for non- compatible type testing .

With the increase in the number of data types there i s a greater

number of possible type conversions . Automat ic type conversion

(i. e . conversion performe d by the compiler) is con f ined on ly

to cases where no confusion about the required conversion is

possible, i . e . from integer to long real , and real to co~p lex,

and from shorter to longer variants of the types. All other

conversions must be programmed explicitly by the programmer with

the use of standard functions . This is so the programmer knows

exactly what type of result he is getting rather than relying

on a default conversion which he may only have vague or even

mistaken ideas about.

1.2 Statement Sequencing

The concept for control of statement sequencing has been simplified .

The switch declaration, switch designator, designational

expressions, integer labels, and label parameters have all been

abolished.

The switch declaration and switch designator have been replaced

by the case statement and case expression. These allow the

selection and execution (or evaluation) of one of a list of

statements (or expressions) due to the value of an integer

expression. As the case construction is in use in a number of

modern languages and is fairly well known, the reader is referred

to Appendix B for more detail if required.

A goto statement can not lead from outside into any if statement,

case statement, or iterative statement.

There are three types of iterative statements:

{i) for<id>:=<for list>do<statement>,

5.

(ii) for<id>:=<i.nt.exp.>step<int.exp.>until<int.exp,>do<statement>,

(iii) whi le<log. exp . >do<statement>.

These are the simple and most common cases of iterative statements

and more complex cases can be easily dealt with by explicit program

instructions using labels. There are a few points to notice.

The <for list> and step-until parts can no longer be mixed. The

"step <int.exp.>" is optional and if missing a default step of 1

is used. The <id>, called the control identifier, is implicitly

declared at the start of the for statement and is undefined

outside the scope of the for statement. No explicit assignments

are allowed to be made to the control identifier.

1.3 Procedures and Parameters

There are a few changes towards clarification and e ff iciency of

implementation, to the ALGOL 60 concept of procedures.

The meaning of parameters is unchanged, i.e. they can be

explained in terms of the "copy rule". In addition to the

"name parameter" and "value parameter" there has been added the

concept of a "result parameter". This formal parameter, like

the value parameter, can be thought of as a local variable.

Upon the termination of the procedure the actual parameter, which

must always be a variable, is assigned the value of the pseudo

formal parameter.

Array parameters can only be called by name.

6.

An actual parameter may be a statement (or expression) providing

the corresponding formal is procedure (or <simple type> procedure).

This statement (expression) is considered as a proper procedure

body (function procedure body) without parameters. This enables

a procedure (function) to be specified in the actual place it

is to be used rather than in the head of an embracing block.

As mentioned in 1. 2, the label parameter has been abolished.

This results in no loss of power because the result of the old

label parameter can be achieved by writing a goto statement in

an actual parameter position as outlined in the preceding paragraph .

In this implementation the concept of virtual parameters has

been included. A programmer may optionally specify parameters of

formal procedures and thus enable compile-time formal procedure

parameter checking. In the cases that this facility is used, no

run-time parameter checking is needed on procedure entry. This

concept is used extensively in ALGOL 68.

The specification of all formal parameters (except parameters of

formal procedures) and the correct matching of actuals to formals

has been made compulsory. The number of dimensions of an array

parameter must also be shown. The specifications are included

in the formal parameter list rather than in a separate specification

part as in ALGOL 60. This is a much tidier form of specification

as it has the attributes of the parameters in their actual position.

1.4 Data Structures

The only changes to the ALGOL 60 array concept are notational.

The type of the array must always be specified and only arrays

of the same type and dimension may be contained in the s ame

array declarat ion.

There has been a major addition of another type of :Iata s tructure,

the record (4]. Like the array, r ecords consist of one or more

elements (called f ields)> but unlike the array the fields do
- - . - -

not have to be of the same simple type, so that each field may

occupy a different amount of storage . Because of this to select

a particular f ield a computed ordinal number cannot be used .

Each particular field is given a name (identifier) which i s used

in the program whenever that field is referred to. f,lso,

unlike arrays , records are created dyn am~c~~ly ?Y §~~t rme~~~ in

the program rather than by declarations (?~e Appe~d~x ~ ? ~~ction

6 . 6).

The normal data types (see 1 . 1) are suffici ent to r~present the
. . . - . - . . . -

properties of the fields of records, but a new type , ~ference ,

i s required to represent relationships between the r~~ords . for

example , if a record which represents a person has a field

name d " father", then this is likely to be .used to contain a

refer•ence to the record which represents that p~rS?!J. '~ fat her.

References are also used to provide programmers access to records .

For this purpose, variables of type reference s hould be declared

in the head of an embracing block, e .g.

reference(<record class list>)<id list>.

The <record class l ist> i s a list of the record classes to which

the identifiers in the <id list> may refer. Thus reference

variables are somewhat analogous t o a res tricted form of pointer

variables.

7.

A record class i s a group of records which are s i milar , i.e. records

8.

which have the same number of fields and corresponding fields

have the same names and types. Each record class is introduced

in a program by a record class declaration which associates a

name with the class and specifies the names and types of the fields

of that class .

So that any particular field of a particular record of a record

class can be referred to, a field designator must have associated

with it a reference expression which is a reference to the required

record (see Appendix B, section 6.8).

compatibility at compile-time.

This is checked for

Because a reference variable may refer to more than one record

class, it is sometimes necessary to know at a particular part of

a program to which class the reference is then referring . To

achieve this knowledge there is ·a logical expression,

~eference primary>is~ecord class identifier>,

which is true if the reference primary is referring to a record

of that record class and false otherwise.

There is also a null reference, null, which points to no record,

i.e. if a reference has the value null it is undefined.

1. 5 Block Expressions

There has been the introduction of a typed block which is a block

that has a value (see Appendix B, section 6). The block acts

like a function procedure body with no parameters and is a useful

notational convenience because like the statement parameter, it

allows the function to be specified actually in the place where

used, rather than disjointly in the head of an embracing block.

1.6 Assert Statement

Puring the running of many programs it is useful to terminate

any further execution of the program if some condition arises.

This is achieved by the us e of t he assert statement,

assert <logical expression>,

(see Appendix B, sect ion 5.1) which will terminate the program

if the <logical expression> is not true.

1. 7 Input/Output

In the original implementation of the language input/output

was achieve d by the use of primitive standard procedures READ,

READON, READCARD , WRITE , WRITEON, and IOCONTROL (7]. These

procedures did not allow for programmer format ting. In 1971,

the Univers ity of Manitoba developed format-dire cted input/output

faciliti es for ALGOL H (9]. Upon study of these facilities

it was found that they were not as versatile as those employed

by Burrough s Extende d ALGOL [10 and 11]. Because of this and

because of the desire to make the i mp l ementation compatible

9.

with the existing syst em on the Burroughs B6 700, a slightly

simplified version of the input /output facilities used by Burroughs

Extende d ALGOL [12] was adopted . These facilities include the

file statement, r ead statement, wr ite statement , space statement,

rewind statement , seek statement, close statement , and l ock

statement. It i s planned to add the s tandard ALGOL W input/output

procedures so that this implementat ion is compatible with other

ALGOL W i mplementations .

Chapter 2

GENERAL ORGANI7.ATION

In writing this /~LGOL W compiler it was decided to follow the

original implementation and have three passes with the syntax

being checked by the use of a simple precedence matrix. This

decision was made because of the following reasons:

1. It was felt that to be mos t use ful to programmers

using ALGOL W, bett er and clearer diagnostics

were needed than those able to be given by a one­

pass compiler usin g r•ecurs i ve descent .

2. ALGOL W was designe d c1s a prece dence grammar

(one of the effects of this being the use of a

double colon in ar1~ay declarations

array A(0 :: 6 ,O : : 6)) •

3 . It is planned at a later time to add debugging

aids similar to those deve loped by Satterthwaite

[13], and the three pass organi zation is best

suited fo r this.

The compiler is written in Burroughs Extended ALGOL and each pass

is represented by an internal procedure .

Pass One is the scanner of the source program .

the following:

(i) Reads the source program

It performs

(ii) Converts the symbols to an internal code to be

passed to Pass Two with blanks and comments

deleted

(ii i)

(iv)

(v)

Converts numeric constants to internal machine

form

Builds a block-structured nametable

Lists the source program if a listing is required.

10.

Pass Two does the syntactic analysis of the source program as

passed to it from Pass One. In most cases the analysis is

performed by means of a simple precedence analyzer thus allowing

extensive error checking. However , in the case of file

declarations and read/write statements the analysis is performed

by r ecursive descent. This was done since these features are

extensions to the language , and the conversion of their syntax

to a simple precedence form was found to be difficult when

these extensions were embedded in an already simple precedence

ALGOL W grammar (see Appendix A) . For these statements a

simple precedence form would not add any great error checking

ability anyway. Pass Two also completes the nametable and

forms a binary t1~ee representing the parts of the source program

for which code needs to be generated.

Pass Three scans the tree produced by Pass Two and generates the

object program in Burroughs B6700 machine code. The Pass Three

procedure is only called if no non-warning errors were found

in Pass One or Pass Two.

11.

Chapter 3

PASS ONE

f>ass One reads the source program in 80 character records . It

assigns coordinate numbers beginn ing at 1 as follows . The

coordinate number is incremented once for each";" (except end­

of-comment) , begin or else . This number i s us ed in error

messages to pinpoint the part of the program where the error

occurred and is more usef ul than line or card numbers . The

source program i s listed i f desir ed . The basic entities of

the language are recognized and replaced, minus blanks and

comn~ents , in an output string with byte (8 bit) internal codes .

Constants are converted into internal machine form and a

number of tables are either initialized or filled for use in

Pass Two and/or Pass Three .

3 .1 Internal Pass One Tables

12 .

There are separate "reserved" tables, initialized at entry to

Pass One , to hold the ALGOL W symbols (alphabetically) by length .

RESERVED1 contains all of the legal symbol s of l ength 1 such as

[, <, (, +, ~·~. RI:SERVED2 contains all of the legal symbols

of l ength 2 such as do , go , if , and so on until RESERVED9 which

contains all of the legal symbols of l ength 9 such as procedw~e

and reference . For each symbol the entry consists of the

EBCDIC representation of the symbol, followed by a 1 byte output

code to be passed to Pass Two , followed by an index to a case

statement which performs any other action required for exampl e

the processing of declarations .

Table

RESERVED1

RESERVED2

RESERVED9

Figure 1

Reserved Tables

Entry (in hexadecimal)

4A87004BC0014CA1204D841B

C4D66DOOC7D66F02C9C6A300

D7D9D6C3C5C4E4D9C5A808

Symbols represented

[. < (
do go if

procedure

As the source program is scanned and a basic entity is recognized

the reserved tables are scanned to see if this basic entity is

a r eserved enti·ty. If found the output code is put into the

output string and any action needed to be taken is selected by a

case clause using the last byte of the entry in the table. An

index of hexadecimal 00 means no action needs to be taken. In

figure 1, the first entry in RESERVED2 is the entry for do. The

first 2 bytes contain the hexadecimal representation of do . The

next byte, hexadecimal 6D , is the output code for do , and the last

byte of the entry , hexadecimal 00 , means no further action needs

to be taken.

Two other tables are partially initialized at entry to Pass One

13.

and filled during the execution of the pass . They are available to

Pass Two for use in error routines . They are the identi f i er

directory table, IDDIR, and IDLIST which indexes IDDIR . IDDIR

is a character array containing all identifiers both predefined

and those occurring in the source program. For example, if the

only identifiers appearing were SQRT,A,SEC, then IDDIR would look

like SQRTASEC and the index to the table would be 8 (i.e. the

number of relevant characters). IDLIST is a list of entries,

one for each identifier, that indexes IDDIR. Each entry consists

of the length of the identifier minus 1 and a pointer to the first

character of the identifier in IDDIR. Hence in Figure 2, the

entry (2)(5) corresponds to SEC with the length part of 2 and

pointer (i. e. index) value of 5.

Figure 2

Identifier Tables

IDDIR: SQRTASEC

IDLIST: (3) (0)

(0) (4)

(2) (5)

IDDIRINDX = 8

IDLISTINDX = 3

3.2 Pass One Output String Representing the Source Program

The source program minus blanks and comments, is passed to Pass

Two i n a coded form by way of a character array, BETWPASS. The

codes correspond to the syntactic elements to be parsed in Pass

Two, for example in Figure 3 if is represented by hexadecimal A3.

Figure 3

Pass One Output Codes (in hexadecimal)

(87

co
< A1

(84

+ BB

j 9F

] 86

~·. 90

) 71

77

1 95

/ 91

88

ABS 9D

AND 94

DIV 92

END 6E

FOR BB

REM 93

SHL 97

SHR 98

CASE A6

ELSE AS

FILE AE

GOTO 6F

ARRAY 89

BEGIN 78

CLOSE B8

FALSE 9A

PURGE 74

SHORT 9C

SPACE B3

UNTIL BD

VALUE A9

WHILE BE

WRITE 73

ASSERT 70

SC LOCK B9 CRUNCH 76

> A2 LONG 9B RECORD AD

BO NULL SF RESULT AA

9E OPEN BA REWIND B4

=

SPEC COLON (: :)

SPECCOMMA

ASSIGNMENT (: =)

END-OF-FILE

EXPONENTIATION (~·.1.)

COORDINATE

NUMBER

IDENTIFIER

SIMPLE TYPE

INITIAL ATTRIBUTES

READ/WRITE STATE

"

AO

SE

READ 72

REEL 75 PROCEDURE AS

85

79

B1

00

96

BF

83

6C

13

AF

B2

14.

DO 6D

IF A3

IS 8A

OF A7

OR 8D

SEEK

STEP

THEN

TRUE

BS

BC

A4

99

REFERENCE 82

There are some special cases where a modification of the source

program is required and these are the following:

1. The rese1~ved words and word pairs, integer, real,

long real, complex, long complex, logical, bits,

and string, receive the code for SIMPLE TYPE .

2 . In a reference declaration, the l eft parenthesis

preceding the record class list specification part

is omitted.

3. In a string declaration, if the length is explicitly

specified , the entire length specification part is

omitted .

4 . A comma appear ing in the identifie r l ist of a

declaration or in the record class specification part

of a reference declaration, receives the code for

SPECCOMMA .

5. Each identifier is replaced by a 3 byte code . The

first byte is a code for IDENTIFIER . The following

two bytes contain the unique identifier number

(starting from 0) . In Figure 2, the identifier A

has an identifier number of 1 corresponding to its

index in IDLI ST .

6. Each number is represented by a 1 byte code for NUMBER,

followed by a 1 byte indication of the type of the

number, followed by the number (not split across word

boundaries) .

7. Each bit sequence (for exampl e #FA12C02D31E6 (in

hexadecimal)) is represented by a 1 byte code for

, followed by the 12 byte literal.

15.

8, Each string sequence is represented by a 1 byte

code for " followed by a 1 byte indication of the

length of the sequence minus 1, followed by tho

string sequence .

9. In a file declaration, if there are any attribut·es

ex~licitly declared , a code for INITIAL ATTRIBUTES

is inserted after the left parenthesis and before

any attributes .

10. In a read/write statement a code for READ/WRITE

STATE is inserted after the reserved words read

or write.

11. Each new coordinate is indicated in the output

string by a 3 byte code. The first byte specifies

COORDINATE and the fo l lowing 2 bytes give the

coordinate number .

12 . The reserved word comment and all characters up

to and including the next semicolon are omitted .

13 . An identifier following the reserved word end

is omitted.

3 . 3 Pass One Table Output

16.

As well as the coded string of the source program , there are

three tables that Pass One partially fills to output to Pass Two.

They are the NAMETABLE, BLOCKLIST , and RCCLIST.

The BLOCKLIST table has a word entry for each block in the source

program in the order of block opening . Each program has a pre -

defined outer-block numbered O, containing predefined ident i f i ers ,

for example SQRT. Each full-word entry is divided into t hirds

(i.e. 16 bit parts) . The first 16 bi ts contain the ·number of

identifiers declared in that block . The second 16 bits contains

a pointer (i .e . index) to the entry in NAMETABLE which cont ains

the first identifier declared in the block . If no identifiers

are declared these first two parts will contain zero . The

remaining 16 bits contains the block number of the i mmediate

surrounding block of the current Dlock . In figure 4, the fir st

BLOCKLIST entry points to LONGSQRT and takes in both LONGSQRT

and SQRT which are both predefined. The second BLOCKLIST

entry points to i , and takes in i, j and L Hh.ich are declared in

the outer block of t he source program and the third entry points

to the control variable i .

Figur e 4

Example of BLOCKLIST and NA!,JETABLE

2

3

1

BLOCKLIST

0 0

3 0

~ 2 1

begin

integer i, j ;

j: =O;

for i:=1 until 7

do j: =j+l;

L:

end .

NAMETABLE

> entry for LONGSQRT

entry for SQRT

~
entry for. i

entry for i

entry for j

entry for L

Blocks are entered and c losed by the following rules:

1 . Each begin is the entrance to a block and the

matching end i s the close of the block .

17.

2 . Each statement in a for statement is surrounded by

a block in which the control variable is i mplicitly

declared .

3. Each procedure body i s surrounded by a b lock in

which any formal parameter s are declared .

The NAMETABLE has all entries of identifiers declared i n a block

grouped toget her . Thus permanent entries are not made until the

block has been closed . For e xampl e in Figure 4 the entry for

the control variable is be fore the group of entries of the

i dentifiers declared in the scope of the outer block .

The full layout and f i eld content s of NA~IBTABLE are given i n

Figure 5 (see next chapter). Pass One only puts in enough

informat i on so that Pass Two can check for any semantic errors

(for example type compatibility in expressions) in the source

program . The information entered by Pass One consists of the

fo l lm-ling attributes appropriate to the variable

IDNO The number as signed to the

SIMPLETYPE

TYPE

TYPEINFO

identifier . This number

is equal to the number of

the IDLIST entry . Virtual

parameters have idno 0 .

If a procedure (not formal

18.

VR

or virtual) then the block

number of the formal parameters .

If formal or virtual paramet er

RCCLNUM

1 i f value

2 if result

3 i f value- r esult

I f record class ident i fier or

r ecord field identifier then

the record class number .

SIMTYPEINFO If string then length-1.

If reference then pointer

to RCCLIST

All predefined identifiers, for example SQRT , are entered

permanently into NAMETABLE with all fields filled , upon entering

Pass One .

Each entry of RCCLIST is 1/3 word (i.e . 16 bits) and contains

the IDNO of a record class (or classes) to which the reference

i s bound . A zero entry shows the end of a group . The

NAMETABLE entry for a r eference contains a pointer (i. e . index)

to the first entry of RCCLIST for that reference . For example ,

reference (node1, node2)p

would cause the entry in NAMETABLE for p to have a pointer in

SIMTYPEINFO to RCCLIST as follows:

J
pointer from entry

for p in NAMET ABLE

RCCL~~~::::: .~IL-_2_._6_.__o_._j_- _______ _

where node1 has been assigned an IDNO of 2 and node2 has been

assigned an I DNO of 6 .

19 .

20.

Chapter 4

PASS TWO

Pass Two performs the following tasks:

1. A complete syntax analysis of the source program as

passed to it from Pass One.

2. A thorough error analysis.

3. Completes the NAMETABLE entries.

4. Builds constant tables .

5, Converts the program to an intermediate language

to be passed to Pass Three for the generation of code.

The syntax analysis is mainly done by means of a simple precedence

analyzer, but in the case of file declarations and read/write

statement s the analysis is done by recursive descent .

The interpretation rules which are associated with the syntax

rules of the grammar specify the other actions of Pass Two .

4 . 1 The Parsing Algorithm

The parsing algorithm used in the compiler is a bottom up siwple

precedence method. The ALGOL W grammar was rewritten in a

simple precedence form (see Appendix A) and a separate program

was developed to check the precedence relations ([1lt] and (1 5])

of the rewritten grammar and that it was, in fact, simple

precedence . This program for checking for simple precedence

had a large process~time but after some manipulation a precedence

matrix was produced.

entry to Pass Two.

This matrix is already initialized on

The algorithm for using this matrix for the syntactic analysis

is, with a couple of modifications , that used by Wirth in

Euler (16]. When looking up to see if a string is the right

part of a production, the lengths of the string and right part

21.

are checked before the matching is che cked . This makes it

easier to search through the production array . Also , the full

precedence matrix is used as opposed to using precedence functions

so that e rrors are detected sooner and thus providing for better

error recovery . The third change is that the relations found

when scanning t o the right l ook ing for ·> are stacke d . This

makes them easily retrieved when scanning to the lef t for< ·

rather than having to be refetched from the precedence matrix .

The precedence matr ix is packed four elements to a byte i n order

t o save space, so a fetch from the matrix is slower than a

retrieval from a stack. However , every time a reduction is

made , the relation of t he new symbol to the symbol be low it on

the parsing stack has to be fetched from the precedence matrix

and stacked. This gives a gain in efficiency with right parts

of l ength greater than two, but no significant gain with right

parts of length one or two .

Every syntax rule has a corresponding interpretation rule which

is executed when the r eduction is made. This interpretation

rule checks s emantics, for example type compatibility in expressions .

Associated with the parsing s tack i s a parallel value stack

(see 4 . 4) which contains information used by the interpretation

rules .

4.2 Error Recovery

There are two ways in which syntactic errors are detected when

using simple precedence analysis :

1. A reducible string (i .e. one delimited by<· and · >)

is not the right part of any production .

2. The top of the parsing stack has no relation(<·,~ ,· >)

t o the incoming symbol .

To recover from the first case, the statement in which the error

occurred is deleted from the program. This is achieved by

backing up the parsing stack until <block body>, <'.block hd> ,

< caseseq>, or <endfil e>, and the input string i s advanced to

end "·" begin or <endfile> If end is deleted from the __ , ', ___ , .
parsing stack, it becomes the next incoming symbol, else the

next symbol in the input string is taken. Special care is

taken to keep the block numbers the same as those assigned in

Pass One , so i f a nonterminal which affects the value of the

block number i s removed from the parsing s tack, the block number

i s correspondingly adjusted .

In the second error case , a number of recovery actions are

possible:

1. A s ymbol can be inserte d .

2 . The top of the parsing stack can be deleted .

3. Another symbol can replace the top of the parsing

stack.

4. The incoming symbol can simply be stacked on the

parsing stack (this is done i f the other three can

not be done) .

If a symbol i s to be inserted, it must have a relation to the

incoming symbol , and the t op of the parsing stack must have a

relation to it. If the inserted symbol is · > the incoming

symbol, the input string i s backed up and the inserted symbol

becomes the incoming symbol, otherwise the inserted symbol is

stacked on the parsing stack.

If a symbol is to replace the top of the parsing stack it must

have a relation to the incoming symbol, and the next-to-top of

the parsing stack must have a relation to it . If the replacing

symbol is ·> the incoming symbol, then the top of the parsing

stack is deleted, the input string is backed up and the replacing

symbol becomes the incoming symbol, otherwise the replacing

symbol just replaces the top of the parsing stack.

If the top of the parsing stack i s to be deleted, then the

next-to-top of the parsing stack must have one of the relations

22.

23.

<· or - the incoming symbol.

An inserted or replacing symbol can be the cause of other error

messages especially in type compatibility , for example an

undefined identifier i s always assumed to be of type integer .

Special care has to be taken so that the same action is not

attempted the next time through . For example , if the top of

the parsing stack is <block body> and it has no relation to the

incoming symbol , a ";" may be inserted . "<block body>;" reduces

to <block body>, so if the error routine is called again before

the input string has advanced , another ";" must not be inserted.

This is achieved by the use of a flag which indicates the last

symbol inserted.

4 . 3 Storage Allocation

Program segment numbers are assigned by Pass Two . Each program,

block with declarations , or procedure with a body that is a

block with declarations , is a separate program segment and is

assigned a unique segment number . SEGNO contains the current

segment numb er. SEGINDX contains the largest segment number

currently assigned . SEGLIST is an array with entries indexed by

SEGNO and SEGINDX and holds the immediate surrounding segment

number.

All addresses of variables , array descriptors, files , and other

data are also assigned by Pass Two and are indicated in NAMETABLE .

An address consists of the hierarchy number (i.e. the lexical

level) plus the address relative t o the beginning of the data

segment (t he displacement).

Fields of records are given addresses relative to the origin of

the record . The length in words of any record in a record class

is indicated in the NAMETABLE entry for that record class,

The dimension of an array is inserted in NA~IBTABLE when the

array declaration is encountered. This information is used to

compute the descriptor and to check the number of dimensions

each time that array designator occurs.

Addresses are allocated in the program segment of a procedure

for descriptors of its formal parameters . Descripto1~s of

actual name parameters are assigned addr esses r elat ive to the

b eginning of the data segment of the procedure . Addresses

are allocated in the data s egment for values of the actual

value and result parameters , since they are treated as local

variables whi le control is within the procedure body .

4 . 4 Value Stack

The value or interpretation stack consists of 4 row by 2 byte

elements , and works in parallel with the parsing stack.

V1 Row 0

V2
Row 1

V21 V22

V34
Row 2

V3 V4

vs Row 3

I ~16 bits----, I

The standard uses of the fields are given below , but the actual

use depends on the construction being parsed.

24 .

25 .

V1 Simple type information (see SIMTYPEINFO field

in NAMETABLE , Figure 5).

V21 Type

V22 Simple type

V34 O (used in certain special cases detailed in 4 . 5)

VS Output pointer

When an identifier is looked up in NAMETABLE, a pointer (i .e . index)

to its entry in NAMETABLE is put in V1 and V2 i s filled . When

any node is put in the output array TREE (see 4.7), the tree

pointer (i. e. index to the TREE array for that node) is put in

vs .

4 . 5 Interpretation Rules

For every syntax rule of the gr ammar there is a corresponding

interpretation rule which performs the semantic actions for that

syntactic construction. These interpretation rules are contained

in a procedure INTERPRET and are accessed via a case statement

which i s indexed by the production rule number. The interprc:tation

rules use the value stack (see 4.4) for working storage .

The semantic actions and value stack layouts for the major

syntactic constructions are:

1 . Simple variable declaration

a. Value stack layout is standard.

b. Each identifier is found in NAMETABLE, checked

for multiple declaration and allocated an address .

No output is generated .

2 . Array declaration

a . Value stack layout

V1 Pointer to NAMETABLE entry of first identifier .

V2 0

V3 Number of identifiers

V4 Dimension

VS Output pointer

b . Identifiers in the list are counted, the simple types

of the bound pair expressions are checked , the bound

pairs are counted, addresses for descriptors are

allocated , the array dimension is insert ed in

NAl1ETABLE for all the identifiers , and output is

generated .

3. Procedure declaration

a . 1 Value stack layout for procedure head

Vl Simple type information (if t yped procedure)

V21 Type

V2 2 Simpl e type (if typed procedure)

V3 and V4 Used when scanning virtual parameters

VS Output pointer

a.2 Value s tack layout for procedure body

Vl Simple type information of expression (if

typed procedure)

V2 0

V34 0

VS Output pointer

b . Addresses are allocated for the descriptors of the

formal parameters , the simple types (for a typed

proce dure) are compared, output is generated .

4 . Record class declaration .

a . Value Stack l ayout

Vl Pointer to NAMETABLE for current field

V2 0

V34 0

VS Pointer to NAMETABLE entry of record class

identifier

b . The identifiers are located in NAMETABLE and

checked for multiple declaration , an address is

allocated for the r ecord class descriptor , relative

addresses are assigned to the fields and the

number of fields i s inserted in the NAMETABLE

entry for the record class identifier.

26 .

5. File declaration

a.

b.

Value stack layout

V1 Pointer to NAMETABLE entry of first identifier

V2 0

V3 Number of identifiers

V4 0

vs Output pointer

The identifieps are located in NAMETABLE and checked

for multiple declaration , addresses are allocated,

attributes checked, and output generated.

6. Substring designator

a. Value stack l ayout is standard

b. The simple type s of the simple variable, the index

express ion and the length are checked , the l ength

is checked against the length of th e s i mp le variable ,

and output is generated.

7. Array designator

a . Value stack layout

V1 Simple type informat ion

V21 Type

V22 Simple type

V3 Number of dimensions

V4 Number of dummy subscripts

VS Output pointer

27.

b. The number of dimensions and simple type of subscripts

are checked, output is generated.

8. Field designator

a. Value stack layout is standard

b. Simple type of the expression is checked, output is

generated.

9. Procedure designator

a. Value stack layout

V1 Simple type informat ion (if typed procedure)

V21 Type

V22 Si mple type (if typed procedure)

V31+ Pointer to NAMETABLE entry for current parameter

VS Output pointer

10 . If expression

a . Value stack layout i s standard

b . Simple types of then expression and else expression

are checked for type compatibility , simple t ype

of expression in i f clause is checked , output is

generated .

11 . Case expression

a. Value stack layout

V1 Simple type information

V21 Number of cases

V22 Simple type

V34 0

vs Output pointer

b. The simple t ype of the expression in the case clause

is checked , cases are counted , simple types are

checked fo:r. compatibility , and output is generated .

12 . argument1 {=, >=, <, <=,>, and , or , + , - ~: , / , shr, shl,

div, rem, :'::':, is } argumen t2

a . Value stack l ayout is standard

b . Si mple types of arguments are checked for type

compatibility , output is generated .

13 . {-, -, , l ong , short , abs } argument

a. Value stack layout i s standard

b . S~mpl e type of argument i s checked for t ype

compat i b ility , output is generated .

14. Record des i gnator

a . Value stack layout (replaced by standard layout

after structure is par sed)

V1 Pointer to NAMETABLE entry for current field

V21 Number of fie lds

V22 Record class number

V3 0

V4 Number of fields already parsed

VS Output pointer

28 .

b. The number of fields is checked, the simple type of

each field is checked for compatibility, output is

generated.

15. Blackbody

a. Value stack layout

V1 0

29.

V2 0 if no declarations, ffiF if enclosing block of

procedure body (with declarations), #FF otherwise

V34 0

VS Output pointe1'

b. At begin the block number and hierarchy number are

steppe d, V2 and displaceme~t are set. At end the

displacement and hierarchy number are restored.

Output is generated .

16. Label definition

a. Value stack layout is standard

b. The segment nurrbe r and hierarchy number are inserted

in NAMETABLE, output is generated .

17. Assignment statement

a. Value stack layout is standard

b. Simple types are checked for type compatibility,

output is generated .

18. Case statement

a. Value stack layout i s the same as for case expression

b. Cases are counted, output is generated.

19. For statement

a. Value stack layout is standard

b. Simple types of expressions are checked, an address

is allocated for• the control identifier , output

is generated.

20. While statement

a. Value stack layout is standard

b. The simple type of the expression in the while clause

is checked, output is generated.

21. Assert statement

a. Value stack layout is standard

b. The simple type of the expression is checked, output

is generated.

4,6 Pas s Two Tables

Pass Two completes the NAMETABLE and creates a literal table.

The information entered in NAMETABLE is that in Figure 5 that

was not entered in Pass One. Note that the TYPE entry for a

formal or virtual parameter is changed from its contents at the

end of Pass One.

Figure 5

Format of NAMETABLE and Field Contents After Pass Two

idloc1 idloc2 simtypeinfo

hierarchy prog.seg.

typeinfo

dimen type simpletype idno

vr reel. number

<---16 bi ts ---~I~ 16 bi ts --->"'l~--16 bits

30.

Row 0

Row 1

Fi eld

IDLOC1

HIERARGiY

PROGSEG

IDLOC2

Kind of Entry

simple variable

label

array

file

r ecord class i dentifier

record field

control identifier

standard funct i on

formal parameter

procedure

procedure

simpl e variable

array

file

l abel

Contents

hierarchy number

program segment

hierarchy number

hierarchy number

hierarchy number

hierarchy number

number

hierarchy number

simtype info of argument

hierarchy number

hierarchy number

program segment number

r elative address

31.

r elative address of descriptor

re lative address

relative address in label t ab l e

record class i dentifier relative address

record field

control identifier

procedure

address relative to start of record

r elative addx,ess

r elat i ve addr·ess

f ormal parameter

SIMTYPEINFO string

relat ive address

l ength-1

TYPEINFO

VR

reference pointer to RCCLIST

record class i dentifier record length

label

procedure (not formal

or virtual)

hierarchy number

block number of formal parameters

standard function simpletype of parameter

r ecord class identifier number of fields

formal procedure

virtual procedure

standard procedure

formal parameter

virtua l parameter

number of virtual parameters

number of virtual parameters

vr for parameters

1 if value, 2 if result, 3 if

value-result

1 if value, 2 if result, 3 if

value-result

DIMEN

RCCLNUM

TYPE

SI MP LETYPE

IDNO

array

formal procedure

virtual procedure

dimension

1 if has virtual parameters

1 if has virtual parameters

record class identifier record class number

record field identi f ier record class number

standard funct i on

simple variable

label

array

procedure

record clas s

record field

control identifier

standard function

file

standard procedure

formal parameter

virtual parameter

integer

real

long real

complex

long comp l ex

logical

string

bits

reference

1 i f inline

0

1

2

3

4

5

6

7

8

9

16 + TYPE

32 + TYPE

1

2

3

4

5

6

7

8

9

32.

the unique identifier number

Two tables for literals are constructed by Pass Two. The literal

table (LITTABLE) contains all literals (numbers , character

strings, and bit sequences). The literal pointer table (LITPOINT ­

TABLE) contains the simple type, the length (if a character

string), and a pointer (i.e. index) to the literal table for

each literal.

The tables PRODUCTIONS, PROD INDX , and MATRIX are used by the

syntactic analyzer and are initialized upon entry to Pass Two .

MATRIX contains the simple precedence relations of the Extended

ALGOL W (simple precedence) grammar (see Appendix A) . The

entries are packed four/byte .

PRODUCTI ONS .contain the productions of the simple precedence

33 .

grammar grouped so that all productions having the same leftmost

symbol of the right part are together . The format for a production

is the following:

production L : := R(l) R(2) ... R(N) O < N < 6

representation in PRODUCTIONS (12 bits/entry)

N-1

R(l)

R(2)

R(N)

L

production number

The symbol #FFF indicates the end of a production group .

PRODINDX is an index to PRODUCTIONS. The entry for a given

symbol indicates the beginning of the group of productions of

which that symbol is the leftmost symbol of the right part .

4 . 7 Pass Two Output

The output of Pass Two is an array called TREE which represents

a linearization of a modified structural tree of the program being

parsed. Each nonterminal node has either one or two subtrees .

Each nonterminal binary node contains a pointer to its left

subtree ; its right subtree directly precedes it . In the array

TREE, the subtrees of a node precede that node. Each element

of TREE consists of two 3-byte entries with the format :

34.

I-E--14 bits~l~s bits --::>!

FJ,.ag - Opcode Conv Row 0 -

Pointer Row 1

----- 24 bi ts

FLAG is on (i.e. 1) if the right subtree is to be compiled first

and off (i.e. 0) if the left subtree is compiled first. Conversion

of arithmetic type is indicated in the source program implicitly,

by mixed-type expressions, or explicitly, by long or short.

In either case, the simple type to which the expression is to be

converted is given in CONV. For a terminal node POINTER points

to NAMETAB LE or the literal pointer table (LITPOINTTABLE). For

a nonterminal node POINTER points to the last node of the first

subtree. The first node in TREE only uses the POINTER field

wh ich points to the end of TREE.

Example from [2].

program fragment : F(B , 5 , C+D,GOTO X)

-Fis a procedure

C is integer

tree:

Dis real

AP)

/\
AP, GOTO

/~ \
AP, . + X

/\ / '\
AP, 5 C D

/\
F B

For meanings of nodes see

Figure 6.

35,

TREE:

FLAG OPCODE CONV POINTER

FUNCID points to NAMETABLE entry for F 1-E--

VARID points to NAMETABLE entry for B

0 AP,

NUMBER points to literal table entry for 5 f,E---

0 AP,

VARID 2 points to NAMETABLE entry for C ~

VARID points to NAMETABLE entry for D

0 +

0 AP,
l<E--

LABE LID points to NAMETABLE entry for X

GOTO

0 AP)

36.

Figure 6

Pass Two Output Vocabulary

Operator Code Remarks

A:Binary Operators

+ 1

I

L:=

A : =

S : =

R:=

STEPUNTIL

DIV

REM

<
<=

>

>=

=
-, ::

L:=2

A:=2

S:=2

R:=2

2

3

4

5

6

7

8

9

10

11

12

13

ill

15

16

17

18

19

20

21

22

exponentiation

logical assignment

arithmetic assignment

string assignment - conversion

field contains string l ength

reference assignment

conversion bits indicate length

for string comparisons

multiple assignment

(Conversion field may contain string length for string arguments)

AP) 26 Indicates end of actual parameter

list. Conversion bits indicate

conversion of result of function call.

INDX 27 Indicates subscripting operation .

Conversion bits can occur only with

last such operator and indicate that

resulting array element must be converted .

REFX

IFEXP

PCL

SUBSTRING

SHL

SHR

BB

END

AP ,

R,

AR ,

AR)

R)

LOGOR

BITOR

LOGAND

BITAND

ITERST

ITERST2

FORLIST

FORCL

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

4 7

48

49

ENDFORLIST 50

37 .

Indicates computation of f i eld

(first argument) of record reference

(second argument)

Indicates that label should be

issued for end of if expression and

unconditional jump patched .

Conversion hits indicate that

resul ting expression must be converted .

Indicates end of procedure declaration

left shift

right shift

Indicates end of declarations ,

beginning of blackbody

for actual parameters

for record designators

for array declarations

indicates end of array declaration

indicates end of record designator

OR of logicul arguments

OR of bit sequences

AND of logical arguments

AND of bit sequences

indicates generation of transfer

to iteration test for simple for

statement

indicates generation of transfer to

iteration test for for statement with

for list

links control ass i gnment and

step-until

UJIFEXP

UJ

CL

IFST

IS

WHILEOP

WHILEST

I FJ

SPACE

SEEK

CLOSE

LOCK

INIT)

INIT ,

LIST,

EDITSPECS

FORMLIST

FILEPT

RWHEAD

CARCONT

B:Unary Operators

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

UMINUS 73

ABS 74

i ndicates unconditional j ump in

if expression

indicates issue jump to end of

case list or if statement to be

patched

38 .

i ndi cates label should be i ssued

for end of case statement and jump

addresses patched

i ndicates label should be i ssued

for end of if stat ement and addresses

patched

array bounds colon

i ndi cates NOOP (statement separator)

indi cates issue j ump on condition

fal se to end of i f expression or

if statement

indicates end of initial att ributes

for file declarations

I/O list separator

unary minus

absolute va lue

LOG,

BIT,

GOTO

STACKADDR

ASSERT

READ

WRITE

CLOSEST

LOCKST

OPEN

REWINDST

LISTPART

COORD

CASE

SEG

C:Terminal Nodes

BEGIN

NUMBER

VARID

LABELID

ARRAYID

FUNCID

RCCLID

FIELDID

CONID

PROCDC

77

78

79

80

81

82

83

84

87

88

89

90

91

93

94

95

97

98

99

100

101

102

103

104

105

106

negation of logical value

negation of bit sequence

label colon

39.

For implicit subroutine . If block

expression conversion bits indicate

if value of block is to be converted

Pointer is the coordinate number.

Unary operator for BEGIN, PROCDC ,

ARRA YDC , 11
, " , FI LE DC nodes

Conv field is the simple type if

expression .

of cases.

Pointer is the number

Indicates program segment .

contains segment nunilier

Conv contains block number if

begins data segment

Pointer>

Pointer points to literal pointer

table

procedure declarat i on

FILE ID

ATTRIB

ATTRIBMNEMON

BIT

STRING

TRUE

FALSE

IF

WHILE

NULL

NULLST

ARRAYDC

FILEDC

PURGE

REEL

CRUNCH

SPACEV

LINE

SKIP

NO

STFUNCID

STPROCID

107

108

109

111

112

113

114

115

116

117

118

119

120

121

122

123

124

12 5

126

127

128

129

130

Pointer points to literal pointer

table

Pointer points to literal pointer

table

indicates undefined reference

indicates empty statement

Array declaration .

to first identifier.

number of identifiers

Pointer points

Convis the

indicates dummy array subscript

40.

File declaration .

first identifier .

of identifiers

Pointer points to

Convis the number

used in carriage control

41.

Chapter 5

PASS THREE

The essence of Pass Three is the algorithm for scanning the

linearized tree, beginning at the root node. The flag with

each binary node indicates which branch the scan should follow.

The operator nodes are not otherwise examined at this stage.

Pointers to the nodes are stacked in STACK as they are encountered

in the scan for easy retrieval . Code generation begins with

the first terminal node encountered and the tree is traversed

by the generating routines.

The code produced is Burroughs B6700 machine code [17) and is

put into standard B6700 code files [1 8). Before a discussion on

the code produced can be meaningful, some understanding of the

operating system and the stack (not to be confused with the

array STACK) operation is required. The first part of this

chapter give s a brief insight to these features , and if a more

detailed description is required the reade r is referred to [17]

and (19).

5 .1 B6700 Architecture

The B6700 follows the design of the simulated machine of Randell

and Russell [20], and has a typed memory (i.e. there are a few

bits of each word which are used as a tag indicating what type of

information the word holds) consisting of 51 bit words. The

bits 50, 49, 48 are the tag bits, bit 48 is a memory protection

bit which if on indicates the word can not be written into by the

normal store operators, and the remaining 48 bits (47 to 0)

contain the information (see Figure 7).

42 .

Figure 7

B6700 Word Formats With Tag Mnemonics

DATA WORDS

!oooj EXPONENT

!010 I EXPONENT

jo10 I EXPONENT

I
I
I
I
I

MANTISSA

MANTISSA

MANTISSA

Single-precision operand

Double-precision operand

- 1st word

~6 bits~~39 bits -~ I

Double-precision operand

- 2nd word

DESCRIPTOR WORDS

I LENGTH I ADDRESS Data Des criptor (DD)

I LENGTH l ADDRESS Segment Descriptor (SD)

l~2obits~2 0 bits~

SPECIAL CONTROL WORDS

011 STACK DISPLACEMENT NO.

I
111 ISTACK OPERATOR

NO. INDEX

I
OPERATOR

_ INDEX

LL

I I
LL

I I

l I

DF

I
ADDRESS
COUPLE

ADDRESS I
COUPLE

Mark Stack Control Word
(MSCW)

Program Control Word (PCW)

Return Control Word (RCW)

I oo, I I 1~g~~~:1
I I I I

- ~ [_o_o, I I s~~~K DISPLACEMENiJ:LTA I

~ 10bits~E--16 bits~ ~14 bits~

The memory is of the segmented virtual type.

43 .

Indirect Reference
Word (IRW)

Stuffed Indirect
Reference Word (IRWS)

The user may use a

number of linear memory segments of varying l engths so there may

be more main memory required than is available. Although the

user assumes all his segments are in high speed memory, it is

likely some are being held on secondary storage such as a disk .

The Master Control Program (MCP) brings the required segment into

t he main memory when it i s needed . So that it can do this , each

segment is described by at l east one tag 5 word (descri ptor) and

any reference to a segment must be made through a descriptor . As

seen i n Fi gure 7 , descriptors contain the main memory or di sk

address of the segment dE: scribed plus a presence bit which if on

indicates the segment is in main memory . If a segment is referred

to that is not in main memory , the MCP fetches it and changes

the descriptor to show that the segment is then in main memory .

If the MCP removes a segment from main memory it turns off the

presence bit in all descriptors of that segment , and replaces the

memory address by a disk address . Program segments are read-only

so t hey are not removed to disk , jus t r emoved f rom main memory .

A program segment has only one descriptor. A program (Burroughs

literature calls these processes) may have more than 1 segment

and all their descriptors are kept in a stack pointed to by the

level 1 display regi ster . The stack proper for a process starts

at l evel 2 . MCP programs have descriptors in the level O stack.

Data segments are more comp licated because as they are arrays

there can be many references to them held in the stack. When

a data segment is removed from main memory all stacks in the

system are searched for references into the data segment and

all presence bits are turned off. One descriptor is chosen

as t he master descriptor and holds the disk address of the data

segment and all the other descriptors are copies and contain the

stack address of the master . If a descriptor is a copy the

copy bit (C in Figure 7) is turned on . When a reference is

made to an absent data segment the MCP fetches it back from

disk and all other references use the copies to obtain the main

memory address from the master de scriptor.

44.

Two other methods for addressing data or program code is provided .

They are the Indirect Reference Word (I RW) and the Stuffed

IndiPect Reference Word (IRWS). These address data located

within the process 's stack and their address fields both hold

relative addresses. The IRW addresses information which is

globa l or local to the particular active procedure . The IRWS

is used for address ing across stacks and for handling parameters

where the actual parameters are not necessarily within the

addressing environment of the procedure to which they are passed

and can not be accessed by an IRW . The I RW has in its Addres s

Couple field a Display Regi ster number and a Displacement. The

IRWS holds three bits of information : (a) a Stack Number,

(b) the start of the addressing space of the process within that

stack, and (c) the displacement of the information within that

addressing space . An IRW can be changed to an I RWS by the use

of the operator stuff environment-STFF .

•
5.2 Program Structure in Memory

A program in memory occupies separately allocated areas , i.e.

each part of the program can be anywhere in memory with the

actual address determined by the MCP .

The separately allocated areas of a program are (see Figure 8):

1. Program Segments . These hold a sequence of

i nstructions (syllables) which the processor

executes . The program segments hold no

data and are never modified .

2 .

3.

Segment Dictionary. This is a table containing

the descriptors of the program segments .

Stack Area . This is the pushdown stack storage ,

which contains the variables associated with a

program and the control words which indicate

the dynamic status of the program as it is

be ing executed .

45.

46.

Figure 8

Object Program in Memory

Object Obj ect

D[4]~ program program

stack code

containing segment

D(3] variables (n+1)

and ' 7

dynamic

status

D[2]-) Object

program

code

Obj ect l segment
I

program I (n) I

I
segment ! ~ .,.

dictionary

S . D. prog . ,_

S . D. prog .

Seg . Des . O. B. I- Object

D[1] --? program

code

MCP stack outer

and block

segment code

dictionary segment
--

D(O]

5.3 Stack Operation

The stack arrangement (see Figure 9) has two top-of -stack

r egist ers (A and B) with associated validity bits. With each

top-of-stack register there is a companion register (X and Y)

which is used to hold the secon d half of a double -precision

operand . When held in the memory stack a double - precision

operand is held in two adj acen t stack words . For simplicity

47.

in this discussion it is a s sumed all operands are single - precision.

The necessary changes for double - precision operands will be

fairly obvious , for example when an operand is moved from the

stack into the top-of-stack register tl1e tag bits are checked

and if a double-pre cision operand then two stack: words are moved

into A and X which are then concatenated. The stack top is

pointed to by the S regist er and the address-chain i s given by

the F register . The ma.chine also has a check to see t hat the

stack bounds are not violated .

A

B

s I

I

:r

7

Figure 9

Stack Arran F,;ement

y

X _f _~_

!
I

~----- -------~ r-- - --------.,
I I

I I I I i I I 4 I I I I

(top) (address-chain

(z::!_
I
I
I
I

~
I
I
I
I
I
I

<f-
(display)

F

D(4]
D(3)
D(2]

The stack operates as a last in, first out storage area . An

operand is stored into r egister A with consequent push-downs

into register Band into the memory location pointed at by

register S. Extraction of data is from register A with

consequent pop-ups from Band the location pointed at by S.

The contents of Sare incremented by 1 on a push-down and

decremented on a pop-up . These actions are performed

48.

automatically by the processor to the requirements of the operator

currently being executed.

5.4 Example of Simple Stack Opel'ation

In the program segments the instructions are kept in the order

of executing the source program in reverse Polish order . In

this section, a simple example of the stack operat ion when

exe cuting the statement D:=6*(W+V) will be discussed but the

explanation of the syl l able types will be left to later sections.

49.

Figure 10

Stack Operation

ALGOL W Statement: D: =6*(W+V)

Polish String Notation : D 6 W V +"":':~~
A

B

Core Stack

N+S

N+4

N+3

N+2 S~

N+1

N

--

w

D

V

_______----;-~ / I
~TAt~C L'T.'8 VALC VALC ADD ~ULT STOD

D 6

IRW D

I IR: DI INV

Area

~ w ~ w

D D

V V

w V

0~~
~~~ 

INV 

6:':(W+ V) 

~ 6 I"> 6 6 6 

~ IRW D IRW D IRW D ~ IRW D IRW D 
----

w w w w ~ w 

D D D D 6~:(W+V) 

V V V V V 

Syllable Types : NAMC Name Call 

LT8 Literal (8 bit) 

VALC Value Call 

STOD Store Destructive 

When D: =6:':(WtV) is changed to Polish notation the result is 

D6WV+,': : =. Each element causes a syllable type to be placed in 

the machine language program during Pass Three (see Figure 10). 

Dis to receive a value so the address of D must be put in the 

stack before the store command. This is done by a name call 

syllable (NAMC) which puts an IRW in the stack . The IRW contains 

the address of the stack location of the variable D. The value 

6 is then put in the stack by using an eight-bit literal syllable 



( LTB) . Since Wand V are to be added , the variables are put 

in the stack by Value Call syllables. The ADD operator adds 

the two top operands and places the sum in the top of the 

stack (in this case register B). The multiply operator ( MULT ) 

then multiplies the two top stack operands and places the result 

in the top of the stack. The store syllable (STOD) examines 

the two top of stack operands l ooking for an IRW or Data 

Descriptor. In this example it finds an IRW which addresses 

the location where the computed result is to be stored and 

stores it . 

5 . 5 Syllable Format and Types 

A machine language program is a string of syllables which are 

usually executed sequentially. Each word in the memory contains 

six 8-bit syllables with the first labelled syllable O and 

i s contained by bits 47 to 40 inclusive. 

There are three types o f syllables (see Figure 11) : 

( a ) Name Cal l , (b ) Value Call , and (c) oper a t or s . The 

so . 

two high-order bi t s (bits 7 and 6) de termine which type ct syllable i s . 

(Bits 7 and 6) 

Identification 

00 

01 

1X 

Figur e 11 

Syllable Table 

Syllable No . of 

Type syllables 

Value Call 2 

Name Call 2 

Operators 1 to 7 

Function 

Brings an operand 

into the stack 

Brings an IRW into 

the stack 

Performs the 

specified operation 



Name Call builds an Indirect Reference Word in the stack. Stack 

adjustQent takes place so that the A register i s empty. The 

six low-order bits of the first syllable are concatenated with 

the eight bits of the following syllable to form a 14- bit address-

couple. The address-couple is placed right-justified in the A 

register, with the remainder of the A r egister filled ~ith zeros . 

The TAG field (bits 50, 49 , 48 ) of the A register i s set to 001 

and the register is marked full . 

Value Call loads into the top of the stack the operand referenced 

by the address-couple . The operator is formed in the same way 

as the Name Call operator . If the referenced memory location is 

an Indirect Reference Word or a Data Descriptor , memory accesses 

are made until the operand is found . The operand i s then placed 

in the top-of-stack registers . The operand may be either 

single- or double-precision , causing either one or two words to 

be loaded into the stack . 

Operators vary from one to seven syllables long . The first 

syllable determines the nu!l'.ber of following syllables which, with 

the first syllable , forms the operator . Operators work on 

data as either full words (4 8 data bits plus tag bits), or as 

strings of data characters . Word operators work with the 

operands in the top of the stack . String operators are used 

for trans f erring, comparing , or translating strings of characters. 

There is also a set of micro-operators providing a means of 

formatting data for input/output . 

5 . 6 Addressing 

An address-couple consists of two parts: ( a ) the addressing 

level (LL) of the variable , and (b) an index value (delta) used 

to l ocate the variable within its addressing level . 

The B6700 processor contains an array of display r egisters 

51. 



52. 

( DO to D31) and these registers address the base of each 

addressing level segment . The local variables of all procedures 

are addressed relat ive to the D registers (thus delta is a 

relative displacement value) . The address -couple is converted 

to an absolute memory address when a variable is r eferenced . 

The address ing l eve l field of the address -couple selects t he 

D register . The index value field of the address-coup l e is then 

added to the contents of the specified D register t o ge t the 

absolute memory address . 

5 . 7 Block and Procedure Entry 

The tree output o f Pass Two for a block with declarations is 

~ 
END 

I 
BB 

/ ~ 
SEG declarations 

I 
COORD 

I 
BEGIN 

r equiring code 

to be emitted, 

e . g . array 

declaration 

statements 

If there are only declarations which do not need code emitted the 

declarations branch of node BB is node NULLST . Blocks without 

declarations have the following tree : 



\ 
END 

I 
COORD 

I 
BEGIN statements 

and the tree for procedure or function declaration is: 

~ 
PCL 

I 
COORD 

I 
PROCDC procedure body 

The discussion on block and procedure entry can be cornbined 

because on the B6700 the mechanism is the same in both cases. 

A block is treated as a procedure which is called where it 

appears and a procedure is ah:ays considered to contain a block. 

This section will refer only to procedure but remember this is 

synonymous with block. In ALGOL a procedure as a value and a 

procedure as a thunk [ 21 ] can not occur in the same context, 

therefore the B6700 has only one type of program address word 

called a PCW-Program Control Word (see Figure 7). A PCW is 

created by the instruction MPCW which must be followed in the 

instruction stream by a 48 bit literal which has the stack number 

and tag inserted to make the PCW which is pushed on the stack . 

The tree output of Pass Two for a call on a procedure or function 

is: 

53 . 



"~ 
AP) 

/~ 
AP , tree for 

/ ~ parameter n 

. . tree for 

/ parameter n-1 

AP, 

/ ~ 
FUNCID tree for 

parameter 1 

The tree for a proper procedure without parameters i s : 

I , 

/~CID 

54. 

When a procedure is called the operator MKST ( Mark Stack ) pushes 

a skeleton MSCW ( see figure 7) onto the stack . 

the DF field , i . e . the environment pointer F . 

The MSCW contains 

Then an I RW or 

I RWS pointing to the PCW of the procedure i s pushed onto the stack 

followed by any actual parameters . 

The Enter operator (E NTR ) is then pushed onto the stack. The 

following occurs due to ENTR: 

1 . The F register is made to point to the new MSCW . 

2. The lexical level at which the procedur e's PCW 

appears is found by: 

( a) If the PCW is referenced by an I RW it is obtained 

directly from the address-couple of that IRW. 



( b ) If the PCW is referenced by an IRWS it is obtained 

from the LL field of the MSCW pointed at by the 

Delta field of the IRWS . 

Note that a procedure declared at level n must run at level 

n+1 . Display Register D 1 is set to point to the new n+ 
MSCW, i . e. is given the same value as the F register . 

The number n+1 is inserted in the LL field of the MSCW . 

3 . The Stack Number and Displacement fields of the new MSCW 

are set to point to the MSCW pointed at by D . n Hence 

there is a static link ( Burroughs calls this a Displacement 

link) which expresses the lexical structure of a program. 

4. If necessary, the static link in the MSCW pointed at by 

5 . 

D is examined n 
static link is 

reset . (Note 

and Display Register D 1 n-
followed and all required 

D is never reset) . 
0 

is reset . The 

registers are 

The new IRW or IRWS is changed to a RCW ( see Figure 7) • 

Note that the RCW is similar to the PCW except i t has a 

tag of 3. The RCW references the program code of the 

calling procedure on e operator past the point of call via 

a Segment Descriptor . The LL field of the RCW contains the 

lexical level of the calling procedure. 

The called procedure is now act i ve . 

The calling sequence for a procedure such as P( 1 , 1 ) is : 

MKST 

NAMC 

ONE 

ONE 

ENTR 

to P ' s PCW 

{ 
initialize 

parameters 

Standard functions ( called intrinsics by Burroughs ) are treated 

as if declared within procedures that execute at display level O. 

Hence they always execute at display level 1 . 

55 . 



56. 

5.8 Block and Proce dure Exit 

There are two instructions for returning from procedures (blocks), 

EXIT and RETN. They both operate in the same way except that 

RETN leaves the top of the stack as a value and EXIT doe s not. 

Also, if the value bit of the MSCW pointed to by Fis 1, RETN 

operates a VALC instruction sequence because the value bit is 

turned on when a VALC causes a thunk. 

Each MSCW is linked to the prior MSCW through the DF fi e ld so 

that the point in the stack where the prior procedure began can 

be found . When a procedure is exit ed , its part of the stack is 

discarded. This is done by the S register being set to address 

the memory location preceding the l as t MSCW . This topmost 

MSCW is deleted from the stack history list by changing the 

F register to point to the prior MSCW. 

Finally, the code segment and the next operator for the procedure 

exited to are accessed via the RCW. 

point following the procedure cail. 

5.9 Array Declaration 

Operation resumes at the 

The tree format for the array declaration <simple type> array 

X1,X2'' '' ,Xm(tO: :µ0,£1::µ1, ·••,tn-1: :µn-1) is : 



57. 

AR, 

/\ <\ 
COORD 

I 
AR."RAYDC 

A B6700 array is a s eement and therefore has a segment descri ptor . 

This data descriptor ( DD ) contains the base address , maximum index 

(from zero) , size of elements ( double -precision, single-precision, 

8 bit characters) , et c. When the descriptor is indexed , the 

indexing integer is checked against the size and i f allowable 

r ep l aces the size field , a bit being set i n the descriptor 

indicating that it has been indexed. An i nde xed data descri ptor 

may be used in most places wh e re an address is r equired by other 

ins t ructions . 

Two dimensional arrays may be handled by defining arrays of 

descriptors , for example A(0: : 2,0 : :1) is s et up as: 



A I I I 
I 4 

A(O,;':) 

l) A(1,;':) 

A(2,;',) 

~ 

1--?1, 

5. 10 Subscripted Variables 

The tree format of a subscript ed variable from an array A of 

n dimensions : 

where X. is an integer expression is: 
1 

\ 
INDX 

I\ 
INDX xn -1 

/\ 
I 

xn-2 

INDX 

/\ 
INDX 

1·\ 
ARRAYID x

0 

58. 

A(0,1) 

A(1,0) 

A(1,1) 

A(2,0) 

A(2,1) 



The B6700 indexing instruction is INDX (not to be confused with 

tree node INDX). It handles an operand and an array descriptor 

in any order on top of the stack. It will fetch a descriptor 

pointed to by an IRW. INDX interprets the length field of a 

DD as being in units of the correct size and the indexe d DD 

contains the pointer to the appropriate character or word , for 

example if the DD points to a double-precision array the 

indexing operand is doubled. 

If location (4, 6 ) contains the unindexed descriptor of array A 

and ( 5,3 ) is i, then 

If j is 

A(i) is NAMC (4, 6 ) 

or 

( 5, 4) , then 

A(i,j) is 

VALC ( 5,3 ) i.e. NAMC(5,3),LOAD 

INDX 

VALC (5,3) 

NAMC (4,6) 

INDX 

NAMC (4,6) 

VALC ( 5, 3) 

INDX 

LOAD 

VALC (5,4) 

INDX 

59 . 

The pair INDX, LOAD can be replaced by NXLN if another descriptor 

is expected (as above), or NXLV if an operand is required. 

Because of the virtual memory it is advisable to keep segments 

small. Therefore usually large arrays are segmented and treated 

as two dimensional although the programmer sees it as linear. In 

this case the main descriptor of the array has a special bit set. 



On indexing, the index value is divided by a constant depending 

on the data item's length (double -precision 128, single 256 , 

8 bit characters 1536 ) to give a row number and index within the 

row. The array is treated as 2 dimens i onal and indexed twice , 

for example a s ingl e-precision array descriptor indexed with 

1040 would actually fetch word 15 of row 4 (counting from zero ). 

5.11 Passing Sub-Arrays as Parameters 

The user may pass any generalized row or column, i.e. any 

subarray of dimension 1,2, .. ,n-1 of an n-dimens ional array, as 

a parameter to a procedure. Since all array parameters are 

passed by name, all that is needed is to copy certain parts or 

all of the array descriptor . 

According to the syntax of subar·rays, an asterisk ( 1:) is put in 

the positions of the actual subarray parameter to indicate which 

dimen s ions are to be in cluded in th e formal array . 

In the positions in which :': occurs in subarrays in the source 

code , the Pass Two tree output i s the node AR:': . 

tree corresponding to the actual parameter 

A(4,:':) 

is: 

\ 
INDX 

/\ 
INDX AR:': 

/\ 
ARRAYID 4 

For exarr.ple the 

60. 

indicating that tbe second dimension of the two dimensional array 

A is unspecified and the 4th row corresponds to the one dimensional 

formal array. 



5.12 Operands 

Arithmetic operands are regarded as floating point numbers -

integers have zero exponents. There are two instructions, 

NTGR and NTIA, for rounding or truncating the top of the stack 

to an integer. There are a few arithmetic operators ( for 

example ADD) which gives a double-precision result if one of 

the top two stack words is double-precision. 

For logical values, an operand with a 1 in bit zero is regarded 

as true, an operand with a O in bit zero is regarded as false . 

Relational operators GRTR, GREQ, EQUL, LSEQ , LESS, NEQL operate 

on the t op two words in the stack and produce a logical value 

result. Logical operators LAND, LOR, LNOT operate bitwise 

61. 

on the top of the stack words extending a single-precision word 

with zeros to double-precision if one operand is double-precision . 

Constant s are put in the stack by one of 5 instructions: 

LT8 } " Literal Calls 11 followed by an 8, 16, or 

LT16 48 bit const an t which is put in the 

LT48 stack as a 48 bit operand 

ZERO puts on the stack an integer 0 constant 

ONE puts on the stack an integer 1 constant 

String operands are treated as arrays . 

The NAMC (Name Call) instruction creates an IRW. The contents 

of any location addre ssed by the IRW on the top of the stack may 

be put in to the top of stack by using the LOAD instruction, 

i.e. a value is put on the top of the stack by using 

NAMC 

LOAD 

(lev,disp) 



6 2 . 

The main operand fetchin g instruction is VALC ( lev , disp ) . It 

follows i ndirect references, enters thunk procedures , etc . It 

also indexes a non indexed array descriptor with the t op of 

stack operand. Thus the A( i , j ) of section 5.10 also translates 

as: 

VALC (5,4 ) puts j in stack 

VALC (5,3) puts i in stack 

VALC ( 4 ,6) fetches A and indexe s it twice 

The EVAL instruction examines the address on top of the stack 

and follows any references and perfo~'ms thunks until it gets an 

address of an operand or an unindexed array descriptor . 

The store instruct ions are STON and STOD (store "nondestructive" 

and store "destructive") . They do an EVAL on the address on the 

top of the stack . Actually the top two elements of the stack may 

be an operand and an addr·ess in any order . The store instructions 

put the address on top, EVAL it , and then performs the store. 

5.1 3 Branching 

The "instruction counter" of the B6700 is a collection of 

registers which keep the base address ( and limit) of the program 

segment being executed and of the syllable address within that 

s egment . The simple branch instructions - branch on false , 

BRFL, branch on true, BRTR, and branch unconditionally , BRUN -

are followed by two syllables giving the destination address 

within the current segment. If a destination in another segment 

is required, a PCW is put on top of the stack and the dynamic 

branch i nstructions DBFL , DBTR and DBUN are used . 

5 . 14 Record and Field Designators 

ALGOL W permits records to be created in two ways . The name 

of the record class may stand alone or the name of the record 

class may be followed by a list of initial values of the fields . 



Both creations are reference expressions . 

Example RECORD A (INTEGER I,J); 

REFERENCE (A) R; 

R:=A; 

R:=A ( 5,8); 

R 
~ 

/~ 
R 

\ 
R:= 

RCCLID A 

,/ \, 
R R) 

/\ 
R, 8 

I\ 
RCCLID A 5 

In this i mp lerr.ent ation, each record class is held in a separate 

array . When a new record of a r ecord class is created , the 

l ength of the array is increased by the lengt h of the new record. 

This is achieved in an analogous way to the resize statemen t 

in Burroughs Extended ALGOL [12] and entails only changing the 

l ength field i n the array's descriptor . Thus no memory space 

is allocated before it is required. No garbage colle ction has 

been implemented as it is thought that with t his method of 

allocating storage for record classes in arrays , the B6700 memory 

management will remove arrays that are not referenced. Also 

when the descriptor dis appears on block exit the array is 

deallocated by the system . 

Since a reference points to a record with fields of any of the 

nine simple types , field designators of the form F(R), where F 

is a field name and Ra reference expression, select the desired 

field of the simple type of F. The loading of the reference 

value is analogous to gett ing an· address from a s ubscript 

63. 



calculation. This address is then used as a base to index the 

proper element of the record while the displacement is the 

relative displacement of field F within the record. 

Examp le RECORD A(REFERENCE(A)X,Y;INTEGER I); 

INTEGER J; 

REFERENCE (A) R; 

J:=I(R); 

I(Y(R)):=J; 

I 

\ 
/\ 

.­. -

J REFX 

/\ 
I R 

\ 
A:= 

I\ 
REFX J 

/\ 
REFX 

/\ 
y R 

64. 



65. 

5.15 Further Examples of Pass Two Tree Output as Received 

by Pass Three 

FOR STATEMENT 

~ 
ITERST 

/~ 
FORCL statement 

/\ 
A:= STEPUNTIL 

/\nt.i. ~.exp, 
SEG int.exp. 

I 
CONID 

ITERST2 

/ ~ 
ENDFORLIST statement 

/ ~ 
FORLIST int.exp . 

/ \ 
FORLIST 

/\ 
int.exp. 

SEG int.exp. 

/ 
CONID 



66. 

WHILE STATEMENT 

~ 
WHILEST 

/~ 
WHILE OP statement 

/\ 
WHILE log. exp . 

IF STATF.MENT 

~ 
IFST 

/ -~ 

IFJ statement 

IF/ l~. exp . 

~ 
IFST 

I ~ 
UJ statement 

/~ 
UFJ statement 

/~ 
IF log.exp. 



67. 

CASE STATEMENT 

CL 

I -~ 
UJ statement 

/~ 
.• • statement 

I 
UJ 

/~ 
UJ statement 

I 
CASE 

I 
int.exp . 

GOTO STATEMEHT 

\ 
GOTO 

\ 
LABELID 

LABEL DE CLARATION 

LABELID 

ASSERT STATE MENT 
\ 

ASSE RT 

\ 
log . exp. 



68. 

SPACE STATEMENT 

~ 
SPACE 

/~ 
FI LEID int . exp . 

REWIND STATEMENT 

"" REWIND 

~ 
FILEID 

SEEK STATEMENT 

"" SEEK 

/~ 
FILEID int .exp . 

CLOSE STATEMENT 

\ "" CLOSE CLOSEV 

\ I ~ 
FILEID FILE ID close option 

LOCK STATEMENT 

\ " LOCK LOCKV 

\ /~ 
FILEID FILEID lock option 



OPEN STATEMENT 

\ 
OPEN 

\ 
FILE ID 

IF EXPRESSION 

IFEXP 

/~ 
u ression 

/ '~ 
expression 

I~ 
IFJ 

I F log . exp . 

CASE EXPRESSION 

" CL 

/~ /UJ ~ expression 

expression 

I 
UJ 

I~ 
UJ expression 

I 
CASE 

I 
int. exp. 

69. 



70. 

LOGICAL EXPRESSIONS 

"" "' ""' LOGOR LOG, BITOR 

/~ 
log .exp. log.exp. 

~ 
log.exp. 

/~ 
bit.exp. bit.exp. 

\ \ 
= IS 

/\ 
exp . exp. 

/\ 
exp. exp . 

; · ~ 
ref.exp. RCCLID 

ARITHV£TIC EXPRESSIONS 

"" 
\ \ 

REM ABS 

/\ 
exp. exp . 

/\ 
int.exp . int. exp . 

\ 
exp . 

SUBSTRING 

\ 
SUBSTRING 

/\ 
str . var . I 

/\ 
int.exp. NUMBER 



71. 

ASSIGNMENT STA'l':CMENT 

\ \ 
A:= A:= 

/\ /\ 
var . exp. var . A:=2 

I\ 
var . exp. 

FILE DECLARATION 

"' INIT) 

/ ' ~ 
INIT, attribute 

·~ 

•. ( attribute 

/ 
INIT, 

/ ~ 
COORD attribute 

/ 
FILEDC 

READ/WRITE STATEMI:NT 

"' READ or WRITE 

~ 
RWHEAD 

/ ~ 
FILEPT format and list 

/~ 
FILE ID CARCONT 

/ ~ 
carriage NUMBER 

control 



Chapter 6 

SUMMARY 

At the time of writing this thesis Pass One had been extensively 

checked and was working very well although with more use by 

programmers errors may be found. Pass Two was working well 

although had not been extensively checked . Pass Three was 

72. 

still causing some trouble but was expected to be in good working 

order in a very short time. 

There was times when it was felt that it might have been far 

easier to write a _recursive descent compiler but with the inclusion 

of debugging features along the lines of those devised by 

Satterthwaite [ 13] > the three pass compiler will have proved its 

worth. 

Apart from the inclusion of debugging features it is hoped to 

have the standard ALGOL W I/0 procedures included so making it 

compat ible with other ALGOL W implementations . 



REFERENCES 

1. WIRTH , Niklaus 

Proposal for a Report on a Successor of ALGOL 60 . 

MR75 , Mathematical Centre, Amsterdam , August 1965 . 

2 . WIRTH, Niklaus and C. A. R. Hoare 

A Contribution to the Development of ALGOL. 

9 , (June 1966) , pp 413-431 . 

3 . ROSS , D. T. 

Comm . ACM 

A Generalised Technique for Symbol Manipulation and 

Numerical Calculation . Comm . ACM 4 , (March 1961 ), 

pp 147- 150 . 

4 . HOARE , C.A. R. 

Record Handling . pp 291-347 . In Genuys , F. ed . 

Programming Language s . Academic Press , 1968 . 

5 . BAUR, H.R. et al . 

ALGOL W Language Description . Technical Report 

CS 89 , Computer Science Department, Stanford University , 

March 1968 . 

6 . BAUR, H.R. et al . 

ALGOL W Implementation . Technical Report CS 98 , 

Computer Science Department , Stanford University , 

May 1968 . 

7. SITES , Richard L. 

ALGOL W Reference Manual. Computer Sci en ce Department , 

Stanford University , August 1971 . 

8 . NAUR , P . ( ed. ) 

Revised Report on the Algorithmic Language ALGOL 60 , 

Comm. ACM 6 , (January 1963 ), pp 1-17 . 

9. MOIR , D. A. K. and J . M. Wells 

Format-Di rected Input / Output For Algol W. Scientific 

Reports No. 23 , Department of Computer Science , The 

University of Man i toba , Apri l 1971 . 

73. 



10. PATEL, Rajini M. 

Basic I/0 Handling on Burroughs B6500. 

Proceedings of 2nd ACM Symposium on Operating 

Systems Principles, (October 1969), pp 120-129. 

11. THE BURROUGHS CORPORATION 

Burroughs B6700 Input/Output Subsystem Information 

Manual. No. 5000185, 1974 

12. THE BURROUGHS CORPORATION 

Burroughs B6 700/B7700 ALGOL Language Reference 

Manual, 1974. 

13. SATTERTHWAITE, E. 

Debugging Tools for High Level Langua8es. 

Technical Report No . 29 , University of Newcast le 

upon Tyne, December 1971. 

14. FLOYD, R.W. 

Syntactic Analys is and Operator Precedence. 

JACM 10, (July 1963), pp 316-333. 

15. MARTIN, D.F. 

Boolean Matrix Methods for the Detection of Simple 

Precedence Grammars . CACM 11, (October 1968), 

pp 685-687. 

16. WIRTH, Niklaus and Helmut Weber 

EULER: A Generalization of ALGOL and its Formal 

Definition: Part I. 

pp 13-23,25. 

17. THE BURROUGHS CORPORATION 

Comm. ACM 9, (January 1966), 

74. 

Burroughs B6700 Informat ion Processing Systems Reference 

Manual, 1972. 

18. THE BURROUGHS CORPORATION 

Burroughs B6 700 Code File Formats 



19. ORGANICK, Elliott I. 

Computer System Organization. The B5700/B6700 

Series. Academic Press, 1973. 

20. RANDELL, B. and L.J . Russell 

ALGOL 60 Implementation. Academic Press, 1974. 

21. INGERMANN , P.Z. 

Thunks. CACM 4, (January 1961), pp 55-58. 

75. 



76 . 

APPENDICES 



Appendix A 

SIMPLE PRECEDENCE GRAMMAR FOR ALGOL H 

1. <T var id> · · - <id> 

2. <label id> · · - <id> 

3. <I' array id> : : = <id> 

4 . <proc id> : : = <id> 

5 . <rec cl id> : : = <id> 

6. <T fld id> : := < id> 

7. <cont id> : : = <id> 

8. <I' func i d> : : = <id> 

9. <file id> : : = <id> 

10. 

11. 

<prog> <statement> 

· ·= <proc dee> 

12 . <statement> : : = <state> 

13 . <state>··= <si st> 

. . -.. - <for cl> DO 14. 

15 . 

16 . 

17. 

18 . 

19. 

20 . 

21. 

22. 

23 . 

24. 

25 . 

26. 

27 . 

28. 

29 . 

30 . 

31. 

32 . 

. . - <for cl> DO <state > 

.. - <while cl> DO 

.. -.. - <while c l> DO <state> 

. . -.. - <if cl> 

. . = <if cl> <state> 

- <if cl> <true pt> 
. . -.. - <if cl> <true pt> <state> 

.. - <case seq> END 

: : = <case s eq> <statement> END 

<si st> . ·= <blck> 

.. - <I' ass s t> 

. . - GOTO <label id> 

.. -.. - ASSERT <T exp~~> 

: : = <proc i d> 

.. -.. - <proc hd> <T exp>) 

•. = <proc hd> <statement>) 

.. = <proc hd>) 

. . -.. - READ <r-w hd> 

A1. 



33. 

34. 

35. 

36. 

38. 

39. 

40. 

41. 

42. 

43 . 

44. 

45. 

46. 

47. <blck> 

. ·= WRITE <rw hd> 

. ·= <space hd> <T exp>) 

: : = <rewind hd> <file id>) 

. ·= <seek hd>) 

. ·- <close hd> <file id>) .. -
: : = <close hd:':> <ast>) 

. . - <close hd:':> PURGE) .. -

. ·= <close hd:':> REEL ) 

. . - <close hd:':> CRUNCH) .. -

. , - <lock hd> <file id>) 

. .- <lock hd:':> <as t>) 

. . - <lock hd:':> CRUNCH) .. -
: := <open hd> <file id>) 

. . = <blockb ody> END 

48. · • = <blockbody> <statement> END 

49. <blockbody> · · - <block hd> 

50. 

51. 

52. 

.. - <blockbody>; 

- <blockbody> <statement>; 

:: = <blockbody> <label def> 

53. <block hd> ··-BEGIN 

54. 

55. 

56. 

57. 

58. 

59. <si var de> 

-

-

: := 

.. = 

: := 

.. -

<block hd> <si var de>; 

<block hd> <array dee>; 

<block hd> <proc dee>; 

<block hd> <re cl dee>; 

<block hd> <file dee>; 

<si var de:'.> 

60. <si var de*>::= <simp type> <id> 

61. : : = <si var dc1:> , , <id> 

62. <simp type> : : = <ref type>) 

72. <ref type> · · = REFERENCE <id> 

: : = <ref type> , , <id> 

<array dee> : : = <bnd list hd> <T exp> 

.. - <bnd list hd> <T exp> .. -
<bnd list hd> .. - <array hd>( .. -

.. - <array hd>( .. -

<T exp>) 

exp>] <T 

73. 

76. 

77. 

78. 

79. 

80. <bnd list hd> <T exp> .. <I' exp>, 

A2. 



81 . <array hd> ::= <simp type> AP.RAY < id> 

82. : : = <array hd> , , <id> 

83 . <I' exp> : : = <T exp:':> 

84 . <I' exp:':> .. - <si T exp> 

85 . · • = <if cl> < true exp> <T exp:':> 

86 . : : = <case hd> <I' exp>) 

87. <si T exp> · · = <si T exp:':> 

88 . 

89 . 

90 . 

: : = <si T exp:'o':> <eql op> <si T exp:':> 

- <si T exp:'::':> <rel op> <si T exp:':> 

: : = <si T exp:H:> I S <rec cl id> 

91 . <si T exp:':> : : = <si T exp:'::':> 

92. <si T exp:'::·:> : : = <T term> 

93 . 

94 . 

95 . 

96 . 

97 . 

98 . 

99 . 

100 . 

101. 

102 . 

. .­.. -

. ·= 

. . -.. -
: := 

. ·= 

. . -.. -
• . = 

. . = 

+ <T term> 

- <T term> 

<si T exp:'.:':> + <T term> 

<si T e xp:'::':> - <T term> 

<si T exp:'::':> OR <T term> 

<rec cl id> 

<rec des hd>) 

<rec des hd> <T exp>) 

<string> 

NULL 

103 . <T term> : : = <r term:·:> 

104. 

105 . 

106. 

107. 

108. 

109. 

<I' term:':> .. -.. - <T fact > 

: : = <T term:':> :': <T fact> 

: : = <T term,':> / <T fact> 

· · - <I' term:·:> DIV <T fact> 

· · - <T term:':> REM <T fact> 

· · = <T term:':> AND <T fact> 

110. <T fact> : : = <T second> 

111. : : = -, <T fact> 

112 . <T second> ::= <T prim> 

113. 

114. 

115. 

: : = <T second> :'c:': <T prim> 

::= <T second> SHL <T prim> 

· · = <T second> SHR <T prim> 

116. <T prim> · · = <T var> 

117 . · · = <T func id> 

A3 . 



118. 

119. 

120. 

121. 

122. 

123. 

124. 

125. 

126. 

127. 

128. 

129. 

130. 

131. 

132 . 

133. 

134. 

135. 

136 . 

137. 

138 . 

139. 

140. 

141. 

142 . 

143. 

144. 

145. 

146. 

147. 

148. 

149. 

150. 

<T var> .. = 

: : = 

. . = 

<si T var> 

<si T var,•,> 

<I' fld hd> 

<T sub des> 

<I' sub hd> 

<ast> : : = ~·: 

<sub strng 

. . = <T func hd> <I' exp>) 

- <T func hd> <statement>) 

: := <T func hd>) 

. ·= <left paren> <I' exp>) 

. . - TRUE .. -

. .- FALSE .. -
: := <cont id> 

LONG <T prim> 

: : = SHORT <T prim> 

: := AB S <T prim> 

<T numb> 

: : = <bit seq> 

. ·= <blackbody> <I' exp> END 

<si T var> 

<sub strng hd> <I' exp> <lngth>) 

<sub strng hd> <T exp> <lngth> J 
.. - <si T var.·.> .. -

- <T array id> 

.. - <T var id> 

. ·= <T fld hd> <T exp>) 

: := <T sub des> 

. .- <T fld id>( 

: : = <T sub hd> <T exp>) 

. ·= <T sub hd> <T exp>] 

. . - <T sub hd> <ast>) .. -

. ·- <T sub hd> <ast>] .. -
: : = <T array id>( 

.. - <T array id>[ .. -

. ·= <T sub hd> <T exp>, 

.. - <T sub hd> <ast>, 

hd> .. - <si T var>( 

: := <si T var>( 

151. <lngth> : : = <T numb> 

152. <I' func hd> : : = <T func id>( 

153. 

154. 

. ·= <T func hd> <r exp>, 

<T func hd> <statement>, 

A4. 



.. -.. - <T func hd>, 

<left paren> . . - ( 

<rec des hd> . . -.. - <rec cl id>( 

155. 

156. 

157. 

158 . 

159. 

160. 

161. 

. ·= <rec des hd> <T exp>, 

. ·-. . -
<eql op> : : = = 

.. - -, = 

162. <rel op> · · = < 

163. 

164 . 

165. 

<= 

. .- > 

>= 

<rec des hd>, 

166 . <if cl>: := IF <T exp> THEN 

167. <true exp> : : = <T exp> ELSE 

16 8. <case hd> ··=<case cl>( 

169 . : : = <case hd> <T exp>, 

170 . <case cl> ··= CASE <T exp> OF 

171. 

173 . 

174 . 

175. 

176 . 

177. 

<proc dee> .. -.. - <proc head> <state> 
.. - <proc head> .. -
.. - <proc head> <T exp> 

<proc head> . . -.. - <proc head:':>; 

<proc head:·:> <proc> 

··= <proc> <f par hd>) 

178 . <proc> .. = PROCE DURE <id> 

179 . · · = <sirnp type> PROCEDURE <id> 

180. <f par hd> · · = <f par hd{:> 

<f par hd~':> 

::= <f array dee> 

· · = <f proc dee> 
. .-. . - (<s imp type> <id> 

. ·= (<s imp type> VALUE <id> 

. ·= (<s imp type> RESULT <id> 

. . = (<s imp type> VALUE RESULT 

: : = <f par hd~':> , , <id> 

<id> 

: := <f par hdM:> <simp type> <id> 

181. 

182 . 

183. 

184 . 

185. 

186 . 

187 . 

188 . 

189 . 

190 . 

191. 

192 . 

. ·= <f par hd1n':> <simp t ype> VALUE <id> 

. ·= <f par hdM:> <simp t ype> RESULT <id> 

. , -.. - <f par hd,h':> <simp type> VALUE RESULT 

<f par hd,H:> : : = <f par hd:':>; 

AS, 

<id> 



193. 

194. 

: := <f array dee>; 

::= <f proe dee>; 

195. <f array dee>··= <f bnd hd> <as t>) 

196. - <f bnd hd> <ast>] 

197. <f bnd hd> · · = <f array hd>( 

198. ··= <f array hd>[ 

199. : : = <f bnd hd> <ast>, 

200. <f array hd> - (<simp type> ARRAY <id> 

201. 

202. 

203. 

204 . 

205. 

<f proe dee> 

<f proe hd> 

: : = 
.. -.. -
: : = 

.. -

. .-

. .­.. -

<f par hd:'::':> <s imp type> ARRAY 

<f array hd> , , <id> 

<f pt>Oe hd> 

<f proe hd> <v par hd>) 

(<simp type> PROCEDURE <id> 

( PROCEDURE <id> 

<f proe hd> , , <id> 

<id> 

206. 

207. 

20 8. 

209. 

210. 

211. 

212 . 

: : = <f par hd:'::':> <simp type> PROCEDURE <id> 

: := <f par hd:'::":> PROCEDURE <id> 

<v par hd> : : = <v par hd,':> 

. ·= <v array dee> 

: : = <v proe dee> 

213. <v par hd:':> : : = <left paren> 

214. 

215. 

216. 

217. 

218. 

219. 

220. 

221. 

222. 

223. 

224. 

225. 

226. 

227. 

228. 

229. 

::= (<sirnp type> 

- (<s imp type> VALUE 

.. - ( <simp type> RESULT 

.. - (<sirnp type> VALUE .. -

.. - <v par hd:'::':> <simp .. -

.. - <v par hd:h':> <s i mp 

.. - <v par hd:'o':> <simp 

.. - <v par hd:'.:':> <s imp .. -
<v par hd:'::':> .. - <v par hd:':>; 

: := <v array dee>; 
.. - <v proe dee>; .. -

<v array dee> : := <v bnd hd> <ast>) 

: : = <:v bnd hd> <ast> J 
<v bnd hd> . ·- <v array hd>( .. -

::= <v array hd>( 

: := <v bnd hd> <ast>, 

RESULT 

type> 

type> VALUE 

type> RESULT 

type> VALUE RESULT 

A6, 



<v array hd> . .- (<s i mp type> ARRAY 
.. -.. - <v par hd~'d:> <simp type> ARRAY 

<v proc dee> .. = <:v proc hd> 

230. 

231. 

232 . 

233. 

234. 

235 . 

236. 

.. - <:v proc hd> <v par hd>) 

<v proc hd> . . = (<simp type> PROCEDURE 

: := (PROCEDURE 

· · = <v par hd1n~> <simp type> PROCEDURE 

2 37 . : : = <v par hd~·:~':> PROCEDURE 

240 . <re cl dee> : : = <rec hd>) 

241. 

242 . 

243 . 

244. 

245. 

2%. 

247. 

248 . 

<rec hd> <r>ecord;':> ( <simp type> <id> 

: : = <re C h d> , , <id> 
. .­.. -

<record1:> 

<rec hd:·:> 

<file dee> 

<r>ec hd:':> <s i mp type> <id> 

RECORD <id> 

<r>ec hd>; 

<file part > 

::= <file part hd> <init> 

<file part> . ·­.. - FILE <id> 

249 . · · = <file part> , , <id> 

250 . <file part hd> : := <file part>( 

251. <ini t > : : = <ini t attrib> 

252 . <label def >: := <id>: 

253 . 

254 . 

255 . 

256 . 

257 . 

258. 

259 . 

<T ass st> .. :: <T var> . - <T exp:':> 
.. - <T var> := <T ass st> 

<proc hd> - <proc id>( 
•. = <proc hd> <I' exp>, 

: : = <proc hd> <statement>, 

: := <proc hd>, 

<rw hd> : := <r-w state> 

260. <space hd> : : = SPACE <space hd:•:> 

261. <space hd*> ··- <left paren> <file id>, 

262 . <rewind hd> ··= REWIND( 

263 . <seek hd>: := <seek hd*> <T exp>] 

264. <seek hd:':> : := <seek hM::':> <file id>[ 

265 . <seek hd:'::':> : : = SEEK( 

269. <close hd> ::= CLOSE( 

270 . <close hd*> ::= <close hd> <file i d>, 

271 . <lock hd> ::= LOCK( 

A7. 



272. <lock hd:';> : : = <lock hd> <file id> , 

273, <open hd> : := OPEN( 

274. <for cl> : : = <for hd> <step until> <T exp> 

275. · · = <for hd> 

276. 

277. <for hd> 

<for list> <I' exp> 

<for:';> .. = <I' exp.':> 

278. <for:':> : : = FOR <id> 

279. <step until>: : = STEP <I' exp> UNTIL 

280. 

281. 

282 . 

283. 

284 . 

285 . 

286. 

287. 

288 . 

<for list> 

<while cl> 

<true pt> 

<case seq> 

: : = UNTIL 

: : = <for hd>, 

.. - <for list> <T exp>, 

: := WHILE <I' exp> 
.. -.. - <si st> ELSE 

: := ELSE 
.. -.. - <case cl> BEGIN 

: : = <case seq> <statement>; 

. ·= <case seq>; 

A8. 



Appendix B 

FULL DESCRIPTION OF EXTENDED ALGOL W 

1 . METALANGUAGE DEFINITION 

1.1 . Notation 

1. 2 . Definit ions 

2. LANGUAGE COMPONENTS 

2 . 1 . Basic Symbol 

2 . 2 . Identifiers 

2 . 3. Numbers 

2.4. Remarks 

2 . 5 . Strings 

3. PROGRAM STRUCTURE 

4. DECLARATIONS 

4.1. Array Declaration 

4.2. File Decl aration 

4, 3 . Procedure Declaration 

4. 4 . Record Class Declaration 

4.5. Simple Variable Declaration 

5 . STATEMENTS 

5 . 1. Assert Statement 

5 . 2. 

5.3 . 

5,4 . 

5 . 5 . 

5 . 6 . 

5 . 7 . 

S. 8 . 

5 . 9 . 

5 . 10 . 

5 . 11. 

5 . 12 . 

5 . 13 . 

5 .14 . 

5 .15 . 

Assignment Statement 

Blocks 

Case Statemer,t 

Close Statement 

Go To Statement 

If Statement 

Iterative Statement 

Lock Statement 

Procedure Statement 

Read Statement 

Rewind Statement 

Seek Statement 

Space Statement 

Write Statement 

B1. 



6. EXPRESS IONS 

6 .1. Arithmetic Expressions 

6.2 . Bit Express i ons 

6.3. Function Designators 

6,4 . Logical Expressions 

6.5 . Operator Precedence 

6,6. Reference Expressions 

6 .7. String Expressions 

6 , 8 . Variable s 

6 . 9. Standard Functions 

7 . SYNTACTIC ENTITIES WITH SECTION NUMBERS 

1. METALANGUAGE DEFINITION 

The Reference Language is a phrase structure language , defined by 

a formal metalanguage . This metalanguage makes use of the 

notation and definitions explained below . 

language ALGOL Wis determined by : 

The structure of the 

(1) V, the set of basic constituents of the language , 

(2 ) U, the set of syntactic entities , and 

(3) P , the set of syntactic rules, or productions . 

1.1 NOTATION 

A syntactic entity is denoted by its name (a sequence of lett ers ) 

enclosed in the brackets < and >. A syntactic rule has the form 

<A>::= X 

where <A> is a member of U, xis any poss i ble sequence of basic 

constituents and syntactic ent i ties , simply to be called a 

"sequence". The form 

<A> : : = X I y I ... I z 

is used as an abbreviation for the set of syntact i c rules 

B2. 



1 . 2 DEFINITIONS 

<A> ; := X 

<A> · ·= y 

<A> : :=z 

1 . A sequence xis said to directly produce a sequence y if 

and only if there exist (possibly empty) sequences u and w, 

so that either (i) for some <A> in U, x = u<A>w , y = uvw , 

and <A> : : = v is a rule in P ; or (ii ) x = uw , y = uvw and 

vis a "comment" (cf. 2.4) 

B3 . 

2 . A sequence xis said to produce a sequence y if and only if 

there exists an ordered set of sequences s [ O], s [ 1], ... , s [n ] , 

so that x = s [ O], s [ n ] = y , and s ( i-1] directly produces 

s [ i ] for all i=1 , ... ,n . 

3 . A sequence xis said to be an ALGOL W program if and only 

if its constituents are members of the set V, and x can be 

produced from the syntactic entity <program>. 

To provide explanations for the meaning of ALGOL W programs , the 

letter sequences denoting syntactic entities have been chosen to 

be English words describing approximately the nature of that syntactic 

entity or construct. Where words which have appeared in this 

manner are used elsewhere in the text , they refer to the corresponding 

syntactic definition . Along with these letter sequences the 

symbo l T may occur . It is understood that this symbol must be 

replaced by any one of a fin ite set of English words (or word 

pairs ) . Unless otherwise specified in the particular section , 

all o ccurrences of the symbol T within one syntact ic rule must be 

replaced consistently , and the replacing words are 

integer 

real 

long real 

complex 

long complex 

l ogical 

bi t 

string 

reference 



For example, t he production 

<-r term> <7 factor> 

corresponds to 

<integer term> 

<real term> 

<long real term> 

<complex term> 

<long complex term> 

The production 

. . -
• • = 

. • = 

• • = 

.. = 

(cf. 6 .1) 

<integer factor> 

<real factor> 

<long real factor> 

<complex factor> 

<long complex factor> 

B4 . 

< 1
0 

primary> LONG <T
1 

primary> (cf . 6 .1 and table for long) 

corresponds to 

<long real primary> 

<long real primary> 

<long complex primary> 

.. -

.. -.. -

LmW <real primary> 

LONG <integer primary> 

LONG <complex primary> 

It i s recognized that typographical entities exist of l ower order 

than basic symbols, call ed characters. The accepted characters 

are those of the Burroughs B67OO EBCDIC code. 

2. LANGUAGE COMPONENTS 

2 . 1 BASIC SYMBOL 

Syntax 

<basic symbol> <space> I 

<letter> ! 

<digi t >! 

<r-eserved words>! 

<special characters> 

<space> <single space>! 

<space> <single space> 

<single space>: := <one blank position> 

<letter>::;: AIBlc ln lE IF IGIHII IJ IKILIMINlo lP IQIRls lTlu lv lwlx lYlz 

<digit> · ·= o l1 l2 13 l4 l s l6 l7 ls l9 · 



<r-eserved words> · · = TRUE jFALSE jNULL jINTEGER jREAL jcOMPLEX I 

LOGICAL jBITS jSTRING jREFERENCE jLONG REALI 

LONG COMPLEX jARRAY jPROCEDURE jRECORD jBEGIN j 

END jir jTHEN jELSE jcAsE lor lniv lREM jSHR lsHL I 

I S jABS jLONG jSHORT jAND jOR jGOTO jGO TO jFoR I 

STEP juNTIL Ina jwH ILE jcoMMENT jvALUE !RESULT I 

ASSERT jREAD jWRITE jPURGE jREEL jCRUNCH jFILE j 

SPACE jREWIND jSEEK jCLOSE jLOCK jOPEN 

<special characters> · · = " I# I ' I , I ; I : j . I ( I ) I+ I- I:': I I I ~d: l,IO I= I,= I 

< I<= I> I>= I = : I = = I c I J I_ 
(Note: the C stands for the vert i cal bar j ) 

Semantics 

<space> 

BS. 

Adjacent reserved words , r eserved word pairs , identifiers and numbers 

must i nclude no blanks and must be separated by at least one bl ank 

space . The mul ticharacter <special characters > (e .g . :'::': ,, =,: =) 

must include no blanks . 

Other t han these restrict i ons , a <space> can appear , if desired , 

between any two <basic symbol>s to improve the readab ility of 

the program . 

<letter>s 

Only uppercase <letter>s a re permitted . Individual letters have 

no special meanings except in the format part of a read/write 

statement (cf. 5 .11). 

<digit>s 

<di git>s are used for forming <nurnber>s, <ident ifier>s and 

<string>s. 

<r-eserved words> 

The <r-eserved words> are reserved for specific use in the language 

and may not be used for any other use. 

<special characters> 

The purpose of the <special characters> is explained elsewhere 

in the text in the syntax of the appropriate constructs . 



2.2 IDENTIFIERS 

Syntax 

<identifier> ··= <letter>! 

<identifier> <letter>! 

<identifier> <digit> ! 

<identifier> 

<r variable identifier>::= <identifier> 

<T array identifier>::= <identifier> 

<procedure identifier>::= <identifier> 

<r function identifier>::= <identifier> 

<record class identifier>::= <identifier> 

<r field identifier>::= <identifier> 

<file identifier>::= <identifier> 

<label identifier>::= <identifier> 

<control identifier> : : = <identifier> 

<identifier list>::= <identifier>! 

<identifier list>, <identifier> 

Semantics 

An <identifier> can be no more than 63 <character>s long and 

cannot include <space>s or <special characters> 

Variables, arrays , procedures , record classes and record fields 

B6. 

are said to be quantities. Identifiers serve to identify quantities, 

or they stand as files, labels, formal parameters or control 

identifiers. 

Identifiers have no inherent meaning and can be chosen freely 

except for the restriction that reserved words can't be used. 

Every <identifier> used in a program must be defined in one of the 

following ways: 

(a) a declaration, (c£ section 4) if the <identifier> 

identifies a quantity or file . It is then said to 

denote that quantity or file and to be a T variable 

identifier, T array identifier , procedure identifier, 



1 function identifier , record class identifier , 

7 field identifier or file identifier , where T 

stands for the appropriate type of the decl ared 

quantity ; 

(b) a label definition , (cf . 5 . 3) if the <identifier> 

stands as a label . 

l abel identifier ; 

It is then said to be a 

(c) its occurrence in a formal parameter list 

B7 . 

(cf. 4 , 3). It is then said to be a formal parameter; 

(d) its occurrence following the symbol FOR in a for 

clause (cf. 5. 8). It is then said to be a control 

identifier; 

(e ) its implicit declaration in the language (cf . 6 . 9) . 

Standard procedures , standard functions , and pre­

defined variables are considered to be declared in 

a block containing the program. 

The recognition of the definition of an <identi fier> is determined 

by the following rules : 

Step 1 . If the <ident i f ier> is defined by a declaration 

of a quantity or a file or by its standing as a l abel within 

the smallest block embracing a given occurrence of that 

<identifier>, then it denotes that quantity , file , or label . 

A statement following a procedure heading or a for clause is 

considered to be a block . 

Step 2. Otherwise , if that block is a procedure body and 

if the given <identifier> is identical with a formal parameter 

in the associated procedure heading, then it stands as that 

formal parameter . 

Step 3. Otherwise , if that block is preceded by a for 

clause and the identifier is identical to the control identifier 

of that for clause , then it stands as that control ident i fier . 

Otherwise , these rules are applied considering the smallest block 

embracing the block which has previously been considered . 



If either step 1 or step 2 could l ead to more than one definition 

then the identification is unde fined. 

The scope of u quantity, file , l abel , formal parameter, or 

control identifier i s the s et of stat ements in which occurrences 

B8. 

of an ident ifier may refer by the above rules to the definition of 

that quantity, f ile, label , forma l parameter, or control identifier. 

examples 

legal identifiers illegal identifiers 

2.3 NUMBERS 

Sr.·i::ax 

I 

PERSON 

X15 

D2P964LZ 

A 2 

A 

<n umber> · · = <long complex number> ! 

<complex nuIT~er> l 

<long real number>! 

<r'eal number> l 
<int eger number> 

<long complex number> : : = <complex number>L 

<complex number> : : = <imaginary number> 

<imaginary number>··- <real number>II 

<integer number>I 

<long real number•> · · = <real number>L l 

<integer number>L 

<rea l number>::= <unscaled real>! 

BEGIN 

49 

5AD 

-:,': 

NUM. 

B3 

<unscaled real> <scale factor>! 

<integer number> <scale factor>! 

<scale factor> 

<integer number>! <uns caled r eal>::= <integer number > 

.<integer number >! 

<integer numbe r>. 

<sca le factor> : : = '<int eger number> l 

'<s i gn> <integer number> 



<integer number> · · - <digit>J 

<integer number> <digit> 

<sign> · · - + 1-

Note: a long complex constant may have the I and Lin any 

order . 

Semantics 

Numbers are interpreted according to the conventional decimal 

notation. A scale factor denotes an integral power of 10 which 

is multiplied by the unscaled real or integer number preceding 

i t . Each number has a uniquely defined type. (Note that all 

<T number>s are unsigned ). No <space> can appear with i n an 

<integer number>. All numbers that do not contain the letter 

1 are considered to be single-precision . 

NUMBER RANGES 

B9 . 

The maximum and minimum integers and numbers that can be r epresented 

are as follows ( decimal versions are only approximate) . 

( a) Any integer between and including 0 and 549755813887 = 

8**13-1 = #007FFFFfFFFF can be represented in integer 

form . 

(b) The maximum normalized s ingle-precision number is 

4. 31359146674
1
68 = (8**13- 1)*8*8863 = #1FFFFFFFFFFF . 

(c) The minimum normalized single-precision nu~ber i s 

8.75811540203
1
- 47 = 8**(-51 ) = #3F9000000000. The 

number zero and numbers with va l ues between the 

maximum and minimum values given above may be 

represented in real form . 

( d) The maximum normalized double- precision number is 

1 . 94882938205028079124469
1
296031 = (8**26-1)*8**32767 = 

#1FFFFFFFFFFFFFFFFFFFFFFF . 

( e ) The min i mum normalized double- precision number is 

1 . 93854585713758583355641 
- 295811 = 8**( -32742) = 

#3F9000000000FF8000000000 . The number zero and numbers 

with values between the maximum and minimum va l ues 

given above may be represented in long form. 



COMPILER NUMBER CONVE RS ION 

The ALGOL W compiler can conve1,t a maximum of 24 significant 

decimal digits of mantissa in double-precision . The "effective 

exponent", which is the explicit exponent value following the 

' sign minus the number of die;its to the right of the decimal 

point , must be less than 29604 in absolute value. 

examples 

1.5 

0100 

0.67I 

6.024 86 1 +23 

2.71828182845904523536021 

2 .4 REMARKS 

Syntax 

<r'emark> · · = <end remark> I 
<comment r emark> 

1I 

1 1 3 

3 .1416 

1IL 

2.3 1 -6 

<end remark> : : = <any unreserved i dentifier> 

<comment remark> : : = COMMENT <any sequence of EBCDIC characters 

not containing a semicolon>; 

Semantics 

Two methods are provided in the language to insert program 

documentation at var ious locations throughout the source file. 

B10. 

The <end r emark> is only allowed immediately following the reserved 

word END. 

The <comment remark> _is allowed between any two <basic component>s. 

The compiler considers the first semicolon encountered after the 

reserved word COMMENT as the end of the <comment remark>. All. 

characters in the <comment remark> plus the word COMMENT and the 

semicolon are ignored during compilation and execution of the program. 

2. 5 STRINGS 

Syntax 

<string> : : = "<sequence of characters>" 



B11. 

Semantics 

Strings consist of any s equence of at most 256 characters enclosed 

by", the string quote. If the string quote appears in the 

sequence of characters it must be immediately followed by a 

second string quote which is then ignored . The number of 

characters in a string is said to be the length of the string. 

examples 

Syntax 

"THIS IS A STRING" 

"SO IS THIS; #/,])" 

"""" is the string of length 1 consisting of the string 

quote. 

3. PROGRAM STRUCTURE 

<program> · · = <statement>. I 
<proper procedure declaration>, I 
<~ function procedure declaration>. 

Semantics 

If the <statement> is not a <block> or <for statement> then it is 

treated as though it was in a block with no declarations, i.e. it 

is implicitly enclosed by the reserved words BEGIN and END . 

4. DECLARATIONS 

Syntax 

<declaration>::= <simple variable declarat ion>! 

<array declaration>! 

<procedure declaration>! 

<record class declaration>! 

<file declaration> 

Semantics 

Declarations serve to associate <identifier>s with the quantities 

used in the program, to attribute certain permanent properties to 



these quantities (e.g. type, structure), and to determine their 

scope. Every <identifier> must be declared prior to using it 

in an ALGOL W program and upon exit from a block, all quantities 

declared within that block lose their value and significance. 

4.1 ARRAY DECLARATIONS 

Syntax 

<array declarat ion>::= <T array declaration> 

<T array declaration>::= <simple type> ARRAY <identifier list> 

(<bound pair list>) J 

<simple type> ARRAY <identifier list> 

[<bound pair list>] 

<bound pair list> : : = <bound pair> l 
<bound pair list>, <bound pair> 

<bound pair> · · = <lower bound> : : <upper bound> 

<lower bound> - <integer expression> 

<upper bound>::= <integer expression> 

Semantics 

B12. 

Each <identifier> of the <ident ifier list> of an <array declaration> 

is associated with a variable which is declared to be of type 

array. A variable of type array is an ordered set of variables 

whose type is the <simple type> preceding the symbo l ARRAY. The 

dimension of the array is the number of entries in the bound pair 

list. 

Every element of an array is identified by a list of indices. The 

indices are the integers between and including the values of the 

<lower bound> and the <upper bound>. Every expression in the 

<bound pair list> is evaluated exactly once upon entry to the block 

in which the declaration occurs. The <bound pair> expressions 

can depend only on variables and procedures global to the block in 

which the declaration occurs. In order to be valid, for every 

<bound pair>, the value of the <upper bound> must not be less than 

the value of the <lower bound>. 

bound> is 131 ,071. 

The maximum value of a <lower 

• 



examples 

INTEGER ARRAY H(1: :100) 

INTEGER AF.RAY J(1: :IF B THEN M+N ELSE M] 

REAL ARRAY A,B(1::M,1::N) 

STRING(12)ARRAY STREET,TOWN,CITY(J::K+1) 

4.2 FILE DECLARATIONS 

Syntax 

<file declaration>::= FILE <file list> 

<file list>::= <file list part>! 

<file identifier>, <file list part> 

<file list part>::= <file identifier>! 

<file identifier> (<initial attribute list>) 

<initial attribute list>: := <initial attribute>! 

B13. 

<initial attribute list>, <initial attribute> 

Semantics 

A <file declaration> associates a <file identifier> with a file. 

The attributes for that particular file may or may not be specified 

in the <file declaration>. For information regarding the file 

attributes , refer to the B6700 Input/Output Subsystem Reference 

Manual, form 5000185, and B6700/B7700 System Software Handbook, 

form 5000722 . 

examples 

FILE A 

FILE COM(KIND=DISK,FILETYPE=8,BUFFERS=2,INTMODE=EBCDIC) 

FILE GOT( KIND=PRINTER,BUFFERS= 3 ,OPEN=TRUE, TITLE= "GONE") 



4.3 PROCEDURE DECLARATIONS 

Syntax 

<procedure declaration>::= <proper procedure de clarat ion>! 

<r function procedure declaration> 

<proper procedure declaration>::= PROCEDURE <procedure heading>; 

<proper procedure body> 

<r function procedure declaration>::= <simple type> PROCEDURE 

B14. 

<procedure heading>;<r function procedure body> 

<proper procedure body>::= <statement> 

<r
0 

function pr ocedure body>::= <r
1 

expression> 

<procedure heading> : : = <ident ifier> I 
<ident ifier> (<formal parameter list>) 

<formal parameter list>::= <formal parameter segment>! 

<formal parameter list>;<formal parameter 

segment> 

<forma l parameter segment> : : = <formal type> <ident ifier list> I 

<formal array parameter>! 

<formal procedure parameter> 

<formal type> · · - <simple type> l 
<simple type> VALUE I 
<simple type> RESULTj 

<simple type> VALUE RESULT 

<formal array parameter>::= <simple type> ARRAY <identifier list> 

(<dimension specification>) j 

<simple type> ARRAY <identifier list> 

[<dimension specification>) 

<dimension specification>::= *I 

<dimension specification>,~·: 

<formal procedure parameter>::= <simple type> PROCEDURE <identifier 

list> (<virtual parameter list>) I 

<simple type> PROCEDURE <identifier 

1ist> <) I 
<~imple type> PROCEDURE <identifier 

ust>I 

PROCEDURE <identifier list> 

(<virtual parameter list>) I 
PROCEDURE <identifier list>() J 

PROCEDURE <identifier list> 



<virtual parameter list>··- <virtual parameter segment>! 

<virtual parameter list>;<virtual 

parameter segment> 

<virtual parameter segment> .. - <virtual type>J 

<virtual array parameter>! 

<virtual procedure parameter> 

<virtual type> : : = <formal type> 

<virtual array parameter>::= <simple type> ARRAY (<dimension 

specification>) J 

<simple type> ARRAY [<dimens ion 

specification> J 

B15. 

<virtual procedure parameter>··= <simple type> PROCEDURE (<virtual 

Semantics 

parameter list> )j 
<simple type> PROCEDURE () I 
<simple type> PROCEDURE j 

PROCEDURE (<virtual parameter list>) I 
PROCEDURE() 

PROCEDURE 

r
1 

must be assignment compatible ( c .f. 5.2) with r
0

. 

A procedure declaration associates the procedure body with the 

identifier immediately following the symbol PROCEDURE. The principal 

part of the procedure declaration is the procedure body. Other 

parts of the block in whose heading the procedure is declared 

can then cause this procedure body to be executed or evaluated. A 

proper procedure is activated by a procedure statement (c.f. 5.10), 

a function procedure by a function designator (c.f. 6.3). Associated 

with the procedure body is a heading containing the procedure 

identifier and possibly a list of formal parameters. 

TYPE SPECIFICATION OF FORMAL PARAMETERS 

All formal parameters of a formal parameter segment are of the 

same indicated type. The type must be such that the replacement 

of the formal parameter by the actual parameter of this specified 



type leads to correct ALGOL W expressions and statements . 

The effect of the syrr~ol s VALUE and RESULT appearing in a formal 

type is explained by the following rule, which is applied to the 

procedure body before the procedure is invoked : 

( 1) The procedure body i s enclosed by the symbols 

BEGIN and END if it is not already enclosed 

by these symbol s ; 

( 2) For every formal parameter whose formal type 

contains the symbol VALUE or RESULT (or both) , 

(a) a declaration followed by a semicolon i s 

inserted after the first BEGIN of the 

procedure body, with a simple type as 

indicated in the formal type , and with 

an ident ifier different from any 

i dentifier valid a t the place of 

declarat ion. 

(b) throughout the procedure body , every 

occurrence of the formal parameter 

identifier is replaced by the identifier 

defined in step 2a ; 

(3) If the formal type contains the symbol VALUf,, an 

assignment statement (cf . 5 . 2) followed by a 

semicolon is inserted after the declarations of 

the procedure body . Its left part contains 

the identifier defined in step 2a , and its 

expression consists of the formal paramet er 

identifier . The symbol VALUE is then deleted ; 

(t~) If the formal type contains t he symbol RESULT , an 

assignment statement preceded by a semicolon is 

inserted before the symbol END which terminates a 

proper procedure body. In the case of a funct ion 

procedure, an assignment statement preceded by a 

semicolon is inserted after the final expression 

of the fw1ction procedure body . Its left part 

contains the formal parameter .identifier , and 

its expression consists of the identifier defined 

in step 2a . The symbol RESULT is then deleted. 

B16 . 



B17. 

SPECIFICATI ON OF ARRAY DIMENSIONS 

The number of ",•;" 's appearing in the formal array specification 

is the dimension of the array parameter . 

SPECIFICATION OF VIRTUAL PARAMETERS 

The optional facility of specifying virtual parameters allows 

compile time checking of procedure parameters . When the virtual 

parameter list is empty, i.e. there is nothing between the 

l eft and right parentheses, then the procedure is specified to 

have no parameters. 

examples 

PROCE DURE INCREMENT; 

X : = X+1 

REAL PROCEDURE MAX(REAL VALUE X, Y); 

IF X < Y 

THEN Y 

ELSE X 

PROCEDURE COPY ( REAL ARRAY U, V(.':, ,':); INTEGER A ,B); 

FOR I .- 1 UNTI L A 

DO FOR J := 1 UNTIL B 

DO U(I,J) := V(I,J) 

LO NG REAL PROCEDURE SUM(INTEGER K ,N ;LONG REAL X); 

BEGIN 

LONG REAL Y ; 

y := 0; 

K := N; 

WHILE K > = 1 

DO BEGIN 

y 

END 

y .- y + X; 

K : = K - 1 

END; 



REAL PROCEDURE SERIES(INTEGER VALUE K; REAL PROCEDURE ( INTEGER 

VALUE )TERM); 

BEGIN REAL SUM; 

SUM:= O; 

FOR J := 1 UNTIL K DO 

SUM 

END 

SUM := SUM+ TERM(J): 

REFERENCE(PERSON)PROCEDURE YOUNGESTUNCLE(REFERENCE(PERSON)R) ; 

BEGIN 

REFERENCE (PERSON ) P , M; 

P: =YOUNGESTOFFSPRIHG( FATHER( FATHER( R))); 

WHILE(P, =NULL)AND(, MALE(P) )OR(P=FATHER(R)) 

DO P:=ELDERSIBLING(P ); 

M: =YOUNGESTOFFSPRING(MOTHER(MOTHER(R))) ; 

WHILE ( M, =NULL )AND(, !·!ALI: ( M)) 

DO M:=ELDERSIBLING(M) ; 

IF P=NULL 

THEN M 

ELSE IF M=NULL 

THEN P 

END 

ELSE IF AGE(P) < AGE(M) 

THEN P 

ELSE M 

4-. t1 RECORD CLASS DECLARATION 

Syntax 

<record class declaration> ::= RECORD <identifier> (<field list>) 

<field list>::= <.5irnple variable declaration> ! 

<field list>; <simple variable declaration> 

Semantics 

B18. 

A record class declaration serves to define the structural 

properties of records belonging to the class. The principal 

constituent of a record class declaration is a sequence of simple 



variable declarations which define the fields and their simple 

types for the records of this class and associate identifiers 

with the individual fields . A record class identifier can be 

used in a record designator (cf . 6.6) to construct a new record 

of the given class . 

examples 

RECORD NODE(REFERENCE(NODE )LEFT,RIGHT ) 

RECORD PERSON(STRING NAME;INTEGER AGE;LOGICAL 

MALE ;REFERENCE(PERSON )FATHER , 

MOTHER,YOUNGESTOFFSPRING , 

ELDERSJBLING) 

-
4. 5 SIMPLE VARIABLE DECLARATION 

Syntax 

<simple variable declaration> : : = <simple type> <identifier list> 

<simple type> : : = INTEGER j REAL I LONG REAL I COMPLEX I 
LONG CO MP LEXjLOGICALjBITSjSTRINGj 

STRING (<integer number>) I 

B19. 

REFERENCE (<r>ecord class identifier list>) 

<record class identifier list>: := <re cord class identifier> ! 

<record class identifier list>, 

<record class identifier> 

Semantics 

Each identifier of the identifier list is associated with a 

simple variable which is declared to be of the indicated type, If 

a variable is declared to be of a certain type, then this implies 

that only values which are assignment compatible with this type 

(cf. 5 . 2) can be assigned to it. It is understood that the value 

of a variable is equal to the value of the expression most recently 

assigned to it . 

The value of each simple variable is as follows: 

INTEGER: the value is a 48 bit integer, 

REAL: 

LONG REAL: 

the value is a 48 bit floating point number, 

the value is a 96 bit floating point number, 



COMPLEX: 

LONG COMPLEX: 

LOGICAL: 

BITS: 

STRING : 

REFERENCE : 

examples 

the value is a compl e x number composed of two 

nur.1bers of type real, 

the value is a complex number composed of two 

long r eal numbers, 

the value is a logical value , 

the value is a linear sequen ce of 48 bits, 

the value is a linear sequence of characters of 

number equal to the specified number (default 

length of 24 characters and maximum length is 

256 characters ), 

the value is a reference to a record and may 

refer only to r ecords of the record classes 

whose identifiers appear in the record class 

identifier list of the reference declaration 

specification, 

INTEGER I,J,K,M,N 

REAL X,Y ,z 
LONG COMPLEX C 

LOGICAL L 

BITS G ,H 

STRING(10)S,T 

REFERENCE ( PERSON )JACK ,JILL 

5. STATEMENTS 

Syntax 

<statement>··= <simple statement> ! 

<iterative statement>! 

<if statement> I 
<case statement> 

<simple statement>::= <block> ! 

<1 assignment statement>! 

<empty>! 

<procedure statement>! 

B20. 



Semantics 

<goto statement> ! 

<asSE!rt statement> ! 

<close statement> ! 

<lock statement> ! 

<read statement> ! 

<rewind statement> ! 

<seek stat ement> ! 

<space statement>! 

<write statement> 

<statement>s are the active elements of an ALGOL W program . By 

the execution of a <s·tatement> is meant the performance of this 

action, which may cons ist of smaller units of action s uch as the 

evaluation of expressions or the execution of other statements . 

5. 1 ASSERT ST AT:C ME NT 

Syntax 

<assert statement> · · = ASSERT <logi cal expression> 

Semantics 

B21. 

The <assert stater.1ent> i s equivalent to the <if statement> (cf . 5.7) : 

IF, (<logical expression>) THEN endexecution 

where 11 endexecution 11 signifies a procedure which t crr.iinates the 

execution of an ALGOL W program. The <assert statement> can be 

used as a debugging aid asserting conditions which should be true , 

but may not be if a bug exists . 

5 . 2 ASSIGNMENT STATEMENT 

Syntax 

<To assignment statement>: : = <r
0 

left part> <T
1 

express i on>! 

<T0 l eft part> <r1 ass i gnment statement> 

<T l eft part> · · = <r variable> : = 

Semantics 

I n the above rules the symbols TO and r1 must be replaced by words 

as indicated in Section 1, subject to the r estriction that the 

type r1 is assignment compatible with the type r
0 

as defined below . 



The execution of a simple assignment statement 

<To assignment statement>::= <To left part> <T
1 

expression> 

causes the ass ignment of the value of the expression to the 

variable. If a shorter string is to be assigned to a longer 

one, the shorter string is first extended to the right with 

blanks until the lengths are equal. 

statement 

In a multiple assignment 

B22. 

<r
0 

assignment statement>::= <To left part> <T
1 

assignment statement> 

the assignments are performed from right to left. For each left 

part variable, the simple type of the expression or assignment 

variable imme diately to the right must be assignment compatible with 

the simple type of that variable. 

ASSIGNMENT CO MPATIBILITY 

A simple type T
1 

is said to be assignment compatible with a simple 

type To if either 

(1) the two types are identical (except that if TO and Tl 

are string, the l ength of the TO variable must be greater 

than or equal to the length of the r
1 

expression or 

assignment), or 

(2) To is real or long real , and Tl is integer , real or 

long real , or 

(3) To is complex or long complex, and r
1 

is integer, real, 

long real, complex or long complex. 

In the case of a reference, the reference to be assigned must refer 

to a record of one of the classes specified by the record class 

identifiers associated with the reference variable in its declaration. 

examples 

Z:=AGE(JACK):=28 

X:=Y+ABS Z 

C:=I+X+C 

P:=X, =Y 



5. 3 BLOCKS 

Syn tax 

<bl ock>:: = <blackbody> <statement> END 

<blackbody> :: = <bl ock head> ! 

<blockbody> <statement>; J 

<blackbody> <label definit ion> 

<block head>: := BEGIN j 

<block head> <declaration>; 

<label definition> · ·= <identifier> : 

Semantics 

Every <block> introduces a n ew level of nomenclature . This is 

real ized by execut i on of the block in the following steps : 

B23 . 

St ep 1 . If an <identi fier>, say A, defined in the <bl ock head> 

or in a <label definition> of the <blackbody> i s 

already defined at t he place from which the <block> 

i s entered, then every occurrence of that <identifier>, 

A, within the <block> er.ccpt for occurrence in array 

bound expressions i s systematically replaced by 

another <i dent ifier>, say APRIMr::, whjch is defined 

n either within the <block> nor at the place from 

which the <block> is entered . 

Step 2. I f the <declaration>s of the <block> contain array 

bound expressions , then these expressions are evaluat ed . 

Step 3. Execut i on of the <statement>s contained in the 

<blackbody> begins with the execution of the first 

<statement> following t he <block head> . 

After execution of the l ast <statement> of the <blackbody> 

( unless i t i s a <got o statement>) a block exit occurs , and t he 

<statement> following the ent ire <block> is executed . 



example 

BEGIN 

REAL U; 

U: =X; 

X:=Y; 

Y:=Z; 

Z : =U 

END 

5 . 4 CASE STATEMENT 

Syntax 

<case statement> · · - <case clause> BEGIN <statement list> END 

<statement list> · · = <statement> l 
<statement list>; <statement> 

<case clause> - CASE <integer expre ssion> OF 

Semantics 

The execution of a <case statement> proceeds in the following 

steps: 

Step 1. 

Step 2 . 

example s 

CASE I OF 

The expression of the <case clause> is evaluated 

The <statement> whose ordinal number in the 

<statement list> is equal to the value obtained 

in Step 1 is executed. In order that the 

<case statement> be defined , the current value 

of the expression in the <case clause> must be 

the ordinal number of some <statement > of the 

<statement list>. Then <statement>s are 

numbered from 1 ton. 

BEGIN 

X: =X+Y ; 

Y:=Y+Z; 

Z : =Z+X 

END 

B24 . 



CASE J or 
BEGIN 

H(I) ; :s--H(I); 

BEGIN 

H(I-1 ):=H(I-1 )+H( I ); 

I:=-I - 1 

END; 

BEGIN 

H(I-1) : =H(I-l)*H(I); 

I :=I -1 

END; 

REGJ H 

H(I!(I-1)):=H(I); 

I:=I-2 

END 

5,5 CLO SE STATEMENT 

Syntax 

<close statement> ··= CLOSE (<f ile i de~tifier>) j 
CLOSE (<file i dentifier> , <close option>) 

<close option> · · = ~·: l 
PURGE I 
REEL j 

CRUNCH 

Semantics 

B25, 

For semant i cs see the B6700/B7700 Algol Language Reference Manual, 

5. 6 GO TO STATEMENT 

_Syntax 

<goto statement> · · = GOTO <label identifier> j 
GO TO <label identifier> 

Semanti cs 

An <ide ntifier> is called a <label identifier> if it stands as a 

label . 



B26. 

A <goto statement> determines that execution of the text be continued 

after the <label definition> (cf. 5 . 3) of the <label identi f i er>. 

The identification of that labe l de f inition is accomplished in the 

following steps : 

Step 1. If some <label definition> within the most recently 

activated, but not yet t erminated , block contains 

the <label ident ifier> , then this is the design ated 

<label definition>. Other·wise, 

Step 2 . The execution of that block is considered as 

terminated and Step 1 is t aken as specified above . 

5. 7 IF STATEMENT 

Syn tax 

<if statement>··= <if clause> <statement>! 

<if clause> <simple statement> ELSE <st ateri1ent> 

<if clause> - IF <logical expression> THEN 

Semant ics 

The execution of <if statement>s caus es certain <statement>s to 

be executed or skipped depending on t~e values of specifi ed 

<logical expression>s . An <if statement> of the form 

<i f clause> <statement> 

is executed in the following steps : 

Step 1. The <logical expression> in the <if clause> is 

evaluated . 

Step 2. If the result of Step 1 is true, then the 

<st atement> following the <if clause> is 

executed. Otherwise Step 2 causes no action 

to be taken at all . 

An <if statement> of the form 

<if clause> <simple statement> ELSE <statement> 

is executed in the following steps : 



Step 1 . The <logical express ion> in the <if clause> 

is eva1uat0d . 

Step 2. If the res ult of Step 1 is true, then the 

<s i mpl e statement> follow ing the <if clause> 

i s executed . Otherwis e the <statement> 

following ELSE is executed . 

examples 

IF X=Y 

THEN GOTO L 

IF X < y 

THEN U:=-X 

ELSE IF y < z 
THI:N U : =Y 

ELSE V: =Z 

5. 8 ITE RATI VE STATEHENT 

Sy12_tax 

<iterative statement> <for clause> <staternent> J 

<while clause> <stat emen t> 

B27 . 

<for clause> FOR <ident ifier> := <initial value> STEP <increment> U:lTI L 

<limit> DO j 

FOR <ident ifier>.- <initial value> rn~TIL <limit> DOj 

FOR <ident i fier>. - <for list> DO 

<for list> <integer expression>! 

<for list>, <integer expression> 

<initial value> · · = <integer expres sion> 

<increment>::= <integer expression> 

<limit> : : = <integer express ion> 

<while clause>··= WHILE <logical expression> DO 

Semantics 

The <iterative statement> serves to express that a <statement> be 

executed repeatedly depending on certain conditions specified by a 

<for clause> or a <while clause>. The <statement> following the 

<for clause> or the <\,hile clause> always acts as a <block>, whether 

it has the f orm of a <block> or not. The value of the <control 



identifier> ( the <identifier> following FOR) cannot be change d by 

assignment within the controlled <statement>. The <control 

ident i f ier> doesn't need to be declared by way of a <declaration> 

and is invalid outside the <iterative statement>. 

( a ) An <iterative statement> of the form 

FOR <identifier>: =<E1>STEP<C 2>UNTIL<E3>DO <statement> 

is exactly equivalent to the <block> 

BEGIN 

<statement-0>; 

<staternent-1>; 

<statement-I>; 

<statement-N> 

END 

In the I'th <statement> every occurrence of the <contro l 

identifier> is replace d by the value of the express ion 

(E1+I~',E2 ). 

The index N of the l as t <statement> is determined by 

N ~ (E3-E1 ) /E2 < N+1. If N < 0 , then it is understood 

that the sequence is empty . The expres s ions E1 , E2, and 

E3 are evaluated exact ly once , namely before execution of 

<statement-0>, therefore , they can not depend on the 

<control identifier>. 

(b) An <iterative statement> of the form 

FOR <identifier>: =<E1>UNTIL<E3>D0 <statement> 

is exactly equivalent to the <.i,terative statement> 

FOR <identifier>:=<E1>STEP 1 UNTIL<E3>D0 <statement>. 

B28. 



( c ) An <iterative statement> of the form 

FOR <identifier>:=<E1>,<E2>, ... ,<EN>DO <statement> 

is exactly equivalent to the <block> 

BEGIN 

<stat ement-1>; 

<statement-2>; 

<statement-I>; 

<stat ement-N> 

END 

wher•e in the I 1 th <statement> every occurrence of the 

B29 . 

<control identifier> is r eplaced by the value of the expression 

EI. 

( d) An <iterative statement> of the form 

WHILE <E> DO <statement> 

is exactly equivalent to 

BEGIN 

L: IF <E> 

THEN BEGIN 

END 

<s tatement>; 

GOTO L 

END 

where it is understood that L represents an <identifier> 

which ~snot defined at the place from which the while statement 

is entel:'ed. 

examples 

FOR V: =1 STEP 1 UNTIL N-1 

DO S : =S+A ( U,V) 

WHILE(J > O)AND(CITY(J)-, =S) 

DO J:=J-1 

FOR I : =X,X+1,X+3,X+7 

DO P(I ) 



5.9 LOCK STATEMENT 

Syntax 

<lock statement>··- LOCK(<file identifier>) I 
LOCK(<file identifier>, <lock option>) 

<lock option> - :': I 
CRUNCH 

Semantics 

B30. 

For semantics see the B6700 /B7700 Algol Language Reference Manual. 

5.10 PROCEDURE STATEMENT 

Syntax 

<procedure statement> .. - <procedure identifier>! 

<procedure identifier>(<actual parameter list>) 

<actual parameter list> · · = <actual pararr,eter> I 

<actual parameter> 

<actual parameter list>, <actual parameter> 

- <T expression> ! 

<statement> I 
<T subarray des i gnator> ! 

<procedure identifier>J 

<-r function identifier> 

<T subarray designator>::= <T array identi f ier>! 

<subarray designator list> 

Semantics 

<-r array identifier>(<subarray designator 

1ist>) I 
<-r array identifier>[ <subarray designator 

list>) 

.. - <subscript> I 
:': l 
<subarray designator list>, <subscript>! 

<subarray designator list>,* 

The execution of a <procedure statement> is equivalent to a process 

performed in the following steps: 



Step 1. A copy is rnade of the body of the proper procedure 

whos e <procedure identifier> is given by the 

<procedure statement>, and of the <actual parameter>s 

of the latter. The <procedure statement> is 

r eplaced by the copy of the procedure body. 

Step 2. I f the p:::-,ocedllr·e body is a <block>, then a 

sy stematic change of <identifier>s in its copy is 

performed as specified by Step 1 of 5.3. 

Step 3 . The cop ies of the <actual parameter>s are treated 

i n an undefine d order as follows : If the copy is 

an expr ession different from a variable, then it i s 

enclosed by a pair of parentheses , or if it is a 

<s to.tE:rnent> it is enclosed by the symbols BEGIN 

and END . 

Step 4. In tbo copy of the procedure body every occurrence 

of an <identifiE.r> identifying a formal parameter is 

r eplaced by th e copy of the corresponding <actual 

parameter> . In order for the process to be defined, 

these r eplacements must lead to correct ALGOL W 

expre3s ions and <s tatement>s. 

Step 5 . The copy of the procedure body, modified as 

indicated in Steps 2-4, is executed . 

ACTUAL-FORMAL CORRESPONDENCE 

The correspondence between the <actual parameter>s and the 

B31. 

forma l parameters i s estabJ.ished as fo llows : The <actual parameter 

list> of the <procedure statement> (or of the <T function 

des i gnator>) must have the same number of entries as the <formal 

parameter list> of the procedure declaration heading. The 

correspondence is obtained by taking the entries of these two lists 

in the same order. 

SUBARRAY DESIGNATORS 

A complete array may be passed to a procedure by specifying the 

name of the array i f the number of <subscript>s of the <actual 



parameter> equaJ.s t he nuir.ber of <subscript>s of the corresponding 

formal parameter. If the actual array par2meter has more 

<subscript >s than t he corresponding formal parameter, enough 

<subscr·ipt>s mus t be specified by <integer expre ssion>s so that 

the nun,ber· of ;': ' s appearing in the subarray designator equa ls 

the nurrber of <sub~.cript>s of the corresponding formal paramet er . 

The <subscript> pos :i. t ions o f the formal array designator are 

matched with the pos itions with ;': ' s in the subarray designator 

in the orde r they 2ppear. 

PARAME TER CORRESPONDZNCE 

Formal Type 

<simple 'f type> 

Actual Parameter 

<,- expression> 

<-r 
1 

expr•ession> 

<'f 
O 

variable> 

<-r 
2 

variable> 

B32. 

<simple 'fo type> VALUE 

<simp l e 'l-
1 

type> RES ULT 

<simpl e 'T 
1 

type .~ VALUE RESULT 

<simp l e 'T t ype> PROCEDURE 

PROCE DURE 

<-r function ident i fier> 

<-r expression> 

,"'procedure 5-dentifier> 

<statement> 

<simp l e 'f type > ARRAY <-r subar·ray designator> 

The simple type 'Tl must be as s i gnment compatible (cf. 5 . 2) with the 

simple type 'To· The simple types -r 1 and -r2 must be mutually 

assignment compatible . 

As <actual parame ter>s, expres sions and <statement>s may serve as 

the i mplicit speci f ications of nameless and parameterl ess procedures . 

examples 

INCREMENT 

COPY(A,B,M,N) 

INNE RPRODUCT (IP ,N ,A (I,:':) ,B (J ,K, :':, :':)) 



B33 . 

5 . 11 READ STATEMENT 

Syntax 

<read statement> : : = READ( <file par•t> <fo11 mat and lis t part>) 

<file part> : : = <file identi f ier> <record number or carriage control> 

<record number or carriage control> : : = <empty> I 

[ <integer number>] I 

[ LINE <integer number>]! 

[ NO] j 
[ S:<IP <integer number >]! 

[ SPACE <integer nunber> J 
<format and list part> · · = <empty> I 

,<<edit in g specifications>>! 

,<<editing speci f ications>> ,<list>l 

, ~·: ,<list> j 

, / ,<list> ! 

,<i nteger number>,<'f subarray designator > 

<list> · · = <r variable> I 

<control identifier>! 

<lis t > ,<'!" variable> ! 

<lis t >,<control identifier> 

<editing specifications> : : = <editing segment> I 

<editine specifications>/ ! 

/ <editing specifications> ! 

<edi ting specifications>/<edit ing segment> 

<edit ing segment> - <editing phrase> ! 

<repeat part>(<editing specifications>) I 

<editing segment>,<repeat part>(<editing 

specifications>) 

<editing phrase> : : = <repeat part> <editing phrase type> <field width part> 

<1.1epeat part> : : = <empty> ! 

<integer number>! 

;': 

<editing phrase type>·· - <string> IAlc ln lE lr lGIHII IJ IKIL lo l 

R js lT lv lx 



<field width part> · · - <empty> l 

<field width> <decima l places> 

<field width> <integer nurnber>l 

<decimal places>··= <empty>j 

Semantics 

,<integer number> ! 
... . " 

B34. 

For s emantics see the B6700/B7700 Algol Language Refer ence Manual . 

5. 12 REWIND STATEMENT 

Syntax 

<rewind statement> ·· = REWIND (<file ident ifier>) 

Semantics 

For s emant ics see the B6700/B7700 Algol Language Reference Manual , 

5.13 SEEK STATEMENT 

Syntax 

<s eek statement> : : = SEEK (<file identifier>[<record number> J) 
<record number>:: = <integer expression> 

Semantics 

For semant ics see the B6700/B7700 Algol Language Reference Manual . 

5.14 SPACE STATEMENT 

Syntax 

<space statement> SPACE(<file identifier>,<integer expression>) 

Semantics 

For semantics see the B6700/B7700 Algol Language Referen ce Manual . 

5.15 WRITE STATEMENT 

Syntax 

<'Write statement> .. -.. - WRITE(<file part> <format and list part>) 



B35 . 

Semantics 

For semantics see the B6700/B7700 Algol Language Reference Manual. 

6. EXPRESSIONS 

Syntax 

<'T expression> ··- <simple 'T expression> ! 

<case clause>(<'T express ion list>) 

<'T
O 

expression> <i f clause> <'T1 express i on> ELSE <'T 2 expression> 

<'T expression> <'T expression list> 

<10 expression list> 

<'T block express ion> .. -
<1

1 
express ion list>,<'T2 expression> 

<blackbody> <'T exp1°ession> END 

Semantics 

In the above rules the symbol 'T has to be replaced consistently 

as described in Section 1 , and the triplets 1
0
,r

1
,'T

2 
have 

to be either all three replaced by the same one of the words 

logical 

bit 

string 

reference 

or by any comb ination of words as indicated by the following table, 

which yields 'TO given ,-1 and 'T2 : 

integer 

real 

complex 

integer 

integer 

real 

complex 

real 

real 

real 

complex 

complex 

complex 

complex 

complex 

,.
0 

has the quality "long" if either both ,-
1 

and r
2 

have that quality, 

or if one has that quality and the other is "integer". 



B36. 

Expres sions are rL,1.e s wh i ch specify how new values are computed 

f rom existing on es . 'i'he se new values are obtained by performing 

t he operat ions i ndicat ed by tl1e operators on the values of the 

operands . The oper ands are either cons tants , variables or 

function design ators , or other expr ess ::ons , enclosed by parentheses 

i f necessary . The eva l uatioE of oper,:mds other than constants 

may invo lve smaller un i ts of action s ucl1 as the evaluation of 

other expressions or the execution of <statement>s . The value 

of an expr ession between par·entheses i s obtained by evaluating 

that express i on. 

The cons t ruct i on 

<i f c~ause> <'i 
1 

e ~:pression> ELSE <1
2 

expression> 

causes the selection and eva l uation of an expression on the basis 

of the current value of t he <logica l express ion> contained in 

the <i f clause> . If this va l ue is TRUE , the expression following 

the <if c lause> i s s ele cted ; .if the value is FALSE, the expression 

follmling F:LSE is select ed . If ,-
1 

and 1
2 

are <simple type> 

STRING, the shorter expre ss .ion will be padded on the right with 

blanks to r:,ake i t the J ength of the l onger one . 

The const ruction 

<case c l ause>(<,- e xpres sion li s t>) 

causes the sele ction of the expression whos e ordinal number in the 

express i on list i s equal to t he current value of the <integer 

e xpression> cont a i ned in t he <case clause>. In order that the 

case expr ession be defined , the current value of this expression 

must be the or'dinal number of some expression in the expression 

list (> = 1). If 'I' is <simple type> STRING, the <string 

expression>s will be padded on the right with blanks to make all 

alternatives the length of the longest one. 

The construction 

<blackbody> <'I' express ion> END 

can be consider ed as a <T f un ction procedure body> without 

parameters . This represents a considerable notat ional convenience , 



since it enables the function to be specified actually in the 

place where it is to be used, rather than disjointly in the head 

of some embracing block . 

6 . 1 ARITHMETIC EXPRESSIONS 

Syntax 

<.simple 'I" expression> · · - <'f term> j 
+<'!" terrn>l 

-<'f term> 

<.simpJ.e 'fo expression> .. = <.simple -r
1 

expression>+ <r
2 

term>! 

<simple r
1 

expression> - <r2 term> 

<'f term> : : = <'T factor> 

<ro tenn> 

<To term> 

<-r 
1 

term> :': <'f 2 factor> 

<-r1 term>/ <'1"2 factor> 

<integer terw.> : := <integer term> DIV <integer factor> ! 

<integer t erm> RIM <integer factor> 

<1
0 

factor> - <'fo primary>! 

<ro primary> 

<ro primary> 

<-ro primary> 

<'f primary> .. -

-

-

-

<1· factor> :',1, <inte ger primary> 
1 

ABS <-r
1 

primary> 

LONG <r 1 primary> 

SHORT <.r1 prirr.ary> 

<'f variable> j 

<r fun ction designator> ! 

(<,- e:-:pression>) I 
<'f number> ! 

<'T block expression> 

<integer primary>::= <control identifier> 

Semantics 

B37 . 

In any of the above rules, every occurrence of the symbol 'f must be 

systematically replaced by one of the following words (or word 

pairs): 
integer 

real 

long real 

complex 

long complex 



The rules governing the replacement of the symbols 'f 
0

, ·r 
1 

and 

r2 are given below . 

An arithmetic expression is a rule for computing a number. 

B38. 

According to its <simple type> it is called an <integer expression>, 

<real expres s ion>, <long real expre ssion>, <complex expression>, 

or <long compl e x expression>. 

The operators +, - , :':, and / have the conventional meanings of 

addition , subtraction, multiplication and division. In the 

relevant syntactic rules above the symbols T
0

, T
1 

and T
2 

have to 

be replaced by any combination of words accord i ng to the following 

tables which indicate 'fo for any combination of 'f:1. and T2 . 

Operators+ J -

integer 

real 

complex 

'f2 

integer 

integer 

long r eal 

long comp.lex 

r eal 

long real 

r eal 

complex 

comple x 

long comple x 

comple x 

complex 

'f 0 has the quality "long" if both T 1 and 'f 2 have the qua lity 

"long" , or if one has the quality "integer" and the other does not. 

Operator :': 

integer 

real 

complex 

integer 

integer 

long real 

long complex 

real 

long real 

long real 

long complex 

complex 

long complex 

long complex 

long complex 

-r1 or -r2 having the quality "long" does not affect the type of 

the result. 



Operator/ 

'f 1 

integer 

real 

complex 

integer 

long real 

long real 

long comp lex 

real 

long real 

real 

complex 

complex 

long complex 

complex 

complex 

'T
O 

has the quality "long" if both 'f 1 and 'T 
2 

have the quality 

ft long", or if one has the quality ft integer" and the other· does 

not, or if both arc "integer" . 

The operation ft_ft standing as the first symbol of a <simple 

expression> denotes the monadic operation of sign invers ion. 

B39 . 

The type of the result is the type of the operand. The operator 

ft+" standing as the first symbol of a <simple expression> 

denotes the monadic operation of identity . 

The operator DIV i s mathematically defined (for B t- 0) as 

A DIV B = SGN(A*B)*D(ABS A,ABS B ) 

where the function procedures SGN and Dare declared as 

INTEGER PROCEDURE SGN (INTEGER VALUE A); 

IF A< 0 

THEN -1 

ELSE 1; 

INTEGER PROCEDURE D (INTEGER VALUE A,B); 

IF A< B 

THEN 0 

ELSE D(A-B,B)+1; 

The operator REM ( remainder) is mathematically defined as 

A REM B = A-(A DIV B)~·:B 

A and B both must be <integer expression>s. 



B40. 

The operator :'::': denotes exponentiation of the firs t operand 

to the power of the second operand . In the r elevant syntactic 

rule above the symbols ·r O and 'l" 1 are to be r eplaced by any of the 

following combinations of wo1.,ds : 

long real 

long real 

long comp l ex 

integer 

r eal 

comp l ex 

-r
1 

having quality " long11 does not affe ct the type of the result . 

The monadi c operator ABS yields the absolute value or mo<lulus of 

the operand . In the relevant syntact ic rule above the sywbol s 

-r
0 

and ,-
1 

have to be replaced by any of the following combinations 

of words : 

-ro ,.1 

integeP integer 

re2l r eal 

real comp lex 

If ,-
1 

has the quality 11 long '', then so does ,-
0

. 

I n the relevant syntactic rules above the symbols ,-
0 

and ,-1 must 

be replaced by any of the followirig coTI1b inat i ons of words ( or 

word pairs ): 

Operator LONG 

-ro 

long real 

long :t'eal 

long complex 

integer 

real 

complex 



Operator SHORT 

real 

complex 

long real 

long complex 

Note : It is illegal to apply LONG to an expression which 1s 

already long; similarly for SHORT . 

examples 

C + A(I) ~·. B(I) 

EXP( -X/( 2*S IGMA ))/SQRT (2*SI GMA ) 

6.2 BIT EXPRESSIONS 

Syntax 

<simple bit expression> : := <bit term> j 

B41. 

<simple bit expression> OR <bit term> 

<bit term> : := <bit factor>! 

<bit t e rm> AND <'bit factor> 

<bit factor>··= <bit secondary>! 

, <bit secondary> 

<bit secondary> · · = <bit primary> j 

<bit secondary> SHL <integer primary>! 

<bit secondary> SHR <integer primary> 

<bit pri mary>::= <bit s equence>! 

<bit variab l e> I 

<bit function designator> ! 

(<bit expression>) I 
<bit block expression> 

<bit sequence>::=# <hex digit>! 

<bit sequence> <hex digit> 

<hex di git> ·· = ol1l 2l3l4 lsl 6 l7l 8 l9 lAI Blcl nlE lF 

Semantics 

The number of bits in a <bit sequence> is 48 or 12 <hex digit>s. The 

<bit sequence> is always represented by a 48 bit word with the 



spe cified <bit sequence> r·ight justified in the word and zeros 

fill e d in on tt'Je left . 

A <bit expre~;sion> is a rule for computing a <bit sequence>. 

The oper.'atOl'S r\lrn ' OR, and , produce a result of type BITS , 

every bit b eir;g dependent on the c orr esponding bit(s) in the 

operand ( s ) as fol lows : 

X y , X X AND y XOR Y 

0 0 1 0 0 

0 1 1 0 1 

1 0 0 0 1 

1 1- 0 1 1 

B42. 

The operators SHL and SHR denote the shifting operation to the left 

and t o the right 1"espect ively by the numbe r of bit positions 

indicated by the absol ute value o f the <integer primary>. 

bit positions to the right or l eft respectively are assigned 

th e bit va lue 0. 

e xarr.ples 

G AND H OR #38 

G AND, ( HOR G)SHR 8 

6.3 FUNCTION DESIGN/\TORS 

Syntax 

<1 function des ignator> ··= <1 function identifier >! 

Vacated 

<1 function identifier>(<actual parameter 

list>) 

Semant ics 

A f unction designator defines a value which can be obtained by a 

process performed in the following steps: 

Ste p 1. A copy is made of the body of the function 

procedure whose <1 function identifier> is 



given by the function designator and of 

the <actual pararneter>s of the latter. 

Steps 2,3,4 As spec ified in 5 . 10 . 

Step 5 The copy of the <'f function procedure body>, 

modi f ied as indicated in Steps 2-4, is 

executed. Ex2cut ion of the express ion 

which constitutes or is part of the 

modi fied procedure body consists of 

evaluation of that expression and the 

resulting value is the value of the function 

designator . The <simple type> of the 

function designator is the <.simple type> 

examples 

in the corresponding function procedure 

decLn'at ion. 

MAX ( x~·::',2, Y ;',;',2) 

SUM(I,100,H(I)) 

SLlM( I,M , SUM (J, N, A(I,J))) 

YOUNGESTUNCLE (JILL) 

SUM(I, 10,X(I)~Y(I)) 

HORNER(X ,10,2.7) 

6. 4 LOGICAL EXPRESSIONS 

Synt ax 

<simple logical expression>::= <logical element>! 

<relation> 

<logical element> - <logical term> ! 

<logical element> OR <logical term> 

<logical term> : : = <logical factor> I 
<logical t erm> AND <logical factor> 

<logical factor> - <logical primary>! 

, <logical primary> 

B43 . 



<log ica l primar'Y> 

<log ica l value> 

<logical value> j 

<logical vari able> ! 

<logical function des igna tor> ! 

(<logical expression>) j 

<loe i ca l block expression> 

TRUE l 
FALSE 

B44. 

<relat ion> : : = <simple -r 
O 

expression> <equality ope1'ator>. <simple 

,-
1 

express i on>! 

<logical element> <cquali ty oper·ator> <log i cal element> j 
<simple r0ference express ion> IS <record class identifier> I 
<..s i mple T 

2 
e}~pression> <relational operator> <simple 

<re lat ion al operator> : : = < 

<equality opcr a tor> : : = = l, = 

Semantics 

'f 
3 

expression> 

<= 1>·- 1> 

In ·the above rules for <re lat i on> the symbols TO and 'T 
1 

must either 

be identically replaced by any one of the f ollowing words : 

bit 

string 

re feren c e 

or• by any of the words from : 

cor.1plex 

long complex 

real 

l ong real 

i nteger 

and the s ymbols 1
2 

or 1
3 

must be identically r e placed by 

string 

or must be r ep l aced by any o f 

r eal 

l ong real 

i nteger . 

A <logical expression> is a rule for comput ing a <logical value> . 



The <relational operator>s represent algebraic ordering for 

arithmetic argumen"-s and EBCDIC ordering for string 2rguments . 

If two strings of unequal length are compared , the shorter string 

is first extended to the right by blanks. The <relational 

operator•>s yield the <logical value> TRUE if the relation is 

satisfied for the values of the two opePands; FALSE otherwise . 

Two references are equal if and only if they are both NULL or 

both refer to the same record . The operator IS yields the 

<logical value> TRUE if the <reference express ion> designates a 

record of the indicated record class ; FALSE otherwise . The 

reference value NULL f2.ils to designate a record of any record 

class. 

The operators, (not), AND , and OR , operating on <logical val ue>s , 

are defined by the follow ing equivalences : 

, X 

X AND Y 

XOR Y 

examples 

P OR Q 

IF X 

THEN 

ELSE 

IF X 

THEN 

ELSE 

IF X 

THEH 

ELSE 

FALSE 

TRUE 

y 

FALSE 

TRUE 

y 

( X < Y)AND (Y < Z) 

YOUNGESTOFFSPRING (JACK), =NULL 

FATHER(JILL) IS PERSON 

6. 5 OPERATOR PRECEDENCE 

The syntax of 6 .1, 6 . 2 and 6.4 implies the following hierarchy 

of operator precedences: 



example 

LONG, SHORT , ABS 

SHL, SHR , ~·:.·: 

-, 

,·: ,/ , DIV , REM , AND 

+,-,OR 

<,<= ,:: ,-, =,>=,>,IS 

A= BAND C is equivalent to A= ( BAND C) 

6. 6 REFERENCE EXPRESSIONS 

Syntax 

<simple reference express ion> -· <null re fe rence> I 
<reference variable> I 

B46. 

<reference function designator> ! 

<record designator> ! 

(<reference expression>) I 
<reference block expres sion> 

<record designator> · · - <record class i dentifier> I 
<record class ident ifier>(<expression list>) 

<expression l ist> .. = <r expression>! 

<express i on list>, <r expression> ! 

<empty>! 

<expression list>, 

<null reference>·· - NULL 

Semantics 

A <reference expression> is a rule for computing a reference to a 

record. 

The value of a <record designator> is the reference to a newly 

created record belonging to the designat ed record class . If the 

<record des i gnator> contains an <express ion list>, then the va lues 

of the e xpr essions are assigned to the fields of the new record. 

The entries in the <expression list> are taken in the same order as 

the fields in the <record class declaration> ( cf.4.4) , and the 

<simple type>s of the expressions must be assignment compatible with 



B47. 

the <simple type>s of th A record fields (cf. 5. 2 ) . The <empty> 

entry in the <expr'ession list> allows for se lective initialization 

of t he record fi e lds. 

The reference value NULL fails to designate a record; if a 

<reference express ion> occurring in a field designator (cf. 6. 8 ) 

has thi s value , then the field designator is undefined . 

example 

PERSON( "CAROL",0,FALSE,JJ\.CK~JILL, NULL , 

YOUNGESTOFFSPRING( JACK )) 

6. 7 STRING EXPRESSIONS 

Syntax 

<simple strinG e>~pression> · · = <string primary> 

<string primar,y> : : ::: <string> ! 

<stri.g variable> ! 

<string function designator>! 

(<stririg expression>) I 
<st j~ing block e>:pression> 

<subst1'ing designator> : := <s imple strin13 variable>(<integer expression> 

I <integer number>) l 
<simple string variable>[<integer expression> 

~ <integer number>] 

(Note: The; stunds for the vertical bar character j). 

Semantics 

A <string expression> is a rule f or computing a <string>, 

A <substring designator> denotes a s equence of characters of the 

<string> des i gnated by the <string variable> , The <integer 

expression> preceding the O selects the starting character of the 

sequence . The value of the express ion indicates the position in 

the <string variab le>. The value must be greater than or equal to 

O and less than the declared l ength of the <string variable>. The 

first character of the <string> has position O. The <integer 



number> follow ing the i indicates the length of the select ed 

sequence and is the J.ength of the <string e xpression>. The sum 

of the <integer express ion> and the <intege r number> must be les s 

than or equal to the declared l ength of the <string variable> . 

example 

STRING (10) S ; 

S(4 03 ) 

S(I+JG1 ) 

STRING(10)ARRAY T ( 1 : : M, 2 : : N); 

T(Lf,6)( 3fi5 ) 

6 . 8 VARIAB LES 

Syntax 

<simple 'f variable>·· = <1 vari able identifier>! 

<-r fi el d des i gnator>! 

<'f array des i gnator·> 

<'f variable> : : = <simple 'f var· i able> 

<string variable> : : = <s ubstring designator> 

B48 . 

<'J' field designator> - <'f f i eld identifier>(<reference expression>) 

<'f array des ignator> .. - <'f array identifier>(<subscript l ist>) I 
<'f array identifier>[ <subscrip·t list>] 

<subscript list> · · = <subscript>! 

<subscri pt list> , <subscript> 

<subscript> - <integer expression> 

Semantics 

An array des ignator denotes the variable whose indices are the current 

values of the expressions in the <subscript list>. The value of 

each <subscr ipt> must lie within the declared bounds for that 

<subscript> position. 

A field des ignator designates a field in the record referred to 

by its <t'eference express ion>. The <simple type> of the field 

designator is define d by the declaration of that field identifier 

in the r ecord class designated by the <reference expression> of the 

field designator (cf . 4.4). 



examples 

X 

A(I ) 

M(I+J ,I-J) 

FATHER(JACK) 

HOTHER( F'/,TIT.1,(JILL)) 

6 . 9 ST/IJ~PA\"<.D l 'UNCTIOKS 

B49 . 

The fol l mdni are the stand.J.rd functions ava i labl e . They are 

considered t o be declared in a block which encloses each ALGOL W 

program . 

r eal J2Y'Ocedure ARCT!-.N ( r ea l value X); 

com1;,ent a1;ctange~t ( 1"adi ans ) of X; 

b i t~ procedure_ HITSTRING ( integer value N); 

commePt two ' s complement representation of N; 

string ( 1 ) E_l'.O'";cdure CO DE ( integer v o.h.ie N) ; 

comment character with nun~ric code gi ven by abs ( N r em 25 0 ); 

r eaJ procec:ure COS ( rco.~ vcilue X); 

corl'mcnt_ cosine of X ( rad i a,1s ) ; 

int-e_Ber procecurc DECOIJE ( string ( 1 ) valt~e S ) ; 

comr:,Pr;t nur.1cri c code for the character S; 

inteeer proceum·c J.:HTlEI; ( real value X); 

comment the i ntq;e1" i such that 

i< = X< i + 1; 

r eal_ p r ocedure EXP (real va lue X); 

comment e;': :':X ; 

complex procedure IMAG ( real value X) ; 

comment the complex number O + X.; 
l 

real procedure IMAGPART ( comp l e x value Z); 

comment t he i maginary component of Z; 

-r eal pr ocedure LN ( re a l value X); 

comment logari thm of X to the base e; 

r eal procedure LOG (re a l value X); 

comment logarithm of X to t he ba se 10 ; 

long real proce dure LONGARCTAN ( long real value X); 

comment arctangent ( radians ) of X; 



long real p1~ocedure LONGCOS ( long real value X); 

comment cosine of X (radians); 

long real procedure LONGEXP (long real value X); 

comment e,':,':X; 

long comple x procedure LONGIMAG (long real value X); 

comment the long complex number OL + X-L; 
l 

long real pr-ocedure LONGIMAGPART ( long complex value Z); 

comment the i maginary component of Z ; 

long real procedure LONGLN ( long real value X); 

comment logarithm of X to the base e; 

long renl procedure LONG LOG ( long real value X); 

comment logarithm of X to the base 10; 

long real procedure LONGREALPART (long complex value Z); 

comment the r eal component of Z; 

long real procedure LONGSIN (long r eal value X); 

comment sine of X (radians); 

long real procedure LONGSQRT (lon.!f_ real value X) ; 

comment the posit ive square root of X; 

integer procedure NUMBER (bit s value X); 

comment integer with two's complement 

representation X; 

logical procedure ODD (integer value N); 

~ment the logical va lue 

N rem 2 = 1; 

real procedure REALPART (complex value Z); 

comment the real component of Z; 

integer procedure ROUND (real value X); 

comment the value of the integer expression 

if X < 0 then TRUNCATE (X-0.5) 

else TRUNCATE (X+0.5); 

real procedure ROUNDTOREAL (long real value X); 

comment the properly rounded value of X; 

real procedure SIN (real value X); 

comment sine of X (radians ); 

real procedure SQRT (real value X); 

comment the positive square root of X; 

integer procedure TIME (integer ~alue N); 

comment N Result 

B50. 



B51. 

1 Returns as an integer value the 

time of day , in sixtieths of a 

second. 

2 Returns as an integer value the 

elapse d processor time cf 

the program , in sixtieths of a 

second. 

3 Returns as an integer value the 

elapsed I/O time of the program, 

in sixtieths of a second. 

4 Returns as an integer value the 

contents of a 6-bit machine 

clock that increments every 

sixtieth of a second. 

11 Same as TIME (1), except time 

is expressed in multiples of 

2.4 microseconds . 

12 Same as TIME (2), except time 

is expressed in multiples 6f 

2 .4 microsecon ds. 

13 Same as TIME (3), except time 

is expressed in multiples of 

2.4 microseconds . 

14 Returns as an integer value the 

elapsed time since the last 

HALT/LOAD, in multiples of 

2.4 microseconds ; 

integer procedure TRUNCATE (real value X); 

comment the integer i such that 

jij < = jxj < jij + 1 and i * X > = 0; 



7. SYNTACTIC ENTITIES WITH 

SECTION NUMBERS 

<act ual parameter> 

<actual parameter list> 

<arrdy declaration> 

<assert statement> 

<basic symbol> 

<bit factor> 

<bit primary> 

<bit secondary> 

<bit sequence> 

<bit term> 

<block> 

<block body> 

<block head> 

<bound pair> 

<bound pair list> 

<case clause> 

<case statement> 

<close option> 

<close statement> 

<comment remark> 

<complex nu~ber> 

<control identifier> 

<decimal places> 

<declaration> 

<digit> 

<dimension specification> 

<editing phrase> 

<editing phrase type> 

<editing segment> 

<editing specifications> 

<end remark> 

<equality operator> 

<expression list> 

<field list> 

<field width> 

5 . 10 

5.10 

4 . 1 

5 . 1 

2 . 1 

6 . 2 

6 . 2 

6 . 2 

6.2 

6 . 2 

5.3 

5 . 3 

5.3 

4- .1 

4- .1 

5.4 

5 . 4 

5 . 5 

5. 5 

2.4 

2 . 3 

2 . 2 

5.11 

4-

2 . 1 

4 . 3 

5.11 

5 . 11 

5 . 11 

5 . 11 

2 . 4-

6 . 4-

6. 6 

4- . 4 

5.11 

B52 . 



<field width part> 

<file de clar·at ion> 

<file idc-mtifier> 

<file J.ist> 

<file ljst pal't> 

<file pc1rt> 

<for cl ctuse> 

<for list> 

<formal array parameter> 

<forrnc1 l parameter list> 

<formal parameter type> 

<formal procedure parameter> 

<forn1al type> 

<formu.t and list part> 

<got o statement > 

<hex digit> 

<identi f i er> 

<identifi e r list> 

<i f cl,rnse> 

<if sto:temcnt> 

<imug i nc:i ry number> 

<increment> 

<initial attribute> 

<initial attribute list> 

<init ial value> 

<integer number> 

<iterat ive statement> 

<label definition> 

<label identifier> 

<letter·> 

<limi t > 

<list> 

<lock opt ion> 

<lock statement> 

<logical element> 

<logica l factor> 

5.11 

4. 2 

2.2 

4.2 

4 . 2 

5.11 

5.8 

5 . 8 

4.3 

4.3 

4.3 

4 . 3 

4 . 3 

5 . 11 

5 . 6 

6.2 

2.2 

2 . 2 

5 . 7 

5.7 

2 . 3 

5 . 8 

4 . 2 

4.2 

5.8 

2 . 3 

5.8 

5.3 

2.2 

2.1 

5.8 

5 . 11 

5.9 

5.9 

6 .4 

6 . 4 

B53 . 



<logical primary> 

< l og jcal te:rm> 

<logi cal value: > 

<long complex number> 

<lon g real number> 

•°-ower bound> 

<null r·cfer-ence> 

<number> 

<pr·ocedure declaration> 

<proce dure heading> 

<p:r.'ose dure idc,n'dfier> 

<procedure statement> 

<program> 

<proper procedur·e body> 

<proper' procedure d2cl.aration> 

<read statern.:mt> 

<rer1l numb er> 

<reco:r.'d class declaration> 

<record class i dentifier> 

<record clas s ic.1,~ntificr list> 

<r·0cor-d des i gnc.tor> 

<record number> 

<record nuIT'J)er or carriage control> 

<re l a tion> 

<relational operator> 

<remark> 

<repeat part> 

<reserved words> 

<:r'ewind statement> 

<scale factor> 

<seek statement> 

<sign> 

<simple bit expression> 

<simple logicul expression> 

<simple reference expression> 

<simple statement> 

<simple string expression> 

6.4 

6.4 

6. lf 

2.3 

2. 3 

4.1 

6 . 6 

2.3 

4. 3 

4 . 3 

2 . 2 

5 . 10 

3 

4.3 

4 . 3 

5.11 

2.3 

4.4 

2 . 2 

l+.5 

6. 6 

5.13 

5 .11 

6. 4 

(i. 4 

2 .4 

5.11 

2.1 

5.12 

2.3 

5 .13 

2.3 

6.2 

6.4 

6.6 

5 

6.7 

B54 . 



<simple T expression> 

<simple T variable> 

<simple type> 

<simple variable dec.lar,at i on> 

<single space> 

<space> 

<space statement> 

<special characters> 

<statement> 

<statement list> 

<string> 

<string primary> 

<subarray designator list> 

<subscript> 

<subscript list> 

<substring designator> 

<I' array declaration> 

<I' array designator> 

<T array identifier> 

<I' assignment statement> 

<T block express ion> 

<T expression> 

<T expression list> 

<T factor> 

<T field designator> 

<I' field identifier> 

<T function designator> 

<I' function identifier> 

<T function procedure body> 

<T function procedure declaration> 

<I' left part> 

<I' primary> 

<I' subarray designator> 

<I' term> 

<I' variable> 

<I' variable identifier> 

6 . 1 

6.8 

4 . 5 

4.5 

2 . 1 

2.1 

5 . 14 

2.1 

5 

5 . 4 

2 . 5 

6,7 

5.10 

6.8 

6 . 8 

6.7 

4.1 

6.8 

2,2 

5.2 

6 

6 

6 

6.1 

6.8 

2.2 

6.3 

2.2 

4.3 

4.3 

5,2 

6,1 

5.10 

6.1 

6,8 

2.2 

B55. 



<unscaled real> 

<upper bound> 

<virtual array parameter> 

<virtual parameter list> 

<virtua l parameter segment> 

<virtual procedure parameter> 

<virtual type> 

<while clause> 

<write statement> 

2 . 3 

4 . 1 

4 . 3 

4 . 3 

4.3 

4 . 3 

4 . 3 

5 . 8 

5 . 15 

B56 . 



Appendix C 

Cot'i:f'ILE -TI ME OPTIONS 

The user is provided with compile-time ability to control the 

r.ianner in which the compiler processes the source input that 

it accepts . The compiler control statement is ente1'ed into 

C1. 

the compile r by cards, containing only compiler control information, 

in the same manner as source l anguage :statements and can occur 

at any point in the compile r input files . 

An option control card is recognised by the appearance of a 

dollai' sign ( $) in the first or secon d column of the card . I f 

the $ is in column 2 , the opt i on con tr·ol card image is placed in 

the updated symbolic f ile if such a file is generated. An 

option control ca1·d with no corn.piler informat i on causes the card 

image in the secondary input file t hat has the same sequence 

number, to be i gnored . 

Compi ler opt i on s ar e invoked by the appearan ce of their name s 

on an opt i on cont.col card. Two states are associated with t he 

majority of options : set and r eset , Default states are assigned 

to these compiler options 2md the desired state of such an option 

can be spec i fied on an option control card. The balunce of 

options are parameter options with which no states are associated . 

OPTION CONTROL CARDS 

Syntax 

<option control card> : : = $<option list> 

<option list> : : = <empty> l 

<option action> <option> l 

· <option lis t> <option> 



<option action> : : = <empty> I 
POPI 

RESET I 

SET 

<option> CHECK jCODE j<dump option>I FORMAT j<goto option>! 

LISTjLISTDELETEDjLISTOMITTED ILISTP I 

MERGE jNEW jNEWSEQERR jOMIT !<outer level> I 

PAGE jSEQ jSEQERR jSINGLE jTIME !<user option> ! 

VOIDjVOIDTj$j<parameter> 

<dump opt ion> : : = DUMP <dump value> 

<dump value> : : = <integer number> 

<goto option>: : = <go part> <sequence number> 

<go part> - GOTOj GO TO 

<sequence number> <integer nurrilier> 

<outer level> - LEVEL <integer number> 

<user option> ·· = {word used for specific user option} 

<parameter>::= <sequence increment>! 

<sequence base> 

<sequence increment>: : =+ <integer number> 

<sequence base> : : = <integer number > 

Semantics 

DUMP (default RESET ) 

The DUMP option causes the printout of internal compiler 

tables, depending on the value of the <dump value> . 

0 - all 

1 - betwpass 

2 - nametable 

3 - tree 

4 - betwpass and nametable 

5 - betwpass and tree 

6 -· nametable and tree 

For any missing <dump value> or any illegal value then value 

of 0 is taken . 

C2. 



FORMAT ( default RESET) 

If the FORMAT option is SET while the LIST option is 

SET, the printout is spaced to the top of the next 

page after each procedure in the ir,put printout. 

This aids readability. 

For the semantics of the other options the reader should refer 

C3 . 

to Burroughs B67OO/B77OO ALGOL Language Reference Manual, Appendix 

D. 



Appendix D 

ERROR f,iESSAGES 

PASS ONE ERROR MESSAGES 

All pass 1 error messages are of the form: 

ERROR 1xxx NEAR COORDINATE yyyy - message . 

yyyy corresponds to one of the coordinate numbers in the first 

column on the program listing . If there is more than one 

statement on a card, only the coordinate of the first statement 

is listed. Some messages are only warnings, in which case the 

fixup action taken is listed below, and the program proceeds to 

pass 2. 

The messages are : 

( Note errors 1000 to 1006 inclusive are all to do with compile-

time table sizes. These are a~tually s et at the specified 

maximums . It would be hoped that these messages would never 

occur, only experience with the compiler will indicate this.) 

1000 ERROR TABLE OVERFLOW 

Maximum number of error messages is 75. Something 

is drastically wrong Hith the program. To save 

time and paper the rest of the program is i gnored . 

1001 TOO MANY RECORD CLASSES 

This is actually an overflow of the record class 

list array which has a maximum number of entries 

of 65535. 

1002 ID TABLE OVERFLOW 

Maximum of 65535. 

1003 TABLE OF ID POINTERS OVE RFLOW 

Maximum of 65535 . If most of the identifiers are 

short (less than 4 characters) this table may fill 

up before the id table. 

D1. 



1004 NAME TABLE OVERFLOW 

Mnximum of 65535 . 

1005 TEMPORI\RY NAME TAB LE OVERFLOW 

More than 65 535 identifiers in current unclosed 

blocks . 

1006 BLOCK LIST OVERFLOW 

Maximum of 513. 

1007 UNEXPECTED END OF INPUT 

End of input encountered before an END matching each BEGIN. 

The coordinate indicated may be two or three more than the 

las t coordinate in the listing . Check the block nuwbers 

in the second column of the program listing. 

1008 WARNING:ILLEGAL CHARACTER 

A strnnge character accidently keypunched (or overpunched) . 

It is likely that the character will print as a blank , so 

it may be necessary to inspect the card. 

Fixup:treated as a blank. 

1009 WARJ'lING: UNEXPECTED " " 
An apparently final " ." before expected, such as in a 

constant with an inadvertant space :. 123 . 

Fixup:treated as a blank. 

1010 W1\RNING :EXPONENT LARGER THAN 5 DIGITS 

Exponent in a constant is too large , 

Fixup :exponent treated as O. 

1011 WARNING:EXPONENT UNDERFLOW 

Exponent in a constant is too small . 

Fixup:exponent treated as 0 . 

1012 WARNING :EXPONENT OVERFLOW 

Exponent in a constant is 5 digits but too large. 

Fixup:exponent treated as 0. 

1013 WARNING:UNEXPECTED " 1 " 

Fixup :treated as a blank. 

1014 WARNING:INTEGER TOO LARGE 

Integer constant too large . 

Fixup:treated as O. 

D2. 



1015 WARNING: MISSING "TO" 

Mi ss i ng TO after GO . 

Fi xup : supplied . 

1016 WARN ING : INVALID BITS LENGTH 

( a) "#" not followed by hex digits . 

(b ) 11 #11 followed by more than 12 hex digits . 

Fi xup :rep laced with #0 . 

1017 WARNING:INVALID STRING DECLARATION 

(a) STRING (n) where n is not a number 

( b ) STRING ( 0) or STRING(> 256) 

Fi xup :treated as STRING ( 24) . 

1018 WARNING: MIS SING ")" 

STRING (n with no closing 11
)

11
• 

Fixup: supplied . 

1019 WARNING : MISSING 11 ( t t 

REFERENCE not followed by a 11 
( tt . 

Fixup:supplied. 

1020 WARNING :UNMATCHED END (DELETED ) 

An END encountered with no matcl1ing BEGIN . 

D3 . 

Check the block numbers in the second column of the program 

listing . 

Fixup :END deleted . 

1021 WARNING:INVALID STRING LENGTH 

( a ) A string constant of l ength > 256 . 

quot e has probably been omitted. 

( b ) An empty string constant ( 11 tt ), 

Fi xup:replaced by 11 ? 11
• 

1022 WARNING: TOO MANY DIGITS 

More than 256 digits in a digit sequence . 

Fi xup : treated as O. 

1023 WARNING : ID LENGTH> 64 

The closing string 

One of the identifiers in the program is too l ong . 

Fixup :truncated to first 64 characters . 

1024 WARNING: MISSING FINAL 11 • tt 

Program not terminated by ti II The coordinate indicated 

may be two or three more than the last one on the listing . 



D4 . 

May occm"' if the program ends with an unterminated 

string cL~nstnnL or comment . 

F:i.xup: suppJ.ied . 

PASS nm ERROl~ Nr:~;SAGES 

All pass 2 error messages have the format : 

ERROR 2:-:::x NEAR COORDINATE yyyy - message 

( FOUN D HEAR 11 
••• ") 

yyyy corresponds to one of the coordinate numbers in the first 

colu1m on the progr'am J.istine;. " • •• 
11 i s a pair of symbols in 

the p·,-.ogrc::m text being scanned at the time the error is detected_, 

which 1~ay be son.ev .. hat after the actual point of error . In 

general, the firs t symbol terminates the phrase in which the 

errov was detected, the second is the next symbol to be scanned . 

If ,my pass 2 error messages occur (othel"' than warnings), then 

corq::•iJetion step:- at the end of pass ? • 

The messages a~e : 

2000 1:1<ROR T/\lHE OVERFLOW 

Someth5.nr., is drastically wrong with your program . To 

sA.ve t.ime the rest of your pror,ram is ignored . 

Maximum is 75. 

2001 xxxxxx CANNOT FOLLOW yyyyyy HERE 

There are no legal programs in which xxxxxx and yyyyyy 

can be written together . A semi-colon , a comma, or 

an operator may have been omitted . 

2002 INCORR.r::CT l'ARI:NTH:CSIZATION 

This often occurs in conjunction with 2020 or 2021 . 

Usually, additional parentheses are required in the 

expression. 

2003 WARNING: ";" SHOULD NOT FOLLOW I:XPRI:SSION 

I n BEGIN expression ; END , the semi-colon is incorrect. 

rixup:";" ienored. 



2004 SYNTAX ERROR 

This i s a "catch-all" message that is produced when the 

compiler cannot f:i.nd anything more meaningfuJ. to s ay . 

The current context wi lJ. point to the part of the program 

being parsed when the error was detected , but in general 

the real error may be much earJ.ier in the program . If 

the current context is at or near a semi-colon and no 

errors can be found there , l.ook at the beginning of the 

statement which en ds at that semi-colon. If the current 

context is at or near an END, look at the corresponding 

BEGIN . For example , if ELSE BEGIN .. . END ; occurs, 

but not after an IF, the compiler will not detect the 

error un t il it reaches I:ND ;. 

2005 INCOMPATIBLE-NUMBER TYPE 

In most cas es an integer number• is required . 

2006 xxxxxx IS UNDEFINED 

The variable or label xxxxxx has not been declared in 

the current block or in one ccntaining it. 

2007 ILLEGAL ATTRIBu~E 

Illegal initial att r ibute in a file declaration . 

2008 SYNTAX ERROR IN ATTRIBUTE LI ST 

DS . 

Synt ax error in initial attribute list in a file declaration . 

2009 ILLEGAL MNEMONIC 

Illegal mnemonic in initial at1:ribute list in a file 

declaration . 

2010 INCOMPAT IBLE MNEMONIC 

Mnemonic not recognized for attribute used. 

2011 SYNTAX ERROR IN READ/WRITE STATEHENT 

2012 INCOMPATIBLE IDENTIFIER 

Identifier of wrong type . 

2013 INDEX OF ARRAY OR STRING MUST BE INTEGER 

(a) In S(x jy ), xis not an integer expression. 

(b) In Array id ( ... x ... ) , x is not an i nteger expression . 

2014 WARNING:NUMBER IN EDITING SPECIFICATIONS TOO LARGE 

Number > 2;':;':39-2 

2016 ILLEGAL LIST ELEMENT IN READ / WRITE STATEMENT 



D6. 

2017 TOO MANY DIFFERENT LITERALS IN PROGRAM 

No more than 16383 different constants are allowed. 

2018 MORE THAN ONE DECLARATION OF xxxxxx IN THIS BLOCK 

The variable xxxxxx has been declared more than once in 

the same block. 

2019 IDENTIFIER MUST BE RECORD CLASS ID 

In a declaration REFERENCE (xyz), xyz is not the name 

of a record class. 

2020 INCORRECT OPERAND TYPE FOR xxxxxx 

xxxxxx is a unary operator. 

(a) LONG is applied to something which is already LONG, or 

to STRING, BITS, LOGICAL, or REFERENCE. 

(b) SHORT is applied to something which is neither LONG REAL 

nor LONG COMPLEX. 

(c) 7 (not) is applied to something which is neither LOGICAL 

nor BITS. 

(d) Prefix+ or - applied to something wh ich is LOGICAL, 

STRING, BITS, or REFERENCL . 

(e) ABS applied to something which is LOGICAL, STRING , BITS, 

or REFLRENCE. 

(f) In Record variable ( x ), xis not a REFERENCE. 

(g) In fOR I:=x, ... ,xis not an integer expression. 

(h) In various other contexts, an INTEGER or LOGICAL operand 

is required. 

2021 INCORRECT OPERAND TYPE(S) FOR xxxxxx 

xxxxxx is a binary operator. Even when the error is in 

the first operand, the error is detected after both operands 

are inspected. 

(a) AND or OR applied to expressions which are not both 

BITS or both LOGICAL. This case often happens in an 

IF statement when necessary parentheses are left out: 

IF X < Y OR Z = 3 THEN ... 

As written, Y is to be ORed with Z before anything 

else is calculated. Try instead: 

IF (X < Y) OR (Z = 3) THEN 



(b) A relational operator (like>) is applied to something 

which i s COMPLEX, LOGICAL, or REFERENCE . 

(c) SHL or S!IR is applied to something which is not BITS, 

or the shift amount i s not INTEGER . 

( d) In x IS Recordclass, x is not a REFERENCE . 

(e) In x,'d,y ,x is LOGICAL, STRING, BITS, or REFERENCE, or 

y is not INTEGER. 

( f) In a FOR statement, the UNTIL expression is not INTEGER. 

( g ) In various other contexts, an INTEGER operand is 

required . 

2022 INCORRECT NU MBER OF FU:LDS 

In creating a record, too many initial values have been 

specified. 

2023 SIMPLE VARIABLI: USED INCORRECTLY 

In x(, xis a simple variable and not STRING 

2024 INCORRECT STRIHG LENGTH 

In S(xjy), y i s negative , '.6ero, or greater than 256. 

2025 I NCOMPATIBLE STRING LENGTHS 

(a) In STRI NG1 : = STRING2, STRING?. is longer than STRING1. 

(b) In STRING3 (xj y ), y is larger than the declared size 

of STRIHG3 . 

(c) A long string has been passed to a shorter formal 

string parameter. 

2026 ARRAYS USED I NCORRE CTLY 

A simple variable must be used here . 

2027 INCORRECT DI MENS ION 

D7. 

(a) The number of dimensions of an actual parameter does not 

equal the number of dimensions declared for the corresponding 

formal parameter . 

(b) The wrong number of subscripts have been used in an 

array element reference. 

(c) Dimensions in virtual parameters don't agree . 

2028 EXPRESSION MISSING IN PROCEDURE BODY 

A function PROCEDURE mus t have its final value specified 

by an expression standing alone immediately before the END. 



2029 PROPER PROCEDURE ENDS WITH AN EXPRESSION 

A procedure which returns no value nonetheless ends with 

an expression . This sometimes happens when a final 

assignment statement has been mis-punched, e . g . A=B , 

instead of A:=B. 

2030 IMPROPER COMBINATION OF TYPES 

Mixing incompatible types as alternatives of a conditional 

or case expression . 

2031 LEXICAL LEVEL EXCEEDS 31 

Non - trivial blocks , i . e . blocks wi th declarations , are 

nested too deeply. 

2032 MISMATCHED PARAMETER 

( a) A procedure call is passing an actual parameter 

which is not of the same type as the formal 

parameter i~ the procedure declaration. 

(b ) Virtual parameters not of the same types . 

2033 INCORRECT NUMBER OF ACTUAL PARAMETERS 

(a ) The number of actual parameters in a procedure call 

does not equal the number of formal parameters in 

the procedure declaration, 

(b ) The number of virtual parameters do not agree . 

2034 INCOMPATIBLE REFERENCES 

A reference variable refers to a wrong record class . 

2035 RESULT PARAMETER MUST BE A VARIABLE 

In a procedure declaration , a formal parameter is 

declared .. . RESULT xyz, but a call to that procedure 

has passed an expression which is not a variable . 

2036 ASSIGNMENT INCOMPATIBILITY 

An attempt to assign an expression of one type to a 

variable of a different type , or pass an actual 

parameter to a formal parameter of a different type . 

The only automatic conversions allowed are INTEGER 

to REAL, INTEGER to LONGREAL, REAL to/from LONGREAL , 

INTEGER/REAL/LONGREAL to COMPLEX/LONGCOMPLEX , 

COMPLEX to/ from LONGCOMPLEX . 

DB . 



PASS THREE ERROR MESSAGES 

Pass 3 error messages are of the form: 

ERROR 3xxx NEAR COORDINATE yyyy - message 

yyyy corresponds to one of the coordrnate numbers in the first 

column on the program listing. 

Unless a warning error, compilation terminates immediately on a 

Pass 3 error . 

Messages are : 

(Note messages not shown are compiler erl'or messages) . 

3000 EPJ{OR TABLE OVERFLOW 

3001 DISPLACEMENT TOO BIG 

3002 TOO l'1ANY STACK CELLS AT THIS LEVEL 

3003 PROGRAM SEGMEHT TOO LARG:2 

3004 PROGRAM TOO LARCE 

3006 COMPILE AND GO ILLEGAL WITH THIS Pl~OCEDURE 

3007 WARNING : PROCEDURE VALID FOR BINDING ONLY 

For other use recompile at level?.. 

3008 PERIOD EXPECTED ENDING STRING 

String in initial attributes should end with a period 

3009 ILLEGAL ATTRIBUTE VALUE 

3010 LOWER BOUND EXCEEDS UPPER BOUND 

In an array declc1ration an upper bound is less than 

the specified lower bound. 

3012 SUBSCRIPTS MUST PRECEDE ASTERISKS 

In a generalised subarray A( n, ;':) the specified subscripts 

must precede the asterisks. 

301 3 NOT ENOUGH SUBSCRIPTS 

A generalised subarray is being used with not enough 

specified subscripts , i.e. too many asterisks. 

3014 TOO MANY SUBSCRIPTS 

D9. 

A generalised subarray is being used with too many specified 

subscripts , i.e. not enough asterisks. 

3015 TOO MANY STATEMENTS 

Only 1280 statements are allowed in a Case Statement . 




