Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A VISCOMETRIC STUDY OF RHEOLOGICAL INTERACTION BETWEEN SELECTED COMMERCIAL DAIRY PROTEINS AND SELECTED GUMS IN AQUEOUS SOLUTION

A THESIS PRESENTED FOR THE DEGREE OF MASTER OF TECHNOLOGY IN FOOD TECHNOLOGY AT MASSEY UNIVERSITY

WICHAI KOTARATITITAM 1991

To my wife, Suwaranya, and my daughter, Veeya,

ABSTRACT

Rheological interaction between solutions of four selected gum (locust bean gum (LB), sodium carboxymethycellulose (CMC), lambda-carrageenan (CR), xanthan gum (XN)) and solutions of four dairy proteins (sodium caseinate (SC), whey protein concentrate (WPC), coprecipitate (TMP), whey protein isolate (WPI)) were studied by steady shear viscometry using a Bohlin VOR Rheometer at 25 °C, natural pH and natural ionic strength. The rheological properties of mixed solutions were greatly influenced by presence of gum, gum concentration and gum type. Rheological synergism, with no obvious shear rate dependence, occurred between LB and SC, LB and WPC, LB and TMP, CMC and all dairy proteins, CR and WPC, CR and TMP, and XN and WPC. The degree of synergism, which was determined in a new way, was relatively much greater with TMP. The results are discussed in terms of Ca²⁺ bridging for TMP synergism and in terms of electrostatic and molecular space occupancy effects for SC, WPC and WPI synergism. No significant interaction occured between LB and WPI or between CR and SC or between CR and WPI or between XN and SC or between XN and TMP or between XN and WPI. Quantitative measures of synergism in mixed solutions prepared from 0.5% gum solution and 6.0% dairy protein solution were in close agreement with similar measures of synergism in mixed solutions prepared from 1.2% gum, 10.0% dairy protein and distilled water. Rheogical synergism was found to be unrelated to phase separation in the mixed solutions provided the phases remained intimately mixed. The relevance of this work to the use of the gum-dairy protein mixtures as rheologically-functional food ingredients is discussed.

ACKNOWLEDGEMENTS

I wish to express my appreciation and deep sense of gratitude to my supervisor, Dr. Owen McCarthy, for his guidance in all aspects of this work, his never ending patience in helpful and often long discussions and his generous help in the preparation of this manuscript.

I am thankful to Assoc. Prof. Mary Earle for her help in providing important guidance in the preparation of the thesis.

I am grateful to Dr Osvaldo Campanella and Dr Harjinder Singh for their willingness to discuss some aspects of this work.

Several members of the staff in the Food Technology Department, Massey University, provided valuable assistance during the course of this project. In particular I would like to thank Mrs. Margaret Bewley, Mrs. Pam MacDonald, Mrs. Marianne Snalam, Mrs. Lesley James, Mr. Byron McKillop, Mr. Michael Conlon and Mr. Hank Van Til. I wish to express my deep sense of gratitude to Mrs. June Husbands, Mr. Chen Teo and Mr. Tang Qingnong for providing moral support especially at times when I was confronted with difficult situations.

Thanks are also due to a number of the staff members of the New Zealand Dairy Research Institute, in particular Dr J.J. Higgins, Dr. Sheelagh Hewitt, Mr C.R. Southward and Mr. C. Towler. Their joint role in suggesting this thesis topic and supplying generous samples of dairy proteins is gratefully acknowledged.

I gratefully acknowledge the Dairy Farming Promotion Organization of Thailand for allowing me the time to pursue my studies.

I wish to record my gratitude to the New Zealand Government for providing me, through their Overseas Development Assistance plan, with the financial support that made this work possible.

Finally, I feel deeply grateful to my wife, Suwaranya, for her patience, understanding, endless encouragement and love. Without her moral support, the task of completing the project would have been exceedingly difficult.

Wichai Kotaratititam

May, 1991

TABLE OF CONTENTS

	PAGE
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
LIST OF TABLES	xiii
LIST OF FIGURES	xv
ABBREVIATIONS	xxxi
CHAPTER 1 INTRODUCTION	1

1.1	THE USE OF DAIRY PROTEINS AS RHEOLOGICALLY-		
	FUNC	TIONAL FOOD INGREDIENTS	1
	1.1.1	Caseinates	2
	1.1.2	Whey protein concentrate	2
	1.1.3	Coprecipitate	3
1.2	THE U	JSE OF GUMS AS RHEOLOGICALLY-FUNCTIONAL	
	FOOD	INGREDIENTS	4
	1.2.1	Locust bean gum	4
	1.2.2	Sodium carboxymethyl cellulose (CMC)	5
	1.2.3	Carrageenans	5
	1.2.4	Xanthan gum	5
1.3	THE U	JSE OF GUM/DAIRY PROTEIN COMBINATIONS IN	
	FOOD	O SYSTEMS	6
1.4	DISC	USSION AND PROJECT IDENTIFICATION	7

		v
CHAPTER 2 LITERATURE REVIEW		
2.1	INTRODUCTION	8
2.2	FUNDAMENTAL RHEOLOGY OF GUM SOLUTIONS	8
	2.2.1 Intrinsic viscosity	8
	2.2.2 Dilute solutions	11
	2.2.3 Concentrated solutions	11
2.3	RHEOLOGICAL PROPERTIES OF CONCENTRATED GUM	
	SOLUTIONS	11
	2.3.1 Effect of concentration	12
	2.3.2 Effect of pH	13
	2.3.3 Effect of ionic strength	13
	2.3.4 Effect of added sugar	13
2.4	GUM-GUM INTERACTIONS	13
2.5	FUNDAMENTAL RHEOLOGY OF PROTEIN	
	SOLUTIONS	15
	2.5.1 Intrinsic viscosity	15
	2.5.2 Dilute solutions	17
	2.5.3 Concentrated solutions	17
2.6	RHEOLOGICAL PROPERTIES OF CASEINATE	
	SOLUTIONS	18
	2.6.1 Effect of shear	18
	2.6.2 Effect of concentration	18
	2.6.3 Effect of pH	18
	2.6.4 Effect of ionic strength	19
	2.6.5 Effect of temperature and heat treatment	19

		vi
	2.6.6 Effect of chemical agents	20
2.7	RHEOLOGICAL PROPERTIES OF WHEY PROTEIN	
	CONCENTRATE (WPC) SOLUTIONS	21
	2.7.1 Effect of shear	21
	2.7.2 Effect of concentration	21
	2.7.3 Effect of pH and ionic strength	21
	2.7.4 Effect of temperature	22
2.8	RHEOLOGICAL PROPERTIES OF COPRECIPITATE	
	SOLUTIONS	22
	2.8.1 Effect of shear and calcium content	22
	2.8.2 Effect of pH	23
	2.8.3 Effect of temperature	23
2.9	GUM-PROTEIN INTERACTIONS	23
	2.9.1 Homogeneous mixtures	23
	2.9.2 Simple coacervation	24
	2.9.3 Complex coacervation	26
2.10	GUM-MILK PROTEIN INTERACTIONS	27
	2.10.1 Neutral gums	27
	2.10.2 Anionic gums	28
	2.10.2.1 Caseins	28
	2.10.2.2 Whey proteins	29
2.11	GUM-DAIRY PROTEIN INTERACTIONS	30
2.12	VISCOMETRIC INVESTIGATIONS OF GUM-PROTEIN	
	(INCLUDING GUM-DAIRY PROTEIN) MIXTURES	30
	2.12.1 Milk proteins	31

.

				vii
		2.12.2	Dairy proteins	32
		2.12.3	Other proteins	34
	2.13	DISCU	JSSION AND RECOMMENDATION	35
		2.13.1	pH	36
		2.13.2	Gum:protein ratios and concentrations	36
		2.13.3	Salts	37
		2.13.4	Heat	37
CHA	PTER 3	B PROJ	ECT AIMS AND OVERALL PROJECT PLAN	39
	3.1	PROJE	ECT AIMS	39
	3.2	OVER	ALL PROJECT PLAN	39
CHA	PTER 4	MATI	ERIALS AND METHODS	41
1	4.1	MATE	ERIALS	41
		4.1.1	Gums	41
		4.1.2	Dairy Proteins	41
		4.1.3	Other materials	41
	4.2	PREP	ARATION OF SOLUTIONS	42
		4.2.1	Preparation of gum solutions	42
		4.2.2	Preparation of dairy protein solutions	42
		4.2.3	Storage of pure protein and gum solutions (Aging	
			trails)	42
		4.2.4	Preparation of mixtures of gum solutions and dairy	
			protein solutions	43
	4.3	CENT	RIFUGATION OF MIXED SOLUTIONS	43

4.4	MEAS	UREMENT OF SEDIMENT	43
4.5	RHEO	LOGICAL MEASUREMENT	44
	4.5.1	Experimental procedure for viscosity measurements	45
	4.5.2	Recording of viscometric flow data	45
	4.5.3	Model fitting for viscometric flow data	45
4.6	ANAL	YTICAL TESTS	47
	4.6.1	Moisture determination of gum and dairy protein	
		powders	47
	4.6.2	Total solids in the supernatant	48
	4.6.3	Protein determination	48
	4.6.4	pH measurement	48

viii

CHAPTER 5 RHEOLOGICAL CHARACTERISATION OF GUM AND

	DAIR	Y PROTEIN SOLUTIONS	50
5.1	INTRO	DUCTION	50
5.2	EXPE	RIMENTAL PLAN	50
5.3	PROC	ESSING AND PRESENTATION OF EXPERIMENTAL	
	DATA		50
5.4	RESU	LTS	52
	5.4.1	The flow properties of pure dairy protein and pure gum	
		solutions	52
	5.4.2	Effect of concentration on apparent viscosity of pure	
		gum solutions	57
5.5	DISCU	USSION	57
5.6	CONCLUSION		

CHAPTER 6	RHEC	DLOGICAL SYNERGISM AND ANTAGONISM IN	
	GUM-	DAIRY PROTEIN MIXED SOLUTIONS	61
6.1	INTRO	DUCTION	61
6.2	EXPE	RIMENTAL PLAN	61
6.3	PROC	ESSING AND PRESENTATION OF EXPERIMENTAL	
	DATA		62
6.4	RESU	LTS	89
	6.4.1	The flow properties of mixed gum-protein solutions	89
	6.4.2	Synergism and antagonism in mixed solutions	89
	6.4.3	Sedimentation study	101
6.5	DISCU	JSSION	101
	6.5.1	LB/dairy protein mixed solutions	101
	6.5.2	CMC/dairy protein mixed solutions	103
	6.5.3	CR/dairy protein mixed solutions	104
	6.5.4	XN/dairy protein mixed solutions	104
6.6	CONC	CLUSION	105
		*	
	TIT	DEDECTE OF CLAR DECTED DUTY OF	

ix

CHAPTER 7 THE EFFECTS OF GUM : PROTEIN RATIO AND

	TOTAL POLYMER CONCENTRATION ON THE	
	VISCOSITY OF GUM-DAIRY PROTEIN MIXED	
	SOLUTIONS	107
7.1	INTRODUCTION	107
7.2	EXPERIMENTAL PLAN	107
7.3	PROCESSING AND PRESENTATION OF EXPERIMENTAL	
	DATA	109

			x
	7.3.1	Viscosity	109
	7.3.2	Power law constants	110
	7.3.3	Z-ratios	110
	7.3.4	Sedimentation results	114
7.4	RESU	LTS AND DISCUSSION	114
	7.4.1	The effect of gum : protein ratio and total polymer	
		concentration on the apparent viscosity of gum-dairy	
		protein mixed solutions	114
	7.4.2	The effect of gum : protein ratio and total polymer	
		concentration on the rheological character of gum-dairy	
		protein mixed solutions	123
	7.4.3	Z-ratios	124
	7.4.4	Sedimentation results	145
7.5	CONC	CLUSIONS	151
CHAPTER 8	8 FURT	THER SEDIMENTATION EXPERIMENTS	152
8.1	INTR	ODUCTION	152
8.2	EXPE	RIMENTAL PLAN	152
8.3	PROC	CESSING AND PRESENTATION OF EXPERIMENTAL	
	DATA	A	153
8.4	RESU	ILTS AND DISCUSSION	156
	8.4.1	Sedimentation results	156
	8.4.2	Supernatant and sediment compositions	165
	8.4.3	Rheology	165
8 5	CON	CLUSION	168

CHAPTER 9 FINAL DISCUSSION AND CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 170

REFERENCES

APPENDICES		190
APPENDIX 1:	THE CONCENTRATIONS AND RATIOS OF	
	DAIRY PROTEINS AND GUMS THAT HAVE	
	BEEN USED IN FOODS.	190
APPENDIX 2:	SPECIFICATIONS OF GUMS	191
APPENDIX 3:	SPECIFICATION OF DAIRY PROTEINS	193
APPENDIX 4:	PREPARATION OF GUM SOLUTIONS	195
APPENDIX 5:	PREPARATION OF DAIRY PROTEIN	
	SOLUTIONS	200
APPENDIX 6:	STORAGE TIME STUDY	204
APPENDIX 7:	MEASURED MOISTURE AND SOLIDS	
	CONTENTS OF ALL GUM POWERS AND	
	DAIRY PROTEIN POWDERS	205
APPENDIX 8:	NATURAL pH VALUES OF 0.5% GUM	
	SOLUTIONS AND 6.0% DAIRY PROTEIN	
	SOLUTIONS	206
APPENDIX 9:	X-RATIOS FOR MIXTURES OF 0.5% GUM AND	
	6.0% DAIRY PROTEIN SOLUTIONS	207
APPENDIX 10:	X-RATIOS FOR MIXTURES OF 0.5% GUM	
	SOLUTION AND WATER	211

APPENDIX 11:	X'-RATIOS FOR MIXTURES OF 0.5% GUM	
	AND 6.0% DAIRY PROTEIN SOLUTIONS	212
APPENDIX 12:	Z-RATIOS FOR MIXTURES OF GUM-DAIRY	
	PROTEIN SOLUTIONS	216
APPENDIX 13:	MASS BALANCE AND COMPOSITION DATA	
	FORMING THE BASIS OF TABLES 8.10 AND	
	8.11	217

xii

LIST OF TABLES

Table 5.1:	The n and k values of 6.0% dairy protein and 0.5% gum			
	solutions at 25 °C.	52		
Table 6.1:	Compositions of mixtures of 0.5% gum solution and 6.0%			
	dairy protein solution.	62		
Table 6.2:	Sedimentation results (%) for gum-dairy protein mixed			
	solutions.	102		
Table 7.1:	Compositions of the gum-dairy protein mixtures studied.	109		
Table 7.2:	n values for locust bean gum (LB) and dairy protein mixed			
	solutions.	125		
Table 7.3:	n values for CMC and dairy protein mixed solutions.	126		
Table 7.4:	n values for lambda-carrageenan (CR) and dairy protein mixed			
	solutions.	127		
Table 7.5:	n values for xanthan gum (XN) and dairy protein mixed			
	solutions.	128		
Table 7.6:	k values for locust bean gum (LB) and dairy protein mixed			
	solutions.	129		
Table 7.7:	k values for CMC and dairy protein mixed solutions.	130		
Table 7.8:	k values for lambda-carrageenan (CR) and dairy protein mixed			
	solutions.	131		
Table 7.9:	k value for xanthan gum (XN) and dairy protein mixed			
	solutions.	132		
Table 7.10:	Sedimentation results (%) for LB/dairy protein mixed			
	solutions.	146		

Table 7.11:	Sedimentation results (%) CMC/dairy protein mixed	
	solutions	147
Table 7.12:	Sedimentation results (%) for CR/dairy protein mixed	
	solutions.	148
Table 7.13:	Sedimentation results (%) of XN/dairy protein mixed	
	solutions.	149
Table 8.1:	Compositions of mixtures designated Mixture 1.	152
Table 8.2:	Compositions of mixtures designated Mixture 2.	153
Table 8.3:	Sedimentation results (%) for batch 1.	157
Table 8.4:	Sedimentation results (%) for batch 2.1.	158
Table 8.5:	Sedimentation result (% w/w) for batch 2.2.	159
Table 8.6:	Sedimentation results (%) for Mixture 2.	160
Table 8.7:	Sedimentation results (%) and analytical results for batch 5	161
Table 8.8:	Sedimentation results (%) for Mixture 1 (Data from Tables 8.3	
	-8.5)	163
Table 8.9:	Sedimentation results (%) for Mixture 2 (Data from Table	
+	8.6)	164
Table 8.10:	Sedimentation results, compositions, supernatant viscosities and	
	X'-ratios for batch 5 mixed solutions. (Data ranked in	
	descending order of the figure for the percentage of total gum	
	in the mixed solution remaining in the supernatant after	
	centrifugation)	166
Table 8.11:	Sedimentation results, compositions, supernatant viscosities and	
	X'-ratios for batch 5 mixed solutions. (Data ranked in	
	ascending order of sediment %).	167

xiv

.

LIST OF FIGURES

		PAGE
Fig. 2.1	Concentration dependence of 'zero shear' specific viscosity for	
	random coil gum solutions (based on Morris (1983)).	10
Fig. 2.2	Generalised shear-thinning behaviour of concentrated gum	
	solutions (based on Morris (1983)).	10
Fig. 2.3.	Schematic illustration of the phase-volume ratio method (based	
	on Tolstoguzov (1990)). A % protein solution mixed with B $\%$	
	gum solution. C % and D % are protein % and gum % in	
	mixture. E % and G % are the protein and gum concentrations	
	in the protein rich phase. H $\%$ and F $\%$ are the protein and	
	gum concentrations in the gum rich phase.	25
Fig. 4.1	Schematic diagram of Bohlin VOR Rheometer.	46
Fig. 4.2.	Schematic diagram of concentric cylinders, C25 system.	46
Fig. 5.1	Example (for 0.5% locust bean gum solution) of Bohlin plots	
	of shear stress and apparent viscosity versus shear rate.	51
Fig. 5.2	Example of Bohlin printout of flow curve data (the data plotted	
	in Fig 5.1).	51
Fig. 5.3a.	Flow properties of 0.5 % locust bean gum in distilled water at	
	25 °C	53
Fig. 5.3b.	Flow properties of 0.5 % CMC in distilled water at 25 °C	53
Fig. 5.3c.	Flow properties of 0.5 % lambda-carrageenan in distilled water	
	at 25 °C	54
Fig. 5.3d.	Flow properties of 0.5 % xanthan gum in distilled water at 25	

		xvi
	°C	54
Fig. 5.4a.	Flow properties of 6.0 % sodium caseinate in distilled water at	
	25 °C	55
Fig. 5.4b.	Flow properties of 6.0 % WPC in distilled water at 25 °C	55
Fig. 5.4c.	Flow properties of 6.0 % TMP in distilled water at 25 °C	56
Fig. 5.4d.	Flow properties of 6.0 % WPI in distilled water at 25 $^{\circ}$ C	56
Fig. 5.5a.	Apparent viscosity (mPa.s) versus concentration (%) for locust	
	bean gum solutions. Power law constants (n and k values) for	
	each concentration are also shown.	58
Fig. 5.5b.	Apparent viscosity (mPa.s) versus concentration (%) for CMC	
	solutions. Power law constants (n and k values) for each	
	concentration are also shown.	58
Fig. 5.5c.	Apparent viscosity (mPa.s) versus concentration (%) for	
	lambda-carrageenan solutions. Power law constants (n and k	
	values) for each concentration are also shown.	59
Fig. 5.5d.	Apparent viscosity (mPa.s) versus concentration (%) for	
	xanthan gum solutions. Power law constants (n and k values)	
	for each concentration are also shown.	59
Fig. 6.1a.	Apparent viscosity versus mixture composition for mixtures of	
	0.5~% LB and 6.0 % SC solutions. Gum : protein ratios, total	
	concentrations, and values of the power law constants \boldsymbol{n} and \boldsymbol{k}	
	are also shown.	63
Fig. 6.1b.	Apparent viscosity versus mixture composition for mixtures of	•
	0.5 % LB and 6.0 % SC solutions. Gum : protein ratios, total	
	concentrations, and values of the power law constants n and k	

are also shown.

- Fig. 6.1c. Apparent viscosity versus mixture composition for mixtures of 0.5 % LB and 6.0 % WPC solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.1d. Apparent viscosity versus mixture composition for mixtures of 0.5 % LB and 6.0 % TMP solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.1e. Apparent viscosity versus mixture composition for mixtures of 0.5 % LB and 6.0 % WPI solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.2a. Apparent viscosity versus mixture composition for mixtures of 0.5 % CMC and 6.0 % SC solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.2b. Apparent viscosity versus mixture composition for mixtures of
 0.5 % CMC and 6.0 % WPC solutions. Gum : protein ratios,
 total concentrations, and values of the power law constants n
 and k are also shown.
- Fig. 6.2c. Apparent viscosity versus mixture composition for mixtures of 0.5 % CMC and 6.0 % TMP solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.

63

64

64

65

66

- Fig. 6.2d. Apparent viscosity versus mixture composition for mixtures of
 0.5 % CMC and 6.0 % TMP solutions. Gum : protein ratios,
 total concentrations, and values of the power law constants n
 and k are also shown.
- Fig. 6.2e. Apparent viscosity versus mixture composition for mixtures of
 0.5 % CMC and 6.0 % WPI solutions. Gum : protein ratios,
 total concentrations, and values of the power law constants n
 and k are also shown.
- Fig. 6.3a. Apparent viscosity versus mixture composition for mixtures of 0.5 % CR and 6.0 % SC solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.3b. Apparent viscosity versus mixture composition for mixtures of
 0.5 % CR and 6.0 % WPC solutions. Gum : protein ratios,
 total concentrations, and values of the power law constants n
 and k are also shown.
- Fig. 6.3c. Apparent viscosity versus mixture composition for mixtures of 0.5 % CR and 6.0 % TMP solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.3d. Apparent viscosity versus mixture composition for mixtures of
 0.5 % CR and 6.0 % TMP solutions. Gum : protein ratios, total
 concentrations, and values of the power law constants n and k
 are also shown.

xviii

67

68

68

69

69

- Fig. 6.3e. Apparent viscosity versus mixture composition for mixtures of 0.5 % CR and 6.0 % WPI solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.4a. Apparent viscosity versus mixture composition for mixtures of 0.5 % XN and 6.0 % SC solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.4b. Apparent viscosity versus mixture composition for mixtures of 0.5 % XN and 6.0 % SC solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.4c. Apparent viscosity versus mixture composition for mixtures of 0.5 % XN and 6.0 % WPC solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k also shown.
- Fig. 6.4d. Apparent viscosity versus mixture composition for mixtures of
 0.5 % XN and 6.0 % TMP solutions. Gum : protein ratios,
 total concentrations, and values of the power law constants n
 and k are also shown.
- Fig. 6.4e. Apparent viscosity versus mixture composition for mixtures of 0.5 % XN and 6.0 % WPI solutions. Gum : protein ratios, total concentrations, and values of the power law constants n and k are also shown.
- Fig. 6.5. Schematic presentation of the possible rheological behaviour

xix

70

70

71

71

72

patterns of gum-dairy protein mixed solutions.

- Fig. 6.6. Schematic presentation of the possible rheological behaviour patterns of gum-dairy protein mixed solutions in terms of X-ratios.
- Fig. 6.7a. X-ratio versus mixture composition for mixtures of 0.5 % LB and 6.0 % SC solutions. Gum : protein ratios and total concentrations are also shown.
- Fig. 6.7b. X-ratio versus mixture composition for mixtures of 0.5 % LB and 6.0 % SC solutions. Gum : protein ratios and total concentrations are also shown.
- Fig. 6.7c. X-ratio versus mixture composition for mixtures of 0.5 % LB and 6.0 % WPC solutions. Gum : protein ratios and total concentrations are also shown.
- Fig. 6.7d. X-ratio versus mixture composition for mixtures of 0.5 % LB and 6.0 % TMP solutions. Gum : protein ratios and total concentrations are also shown.
- Fig. 6.7e. X-ratio versus mixture composition for mixtures of 0.5 % LB and 6.0 % WPI solutions. Gum : protein ratios and total concentrations are also shown.
- Fig. 6.8a. X-ratio versus mixture composition for mixtures of 0.5 % CMC and 6.0 % SC solutions. Gum : protein ratios and total concentrations are also shown.
- Fig. 6.8b. X-ratio versus mixture composition for mixtures of 0.5 % CMC and 6.0 % WPC solutions. Gum : protein ratios and total concentrations are also shown.

XX

74

74

75

75

76

76

77

77

Fig. 6.8c. X-ratio versus mixture composition for mixtures of 0.5 % CMC and 6.0 % TMP solutions. Gum : protein ratios and total concentrations are also shown. 78 X-ratio versus mixture composition for mixtures of 0.5 % Fig. 6.8d. CMC and 6.0 % TMP solutions. Gum : protein ratios and total concentrations are also shown. 79 X-ratio versus mixture composition for mixtures of 0.5 % Fig. 6.8e. CMC and 6.0 % WPI solutions. Gum : protein ratios and total concentrations are also shown. 79 X-ratio versus mixture composition for mixtures of 0.5 % CR Fig. 6.9a. and 6.0 % SC solutions. Gum : protein ratios and total 80 concentrations are also shown. Fig. 6.9b. X-ratio versus mixture composition for mixtures of 0.5 % CR and 6.0 % WPC solutions. Gum : protein ratios and total concentrations are also shown. 80 X-ratio versus mixture composition for mixtures of 0.5 % CR Fig. 6.9c. and 6.0 % TMP solutions. Gum : protein ratios and total concentrations are also shown. 81 Fig. 6.9d. X-ratio versus mixture composition for mixtures of 0.5 % CR and 6.0 % TMP solutions. Gum : protein ratios and total 81 concentrations are also shown. X-ratio versus mixture composition for mixtures of 0.5 % CR Fig. 6.9e. and 6.0 % WPI solutions. Gum : protein ratios and total concentrations are also shown. 82 X-ratio versus mixture composition for mixtures of 0.5 % XN Fig. 6.10a.

xxi

	and 6.0 % SC solutions. Gum : protein ratios and total	
	concentrations are also shown.	82
Fig. 6.10b.	X-ratio versus mixture composition for mixtures of 0.5 % XN	
	and 6.0 % SC solutions. Gum : protein ratios and total	
	concentrations are also shown.	83
Fig. 6.10c.	X-ratio versus mixture composition for mixtures of 0.5 % XN	
	and 6.0 % WPC solutions. Gum : protein ratios and total	
	concentrations are also shown.	83
Fig. 6.10d.	X-ratio versus mixture composition for mixtures of 0.5 $\%$ XN	
	and 6.0 % TMP solutions. Gum : protein ratios and total	
	concentrations are also shown.	84
Fig. 6.10e.	X-ratio versus mixture composition for mixtures of 0.5 $\%$ XN	
	and 6.0 % WPI solutions. Gum : protein ratios and total	
	concentrations are also shown.	84
Fig. 6.11	Viscosity versus concentration for aqueous sucrose solutions at	
	25 °C, showing effect of non-linearity on predicted (expected)	
*	viscosity (Data from Norrish (1967)).	86
Fig. 6.12a.	X-ratio versus mixture composition for mixtures of 0.5 $\%$ LB	
	and water.	86
Fig. 6.12b.	X-ratio versus composition for mixtures of 0.5 $\%$ CMC and	
	water.	87
Fig. 6.12c.	X-ratio versus mixture composition for mixtures of 0.5 $\%$ CR	
	and water.	87
Fig. 6.12d.	X-ratio versus mixture composition for mixtures of 0.5 $\%$ XN	
	and water.	88

xxii

X'-ratio versus mixture composition for mixtures of 0.5 % LB Fig. 6.13a. and 6.0 % SC solutions. Gum : protein ratios and total concentrations are also shown. 91 X'-ratio versus mixture composition for mixtures of 0.5 % LB Fig. 6.13b. and 6.0 % SC solutions. Gum : protein ratios and total concentrations are also shown. 91 Fig. 6.13c. X'-ratio versus mixture composition for mixtures of 0.5 % LB and 6.0 % WPC solutions. Gum : protein ratios and total concentrations are also shown. 92 X'-ratio versus mixture composition for mixtures of 0.5 % LB Fig. 6.13d. and 6.0 % TMP solutions. Gum : protein ratios and total concentrations are also shown. 92 Fig. 6.13e. X'-ratio versus mixture composition for mixtures of 0.5 % LB and 6.0 % WPI solutions. Gum : protein ratios and total concentrations are also shown. 93 X'-ratio versus mixture composition for mixtures of 0.5 % Fig. 6.14a. CMC and 6.0 % SC solutions. Gum : protein ratios and total concentrations are also shown. 93 Fig. 6.14b. X'-ratio versus mixture composition for mixtures of 0.5 % CMC and 6.0 % WPC solutions. Gum : protein ratios and total concentrations are also shown. 94 Fig. 6.14c. X'-ratio versus mixture composition for mixtures of 0.5 % CMC and 6.0 % TMP solutions. Gum : protein ratios and total concentrations are also shown. 94

Fig. 6.14d. X'-ratio versus mixture composition for mixtures of 0.5 % xxiii

	•	xxiv
	CMC and 6.0 % TMP solutions. Gum : protein ratios and total	
	concentrations are also shown.	95
Fig. 6.14e.	X'-ratio versus mixture composition for mixtures of 0.5 $\%$	
	CMC and 6.0 % WPI solutions. Gum : protein ratios and total	
	concentrations are also shown.	95
Fig. 6.15a.	X'-ratio versus mixture composition for mixtures of 0.5 % CR	
	and 6.0 % SC solutions. Gum : protein ratios and total	
	concentrations are also shown.	96
Fig. 6.15b.	X'-ratio versus mixture composition for mixtures of 0.5 $\%$ CR	
	and 6.0 % WPC solutions. Gum : protein ratios and total	
	concentrations are also shown.	96
Fig. 6.15c.	X'-ratio versus mixture composition for mixtures of 0.5 $\%$ CR	
	and 6.0 % TMP solutions. Gum : protein ratios and total	
9	concentrations are also shown.	97
Fig. 6.15d.	X'-ratio versus mixture composition for mixtures of 0.5 $\%$ CR	
	and 6.0 % TMP solutions. Gum : protein ratios and total	
	concentrations are also shown.	97
Fig. 6.15e.	X'-ratio versus mixture composition for mixtures of 0.5 $\%$ CR	
	and 6.0 % WPI solutions. Gum : protein ratios and total	
	concentrations are also shown.	98
Fig. 6.16a.	X'-ratio versus mixture composition for mixtures of 0.5 $\%$ XN	
	and 6.0 % SC solutions. Gum : protein ratios and total	
	concentrations are also shown.	98
Fig. 6.16b.	X'-ratio versus mixture composition for mixtures of 0.5 % XN	
	and 6.0 % SC solutions. Gum : protein ratios and total	

concentrations are also shown.

- Fig. 6.16c. X'-ratio versus mixture composition for mixtures of 0.5 % XN and 6.0 % WPC solutions. Gum : protein ratios and total concentrations are also shown
- Fig. 6.16d. X'-ratio versus mixture composition for mixtures of 0.5 % XN and 6.0 % TMP solutions. Gum : protein ratios and total concentrations are also shown. 100
- Fig. 6.16e. X'-ratio versus mixture composition for mixtures of 0.5 % XN and 6.0 % WPI solutions. Gum : protein ratios and total concentrations are also shown. 100
- Fig. 7.1. Compositions of the mixed gum-dairy protein solutions studied in Chapter 6. 108
- Fig. 7.2a. Apparent viscosity versus gum : protein ratio and total polymer concentration for LB/SC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum

: protein ratio and the z-axis is apparent viscosity (mPa.s).

- Fig. 7.2b. Apparent viscosity versus gum : protein ratio and total polymer concentration for LB/WPC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.2c. Apparent viscosity versus gum : protein ratio and total polymer concentration for LB/TMP mixtures. The x-axis is total polymer concentration (%), the y-axis is protein figure of the gum : protein ratio and the z-axis is apparent viscosity

99

99

115

(mPa.s).

- Fig. 7.2d. Apparent viscosity versus gum : protein ratio and total polymer concentration for LB/WPI mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.3a. Apparent viscosity versus gum : protein ratio and total polymer concentration for CMC/SC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.3b. Apparent viscosity versus gum : protein ratio and total polymer concentration for CMC/WPC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.3c. Apparent viscosity versus gum : protein ratio and total polymer concentration for CMC/TMP mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.3d. Apparent viscosity versus gum : protein ratio and total polymer concentration for CMC/WPI mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).

116

117

117

118

- Fig. 7.4a. Apparent viscosity versus gum : protein ratio and total polymer concentration for CR/SC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.4b. Apparent viscosity versus gum : protein ratio and total polymer concentration for CR/WPC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.4c. Apparent viscosity versus gum : protein ratio and total polymer concentration for CR/TMP mixtures. The x-axis is the total polymer concentration (%), the y-axis is protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.4d. Apparent viscosity versus gum : protein ratio and total polymer concentration for CR/WPI mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
 120
- Fig. 7.5a. Apparent viscosity versus gum : protein ratio and total polymer concentration for XN/SC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum
 : protein ratio and the z-axis is apparent viscosity (mPa.s). 121
- Fig. 7.5b. Apparent viscosity versus gum : protein ratio and total polymer concentration for XN/WPC mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of

xxvii

119

119

the gum : protein ratio and z-axis is the apparent viscosity (mPa.s).

- Fig. 7.5c. Apparent viscosity versus gum : protein ratio and total polymer concentration for XN/TMP mixtures. The x-axis is total polymer concentration (%), the y-axis is protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.5d. Apparent viscosity versus gum : protein ratio and total polymer concentration for XN/WPI mixtures. The x-axis is total polymer concentration (%), the y-axis is the protein figure of the gum : protein ratio and the z-axis is apparent viscosity (mPa.s).
- Fig. 7.6a. n value versus gum concentration for LB/dairy protein mixed solutions. 133
- Fig. 7.6b. n value versus gum concentration for CMC/dairy protein mixed solutions. 133
- Fig. 7.6c. n value versus gum concentration for CR/dairy protein mixed solutions. 134
- Fig. 7.6d. n value versus gum concentration for XN/dairy protein mixed solutions. 134
- Fig. 7.7a. k value versus gum concentration for LB/dairy protein mixed solutions. 135
- Fig. 7.7b.
 k value versus gum concentration for CMC/dairy protein mixed

 solutions.
 135

Fig. 7.7c. k value versus gum concentration for CR/dairy protein mixed

xxviii

121

		xxix
	solutions.	136
Fig. 7.7d.	k value versus gum concentration for XN/dairy protein mixed	
	solutions.	136
Fig. 7.8a.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % LB and 6.0 % SC solutions.	137
Fig. 7.8b.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % LB and 6.0 % WPC solutions.	137
Fig. 7.8c.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % LB and 6.0 % TMP solutions.	138
Fig. 7.8d.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % LB and 6.0 % WPI solutions.	138
Fig. 7.9a.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CMC and 6.0 % SC solutions.	139
Fig. 7.9b.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CMC and 6.0 % WPC solutions.	139
Fig. 7.9c.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CMC and 6.0 % TMP solutions.	140
Fig. 7.9d.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CMC and 6.0 % WPI solutions.	140
Fig. 7.10a.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CR and 6.0 % SC solutions.	141
Fig. 7.10b.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CR and 6.0 % WPC solutions.	141
Fig. 7.10c.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CR and 6.0 % TMP solutions.	142

		XXX
Fig. 7.10d.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % CR and 6.0 % WPI solutions.	142
Fig. 7.11a.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % XN and 6.0 % SC solutions.	143
Fig. 7.11b.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % XN and 6.0 % WPC solutions.	143
Fig. 7.11c.	Z-ratio and X-ratio versus mixture composition for mixtures of	
	0.5 % XN and 6.0 % TMP solutions.	144
Fig. 7.11d.	Z-ratio and X-ratio versus mixture composition for mixtures of	
Ξ.	0.5 % XN and 6.0 % WPI solutions.	144
Fig. 8.1.	Sedimentation experiments carried out on Mixtures 1 and 2.	154
Fig. 8.2.	Sedimentation measurement and analyses carried out on batch	
	5 (Mixture 1).	154

ABBREVIATIONS

LB	=	Locust bean gum
CMC	=	Sodium Carboxymethylcellulose
CR	=	Lambda-carrageenan
XN	=	Xanthan gum
SC	=	Sodium caseinate
WPC	-	Whey protein concentrate
TMP	=	Total milk protein
WPI	=	Whey protein isolate
LB/SC	=	LB and SC mixed solutions
LB/WPC	=	LB and WPC mixed solutions
LB/TMP	=	LB and TMP mixed solutions
LB/WPI	=	LB and WPI mixed solutions
CMC/SC	Ħ	CMC and SC mixed solutions
CMC/WPC	_ = 1	CMC and WPC mixed solutions
CMC/TMP	=	CMC and TMP mixed solutions
CMC/WPI	=	CMC and SC mixed solutions
CR/SC	=	CR and SC mixed solutions
CR/WPC	=	CR and WPC mixed solutions
CR/TMP	=	CR and TMP mixed solutions
CR/WPI	=	CR and WPI mixed solutions
XN/SC	=	XN and SC mixed solutions

XN/WPC	=	XN and WPC mixed solutions
XN/TMP	=	XN and TMP mixed solutions
XN/WPI	=	XN and WPI mixed solutions
N	=	No sediment was observed.
NG	=	Sediment was found but the solution appeared to be a
		gel-like mass.

•