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Abstract.

A parallel plate viscoelastometer was built to perform creep
compliance tests on butter and related fats. Creep movement
was measured with a linear displacement transducer and
recorded by a data logger designed and built for creep

compliance experimentation.

A temperature of 10°C was maintained by placing the parallel

plate viscoelastometer in a refrigerated incubator.

A series of preliminary experiments established the creep
response was linear and that the direction in which some
samples were sheared was critical. The duration of creep

compliance testing was also found to affect results.

Creep behaviour of butter was assumed to be viscoelastic
(based on previous studies) and was modelled with a
generalized Kelvin model. Elastic and viscous parameters were
fitted to the data by a Marqﬁadt non-linear least squares
curve algorithm. Continuous retardation spectra were found by
plotting L(T) against 1ln time. Data which had been both
smoothed and differentiated by the methods of Savitzky and
Golay (1964) showed evidence of the existence of three or four

main groups of retardation mechanisms.

On removal of stress after creep compliance testing a partial
recovery of strain was observed, however, samples failed to
recover as much as predicted by viscoelastic theory. A second
creep/recovery cycle resulted in a responses similar in
magnitude to the first recovery. All fat products tested
showed the same pattern of response on repeated creep/recovery

cycling.

An explanation, based on the behavior of polymers, was put

forward to explain the observed pattern of response. The
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crystal network was thought to align in the direction in which
stress was applied. The formation of new ’‘bonds’ was then

thought to lock the network in its’ new position.

A number of samples were reworked, The creep curve seen on
creep/recovery cycling of reworked samples was similar in
shape to that seen for the original samples. However, the
curves were three to four times greater than those seen for
the original samples. In general, creep response was found to

be inversely proportional to hardness.

The retardation spectra of reworked samples differed from
those seen for the original samples in several ways. The
spectra were smoother, the bulk of the spectra had moved to
shorter times and they were larger than those seen for the

original samples.

A survey of seasonal butter samples was also undertaken. Creep
compliance parameters were found to correlate well with

sectility hardness and solid.fat content.
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Aim of Study.

The aims of this work are:

a) To study the rheological properties of butter and related
fat products by a creep compliance method.

b) To gain a clearer understanding of the relationship between
rheological properties, composition and structure of butter
and related products.

c) To use this knowledge to improve the rheological properties
of butter.
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