Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterisation of Lactose in the Liquid and Solid State using Nuclear Magnetic Resonance and Other Methods

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at

Massey University

Jim Hargreaves

1995

Abstract

The anomeric composition of lactose is studied using polarimetry, gas liquid chromatography and a variety of nuclear magnetic resonance (NMR) methods and the results compared. As a result reliable characterisation based on solution methods is obtained. The measurement of the spectrum of nuclear spin-lattice relaxation times (T_1) of lactose powders demonstrate significant differences between crystalline and amorphous species and between the different crystalline forms of lactose. These differences form the basis of a new characterisation methodology of powdered lactose where measurements are performed in the solid state. The use of linear multiexponential curve fitting algorithms (NNLS and Contin) to deduce the "relaxation spectrum" from the multiexponential decay curve (obtained using a low-cost wideline NMR machine) allows for the reliable interpretation of noisy and drift-affected inversion recovery data. The absence of spin-diffusion between crystalline and amorphous species enables the determination of the relative weight fractions of several lactose species in a mixed powder sample with a simple correlation to the relative intensities of relaxation time components of the T₁ spectrum. The T₁ values of amorphous lactoseareshown to be sensitive to moisture content and the glass transition process. The quantitative results gained from using the T_1 method to characterise lactose can be applied to improve the functionality of lactose and lactose-containing powders.

Acknowledgments

I wish to thank Professor Paul Callaghan for his enthusiasm and positive guidance as firstprincipal supervisor and whose advice and inspiration helped make this work a success, and secondly, my second-principal supervisor Associate Professor Ken Jolley whose experience and positive criticism provided much-needed guidance during the development stages of the research work and the writing of this thesis. Thanks go to my other supervisors, Dr John Smart, Dr Richard Archer, and Dr Eric Ainscough for their contribution and positive support during our many meetings.

I would like to thank the staff of the Milkfat Products Section of the NZDRI for allowing endless use of the BRUKER minispec NMR machine. In particular, I thank Alastair MacGibbon who was never too busy to help when things went wrong, and to my special friends Sally Hewson and Yvonne van der Does who made my work in the Milkfat laboratory truly a pleasure. I thank Dong Chen and Richard Lloyd of the Milkpowders Section for their contribution to the work on amorphous lactose.

Thanks go to Keith Morgan and Richard Meinhold of Industrial Research Limited, Gracefield for the solid-state high-resolution 13C spectra of the crystalline species of lactose.

Thanks go to the staff and students of the Department of Physics at Massey University for advice and support when needed and for maintaining an enjoyable and lively working atmosphere.

I would like to thank my Father and Grandmother for their constant encouragement and to all my friends for helping me to stay on top of things.

Table of Contents

	Ackr	nowledg	mentsiii	
	Table of Contentsiv			
	List o	of Figur	esix	
	List o	of Table	sxii	
	List o	of Symb	olsxiii	
Chapter 1	Intro	oduction	11	
	1.1	Probl	em definition1	
	1.2	Struct	ure of the thesis2	
	1.3	Lacto	se Chemistry3	
		1.3.1	Mutarotation	
		1.3.2	Commercial Production of Lactose5	
		1.3.3	"Non-commercial" Crystalline forms of Lactose9	
	1.4	Litera	ture Review of Traditional Characterisation Methods10	
		1.4.1	Determination of the Anomeric Ratio11	
		1.4.2	Identification and Quantification of Crystalline Species.12	
		1.4.3	Determination of Crystallinity	
		1.4.4	Determination of Glass Transition and Crystallisation	
			Temperatures of Amorphous Lactose	
	1.5	Summ	nary15	
Chapter 2	Pren	aration	of Crystalline Species of Lactose 16	
Chapter 2	2.1	Introd	uction 16	
	2.1	Prena	ration of Crystalline Forms of Lactose 16	
	2.2	2.2.1	Alpha Lactose Monohydrate 16	
		2.2.1	Conventional Beta Lactose 17	
		2.2.2	Beta Lactose from NaOH/Methanol Solution 17	
		2.2.5	Mixed Crustal (5:3) from HCI/Methanol Solution 17	
		2.2.4	Mixed Crystal (3:3) from HCI/Methanol Solution 19	
		2.2.5	Mixed Crystal (4.1) from NH ₄ /Methanol Solution 19	
		2.2.0	S Lactose 19	
		2.2.8	U Lactose	
	2.3	Summ	uary	
Chanter 3	Anal	vsis of t	he Anomeric Composition of	
Surfree o	Anter	, 515 01 11		
	Lacto	se Pow	ders using Solution Methodologies 21	

	3.2	Prepa	ration of Samples	21
	3.3	Polari	metry	22
		3.3.1	Materials and Method	22
		3.3.2	Effect of Solvation Delay	
			upon the Mutarotation Curve	23
		3.3.3	Polarimetric Measurements	
			and Anomeric Calculations	24
		3.3.4	Temperature Dependence of the Mutarotation Rate	26
	3.4	Gas L	iquid Chromatography	28
		3.4.1	Materials and Method	28
	3.5	Highl	Resolution NMR Spectroscopy	29
		3.5.1	Materials and Method	30
		3.5.2	Dynamic Measurements and	
			Calculation of the Anomeric Composition	30
			3.5.2.1 Solvent Suppression	33
			3.5.2.2 Comparison of 10 °C and 20 °C Spectra	35
		3.5.3	Static Measurements using DMSO and	
			Calculation of the Anomeric Ratio	
	3.6	Result	s of Anomeric Measurements	38
	3.7	Discu	ssion	
	3.8	Concl	usions and Summary	40
Chapter 4	Rela	xation o	f Spin 1/2 Nuclei in Diamagnetic Solids	42
	4.1	Introd	uction	42
	4.2	Spin-I	Lattice Relaxation Times in Solids	43
		4.2.1	Resonant Excitation and the Rotating Frame	43
		4.2.2	Semi-Classical Description of Spin Relaxation	44
		4.2.3	The Dipolar Hamiltonian	45
		4.2.4	Relaxation and Molecular Motion	45
	4.3	Measu	ring T ₁ in Solids	48
	4.4	The U	se of Computer Algorithms to Determine	
		the Sp	ectrum of Relaxation Times	51
		4.4.1	Marquardt-Levenberg	51
		4.4.2	Lawson-Hanson	54
		4.4.3	Contin	56
	4.5	Testin	g the Algorithms	58
		4.5.1	Marquardt-Levenberg	59
		4.5.2	Lawson-Hanson	62
		4.5.3	Contin	65

		4.5.4	Discussion	59
	4.6	Fittin	g of experimental data	68
		4.6.1	Hardware-Based Experiments	68
		4.6.2	"Experimental-Supervisor" Software	
			and Experimental Procedure	73
	4.7	Conc	lusions and Summary	76
Chapter 5	Iden	tificatio	n of Crystalline Forms of Lactose	77
	5.1	Introc	luction	77
	5.2	Analy	vsis of the Crystalline Composition	
		of Cry	ystalline Powders	77
		5.2.1	T ₁ Measurements	77
		5.2.2	The T ₁ Spectra	78
		5.2.3	The Effect of Adsorbed Moisture on	
			Relaxation Times of Crystalline Lactose	86
		5.2.4	High Resolution Solid-State	
			NMR of Crystalline Lactose	88
			5.2.4.1 Method and Results	89
		5.2.5	Analysis of the Anomeric Composition	
			of Lactose Powders by T ₁ Value Analysis	92
	5.3	Summ	nary	93
Chapter (Data		on of the Close Transition and Crustellisation	
Chapter 0	Tom	ninau	on of A morphous L actose	05
	61	Introd	uction	
	6.2	The G	lass Transition Phenomenon	
	0.2	621	Background	
		622	Effect of Glass Transition on Food Structure	
	63	Deter	mination of T using T and DSC Managements	100
	0.5	631	Sample Preparation and Investigation	IŲU
		0.3.1	of Moisture Content Hysteresis	100
		632	The DSC Method	100
		633	The DSC Method	105
		634	Comparison of DSC and T. Measurements	100
	6.4	Deten	mination of the Crystallisation Temperatures	100
	0.4	by T.	Value analysis and DSC Measurement	108
		6/1	Background	108
		642	Sample Dreparation	100
		0.4.2	The DSC Method	109
		0.4.5	I UE DOC MIELUOD	109

		6.4.4 The	Γ ₁ Method	110
	6.5	Summary		112
Chapter 7	Dete	rmination of t	he Crystallinity of Lactose and Lactose-	
	Cont	taining Powde	rs	
	7.1	Introduction		114
	7.2	Sample Prep	paration	
	7.3	T ₁ Measurer	ments and Crystallinity	
		Determinatio	on of Pure Lactose Powders	115
		7.3.1 Meas	surements	115
		7.3.2 Resul	Its and Discussion	115
		7.3.3 The 7	Гhree-Point Methodology	119
	7.4	Determination	on of Contaminating Lactose in Crystalline	
		Alpha Lacto	se Monohydrate and Spray-Dried Milk Pow	/der120
		7.4.1 Samp	ble Preparation	120
		7.4.2 Meas	urements	121
		7.4.3 Resul	Its and Discussion	121
	7.5	Summary		
Chapter 8	Sum	mary	•••••••••••••••••••••••••••••••••••••••	124
	Refe	rences		126
	Арре	endices		130
		Appendix 1	Simulated Model of the Effect of Solvation	on
			Delay on Polarimetric Readings	130
		Appendix 2	Solvent Suppressed High Resolution	
			NMR Spectroscopy	132
		Appendix 3	Operation of the Marquardt-	
			Levenberg Algorithm	
		Appendix 4	The Marquardt-Levenberg Algorithm	134
		Appendix 5	Operation of the Lawson-	
			Hanson Algorithm	
		Appendix 6	The Lawson-Hanson Algorithm	155
		Appendix 7	Simulated Drift Distortion of	
			Inversion-Recovery Data and	
			the Generation of Gaussian Noise	
		Appendix 8	Drying Conditions of Spray-Dried	
			Amorphous Lactose Powder	172

Appendix 9	Constraining the Lawson-Hanson Algorithm		
	to a Biexponential Model17	3	

List of Figures

Figure 1.1	The Mutarotation Reaction of Lactose	4
Figure 1.2	Separating and Refining Lactose from Whey	7
Figure 1.3	Relative Solubilities of Alpha and Beta Lactose	9
Figure 1.4	Crystalline Shape of Alpha Lactose Monohydrate	9
Figure 1.5	Preparation of Crystalline Forms of Lactose	11
Figure 2.1	Generation of Anhydrous HCl Gas	18
Figure 3.1	Effect of Solvation Delay on Optical Rotation	23
Figure 3.2	Polarimeter Sample Tube	24
Figure 3.3	Mutarotation Curve of Alpha Lactose	25
Figure 3.4	Semi-Logarithm Plot of Figure 3.3	26
Figure 3.5	Temperature Dependence of Mutarotation Rate	27
Figure 3.6	GLC Chromatogram of Alpha and Beta Lactose	29
Figure 3.7	Proton Spectra of Alpha in D ₂ O	31
Figure 3.8	Proton Spectra of Beta in D ₂ O	31
Figure 3.9	Carbon-13 Spectra of Alpha in D ₂ O	32
Figure 3.10	Carbon-13 Spectra of Beta in D ₂ O	32
Figure 3.11	Comparison of Proton Spectra with and without Solvent	
	Suppression	33
Figure 3.12	Solvent Suppression Pulse Sequence	34
Figure 3.13	Proton Spectra of Alpha at 10 °C	35
Figure 3.14	Proton Spectra of Alpha in DMSO	36
Figure 3.15	Proton Spectra of Beta in DMSO	37
Figure 3.16	Carbon-13 Spectra of Alpha in DMSO	37
Figure 3.17	Carbon-13 Spectra of Beta in DMSO	38
Figure 3.18	Comparison of Polarimetry, NMR and GLC	39
Figure 4.1	T_1 and T_1 versus Molecular Correlation Time	47
Figure 4.2	Inversion Recovery Pulse Sequence	49
Figure 4.3	Using ML Algorithm on Noisy Data	59
Figure 4.4	Using ML Algorithm on Drift Affected Data	60
Figure 4.5	Using ML Algorithm on Drift Affected Data	61
Figure 4.6	Using LH Algorithm on Noisy Data	62
Figure 4.7	Using LH Algorithm on Drift Affected Data	63
Figure 4.8	Using LH Algorithm on Drift Affected Data	64
Figure 4.9	Using Contin Algorithm on Noisy Data	65

Figure 4.10	Using Contin Algorithm on Drift Affected Data	66
Figure 4.11	Using Contin Algorithm on Drift Affected Data	
Figure 4.12	Magnetisation Curve of Alpha Lactose	69
Figure 4.13	Corresponding Semi-Logarithmic Plot of Figure 4.12	69
Figure 4.14	Relaxation Time Components of Figure 4.12	70
Figure 4.15	Semi-Logarithmic Plot of Beta Lactose	70
Figure 4.16	Relaxation Time Components of Figure 4.15	71
Figure 4.17	Modified IR Pulse Sequence	73
Figure 4.18	Drift during a Relaxation Experiment	74
Figure 4.19	Improved Relaxation Spectrum of Alpha Lactose	75
Figure 4.20	Improved Relaxation Spectrum of Beta Lactose	75
Figure 5.1	T ₁ Spectra of Alpha Lactose Monohydrate using LH	78
Figure 5.2	T ₁ Spectra of Alpha Lactose Monohydrate using Contin	78
Figure 5.3	T ₁ Spectra of Beta Lactose using LH	79
Figure 5.4	T ₁ Spectra of Beta Lactose using Contin	79
Figure 5.5	T ₁ Spectra of S-Lactose using LH	80
Figure 5.6	T ₁ Spectra of S-Lactose using Contin	80
Figure 5.7	T ₁ Spectra of Beta (methanol) Lactose using LH	81
Figure 5.8	T ₁ Spectra of Beta (methanol)Lactose using Contin	81
Figure 5.9	T ₁ Spectra of U-Lactose using LH	82
Figure 5.10	T ₁ Spectra of U-Lactose using Contin	82
Figure 5.11	T ₁ Spectra of 5:3 Lactose using LH	83
Figure 5.12	T ₁ Spectra of 5:3 Lactose using Contin	83
Figure 5.13	DSC thermogram of 5:3 Crystal	85
Figure 5.14	Comparison of S-lactose (0.00 and 0.33 Aw)	87
Figure 5.15	Comparison of U-lactose (0.00 and 0.33 Aw)	87
Figure 5.16	CP-MAS Spectra of Alpha Monohydrate	89
Figure 5.17	CP-MAS Spectra of S-Lactose	90
Figure 5.18	CP-MAS Spectra of Conventional Beta	90
Figure 5.19	CP-MAS Spectra of Methanolic Beta	91
Figure 5.20	CP-MAS Spectra of Amorphous Lactose	91
Figure 6.1	Physical Changes at the Glass Transition	97
Figure 6.2	Dependence of T _g on Composition	98
Figure 6.3	Moisture Adsorption Hysteresis	102
Figure 6.4	Repeated DSC Scans of Amorphous Lactose	103
Figure 6.5	First Derivative Method of Finding Tg	104
Figure 6.6	Mid-Point Method of Finding Tg	105

List of Figures

:

Figure 6.7	DSC thermograms as a function of Moisture Content105
Figure 6.8	T ₁ Spectra of Amorphous Lactose versus Moisture Content.,107
Figure 6.9	DSC thermogram of Crystallisation109
Figure 6.10	T ₁ Value Discontinuity around T _g 111
Figure 6.11	Schematic Phase Diagram of Amorphous Crystallisation112
Figure 7.1	Simulated T ₁ Spectra Corresponding to 95 % Crystallinity117
Figure 7.2	T ₁ Spectra of Caked Whole Milkpowder121
Figure 8.1	Optical rotation of dissolving particle131
Figure 8.2	Effect of Solvent Suppression on the Anomeric Composition132
Figure 8.3	Representation of Positive Baseline Drift168
Figure 8.4	Representation of Negative Baseline Drift169
Figure 8.5	Schematic of Pilot-Scale Drier172
Figure 8.6	Simulated Biexponential Relaxation Data (0.5% Noise)173
Figure 8.7	Simulated Biexponential Relaxation Data (1% Noise)174
Figure 8.8	Simulated Biexponential Relaxation Data (2% Noise)

.

List of Tables

•

Table 3.1	Alpha Content of Prepared Lactose Samples22
Table 3.2	Results of Polarimetry, GLC, and NMR
Table 5.1	T ₁ values of Crystalline Lactose86
Table 5.2	Calculation of Anomeric Composition by T ₁ Value Analysis93
Table 6.1	Water Activity of Amorphous Lactose101
Table 6.2	T _g Values Determined by DSC106
Table 6.3	Comparison of DSC and T ₁ Methods of Determining T _g 108
Table 6.4	Crystallisation Temperature Determined by DSC110
Table 6.5	Crystallisation Temperature Determined by T ₁ Method111
Table 7.1	Crystallinity of Powders Determined by T ₁ analysis (40 °C)116
Table 7.2	Crystallinity of Powders Determined by T ₁ analysis (40 °C)117
Table 7.3	Crystallinity Determined with Separation of Amorphous
	and Crystalline Regions118
Table 7.4	Crystallinity Determined with Concentration
	of Measuring Points119
Table 7.5	Crystallinity Determined by the Three Point Method120
Table 7.6	Crystallinity of LNZ Samples122
Table 7.7	Crystallinity of Milkpowders123

List of Symbols

Chapter 1.

S	: magnitude of the reciprocal space vector ($S = 2 \sin \vartheta / \lambda$).
λ	: wavelength of the X-rays.
$I_{cr}(S)$: coherent scattering intensity of the crystalline regions.
I(S)	: coherent scattering intensity of the crystalline and
$\overline{f^2}$	amorphous regions. : mean square amplitude of the atomic scattering factor.
D	: disorder function.
k	: disorder parameter.
X _{cr}	: crystallinity of the material.
ΔH_{cr}	: crystallisation enthalpy.

Chapter 3.

L	: length of the polarimeter tube in decimeters.
С	: anhydrous concentration of lactose in g/100 ml.
R,	: polarimeter reading at time t.
R_	: polarimeter reading at equilibrium.
[<i>R</i>]	: the specific optical rotation.
<i>w</i>	: weight of lactose sample used to determine R_{-} .
W_a	: anhydrous weight fraction.
α	: percentage of alpha lactose present in the sample.
[α]	: specific optical rotation of alpha lactose.
[β]	: specific optical rotation of alpha lactose.
R,	: normalised optical rotation reading.
E _a	: activation energy.
R	: universal gas constant.
Т	: temperature (in Kelvin).
Α	: pre-exponential factor.

Chapter 4.

Н	: Zeeman Hamiltonian operator.
γ	: gyromagnetic ratio.
ħ	: Plank's constant(h)/ 2π .

B_0	: polarising magnetic field.
<i>I</i> _{x,y,z}	: angular momentum operator.
B_1	: oscillating magnetic field.
ω	: frequency.
U(t)	: evolution operator.
Hroi	: Hamiltonian operator in the rotating frame.
$M_{x,y,z}$: components of the spin magnetisation vector, M.
Mo	: magnitude of $M_{t}(t)$ as $t \to \infty$.
T_1	: spin lattice relaxation time.
T_2	: spin spin relaxation time.
μ_{0}	: permeability of free space.
I	: vector operator representing angular momentum.
r _{ij}	: internuclear vector.
r _{ij}	: magnitude of the internuclear vector.
H_D	: dipolar Hamiltonian operator.
W	: transition rate.
E _{n,m}	: energies of states n and m.
i	$:\sqrt{-1}$.
τ	: average correlation time.
$J^{(q)}(\omega)$: spectral density function.
$\rho^{\bullet}(t)$: density operator in the rotating frame.
$H_D^{\bullet}(t)$: dipolar Hamiltonian operator in the rotating frame.
ω_{0}	: Larmor frequency.
M(t)	: equal to $M_{x}(t)$
A _i	: amplitude of component i.
$y(t_i)$: amplitude of multiexponential relaxation function at time t_i .
s(T)	: unknown amplitude of relaxation time T.
t _i	: time.
χ^2	: error function.
<i>Y</i> _i	: equal to $y(t_i)$.
y,	: datum point.
σ_i	: variance of datum points y_i .
X"	: column vector representing the true solution.
x .	: column vector of the current estimate to \mathbf{x}_{m} .
$x_{i,j}$: components of the column vector x .
Α	: Hessian matrix.
b	: gradient vector.
а	: finite step required to find the minimum $(a = x - x_m)$.

: components of vector a .
: first partial derivative of χ^2 with respect to x.
: second partial derivative of χ^2 with respect to x.
: next estimate of x.
: constant.
: spectral amplitude of component j.
: relaxation time component j.
: Householder transformation matrix.
: upper triangular matrix.
: an m vector
: transpose of u
: constant.
: matrix representing additional constraints used in continuum
formulation.
: an n vector.
: corrected magnetisation.

Chapter 6.

C _p	: heat capacity at constant pressure.
α	: volume expansivity at constant pressure.
Н	: enthalpy.
V	: volume.
p	: pressure.
Z	: order parameter.
<i>w</i> _{1,2}	: weight fraction of components 1 and 2.
T _z	: glass transition temperature.
k	: constant.
T_1	: spin lattice relaxation time.
μ_0	: permeability of free space.
γ	: gyromagnetic ratio.
ħ	: Plank's constant(h)/ 2π .
r _{ij}	: average intermolecular distance.
Ι	: angular momentum operator.
$ au_c$: average correlation time.
ω	: frequency.
$\tau(T)$: mechanical and electrical relaxation time at temperature T.
$C_{1,2}^{e}$: arbitrary constants.

T _g	: glass transition temperature.
$\phi_{CR,g}$: relaxation times of crystallisation at temperatures T and T_g
	respectively.

Chapter 7.

M(t)	: amplitude of the inversion recovery signal at time t.
Mo	: amplitude of the inversion recovery signal at $t = 0$.
A _{am,cr}	: relative amplitude of the amorphous and crystalline parts of the
	inversion recovery signal respectively.
T_{1CR}	: spin lattice relaxation time of the crystalline part of the sample.