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Abstract

Let Mφ and Mψ be elements of PSL(2,C) representing orientation preserving isometries on
the upper half-space model of hyperbolic 3-space φ and ψ respectively. The parameters

β = tr2(Mφ)− 4, β′ = tr2(Mψ)− 4, γ = tr[Mφ,Mψ]− 2,

determine the discrete group 〈φ, ψ〉 uniquely up to conjugacy whenever γ 6= 0. This thesis
is concerned with explicitly lifting this parameterisation of 〈φ, ψ〉 to PSO(1, 3) realised as a
discrete 2 generator subgroup of orientation preserving isometries on the hyperboloid model
of hyperbolic 3-space. We particularly focus on the case where both φ and ψ are elliptic.
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Introduction

The study of hyperbolic 3-manifolds (and orbifolds) is an important part of 3-manifold theory,
especially with the recent results of Perelman and Thurston, showing that most 3-manifolds
(in a well defined sense) are locally modeled on hyperbolic 3-space.

Discrete subgroups of the matrix group PSL(2,C) are intrinsically linked to this study
of hyperbolic 3-manifolds and increased understanding of the classifications of these discrete
groups extends to valuable computational tools. These tools inevitably require refinement
and extension to find use, as computationally more difficult problems are continually at-
tacked. The work in this thesis will assist in our extension of such computational tools in an
effort to find new results including:

• A new proof of the (log 3)/2 theorem of Gabai-Meyerhoff and Thurston [2];

• The search for the optimal Margulis constant for lattices [5]; and

• The classification of 2 generator arithmetic lattices [3].

All of which involve the study of 2 generator discrete groups.

In Chapter 1 we briefly describe three well known models of hyperbolic geometry: U3, H3 and
B3. Showing these spaces to be isometric to one another, we focus on the representations
of the isometry groups Isom+(U3) and Isom+(H3), which are PSL(2,C) and PSO(1, 3)
respectively. Each representation has obvious computational virtues over the other, such as:

• Matrices in PSL(2,C) have a simpler form than those in PSO(1, 3); and

• Computations using PSO(1, 3) involve real linear algebra as opposed to the complex
non-linear algebra involved in using PSL(2,C).

We also construct an explicit mapping between representative matrices in PSL(2,C) and
PSO(1, 3) in Chapter 2; and in Chapter 3 make note of the known result that

β = tr2(Mφ)− 4,

β′ = tr2(Mψ)− 4,

γ = tr[Mφ,Mψ]− 2

parameterise the discrete subgroups 〈Mφ,Mψ〉 of PSL(2,C), representing discrete subgroups
〈φ, ψ〉 of Isom+(U3), uniquely up to conjugacy whenever γ 6= 0.
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Introduction 2

The major aim of this thesis is to then lift the above parameterisation of 2 generator sub-
groups of PSL(2,C) to an explicit map

χ : C3 → PSO(1, 3)× PSO(1, 3)

such that if (β, β′, γ) are the complex parameters of a 2 generator discrete group, then

χ(β, β′, γ) = (A,B) ∈ PSO(1, 3)× PSO(1, 3)

where 〈A,B〉 and the discrete group in PSL(2,C) associated with these parameters are
isomorphic.

This mapping is constructed via the process

C3 → PSL(2,C)× PSL(2,C) → PSO(1, 3)× PSO(1, 3),

The first part is the aforementioned parameterisation which we then combine with the iso-
morphism between PSL(2,C) and PSO(1, 3) to give us the desired explicit construction.

Particular interest is taken in the case where both φ and ψ are elliptic transformations, in
which case

(β, β′, γ) =
(
− sin2 (π/p) ,− sin2 (π/q) , z

)
where p, q are natural numbers greater than or equal to 2 and z is any complex number.

Let Φ̃Mφ
and Φ̃Mψ

represent the elements of PSO(1, 3) such that χ(β, β′, γ) = (Φ̃Mφ
, Φ̃Mψ

).

We will describe Φ̃Mφ
and Φ̃Mψ

explicitly in terms of p, q and z.

This work will allow us, in future research, to make use of the linear algebra from PSO(1, 3)
in the computation of Dirichlet domains and other important constructs in the computational
study of hyperbolic 3-orbifolds.



Chapter 1

Models of Hyperbolic 3-Space

We begin with a basic description of Möbius transformations on Rn, building up a knowl-
edge of orientation preserving Möbius transformations acting on R̂2 and their actions when
extended into R̂3. We then describe the upper half-space model U3 of hyperbolic space,
and show that these Möbius transformations can be viewed as its orientation preserving
isometries.

Moving on we develop the Lorentzian 4-space R1,3 and find the hyperboloid model H3

of hyperbolic space embedded in this space; showing the relationship between Lorentzian
transformations and the isometries of H3. Lastly, we project H3 and U3 into the unit disc,
giving us the Conformal disc model of hyperbolic geometry B3; and giving us a link between
the upper half-space and hyperboloid models of hyperbolic 3-space. Much of this is drawn
from [1] and [9].

1.1 Möbius Transformations on R̂n

We start with the definitions of reflections in spheres and hyperplanes in Rn before proceeding
to describe their compositions as Möbius transformations.

1.1.1 Reflections in Spheres

Definition 1.1.1. (Sphere)
A sphere of radius r and with center a, in Rn is defined to be the set

S(a, r) = {x ∈ Rn : ‖x− a‖E = r},

where ‖ · ‖E is the Euclidean norm, which is given by

‖x‖E =

√√√√ n∑
i=1

x2
i .

3



CHAPTER 1. MODELS OF HYPERBOLIC 3-SPACE 4

Note that a sphere in Rn is an (n− 1)-sphere and that the unit sphere S(0, 1) is the sphere
commonly denoted Sn−1.

Definition 1.1.2. (Reflection in a Sphere)
Let S be the (n− 1)-sphere S(a, r), then the reflection of Rn\{a} in S is the mapping

φS : Rn\{a} −→ Rn\{a},

φS : x 7→ a+ r2 (x− a)

‖x− a‖2
E

.

Notice that φS is a homeomorphism of Rn\{a}, φ−1
S = φS and the fixed points of φS are the

points of S itself.

We can extend the action of φS continuously so as to act on the extended real space

R̂n = Rn ∪ {∞},

by defining
φS(a) = ∞

and
φS(∞) = a.

Definition 1.1.3. (Hyperplane)
A hyperplane in Rn, with parameters a ∈ Rn and t ∈ R, is defined to be the set

P (a, t) = {x ∈ Rn : a · x = t}.

Note that a hyperplane can be viewed as a coset of an (n− 1)-dimensional vector subspace
of Rn. We shall refer to a hyperplane, as defined above, as an (n− 1)-plane.

Definition 1.1.4. (Reflection in a Plane)
Let P be the (n− 1)-plane P (a, t), then the reflection of Rn in P is the mapping

φP : Rn −→ Rn,

φP : x 7→ x− 2a
[(x · a)− t]

‖a‖2
E

.

Notice that, like φS, φP is a homeomorphism of Rn, φ−1
P = φP and the fixed points of φP are

the points of P itself.
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We can extend an (n− 1)-plane P (a, t) into the extended real space by

P̂ (a, t) = P (a, t) ∪ {∞};

and continuously extend its action so that φP acts on R̂n by defining

φP̂ (∞) = ∞.

By extension we shall consider reflections in (n−1)-spheres and (n−1)-planes to always act
on R̂n. Let φ be a reflection in an (n− 1)-sphere or an (n− 1)-plane, then φ is a conformal,
orientation-reversing transformation on R̂n and φ2 = I, the identity transformation1.

The extension Rn → R̂n can be considered a stereographic projection, in which case R̂n

is projected onto Sn; Rn being projected onto Sn\{en}. In this situation both spheres and
planes in Rn are mapped onto spheres in Sn. Subsequently we shall refer to both planes
and spheres, as defined above, collectively as (n− 1)-spheres. When we wish to distinguish
between the two different types of spheres we shall use the notation S(a, r) or P (a, t). When
we refer to R̂n being reflected in (a composition of) spheres it should be clear that we are
referring to reflections in (n− 1)-spheres.

Given any n-sphere S, the reflection φS leaves invariant any m-sphere (m < n) orthogonal
to S. Additionally let φ be a reflection in a (n− 1)-sphere, or the composition of reflections
in such spheres, then the action of φ can be determined uniquely from the action of φ upon
n+ 1 non-collinear points.

1.1.2 Möbius Transformations

Definition 1.1.5. (Möbius Transformations)
A Möbius transformation acting on R̂n is the finite composition of reflections of R̂n in
spheres.

Notice that if a Möbius transformation φ is a composition of m reflections in spheres φi

φ = φ1...φm,

then φ is orientation preserving if m is even, otherwise φ is orientation reversing.
We will use GM(R̂n) to denote the set of all Möbius transformations acting on R̂n.

Similarly the set of all orientation preserving Möbius transformations acting on R̂n is denoted
M(R̂n). Let X be any subset of R̂n, then we use GMR̂n(X) and MR̂n(X) to respectively

denote the subsets of GM(R̂n) and M(R̂n) leaving X invariant. Notice that GMR̂n(R̂n) =

GM(R̂n) and MR̂n(R̂n) = M(R̂n). It is clear that MR̂n(X) is a subset of GMR̂n(X) and we
have the following result.

1We shall use I to denote identity matrices, transformations and group elements. Use should be apparent
from the context.
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Theorem 1.1.6. Let X be a subset of R̂n, then the sets GMR̂n(X) and MR̂n(X) form groups
under composition. Further, MR̂n(X) is a subgroup of GMR̂n(X).

GMR̂n(X) is known as the general Möbius group on X and MR̂n(X) is known as the Möbius
group on X.

Our interest will lie in the group M(R̂2) of orientation preserving Möbius transformations
acting on R̂2. We begin by associating the extended real plane with the extended complex
plane Ĉ = C ∪ {∞}, allowing us to subsequently consider M(R̂2) to be M(Ĉ), the complex
Möbius group. We denote the complex Möbius group by M and will consider it a reference
to both M(Ĉ) and M(R̂2), which group we are referring to should be clear from the context.

Theorem 1.1.7. φ is an element of M if and only if φ is a mapping of the form

φ : Ĉ −→ Ĉ,

φ : z 7→ az + b

cz + d
, (1.1)

where a, b, c, d ∈ C and ad− bc 6= 0.

Proof:
A reflection of Ĉ in a sphere is a transformation of the form

z 7→ az̄ + b

cz̄ + d

and the composition of an even number of such transformations has form

φ : z 7→ az + b

cz + d
.

Thus any element of M is of the form 1.1.
Now

φ =
az + b

cz + d
= φ1φ2φ3φ4(z),

where

φ1 = z + a/c,

φ2 = (−(ad− bc)/c2)z,

φ3 = 1/z,

φ4 = z + d/c.

Each of the φi are a composition of an even number of reflections in spheres, thus φ is also
a composition of an even number of reflections in sphere. Hence we have φ is an element of
M. �
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Notice that any element φ in M is determined by the four complex numbers a, b, c and d,
subject to the condition ad − bc 6= 0. This makes it apparent that we can use matrices to
represent Möbius transformations.

Definition 1.1.8. A matrix M =

[
a b
c d

]
, ad − bc 6= 0, is said to induce (or represent)

the Möbius transformation

φ(z) =
az + b

cz + d
∈M.

The set of such matrices is known as the general linear group of 2 × 2 complex matrices;
and is denoted GL(2,C). GL(2,C) is a group under matrix multiplication, and we have the
following useful result.

Theorem 1.1.9. Let A,B be matrices inducing Möbius transformations φA, φB respectively
and let φAB be the Möbius transformation induced by AB, then

φAφB = φAB.

Proof:
Let

A =

[
a b
c d

]
, B =

[
e f
g h

]
and note that

AB =

[
ae+ bg af + bh
ce+ dg cf + dh

]
,

then
φAφB = (a ez+f

gz+h
+ b)/(c ez+f

gz+h
+ d)

= (ae+bg)z+af+hb
(ce+dg)z+cf+dh

= φAB.

�

This result shows that there is a homomorphism from GL(2,C) to M. There are two groups
related to GL(2,C) that are important to our work: the special linear group SL(2,C), the
subgroup of GL(2,C) containing elements with a determinant of 1; and the projective special
linear group PSL(2,C), which is the matrix group SL(2,C)\{±I}.

Theorem 1.1.10. M is isomorphic to PSL(2,C).

Proof:
Let F denote the homomorphism of GL(2,C) onto the induced transformations in M

F : GL(2,C) →M,
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then ker(F ) = {cI : c ∈ C}.
By the first isomorphism theorem we have

F :
GL(2,C)

{cI : c ∈ C}
∼= PSL(2,C) →M

is an isomorphism. �

We have now shown that the group of orientation preserving Möbius transformations acting
on R̂2 is isomorphic to the matrix group PSL(2,C). This allows us to make use of matrices
in PSL(2,C) to uniquely represent Möbius transformations acting on Ĉ and hence, elements
of M(R̂2).

In general, when we discuss the representative matrices of elements in M we will use
elements of SL(2,C) and understand what these matrices represent in both PSL(2,C) and
M. Given a Möbius transformation φ we will use Mφ to denote it’s representative matrix
(in SL(2,C)).

1.1.3 The Poincaré Extension

We now consider R̂n to be embedded in R̂n+1, and look at the result of extending the actions
of the elements in GM(R̂n) into R̂n+1. This will give us a means of linking the elements of
M(R̂2) with elements of M(R̂3).

Identify R̂n with the hyperplane R̂n × {0} in R̂n+1 by the embedding

x 7→ x̃ = (x, 0).

Let φ be a reflection of Rn in any sphere, then we extended φ to the Möbius transformation
φ̃ of R̂n+1 thus:

• If φ is the reflection of R̂n in the (n− 1)-sphere P (a, t), then φ̃ is the reflection of R̂n+1

in the n-sphere P (ã, t); and

• If φ is the reflection of R̂n in the (n− 1)-sphere S(a, r), then φ̃ is the reflection of R̂n+1

in the n-sphere S(ã, r).

Let ψ be any element of GM(R̂n), then there exists some reflections of R̂n in spheres ψi
such that ψ = ψ1ψ2...ψn. This gives us a natural extension of ψ into GM(R̂n+1)

ψ = ψ1ψ2...ψn 7→ ψ̃1ψ̃2...ψ̃n = ψ̃. (1.2)

The above extension is not affected by the choice of ψi.

Definition 1.1.11. (Poincaré Extension)
The Möbius transformation ψ̃ in GM(R̂n+1) (as described above) is known as the Poincaré
extension of the Möbius transformation ψ in GM(R̂n).
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Definition 1.1.12. (Upper Half-Space)
The upper half-space of Rn+1 (or R̂n+1) is the set

Un = {x ∈ Rn+1 : xn+1 > 0}.

Theorem 1.1.13. Let φ be an element of GM(R̂n), then the extension φ̃ leaves the hyper-
plane R̂n × {0} invariant. Furthermore φ̃ also leaves the half-space Un+1 invariant.

Proof:
As the elements of GM(R̂n) leave R̂n invariant, it follows immediately that their extensions
are elements of GMR̂n(R̂n × {0}) and hence leave R̂n × {0} invariant. Given this fact, and

as ψ̃ is a continuous mapping, ψ must either also preserve Un+1 or switch it with the lower
half-space; but in equation 1.2 each ψ̃i composing ψ̃ preserves Un+1, so therefore does ψ̃.

Suppose φ̃ interchanges the two half-spaces, then it follows that φ̃ must be composed of
a reflection in the hyperplane R̂n×{0}; however there is no φ in GM(R̂n) extending to such
a transformation. Hence φ must leave Un+1 invariant. �

Theorem 1.1.14. A Möbius transformation on R̂n+1 leaves Un+1 invariant if and only if it
is the Poincaré extension of a Möbius transformation on R̂n.

Trivially we have the following corollary.

Theorem 1.1.15. GM(R̂n) is isomorphic to GMR̂n(U
n+1) and M(R̂n) is isomorphic to

MR̂n(U
n+1).

Corollary 1.1.16. Every Möbius transformation of Un is the finite composition of reflections
of R̂n in spheres orthogonal to R̂n−1.

When n = 2 Theorem 1.1.15 implies that the groups PSL(2,C) and MR̂3(U3) are isomorphic.

Thus our representation of the reflections in spheres acting on Ĉ, serves equally well as a
representation of the reflections in spheres acting on R̂3, and preserving U3.

1.1.4 Conjugacy Classes and Invariants

Having described the groups M(R̂n) and MR̂n(U
n+1), and a means of representing their

elements when n = 2, we now discuss certain conjugation invariant properties of these
elements and some conjugacy classes of M.



CHAPTER 1. MODELS OF HYPERBOLIC 3-SPACE 10

Definition 1.1.17. (Conjugate)
Let g and h be distinct elements or subgroups of a group G, then g is said to be conjugate
(in G) to h if and only if there exists an element p in G such that pgp−1 = h.

From a geometric viewpoint, conjugate transformations have identical actions. We shall use
∼ to denote conjugacy between elements.

Definition 1.1.18. (Commutator)
Let g and h be elements of a group G, then the commutator of g and h, denoted [g, h], is
defined to be

[g, h] = ghg−1h−1.

Definition 1.1.19. (Trace)
Let M = (mij) be any n× n-square matrix, then the trace of M is defined

tr(M) =
n∑
i=1

mii.

The trace of a Möbius transformation φ in M, denoted tr(φ), is defined by

tr(φ) = tr(Mφ)

and is determined up to sign.

Theorem 1.1.20. Let φ be any element of M, then:

1. (tr(φ))2, denoted tr2(φ), is determined uniquely; and

2. tr2(φ) is conjugation invariant.

Corollary 1.1.21. Let φ and ψ be elements of M, then tr[φ, ψ] is determined independently
of the choice of representatives for φ and ψ.

A complex Möbius transformation acting on Ĉ has either exactly one fixed point, exactly
two fixed points or is the identity. This provides a basic classification of the elements of
M, we can refine this classification by observing the fixed points in R̂3 of their Poincaré
extensions. Naturally this new classification is invariant under conjugation and so it provides
a classification of conjugacy classes in M.
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Definition 1.1.22. (Standard Form)
Let k be any non-zero complex number, then we define the Möbius transformation mk by

m1 = z + 1

and
mk(z) = kz, (if k 6= 1)

These Möbius transformations are referred to as standard forms.

The representative matrices of the standard forms are denoted Mk and have the forms

• M1 = ±
[

1 1
0 1

]
; and

• Mk = ±
[ √

k 0

0 1/
√
k

]
, where k 6= 1.

Corollary 1.1.23. For all k

tr2(mk) = k + 2 +
1

k
.

Theorem 1.1.24. Let φ be any element of M\{I}, then there exists a non-zero complex
number k, such that φ is conjugate to mk.

Proof:
Let φ be an non-identity element of M, then either

• φ has exactly two fixed points (α, β ∈ C); or

• φ has a unique fixed point (α ∈ C).

In the second case we take β to be any point in Ĉ other than α.
Let ψ be any element of M with ψ(α) = ∞, ψ(β) = 0 and ψ(φ(β)) = 1 if φ(β) 6= β; and

observe ψφψ−1(∞) = ∞ and ψφψ−1(0) = 0 if φ(β) = β, ψφψ−1(0) = 1 if φ(β) 6= β.

• If φ fixes α and β, then ψφψ−1 fixes 0 and ∞ and so for some k 6= 1, we have
ψφψ−1 = mk.

• If φ fixes α only then ψφψ−1 fixes ∞ only and ψφψ−1(0) = 1: thus ψφψ−1 = m1.

This shows that any Möbius transformation φ(6= I) is conjugate to one of the standard forms
mk. �

And we state an important corollary to Theorems 1.1.20 and 1.1.24.
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Corollary 1.1.25. Let φ and ψ be non identity complex Möbius transformations, then φ
and ψ are conjugate in M if and only if tr2(φ) = tr2(ψ).

By these results we can separate M into conjugacy classes, each with its own standard form;
and we now classify the conjugacy classes of M in terms of the fixed points in R̂3 of their
Poincaré extensions. Naturally consideration only needs to be given to the fixed points of
the standard forms. Thus we have

1. m̃1 fixes ∞ but no other point in R̂3;

2. if |k| 6= 1, then m̃k fixes 0 and ∞ but no other points in R̂3; and

3. if |k| = 1, k 6= 1, then the set of fixed points of m̃k are {te3 : t ∈ R} ∪ {∞}.

Which leads us to the following well known classification.

Definition 1.1.26. (classification of the conjugacy classes of M)
Let φ be any element of M\{I}, then we say

1. φ is parabolic if and only if φ has a unique fixed point in Ĉ (equivalently φ ∼ m1);

2. φ is loxodromic if and only if φ̃ has exactly two fixed points in R̂3 (equivalently φ ∼ mk,
where |k| 6= 1);

3. φ is elliptic if and only if φ̃ has infinitely many fixed points in R̂3 (equivalently φ ∼ mk,
where |k| = 1, k 6= 1).

This classification is based on which standard form the complex Möbius transformation is
conjugate to, by our previous results, tr2 is conjugation invariant, so we must also be able
to classify φ according to the value of tr2(φ).

However before we do so we note that it is convenient to subdivide the loxodromic class
by reference to invariant discs rather than just fixed points.

Definition 1.1.27. (Hyperbolic and strictly loxodromic transformations)
Let φ be a loxodromic transformation.

1. If φ(D) = D for some open disc (or half-plane) D in Ĉ, then we say that φ is hyperbolic;

2. Otherwise φ is said to be strictly loxodromic2.

2Note that this usage is not universal, it is common for authors to use the term “loxodromic” for what
we have defined to be “strictly loxodromic” and have no name for our more general “loxodromic transfor-
mations”.
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Our previous results combine to give the following theorem, parameterising the conjugacy
classes of M.

Theorem 1.1.28. Let φ be any element of M\{I}, then

1. φ is parabolic if and only if tr2(φ) = 4;

2. φ is elliptic if and only if tr2(φ) ∈ [0, 4);

3. φ is hyperbolic if and only if tr2(φ) ∈ (4,+∞);

4. φ is strictly loxodromic if and only if tr2(φ) /∈ [0,+∞).

By Definition 1.1.26 and Theorem 1.1.24 we obtain the following corollary.

Corollary 1.1.29. Let φ be any element of M\{I}, if φ has finite order then φ is elliptic.

Proof:
If φ is of finite order then there exists some p in N such that φp = I. By Theorem 1.1.24
φ ∼ mk for some k and we must have that mp

k = I.
mp
k = kpz = z implies |k| = 1 which by Definition 1.1.26 shows mk (and hence φ) is either

elliptic or the identity. �

Theorem 1.1.30. Let φ and ψ be any two complex Möbius transformations, then φ and ψ
have a common fixed point in Ĉ if and only if tr[φ, ψ] = 2.

Proof:
By conjugation we may assume

Mφ =

[
a b
0 d

]
,Mψ =

[
e f
g h

]
,

and it follows that

tr[φ, ψ] = 2 + b2g2 + b(a− d)g(e− h)− (a− d)2fg.

If we assume φ and ψ have a fixed point, then we may choose it to be ∞, implying g = 0
and giving tr[φ, ψ] = 2.

If tr[φ, ψ] = 2, then either b = 0 or b 6= 0.

• If b = 0, then φ fixes 0 and ∞ and we have fg = 0 so ψ fixes either 0 or ∞.

• If b 6= 0 then φ fixes ∞ and we have g = 0 hence ψ must fix ∞ also.
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�

Theorem 1.1.31. Let g be an elliptic transformation of order p. Then

tr2(g) ≤ 4 cos2(π/p)

with equality if and only if g is a rotation of angle ±2π/p.

Proof:
Let φ be a complex Möbius transformation of finite order p, then by Theorem 1.1.29, φ is
necessarily elliptic. In this case φ(z) ∼ eiθz, with θ = 2πm/p for coprime p and m. It follows
that

tr2(φ) = 4 cos2(θ/2)

= 2[1 + cos(2πm/p)].

Thus the value of tr2(φ) is variable depending on the prime factors of p. Notice that the
largest value of tr2(g) occurs when either m = 1 or m = p− 1, in which case θ = ±2π/p and

tr2(g) = 4 cos2(π/p).

�

Having parameterised the conjugacy classes of M it should be clear that, as every element
in SL(2,C) induces an element of M, we can easily extend these conjugacy classes to be
defined on SL(2,C) (and PSL(2,C)) based on the value of tr2 and equivalently what type
of transformation they induce.

Further details on the properties of Möbius transformations can be found in [1], [7], [9];
Additionally [8] details complex Möbius transformations from a more geometric viewpoint.

1.2 The Upper Half-Space Model, U3

Recall the upper half-space of R̂3 is defined to be the set

U3 = {x ∈ Rn : x3 > 0}.

We define a metric dU , on the space U3, by

dU(x, y) = cosh−1

(
1 +

|x− y|2

2x3y3

)
for all x and y in U3.

This metric dU is a hyperbolic metric, and the metric space (U3, dU) is known as the
upper half-space model of hyperbolic 3-space, which we shall denote3 as U3.

3It is common in literature to refer to the upper half-space as H3, however as we will also be discussing
the hyperboloid model, we choose to use U3 in our work.
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1.2.1 Geodesics and Isometries

The geodesics of U3 are the Euclidean semicircles in U3 which are orthogonal to R̂2 × {0},
together with the vertical lines in U3.

Consequently the geodesic hyperplanes of U3 are the 2-planes P (ã, t) and 2-spheres
S(ã, r), as defined in Section 1.1.3, intersected with U3. The isometries of U3 being compo-
sitions of reflections of U3 in these spheres and planes.

We use Isom(X) to denote the isometry group of a metric space X and Isom+(X) to denote
the subgroup consisting of all orientation preserving isometries. And we have the following
theorem.

Theorem 1.2.1. Every element of GMR̂3(U3) restricts to a unique element of Isom(U3)
and every element of Isom(U3) extends to a unique element of GMR̂3(U3).

Equivalently we have

Corollary 1.2.2. Isom(U3) and GMR̂3(U3) are isomorphic.

The boundary, or sphere at infinity, of U3 is R̂2. From our previous results relating to
GMR̂3(U3) and GM(R̂2) it is clear that the isometries of U3 are uniquely determined by
their actions on the sphere at infinity.

Corollary 1.2.3. Isom+(U3) is isomorphic to MR̂3(U3); hence Isom+(U3) is also isomor-
phic to M.

By these last results we have that the group PSL(2,C) can be taken to act as a representation
of the isometry group Isom+(U3).

1.3 Lorentzian n-Space

Having described the upper half-space model we now concentrate on defining the second
model of hyperbolic 3-space that is of interest in our investigation, the hyperboloid model
H3.

We find the hyperboloid model as a 3-space, with negative curvature, embedded in
Lorentzian 4-space. Thus we begin with a brief description of Lorentzian n-space, under
the assumption n ≥ 2.
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Definition 1.3.1. (Lorentzian inner product)
We define an indefinite inner product on Rn by

x ◦ y = −x1y1 +
n∑
i=2

xiyi,

where x and y are any two elements of Rn.
We shall refer to this inner product as the Lorentzian inner product (on Rn).

The inner product space of Rn with this inner product is known as Lorentzian n-space4 and
is denoted R1,n−1.

Definition 1.3.2. (Lorentzian Norm)
We define an indefinite norm on Rn by

‖x‖L = (x ◦ x)1/2.

where x is any element of Rn.
This norm is induced by the Lorentzian inner product and we refer to it as the Lorentzian

norm (on Rn).

Definition 1.3.3. (Lorentzian distance)
We define a Lorentzian distance function between two vectors x and y (in Rn) by

dL(x, y) = ‖x− y‖L.

It is worth noting that the values of ‖ · ‖L, and hence dL, can be either positive real, zero or
positive imaginary.

Definition 1.3.4. (Classification of vectors in R1,n)
Let x be any vector in Rn, then

1. x is said to be light-like if and only if ‖x‖L = 0;

2. x is said to be space-like if and only if ‖x‖L ∈ R+;

3. x is said to be time-like if and only if ‖x‖L ∈ iR+.

4The space R1,3 is also commonly referred to as Minkowski space, though we will continue to refer to it
as Lorentzian 4-space.
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Definition 1.3.5. (polarity of time-like vectors)
A time-like vector x = (x1, x2, ..., xn) is said to be:

• positive if and only if x1 > 0;

• negative if and only if x1 < 0.

The set of all light-like vectors in Rn form a hypercone, denoted Cn−1, which we refer to as
the light-cone of Rn. The exterior of Cn−1 (in Rn) is the set of all space-like vectors of Rn;
and the interior of Cn−1 (in Rn) is the set of all time-like vectors of Rn. We refer to the
subset of Cn−1 containing only positive light-like vectors as the positive light-cone.

1.3.1 Lorentzian Transformations

Our interest lies in the specific classes of transformations of R1,n, known as positive Lorentz
transformations and positive special Lorentz transformations. These transformations corre-
late directly with the isometry groups Isom(H3) and Isom+(H3) respectively.

Definition 1.3.6. (Lorentz orthonormal basis)
Let (v1, ..., vn) be a basis of Rn, then (v1, ..., vn) is said to be a Lorentz orthonormal basis if
and only if

vi ◦ vj =

{
−1 : i = j = 1
δi,j : otherwise.

Note that the standard basis of Rn is a Lorentz orthonormal basis.

Definition 1.3.7. (Lorentz Transformation)
A function φ : Rn → Rn is a Lorentz transformation if and only if

φ(x) ◦ φ(y) = x ◦ y,

for all vectors x and y in Rn.

We also have an equivalent definition

Theorem 1.3.8. (Lorentz Transformation) A function φ : Rn → Rn is a Lorentz transfor-
mation if and only if φ is linear and the ordered set

{φ(e1), φ(e2), ..., φ(en)}

forms a Lorentz orthonormal basis of Rn.
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Proof:
Let φ be any Lorentz transformation of Rn, then

φ(e1) ◦ φ(e1) = e1 ◦ e1 = −1

φ(ei) ◦ φ(ej) = ei ◦ ej = δi,j otherwise.

Therefore {φ(e1), ...φ(en)} is an orthonormal basis of Rn.
Now let x =

∑n
i=1 xiei be an element in Rn, then there exists coefficients ci, such that

φ(x) =
n∑
i=1

ciφ(ei).

As {φ(e1), ...φ(en)} is a Lorentz orthonormal basis, it follows that, for j 6= 1

−c1 = φ(x) ◦ φ(e1) = x ◦ e1 = −x1

cj = φ(x) ◦ φ(ej) = x ◦ ej = xj.

and it follows that φ is linear.
Conversely, suppose φ is linear and {φ(e1), ...φ(en)} is a Lorentz orthonormal basis of Rn.

Then by the following, φ is a Lorentz transformation.

φ(x) ◦ φ(y) = φ(
n∑
i=1

xiei) ◦ φ(
n∑
i=1

yiei)

=
n∑
i=1

n∑
j=1

xiyiφ(ei) ◦ φ(ej)

= x ◦ y.

�

Thus the set of Lorentz transformations on Rn forms a group under function composition,
referred to as the group of Lorentz transformations of Rn.

Definition 1.3.9. (Lorentzian Matrix)
Let A be any real n× n matrix, then A is said to be Lorentzian if and only if the associated
linear transformation

A(x) = Ax

is a Lorentzian transformation.

The set of all Lorentzian n×n matrices forms a group under matrix multiplication, denoted
O(1, n− 1); and is known as the Lorentz group of n× n matrices.

Theorem 1.3.10. The group of Lorentz transformations of Rn is isomorphic to O(1, n−1).
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From Theorem 1.3.8 we have the following result.

Theorem 1.3.11. Let A be a real n× n matrix, then the following are equivalent.

1. A is Lorentzian;

2. A satisfies the equation AtJA = J ;

3. A satisfies the equation AJAt = J ;

4. the columns of A form a Lorentz orthonormal basis of Rn;

5. the rows of A form a Lorentz orthonormal basis of Rn.

where J is the diagonal matrix with entries J1,1 = −1 and Ji,j = δi,j for all other i and j.

Let A be any Lorentzian matrix, by Theorem 1.3.11 we have AtJA = J . Thus (det(A))2 = 1
and det(A) = ±1.

Consider the set

SO(1, n− 1) = {A ∈ O(1, n− 1) : det(A) = 1}.

SO(1, n − 1) is a subgroup of order two in O(1, n − 1) and consists of all the orientation
preserving elements of O(1, n− 1). SO(1, n− 1) is known as the special Lorentz group.

Definition 1.3.12. (polarity of Lorentz Matrices)
A Lorentz matrix A is said to be positive if and only if A transforms positive time-like vectors
into positive time-like vectors.

Similarly, a Lorentz matrix A is said to be negative if and only if A transforms positive
time-like vectors into negative time-like vectors.

Let PO(1, n− 1) denote the set of all positive elements in O(1, n− 1), then PO(1, n− 1) is
a subgroup of order two in O(1, n − 1); known as the positive Lorentz group. Similarly let
PSO(1, n− 1) denote the set of all positive elements in SO(1, n− 1), then PSO(1, n− 1) is
a subgroup of order two in SO(1, n− 1); known as the positive special Lorentz group. These
positive transformations preserve the positive light cone, thus PSO(1, n− 1) is the group of
all Lorentz transformations on R1,n−1 which preserve both orientation and the positive light
cone.

Definition 1.3.13. (Vector subspaces of Rn)
Let V be any vector subspace of Rn, then V is said to be:

1. time-like if and only if V contains a time-like vector;
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2. space-like if and only if every element in V \{0} is space-like; or

3. light-like otherwise.

Theorem 1.3.14. For each dimension m < n, the action of PO(1, n − 1) is transitive on
the set of m dimensional time-like vector subspaces of Rn.

Theorem 1.3.15. Let x, y be positive (negative) time-like vectors in Rn, then

x ◦ y ≤ ‖x‖L‖y‖L

with equality if and only if x and y are linearly dependent.

Proof:
It follows from Theorem 1.3.14 that there exists an element A of PO(1, n − 1) such that
Ax = te1. As A preserves the Lorentzian inner product, we can replace x and y by Ax and
Ay, such that x = x1e1.

Thus

‖x‖2
L‖y‖2

L = −x2
1(−y2

1 + y2
2...+ y2

n)

≤ x2
1y

2
1 = (x ◦ y)2

with equality if and only if y = y1e1.
As x ◦ y = −x1y1 < 0, we have that

x ◦ y ≤ ‖x‖L‖y‖L

with equality if and only if x and y are linearly dependent. �

As a direct consequence we have the following corollary.

Corollary 1.3.16. Let x, y be any two positive (negative) time-like vectors in Rn, then there
exists a unique number η(x, y) ∈ R∗, such that

x ◦ y = ‖x‖L‖y‖L cosh η(x, y).

This motivates the definition.

Definition 1.3.17. (Time-like angle between Time-like vectors)
Let x, y be positive (negative) time-like vectors in Rn. Then the time-like angle between x
and y is defined to be the number η(x, y) such that x ◦ y = ‖x‖L‖y‖L cosh η(x, y).

For more details on the space R1,n see [9].
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1.4 Hyperboloid Model, H3

We now restrict our view to Lorentz 4-space and, within it, construct the hyperboloid model
of hyperbolic 3-space. We begin by defining a 3-sphere of imaginary radius in R1,3, this
requires the Lorentzian norm.

F 3 = {x ∈ R1,3 : ‖x‖2
L = −1}.

In R4 the set F n is a hyperboloid of two sheets defined by the equation

x2
1 − (x2

2 + ...+ x2
n+1) = 1.

We concentrate on the positive sheet of F 3

H3 = {x ∈ R1,3 : ‖x‖2
L = −1, x1 > 0}

and discard the negative sheet of F 3, or equivalently, identify antipodal vectors in F 3.

We define a metric on H3, denoted dH , defined by

dH(x, y) = η(x, y),

where η(x, y) is the Lorentzian time-like angle between x and y.
Alternatively, by Definition 1.3.17 and as x and y are elements of H3, we have the

equation
dH(x, y) = cosh−1(−x ◦ y).

The metric dH is a hyperbolic metric, and the metric space (H3, dH) is known as the
hyperboloid model of hyperbolic 3-space, which we denote by H3.

1.4.1 Geodesics and Isometries

The geodesics of H3 are the intersections of H3 with 2-dimensional time-like vector subspaces
of R1,3. Thus every isometry is an orthogonal transformation of R1,3 which preserve the
Lorentzian norm and preserve H3. From these facts we have the following results.

Theorem 1.4.1. Every positive Lorentz transformation of R1,3 restricts to an isometry of
H3, and every isometry of H3 extends to a unique positive Lorentz transformation of R1,3.

Corollary 1.4.2. The group Isom(H3) is isomorphic to the positive Lorentz group PO(1, 3).

As with U3 we are concerned with the subgroup of orientation preserving isometries, and by
previous discussions in Section 1.3.1 we have
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Corollary 1.4.3. Isom+(H3) is isomorphic to PSO(1, 3).

Henceforth when discussing elements of Isom+(H3) we will use elements of PSO(1, 3), mak-
ing use of the aforementioned isomorphism.

1.5 The Conformal Ball Model, B3

We have described two models of hyperbolic 3-space, in this subsection we will define two
functions which map both of these models into B3, the unit ball. These mappings are
isometric, and so give us an additional model of hyperbolic 3-space, but more importantly
compose to give an isometry between the two models U3 and H3.

1.5.1 Mapping U 3 and H3 into B3

Transforming U3 into B3

Consider the unit 3-ball, defined by

B3 = {x ∈ R3 : ‖x‖E ≤ 1}.

The boundary of which is the unit 2-sphere, S2.

Let a = (0, 0, 1) and let φ1 be the reflection of R̂3 in the sphere S(a,
√

2), additionally let φ2

be the reflection of R̂3 in the (x1, x2)-plane. It is clear that

• φ1 and φ2 are orientation reversing elements of GM(R̂3);

• φ1 interchanges the L3 and B3; and

• φ2 interchanges the U3 and L3.

Thus, if we let φ = φ1φ2, then φ is an element of M(R̂3) interchanging B3 and U3.

Projecting H3 into B3

Let ψ be the stereographic projection,

ψ : H3 → B3

ψ : y 7→
(

y2

1 + y1

,
y3

1 + y1

,
y4

1 + y1

)
.

Then ψ is a conformal homeomorphism projecting H3 onto B3.
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1.5.2 The Conformal Ball Model, B3

We can make the mapping φ an isometry, by defining a metric dB1 on B3

dB1(x, y) = dU(φ−1(x), φ−1(y)).

Similarly we can make ψ an isometry, by defining a metric dB2 on B3

dB2(x, y) = dH(ψ−1(x), ψ−1(y)).

By direct calculation we find that
dB1 = dB2.

We rename this metric as dB, hence we have

dB(x, y) = cosh−1

(
1 +

2‖x− y‖2
E

(1− ‖x‖2
E)(1− ‖y‖2

E)

)
,

where x and y are elements of B3. This metric is a hyperbolic metric and the metric space
(B3, dB) is known as the conformal ball model of hyperbolic 3-space, which we shall denote
B3.

As an element of M(R̂3), φ maps spheres to spheres; and the mapping ψ maps the geodesics
in H3 onto the parts of circles and lines (in R3) orthogonal to the sphere S2 which are
contained in B3. As both these mappings are isometries it follows that the geodesics of B3

are the circles and lines in R3 orthogonal to the sphere S2 (intersected with B3).
Similarly the isometries of B3 are the reflections in spheres orthogonal to the bound-

ary S2, the groups Isom(B3) and Isom+(B3) being isomorphic to GMR̂3(B3) and MR̂3(B3)
respectively. Thus we have the following result.

Theorem 1.5.1. Isom+(B3), PSL(2,C) and PSO(1, 3) are all isomorphic.

1.5.3 U3 ↔ H3

As both H3 and U3 are isometric to B3 it follows that H3 and U3 are isometric to one another.
Let ζ = ψ−1φ, then ζ is an isometry between U3 and H3, thus we have

dU(x, y) = dH(ζ(x), ζ(y))

and
dH(x, y) = dU(ζ−1(x), ζ−1(y)).

We now have a link between the two models of hyperbolic space we are interested in and
could calculate ζ(u) and ζ−1(v) for generic elements u of U3 and v of H3 respectively.
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Having established this mapping, we have that the isometries on one space must have actions
comparable to the isometries on the other. From this it follows that the conjugacy classes of
Isom+(U3) also exist in similar form, and with similar actions, in Isom+(H3). For a more
in depth discussion on the Un, Hn and Bn and the isometries between them, see [9].

In the next chapter we will develop an explicit means of mapping the elements of
Isom+(U3) onto the elements of Isom+(H3).



Chapter 2

An Isomorphism Between PSL(2,C)
and PSO(1, 3)

We have seen in the previous chapter that the metric spaces U3 and the H3 are isometric
models of hyperbolic 3-space and that from this it must follow that there exists a isomorphism
between the groups Isom+(U3) and Isom+(H3). We wish to find an explicit isomorphism
between the two representative matrix groups, PSL(2,C) and PSO(1, 3).

The mapping between H3 and U3 given in the previous chapter should give rise to such
an isomorphism, but to make use of this isometry to gain such a mapping we would need to:

• choose a representative matrix in PSL(2,C);

• determine its action upon U3;

• map this action onto H3;

• determine the element of PSO(1, 3) representing this action; and

• make this construction compatible with the group action.

Instead of going to all this trouble, calculating the isometries by the respective actions on
each space, we make use of an alternative and known isomorphism and isometry which takes
advantage of some of the particular properties in the matrix representations we are using.

2.1 Hermitian Matrices

Starting from a description of a 2× 2 Hermitian matrix we show that, with an appropriate
norm and inner product, the space of all such Hermitian matrices is isometric to the Lorentz
4-space R1,3.

Definition 2.1.1. (Hermitian conjugate)
Let M be any complex matrix, then the Hermitian conjugate of M , denoted M∗, is the

25
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transpose of the complex conjugate of M .

M∗ = M
T
.

Definition 2.1.2. (Hermitian matrix)
A matrix, M , is called a Hermitian matrix if and only if

M = M∗.

Trivially we get an equivalent definition of a Hermitian matrix when we restrict our view to
2× 2 complex matrices.

Theorem 2.1.3. A 2× 2 complex matrix M is a Hermitian matrix if and only if

M =

[
a c+ di

c− di b

]
,

for some real numbers a, b, c and d.

Let V denote the set of all 2× 2 complex Hermitian matrices, then it is apparent that V is
a 4-dimensional real vector space.

We give V the following basis:

B1 =

[
1 0
0 1

]
;B2 =

[
0 1
1 0

]
;B3 =

[
0 i
−i 0

]
;B4 =

[
1 0
0 −1

]
.

Now for any M in V we have the basis decomposition

M =

[
α γ
γ̄ β

]
=
α+ β

2
B1 + <(γ)B2 + =(γ)B3 +

α− β

2
B4.

This leads to the following corollary.

Corollary 2.1.4. M is an element of V if and only if

M =

[
x1 + x4 x2 + ix3

x2 − ix3 x1 − x4

]
for some real numbers x1, x2, x3 and x4.

Notice that for any M in V

det(M) = (x1 + x4)(x1 − x4)− (x2 + ix3)(x2 − ix3) = x2
1 − x2

2 − x2
3 − x2

4,

from which it follows that the determinant of any matrix in V is real.
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Theorem 2.1.5. Let ‖x‖V =
√
−det(x), then ‖x‖V defines a indefinite norm on V.

Proof:
‖x‖2

V = −det(x) = −x2
1 + x2

2 + x2
3 + x2

4 is an equivalent of the Lorentzian norm seen in
Definition 1.3.2. �

Corollary 2.1.6. Given any x ∈ V, ‖x‖V is either positive real, zero or positive imaginary.

As with R1,3 we obtain an indefinite inner product on V.

Theorem 2.1.7. The norm ‖x‖V on V induces the inner product

〈M,N〉V = (1/2)(det(M) + det(N)− det(M +N)),∀M,N ∈ V.

Proof:
An indefinite inner product needs to satisfy

〈M +N,M +N〉 = 〈M,M〉+ 2 〈M,N〉+ 〈N,N〉

which is equivalent to

−det(M +N) = −det(M) + 2 〈M,N〉 − det(N).

�

Relative to this inner product the basis vectors {B1, B2, B3, B4}, of V, are mutually orthog-
onal and have squared norms {−1,+1,+1,+1} respectively.

Thus we have the following theorem.

Theorem 2.1.8. The vectors {B1, B2, B3, B4} form a Lorentz-orthonormal basis for V.

From all these results the following theorem is clear.

Theorem 2.1.9. The inner product space V is isometric to the space R1,3.

In conclusion, these results show that in R1,3 and V we find two representations of the same
inner product space. Given this fact we can use either space interchangeably and any action
on one representation can be mirrored exactly in the other representation.

It follows that all of our definitions and results with respect to R1,3 in Section 1.3, carry
over to equivalent results for V. Thus we may talk about the light cone in V and know
that the group of orientation preserving isometries of V preserving the positive light cone is
isomorphic to PSO(1, 3). Furthermore it follows that we must be able to find a model of
hyperbolic 3-space in V identical in form to H3.
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2.2 Mapping SL(2,C) into Isom(V)

We define a mapping which links the elements in SL(2,C) to the actions of certain isometries
of the metric space V. This will in turn lead to a way to map the representative matrices of
Isom+(U3) into the representative matrices of Isom+(H3).

Definition 2.2.1. Define a function Φ by

Φ : SL(2,C) → Isom(V),

Φ : A 7→ AVA∗.

Our interest lies in the transformation

Φ(A)(X) : X 7→ AXA∗.

where A can be any element of SL(2,C). We will subsequently use ΦA(X) to denote this
transformation.

Theorem 2.2.2. If A is any element of SL(2,C), then ΦA is a linear function.

Proof:

ΦA(uX + vY ) = A(uX + vY )A∗

= uAXA∗ + vAY A∗

= uΦA(X) + vΦA(Y ).

�

Theorem 2.2.3. If A is an element of SL(2,C), then ΦA preserves the norm ‖ · ‖V .

Proof:
First we note that given any A in SL(2,C), it follows trivially that A∗ is also in SL(2,C).
Hence

det(AMA∗) = det(A)det(M)det(A∗) = det(M).

�

From this theorem it follows that

Corollary 2.2.4. Let A be any matrix in SL(2,C), then ΦA is an isometry on the space V.

Not only is ΦA an isometry but the mapping Φ preserves the group structure of PSL(2,C),
as seen in the next two results.
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Theorem 2.2.5. Φ is a homomorphism from SL(2,C) into Isom(V).

Proof:
We have already shown that ΦA is an isometry, so we need only show that Φ is a homomor-
phism.

Let A and A′ be any elements of SL(2,C) and let M be any element of V, then

(ΦA ◦ ΦA′)(M) = ΦA(ΦA′(M)) = ΦA(A′MA′∗)

= AA′MA′∗A∗ = (AA′)M(AA′)∗ = ΦAA′(M).

�

Theorem 2.2.6. Let A be any element of SL(2,C), then

ΦA = Φ−A.

Proof:
Let A be any elements of SL(2,C) and let M be any element of V, then

Φ−A(M) = (−A)M(−A)∗ = AMA∗ = ΦA(M).

�

Thus we see that Φ maps matrices in SL(2,C) representing the same element of Isom+(U3)
to the same element of Isom(V), preserving group structure. It is in fact true that ΦA = ΦB

if and only if A = ±B. We can say more about the image of Φ in that for every A, the
isometry ΦA is orientation preserving. Furthermore we have the following result.

Theorem 2.2.7. Φ induces an isomorphism of PSL(2,C) onto W , where W is the subgroup
of Isom+(V) preserving the light cone in V.

For a proof of Theorem 2.2.7 and further discussion on the function Φ see [6].

2.3 The Action of ΦA

The function Φ is an injection of PSL(2,C) into the isometries of a 4-dimensional vector
space isometric to R1,3. We wish to explicitly determine the action of these isometries on
V, so as to be able to map from Isom+(U3) into the matrix representatives of Isom+(H3).
With this in mind we detail the action of ΦA upon V.

Let

A = ±
[
α β
γ δ

]
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be any element of PSL(2,C) and let

N =

[
x1 + x4 x2 + ix3

x2 − ix3 x1 − x4

]
= x1B1 + x2B2 + x3B3 + x4B4

be a generic element of V, then

ΦA(N) =

[
H11 H12

H21 H22

]
,

where

H11 = (|α|2 + |β|2)x1 + 2<(αβ̄)x2 − 2=(αβ̄)x3 + (|α|2 − |β|2)x4,

H12 = (αγ̄ + βδ̄)x1 + (αδ̄ + βγ̄)x2 + (αδ̄ − βγ̄)ix3 + (αγ̄ − βδ̄)x4,

H21 = (ᾱγ + β̄δ)x1 + (ᾱδ + β̄γ)x2 + (−ᾱδ + β̄γ)ix3 + (ᾱγ − β̄δ)x4,

H22 = (|γ|2 + |δ|2)x1 + 2<(γδ̄)x2 − 2=(γδ̄)ix3 + (|γ|2 − |δ|2)x4.

Alternatively
ΦA(N) = y1B1 + y2B2 + y3B3 + y4B4,

where

y1 =
1

2
(|α|2 + |β|2 + |γ|2 + |δ|2)x1 + <(αβ̄ + γδ̄)x2

−=(αβ̄ + γδ̄)x3 +
1

2
(|α|2 − |β|2 + |γ|2 − |δ|2)x4,

y2 = <(αγ̄ + βδ̄)x1 + <(αδ̄ + βγ̄)x2

−=(αδ̄ − βγ̄)x3 + <(αγ̄ − βδ̄)x4,

y3 = =(αγ̄ + βδ̄)x1 + =(αδ̄ + βγ̄)x2

+<(αδ̄ − βγ̄)x3 + =(αγ̄ − βδ̄)x4,

y4 =
1

2
(|α|2 + |β|2 − |γ|2 − |δ|2)x1 + <(αβ̄ − γδ̄)x2

−=(αβ̄ − γδ̄)x3 +
1

2
(|α|2 − |β|2 − |γ|2 + |δ|2)x4.

Given A, a generic element of PSL(2,C), the exact action of ΦA on the whole space V is far
from clear; However we will not be interested in the generic case, subsequently we focus on
ΦA(N) for specific A and N ∈ V.

2.3.1 Actions on the Basis Vectors

As ΦA is an orthogonal transformation on a real vector space, ΦA is determined by its action
upon each of the basis vectors. Thus it is worthwhile to note the action of ΦA upon each
basis vector when A is a generic element of PSL(2,C).

Let

A = ±
[
α β
γ δ

]
,

then ΦA acts on Bi thus:
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i = 1

ΦA(B1) =

[
(|α|2 + |β|2) (αγ̄ + βδ̄)
(ᾱγ + β̄δ) (|γ|2 + |δ|2)

]
.

Alternatively
ΦA(B1) = N11B1 +N12B2 +N13N3 +N14B4,

where

N11 =
1

2
(|α|2 + |β|2 + |γ|2 + |δ|2), (2.1)

N12 = <(αγ̄ + βδ̄), (2.2)

N13 = =(αγ̄ + βδ̄), (2.3)

N14 =
1

2
(|α|2 + |β|2 − |γ|2 − |δ|2). (2.4)

i = 2

ΦA(B2) =

[
2<(αβ̄) (αδ̄ + βγ̄)

(ᾱδ + β̄γ) 2<(γδ̄)

]
.

Alternatively
ΦA(B2) = N21B1 +N22B2 +N23B3 +N24B4,

where

N21 = <(αβ̄ + γδ̄), (2.5)

N22 = <(αδ̄ + βγ̄), (2.6)

N23 = =(αδ̄ + βγ̄), (2.7)

N24 = <(αβ̄ − γδ̄). (2.8)

i = 3

ΦA(B3) =

[
−2=(αβ̄) i(αδ̄ − βγ̄)

−i(ᾱδ − β̄γ) −2i=(γδ̄)

]
.

Alternatively
ΦA(B3) = N31B1 +N32B2 +N33B3 +N34B4,

where

N31 = −=(αβ̄ + γδ̄), (2.9)

N32 = −=(αδ̄ − βγ̄), (2.10)

N33 = <(αδ̄ − βγ̄), (2.11)

N34 = −=(αβ̄ − γδ̄). (2.12)
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i = 4

ΦA(B4) =

[
(|α|2 − |β|2) (αγ̄ − βδ̄)
(ᾱγ − β̄δ) (|γ|2 − |δ|2)

]
Alternatively

ΦA(B4) = N41B1 +N42B2 +N43B3 +N44B4,

where

N41 =
1

2
(|α|2 − |β|2 + |γ|2 − |δ|2), (2.13)

N42 = <(αγ̄ − βδ̄), (2.14)

N43 = =(αγ̄ − βδ̄), (2.15)

N44 =
1

2
(|α|2 − |β|2 − |γ|2 + |δ|2). (2.16)

2.3.2 Standard Forms

As Φ is a isomorphism from PSL(2,C) into W , conjugacy classes similar to those of
PSL(2,C), detailed in Section 1.1.4, exist in W . That is to say, if the matrices A and
B in PSL(2,C) represent conjugate transformations in M, then ΦA and ΦB are conjugate
transformations in W . Given this fact we should also be interested in the action of ΦMk

as
a representative of a conjugacy class of transformations in W .

Let Mk denote the matrix inducing the Möbius transformation mk as in Section 1.1.4, then
the action of ΦMk

on a generic element

N =

[
x1 + x4 x2 + ix3

x2 − ix3 x1 − x4

]
= x1B1 + x2B2 + x3B3 + x4B4.

of V can be divided into two generic cases:

• If k = 1, then mk is a parabolic transformation and we have

M1 = ±
[

1 1
0 1

]
,

and hence

ΦM1(N) =

[
2x1 + 2x2 x1 + x2 − x4 + ix3

x1 + x2 − x4 − ix3 x1 − x4

]
.

Alternatively
(ΦM1)(N) = y1B1 + y2B2 + y3B3 + y4B4,
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where

y1 =
3x1 + 2x2 − x4

2
,

y2 = x1 + x2 − x4,

y3 = x3,

y4 =
x1 + 2x2 + x4

2
.

• If k /∈ {0, 1}, then mk is a non-parabolic transformation and we have

Mk = ±

[ √
k 0

0
√
k
−1

]
,

and hence

ΦMk
(N) =

[
|k|(x1 + x4)

k
|k|(x2 + ix3)

k̄
|k|(x2 − ix3) |k|−1(x1 − x4)

]
.

Alternatively
ΦMk

(N) = y1B1 + y2B2 + y3B3 + y4B4,

where

y1 =
|k|(x1 + x4) + |k|−1(x1 − x4)

2
,

y2 = <
(
k

|k|

)
x2 −=

(
k

|k|

)
x3,

y3 = =
(
k

|k|

)
x2 + <

(
k

|k|

)
x3,

y4 =
|k|(x1 + x4)− |k|−1(x1 − x4)

2
.

2.4 Representative Matrices in PSO(1, 3)

Having shown that the group PSL(2,C) is isomorphic to the subgroup W of Isom+(V),
corresponding to the group Isom+(H3), we can now make use of our observations, from
Section 2.3.1, on the actions of ΦA on V. These will allow us to extend Φ to an isomorphism
between the matrix groups PSL(2,C) and PSO(1, 3), giving a direct link between the two
isometry groups Isom+(U3) and Isom+(H3) respectively.

The function Φ, is an isomorphism mapping elements of PSL(2,C) into W . Let Φ′ be the
isomorphism from W into PSO(1, 3), mapping x in W to Φ′(x), the element of PSO(1, 3)
representing an action on R1,3 equivalent to the action of x upon V. Let Φ̃ = Φ′Φ, then Φ̃ is
an isomorphism from PSL(2,C) into PSO(1, 3).
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The isometry ΦA acts on V in exactly the same manner that the matrix Φ̃(A) acts on
R1,3.

Now, given A, we find Φ̃(A) explicitly.

Φ̃ : PSL(2,C) → PSO(1, 3),

Φ̃ :

[
α β
γ δ

]
7→


N11 N21 N31 N41

N12 N22 N32 N42

N13 N23 N33 N43

N14 N24 N34 N44


where Nij are as in equations 2.1 through 2.16.

Now we have a means of explicitly calculating the matrix Φ̃(A) from any given A. We look
briefly at the results of using different representations for the entries in the matrix A.

2.4.1 Rectangular Form

If we take the entries in the matrix of PSL(2,C) to be expressed in rectangular form, then

Φ̃ :

[
a+ ib c+ id
e+ if g + ih

]
7→


N11 N21 N31 N41

N12 N22 N32 N42

N13 N23 N33 N43

N14 N24 N34 N44


where

N11 = 1
2
(a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2),

N12 = ae+ bf + cg + dh,
N13 = −af + be− ch+ dg,
N14 = 1

2
(a2 + b2 + c2 + d2 − e2 − f 2 − g2 − h2),

N21 = ac+ bd+ eg + fh,
N22 = ag + bh+ ce+ df,
N23 = −ah+ bg − cf + de,
N24 = ac+ bd− eg − fh,

N31 = ad− bc+ eh− fg,
N32 = ah− bg − cf + de,
N33 = ag + bh− ce− df,
N34 = ad− bc− eh+ fg,

N41 = 1
2
(a2 + b2 − c2 − d2 + e2 + f 2 − g2 − h2),

N42 = ae+ bf − cg − dh,
N43 = −af + be+ ch− dg,
N44 = 1

2
(a2 + b2 − c2 − d2 − e2 − f 2 + g2 + h2).
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2.4.2 Polar Form

If we take the entries in the matrix of PSL(2,C) to be expressed in polar form, then

Φ̃ :

[
r1e

iθ1 r2e
iθ2

r3e
iθ3 r4e

iθ4

]
7→


N11 N21 N31 N41

N12 N22 N32 N42

N13 N23 N33 N43

N14 N24 N34 N44

 .
where

N11 = 1
2
(r2

1 + r2
2 + r2

3 + r2
4),

N12 = r1r3 cos(θ1 − θ3) + r2r4 cos(θ2 − θ4),
N13 = r1r3 sin(θ1 − θ3) + r2r4 sin(θ2 − θ4),
N14 = 1

2
(r2

1 + r2
2 − r2

3 − r2
4),

N21 = r1r2 cos(θ1 − θ2) + r3r4 cos(θ3 − θ4),
N22 = r2r3 cos(θ2 − θ3) + r1r4 cos(θ1 − θ4),
N23 = r2r3 sin(θ2 − θ3) + r1r4 sin(θ1 − θ4),
N24 = r1r2 cos(θ1 − θ2)− r3r4 cos(θ3 − θ4),

N31 = −r1r2 sin(θ1 − θ2)− r3r4 sin(θ3 − θ4),
N32 = r2r3 sin(θ2 − θ3)− r1r4 sin(θ1 − θ4),
N33 = −r2r3 cos(θ2 − θ3) + r1r4 cos(θ1 − θ4),
N34 = −r1r2 sin(θ1 − θ2) + r3r4 sin(θ3 − θ4),

N41 = 1
2
(r2

1 − r2
2 + r2

3 − r2
4),

N42 = r1r3 cos(θ1 − θ3)− r2r4 cos(θ2 − θ4),
N43 = r1r3 sin(θ1 − θ3)− r2r4 sin(θ2 − θ4),
N44 = 1

2
(r2

1 − r2
2 − r2

3 + r2
4).

2.4.3 Standard Forms

Carrying on from Section 2.3.2 we look at what matrices in PSO(1, 3) correspond to the
standard forms given in Section 1.1.4. Thus we calculate Φ̃(Mk) explicitly:

• if k = 1, then

Φ̃(M1) =


3/2 1 0 −1/2
1 1 0 −1
0 0 1 0

1/2 1 0 1/2

 ;

• if k /∈ {0, 1}, then

Φ̃(Mk) =


|k|
2

+ 1
2|k| 0 0 |k|

2
− 1

2|k|
0 <( k

|k|) −=( k
|k|) 0

0 =( k
|k|) <( k

|k|) 0
|k|
2
− 1

2|k| 0 0 |k|
2

+ 1
2|k|
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These matrices Φ̃(Mk) are representatives of conjugacy classes in PSO(1, 3).

We shall refer to the elements of PSO(1, 3) as parabolic, elliptic, hyperbolic and loxodromic,
dependent on which Φ̃(Mk) they are conjugate to. Thus, these terms describe the class of
geometric action an element of Isom+(U3) or Isom+(H3) has, irrespective of which model
the isometry acts on.

In this section we have constructed an isomorphism between the representative matrices
Isom+(U3) and Isom+(H3). This gains us access to the virtues of computation in PSO(1, 3)
as opposed to PSL(2,C). These virtues are apparent even in the computation of Φ̃−1(N)
in that we can find a representative element in GL(2,C), a scalar multiple of the desired
matrix Φ̃−1(N), using only real first-order linear equations on the entries in N .

For information on the computation of Φ̃−1(N) and algorithms for both Φ̃ and Φ̃−1 see
[10].



Chapter 3

Discrete Groups

Definition 3.0.1. A topological group G is said to be discrete if and only if it has the discrete
topology

It follows that to determine if a group G is discrete, it is sufficient to show that one element
g of G is isolated. In the case of g = I we need to show

inf{‖X − I‖ : X ∈ G,X 6= I} > 0,

where ‖ · ‖ is some norm on G.

The above definition covers all topological groups with a norm, if G is a subgroup of
PSL(2,C), then we have an alternate characterisation of discreteness.

Definition 3.0.2. Let G be any subgroup of PSL(2,C), then G is discrete if and only if for
some norm ‖ · ‖ on G and for each positive k the set

Gk = {A ∈ G : ‖A‖ ≤ k}

is a finite set.

In the above definition it is clear that G is the union of all the sets Gk, from this we have
the following theorem.

Theorem 3.0.3. Let G be any discrete subgroup of PSL(2,C), then G is countable.

Naturally, any subgroup of a discrete group G is also discrete, as is any group that G is
topologically homomorphic to. Thus if H is conjugate to G, then H must also be discrete.
Most important to our work here is the fact that if G is a discrete subgroup of PSL(2,C),
then the subgroup of M, that G can be taken to represent, is also discrete.

37
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The study of discrete groups of PSL(2,C) has had a distinct impact on the field of hyperbolic
3-manifolds. As any complete 3-manifold can be represented as the quotient space U3/G,
where G is some torsion-free discrete subgroup of Isom+(U3); and any complete hyperbolic
3-orbifold can be represented as the quotient space U3/G for some discrete subgroup G of
Isom+(U)3. Naturally, if U3/G represents a particular manifold or orbifold, then so does the
quotient space H3/Φ̃(G), hence we can alternatively study the discrete groups of PSO(1, 3).

The study of discrete groups of PSL(2,C) is a large and active area of modern mathematical
research and we don’t have space to go into any pertinent details, thus we focus on one result
which we will make use of in the next chapter. For detailed discussions on discrete groups
with respect to hyperbolic spaces see [1] [9] and [7].

3.1 Two Generator Discrete Groups

In regards to discrete groups, the only result we are interested in is the parameterisation of
certain 2 generator discrete subgroups of M.

Definition 3.1.1. Let 〈φ, ψ〉 be a 2 generator discrete subgroup of M, then we define the
parameters (or parameter set) of 〈φ, ψ〉 to be

(β, β′, γ)

where
β = tr2(φ)− 4,

β′ = tr2(ψ)− 4,

γ = tr[φ, ψ]− 2.

Note that by the results of Section 1.1.4, the parameters β, β′ and γ are invariant under
conjugation.

Theorem 3.1.2. If γ 6= 0, then (β, β′, γ) determines the subgroup 〈φ, ψ〉, of M, up to
conjugacy.

Thus if γ 6= 0, then the parameters (β, β′, γ) uniquely determine a conjugacy class of 2
generator discrete subgroups of M. A proof of Theorem 3.1.2 (for the case we will focus on)
is given in [4].

By the results of Chapter 2, there must be an equivalent result to Theorem 3.1.2 in the case
of discrete groups in PSO(1, 3).
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Corollary 3.1.3. If γ 6= 0, then (β, β′, γ) determines the subgroup 〈A,B〉, of PSO(1, 3), up
to conjugacy.

Notice that the above parameterisation is based on the use of the trace function to parame-
terise the conjugacy classes of M, as given in Section 1.1.4. These parameters have however
been normalised so that the parameter set (0, 0, 0) corresponds to the group 〈I〉.

In the following section, we will make use of results from the previous chapters to find a
solution 〈A,B〉 from a particular class of parameters. This solution will represent a conjugacy
class of 2 generator discrete subgroups of PSO(1, 3) (Isom+(H3)).



Chapter 4

Parameters of 2 Generator Discrete
Groups

In the previous chapters we have explored the relationship between the two groups PSL(2,C)
and PSO(1, 3), viewing them as the representative groups of the isometry groups Isom+(U3)
and Isom+(H3) respectively.

We have also explored various properties of the elements of PSL(2,C) and the isometries
they represent; specifically conjugacy classes and the parameterisation of certain 2 generator
discrete groups. As the two groups Isom+(U3) and Isom+(H3) are isomorphic, as stated in
Sections 1.5.3 and 3.1, these properties carry over to PSO(1, 3).

In this section we find solutions for 〈φ, ψ〉, or more precisely the representative group
〈Mφ,Mψ〉, from given parameters. We shall then focus on finding, explicitly, the matrices
in PSO(1, 3) corresponding to the parameter set for discrete groups with two finite order
elliptic generators. Note that these solutions are actually representatives of a conjugacy class
of 2 generator discrete groups, as opposed to unique solutions.

4.1 Parameters

In Theorem 3.1.2 we saw that any 2 generator discrete group

〈φ, ψ〉

is determined up to conjugacy from complex parameters (β, β′, γ) whenever γ 6= 0, where

β = tr2(φ)− 4, (4.1)

β′ = tr2(ψ)− 4, (4.2)

γ = tr[φ, ψ]− 2. (4.3)

Notice that the values of β and β′ determine which conjugacy class of M the isometries
φ and ψ belong to respectively; the requirement that γ be non-zero is, by Theorem 1.1.30,
equivalent to a requirement that the isometries φ and ψ don’t share any fixed points (recall

40
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φ and ψ act on Ĉ). This means that φ and ψ cannot both be standard forms, as ∞ is a fixed
point for all mk. However, as the group is determined up to conjugacy we may, and will,
always assume one of either φ or ψ is a standard form. As γ 6= 0 is a constant requirement,
we shall henceforth assume that γ is always non-zero.

In the following two sections, we briefly highlight the situation in attempting to find the
group 〈Mφ,Mψ〉 from a given parameter set.

4.2 Representative Matrices

Let (β, β′, γ) be the parameters of a 2 generator discrete subgroup 〈φ, ψ〉 of M, then trivially
they are also the parameters of the subgroup 〈Mφ,Mψ〉. Henceforth our focus will be on
finding the elements Mφ and Mψ of SL(2,C), given the understanding that they represent
the generators of the isometry subgroup we are really trying to find. Note that we will be
working in SL(2,C) as opposed to PSL(2,C).

We are looking for solutions up to conjugacy, so we may assume one of Mφ or Mψ is a
standard form. As tr[Mφ,Mψ] = tr[Mψ,Mφ] the parameter sets (β, β′, γ) and (β′, β, γ)
represent the same group; and the values of the parameter set do not impose any restriction
on which transformation may be chosen to be a standard form.

The values β and β′ give information on the conjugacy classes that Mφ and Mψ belong
to, we divide these into two cases: parabolic and non-parabolic.

• The general form of a parabolic matrix is[
1− ab a2

−b2 1 + ab

]
,

where a and b cannot both be 0.

• Similarly, the general form of a non-parabolic matrix, conjugate to Mk, is[
(adk − bc)/

√
k ab(1− k)/

√
k

cd(k − 1)/
√
k) (ad− bck)/

√
k

]
,

where ad− bc = 1.

We will make use of the general form of parabolic transformations, but not of non-parabolic
matrices as in this case it is easier to assume the transformation is represented by[

a b
c d

]
,

where ad− bc = 1, and solve for the four variables instead of five.

In regards to standard forms, if β (or β′) is equal to 0, then φ (or ψ) is parabolic. Suppose
φ is non-parabolic, in which case φ ∼ mk for some k 6= 0, 1, and let

k = ei2x,
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then
tr2(φ) = (eix + e−ix)2 = 4 cos2(x).

This allows us to determine four possible solutions for Mφ

Mφ ∈
{
Mk,−Mk,M

−1
k ,−M−1

k

}
.

Recall that M−1
k = Mk−1 is conjugate to Mk.

If there is a choice between assuming a parabolic or a non-parabolic matrix to be a
standard form, preference will be given to the non-parabolic matrix.

4.2.1 Matrix Generators

Prior to looking at the sets of equations required to be solved, it is prudent to discuss the
types of solutions we can find. To this end, we recall several properties of matrix conjugation
and 2 generator groups. We start with a simple result from group theory and a corollary to
Theorem 1.1.10.

Theorem 4.2.1. Suppose G is a 2 generator group, generated by f and g, then each of the
pairs (f−1, g), (f, g−1) and (f−1, g−1) also generate G.

Corollary 4.2.2. Let M be an element of SL(2,C) inducing the complex Möbius transfor-
mation φ, then the matrix −M also induces φ.

These results show that in trying to determine the subgroup G = 〈φ, ψ〉 of M, from (β, β′γ),
the group

〈A,B〉

induces G, where

A ∈ {±Mφ,±M−1
φ },

B ∈ {±Mψ,±M−1
ψ }. (4.4)

Thus, it should be expected that there will always be multiple generating matrices for
any parameter set, even once we have completely determined one of the generators.

We now consider specific cases of conjugation, a knowledge of which will prove useful in the
following sections.
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Let

A =

[
α 0
0 α−1

]
,

B =

[
a b
c d

]
,

W =

[
w 0
0 w−1

]
,

X =

[
0 −1
1 0

]
,

then

WAW−1 =

[
α 0
0 α−1

]
,

WBW−1 =

[
a w2b

w−2c d

]
,

XAX−1 =

[
α−1 0
0 α

]
,

XBX−1 =

[
d −c
−b a

]
.

Notice that conjugation in W leaves A invariant, where as conjugation in X maps A to it’s
inverse. However, conjugation in X and W manipulate the placement and values of the
entries in B. This may allow us, pending a determination of Mφ (Mψ), to make assumptions
about the solutions for Mψ (Mφ).

These properties give us some adaptability in our attempts to find the generators of the
groups parameterised by a given β, β′ and γ. And simplifies the search for solutions in the
three cases we list in the following section.

4.3 The Conjugacy Classes of Generators

We briefly highlight the equations that need to be solved in the three distinct types of
generator pairings.

4.3.1 Two Parabolic Generators

When the parameter set is of the form

(0, 0, γ),
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the generators are both members of the parabolic conjugacy class. In this case we assume
φ = m1 and ψ is represented by a matrix of form

Mψ =

[
1− ab a2

−b2 1 + ab

]
.

Thus, we are required to solve a and b subject to the conditions:

γ = b4;

(a 6= 0) ∨ (b 6= 0).

4.3.2 One Parabolic Generator

When the parameter set is of the form:

(β, 0, γ)

where β 6= 0; or
(0, β′, γ)

where β′ 6= 0.
Then one generator is a member of the parabolic conjugacy class and the other is not.

We assume we are dealing with the parameter set (β, 0, γ) and that, for some k, φ = mk.
Hence we have

Mφ =

[
eix 0
0 e−ix

]
,Mψ =

[
1− ab a2

−b2 1 + ab

]
.

Where we are required to solve x, a and b from the following equations:

β = −4 sin2(x);

γ = βa2b2;

(a 6= 0) ∨ (b 6= 0).

4.3.3 No Parabolic Generators

When the parameter set is of the form

(β, β′, γ)

where both β′ and β are non-zero, then neither generator is a member of the parabolic
conjugacy class. Hence we may assume, for some k,

Mφ =

[
eix 0
0 e−ix

]
, (4.5)

Mψ =

[
a b
c d

]
. (4.6)
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And we are required to find x, a, b, c and d from the following equations:

β = −4 sin2(x), (4.7)

β′ = (a+ d)2 − 4, (4.8)

γ = −βbc, (4.9)

1 = ad− bc. (4.10)

Note that in these last two cases, there has been no assumption that x is a real number and
x is only real in the special case when Mφ is elliptic.

4.4 Finite Order Elliptic Generators

As a situation of interest we focus on the parameter set(
−4 sin2

(
π

p

)
,−4 sin2

(
π

q

)
, z

)
, (4.11)

where z is non-zero, and p and q are natural numbers greater or equal to 2.
In this case, by Theorems 1.1.28 and 1.1.31, both φ and ψ are rotations of angles π

p
and

π
p

repectively. In fact, by Theorem 1.1.31, both φ and ψ are rotations with these angles if

and only if (β, β′, γ) is of the form given in equation 4.11.

4.4.1 〈Mφ,Mψ〉
To find the representative matrices of φ and ψ, as in equations 4.5 and 4.6 respectively, we
need to solve the system of equations 4.7, 4.8, 4.9, 4.10 which, under this parameter set,
become:

−4 sin2

(
π

p

)
= −4 sin2(x), (4.12)

−4 sin2

(
π

q

)
= (a+ d)2 − 4, (4.13)

z = 4 sin2

(
π

p

)
bc, (4.14)

1 = ad− bc. (4.15)

Equation 4.12 gives possible values for x and we obtain possible solutions for Mφ:

Mφ ∈
{
±
[
eiπ/p 0

0 e−iπ/p

]
,±
[
e−iπ/p 0

0 eiπ/p

]}
.

Notice that all the elements of the solution set are, by the results of Section 4.2.1, effectively
the same generator in PSL(2,C) (and M). Thus, we may choose

Mφ =

[
eiπ/p 0

0 e−iπ/p

]
.
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Having chosen Mφ, we note that conjugation by W , as defined in Section 4.2.1, does not alter
Mφ. However, use of conjugation in matrices of the same form as W allows us to manipulate
the possible values of b and c. We note that b, c 6= 0 as this would contradict equation 4.14
and the assumption z 6= 0. Thus, we may assume b = 1, altering equations 4.13, 4.14 and
4.15 and giving equations

(a+ d)2 = −4 sin2

(
π

q

)
+ 4 = 4 cos2

(
π

q

)
, (4.16)

c =
z

4
csc2

(
π

p

)
,

ad =
z

4
csc2

(
π

p

)
+ 1. (4.17)

From which we obtain the quadratic in a (there is the possibility of division by zero occuring
here, a case we will deal with subsequently)

a2 ± 2a cos

(
π

q

)
+
z

4
csc2

(
π

p

)
+ 1 = 0 (4.18)

which has four solutions:

a1 = cos

(
π

q

)
+

√
− sin2

(
π

q

)
− z

4
csc2

(
π

p

)
; (4.19)

a2 = cos

(
π

q

)
−

√
− sin2

(
π

q

)
− z

4
csc2

(
π

p

)
; (4.20)

a3 = − cos

(
π

q

)
+

√
− sin2

(
π

q

)
− z

4
csc2

(
π

p

)
; (4.21)

a4 = − cos

(
π

q

)
−

√
− sin2

(
π

q

)
− z

4
csc2

(
π

p

)
. (4.22)

Notice that
a1a2 = a3a4 =

z

4
csc2(

π

p
) + 1 = ad

and
a1 = −a4,

a2 = −a3.

This shows that the different solutions for a correspond to the equivalent solutions for Mψ,
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as shown in equation 4.4. Therefore we may choose

a = cos

(
π

q

)
+

√
− sin2

(
π

q

)
− z

4
csc2

(
π

p

)
,

d = cos

(
π

q

)
−

√
− sin2

(
π

q

)
− z

4
csc2

(
π

p

)
.

Thus we have found values for a, b, c and d.

In summary, we have that the parameter set(
−4 sin2

(
π

p

)
,−4 sin2

(
π

q

)
, z

)
,

defines the conjugacy class of discrete subgroups in PSL(2,C) containing the group

〈Mφ,Mψ〉 ,

where

Mφ =

[
eiπ/p 0

0 e−iπ/p

]
and

Mψ =

 cos
(
π
q

)
+

√
− sin2

(
π
q

)
− z

4
csc2

(
π
p

)
1

z
4
csc2

(
π
p

)
cos
(
π
q

)
−
√
− sin2

(
π
q

)
− z

4
csc2

(
π
p

)
 .

This group 〈Mφ,Mψ〉 represents the subgroup 〈φ, ψ〉 of Isom+(U3), which is itself a repre-
sentative group of a class of discrete isometry subgroups with equivalent geometric actions
upon U3.

4.4.2
〈
Φ̃Mφ

, Φ̃Mψ

〉
Having found solutions for the parameter set in SL(2,C), we are now in a position to fulfill
our real intention of describing the equivalent discrete subgroup of PSO(1, 3), explicitly in
terms of the variables in the parameter set 4.11.

As we have calculated matrices Mφ and Mψ, we can now make simple use of the function
Φ̃, as defined in Section 2.4, to obtain matrices in PSO(1, 3) using equations 2.1 through

2.16. Thus, we obtain a group
〈
Φ̃Mφ

, Φ̃Mψ

〉
representing a conjugacy class of discrete groups

in PSO(1, 3), whose actions on H3 will be geometrically equivalent to the action of the group
〈φ, ψ〉 on U3.
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Φ̃Mφ
=


1 0 0 0
0 cos(2π/p) − sin(2π/p) 0
0 sin(2π/p) cos(2π/p) 0
0 0 0 1

 , Φ̃Mψ
=


N11 N21 N31 N41

N12 N22 N32 N42

N13 N23 N33 N43

N14 N24 N34 N44

 .

Where

N11 =
1

2

∣∣∣∣∣cos

(
π

q

)
+

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

+
1

2

∣∣∣∣∣cos

(
π

q

)
−

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

+
1

32
csc4

(
π

p

)
|z|2 +

1

2
,

N12 =
1

4
csc2

(
π

p

)
cos

(
π

q

)
< (z)

+
1

4
csc2

(
π

p

)
<

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

−<

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
+ cos

(
π

q

)
,

N13 =
−1

4
csc2

(
π

p

)
cos

(
π

q

)
= (z)

+
1

4
csc2

(
π

p

)
=

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

+=

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
,

N14 =
1

2

∣∣∣∣∣cos

(
π

q

)
+

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

−1

2

∣∣∣∣∣cos

(
π

q

)
−

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

− 1

32
csc4

(
π

p

)
|z|2 +

1

2
,
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N21 =
1

4
csc2

(
π

p

)
cos

(
π

q

)
< (z) + <

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

−1

4
csc2

(
π

p

)
<

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
+ cos

(
π

q

)
,

N22 = −
∣∣∣∣sin2

(
π

q

)
+

1

4
csc2

(
π

p

)
z

∣∣∣∣+ 1

4
csc2

(
π

p

)
< (z) + cos2

(
π

q

)
,

N23 = 2 cos

(
π

q

)
=

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
− 1

4
csc2

(
π

p

)
= (z) ,

N24 =
−1

4
csc2

(
π

p

)
cos

(
π

q

)
< (z) + <

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

+
1

4
csc2

(
π

p

)
<

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
+ cos

(
π

q

)
,

N31 =
−1

4
csc2

(
π

p

)
cos

(
π

q

)
= (z)−=

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

−1

4
csc2

(
π

p

)
=

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
,

N32 = −2 cos

(
π

q

)
=

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
− 1

4
csc2

(
π

p

)
= (z) ,

N33 = −
∣∣∣∣sin2

(
π

q

)
+

1

4
csc2

(
π

p

)
z

∣∣∣∣− 1

4
csc2

(
π

p

)
< (z) + cos2

(
π

q

)
,

N34 =
1

4
csc2

(
π

p

)
cos

(
π

q

)
= (z)−=

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

+
1

4
csc2

(
π

p

)
=

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
,
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N41 =
1

2

∣∣∣∣∣cos

(
π

q

)
+

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

−1

2

∣∣∣∣∣cos

(
π

q

)
−

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

+
1

32
csc4

(
π

p

)
|z|2 − 1

2
,

N42 =
1

4
csc2

(
π

p

)
cos

(
π

q

)
< (z)

+
1

4
csc2

(
π

p

)
<

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

+<

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
− cos

(
π

q

)
,

N43 =
−1

4
csc2

(
π

p

)
cos

(
π

q

)
= (z)

+
1

4
csc2

(
π

p

)
=

(
z̄

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))

−=

(√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

))
,

N44 =
1

2

∣∣∣∣∣cos

(
π

q

)
+

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

+
1

2

∣∣∣∣∣cos

(
π

q

)
−

√
− sin2

(
π

q

)
− 1

4
z csc2

(
π

p

)∣∣∣∣∣
2

− 1

32
csc4

(
π

p

)
|z|2 − 1

2
.

4.4.3 Division by Zero

In the calculations of Section 4.4.1 (see equations 4.17 and 4.18) there is the possible occur-
rence of a division by zero and this must be addressed.

Division by zero will occur when

z = −4 sin2

(
π

p

)
(4.23)
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and there is an attempt to combine the equations 4.17 and 4.16 to obtain the quadratic 4.18.
While this division by zero may occur, it won’t cause any error in our solutions as

1

4
z csc2

(
π

p

)
= −1 ⇒ ad = 0.

Both a and d cannot be zero, as this would contradict equation 4.16, so we must choose
either a or d to be zero. Conjugation in X (as defined in Section 4.2.1) shows that the choice
of a or d is arbitrary with no effects on the solutions for b or c.

If we take d = 0, then by equation 4.16 we have

a = ±2 cos (π/q) ;

and if we take a = 0, then we have

d = ±2 cos (π/q) .

These solutions correspond to the possible values for ai given in equations 4.19, 4.20,

4.21 and 4.22, when we let 1
4
z csc2

(
π
p

)
= −1. Hence our solutions to a, b, c and d, given in

Section 4.4.1, will still hold.

Having shown that our calculations still hold, we note that the situation described in equation
4.23 occurs whenever the parameters γ and β are equal; this is a known and fully classified
special case of parameter sets.

4.4.4 The Trace Function on PSO(1, 3)

We finish with a brief discussion with regard to the trace function on PSO(1, 3).

The trace of a matrix in PSO(1, 3) is conjugation invariant. However, there is unfortunately
no result equivalent to Corollary 1.1.25 for PSO(1, 3), as for any matrices M and N in
PSO(1, 3)

tr(M) = tr(N) ; M is conjugate to N.

From our work in Section 2.4.3, each element of PSO(1, 3) is part of a conjugacy class
containing a standard form Φ̃Mk

. Let M be any element of PSO(1, 3), and let Φ̃Mk
be the

standard form which is conjugate to M , now:

• If k = 1, then tr(M) = tr(Φ̃M1) = 4; and

• If k = reiθ 6= 1, then tr(M) = tr(Φ̃Mk
) = r + 1/r + 2 cos θ.

Notice that these trace values are comparable to the value of tr2 given in Corollary 1.1.23.
In fact, we have the following result.
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Theorem 4.4.1. Let φ be any element of M, then

tr(Φ̃Mφ
) = |tr(φ)|2.

Thus, given any φ in Isom+(U3) (using the trace function) we can easily calculate the
conjugacy class containing the equivalent of transformation on Isom+(H3); and if tr2(φ) is
positive real there is equality between the value of tr2(φ) and tr(Φ̃Mφ

).

However, given any Φ̃Mφ
in Isom+(H3) (using the trace function) we can only identify

a continuum of conjugacy classes that may contain the equivalent transformation in M, of
which only one class is not strictly loxodromic.

Hence the trace function on PSO(1, 3) cannot be used to parameterise the conjugacy classes
of PSO(1, 3), nor can it be used parameterise generic 2 generator discrete subgroups of
PSO(1, 3).

But, if we restrict our view to groups containing only parabolic, elliptic or hyperbolic
transformations we can use our parameterisation of discrete groups from Section 3.1, with
the additional properties

β = tr(Φ̃Mφ
)− 4,

β′ = tr(Φ̃Mψ
)− 4,

γ =
√
tr[Φ̃Mφ

, Φ̃Mφ
]− 2.

These discrete groups contain no strictly loxodromic elements correspond to the parameter
sets

(β, β′, γ)

β, β′ ≥ −4, γ ≥ −2.



Chapter 5

Remarks and Future Research

Our main goal in this thesis has been the explicit determination of generators, in PSO(1, 3),
of a 2 generator discrete group from the given parameter set (−4 sin2(π/p),−4 sin2(π/q), z).
With this in mind, we have described the group M of complex Möbius transformations and
its conjugacy classes; the isometries of U3 and H3; the isometry between the two spaces; and
an isomorphism between the two groups PSL(2,C) and PSO(1, 3), representing Isom+(U3)
and Isom+(H3) respectively. This gave us a means to move explicitly from Isom+(U3) into
Isom+(H3) and, with knowledge of discrete groups, determine the required generators.

In our future research we intend to refine this computation of generators to minimise compu-
tational errors and then implement it in computer packages based around J.Weeks’ computer
program SnapPea [10].

Specifically, we intend on strengthening the Dirichlet subroutines used in the construction
and studying of fundamental domains of 2 generator groups. Such tools are now at their
limit in the investigations we are undertaking, and we need to adapt and refine them to
facilitate new investigations, particularly with regard to the classification of the 2 generator
arithmetic groups.
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