Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

FURTHER CHARACTERISATION OF THE DOTHISTROMIN GENE CLUSTER OF DOTHISTROMA PINI

A thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Palmerston North, New Zealand.

> Olivia Rachel Teddy 2004

ABSTRACT

The polyketide dothistromin is a toxin produced by the filamentous fungus *Dothistroma pini* that is thought to play a role in causing *Dothistroma* needle blight in *Pinus radiata*. Dothistromin is structurally similar to aflatoxin B1 (AF), a highly carcinogenic toxin with no known function that is produced by the fungus *Aspergillus parasiticus* and also to versicolorin, an intermediate of the well characterised biosynthetic pathways of AF and sterigmatocystin (ST). The structural similarities between AF/ST and dothistromin suggest that genes homologous to AF biosynthetic genes will be involved in dothistromin biosynthesis. AF/ST biosynthetic genes of *A. parasiticus* and *A. nidulans* are clustered and hence it is likely that the dothistromin biosynthetic genes are also clustered in a similar manner. Two λ clones, λ KSA and λ CGV1 containing portions of the putative dothistromin cluster have been isolated in previous studies. Another λ clone λ CGV2 was also identified using an aflatoxin gene probe but it is unknown whether it is part of the dothistromin biosynthetic cluster.

The λ KSA clone contains part of a putative polyketide synthase pks^{dot} (64% identical to *A. parasiticus* AF biosynthetic gene pksA). Two crucial domains required for functioning are contained within λ KSA, the β -keto acyl synthase (KS) and acyl transferase (AT) domains. The putative pks^{dot} is thought be involved in the beginning of the dothistromin biosynthetic pathway, working in a complex with a fatty acid synthase (FAS) to produce the intermediate noranthrone. A gene replacement construct was made using Multisite Gateway TMRecombination, replacing the AT and KS domains with an *hph* cassette. Disruption of the pks^{dot} gene will confirm it's involvement in dothistromin biosynthesis and could also confirm the role of dothistromin in pathogenicity as if the putative polyketide synthase (pks^{dot}) is involved in the first step of the dothistromin pathway thus a knockout would form a mutant devoid of any intermediates. Confirming the involvement of pks^{dot} would also provide evidence that like λ CGV1, λ KSA contains a portion of the dothistromin biosynthetic gene cluster.

As the positioning of the three lambda clones λ KSA, λ CGV1 and λ CGV2 relative to one another in the *D. pini* genome was unknown Southern blot analysis was implemented to identify any relationship between the three lambda clones. No evidence was found to suggest the close linkage of the three lambda clones however this does not discount any linkage at all. Southern blot analysis did provide evidence that *ver-2* (77% identity to melanin biosynthetic gene *phn1* of *Cochliobolus heterostrophus*) of λ CGV2 is within close proximity to a putative *aflR* gene (regulatory gene for activating gene transcription in AF/ST biosynthesis) suggesting a regulatory role of this putative *aflR* gene in melanin biosynthesis and not dothistromin biosynthesis.

Further nucleotide sequencing of the λ KSA clone revealed three putative dothistromin genes. Mox^{dot} and ord^{dot} have high amino acid identity to genes involved in the AF/ST pathways (70% identity to moxY and 51% identity to avfA of A. parasiticus respectively), suggesting similar roles in dothistromin biosynthesis. $Epox^{dot}$ showed high amino acid identity to an epoxide hydrolase of A. niger (hyll) suggesting it has a unique role in dothistromin biosynthesis as no homologs are seen in the AF/ST clusters. Southern blotting was also used to confirm the arrangements of genes from the λ KSA clone within the D. pini genome.

Further characterisation of genes involved in dothistromin biosynthesis will firstly enable understanding of the role of dothistromin in needle blight and secondly will enable further comparative studies between AF/ST and dothistromin.

ACKNOWLEDGEMENTS

Firstly my biggest thank you has to go to my supervisor Rosie Bradshaw. Your constant encouragement and support was greatly appreciated. You went beyond of the call of duty at several times throughout the past 2 ½ years to see I finished this thesis, and that will never be forgotten. I feel privileged to have had the opportunity to get to know you on a both a personal and professional level.

Secondly I would like to thank the members of Fungal Jungle. Especially Phil who has been with me from the start, for being there and not knowing anything to begin with either (and for coining the term 'thesis madness' which I have frequently used in the last month) and to Arne who has provided many moments of light relief and also for doing some RT-PCR for me. Thanks to Shuguang, for your patience with me whilst I was writing up and for dealing with the constant bombardment of questions. Thanks to other members of IMBS especially Caryoln Young for your help during the beginning and the end and occasional time in between. Thanks to Carol Flyger, for helping with DIG labelling of my Southern blotting probes. Thank you to Kathyrn Stowell for making it possible for me to write up this thesis whilst starting a new job. Thanks to Asela and Vikki for being great friends and for helping me do one of my crucial ligations and transformations. Thanks to my other friends throughout the institute for being my lunch buddies and providing distractions from work. Thanks to my friends outside of the institute for your friendship and support. Thanks to Jason for your constant text messages, Emma for your always amusing adventure reports and giving me something to aspire to, Michelle for motivating me to write at night since you were doing work too, Molly for your emails, Shelly for being there and helping me through some tough times and lastly John for making me smile.

Another big thank you has to go to my Family, without you guys this would not have been possible. Thanks for the financial assistance and also for the emotional support, thanks for always believing in me, for never doubting me. Especially thanks to you mum, thanks being my friend and helping in everyway possible, thanks for the little cards, the endless phone calls, and dropping everything when I needed you. And lastly thanks to my cats, Samsara and Paige, for your cuddles and for making me laugh at your quirky personalities.

'It is in hoping that we dream, In dreaming that we seek, In seeking that we find our life's desire'

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1
	1.1	DOTHISTROMA NEEDLE BLIGHT IN PINUS RADIATA	1
	1.2	INFECTION	2
	1.3	CURRENT CONTROL METHODS	2 3 3 3
		1.3.1 Chemical Control	3
	1.4	1.3.2 Resistant Strains THE BIOCHEMISTRY AND MOLECULAR BIOLOGY OF	3
	1.4	AFLATOXIN AND DOTHISTROMIN BIOSYNTHESIS	4
		1.4.1 Polyketide Biosynthesis	-
		1.4.2 Dothistromin Biochemistry	5
		1.4.3 Aflatoxin and Sterigmatocystin	5
		1.4.4 Fungal Polyketide Synthases	13
		1.4.5 Dothistromin Molecular Biology	14
	1.5	TARGETED GENE DISRUPTION	22
	1.6	AIMS AND OBJECTIVES	24
2.0	MET	THODS AND MATERIALS	26
	2.1	FUNGAL AND BACTERIAL STRAINS, LAMBDA CLONES	
		AND PLASMID	26
	2.2	MEDIA	
		2.1.1 Luria Broth	26
		2.1.2 LB Solid Media2.1.3 Selective LB Media	26
		2.1.5 Selective LB Media 2.1.4 <i>D. pini</i> Media (DM)	26 26
		2.1.4 <i>D. pini</i> (DKI) 2.1.5 <i>D. pini</i> Broth (DB)	20 29
		2.1.6 <i>D. pini</i> Sporulation Media (DSM)	29
		2.1.7 SOC Media	29
		2.1.8 TB Top Agarose	29
		2.1.9 D. pini Top Media (DM Top)	29
		2.1.10 D. pini Media With Sucrose (DM Suc)	29
		2.1.11 Selective DSM	29
	2.3	GROWTH AND MAINTENANCE OF CULTURES	30
		2.3.1 Growth and Maintenance of <i>E. coli</i> Cultures	30
		2.3.2 Growth and Maintenance of <i>D. pini</i> Cultures	30
		2.3.3 Plating Bacteria for Bacteriophage	31
		2.3.4 Single Spore Purification	31
	2.4	2.3.5 Growth of <i>D. pini</i> From Transformed Protoplasts	31
	2.4	COMMON BUFFERS AND SOLUTIONS 2.4.1 TE Buffer	31
		2.4.1 1 X TAE Buffer	31 32
		2.4.2 1 X TRE Buffer	32 32
		2.4.4 Ethidium Bromide	32 32
		2.4.5 Gel Loading Buffer (10X)	32
		2.4.6 STC Buffer	32
		2.4.7 SM Buffer	33

	2.4.8	PEG Solutions	5	33
		ST Buffer		33
	2.4.10	OM Buffer		33
	2.4.11	Chemilumines	scent Detection Reagents	33
			Southern Blotting	34
		Hybridisation	and the second se	35
		SEVAG		35
	2.4.15	TES Buffer		35
	2.4.16	CTAB Buffer		35
	2.4.17	Lysis Buffer		35
2.5	DNA I	SOLATION		
	2.5.1	A Simple Met	hod for Extraction of Fungal Genomic DNA	
		375	n Al-samarrai and Schmid, 1999)	36
	2.5.2	CTAB DNA E	Extraction Method	37
	2.5.3	Isolation of Hi	gh Molecular Weight DNA From Filamento	us
		Fungi (modifie	ed from Moller, E. M et al, 1992)	37
	2.5.4	λ DNA Prepar	ation	38
2.6	PURIF	FICATION OF	DNA	38
			urification of DNA Fragments	38
			PCR Products From a PCR Reaction	39
			Plasmid DNA From E. coli	39
			form Extraction	39
		Ethanol Precip		39
		PEG Purificati		40
			Lambda Stocks	40
2.7			OF DNA CONCENTRATIONS	41
	2.7.1		of DNA Concentration by Flurometric	2.2
	0.7.0	Assay		41
	2.7.2		of DNA Concentration by Gel	10
20	DECTI	Electrophoresi		42
2.8 2.9			ONUCLEASE DIGESTION OF DNA	42
2.9			ECTROPHORESIS OF DNA DF DNA MOLECULAR WEIGHTS	42 43
2.10			G TECHNIQUES	43
2.11		Ligation React		43
	<i>4</i> .11.1	2.11.1.1	Standard Ligation	43
		2.11.1.2	Gateway Recombination Reactions	44
	2112	Shot Gun Clor		45
2.12			N PROTOCOLS	45
			n of <i>E. coli</i> by Electroporation	45
		2.12.1.1	Preparation of Electroporation Competent	45
			<i>E. coli</i> Cells	
		2.12.1.1	Prepartion of CaCl ₂ Competent Cells	45
		2.12.1.2	Electroporation of Competent E. coli Cells	46
		2.12.1.3	Transformation of CaCl ₂ Competent Cells	46
	2.12.2		n of D. pini Protoplasts	47
		2.12.2.1	Preparation of D. pini Protoplasts	47
		2.12.2.2	Transformation of D. pini Protoplasts	48

	2.13	AMPLIFICATION OF DNA BY THE POLYMERASE CHAIN	
		REACTION (PCR)	48
		2.13.1 Reagents and Cycling Conditions for Basic PCR	48
	2.14	DNA SEQUENCING	49
	2.15	SOUTHERN BLOTTING AND HYBRIDISATION	59
		2.15.1 Southern Blotting	59
		2.15.2 DIG Labelling of DNA Probe	59
		2.15.3 Preparation of $[\alpha^{-32}P]dCTP$ -Labelled DNA Probe	59
		2.15.4 Southern Blot Hybridisation of DIG Labelled Probe	60
		2.15.5 Southern Blot Hybridisation of $[\alpha^{-32}P]dCTP$ -Labelled DNA Probe and Detection	60
		2.15.6 Chemiluminescent Detection of DIG Labelled DNA Probe	61
		2.15.7 Removal of DIG Labelled DNA From Southern Blots (Stripping)	61
		2.15.8 Removal of [α- ³² P]dCTP-Labelled DNA From Southern Blots (Stripping)	62
		Diois (outphilg)	
3.0	SEOU	JENCING OF λ KSA AND IDENTIFICATION OF PUTATIVE	
		HISTROMIN BIOSYNTHETIC GENES	62
	3.1	INTRODUCTION	62
	3.2	SEQUENCING OF AKSA	63
		3.2.1 Sequencing of pR162A	64
		3.2.2 pR162A Contains Three Putative Dothistromin	64
		Biosynthetic Genes	
	3.3	SEQUENCE OF THE MOX ^{DOT} GENE	67
		3.3.1 The Partial mox^{dot} Gene Contains Three Introns	70
	2.4	3.3.2 Amino Acid Sequence Comparison	70
	3.4	ORD ^{DOT} ENCODES A PUTATIVE OXIDO-REDUCTASE	76
	3.5	<i>EPOX^{DOT}</i> IS A PUTATIVE EPOXIDE HYDROLASE GENE	81
		 3.5.1 The Putative <i>epox^{dot}</i> Gene Contains One Intron 3.5.2 Amino Acid Sequence Comparison 	81 82
	3.6	UNTRANSLATED REGIONS OF THE THREE PUTATIVE	02
	5.0	DOTHISTROMIN GENES	88
		3.6.1 5' and 3' Promoter Analysis	88
		3.6.2 3' Untranslated Region	88
	3.7	DISCUSSION	89
	5.7	3.7.1 AF/ST Like Genes Present in pR162A	89
		$3.7.1.1 mox^{dot}$	89
		3.7.1.2 ord ^{dot}	90
		3.7.1.3 epox ^{dot}	92
4.0	SOUT	HERN BLOTTING ANALYSIS	95
	4.1	INTRODUCTION	95
	4.2	ISOLATION OF GENOMIC DNA	99
	4.3	PROBES FOR SOUTHERN BLOTTING	99
	4.4	DISCUSSION	113
		4.4.1 Genomic Organisation of the Dothistromin Genes Within λKSA	113
		++ 444444 7V4 XV4 X	

vii

		4.4.2	Linkage of the Lambda Clones	115
		4.4.3	The $\lambda CGV2$ Lambda Clone	116
		4.4.4	Limitations of Southern Blotting	116
		4.4.5	Summary	118
5.0			REPLACEMENT AND CHARACTERISATION	
			TIVE DOTHISTROMIN BIOSYNTHETIC	100 PT0440
	GEN	E PKS ^{de}		119
	5.1	INTR	ODUCTION	119
	5.2	DISR	UPTION OF <i>PKS^{DOT}</i> BY HOMOLOGOUS	
			OMBINATION	120
		5.2.1	Disruption Plan A	120
		5.2.2	Disruption Plan B	122
	5.3	GENE	ERATION OF <i>PKS^{DOT}</i> MUTANTS	132
		5.3.1	Optimisation of D. pini Transformation System	132
		5.3.2		133
	5.4	DISC	Disruption Vector USSION	133
	5.4		Construction of <i>pks^{dot}</i> Disruption Vector	133
		5.4.1		155
		5.4.2	Protoplasts	135
6.0	CON	CLUSI	ONS AND FUTURE WORK	137
0.0	con	CLUDI		
	REFI	ERENC	ES	141
	APPI	ENDICI	ES	149
	APPE	ENDIX	1 FLANKING REGIONS OF THE PKS ^{DOT} USED	
			FOR THE PKS ^{DOT} DISRUPTION VECTOR	149
	APPE	ENDIX 2		
			INCORPORATING PR162A, PR181, PR163,	101 102000
			PR156 AND OVERLAPS	151
		ENDIX		167
	A SHARE WAS THE	ENDIX 4		171
	APPE	ENDIX :	5 PLASMID MAPS	178

LIST OF FIGURES

Figures 1.1	Structures of Dothistromin, Aflatoxin, Sterigmatocystin and	
	Versicolorin B	7
Figure 1.2	A. parasiticus Aflatoxin Biosynthetic Pathway Gene Cluster with Comparison to the Biochemical Pathway.	8
Figure 1.3	Comparison Between A. parasiticus AF Gene Cluster and A. nidulans ST Gene Cluster	10
Figure 1.4	Comparsion of PKSs in Different Species of Fungi	15
Figure 1.5	D. pini λ clones Showing Putative Dothistromin Biosynthetic Genes	20
Figure 3.1	Schematic of the λ KSA Clone	63
Figure 3.2	Double Stranded Sequencing Strategy of pR162A	65
Figure 3.3	Putative Genes Identified in pR162A	67
Figure 3.4	Partial Nucleotide and Deduced Amino Acid Sequence of the Putative <i>Dothistroma pini mox</i> ^{dot} Gene	71
Figure 3.5	Alignments of the Deduced Amino Acid Sequence of Mox ^{Dot} With Other Monooxygenases	74
Figure 3.6	Nucleotide and Deduced Amino Acid Sequence of the Putative Dothistroma pini ord ^{dot} Gene	77
Figure 3.7	Alignments of the Deduced Amino Acid Sequence of Ord ^{Dot} With Other Oxido-reductases	79
Figure 3.8	Nucleotide and Deduced Amino Acid Sequence of the Putative Dothistroma pini epox ^{dot} Gene.	83
Figure 3.9	Alignments of the Deduced Amino Acid Sequence of Epox ^{Dot} With Other Epoxide Hydrolases	86
Figure 3.10	Proposed Conversion of Averantin to Versiconal Hemiacetal in AF-ST Pathway	91
Figure 3.11	Basic Epoxide Hydrolase Reaction.	92
Figure 4.1	λCGV1 Clone	96

Figure 4.2	λKSA Clone	97
Figure 4.3	Comparison of Gene Clusters	98
Figure 4.4	λCGV1 Restriction Map	101
Figure 4.5	λKSA Restriction Map	103
Figure 4.6	D. pini Genomic Southern Blots	105
Figure 5.1	Disruption Plan A	121
Figure 5.2	3' pks Fragment With Relevant Restriction Sites Indicated	122
Figure 5.3	An Example of a BP Recombination Reaction	125
Figure 5.4	LR Recombination Reaction	127
Figure 5.5	Determining if the Three Inserts are Contained Within the <i>pks</i> Disruption Vector	128
Figure 5.6	Checking the Orientation of Inserts Within the <i>pks</i> Disruption Vector	130

Х

LIST OF TABLES

Table 1.1	Homologs of Putative Dothistromin Biosynthetic Genes	17
Table 2.1	Lambda (λ) Clones, Plasmids, Fungal and Bacterial Strains	27
Table 2.2	PCR and Sequencing Primers	49
Table 2.3	Reagents and Cycling Conditions for PCR Amplification of <i>pks</i> Flanking Regions and Addition of attB sites	51
Table 2.4	Reagents and Cycling Conditions for Gateway Disruption Construct R226	53
Table 2.5	Reagents and Cycling Conditions for Re-amplification of RT-PCR Products	54
Table 2.6	Reagents and Cycling Conditions for Southern Blotting Probes	55
Table 2.7	Reagents and Cycling Conditions Checking Orientation of R162A	57
Table 3.1	Summary of D. pini Genes Present in pR162A	68
Table 4.1	D. pini Genomic DNA Southern Blotting Summary	111
Table 5.1	PCR Products and Their Appropriate pDONR Vectors	123

LIST OF ABBREVIATIONS

ACP	Acyl-carrier protein
Amp	Ampicillin
AF or AFB1	Aflatoxin B1
AT	Acyl transferase
AVF	Averufin
Bp	base-pairs (DNA)
BLAST	Basic local alignment search tool
BSA	Bovine serum albumin
cDNA	Complementary DNA
CSPD	Disodium 3-(4-methoxyspiro (1, 2- dioxetane-3, 2' - (5' chloro) tricyclo
	[3, 3.1.3.1] decan}-4-yl) phenyl phosphate
CTAB	Hexadecyltrimethylammonium bromide
CU	Cerato ulmin
DB	D. pini broth
DIG	digoxygenin
DH	Dehydratase
DM	D. pini media
DNA	Deoxyribonuclic acid
dNTP	deoxy-nucleotide tri phosphate
dot	Putative dothistromin gene
D. pini	Dothistroma pini
DSM	D. pini sporulation media
E. coli	Escherichia coli
ELISA	Enzyme-linked immunosorbent assay
EH	Epoxide hydrolase
ER	Enoyl reductase
Etbr	Ethidium bromide
FAS	Fatty acid synthase
Hph	Hygromycin B phosphate transferase gene
HPLC	High pressure liquid chromatography

IPTG	Isopropyl-β-D-galactoside
Kb	kilobase (DNA)
KDa	Kilodalton
KS	β-keto acyl synthase
Kv	Kilovolts
LB	Luira-Bertani
NA	Norsolorinic acid
PCR	Polymerase chain reaction
PEG	poly-ethyl glycol
PKS	Polyketide synthase
RACE	Rapid amplification of cDNA ends
RE	Restriction endonuclease
REMI	Restriction enzyme-mediated integration
Rpm	Revolutions per minute
RT-PCR	Reverse transcriptase polymerase chain reaction
SDS	Sodium dodecyl sulphate
ST	Sterigmatocystin
TAGKO	Transposition-arrayed gene knockouts
Taq	Thermus aquaticus
TE	Thioesterase
Tm	Melting temperature
UV	Ultra violet
VHA	Versiconal hemiacetal acetate
Xgal	$\texttt{5-bromo-4-chloro-3-idoly-}\beta\text{-}D\text{-}galactopyranoside}$
Ω	Ohms
λ	Lambda
μf	Microfarad