Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Synthesized Cooperative Strategies for Intelligent Multi-

Robots in a Real-Time Distributed Environment

A thesis presented in partial fulfillment of the requirements for the degree of
Master of Science
in
Computer Science

at Massey University, Albany, New Zealand.

Caoyun, Lin
2009

{hstract

In the robot soccer domain, real-time response usually curtails the development of
more complex Al-based game strategies, path-planning and team cooperation between
intelligent agents. In light of this problem, distributing computationally intensive
algorithms between several machines to control, coordinate and dynamically assign
roles to a team of robots, and allowing them to communicate via a network gives rise
to real-time cooperation in a multi-robotic team. This research presents a myriad of
algorithms tested on a distributed system platform that allows for cooperating multi-
agents in a dynamic environment. The test bed is an extension of a popular robot
simulation system in the public domain developed at Carnegic Mellon University,
known as TeamBots. A low-level real-time network game protocol using TCP/IP and
UDP were incorporated to allow for a conglomeration of multi-agent to communicate
and work cohesively as a team. Intelligent agents were defined to take on roles such
as game coach agent, vision agent, and soccer player agents. Further, team
cooperation is demonstrated by integrating a real-time fuzzy logic-based ball-passing
algorithm and a fuzzy logic algorithm for path planning.

Artificial Intelligence, Ball Passing, the coaching system, Collaborative, Distributed
Multi-Agent, Fuzzy Logic, Role Assignment

Acknowledgement

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Napoleon
Reyes during this work. And, finally, I am forever indebted to my friends and family
for their understanding, encouragement and supports.

1ii

Table of Contents

1 RecpatEl DESRPIO - vcsinninmrimmai s o s s s v I
iel IO s prarr i e TR e e T e e B e A A S i |
1.2 ReSEArCh ODJECHIVES.cooreerruraresransosrrmereansosssssssarsensssssnssssnsosrassassssasesnsnsassenssssses |
1.3 Significance of the Research........cooooviiiiiiiiiiiiiiiiccee e 2
[.4 Overview the Problem Domain: RObot SOCCEI.........oiiviviiiiiieiiiiiiieeiiiciie e 2

14,1 RODOCUP. ..ttt ittt sttt e e b sttt e b e s araenne s abaaeesnns 2
1.4.2 FIRA CUP..iiiiiniiriieinunneniiinseesssessisesssesassssssssssnnsnsssssnsssssessnssssnssssnssnnsnssnnsnns 3
.43 Artificial Intzlliperice in ROl SO0CEE v scmmmmmmnmmmsmmssmsms s 4
1.4.4 Multi-Agent Roles, Strategies and TactiCs..........civuiviminionminneeesenrninsmsnmssssens B

2 Regies Of BElotel EAVETOING .o o s s eea st e s Sk st 7
2.1 Realization of a Ball Passing Strategy for a Robot Soccer Game: A Case Study
of Integrated Planhing of COMMOL......ommumamimiivissisissisi e 7
2.2 Supervised Control of Cooperative Multi-Agent Robotic Vehicles........oooooeee. 8
2.3 System Design and Strategy Integration for Five-on-five Robot Soccer
O T T TN s v 8 B B o S SN SR ST 10

2.4 A Cooperative Multi-Agent System and Its Real Time Application to Robot
D O s i R A R S S R T R S S T 11

2.5 Protocols for Collaboration, Coordination and Dynamic Role Assignment in a

Tty LTt e B S SR Sl R St S L SRS e 13
2.6 Decision Making for MiroSot Soccer Playing Robotsc.ccooiieiiiiniinins 14
2.7 Robots Playing to Win: Evolutionary Soccer Strategies.......ooovvriverinieerrnaenne 16
J THE ATZOTTHRIMIS .ottt bbb e e e s e s sbaaeaeeeeaenes 17
3.1 Game System SImulation CyCle.....uiiiiiiieeiie e 7
3.2 General System ArChIteCUICS. . ovveiiieriiii ittt e e e e s 18
3.2.1 General Model of Single Control SYStem.......oooovveeeiviiiiieiiieiei e 18
3.2.2 General Model of Multi=Agent SyStem. ... wminssmmsmmmsasmssinssmsnsss 19
3.3 Supervased Mulbi-Agent SYEIEIN s..uxssiwuusmarsmmssarmmsmrinssoivissassssmss s iassssmsa 20
3.3.1 Supervised Multi-Agent System ArchiteCture.........oooeeeeveerceveecnieneeneenn 20
3.3.2 Supervised Multi-Apett Syster DESIpi.....cammuumnumaisssimsismsiais 21
2N PERABOG. cvscuniniiasammiinis a3 G S B A o5 21
35252 VML EYERETIPEON. oo i s s s o 23
3.3.:2.3 Implementation Issues and Performante......nvmuusinmnmane 25
3.3, 3 RObot Control SYSBI. o ammmimsssis i i masssssrsstssasns 26
3331 DEfipliOn cosmmnnummmsmmmsimn i e 26
3.3.3.2 Implementation Issues and Performance.............cccooceeevieiiiieeceicnenenne. 27

3.4 Real-time Network Game Protocol..........ooiiviiiiiiiiniiiceicesr e 27
3.4.1 Communication MeChanISM.......cooouieiiiiiiiiiie e 27
3.4.2 NEetWOTK FIOW......oiiiiiiieiiiiiieieeiiriinescisernsressescsssessessssssnessnssrusnsessssarassesenns 28
3.4.3 Communication Message FOrmat..........ccoovveeivieiiiiinisiecrcesincninnessinesnnneee 30
3.4.3.1 Message Sent From VISION SYSTBIN. .o cumrmsmmsanamsisssonmmsos asumsmss 31

vV

3.4.3.2 Message Sent from the Coaching System...........cccceeivvviiciicerieriinnnennn. 33

3.4.3.3 Message Sent from Robot Control System..........cccceeveeericiivnviiennnnnnnn. 34

3.5 Pasiive Hale ARSTONIIENL o cinsmmaiine i s s b oo i rss s 36
3.5.1 Overview of Role Assignments Problem Domain..........cccccoovvvveeeeeeinnnennne. 36
3.5.2 Passive Role Assignment Approach........cccoceeveeeeeeeeeeeieeeeeececee e 36
3.5.3 Experiment on Passive Role Assignment on Goalie..........ccccceeeeeriinnnnn.. 37

3.6 Fuzzy Control for Realization of Ball Passing..........cccocccoveeiviveiiiieneecie e 39
3.6.1 Overview of Ball Passing Problem Domain..........ccccooevvvveeeiiiicviieecinieeeene. 39
3.6.2 Realization of Ball PaSSINE.........cc.veiiiiiiiieiiieeceeciee e 41
3.6.3 Fuzzy Inference System for Desired Passing ANOLE.. ..vusswsusmssnsnmrvasses 44
3.6.4 FIS Output Applied for Passer and Receiver Agents........cccvevevvireeriinvnnennn 52

4 Simulation Environmient BValNEHON. . omuwsmosmmsm s 55
W1 Preteouasite i AGSITIIEIOTS o wsmsosis v sessasissasssadings s ias oo 55
4.2 Pertoriaticrs MEREIBIMBIT .o s e s s s s R enis it 2

5 synthesis of Ressateh ContAbUNGNE. . ..o ammnimtimmsi i I e e 65
o T . 69
L T n o - T, 71
Appendix A: Fuzzy rule set file for fuzzy control ball passing............cccccceviveeeiniennnn 75
Appendix B: Fuzzy rule set file for obstacle avoidance...........cccceeovireiiinviieiiniiienens T
Appendix C: The coaching system's simulation file — Coach Simulation.java........... 81
Appendix D: Robot control system simulation file = RCS Simulation java............... 95

Vi

List of Figures

Figure 1 Small size league of ROBOCUP [27].ciiveeeiiiiiiiiieececeeee e 2
Figure 2 Middle size league of RoboCup 2004 [27]....ccoiiiiiiiiiiieeiiiee e 3
Figure 3 Simulation league of RODOCUP [27] ccveiiiiiiieeiecie et D
Figure 4 Four-legged league [27].....oooiioiiiiiiciee e 3
Figure 5 RoboCup 2006 humanoid [27]...ccveiieieeoiiioieeieeiie e 3
Figure 6 Three roles ina cyclic ball passing SHHation [13]..cooosmssmorsoasmmsomsessyoms 7
Figure 7 Three mobile robots path planning for ball passing strategy [13].....ccccviinns 8
Figure 8 Shows a scheme for deliberative task decomposition and planning of
COCPBTAENE FOBIE | L o suinsussirnnunsnuin isiossnssosnios o v s s s S s ais s AN s 10
Figure 9 Shootaind position (6 sheot actions [30]..umnsumsminiassemsmm sy 11
Figiite 10 Intercept ball deton [30].cvmvunmmmmvnmniminanansmnsisssss 12
Figurell Sweepball action [30])..camwemimmmeimnainmsisasasssims s 12
Figure 12 BIoeiC a6tien [0 s mmmmmmcimseimeyiemais s i i ot s m s 13
Figure 13 Protocol for dynamic role assignment [23]......cooiiiiiiiiiiiieiniiiiieeeesesiinins 13
Figure 14 Three layers for rule-based fuzzy decision making mechanism [26].......... 14
Figure 15 The ShootAtGoal action in an XML representation [26].....c.eeevvviiieeriienns 15
Figiute 16 Rules I081c 68 [R5 umstimunssnasniavis i s i eavs i s e s i vaavasnsos 15
Figure 17 Game world COmmuNICatioN.ocuveiveeiiriieiiieenieeiieeseesreneseaessneessaaeseanns 17
Figure 18 Single control system model for robot soccer competition.........ccevvveeerennn. 18
Figure 19 Multi-agent control system model for robot soccer competition................. 19
Figure 20 Model of coaching control SYStem..........oiviiiiiiiiiiiiiiiiiiie e 20
Figure 21 Message communiCation flOW.......coovieviiiiieiiiiiieeiiice e ee e 21
Figure 22 Virtual RoboCup competition in 3D [27 ..o 22
Figure 23 Software Packages......coocvvieriiiiiiiiiiiice e srcsnie s s e s s e e s 24
Bigure 24 LML deseription: o Class diABIaI cicoamesosmsumen s memamommodd
Figure 25 Multi-player network game — Counter-Strike vI.6.......ccccovveevieiiiiininiinnnn 27
Fipure 26 NetWOEK TIOMW @RIEIE .uiavonmmmmnssosssemimiss e iossmrs i s osas s 29
Figure 27 Specified game situation for message sent from the vision system............. 32
Figure 28 Specified game situation for message sent from the coaching system....... 34
Figure 29 Specified game situation for message sent from the control system.......... 35
Figure 30 Initial stage of role switching (Goalie: player 5)....ccccooevviiiiiiiiiin .38
Figlite 31 Role swWilchetl COORNE: §) sy i it 38
Pigtite 32 T8 108106 Chetk i s s s s maiihs 40
Eigiiie 3% Same-S1de-ehiiBll .. ccumaiimmirssmmntm b 40
Eigiiie 34 Ball DasioShate:....c.oums sriimmestiismmmb e issoryssroinitasssiss o serisiaiies 42
Figure 35 Ball passing input in GEOMEITY.......evreeiiriiieeirienseeeeeeieeeesaes s cereas e e eneens 43
Figure 36 Multi-adjusted-ball-passing angles...........coooivrerieiiioiiieiiieesieee e ereeeee s 43
Figure 37 Fuzzy Inference SYSteIM.......ccouiiiiiiiiiiiiciisiceciee e 44
Figure 38 Polar coordinate of ball passing..........occoveiiiiiiniiice e 45
Figure 39 Fuzzy inpits = polar coorQiBAION. . «ouwescesmamssasamivamsssssissismmssssmmssmasssmssss 46

Vi

Figare 40 Fiasey inpt - Jiele umnnmnnnanisuinsaniimanissssiiisiaviava iy 48

Figuie 41 Fuzay mpuk— QISIRI0E, e mmssmys s s s s e e s st 48
Figure 42 Pazzyaaipul —angle 10 i cisnmmmssissnmmumsasiismmmiasmmsissn 49
Figure 43 Ball passing SIPleA8Se. s mecmiinssiminiismsm sassmssissns s anusssssississibsisis 49
Figure 44 Enhanced with polar coordinate ball passing area...............ooceevievrieririvennnen. 50
Figure 45 Ball passing - FIS applied for opponent 1. 51
Figure 46 Ball passing - FIS Applied for opponent 12.........cccovvieviiiviireeioieiniiieeenne 51
Figure 47 Ball passing — desired ball passing path to avoid interception.................... 52
Figure 48 Ball passing: passer to kick the ball..........ccoovvviriiiiiiniiiiiciiicecieen 33
Figsre: 49 Ball passing 1est With rails. oo onsmmsmssmmmomssssie s s 53
Figure 50 Ball passing: receiver to catch the passing ball.........ccocooivviiiinvviniccinnnne 54
Figire 51 The Somito]l WIOW, o ssesassimsssmmmsimssssavsssnrnissmsssmisssdamssssms s 56
Figure 52 Time consumption of the coaching system and the robot control system...60
Figure 53 Time consumption of general multi-agent SyStem..........ccccvevivecveerineeinnenn. 61
Figure 54 Ball passifig ST 1....nnmnimuninsinsainsismsinsisinamsisisaisiiis 63
Figite 55 BAll BASSINg StAPE D ...cvvmmmmivommmiims e s s s i s i s s 63
Rigtite 5 Ball Passing SIPe ot i i s i s 5 63
Figure 57 Ball passing stige d.ovmmanimaisinsamimamissnarsii Gismmiss s 63
Figure 58 Ball Dassing SREES v sims s s i s s i vossvv s 63
Figiire 59 Ball Passing SIPE G wncaissieuss i i s i s ey 63
Figiire 60 A desired ball passing [13Lcivnmnsmnmmmnanminamninimiimsmises 67

Viii

Index of Tables

Table 1 Classes comparison with original.............cocoiiiii 22
Table 2 Fuzzy Associative Memory (FAM) matriX........ooooioiiiiiiiiiiiie 46
Table 3 Fuzzy mput distance membership sets (in number of ball radius)................. 47
Table 4 Fuzzy mput angle membership Sets..........cccoviiiiiiiii e 47
Table 5 Defuzzify output “angle to turn” membership Sets........cccoovii i 47
Table 6 Objects' position 1N FIZUIe 43 ... 50
Table 7 Polar coordinate POSIIONS. .. .uuiii ittt 50
Table 8 FIS takes inputs and produces OUtpUL......ccooooiiii i 51
Table 9 Testing computer details........ooo 55
Table 10 Scope and HMIEATTION.......oiiii et 57
Table 11 Performance measurement data.............ooooooiiiiiiii e 59

X

1 Research Description

1.1 Introduction

The robot soccer game, since its inception in 1987 was aimed at providing the
research community with an exciting and fertile ground for artificial intelligence,
machine vision, communications, control systems, sensor data fusion, multi-agent,
mechanical and electrical integration, decision-making and response, artificial life and
multi-robotics researches among many others.

This research endeavor extends the computing capabilities and complexity of
cooperation between multi-agent by harnessing a distributed system approach, while
ensuring that real-time decision schemes could be executed. A network game protocol
is built on top of an existing popular robot soccer simulation platform developed at
Carnegic Mellon University, known as TeamBots. The system allows for the
participation of a multitude of computers interconnected to form and control a robot
soccer team. The distributed system is comprised of a vision agent, telligent coach,
and robot soccer players and each could be run on a separate machine. The main
impetus 1s that each robot is allowed to perform complex tasks, given a role that is
dynamically assigned by the coach. depending on the game situation. Each robot in
turn, performs target pursuit, obstacle avoidance, ball dribbling, ball passing and ball
shooting independently of the others. With the aid of an intelligent coach, full-
cooperation between the robots 1s made feasible. As an example, experiment results
demonstrate how ball-passing is improved between players by utilizing a fuzzy logic-
based approach. Moreover. role allocation is passively computed by the coach to
designate the best candidate robot most suited for a given role (e. g. goal keeper,
attacker, defender, support, etc.). All these cooperating multi-agent and the artificial
intelligence inculcated in them were tested in an actual intranet connection that passes
through the complete IP stack. The system performance was measured and evaluated
and were shown to run all in real-time.

1.2 Research Objectives

The primary objectives of this research are:
1. To design and implement a real-time Supervised Multi-Agent System (SMAS)
for coordinating a team of robots in a distributed environment (discussed 1n
Sec. 3.3).
2. To develop a real-time network communication protocol and fuse it with the
TeamBots robot soccer engine (Sec. 3.4).

3. To develop an algorithm for role allocation in a changing environment (Sec.
3.3).

4. To develop an adaptive fuzzy logic control system for ball passing between
multi-agents and enhance their cooperation (discussed in Sec. 3.6).

1.3 Significance of the Research

This research proposes SMAS in order to achieve real-time multi-agent
collaboration and more efficient delegation of algorithm computation among agents
(Sec. 3.3). Contrary to non-supervised multi-agent systems, the proposed architecture
allows for more complex algorithms to be deployed among agents, allowing for
independent path-planning. An intelligent coach is designated to device the team's
strategy, allocating specific roles to each member of the team (Sec. 3.5). This
approach significantly reduces redundancy of role assignments and enhances team
cooperation.

1.4 Overview the Problem Domain: Robot Soccer

1.4.1 RoboCup

RoboCup is an attractive international competition that poses an interesting problem
in the planning of coordinated motion of individual players as a team against an
opponent team. It aims to promote researches on real-time searching for an optimal
coordinated motion of the intelligent agents. The ultimate goal of the RoboCup
project is that by 2050, a team of fully autonomous humanoid robots that can win
against the human world champion team in soccer will be developed [27].

Related events:
(1) Small Size League (diameter of less than 15 c¢cm)

/5l

Figure 1 Small size league of RoboCup [27]
(2) Middle Size League (15 cm <((50 cm)

Figure 2 Middle size league of RoboCup 2004 [27]

(3) Simulation League

Figure 3 Simulation league of RoboCup [27]

(4) Four-Legged League

Figure 4 Four-legged league [27]

(5) Humanoid League

Figure 5 RoboCup 2006 humanoid [27]
1.4.2 FIRA Cup

FIRA Cup is yet another world-wide robotics project that promotes research on
autonomous mobile robotic intelligent systems. It is a research initiative that helps
generate interests among the young generation to be involved with cutting-edge
technology researches. The impact of these researches is believed to change the future
life of mankind in a variety of ways.

1.4.3 Artificial Intelligence in Robot Soccer

Artificial Intelligence (Al) is the core of research that this study aims to contribute in.
Inculcating intelligence in a team of robots to make them autonomous, cooperative
and adaptive to a dynamic hostile environment is the focus of this research. To
mention a few of the candidate algorithms suitable for this problem, we have the
following Al technologies:

Fuzzy logic is deemed to be very much suitable for robots motion control [8],
such as role assignment [24],collision avoidance problem [7] and path planing
[22]. It 1s in fact, a precise problem-solving methodology and utilizing the
approach can result to higher accuracy and smoother control. The technique
mimics the way humans think, allowing for vague description of the solution
in terms of fuzzy rules. Fuzzy logic is regarded to be a promising technology
with products worth hundreds of billions now available in the market.

Neural network in [20] and Q-learning referred in [18] are popular Al
techniques that are suitable for the robot soccer problem domain. The
paradigm could be utilized to allow robots to learn from the environment by
interaction. The learning mechanism behind Neural Networks imitates the
communication process in the central nervous system, involving neurons.
Through a network of neurons working together to perform some global task,
the system as a whole could exhibit complex global behaviors.

The A* algorithm is also one good candidate algorithm as it is an optimal path
planning technique.

Alpha-beta pruning is not commonly used in the robot soccer game strategies
currently, but it can be used for improving decision-making in the game.

Hybrid intelligent approaches, like the combination of any of the mechanisms
above, such as path planning that combines algorithms like Fuzzy logic and
A* is also being reported to be an excellent option in the literature [2].

1.4.4 Multi-Agent Roles, Strategies and Tactics

There are some common strategies and algorithms in robot soccer matches:

Dynamic role assignment is one important mechanism that could be employed
in the game. Depending on various situations, robots are assigned varying
roles to be a more effective member of the team with different action selection
mechanisms and action selection problem is also widely researched, such as n

»

n

[11] and [19].

The goal keeper position is assigned to only one robot per team; therefore, this
position is deemed to be of extreme importance, as it dictates largely the result
of the competition. Most teams are prioritizing in developing intelligence for
the goalie position.

Ball passing enhances the efficiency of coordination and team work.
Therefore, this strategy translates to better team performance, and yet another
factor that could lead to the domination of the game.

Target pursuit, 1s a fundamental algorithm necessary for retrieving the ball and
taking control of it. However, a target is not necessarily just a physical object.
Algorithms for target pursuit are also used for blocking an opponent or
intercepting the ball.

Path planning is crucial to the game and has been widely researched on in
general. It takes into account obstacles along the path and should be executed
in real-time. The A* algorithm is one powerful technique for finding the
shortest path to any destination objects. ERRT [5] is another solution to solve
the time required path planing problem.

2 Review of Related Literature

The objective of this research is to develop a distributed cooperative system, guided
by an intelligent coaching system via a networking protocol. In addition, optimized
role assignment, and cooperative ball passing strategies are also investigated. In this
section, a number of related works are discussed and contrasted with the research
proposed.

2.1 Realization of a Ball Passing Strategy for a Robot
Soccer Game: A Case Study of Integrated Planning of

Control

Ball passing strategy is one significant factor that influences the team’s success. A
proposed research in [13] examines the realization and visualization of ball passing
based on dynamic formation, calculating when an agent is ready to pass a ball
cyclically. The robot formation undergoes a zigzag pattern.

Next player

Previous player ®

Passer

Figure 6 Three roles in a cyclic ball passing situation [13]

There are three roles involved for a cyclic ball passing as showed in Figure 6: Passer,
Previous player and Next player. It involves two ball passing procedures which are
“Previous player to Passer” and “Passer to Next player”. To make a successful system
for ball passing, careful trajectory path planning is required. In turn, the problem has
been decomposed into a geometric path planning problem and a velocity planning
problem. With a predicted kicking position and path planning (as shown in Figure 7),
the passing actions are done successively. The implementation increases the chances

of breaking through the defense of opponents by surprise. However, each passing
procedure does not consider the effects of interceptions, which causes failure of ball
passing in the majority of situations. This problem has become one of the major
topics in this research and is discussed in detail in Sec. 3.6.

Figure 7 demonstrates the three kick-position corrections for robot "a". robot "a" acts
as the “previous player”, while robot "b" serves as the “passer” and robot "¢" serves
as the “next player” in this specific ball passing cycle. Dotted lines represent the ball
locus; dashed lines are three trajectories generated by kick predictions, and thick solid
curve is the actual trajectory that "@" desires to track. Vector V, suggests the
approximate next kick position @' for the “previous player” which is robot "a".
Vector V, is added to a new kick position to predict more accurate kick position

a,' when robot "a" is at locus P, . Vectors Vv, and V, are applied to generate
the trajectory @—@&," and P,—a," separately as robot's reference trajectory.
Motion predictor tells the robot the exact kick position (@') when robot "a"
arrives at P, , and finally, trajectory P,—a;" is generated.[13]

Figure 7 Three mobile robots path planning for ball passing strategy [13]

However, each passing procedure does not consider the effects of the interception,
which causes failure of ball passing in the majority of situations. Consequently, this
becomes one of the major topic in this research and is discussed in details in Sec. 3.6.

2.2 Supervised Control of Cooperative Multi-Agent

Robotic Vehicles

Cooperative task planning problem of robotic systems is a dynamic and complex
problem and is very challenging. As described in [1], the author addresses 6 layers of
supervisory control architecture for coordinated task planning of a group of multi-
agent robots:

h

6.

Executive Layer: is mainly responsible for overall task mission planning of
Multi-agent Cooperative Robots. High-level deliberative sub-task plans are
generated in this control loop.

Perception Layer: produces motion plans for cooperative robots according to
deliberative task deployment schemes generated by the executive control loop.

Reactive Layer: is responsible for task-level navigational behavior of multi-
agent robots.

Reflexive Layer: is responsive to navigational emergencies and exceptional
situation handling.

Low Level Mobility Control Layer: is to facilitate mapping of motion
commands to motors/actuators low-level instructions that are communicated to
the physical robots via a scheduler through distributed communication

channels.

Calibration Layer: is to maintain and rectify inconsistency between simulated
world model of cooperative robots and their physical world model.

The approach presented in the paper involves decomposition, assignment, resource
allocation, task execution and monitoring. Figure 8 depicts deliberative task strategies
in the perception layer. Deliberative task strategies can be considered as a subset of
goal-oriented tasks that cooperative robots may be engaged to perform in
synchronized fashion in both time and space.

9

Deliberative Cooperative/ Subsumption-based
Navigational Task Navigational Behaviors
Deployment Strategies T adaptve %
—— Multi-Agents]
B o Assignment

T TTRT s sl SRR 3

ii Growp mge
%% Folmnlinn_%

18 \ me - S s

%‘;;;_'_..“ V‘ﬁ,u NV . : Uniforn- i
& e11 Al m e 7 o \ i 3
§% Mapping Wb oy ' @ :
i N NG %
PRSI ;_ % \‘ X i
‘%% nge.ts _AA - i v P b plomrd P TOE, s
2% Tracking ' P Adapnve

], NewatNetBased j:

Laser-Based

ﬁ Taf tical
i Maneavers

Gateways

i, Following ¢

Figure 8 Shows a scheme for deliberative task decomposition and planning of
cooperative robots [1]

The solution overcomes a huge problem by dividing it into smaller and easier tasks
and assigning different roles to the mobile robots. In relation to the soccer game, ball
passing tactic is able to perform in synchronized fashion among players. The task is
decomposed as follows: a player with the job of kicking and passing the ball, another
player with the job of receiving the ball (Sec. 3.6) and even more players with the job
of further assisting [13].

2.3 System Design and Strategy Integration for Five-on-

five Robot Soccer Competition

The paper in [17] focuses on strategy realization of dual direction movement with
formation which is described as a role assignment for defensive and offensive
policies. Dual direction movement of the robotic offensive is highly increased by
using both front and rear sides of the robot to hit the ball. It reveals fast mobility and
controls efficiency according to its experiments.

The role assignment strategy proposed by authors is dynamic according to the
location where the ball stays. For example, the normal formation in which there are
two strikers, a center, a backfielder and a goalkeeper is adopted when the ball stays
around middle field, and the offensive formation strategy is selected in which there
are three strikers but no center when the ball stays in the front half field.

Each role has its own duty, such as strikers is to get points, the center is to prevent the
ball entering home area and to kick the ball toward the front half field, and

backfielders take on serious defensive and substitute the goalkeeper to provide a
better protection if the goal becomes “open door”, which 1s similar to goalie role
switching (Sec. 3.5.3).

2.4 A Cooperative Multi-Agent System and Its Real Time

Application to Robot Soccer

The resecarch [30] points three control schemes such as remote-brainless soccer robot
system, a vision-based system and a robot-based system. Remote-brainless one is too
simple to complete complex task by commanding robot's velocities like a radio-
controlled car, thus 1t 1s not recommended. The vision-based system is considered to
be a system at an intermediate level between the remote brainless and the robot-based
system with motion control which is like a traditional supervisory system. Robot-
based scheme allows autonomous robots to make a decision based on information

received by itself.

The control system we developed is the robot-based one with its own intelligence
which is discussed at Sec. 3.3.3. However, a centralized supervisory system is
introduced to provide global strategies (Sec. 3.3) which 1s similar to vision-based

scheme.

Goal position

fr—

Line of attack
Second move point —

i b\wt
| m
|

meve paint

Figure 9 Shoot and position to shoot actions [30]

The discussion and implementation also involves a control structure, behaviors and
common actions, which are Shoot and position_to_shoot actions, Intercept ball
action, Sweep ball action and Block action, and zoned strategies with role assignment
for the control system with some specified situations in MIROSOT’96.

Figure 9 illustrates the shoot and position to shoot actions. The first move point is
the desired position to shoot ball to goal position, and moving towards “First move

point” is the position to shoot action which is taken firstly. Then, by marking
“Second move point”, shooting the ball at orientation from “First move point” to
“Second move point” will bring the ball to goal position which is known as shoot
action.

Estimated +
intersaction point ;
Current
ball position
Xp .Y} _ -
S

-
= -
(Xbo .Ybo)
Previous

ball position

[X T Yf) Jl

Current
robot position
Figure 10 Intercept ball action [30]

Figure 10 illustrates the intercept ball action by calculating the the estimated
interception point between ball and the robot at the least time cost. According to the
estimated interception point, the robot will accelerate to maximum speed and orient
direction which is from current robot location pointing to estimated interception point.

Ball
Robot .. " aatl v
B..o
Home goal Opposite goal

Figure 11 Sweep ball action [30]

Figure 11 illustrates the sweep ball action which is simple to implement by kicking
ball straight towards front half field. And Figure 12 shows the action of blocking
opponent away from the ball.

Estiried goal poaltion

Oppanent fobot .

Figure 12 Block action [30]

For the ball passing strategy discussed at Sec. 3.6.2, the shoot and position to shoot
actions are adopted on the passer side. The receiver on the other hand. is able to catch
the ball by applying a similar intercept ball action.

2.5 Protocols for Collaboration, Coordination and

Dynamic Role Assignment in a Robot Team

In the research proposed in [23], the methods for highly motivating cooperation is
realized by employing a hierarchical teammate avoidance algorithm and the support
of minimizing interference between players. The teammates support is one of the
main focus under discussion which includes the cooperation between goalie and
halfback. The goalie has the most priority to obtain the ball. The cooperation between
robots through communication by message sending is different from having a the
coaching system, wherein the communication is done through a centralized coach to

achieve collaboration among robots.

Figure 13 Protocol for dynamic role assignment [23]

Another algorithm described in the research is to introduce the dynamic role
assignment to reduce the risk of the disadvantages of some important game situations.
For example, if the halfback loses control of the ball when it is close to opposite goal
and the floater moves out of defensive zone, the halfback is able to take advantage of
its position to become a striker and the floater becomes a halfback. Then, there is no
need for players to move around the field. The protocol of dynamic role assignment is
depicted in Figure 13. Robots receiving roles are following the procedure as in the left
chart, and the right chart is followed by the robot initiating the reassignment.
Dynamic role assighment is an important and effective solution to the various
changing situations.

However, this requires the control system to utilize the limited system resources for
role selection checking every time even though the role is keeping unchanged most
time of the game. We have introduced a new concept “Passive role assignment” to
maximize the performance of the control system and it is discussed at Sec. 3.5.

2.6 Decision Making for MiroSot Soccer Playing Robots

The paper in [26] presents a rule-based fuzzy decision making mechanism for a
system which consists of three layers as showed in Figure 14 in the order of top to
bottom.

Strategy

Task Distribution

Action (Task)

Figure 14 Three layers for rule-based fuzzy decision making mechanism [26]

“Strategy layer decides the main behavior or strategy (offensive, defensive) for the
team, in order to reach the global goal. Role assignment.”[26]. The task distribution
layer performs behavior selection as role assignment. The basic action layer
implements classic actions which are possible to be further divided into simple base-
actions, such as goto-position command. Fuzzy-based evaluation is introduced to the
system among three layers to avoid the toggling of decisions and XML is proposed
for description of environmental and behavior information in colloquial terms.

- <Action ref="ShootAtGoal">
<Weight ref="Forward" value="1.0" />
<Weight ref="Defender" value="0.3" />
<Weight ref="Goalkeeper” value="0.05" />
- <RuleSet:>
- <fAnd>
<Value term="FreeToBall" />
<Value term="NearestToBall" />
<Value term="BehindBall" />
<Value term="FacingBall" />
<Value set="DistanceToBall" term="Near" />
- <Not>
<Value term="OpponentNearBall" />
</Not>
<fAnd >
< /RuleSet>
</[Action>

Figure 15 The ShootAtGoal action in an XML representation [26]

LA,
f\ And)
> i N \‘-_
o .
{ Ang) S
A A
- il S \"-..\'- %
N ™ TN
And) And) And
. \ ") \ A~
X . — Not |
£ % N T &
—————u}(———\ﬁ- ———————— e e — — — —— —— ————\\-————
Refarences I?‘F uzzysels ¥ X \
1 4 - -
FrezToBal [Nenmsﬂoﬂan | FacingBall —‘ BehinaBall 1 Drst‘?::rz;fﬂall DFW;':I:INMI

Figure 16 Rules logic tree [26]

The specified XML formed ShootAtGoal action is showed in Figure 15 and its logic
tree 1s depicted as Figure 16. Forward player, defender and goalkeeper are three
weight fields in this action, and action will be performed if six-conjunctive-
preconditions rule, of which five preconditions are positive and one is negative, are
satisfied.

Lower level layer depends on the decision making by the layer above it. The proposed
architecture of decision making system enables to solve a big problem (e. g. to-win-
the-game) by dividing it into smaller tasks (e. g. goalkeeper, attacker). In our cases,
we have separated some of global cooperations to an additional the coaching system,
not only role assignment, but also the team cooperations, and it is going to be
discussed at Sec. 3.3.

15

2.7 Robots Playing to Win: Evolutionary Soccer

Strategies

The article [3] has proposed a special action selection mechanism according to role
allocation which is called “Tropism-Based Control Architecture™ [3] and its system
behaves according to its likes and dislikes by selecting actions randomly. A number of
tropism elements are embedded with the system to match the sensory information.
The actual robot behavior is unpredictable but it is possible to be guessed which
actions have a higher probability to be chosen. E.g. aggressive control system would
more likely to perform offensive strategies, however it is also possible to act in a
defender's role under the same circumstance.

The system with tropism-based control becomes unpredictable to opponent's team.
However, the proposed system has a problem of not taking action if a robot senses a
novel situation for which no tropism exists in the system. Moreover, to achieve the
team coordination, robot behavior should be predictable by other teammates. With the
centralized the coaching system proposed by this research, an new approach is
introduced by improving tropism-based control architecture. By sending a global
random factor from the coaching system to all control systems, players behaviors
become unpredictable to opponents but predictable to teammates.

16

3 The Algorithms

This paper presents an approach to centralized cooperative strategies for intelligent
multi-robots in a real-time distributed system. Passive role assignment and
cooperative ball passing algorithm are developed, employed and tested in the new
proposed distributed system.

3.1 Game System Simulation Cycle

Before discussing the system's design, it is adamant to comprehensively understand
the components of the whole game process.

The majority of modern robot soccer systems are mainly comprised of the following
components (Figure 17): GAME ELEMENTS, SENSORY DEVICES and
SIMULATOR-CONTROLLER.

%
& Game 2,
2 =3
& Elements 0’9
&
a.‘? >
9 ‘3,0
@
&
-‘r?" @,«
£ g
o ©
) -
= >
z)
o
[
§ ¥
&
Sensory Simulator &
Devices Controller

send all objects' basic information (location)

Figure 17 Game world communication

GAME ELEMENTS: are the physical confined playing field, and all essential
objects participating in the game (team robots, opponent robots and ball).

SENSORY DEVICES: are the hardware and software devices sensing the
exploratory environment for extracting the fundamental game details, such as locating
all objects position (e. g. vision system, etc.).

SIMULATOR & CONTROLLER: is an intelligent simulation system that emulates
the game environment and evaluates the robot’s decision with the reasoning machine.
On the other hand, the controller is tasked to move the robot in accordance with the
decision made. Each player in the game usually has its own simulator and controller,
and they are both employed in the automated system in general. The robot’s behaviors
are attuned to yield the best possibility of achieving a common goal in the game.

During the game, SENSORY DEVICES will keep on extracting the information from
GAME ELEMENTS. This requires message passing using a standardized message
format and broadcasting them to the SIMULATOR & CONTROLLER module.

Subsequently, the SIMULATOR will respond to the message received and will
produce the decision that will eventually be executed by the CONTROLLER.

3.2 General System Architectures

The conventional system architectures for implementing the robot soccer game are
discussed below.

3.2.1 General Model of Single Control System

In the early system designs, the single control system takes the responsibilities for all
controllable automatons in the game [25] and its model is showed in Figure 18.

General Model of Single Control System Communication (Message Passing)

Game Elements

»
¥ A Control System

Sensory Devices Simulator & Controller

Figure 18 Single control system model for robot soccer competition

The data of computation is shared by all robots, as they are controlled by a single
computer. This does not require interaction or communication between robots. In

addition, the set of actions assigned to each robot is calculated sequentially. The
consequence is obviously a scalability problem, as the cost of computation increases
exponentially as the number of intelligent agents increase. Managing and controlling
the team of agents also becomes very difficult and time consuming. Therefore, this
approach is not the best solution and can be improved.

3.2.2 General Model of Multi-Agent System

To solve the management problem of the single control system, a multi-agent system
is introduced as a solution. This approach allows for parallel computations for all
automatons [29]. Figure 19 shows a model of the distributed multi-agent control

system.

General Model for Multi-Agents Control System Communication (Message Passing)

Game Elements

Robot Player CS Robhot Player CS

Sensory Devices Simulator & Controller

Figure 19 Multi-agent control system model for robot soccer competition

Unfortunately, the most significant problem is the collaboration in real-time and
communication between control systems.

19

3.3 Supervised Multi-Agent System

3.3.1 Supervised Multi-Agent System Architecture

A similar distributed control architecture for cooperative robot soccer system is
proposed in [30]. One aim of this research is to create an intelligent the coaching
system that will highly enhance team collaboration among agents and will allow for a
more extensible distributed multi-agent environment.

Supervised Multi-Agent System (SMAS) is constructed based on a classic distributed
multi-agent system with an extra coaching system that broadcasts formatted
collaborative messages to all agents. SMAS is acting the role of a SIMULATOR,
which receives the message from the SENSORY DEVICES and evaluates decisions
that will be executed by the CONTROLLER.

Model of Coaching Control System communication (Message Passing)

A\

Robot Soccer Game World{Simulation)

g g g A

o !,:m,,;q. 9 e .__,T.__..«.‘f::t;?_ﬁ
Robot Player CS Robot Player CS

Robot Player CS Rgbot Player CS

Sensory Component

a]
o
=2
g |
Y g |
X N
s - B
_‘ == E |
— . — E |
=4
|
A ey | E
Dy =
Vision System Coaching System

Figure 20 Model of coaching control system

SMAS is composed of a coaching system and a group of control systems. There 1s

20

usually one control system (CS) for an agent which is showed in Figure 20. It is
possible to allow one agent to have multiple control systems for inculcating more
complex abilities. However, in this research, we have limited the distribution of the
control systems in a one-computer-per-agent. The coaching system communicates
with the control systems through a standardized communication network protocol.
The message, consisting of the basic game information is sent from the vision system
to the coaching system and the rest of the control systems. In turn, the coaching
system might decide to evaluate an instruction for all control systems. Subsequently,
the control systems will generate a robot movement decision based on the basic game
information received, and the recent instruction coming from the coaching system. A
complete message communication flow cycle is depicted in Figure 21.

y =T / &
P , —_—— ——
k N
N o
— N \ ‘) | —
| 7 \ ™
T—> . U T ~
E T | - - S
| = 5]
It = | '// \\‘ f"' \ 5=
B E———I\- ,-———-——-b-“ '——-l- (I—b % E
£83 | N et Om
E (U]
/ | =
o | — e =
| i — —
/ N J \ 4
___.? 4
| o =
Coach Instruction f f E
| (Coaching System) \ '—"" -
Image Processing Movement deciding Robot Motion Control
(Vision System) (Robot Control System) (Automatons)

Figure 21 Message communication flow
3.3.2 Supervised Multi-Agent System Design

The chances of winning the game largely depends upon the control agents' movement
decision. The accuracy of the game information provided by sensors and the
performance of the system algorithms influence the movement decision directly. In
accordance with the research objectives: that is, to construct and develop an efficient
distributed multi-agent system, strategies and algorithms, experiments were
performed on a simulated soccer world, known as “TeamBots™. This platform
provides a precise and real-time competition environment, allowing this research to
focus more on developing the SMAS architecture, strategies and algorithms.

3.3.2.1 TeamBots

The real robot soccer game is mapped into an animated, simulated game program

which could be either in 2D or 3D. The 3-D environment is depicted in Figure 22.

Before system development starts, the simulation program is introduced, which is
developed by CMU -- “TeamBots”. TeamBots is an open source program and more
details of it can be found by visiting http:/www.cs.cmu.edu/~trb/TeamBots/. Robot
control systems developed in TeamBots can run in simulation mode using the TBSims
simulation application. Alternatively, for actual mobile robots, the TBHard robot
execution environment can be used.

Figure 22 Virtual RoboCup competition in 3D [27]

In order to meet the demands of a distributed system, necessary modifications were
made. Significant modifications for comparison with the original version are showed
in Table 1. A simple program with broadcasting functionality serves as a “virtual
sensory device” (or vision system) to retrieve the game information exactly from the
TeamBots simulation program and broadcast that information to SMAS. This
guarantees accuracy in determining player locations. Eventually, we are able to
concentrate on the structure of the SMAS with more efficient network protocol, better
strategies and algorithms.

Table 1 Classes comparison with original

Classes in new Original classes in Significant Modification
System(Modified) TeamBots Description
Main.java TBSim.java More flexible control
functionality
Coach Simulation.java DMod.java Passive role assignment and
ball passing checking
RCS Simulation.java DMod.java Fuzzy control ball passing
VisionSystem.java N/A Extraction of accurate game
information and broadcasting to
the coaching system and the
control systems.

The program “VisionSystem.java™ is running and acting as a sensory component in
the game to “see” the competition for the team.

The robots that participates in the game are represented as numbers of simulated
objects (a2 member of array “simulated objects”) in the game
(SimulationCanvas.java).

The opponent team is controlled by the control systems which are embedded in

TeamBots, and our team is controlled by the SMAS which 1s composed of a coach
(CoachingSystem.java) and five control systems (RobotControlSystem.java).

3.3.2.2 UML Description

There are 4 application packages as depicted in Figure 23 for establishing and running
a simulated robot soccer competition. Our team is controlled by SMAS. The four
application packages are as follows:

|. Robot Soccer Game World —

This is “TeamBots”, it takes the role of game simulation to run the
competition.

o

Vision System —

Captures the image and gets object’s position, then, broadcasts the position
details to the coaching control system and the robot control systems.

3. Coaching Control System —

This represents as a “coach™ in the game to allow cooperation in the team.

The “coach™ receives a message, which contains the game information. In
turn, 1t makes global collaboration decisions, such when to execute ball
passing between players.

4. Robot Control System —

Represents as an agent that receives game details and instructions, and then
integrates all information to make a move-decision and apply it to the
autonomous agent.

Figure 24 shows the basic UML description for classes and interfaces of the coaching
control system. On the side of the coaching control system, it keeps the team
members' details and has a coach listener to observe the competition, and a coach

simulation to animate the competition. The connection listener accepts the incoming
connection requests and constructs the corresponding connection prologue to decline
or authorize a control permit for the remote control system. At the same time the
control permit is granted, a broadcaster for the remote control system is established.
the coaching system will send the instructions by demand to the remote control
system once a decision is made.

Package Package [

|
| |
Viston System

Robot Soceer Game World | =

Coaching Control
System I

| 4 4 T ' ; |Robot Control System
r— Coaching System g - Listener |
Bz L, |

| \(| i .

\\

— .Y (Simulation
| B TPE ™,
[{ mlmutum Lq_ . N)
t Listener [N [

: Simulation S
Y-__ Conncection - |
Prolog ; 1 1 '
T ‘l Robot Control { ¢
| N —] 1 — Listener
| System |

T - __I —— - ;_ S—

L_ 1 !
- Simulated Phayver ———

Figure 23 Software packages

The robot control system has its main body to start the program and procedure and
establishes a connection with the control system. It requests for the control permit
from the coaching system. As soon as the permission is granted, the listener is set up
to gather messages from both the coaching system and the vision system. The control
system's simulation side evaluates a movement decision according to the game details
received by the listener.

=]

g ~
Vision System

Message from Vision System

v
P 5
e \
/ N\
Coach_ConnectionListener CoachingSystem CoachSimulation \
1 1 ; 1)
Attributes Attributes Attributes
Methods Methods Methods
Coach_ConnectionPrologue Broadcaster
Attributes Attributes
|
/
Methods Methods /
N i Coaching System /

ot

MESEpgetstenar Robot Control System ™

Attributes |

,
Authorize cantrol

Methods

RCS_ConnectionPrologue RobotControlSystem RCS_Simulation
1 1
Attributes Attributes Attributes
| Methods Methods Methods }

Make a move

Figure 24 UML description : class diagram

3.3.2.3 Implementation Issues and Performance

The role of SMAS is to analyze the basic game environment information and to

25

generate the instructions for the agents. In a real game, a coach instructs players based
on observations from global scope with the purpose of finding and broadcasting a
global strategy for the entire team.

Response from the coaching system has to be efficient and accurate, thus, only the
critical global strategies needed to be computed in the coaching system. One of them
is planning for a cooperative ball passing strategy. In comparison to non-coaching
systems, collaboration among agents is performed through a series of communication
exchanges. Each individual control system will have to determine their roles
independently and this would result to a very slow process of situation checking.

In the simulation game, there are two possible solutions for implementing agent
behaviors with the coaching system:

1) Sequential: the control systems (agents) only respond according to the
instruction that was sent by the coaching system and would not act otherwise
if no instruction is received

2) Synchronized: control systems (agents) act according to the message received
from the vision system and the coaching system. The coach only sends
instructions whenever deemed necessary. In turn, the agents can
independently plan and execute their actions based on some global strategy.
Consequently, the agents have more autonomicity.

According to the experiments on the sequential scheme, the delay of response from
the control systems is significant, especially when performing complex tasks. On the
other hand, for the coach-guided team, each agent will be able to independently
contribute to the team as they can do path-planning, obstacle avoidance and ball-
passing all the same time.

3.3.3 Robot Control System

3.3.3.1 Description

The robot control system performs the general motion control task in the same way as
the traditional control system does. However, some common strategies have been
shifted from the control system to the intelligent coaching system for some global
cooperative task's prerequisite checking, such as pattern matching check for ball
passing.

The motivation of the robot control system development is to optimize the algorithms
to perform more powerful, efficient and accurate tasks.

3.3.3.2 Implementation Issues and Performance

First of all, the robot control system starts connecting the coaching system to request
an authorization for an autonomous control. Once the permission is granted, the
listener for the coaching system and vision system is established and the simulation of
the control system is initialized and waiting for game to be activated.

As soon as the game is started, the message that contains the details of the game is
sent regularly from the vision system to the control system. The control system re-
constructs the simulation environment immediately as soon as the message arrives
and makes the response if the tactical message was sent by the coaching system.

Currently, the main algorithms that were employed into the agent’s simulation are role
assignment, obstacle avoidance, path planning and ball passing. Role assignment and
path planning are two fundamental algorithms of the control systems. Fuzzy logic is
applied for obstacle avoidance and is employed in the control systems to enhance and
smoothen their movements. Ball passing is the main algorithm which is going to be
developed with the new control system and is discussed in Sec. 3.6.

3.4 Real-time Network Game Protocol

3.4.1 Communication Mechanism

The elementary requirement to construct a distributed system is to determine the way
the communication goes. [t is also the crucial factor affecting the game's efficiency,

and even success in the competition.

il Ll 1
ﬂi'if. 11

:';
I i

Figure 25 Multi-player network game — Counter-Strike vi.6

o
~J

Modern multi-player network game systems, such as Counter-Strike (Figure 25), Age
of Empire, Warcraft, and Starcraft and so on, are using TCP/IP and UDP as the
mechanism to communicate which is introduced to the system.

In this research, the system based on TCP/IP and UDP is created and used. TCP stands
for Transmission Control Protocol; it is a reliable message transfer mechanism which
has been imported for the essential information passing between the systems. UDP
stands for User Datagram Protocol; it does not guarantee the delivery of a datagram
but with faster transformation which makes it more efficient to carry the game
information.

3.4.2 Network Flow

To understand the processing of the system, we assume

I) vision system has already been constructed, and it broadcasts messages with a
fixed interval time

2) And the autonomous is placed in the game and has been activated.
The network flow of the new network protocol is showed in as Figure 26.
On coach side:

1. Before the competition is started, the coaching system is constructed and the
communication with vision system is established.

2. the coaching system initializes the game environment with the information
received from vision system and starts a TCP socket to listen to the incoming
connection request from remote agents.

3. Once a connection is accepted, the available team member’s motion control
task is assigned to the remote control system by sending a message that
contains the team member ID. Afterwards a broadcaster is set up to instruct
the remote control system.

4. The system is waiting for competition to start after all remote control systems
are connected.

5. Once the competition is started and on the run, the coaching system decodes
the message received from vision system and extracts data to set up the
simulation.

6. The coaching system evaluates the cooperative strategies when any pattern is
matched by simulating the mstantaneous competition environment, then gives
instructions to remote agents through the built-in broadcasters.

Network Protocol: Flowchart

3 1 ' 2
Sensory Devices i Coaching System i Control System i Game Simulation
1 1]
| | |
1 1)
| | |
. ' | i
! Y ! Y ! Y
1
Y | Prepare game | | Initialize
' — and ask for 1 Initialize ! environment
Prepareand g ! broadcast task ! environment !
authorize I _—————— i i
1]] i
| Y i Y [
ity 1 I
! | Receive initial | Ask for control | |
——— i environment i permission i
Prepare i] i
broadcasting ! ‘ ! ‘. ! Y
| | |
Y i Wait for CS 1o _ i p- Receive initial i Get Game
. ¥ connect ' environment i Details
2 4% | | |
| i |
< Y | \ ! v
. | a & aurrada |
:l* i ““‘T:::::t Suiant i Trigger action | send Game
. | . coaching task ' taking task ! Details
y > Fetch game |] |
= details i } i
] | ' '
| I |
i 1 ; i Apply move on
! H H autonomous
! I f |
| i I A
! Handle 1 Handle d N
! message E > message ! TRy,
| | |
I 1]
| |
send t 2k i
cnd message
| ! - L] —_— 1 E——]
| | |
i Make desicion i Make desicion }i—
]) 1
| T | |
L i ' ' 1
| I |
]]]
| Broadcast) I |
] I 1
| | |
1]
| |
1 1
| |
1]
| |
i |
! 1
| | |
I i i
! i
| |
i I
! |
I
1 |
1 i]
! End task & M cnd task & ! Flow Direction
1 Terminate] Terminate 1 e ——
] L}]
L] L}]

Figure 26 Network flow chart
On the control system side:

I. Before the game starts, the robot control system is constructed and it is trying
to create a connection between itself and the coaching system.

29

2. After the connection with the coaching system is established, it will request a
control permission and the coaching system will grant a control permission by
providing available team member ID to be controlled. Afterwards, the listener
is set up to receive the instructions from the coaching system.

3. Then, it requests broadcasting task of competition information from vision
system by providing the UDP listening socket that is open on local machine,
and wait for competition to start.

4. If the message from vision system or the coach system is received, the robot
control system will try to decode the message and set up the simulation

environment and evaluates a movement decision.

5. Eventually, the movement decision is applied to the autonomous agent to
make a move until the competition finished.

3.4.3 Communication Message Format

After the structure of the distributed networking system is constructed, it is time to
standardized the message format to carry the information.

As 1t 1s known that the less data 1s sent, the faster the transmission and time for
decoding is going to be, the message is composed by digits as much as possible

instead of the characters.

. In order to decode a message, we are using the first component of the message
to represent both the sender's ID and the type of message .

2. To confirm the message, the unique id for the message is required.
3. The classification of information carried by message is required.

4. To distinguish multi pieces of data carried by one message, a separator is
required, which is presented as a semicolon.

5. To distinguish multi content in a piece of data, a content separator is required,
which is presented as a white space.

6. To confirm the information that consists inside the partial message, the prefix
for each part is required.

Therefore, every message comprises three parts source, tag ID and content, and each
part ends with a separator. It looks like:

30

[SOURCEJ:[TAG-IDJ;[CONTENT];

Notes:
White space © * is used for separate individual message pieces’ content
Semicolon ;" is used for separate individual message pieces
Symbol “[]” indicates a piece of message
Combination Symbol *{}*”
indicates that there can be multiple same style message

3.4.3.1 Message Sent from Vision System

First of all, the message passed mostly among the competition is sent from the vision
system to the coaching system. and all remote control systems. The message format is
as follows:

“ISOURCE];[TAG-ID[;[SCORE-INFORMATION|:{|[PLAYER-DETAILS]|;}*

[SOURCE]

Description: Where the message comes from or the source of the message that
has been sent: it is also can be used to indicate the way that message
format. The source is represented as the digit number, such as |
presents the message from Vision System.

Format: “CH [channel-no]”

E. g. “CHIr

r

[TAG-1D]

Description: Unique identification for the message that has been sent from the
vision system.

Format: “TAG [tag-no]”

E.g “TAG 123"

[SCORE-INFORMATION]

Description: Contains the game score information
Format: “SCR [west-tecam-score] [east-team-score]”
E.g. “SCRO 1™

[PLAYER-DETAILS]

Description: The player information has been appended, which include player id,
tcam belonging to, absolute location (x, y), where its heading
towards to.

Format: “ID [player-i1d] [player-flag] [position-x] [position-y] [player-steer]”

E. g “ID611.0-0.51.57"

31

Whole message that sent from vision system is going to look like:

“CH [channel;TAG [tag-id];SCR |west-team-score]| [east-team-score];{ID
[player-id| [player-flag| [position-x| [position-y| [player-steer];}*”

Figure 27 Specified game situation for message sent from the vision system

For the situation showed in Figure 27, the completed message sent from the vision

system is:
“CH 1;TAG 1;SCR 0 0;ID 5 3 0.0 0.0 0.0;ID6 1 -1.2 0.0 0.0;ID 7 1 0.5 -0.25
0.18556932891554936:ID 8 1 0.15 0.5 5.988476206608273:ID 9 1 -0.15 0.0
0.0;ID 10 T -0.15 -0.5 0.22355022620219825;ID 11 2 -0.7041717163715389
0.19831275890417688 3.525927365518515;ID 12 2 -0.5041888237436802
-0.2483556899184216 2.767527765458856;ID 13 2 -0.15398479736480422
0.49790921307602876 3.6247973133764937;ID 14 2 0.0957398884789801
0.34855036217334345 3.469583614066388:;ID 15 2 0.6457529654761074
-0.49851248604952275 2.804697208964362;”

Explanation:
e “CHI1” — indicates that the source of the message is the vision system
e “TAG1” — indicates the unique identification of the message
e “SCRO0” - indicates the scores for both west team and east team which

are both zero.

e The rest pieces of the information indicates the players' position, and their

32

heading direction. E. g. “ID 7 1 0.5 -0.25 0.18556932891554936™ shows
player 7 belongs to team 1 which is our team, and stands at position (0.5,
-0.25) according to the center of the play field, and heading direction in radian
15 0.18556932891554936.

3.4.3.2 Message Sent from the Coaching System

SMAS has additional communication channel between the coaching system and the
remote control systems and it allows the coaching system to give instructions for all
remote control systems. The format of the message carrying the instructions is:

“[SOURCE];[TAG-ID];] GLOBAL-STRATEGY |:{| PLAYER-STRATEGY]:}*”

[SOURCE]

Description: Where the message comes from or the source of the message been
sent, it is also can be used to indicate the way that message format.

Format: “CH [channel]”

E. g “CH 2”

[TAG-ID]

Description: Unique identification for the message that been sent from the
coaching system.

Format: “TAG [tag-id]”

E. g “TAG 1237

[GLOBAL-STRATEGY |

Description: Contains the strategy that is applied to the whole team
Format: “GS [strategy] [object-applied-to]”
E.g *GS 5 6”

(r

[PLAYER-STRATEGY]

Description: The strategy that applied to individual team member
Format: “ID [player-id] [strategy] [object-applied-to]”
E. g “ID637

Whole message that sent from the coaching system is going to look like:

“CH [channel];TAG [tag-id]; GS [strategy] |object-applied-to|;{ID [player-
id] [strategy]| |object-applied-to];}*”

For situation showed in Figure 28, the coaching system has determined a ball passing
situation and 1s going to ask player 9 pass ball to player 7, rest of team member assist
player 7 and block the opponents if it is possible. The completed message sent from
vision system is:

“CH2;TAG 4,GS57;ID93 71D 75 9;”

Figure 28 Specified game situation for message sent from the coaching system

Explanation:

e “CH2” — indicates the source of the message i1s the coaching
system.

e “TAG4” — indicates the unique identification of the message.

e “GS57 — indicates this is a global strategy information, the second

integer 5 indicates the strategy to assist someone or an area which is
identified by the third integer 7 that means the object that needs assisting
is player 7.

e “ID937” - indicates the strategy for player 9, the second integer 3
indicates player 9 is going to pass the ball, and the third integer 7 indicates
the receiver is player 7

e “ID759” — indicates the strategy for player 7, the second integer 5
indicates player 7 is going to catch a passing ball, and the third integer 9
indicates the player 9 is going to pass the ball

3.4.3.3 Message Sent from Robot Control System

Finally, the control system receives the message from the vision system and the
coaching system and is ready to make the movement decision whose format is:

34

[SOURCE]

Description:

Format:
E.g.

[TAG-ID]

Description:

FFormat:
B

[RCS-ACTION]
Description:

Format;
E. g.

“ISOURCE[;|TAG-ID]:|[ROBOT-ACTION]|;”

Where the message comes from or the source of the message been
sent, it is also can be used to indicate the way that message format.
“CH [channel]”

“CHT7”

Unique identification for the message that been sent from the robot
control system.

“TAG [tag-id]”

“TAG 123~

Contained the robot control system’s action or movement.
“ID [player-id] [action]”/*ID [player-id] [steer] [speed] [operation]™
“ID62%or”ID60O 1 1™

Whole message that 1s sent from the robot control system is going to look like:

Or

*“CH [channel]; TAG [tag-id|;:1D [player-id] |action]:™

“CH |channel|s TAG [tag-id|:1D [player-id| |steer| [speed| [operation]:™

Figure 29 Specified game situation for message sent from the control system

For the situation showed in Figure 29, the control system is taking control of player 9,
and the coaching system instructed the player 9 to pass the ball to player 7 previously.
After the computation, the movement decision is made by the control system which is
showed as an arrow in Figure 29. The completed message sent from the control

system is:
“CH 7;TAG 4;ID 9 0.5477148459690647 1.0 10”
Explanation:
e “CHT7” — indicates the source of the message is a control system.
e “TAG4” — indicates the unique identification of the message.

e “ID 9 0.5477148459690647 1.0 10” — indicates player 9 is moving
heading direction in radians 0.5477148459690647, and the speed is reach
1.0, the third digit 10 means it is only doing operation “move”. If it is
trying to kick the ball and the value of the third integer becomes 11.

3.5 Passive Role Assignment

3.5.1 Overview of Role Assignments Problem Domain

Role assignment 1s a typical method for robot control that directs the action selection.
The majority of the simulation control systems have developed the algorithms for this
domain; general characters are goalie, attacker, defender and backup player.
Conventional approaches are:

1) Fixed role assignment for the entire duration of the competition.

2) Dynamic role assignment based on the robot’s position relative to the different
ranges of the ficld and position of the ball as in [23].

3.5.2 Passive Role Assignment Approach

With the coach embedded in SMAS, there is another solution for role assignment
approach which is passive role assignment. It allows the control system to be assigned
a role by other systems, such as the coaching system in SMAS.

By contrast, a system without a coach, the control systems have to determine their
roles either by self-checking dynamically during the competition or fixed at the

36

beginning of the game. In the dynamic role assignment without a coach, it is likely
that the same role is taken twice and therefore multiple messages will have to be
exchanged to prevent such redundant role assignment from happening. This will
degrade system performance and therefore not suitable for real-time environments.

In addition, in similar to other systems with fixed roles, utilizing a coach in a
distributed environment has the same advantage of fast role assignment, but with the
flexibility of adapting to changes in game situations.

We have developed passive role assignment and appended to the SMAS. However,
the approach presented here only applies to the goalie which is recommended to have
first priority to prevent ball get close to the goal of all other actions in [9], and it’s still
in development stage. the coaching system checks the game environment and notifies
the players to exchange the roles when it 1s necessary.

The responsibility of the goalie is to guard the goal and to keep the ball away from
goal arca as much as possible. The goalie should be close enough to the goal areca;
otherwise, any sudden attack is a potential threat to the team.

On the side of the coaching system, it determines the distance from ecach team
member to the goal center point. The player with shortest distance is assigned with the
role as a goalie. Once the decision has been made, a message that contains the role
exchange 1s sent from the coaching system and the message looks like:
“CH 2;TAG 123:1D 7 06,

“CH 27 indicates the message is sent from the coaching system and “Tag 1237
indicates the unique message 1D. The content of the message with the hiding details
about goalie 1s “ID 7 0 0”. The “ID™ point out that the message contains the
information about the player strategy setting or role assignment. First number 7 is the
unique identification of the team member that is going to be assigned with new role.
Second number 0 indicates new role is going to be goalie. And third number gives the
observation area for the team member, which 0 means goal area. According to the
information above, it is easy to figure out that player with ID 7 i1s new goalie to guard
our goal area. Previous goalie player is notified and takes on the player 7's role.

Once the agent receives a message from the coach that it should switch role as the

new goalie, then the simulation environment is reconfigured. The robot in turn, takes
on the goalie role and performs its duties straight away.

3.5.3 Experiment on Passive Role Assignment on Goalie

In the situation showed in Figure 30, let variable Ds be the distance between player 5
and the center of the goal area, variable D to be the distance between player 6 and the
center of the goal area, variable D-to be the distance between player 7 and the center

37

of the goal area, variable Dy to be the distance between player 8 and the center of the
goal area, and variable Do to be the distance between player 9 and the center of the
goal area. At the initial stage, player 5 is the goalie and Ds is the smallest distance in
all distances listed above. Then, player 6 is coming towards the ball for goal defense
support. In order to protect the lower edge of the goal area, Ds is increasing. At the
same time, player 6 moves closer to the center of the goal during ball tracking.
Finally, Ds becomes larger than De, and the coaching system decides to hand over the
goalie control task to player 6, and player 5 becomes a backup moving out the goal
width for better ball pursuit and control which is showed in Figure 31.

Figure 30 Initial stage of role switching (Goalie: player 5)

Figure 31 Role switched (Goalie: 6)

38

3.6 Fuzzy Control for Realization of Ball Passing

3.6.1 Overview of Ball Passing Problem Domain

The ball passing algorithm is a significant domain of the research and considered to
be one of the most advanced technologies of the Al field in robot soccer competition.
It mvolves role assignment, target pursuit, and shooting algorithm and requires the
team cooperation and action’s consistency.

To achieve a successful ball passing, there are three main procedures:

I. The system realizes the ball passing situation and identifies passer and
receiver.

(3]

Passer kicks the ball.
3. Receiver catches and takes control of the ball.

Ball passing strategy has already been employed to TeamBots by previous researcher
Chen, Liu. In his rescarch, cach mobile agent recognizes the ball passing situation,
then passer is identified to kick the ball to the ideal receiver and receiver catches the
ball by applying the common target pursuit mechanism. The procedure is:

. Am | dominating the ball, if not, then skip the ball passing check.

2. Check with all teammates, if the teammate has clear shooting area, then
proceed to the next step.

3. Check with the teammate from previous stage, if all obstacles are not possible
to cause the failure of the ball passing, then I am assigned the role of kicker in
the ball passing strategy and the catcher is the teammate has just been
checked, assume the teammate 1s A.

4. Find the point P behind the ball and the direction from point to ball should be
pointing to the teammate A.

5. Move towards the point P and avoid the collision with the ball.
Obviously, the ball passing algorithm is only applied to the kicker side and it is not
exactly implementing cooperation in the team. Figure 32 Shows robot “Is inside

check™ solution for both clear shooting area and ball passing area-checking problem.
The algorithm however requires a lot of computations and is therefore time

39

-consuming.

C

if (f +|3 +0 =360, then P is inside the triangle
Notes: () ,B and(y are three acute angles

Figure 32 Is inside check

It is inaccurate and also slows down the system by calculating three angles which are
high-cost computations.

B (%, ¥.)

c (xcr Yc) A (fo YA)

Figure 33 Same-side-technique

According to our research, there is a better and more efficient approach to check

40

whether a point is inside a triangle by applying the “Same-side-technique™ three times
respectively with three sides of the triangle [21]. The equation below shows the side
checking with a given vector CA.

Stde S X =X Y Y)X =X e Y =Y) Equation 1

Applies the function above with all three sides of the triangle will generate the result
whether point P is inside the triangle. The point P is inside of the triangle only when it
is above or below three sides of the triangle at the same time.

The same-side-technique algorithm is simple and efficient with only a maximum of 9
subtractions and 6 multiplications mvoked for each triangle side checking. Following
“isInside™ function code is extracted from Coach Simulation java (Appendix C) file
and 1t implements “Is inside check™. Three parameters “from™, “tol™ and “to2" are
equivalent to three points “A™, "B and “C™ in the triangle from Figure 32 and Figure
33, and “point™ is the point required to be checked.

private boolean islnside(Vee?2 from, Vec2 tol, Vec2 to2, Vec2 point) |

boolean result = false;

double ma x = point.x - from.x;
double ma vy = point.y - from.y;
double mb_x = point.x - 101.x;
double mb v = point.y - 10l.y;
double me x = point.x - to2.x;
double me v = point.y - to2.y;

boolean ab, be, ca;

ab = (ma x *mb yv-ma y *mb x >=0) ? true : false;
be = (mb x ¥*mec y-mb v *mc x>=10) ? true : false;
iffab == bc) |
ca=(mc x *ma y-mc y*ma x>=10)7? true : false;
ifthc == ca) result = true;

]
!

return result;

3.6.2 Realization of Ball Passing

Assume that the ball passing decision has already been made by the coaching system
as showed in Figure 34, the teammate who is trying to pass the ball is named A, and

41

the teammate to catch the ball is named B. In order to maximize the possibility of the
game to achieve success, the threat to ball passing is required to be minimized. In the
game, the main threat that most concerns are about is from opponents and it is also the
only threat that needs to be taken into account during the ball passing situation.

Player A (Player to pass ball)

score: 0:0 shot: 59

Player B (Player to catch ball)

Figure 34 Ball passing state

Before moving further, some variables are defined as shown in Figure 35.

FIS takes distance D,p and angle «BAC as inputs and produces the adjusted-ball-
passing angle. After all, each opponent that is taken into account has generated a
corresponding angle.

In general, the control function could be described by Equation 2.
T,=f (D £pc) Equation 2

FAD iy o) represents any algorithm that calculates the adjusted-ball-passing
angle. In Sec. 3.6.3, we employ a fuzzy ball-passing algorithm. 7, is the desired
adjusted-ball-passing angle to opponent player “n”.

42

B (XB, YB) - Opponent

‘\ZBAC
)

A (X, Y,) - Ball C (X Y.) - Receiver

Figure 35 Ball passing input in geometry

B (Xg, Yg) - Opponent

D (X,, Y,) - Opponent

C (X, Y_.) - Receiver

— L C
Q/"."“-':"-._ b
e i[BAC / D'AC

A (X, Y,) - Ball™~~IC"

-~
-~ ““ ~—— -
- ""-l-..,-
""h.‘ "'-’
-.___.‘ B'
-~
'h-,‘*
Dl

Figure 36 Multi-adjusted-ball-passing angles

With multi-opponents taken into account, there will be more than one adjusted-ball-
passing angles. For example, as depicted in Figure 36, there are two calculated angles
corresponding to opponents B and D above the vector AC: 2B’AC and 2D AC. To
eliminate the threat from player B, the system suggest a better ball passing path AB’
by a given angle «2B’AC with vector AC. The same i1s true for angle <zD’AC. It is

43

apparent that «D’AC is greater than «B’AC, and by avoiding interception from
opponent D, the interception from opponent B is evaded. Finally, the only largest
angle on the side is kept for further computation. The same algorithm is applied for
another side’s opponents and opposite side’s angle 1s kept.

Integrating both sides' angle results by applying addition, because of the angle's
different direction, a mean angle result is evaluated. It is depicted in the following
equation:

Angle .= Max(Angle,: Angle € Angles A Angle,>0)
+Min(Angle,: Angle € Angles A Angle, <0) Equation 3

Function Max is the maximum angle to all positive angle.

Function Min is the minimum angle to all negative angle.

Angleg,ais the desired integrated angle result.

n is the set of all opponent's id.

Angles is the set of all recommended ball turning angles to opponents.

3.6.3 Fuzzy Inference System for Desired Passing Angle

Fuzzy logic was first proposed by Zadeh [28] which is based on the idea that humans
think in terms of concepts, but not in terms of crisp numbers. It is A fuzzy inference
system in Figure 37 includes a rule processing means for receiving an input signal and
inferencing the input signal in accordance with a plurality of fuzzy rules to generate
inferenced data, a defuzzify means for synthesizing and defuzzifying the inferenced
data to generate a decided, and a dominant rule means receiving the inferenced data
and decided value for finding a dominant rule of the plurality of fuzzy rules which has
the largest contribution degree to the decided value. Appendix B is fuzzy rule set file
for obstacle avoidance that pre-embedded to allow the smoothly path planning.

Crisp
Inputs

Figure 37 Fuzzy inference system

44

To implement it, we need a new polar coordinate system, whose origin point is the
locus of the ball, and the radial coordinate is from ball pointing to the receiver. Then,
all the computation will be based on the new polar coordinate.

score: 0:0 shot: 58

Figure 38 Polar coordinate of ball passing

The danger caused by opponent player is determined by the distance S from ball to
opponent and the included angle @ between vector “ball-to-opponent™ and vector
“ball-to-recciver”. It is easy to define the turning angle subranges to be used in the
fuzzy rules. Assuming that there are only five turning subranges (very sharp turn,
sharp turn, medium turn, small turn, zero turn), five distance concepts (very far, far,
medium, close, very close) and five angle concepts (very large. large, medium, small,
very small). the situations to match five turning are following:

To turn very sharp:

If distance is very close and angle is very small or
If distance is very close and angle is small or

If distance 1s close and angle is very small.

To turn sharply:

If distance is very close and angle is medium or
If distance 1s close and angle is small or

If distance is medium and angle is very small.

To turn medium angle:

If distance is very close and angle is large or

If distance is very close and angle is very large or
If distance is close and angle is medium or

If distance is close and angle is large or

If distance is medium and angle is small or

If distance 1s medium and angle is medium or

45

If distance is far and angle 1s very small or
[f distance is far and angle is small or
If distance is very far and angle is very small.

To turn small angle:

If distance is close and angle is very large or

If distance is medium and angle is large or

If distance 1s medium and angle is very large or
If distance is far and angle i1s medium or

If distance is far and angle is large or

If distance is very far and angle is small or

If distance is very far and angle is medium.

To turn zero degree:

If distance is far and angle is very large or

If distance is very far and angle is large or

If distance is very far and angle is very large.

In real research and after practicing, Appendix A is fuzzy rule set file for fuzzy control
ball passing strategy. The ranges of fuzzy sets from Appendix A can be describe as in

Figure 39
75°
veryFar 60°
large Angle(Degree)
far
37.5°
medium medium
20°
close sniall
7.5°
veryClos verySmall
0 2 5 7 9 11 Dfstance(Radius)

Figure 39 Fuzzy inputs - polar coordination

Table 2 Fuzzy Associative Memory (FAM) matrix

Angle/Distance Very Close Close Medium Far Very Far
Very Small Very Sharp Turn | Very Sharp Turn Sharp Turn Sharp Turn Medium turn
Small Very Sharp Turn Sharp Turn Sharp Turn Medium turn small Turn
Medium Sharp turn Sharp turn Medium turn small Turn Small turn
Large Sharp turn Medium turn small Turn small turn zero turn
Very Large Medium turn small Turn small turn zero Turn zero Turn

46

Fuzzy output sets for angle are weighted together to produce one defuzified value
using a centre of gravity function, and the fuzzy member sets are described as in Table
3. Table 4 and Table 5.

Table 3 Fuzzy input distance membership sets (in number of ball radius)

Distance\degree 0.1 1 1..0
very close \ ~2 2~4
close 2~3 3~5 5~7
medium 3~6 6~8 8§~12
far 6~9 9~11 11~ 17
very far 9~12 12 ~ \

Table 3 is describing the membership sets for input distance parameter, and the value
is based on the ball radius. For example, second cell of first row in Table 3 indicates
that less than 2 ball-radius is definitely “very close”. Figure 40 shows membership
sets for input distance parameter in graphic chart. ‘

Table 4 Fuzzy input angle membership sets |

Angle\degree 0.1 | 1..0
very small \ ~ 7.5 75~15
small 1515 15~22.5 22.5 ~ 30
medium 15~30 30~ 45 45 ~ 60 ‘
large 30 ~45 45 ~ 60 60 ~ 75
very large 60 ~ 75 75 ~ \ ‘

Table 4 is describing the membership sets for input angle parameter. Figure 41 shows
membership sets for input angle parameter in graphic chart.

Table 5 Defuzzify output “angle to turn” membership sets

Angle Turn\degree | 0..1 | 1.0
Zero turn \ ~ 0 0~2
small turn 9~10 10 10~ 11
medium turn 14~ 15 15 15~ 16
sharp turn 24~ 25 25 25~ 26
very sharp turn 39 ~ 40 40 40 ~ 41

Table 5 is describing the membership sets for output angle to turn against vector “ball-
receiver”. Figure 42 shows membership sets for output angle in graphic chart.

47

r

(£ angle [&=
angle
1.0 -—1|
091 | /
08 - l| K
o 07 | |
= |
“ 06 - l
2 \
05 -
Bl |
= |
03" |I
0.2 r| |'
r ‘I
0.1 hl]
0.0 1 : : :
0 25 50 75 100 125 150 175
X
—verySmall — veryLarge small large medium
Figure 40 Fuzzy input - angle
r \
|%| distance o @[]
distance
1.0 1 ;
{
0@ f
08 1 /
2 07
{
% 06 /
3 /
2 05
£ f
2 04 /
/
03 /
02 /
.l}'
01 /
0.0 —
D 1 2 3 4 § 6 7 8 9 10 1 12 13 14 15 16 17 18 18 20
X
—veryFar —veryClose far mediumDis close

Figure 41 Fuzzy input — distance

48

-

| =) turn

10 -
08 -
08

a 0.7 1

Membersh

© o oo o
N W A OO O

0.11
|

0.0 +
o

turn

25 30

0
@

35 40

- sharpTurn —

smallTurn

zeroTurn

verysharpTurn

mediumTurn

a5

Figure 42 Fuzzy output — angle to turn

The fuzzy system is about the maximum threat from opponents. it takes two
parameters as input, the distance from ball to opponent player and the included angle
of vector “ball to opponent”™ and vector “ball to teammate”, then evaluates and
produces the output of the angle that could avoid the opponent’s interception with
minimum angle of turning.

Figure 43 Ball passing simple test

49

The initial state of the ball passing situation may appear as Figure 43 and all objects'
basic information is listed in :

Table 6 Objects' position in Figure 43

Object \ Coordinates X y
— e o __;_0_ e
Player | 1.0 0.0
Player 6 -0.12 -0.02 }
Player 11 02078 0119
Player 12 02699 -0.3217

Figure 44 Enhanced with polar coordinate ball passing area

Enlarging the central part where ball passing is accruing with built-in polar system,
the image will be seen as Figure 44 and the objects' information based on the polar
coordinate is listed in Table 7.

Table 7 Polar coordinate positions

Polar radian(r) | Polar angle(theta) | Angle in degree
Ball 0.0 0.0 0.0
Player | 0.96 0.0 0.0
Player 6 0.16 3.1417 ~184°
Player 11 0.24 0.5235 =30°
Player 12 0.42 -0.8764 =-50°

Player 11 and Player 12's polar coordinations are translated into FIS required format,

50

which distance 1s based on the number of robot's radius, and then, FIS takes distance
and angles as inputs and produces the output for both opponents and the detail value
is listed in Table 8.

Table 8 FIS takes inputs and produces output

Number of robot radius Angle Output
Player 11 4.0 0.5235 -0.3739
Player 12 7.0 -0.8726 0.2155

Figure 45 Ball passing - FIS applied for opponent 11

Figure 46 Ball passing - FIS Applied for opponent 12

51

To avoid interception by opponent 11 and 12, Figure 45 and Figure 46 show the
recommended ball turning angles respectively. After calculating turning angle for both
opponents, the desired ball heading angle as showed in Figure 47 is to synthesize both
angles by applying Equation 3.

Angle gina = Max({Angle;: Angle;c Angles N Angle>0})
+ Min({Angle; : Angle;c Angles N Angle;<0})

Angle jina = Max({Angle;: Anglec{-0.3739, 0.2155} A Angle>0})
+ Min({Angle; : Anglec{-0.3739, 0.2155} N Angle<0})

Angle fina = Max({0.2155}) + Min({-0.3739})
Angle g = 0.2155 +-0.3739

Angle ina = -0.1584 (equals to -9.0")

Figure 47 Ball passing — desired ball passing path to avoid interception

Both passer side and receiver side evaluate the same result according to the same
Fuzzy Inference System applied and the same input imported. Implementation of ball
passing is coded in simulation file on the control system side which is showed in
Appendix D.

3.6.4 FIS Output Applied for Passer and Receiver Agents

Furthermore, the result of the adjusted ball heading direction 1s used for both passer

and receiver to make further computation. Now, we borrow the example above again.

Ball Passing : Passer to kick the ball

Desired passer locus
to kick the ball

Bayy.
all s radius

Desired ball passing direction

Passer initial position
Figure 48 Ball passing. passer to kick the ball

At passer agent, with adjusted angle “Angle,,.”, passer is able to locate the kicking
position and pass the ball's desired location. First of all, checking with the passer, does
it have a good kicking angle? And if the answer is yes, then the passer kicks the ball
with the best velocity. Otherwise, will look for a possible player position that is
behind the ball and the direction pointing to the ball is the same as the desired ball
passing direction as showed in Figure 48. The passer heads towards that position
afterwards.

s¢ore: 0:0 shot 59

Figure 49 Ball passing test with trails

Figure 49 shows the passing movement by applying fuzzy control ball passing
algorithm on passer side with condition described on Figure 38. The trails at the

53

center of the image tells that the passer moved towards its right-top which was behind
the ball and pointing to receiver, then went straight towards the ball and kicked it to
the receiver. It successfully chose a secure ball passing path that leads towards the
receiver.

Ball Passing : Receiver to catch the ball

Ball's initial position

- Receiver's initial position

Expected ball position

Distance is various according to the direct
distance between ball and receiver

Figure 50 Ball passing: receiver to catch the passing ball

At the receiver agent, with the adjusted angle “Angle;,.”, the receiver is able to catch
the ball properly by predicting the passing path and intercepting the ball in advance as
showed in Figure 50.

54

4 Simulation Environment Evaluation

4.1 Prerequisite and Assumptions

To ensure the feasibility of the system, the experiments are taken under various
situation with available resources. Because of the limitation of the testing hardware
equipments, all the experiments are taken with available resources (maximum six PC
at home LAN) and the basic information of six PC 1s showed in Table 9.

Table 9 Testing computer details

Computer Index Information (CPU / Memory / Operating System)
A Intel Core 2 Dual 2.2GHz / 2G Memory / MS Windows XP
B Intel Core 2 Dual 1.8GHz / 2G Memory / MS Windows XP
& Intel Pentium4 2.4/ 1G Memory / MS Windows XP
D Intel Pentium4 2.4/ 1G Memory / MS Windows XP
E Intel Pentium-M 1.7 / 1G Memory / MS Windows XP
F Intel Pentium-M 1.7 / 1G Memory / MS Windows XP

Computer A is always employed for running the game simulation program, vision
system and the coaching system for the reason of the better performance and respond.
With full control of the soccer competition, computer A is able to start, pause and end
the game through a visualization window as showed in Figure 51. Five players of our
team are running on computer B, C, D, E and F.

There are several steps to set up a competition:

1) Run main game simulation program and the control panel will pop up as
shown in Figure 51.

2) Start the coaching system by clicking the “Coach™ button on the control panel.

3) Run individual autonomous agent and connect with the coaching system.

4) Start the game by clicking the “Start™ button on the control panel when all
players are connected.

55

Message Board
System time the message occured 9 o

Component

Message content

;

rrm 31324383 |® Zme Simulation Ready 1o accept ihe robiot move from ey

M 2342035 HCe) Sta

Q[1214713344044P65) Recy:SCRO0D530.00.000)061-12000.00D710

| TOAGIvS] [1T1214713344046] SCRO 0D 5 3 0.0 0.00.0/D61-1.2
,{SI r!'121 4713344048)MAIN] Vision System is start listenning for broadcasting...

(6] [11214713304048][VS] Vision System stan capturing the image and broadeasting.

{71 [T1214713344057][R4 UNKNOWWN] Startlistenning on 36048...

System message

P reset ball position
Control Window start game

speed u
restart game pause game P ¢

LES i —

2 T8Sm ClamyLiP0)
File View Spee Help

speed level

NN

slow down

Quit Game

\'\

Start a coach

Game Score
Play Field

Opponent player

Goal

Team player

Figure 51 The control window

In Table 10, it gives the general setting and environment to run the simulation system.

Table 10 Scope and limitation

Construct Environment

JDK 1.6.0.3

Fuzzy library JFuzzyLogic v1.2.1
Network 1Pv4 & LAN
Communication Protocol IT(.'P:-’IP & UDP
Game Details |

Number of Teams 2

Number of Balls | I

Number of Players in the team 5

Virtual unit length (Number of pixels) 182.48

Real unit length It can map to any length in the real world
Soccer court .?_.?4 * 1.465 unit square

Goal width .OAS units

Radius of a player 0.06 units

Radius of the ball 0.02 units

Time duration 60 minutes

Interval time for location broadcasting 40 frames per second
(25 millisecond per frame)

4.2 Performance Measurement

First of all, the system is tested with two computers A and B. The simulation program
and the coaching system are both running on the fastest computer A, while the five
control systems are running on computer B. Unfortunately, it is rarely able to pass the
test because of the long latency of the system’s response time for five control systems.

Then, the test is done with three computers A, B and C. Simulation program and the
coaching system is still running on computer A, and two control systems on computer
B, three control systems on computer C. The performance is getting better than
previews test that all five control systems running on one computer. However, it is
still not able to catch the speed of the games all the time. The average time cost for
robot to respond with a certain moment is 61 ms which is much longer than the
general requirement (40ms).

Furthermore, the test is done with four computers A, B, C and D. Simulation program

and the coaching system is still running on computer A, and there are two control
systems running on computer B, two control systems running on computer C and one

5

control system is running on computer D. In this case, the team is able to respond
much effective and the average time cost for responding is 36ms. Unfortunately, it is
required more hardware support to achieve better result and gain the success.

With five computers deployed to the game, and four computers are used to run five
control systems, the team players are able to achieve the great success in the game
with 21 ms responding time cost. Even though, the performance can be maximized to
13ms average time cost for responding when each control system is running on its
own computer, which means six computers are employed and there are five computers
running with five control systems. The result of 13ms responding time means that
many system resources is still available even with cooperative ball-passing strategy,
fuzzy obstacle avoidance and passive role assignment embedded already, and the
control system is extensible with more complex algorithms.

Response time cost calculated above consists communication time cost, algorithms
calculation time cost and action taking time cost. It can be depicted as:

Response time cost = Message passing +SMAS algorithms execution

+ Action taking Equation 4

In Equation 4, message passing time cost is the time consumed for a control system to
receive the message from the vision system. SMAS algorithms execution time is the
total time cost to make an action decision since the message is received by the control
system, and action taking time cost can be considered as another message passing
time cost from the control system to simulation program to finalize the movement
action in simulated robot soccer competition.

In contrast, the original “TeamBots™ simulation system is running fluidly and the
response time costs about 12ms. It is noticed that the response time cost for original
“TeamBots™ system, running on a single computer is almost as much as the time
consuming for algorithm computation, and message transmission cost can be ignored
because of the inter-chip message communication. And the system is degraded when
ball-passing strategy is employed and it is can be easily discovered through the
visualization tools. Obviously, it is the limitation of a standard robot soccer
application and it conflicts with the elementary requirement for ball passing which is
efficiency.

In each of the experiments performed, two teams are playing against each other.
Team A employs the original TeamBots algorithms without ball passing, while Team
B employs the the following SMAS algorithms:

the coaching system: Passive role assignment, ball-passing determination
Control System: Passive role assignment, Fuzzy obstacle avoidance and ball

58

passing, ball Shooting, path-planning, goal defender, ball interception

In ball test scenarios, numbers of ball passing scenarios were considered for cach
experiment as showed in column “Number of ball passing test” of Table 11. In Table
I, it shows the performance on a complete competition simulation with one
additional computer used for running the simulation program and the coaching
system. Column “Number of ball passing tests” is the total number of ball passing
tests which are chosen randomly and column “Number of failures™ is the total number
of failures with all ball passing tests. As showed in Equation 5 the “Percentage of
success” function, the result showed in Table 11 depicts how successful the ball
passing strategy is performed respectively.

Percentage of success=100—(Number of failures = Number of ball passing tests)
Equation 5

Ball passing is considered to be one tactile that will direct influence the game result,
so the last column could also be considered as the figure of how efficient the whole
the coaching system is. It is obvious that more computers are involved, more powerful
the coaching system is going to be.

Table 11 Performance measurement data

Number of computers ~ Average time cost Number of ball Number Percentage

to run control systems (ms) passing tests of failures of success
("0)
One computer | =100 N/A N/A N/A
Two computers 6l 30 24 20
Three computers 36 40 22 45
Four computers 21 40 I 73
Five computers | 13 | 40 6 85

Figure 52 is a typical partial processing diagram showing approximate time cost for
data handling. Each cell indicates a time duration for the data to be managed and
green cell informs the message transmission.

3

time 2
time 4

<+ time 1
4+ time 3
<+—time 5
< o timeb

Vision System

Coaching System

Robot Control System

I W A I A

-l o~ ™ < n

g v] [0

= E E E £

: - - - =] &
e A b 3

z © © © ®O
c = c c 9

2 8 S 8 sg
- - - -

-] m© m BT

= 3 3 3 S -

v = = - L AT

@] 7]) ® ©

2 2 2 2 v g8
T ° o =

5 c c c 'E =

= [}] m o=
T T T T3

Duration of data processing on Vision System

Duration of data processing on Coaching System

Duration of data processing on Robot Control System

| Message transmission

Figure 52 Time consumption of the coaching system and the robot control system

60

time 1
time 2
time 4

- time 3
<+ time 5

Vision System

General System

Handle situation at time 1——»>

Handle situation at time 3
Handle situation at time 4

Duration of data processing on Vision System

Duration of data processing on General System

Figure 53 Time consumption of general multi-agent system

As shown in Figure 53, the data that retrieved at time 2 is skipped and that might
happen to the general multi-agent system. The advantage of SMAS is to reduce such
risk by distributing the tasks to several computers. the coaching system copes with the
situation reorganization and strategy selection and the robot control system takes
responsibility for algorithms calculating. In order to achieve better performance, the
system is requiring more resources. And it reaches the maximum performance when
there are five computers working for five control systems.

61

To achieve the best result of the competition, the system is test with maximum
available resources (each control system is running on one computer) and the system
measurement is described as follow:

1. Average time cost for a message cycle (since message sent from the vision
system till the action is taken by the autonomous) is 13 milliseconds.

2. Average time cost for communicating is about 3.2 milliseconds and this value
is based on local home LAN. With more powerful and efficiency that the
network is going to be, the communicating time cost will be reduced.

3. Average time cost for taking a step according to one message on a control
system is 9 milliseconds.

4. According to ball passing situation test, there is about 88% chances to success
ball passing procedure.

From Figure 54 to Figure 59, there are sequential images showing one successful ball
passing procedure.

In Figure 54, at the initial stage of ball passing realization, the coaching system
matches a ball passing pattern and starts to notify passer and receiver. In Figure 55,
both passer and receiver receive the instruction and apply the Fuzzy Control Ball
Passing Algorithm. Passer finds the best kicking position and moves toward to it. At
the same time, the receiver predicts the ball passing path and adjusts its heading
direction. In Figure 56, Figure 57 and Figure 58, the receiver is moving smoothly
towards where the ball is heading to. Finally, the receiver catches the ball successfully
as showed in Figure 59. The cooperative ball passing strategy defined in SMAS is not
completed and it failed some times during the experiments. To achieve better results,
the fuzzy memberships required some slight adjustment to be more precise through
more experiments.

The competition between the coaching system and non-the coaching system has been
taken. The opponent's team, named as DMod which is embedded within the TeamBots
simulation program and it is a reflexive, heuristic, heterogenous soccer team and
extended using fuzzy logic to avoid collisions. With several experiments, the coaching
system is able to gain 25% more score than opponent's team at the majority of the
competitions.

62

Figure 54 Ball passing stage 1

Figure 55 Ball passing stage 2

Figure 56 Ball passing stage 3

Figure 57 Ball passing stage 4

Figure 58 Ball passing stage 5

Figure 59 Ball passing stage 6

S Synthesis of Research Contributions

The central thesis of this research is to alleviate the amount of computational work in
calculating team coordination. For the platform that we used, since we have a global
vision system, we have capitalized on the fact that coordinating the robots and
passively assigning roles in real-time could be dramatically improved through an
intelligent coach.

In a dynamic multi-robot environment, the ability to perceive and respond to
situations in minimum time is essential[4]. the coaching system is a high-level real-
time decision making system that allocates tasks dynamically and takes out essentially
the burden of coordination computation from the general control system. which
handles the nitty-gritty details of motor control. The coaching component analyzes the
game situation and gives the instructions without going deeply through the exact
details of execution as these details are imposed on the robot players themselves. The
roles taken by the robots are as follows: Play central (2 agents), back-up, attacker and
goalic. Role allocation strategies presented in [12] and [30]. and assigns the goal
keeper task to the same robot during the entire duration of the game. However, the
best goal keeper assignment is crucial in winning the game and so we have devised a
passive role allocation strategy that prioritizes in defending the goal at all cost. The
player’s position relative to the center goal position is taken into account and the
different roles are switched whenever necessary. This approach is effective for team
collaboration as decision-making is done through a global scope and reduces
redundancy.

Passive role allocation is considered as an advanced task of robot control. In general,
dynamic role allocation strategies are calculated according to the area of the playing
field occupied by the player; thereby implementing a zone-related type of role
allocation. Passive task allocation and fuzzy ball passing control are two significant
algorithms that contribute to team cooperation. These tasks are achieved in a
distributed system without significant overhead required, except passing
communication messages, encoding and decoding them. Contrary to other cooperative
approaches [12], [13], [16] and [31], the bulk of computation done for team
cooperation are placed on the intelligent coach. For instance, in a ball-passing
scenario, the coach determines the feasibility of ball passing based on the clearance
range between the ball carrier and its team members. The coach then allocates these
tasks to the identified players and broadcasts these task instructions. The beauty of
this approach is that each player contributes to the cooperation computation by
employing intelligent fuzzy techniques for measuring the potential threats,
determining the exact locations for passing and receiving and executing path planning
and obstacle avoidance.

In the non-the coaching system, the role determinations are all computed in the
individual agents, and before the real cooperation are done. Moreover, the role of each
teammate should be taken checked in every game cycle. On the other hand, with the
coaching system, the role assignment task is placed in an isolated system, while the
agents are only notified whenever the roles are changed. This happens only under
important circumstances. Therefore, the intelligent agents’ resources are set free for
more complex algorithm tasks, and are able to concentrate on it in real-time, such as
path planning and obstacle avoidance.

SMAS has significantly enabled the powerful functionalities of team control and
enhanced the team’s cooperation. However, there is some delay introduced in the
initial state of the game, when the multi-agent have not received any instructions from
the coach. This is still considerably fast as it takes only one message to enable team
cooperation. In a real match, the vision sensory captures an image and takes some
period of time to interpret the image and convert this information into a set of
comprehensible messages for the intelligent agents. the coaching system receives all
the relevant information about the players and ball and figures out the appropriate
strategies and tactics applicable for the situation. Eventually, the coach then instructs
all the multi-agent with the appropriate roles. In turn, the intelligent agents handle
both messages from the vision system and the coaching system. Independently, each
intelligent agent figures out the best move by employing fuzzy target pursuit, obstacle
avoidance, ball-passing and defense of the goal.

The current transmission protocol UDP does not guarantee reliable delivery of
messages and so it is possible to lose some messages from the coach and the messages
could be delayed as well. Nonetheless, in our experiments, the delay due to the
communication between agents and the lost messages are compensated for by always
taking the latest message (instruction) received from the coach. When the computer
becomes very powerful and the time consumed during transmission becomes a
bottleneck, the performance efficiency of real-time game control is degraded.

To conquer the problem, more efficient communication mechanisms needs to be
discovered and introduced into the system, such as CSMA/CD [10], or the time cost
of the algorithms have to be reduced. Moreover, another solution is to import the idea
of parallel computation. With parallel computation, the hardware itself supports
parallelism by having multi-core and multi-processors within a single machine[32]. It
is considered to be one of the most high-performance computations around the world
and requires more concurrency on a global scale than the sequential ones with more
complexity on the programming.

With the system developed, due to extreme importance in identifying the best goalie,
the coach prioritizes on determining which robot gets assigned as the goal keeper. The

individual agents on the other hand take into account who should be the striker, half-

66

back, back-up, general defender, general attacker. It is only evident that the burden of
identifying which robot should take on such roles could also be placed on the
intelligent coach.

vb.
t SN
~
! 3 o ~
N 1 a \
g 1 A ;
- Y > % \
- Ny 1
[+ e e |
-~ ! T~ - =C I
7 ! —H" ~ /
S < I o b B 4
E ' o , A\
= 1 g e Y
[| St - \
- \
~ 7]
. i - |
ey - .
g ! e SR '
= B A ‘ ’l
’
é ° ¢ Robot A
. -
3 __<‘ - 1
Robot B R -]
Robot C, 7

Figure 60 A desired ball passing [13]

There is also solution for ball passing that involves more robots with desired ball
passing path. The diagram above shows the algorithm that is more unpredicted by
opponents. This feature could also be developed in the future as an extension of this
work.

SMAS is currently tested under the simulation competition only but now allows for
communication with a real vision system for the real robot soccer competition. The
actual competition requires a real-time vision system that communicates through the
network protocol defined by SMAS, and the autonomous agents to receive the action
decisions made by the robot control system. The autonomous agents will in turn
decode them and execute the action decisions.

67

68

6 Conclusions

Robot soccer planning, strategy and control have been widely researched for a
distributed real-time intelligent system, such as in [6] and [14]. SMAS in conjunction
with the fuzzy ball passing control system developed enhances the capabilities of a
general multi-agent system to act in real-time in a distributed system. the coaching
system instructs the control system synchronously. It is able to analyze the entire
game and perform better decision-making for the team. This approach allows the
soccer agents to save more system resources that could be used for calculating more
complex motion control. Another advantage of the new system is that it enables
cooperation in the team by the assignment of the same global task to a team of agents
in real-time.

Lastly, to ascertain the validity and efficiency of the algorithms and distributed
architecture presented in this work, we have presented experiments that successfully
demonstrated ball-passing between agents in varying scenarios, measured the
communication time between the coach and agents to be 3.8 msec on the average, and
tested the competitive edge of the whole distributed system by running game
competition simulations against the original TeamBots configuration. The time
required for one complete cycle of processing (message transmission, and intelligent
agent reaction) is only in the range of 12 to 15 msec. This is evidence 1s sufficient
enough to ascertain that this distributed system works in real-time.

69

References

[1] Shirkhodaie, A.: Supervised control of cooperative multi-agent robotic vehicles.
In: System Theory, 2002. Proceedings of the Thirty-Fourth Southeastern
Symposium on. (2002) pp. 386-390.

[2] Gerdelan, A.P. And Reyes, N.H.: A novel hybrid fuzzy A* robot navigation system
for target pursuit and obstacle avoidance. In: Proceedings of the First Korean-New
Zealand Joint Workshop on Advance of Computational Intelligence Methods and
Applications. (2006) pp. 75-79.

[3] Agah, A. and Tanie, K.: Robots playing to win: Evolutionary soccer strategies. In:
Robotics and Automation, 1997. Proceedings., 1997 IEEE International
Conference on. (1997) pp. 632-637.

[4] Browning, B., Rybski, P.E., Searock, J. and Veloso, M.M.: Development of a
soccer-playing dynamically-balancing mobile robot. In: Robotics and Automation,
2004. Proceedings. ICRA '04. 2004 IEEE International Conference on. (2004) pp.
1752-1757.

[5]). Bruce and M. Bolwing and B. Browning and M. Veloso: Multi-robot team
response to a multi-robot opponent team. In: Robotics and Automation, 2003.
Proceedings. ICRA '03. IEEE International Conference on. (2003) pp. 2281-2286.

[6] Messom, C.: Robot soccer: sensing, planning, strategy and control, a distributed
real time intelligent system approach. In: Proceedings of The Third International
Symposium On Artificial Life And Robotics. (1998) pp. 422-426.

[7] Ching-Chang Wong, Ming-Fong Chou, Chin-Po Hwang, Cheng-Hsin Tsai and
Shys-Rong Shyu: A method for obstacle avoidance and shooting action of the
robot soccer. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on. (2001) pp. 3778-3782.

[8] Dadios, E.P., Maravillas, O.A. And Jr.: Fuzzy logic controller for micro-robot
soccer game. In: Industrial Electronics Society, 2001. [ECON '01. The 27th
Annual Conference of the IEEE. (2001) pp. 2154-2159.

[9] Groen, Frans C. A., Roodhart, Jeroen, Spaan, Matthijs, Donkervoort, Raymond,
and Vlassis, Nikos: A distributed world model for robot soccer that supports the

development of team skills. In: Proceedings of the 13th Belgian-Dutch
Conference on Artificial Intelligence (BNAIC'01). (2001) pp. 389-396.

[10]Gao Zhijun, Yan Guozheng, Ding Guoqing and Huang Heng: Research of

71

communication mechanism of multi-agent robot systems. In: Micromechatronics
and Human Science, 2001. MHS 2001. Proceedings of 2001 International
Symposium on. (2001) pp. 75-79.

[11]Heung-Soo Kim, Hyun-Sik Shim, Myung-Jin Jung and Jong-Hwan Kim: Action
selection mechanism for soccer robot. In: Computational Intelligence in Robotics
and Automation, 1997. CIRA'97., Proceedings., 1997 IEEE International
Symposium on. (1997) pp. 390-395.

[12]Tzu-Chen Liang and Jing-Sin Liu: Motion controller realizing cyclic ball passing
strategy among multiple mobile robots in robot soccer games. In: Robotics and
Automation, 2002. Proceedings. ICRA'02. 1EEE International Conference on.
(2002) pp. 2587-2592.

[13]Jing-Sin Liu, Tzu-Chen Liang and Yi-An Lin: Realization of a ball passing
strategy for a robot soccer game: A case study of integrated planning of control.
Robotica (2004) vol. 22, pp. 329-338.

[14]Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation.
In: Robotics and Automation, IEEE Transactions on. (1998) pp. 220-240.

[15]Mark M. Chang and Gordon F. Wyeth: Achieving cooperation in a distributed
multi-robot team. In: Proceedings of the 2003 Australasian Conference on
Robotics and Automation. (2003) pp. 1-7.

[16]M. T. J. Spaan, N. Vlassis, and F. C. A. Groen: High level coordination of agents
based on multi-agent markov decision processes with roles. In: IROS'02
Workshop on Cooperative Robotics. (2002) pp. 66-73.

[17]Ming-Yuan Shich, Juing-Shian Chiou, Tien-Lung You , Ke-Hao Chang and
Sheng-Pao Cheng: System design and strategy integration for five-on-five robot
soccer competition. In: Mechatronics, 2005. ICM '05. IEEE International
Conference on. (2005) pp. 461-466.

[18]Peter Stone: Learning and multi-agent reasoning for autonomous agents. In: The
20th International Joint Conference on Artificial Intelligence. (2007) pp. 13-30.

[19]Peter Stone and David McAllester: An architecture for action selection in robotic
soccer. In: Proceedings of the Fifth International Conference on Autonomous
Agents. (2001) pp. 316-323.

[20]Peter Stone and Manuela Veloso: A layered approach to learning client behaviors
in the RoboCup soccer server. Applied Artificial Intelligence 12 (1998) pp. 165-
188.

[21]Blackpawn: Point in triangle test.
http:/ www.blackpawn.com/texts/pointinpoly/default.html (November 2008)

[22]Qingchun Meng, Xiaodong Zhuang, Changjin Zhon, Jianshe Xiong, Yulin Wang,
Tao Wang and Bo Yin: Game strategy based on fuzzy logic for soccer robots. In:
Systems., Man, and Cybernetics, 2000 [EEE International Conference on. (2000)
pp. 3758-3763.

[23]Emery, R., Sikorski, K. and Balch, T.: Protocols for collaboration, coordination
and dynamic role assignment in a robot team. In: Robotics and Automation, 2002.
Proceedings. ICRA '02. IEEE International Conference on. (2002) pp. 3008-3015.

[24]Sng, H.L., Sen Gupta, G. and Messom. C.H.: Strategy for collaboration in robot
soccer. In: Electronic Design, Test and Applications, 2002. Proceedings. The First
IEEE International Workshop on. (2002) pp. 347-351.

[25]Sung-Wook Park, Jung-Han Kim. Eun-Hee Kim and Jun-Ho Oh: Development of
a multi-agent system for robot soccer game. In: Robotics and Automation, 1997.
Proceedings., 1997 IEEE International Conference on. (1997) pp. 626-631.

[26]Uwe Egly., Gregor Novak. and Daniel Weber.: Decision making for MiroSot
soccer playing robots. In: Decision Making for MiroSot Soccer Playing Robots.
(2005) pp. 69-72.

[27] The RoboCup Federation.: http: www.robocup.org’ (May 2008).

[28]Yager, R. R. and Zadeh, L. A.: An Introduction to Fuzzy Logic Applications in
Intelligent System. Springer (1992).

[29]Shim H.-S., Kim H.-S., Jung M.-J., Choi 1.-H., Kim J-H. and Kim J.-O.:
Designing distributed control architecture for cooperative multi-agent system and
its real-time application to soccer robot. In: Proceedings of the Micro-Robot
World Cup Soccer Tournament. (1997) pp. 149-165.

[30]Kim, J.-H., Shim, H.-S., Kim, H.-S., Jung, M.-]., Choi, 1.-H. and Kim, J.-O.: A
cooperative multi-agent system and its real time application to robot soccer. In:
Proceedings of IEEE International Conference on Robotics and Automation.
(1997) pp. 638-643.

[31]Michael Bowling, Brett Browning and Manuela Veloso: Plays as Effective

Multiagent Plans Enabling Opponent-Adaptive Play Selection. In: Proceedings of
International Conference on Automated Planning and Scheduling. (2004).

73

[32]Parallel computing : http://en.wikipedia.org/wiki/Parallel computation (July
2008)

74

Appendix A: Fuzzy rule set file for fuzzy control ball passing
;a’**

* Example: An ball passing angle adjusting FIS (fuzzy inference system)
* (Calculates adjust angle that ball heading on 'distance' and 'angle' of obstacle
e |

FUNCTION BLOCK AngleControl // Block definition (there may be more than
one block per file)

VAR _INPUT /I Define input variables
distance : REAL;
angle : REAL;

END VAR

VAR OUTPUT // Define output variable
turn : REAL;:
END VAR

FUZZIFY distance // Fuzzify input variable 'distance’
TERM veryClose :=(0,1)(2,1) (4, 0);

TERM close =2,03, 16,17, 0);
TERM mediumDis:= (3, 0) (6, 1) (8, 1) (12, 0);
TERM far =(6,0)(9, 1) (11, 1) (17, 0);
TERM veryFar =9,0) (12, D;

END FUZZIFY

FUZZIFY angle /I Fuzzify input variable 'angle'
TERM verySmall =(0, 1)(7.5, 1) (15, 0);
TERM small =(75, 0)(15, 1)(22.5, 1) (30, 0);
TERM medium = (15, 0) (30, 1) (45, 1) (60, 0);
TERM large =(30, 0) (45, 1) (60, 1)(75,0);

TERM veryLarge = (60, 0) (75, 1) (180, 1);
END FUZZIFY

DEFUZZIFY turn /I Defuzzify output variable "turn’
TERM zeroTurn =(0,1)(2,0);
TERM smallTurn =(9,0) (10, 1) (11,0);
TERM mediumTum = (14, 0) (15, 1) (16, 0);
TERM sharpTurn = (24, 0) (25, 1) (26, 0);
TERM verySharpTurn := (39, 0) (40, 1) (41, 0);
ACCU : MAX;

METHOD : COG;

75

DEFAULT := 0;
END DEFUZZIFY

RULEBLOCK Nol

AND : MIN; //'Use "'min' for 'and' (also implicit use 'max' for 'or' to fulfill

DeMorgan's Law)

ACT : MIN; // ' Use 'min' activation method

RULE 1 : IF distance IS veryClose
verySharpTurn;

RULE 2 : IF distance IS veryClose
verySharpTurn;

RULE 3 : IF distance IS veryClose
sharpTurn;

RULE 4 : IF distance IS veryClose
sharpTurn;

RULE 5 : IF distance IS veryClose
mediumTurn;

RULE 6 : IF distance IS close
verySharpTurn;

RULE 7 : IF distance IS close
sharpTurn;

RULE 8 : IF distance IS close
sharpTurn;

RULE 9 : IF distance IS close
mediumTurn;

RULE 10 : IF distance IS close
smallTurn;

RULE 11 : IF distance IS mediumDis

sharpTurn;

AND angle IS verySmall THEN turn IS
AND angle IS small THEN turn IS
AND angle IS medium THEN turn IS
AND angle IS large THEN turn IS

AND angle IS veryLarge THEN turn IS

AND angle IS verySmall THEN turn IS
AND angle IS small THEN turn IS
AND angle IS medium THEN turn IS
AND angle IS large THEN turn IS

AND angle IS veryLarge THEN turn IS

RULE 12 : IF distance IS mediumDis AND angle IS small THEN turn IS

sharpTurn;

RULE 13 : IF distance IS mediumDis

mediumTurn;

RULE 14 : IF distance IS mediumDis AND angle IS large THEN turn IS

smallTurn;

RULE 15 : IF distance IS mediumDis

smallTurn;

RULE 16 : IF distance IS far ~ AND angle IS verySmall THEN turn IS

sharpTurn;

RULE 17 : IF distance IS far ~ AND angle IS small THEN turn IS

76

AND angle IS verySmall THEN turn IS

AND angle IS medium THEN turn IS

AND angle IS veryLarge THEN turn IS

mediumTurn;

RULE 18 : IF distance IS far ~ AND angle IS medium THEN turn IS

smallTurn;

RULE 19 : IF distance IS far ~ AND angle IS large THEN turn IS smallTurn;
RULE 20 : IF distance IS far ~ AND angle IS veryLarge THEN turn IS zeroTurn;

RULE 21 : IF distance 1S veryFar
mediumTurn;

RULE 22 : IF distance IS veryFar
smallTurn;

RULE 23 : IF distance IS veryFar
smallTurn;

RULE 24 : IF distance IS veryFar

RULE 25 : IF distance 1S veryFar
zeroTurn;
END RULEBLOCK

END FUNCTION BLOCK

AND angle IS verySmall THEN turn IS
AND angle IS small THEN turn IS
AND angle IS medium THEN turn IS

AND angle IS large THEN turn IS zeroTurn;
AND angle IS veryLarge THEN turn IS

77

78

Appendix B: Fuzzy rule set file for obstacle avoidance
,.'"**

* Example: An obstacle avoidance FIS (fuzzy inference system)

* Calculates avoidance movement on 'distance’ and 'angle' of obstacle

®/

FUNCTION BLOCK avoidCollision // Block definition (there may be more than
one block per file)

VAR_INPUT // Define input variables
distance : REAL:
angle : REAL;

END VAR

VAR _OUTPUT // Define output variable
turn : REAL:
speed : REAL;

END_ VAR

FUZZIFY distance /I Fuzzify input variable 'distance": {'near’, 'far' , 'veryFar'}
TERM near =(0.0, 1) (1.0, 0):

TERM far =(0.5,0) (2.0, 1) (3.0, 1) (5.0, 0);
TERM veryFar := (3.0, 0) (5.0, 1) (20.0, 1);
END FUZZIFY
FUZZIFY angle /I Fuzzify input variable 'angle": { 'small', 'medium’, 'large’ }

TERM small = (0,1) (14, 1) (20, 0);
TERM medium := (14, 0) (20, 1) (34, 1) (40, 0);
TERM large = (34, 0) (40, 1) (360, 1);

END: FUZZIFY

DEFUZZIFY turn /I Defuzzify output variable 'turn' : {'zeroTurn', 'mildTerm',
'mediumTurn', 'sharpTurn', 'verySharpTurn' }

TERM zeroTurn =(0,1)(1,0);

TERM mildTurn =(9,0) (10, 1) (11,0);

TERM mediumTurn := (24, 0) (25, 1) (26, 0);

TERM sharpTurn =1(34,0) (35, 1) (36, 0);

TERM verySharpTurn := (59, 0) (60, 1) (61, 0);

ACCU : MAX;

METHOD : COG:
DEFAULT :=0;
END DEFUZZIFY

79

DEFUZZIFY speed /I Defuzzify output variable 'speed' : {'verySlowSpeed',
'slowSpeed', 'mediumSpeed', 'fastSpeed', 'veryFastSpeed' }
TERM verySlowSpeed := (0.1, 0) (0.2, 1) (0.3, 0);

TERM slowSpeed =1(0.4, 0) (0.5, 1) (0.6, 0);
TERM mediumSpeed := (0.6, 0) (0.7, 1) (0.8, 0);
TERM fastSpeed =(0.9,0) (1.0, 1);
ACCU : MAX;

METHOD : COG;

DEFAULT := 1.0;

END DEFUZZIFY

RULEBLOCK Nol

AND : MIN; // Use 'min' for 'and' (also implicit use 'max’ for 'or' to fulfill
DeMorgan's Law)

ACT : MIN; // Use 'min' activation method

RULE 1 : IF distance IS near AND angle IS small THEN turn IS verySharpTurn;
RULE 2 : IF distance IS near AND angle IS medium THEN turn IS sharpTurn;
RULE 3 : IF distance IS near AND angle IS large THEN turn IS mediumTurn;
RULE 4 : IF distance IS far AND angle IS small THEN turn IS sharpTurn;
RULE 5 : IF distance IS far AND angle IS medium THEN turn IS mediumTurn;
RULE 6 : IF distance IS far AND angle IS large THEN turn IS mildTurn;
RULE 7 : IF distance IS veryFar AND angle IS small THEN turn IS zeroTurn;
RULE 8 : IF distance IS veryFar AND angle IS medium THEN turn IS zeroTurn;
RULE 9 : IF distance IS veryFar AND angle IS large THEN turn IS zeroTurn;
END RULEBLOCK

RULEBLOCK No2

AND : MIN; // Use 'min' for 'and' (also implicit use 'max' for 'or' to fulfill
DeMorgan's Law)

ACT : MIN; // Use 'min' activation method

RULE 1 : IF distance IS near AND angle IS small THEN speed IS
verySlowSpeed;
RULE 2 : IF distance IS near AND angle IS medium THEN speed IS slowSpeed;
RULE 3 : IF distance IS near AND angle IS large THEN speed IS fastSpeed;
RULE 4 : IF distance IS far AND angle IS small THEN speed IS slowSpeed;
RULE 5 : IF distance IS far AND angle IS medium THEN speed IS fastSpeed;
RULE 6 : IF distance IS far AND angle IS large THEN speed IS fastSpeed;
RULE 7 : IF distance IS veryFar AND angle IS small THEN speed IS fastSpeed;
RULE 8 : IF distance IS veryFar AND angle IS medium THEN speed IS fastSpeed;
RULE 9 : IF distance IS veryFar AND angle IS large THEN speed IS fastSpeed;
END RULEBLOCK
END FUNCTION BLOCK

80

Appendix C: The coaching system's simulation file —

Coach_Simulation.java

[,"*

* The coach simulation

* Algorithms involved :

* - passive role assignment applied on coach side

* - ball passing pattern matching includes “is inside triangle™ check
%/

package CoachingSystem;

import networkcommon.*;

import EDU.gatech.cc.is.util. Vec2;
)(**

#*

* @author Clainy.Lin

*

public class Coach Simulation {
public boolean DEBUG = false;
private String CURLOCATE ="CoSIM";

private boolean hasMessage;
private Message message;

public Coach Simulation() {
nit();

fl**

* Has new message setting for the player according to ID
*/
private boolean[] hasNew = new boolean[Common.MAXPLAYER];

private Vec2[] teammates = new Vec2[Common.MAXPLAYERINTEAM];
private Vec2[] opponents = new Vec2[Common.MAXPLAY ERINTEAM];
private Vec2 ball;

[k

* each players's role
* - only on our team
%/

81

private int[] role = new intfCommon.MAXPLAYERINTEAM];
private int[] strategy = new intfCommon.MAXPLAYER];
private int[] strategyOn = new int{Common.MAXPLAYER];

private int strategyGlobal = Common.SUNDEF;
private int strategyGlobalObject = Common.SUNDEF;

/** Initialize when the simulation start i
private void init() {
for(int 1=0; i<teammates.length; ++i) {
teammates[i1] = new Vec2();
opponents[i] = new Vec2();

}

for(int i=0; i<strategy.length; ++1) {
strategy[i] = Common.SUNDEF;
}

countRegularNotification = 2;

// initialize role, from team DMod.java
for(int i=0; i<teammates.length; ++1) {
switch(indexTolD(i, Common. TEAMMATEFLAG) %
Common.MAXPLAYERINTEAM) {
case 0:
role[i] = Common.ROLE GOALIE;
break;
case 1:
role[i] = Common.ROLE BACKUP;
break;
case 2:
role[i] = Common.ROLE OFFSIDE;
break;
case 3:
role[i] = Common.ROLE DRIVE BALL;
break;
default :
role[i] = Common.ROLE CENTER;

}
;
}

/** Initialize before each time take a step */
private void updateEnvironment() {

82

// set all to be initial value
for(int i=0; i<hasNew.length; ++i) {
hasNew[i] = false;

b

for(int i=0; i<strategy.length; ++1) {
strategy[1] = Common.SUNDEF;
y

strategyGlobal = Common.SUNDEF;
strategyGlobalObject = Common.SUNDEF;

// find player closest to ball
teammateClosestToBall = closestTo(ball, teammates);
opponentClosestToBall = closestTo(ball, opponents);

Il notifyBoard("Closest index: " + teammateClosestToBall

I +"and " + opponentClosestToBall);

I notifyBoard("Closest ID: "

/! + indexTolD(teammateClosestToBall, Common. TEAMMATEFLAG)
/! +"and " + indexTolD(opponentClosestToBall,

Common.OPPONENTFLAG));
Vec2 tmpl = new Vec2(ball);
Vec2 tmp2 = new Vec2(ball);
tmp1.sub(teammates[teammateClosestToBall]);
tmp2.sub(opponents[opponentClosestToBall]);
isTeamControlBall = (tmpl.r < tmp2.r) ? true : false;

;

/** Set a player's detail i |
public void setPlayer(int id, int team, double x, double y, double steer) {
switch(team) {
case Common.BALLFLAG:
ball = new Vec2(x, y);
break;
case Common. TEAMMATEFLAG:
teammates[idTolndex(id, team)] = new Vec2(x, y);
break:
case Common.OPPONENTFLAG:
opponents[idToIndex(id, team)] = new Vec2(x, y);
break;
default:
Common.err("Unknown id "+ id + " in " + team);

83

/¥* Converting player ID to the index in the player list */
private int idTolndex(int id, int team) {
int index = -1;
// team
if(team == Common. TEAMMATEFLAG) {
for(int i=0; i<Common. TEAMMATEID.length; ++1) {
if(Common. TEAMMATEID[i] == id) {
index = i;
break;
}
}
}

// opponent
if(team == Common.OPPONENTFLAG) {
for(int i=0; i<Common.OPPONENTID.length; ++1) {
if(Common.OPPONENTID[i] == id) {
index = 1;
break;
}
}
H

return index;

}

/** Converting player index in the list to player ID ®
private int indexTolD(int index, int team) {
int id = Common.INVALIDID;
switch(team) {
case Common. TEAMMATEFLAG:
id = Common. TEAMMATEID[index];
break;
case Common.OPPONENTFLAG:
id = Common.OPPONENTID[index];
break;
case Common.BALLFLAG:
id = Common.BALLID;
break;
default:
Common.err("Unknown index " + index + " to team: " + team);

}

return id;

}

84

1/
I

"f'**

* count down to active the role notification regularly
%/

private int countRegularNotification = 2;

/** Take a step *f
public int takeStep() {
int operation = Common.OPERATION_FAILED:;
hasMessage = false;
updateEnvironment();

T
/I Goalie
int goalie = wholsGoalie(Common. TEAMMATEFLAG);
notifyBoard("Goalie : " + goalie
+" (1d =" + indexTolD(goalie, Common. TEAMMATEFLAG) + ")");
/1 if new goalie assigned
if(role[goalie] '= Common.ROLE GOALIE) {
// found previous goalie, and switch the role
// mark to notify remote control system
for(int i=0; 1<role.length; ++1) {
if(role[1] == Common.ROLE GOALIE) {
// swap roles
role[1] = role[goalie];
role[goalie] = Common.ROLE GOALIE;

int 1= 1indexTolD(i, Common. TEAMMATEFLAG);,
int _goalie = indexTolD(goalie, Common. TEAMMATEFLAG);
if(DEBUG) {
notifyBoard("Swap roles]NEW]: " + i+ "->" + role[i]
+" "+ goalie +"->" + role[goalie]);
}
strategy|[1] = role[i];
strategy[goalie] = role[goalie];
strategyOn[goalie] = Common.SGOALPOSITIVE;
hasNew[1] = hasNew|[goalie] = true;
hasMessage = true;
1=99;
/fbreak;

85

if(isTeamControlBall) {// && ball.x > teammates[teammateClosestToBall].x) {
T

// Shooting the goal Checking-----------

T T
// Passing Ball Checking-----------==----
if(DEBUG) notifyBoard("Pass check:");
int to = betterToPass(teammateClosestToBall);
//int to = Common.INVALIDID;
if(to != Common.INVALIDID) {
if(Common.DISPLAY MESSAGE COACH_SIM BALL PASS !=0)
notifyBoard("[BALL PASS] from "
+ teammateClosestToBall + " to " + to);
int passer = index TolD(teammateClosestToBall,
Common. TEAMMATEFLAG);
int receiver = indexTolD(to, Common. TEAMMATEFLAG);

strategy[passer] = Common.ROLE_PASSING;
strategyOn[passer] = receiver;

strategy[receiver] = Common.ROLE CATCH_PASS;
strategyOn[receiver] = passer;

hasNew[passer] = hasNew[receiver] = true;

strategyGlobal = Common.ROLE ASSIST;
strategyGlobalObject = indexToID(to, Common. TEAMMATEFLAG);

hasMessage = true;

}
// Other Strategy

}

// 1s time to send roles setting regualarly?
/1 if value is <=0 then yes
if(this.countRegularNotification <= 0) {
//System.out.print("Regular check : ");
for(int i=0; i<role.length; ++i) {
int _id = indexToID(i, Common. TEAMMATEFLAG);
// already assign with the new strategy?
if(strategy[id] == Common.SUNDEF) {
// role
strategy[1d] = role[i];

86

hasNew|[id] = true;
//System.out.print("1");

j
//System.out.print("0");

;

//System.out.print("\n");
countRegularNotification = 9;
hasMessage = true;

}

/[System.out.printIn("--- " + this.getMessage().toString());
countRegularNotification--;
operation = Common.OPERATION OK;

return operation;

1
|

public Message getRoles() {
String str ="";
for(int 1=0; i<role.length; ++1) {
str += assembleMessage(indexTolD(i, Common. TEAMMATEFLAG),
role[i], Common.SUNDEF);

[

return new Message(str);

}

/'**

* Get the result as a message

* (@return : result message
wf

public Message getMessage() {

",

String messageStr ="";

// Global Strategy
if(strategyGlobal != Common.SUNDEF) {
messageStr += Common.PREFIX GLOBAL S

+ Common.CONTENT SEPERATOR
+ this.strategyGlobal + Common.CONTENT SEPERATOR

+ this.strategyGlobalObject + Common.SEPERATOR;
j

// individual strategy
for(int 1=0; i<hasNew.length; ++1) {
if(hasNew[i]) {

87

if(DEBUG)
notifyBoard("Strategy: "
+ assembleMessage(i, strategy[i], strategyOn([i]));
messageStr += assembleMessage(i, strategy[i], strategyOn[i]);
}
}

1f(DEBUG) notifyBoard(

"Get message : " + messageStr);
message = new Message(messageStr);
return message;

H

/**

* has new message

* @return : has new message?

%]

public boolean hasNewMessage() {
return hasMessage;

}

public void markRead() {
hasMessage = false;

}

'{**

* Assemble the message string
* @param id : Player ID

* @param s : Strategy

* @param son : StrategyOn
* @return : message string
o

private String assembleMessage(int id, int s, int son) {
return String.format("%s%s%d%s%d%s%d%s",
Common.PREFIX PLAYER, Common.CONTENT SEPERATOR,
id, Common.CONTENT _SEPERATOR,
s, Common.CONTENT SEPERATOR,
son, Common.SEPERATOR);

i
// Simulation Computation
T T

88

private Vec2 ourGoal = new Vec2(-Common.GAME COURT WIDTH/2, 0);
private Vec2 theirGoal = new Vec2(Common.GAME COURT WIDTH/2, 0);
private Vec2 upGoal =

new Vec2(theirGoal.x, theirGoal.y+Common.GOAL HALF WIDTH);
private Vec2 downGoal =

new Vec2(theirGoal.x, theirGoal.y-Common.GOAL HALF WIDTH);,

/lint closestToBallTeam;

private boolean isTeamControlBall;
private int teammateClosestToBall,
private int opponentClosestToBall;

private int closestTo(Vec2 obj, Vec2[] players) {
int index = Common.INVALIDID;
Vec2 tmp;//, tmp2;
double dist = Double. MAX VALUE;

for(int 1 = 0; 1 < players.length; ++i) {
tmp = new Vec2(players[i]);
tmp.sub(obj);
// find closer point
if(tmp.r < dist) {
index = 1;
dist = tmp.r;

|
i}

1
J

return index;

|

,u"'**
* find out who is the goalie of the "team"
* @param team: teammates or opponents
* @return: Goalie index
Y
private int wholsGoalie(int team) {
int index = -1;
// find team goalie
if(team == Common. TEAMMATEFLAG) {
index = closestTo(ourGoal, teammates);
}
// find opponent goalie
if(team == Common.OPPONENTFLAG) {
index = closestTo(theirGoal, opponents);

89

}

return index;

}

private int betterToPass(int from) {
int to =-1;

// not close to ball, don't have situation to pass ball
//if(!isClosestToBall) return to;

for(int 1=0; i<teammates.length; ++1) {
// teammate have to be at ball right side (if our side are -1)
if(i == from || teammates[i].x <= ball.x) { continue; }

// don't have good shooting position (full shooting goal width)
if('haveGoodPos(1)) { continue; }

// don't have clear area for passing ball
if('haveClearArea(1)) { continue; }
// have all situation to accept passing ball
to=1;
break;
H
// if there are someone in team have good position shoot &
// have clear passing area to receive ball
// pass ball to "to"
// otherwise, to=-1, means there is no one, I keep drive ball
return to;

}

/** have clear area to pass ball (ball -> teammates[n]) toward goal
*

*
private boolean haveClearArea(int n) {
Vec2 to;
//int dirPass;
if(!isInside(ball, upGoal, downGoal, teammates[n])) {
// teammate is higher than ball
if(teammates[n].y > ball.y) {
to = new Vec2(upGoal);
} else {
to = new Vec2(downGoal);

}
} else {

90

if(teammates|[n].y > ball.y) {

to = new Vec2(downGoal);
} else {

to = new Vec2(upGoal);

//'1s any opponents inside the passing area

// return false, if there is(are)

// return true, if it's clear

for(int 1=0; i<opponents.length; ++1) {
if(isInside(ball,teammates[n], to, opponents[i])) {

return false;

}

t

return true;

J,n'**

* To check is there any objects in the Triangle
%

*@param pl : Triangle point 1

*@param p2 : Triangle point 2

*(@param p3 : Triangle point 3

*(@return

* - true, yes, one or more objects is in the Triangle
* - false, its clear in the Triangle

»/

private boolean isClearTriangle(Vec2 p1, Vec2 p2, Vec2 p3, Vec2[] objects) {
boolean result = true;

for(Vec2 object : objects) {
if(islnside(p1, p2, p3, object)) {
result = false;
break;

}
h

return result;

J

/** check if have good shooting position

91

* the way that I did is to check if has full shooting width
* only assume side == -1............
*

*@paramn : the player id need to be check
#*

*@return

* - true, have clear shooting area
* - false, someone is blocking it
*f

private boolean haveGoodPos(int n) {
boolean result = false;
result = isClearTriangle(teammates[n], upGoal, downGoal, opponents);
return result;

}

J{**

* To check is the giving point inside of the TRIANGLE
* The TRIANGLE is generated by three points "from", "to1", "to2"

*

* Method : Cross product (fast and efficient)
=

*@return

® - true, if the giving point is inside the triangle
% - false, otherwise

*

|

private boolean isInside(Vec2 from, Vec2 tol, Vec2 to2, Vec2 point) {
boolean result = false;

double ma_x = point.x - from.x;
double ma y = point.y - from.y;
double mb_x = point.x - tol.x;
double mb_y = point.y - tol.y;
double mec_x = point.x - t02.x;
double mc y = point.y - to2.y;

boolean ab, bc, ca;

ab=(ma x*mb y-ma y *mb x>=0) ? true : false;
bc=(mb x *mc y-mb y *mc x>=0) ? true : false;
if(ab == bc) {
ca=(mc Xx *ma y-mc_y* ma x>=0)? true : false;
if(bc == ca) result = true;

92

}

return result;

}

private void notifyBoard(String msg) {
Common.processMessage(CURLOCATE, msg);

h

93

94

Appendix D: Robot control system simulation file —

RCS_Simulation.java

ﬁk

* Robot Simulation

H#

* Only consume that our team is on west side,
* rotate court 180 degrees according to

* center point if on east team
*

%
package robotcontrolsystem;

import networkcommon.*;

import EDU _gatech.cc.is.util. Vec2;

import net.sourceforge.jFuzzylogic.FIS;

import net.sourceforge.jFuzzylLogic.rule.FuzzyRuleSet;

import EDU.gatech.cc.is.util.Units;
J,‘**

*

* (@author Clainy.Lin
*/
public class RCS Simulation {
private String CURLOCATE = "RCSSIM";
J,."’!<=1l=
* For error tracking (not completed)
* Each time the takestep() calls
* errCode indicates where is wrong
%
private int errCode = Common.ERROR_NO;
’,1’**
* Debug mode
*
public boolean DEBUG = false;
public boolean DEBUG ACTION = true;
public boolean DEBUG FUZZY INDIVIDUAL = false;

Receiver controlSystem;

/** My ID %/
private int mylD;

95

/**% My team flag */
private int myTeamflag;

public void addReceiver(Receiver receiver) {
controlSystem = receiver;

}

// For the fuzzy system:
private FIS fis avoidCollision;
private FuzzyRuleSet frs_avoidCollision;

private FIS fis ballPass;
private FuzzyRuleSet frs_ballPass;

/** My absolute position */
private Vec2 myAbsPosition;
private Vec2 ball; // Where is the ball?

private Vec2[] teammates; // Where are my teammates? (including me)
private Vec2[] opponents; // Where are my opponents?

private Vec2 ourGoal; /' Where is our goal?

private Vec2 theirGoal; // Where is their goal?

/I Goal upper and lower point

private Vec2 upGoal team, downGoal team;

private Vec2 upGoal opponent, downGoal_opponent;

private double = mySteer;
private double ballSteer;
private double[] teammatesSteer;
private double[] opponentsSteer;
//'Who is the closest...
private int closestTeamMate; // Index of team mate?
private int closestOpponent; // Index of opponent?
private Vec2 closestPlayer; // Place closest overall.
private int closestToBall; // Index of team mate to the Ball?

private boolean isClosestToBall; // am I closest to ball

‘(**

* Personal Strategy or role
*

private int behave;

J,u"**

* Personal strategy applied object or area

96

*/
private int behaveObject;

[

* Global strategy

1

private int behaveGlobal;
J,.f=!==|=

* Global strategy common applied object
7L
private int behaveGlobalObject;

[EE

* Message to communicate, only like a comment
'
private String comment; // comment to send

JE*

* Movement

k'

private Vec2 move; /' Velocity vector of movement
// (direction: move.t, speed: move.r)

J,.">9t==I=

* kick ball option
*/
private boolean kickit; // Try to kick it

J,."2!==i=

* player's role and action
*/
private int role, action;

[E*®

* only for ball passing, for ball catch side
o't
private int passStage;

T T
// temp var to keep latest record

/** My absolute position *

private Vec2 _myAbsPosition;

private Vec2 _ball;

private Vec2[] teammates; // Where are my teammates? (including me)

private Vec2[] opponents; // Where are my opponents?

97

private double[] teammatesSteer;
private double[] _opponentsSteer;
private double ballSteer;
private double = mySteer;

private int _behave;

private int _behaveObject;
private int _behaveGlobal;
private int _behaveGlobalObject;
J,"=|==i=

* Configure the control system. This method is
* called once at initialization time. You can use it
* to do whatever you like.
%
private void configure() {
/1 setup fuzzy inference system for collision avoidance
notifyBoard("Setting up fuzzy inference system for Avoid Collision......");
fis_avoidCollision = FIS.load(Common.FUZZY CONTROL FILE);
if (fis_avoidCollision == null) {
controlSystem.receive(Common.CHANNEL SIM,
new Message("Can't load file: " + Common.FUZZY_CONTROL_FILE
+"");
Common.errf(CURLOCATE, "Can't load file: " +
Common.FUZZY CONTROL_FILE + ".");
Common.messageBoard.save(Common.FILE LOG + "Robot " + this.myID +
" log.txt");
System.exit(1);
}
frs _avoidCollision = fis_avoidCollision.getFuzzyRuleSet();
//[frs_avoidCollision.chart();

/1 setup fuzzy inference system for ball passing
notifyBoard("Setting up fuzzy inference system for Ball Passing......");
fis_ballPass = FIS.load(Common.FUZZY ANGLE ADJUST FILE);
if (fis_ballPass == null) {
controlSystem.receive(Common.CHANNEL SIM,
new Message("Can't load file: " +
Common.FUZZY ANGLE ADJUST FILE +™."));
Common.errf(CURLOCATE, "Can't load file: " +
Common.FUZZY ANGLE ADJUST FILE +".");
Common.messageBoard.save(Common.FILE LOG + "Robot " + this.myID +
" log.txt");
System.exit(1);
}
frs ballPass = fis_ballPass.getFuzzyRuleSet();

98

//frs_ballPass.chart();
b

}.I’**
* Initialize an empty stage with nothing setup
*/
public void reset() {
errCode = Common.ERROR NO:;

this.behave = Common.SUNDEF:
this.behaveObject = Common.SUNDEF;
this.behaveGlobal = Common.SUNDEF;
this.behaveGlobalObject = Common.SUNDEF;

{’**

* Called every time

b

public int takeStep() {

try {
errCode = 1;

updateEnvironment();
errfCodet+;

if(DEBUG) notifyBoard("behave: " + behave
+ " - behaveObject: " + behaveObject);
role = playRole(behave, behaveObject);
action = getAction(behave, behaveObject);
if(DEBUG) notifyBoard("Role [" + role
+ "], Action [" + action + "]");
errCodet++;

errCode <<=4;

String message = null;

// perform action

switch(action) {

case Common.ROLE PASSING

errCode +=1;
/I --> request to pass ball <--
message = "Passing ball.";
If(DEBUG ACTION) notifyBoard(message);
passBall();
break;

99

case Common.ROLE_CATCH_PASS :
errCode += 2;
// request to get ball
message = "Catching the passing ball";
If(DEBUG_ACTION) notifyBoard(message);
getPassingBall();
break;

case Common.ROLE_DRIVE BALL :
errCode += 3;
message = "Drive ball";
if(DEBUG ACTION) notifyBoard(message);
driveBall();
break;

case Common.ROLE GOALIE : //--- Goalie ---
errCode +=4;
message = "Play Goalie";
if(DEBUG ACTION) notifyBoard(message);
playGoalie();
break;

case Common.ROLE BACKUP: // --- Backup ---
errCode += 5;
message = "Play Backup";
if(DEBUG ACTION) notifyBoard(message);
playBackup();
break;

case Common.ROLE OFFSIDE: // --- Offside ---
errCode += 6;
message = "Play Offside Original";
if(DEBUG ACTION) notifyBoard(message);
playOffside();
/ldriveBall();
break;

case Common.ROLE OTHER : // --- Designated Driver ---
errCode += 7,
message = "drive ball With Other Roles";
if(DEBUG _ACTION) notifyBoard(message);
driveBall();
break;

case Common.ROLE CENTER : // --- Center ---
errCode += 8;
message = "Play Center",;
if(DEBUG ACTION) notifyBoard(message);
playCenter();
break;

100

1/
//
1/

case Common.ROLE ASSIST :
errCode +=9;
message = "Play Assistant";
1f(DEBUG ACTION) notifyBoard(message);
break;

default :
errCode += 10;
message = "Default[" + role + "] Drive ball";
if(DEBUG ACTION) notifyBoard(message);
driveBall();
break;
i

errCode >>= 4;
errCodet+;

move.r *= Common.PLAY ACTION_SHARPNESS;

if(move.r > Common.MAXSPEED) {
move.setr(Common.MAXSPEED);

|

//if (speed > Common.MAXSPEED) speed = Common.MAXSPEED:;

else if (move.r < 0) move.r = 0;

if(!(ball.r < Common.DISTANCE CLOSE)) {

speed = Common.MAXSPEED;

1
|

errCodet++;
// make a move immediate after decision made and calculation finished
Number[] data = new Number[8];
int indexOfData = 0;
data[indexOfData++] = Common.CHANNEL SIM;
data[indexOfData++] = Common.INVALIDTAG;
data[indexOfData++] = Common.DD TOMOVE;
data[indexOfData++] = move.t;
data[indexOfData++] = move.r;
data[indexOfData++] = (kickit ? 1 : 0);
data[indexOfData++] = Common.DD_END;
if(DEBUG) {
String messageMove = String.format(
"Move : %s %s %d", move.t, move.r,
(kickit 2 1 : 0));
notifyBoard(messageMove);

101

}

controlSystem.receive(data);

/lcontrolSystem.receive(Common.CHANNEL SIM, new
Message(messageMove));

/lapplyMove(move.t, speed, (kickit 7 1 : 0))

// make ready for next simulation
reset();

return Common.OPERATION_OK;
} catch (Exception ex) {
Common.err(ex, CURLOCATE,
"Simulation take step error [errCode:" + errCode + "].");
return Common.OPERATION FAILED;

}
}

J,.f'ﬁlﬂk

* Before doing anything, this should get our environmental
* view refreshed for the current situation.
*/
private void updateEnvironment() {
errCode <<=4;
errCode += 1;

// reset position related to me
resetPosition();
errCode += 1;

/1 get closest players
closestTeamMate = closestTo(Common.ORIGIN POINT, teammates);
closestOpponent = closestTo(Common.ORIGIN POINT, opponents);

errCode += 1;
if (teammates[closestTeamMate].r < opponents[closestOpponent].r) {
closestPlayer = teammates[closestTeamMate];

} else {

closestPlayer = opponents[closestOpponent];
}
errCode += 1;

// Which teammate is cosest to the ball?
closestToBall = closestTo(ball, teammates);
/lclosestToOpponentGoal = closestTo(theirGoal, teammates);

102

errCode +=1;
// am I closest to BALL
1sClosestToBall = amIClosestToBall();

errCode += 1;
//myDirection = abstract_robot.getSteerHeading(currentTime);

/1 set kicking
kickit = false;

errCode >>=4:

K{**

* Play role

f

private int playRole(int behave, int behaveObject) {
int _role = Common.ROLE UNDEF;

if(behave == Common.ROLE GOALIE) {
_role = Common.ROLE GOALIE;
return role;

|

if(behave == Common.ROLE DRIVE BALL) {
_role = Common.ROLE DRIVE BALL;
return _role;

j

if(behave == Common.ROLE BACKUP) {
_role = Common.ROLE_BACKUP;
return _role;

}

if(behave == Common.ROLE CENTER) {
_role = Common.ROLE CENTER;
return _role;

}

if(behave == Common.ROLE OFFSIDE) {
_role = Common.ROLE OFFSIDE;
return _role;

}

103

_role = role;

return _role;

}

"!**

* Perform action in the game (at the moment)

%/

private int getAction(int behave, int behaveObject) {
int _action = Common.SUNDEF;

// Ball Passing has first priority

/I passing ball

if(behave == Common.ROLE PASSING) {
_action = Common.ROLE PASSING;
return _action;

}

// catch passing ball

if(behave == Common.ROLE CATCH_PASS) {
passStage = Common.PLAY BALLPASS TOTALSTEPS;
_action = Common.ROLE_CATCH_PASS;
return _action;

}

// to continue the catching passing ball
if(passStage > 0) {
passStage--;
_action = Common.ROLE _CATCH_PASS;
return _action;

}
passStage = 0;

// player to assist another player

if(behave == Common.ROLE_ASSIST && amlAbleToHelp(behaveObject)) {
_action = Common.ROLE ASSIST;
return _action;

}

/l Goalie
if(role == Common.ROLE_GOALIE) {
_action = Common.ROLE_GOALIE;

104

return _action;

}

if(role == Common.ROLE BACKUP) {
“action = Common.ROLE BACKUP,
return _action;

}

if(role == Common.ROLE CENTER) }{
_action = Common.ROLE CENTER;
return _action;

;

if(role == Common.ROLE DRIVE BALL) {
_action = Common.ROLE _DRIVE BALL;

return __action;
i

if(role == Common.ROLE OFFSIDE) {
“action = Common.ROLE OFFSIDE;
return _action;

i
§

return _action;

e

private boolean amIAbleToHelp(int1) |
boolean result = false;

return result;

i

private void playGoalie() {
//playGoalie_ByClainy();
playGoalie ByTony();

}

/**
* Implementation of goalie.
o'
private void playGoalie ByClainy() {
if(ball.x <= 0) {
Vec2 newBall = new Vec2(
ball.x-Common.RADIUS OF BALL-Common.RADIUS OF PLAYER,

105

ball.y);
move.sett(newBall.t);
move.setr(1.0);
kickit = true;
setDisplayString("Goalie: Kick out ball.");
} else if(ball.x - ourGoal.x > Common.GAME COURT_ WIDTH/3) {
/[far away from goal, stay 1/4 from our goal to ball
// (only vertical direction, fast)
double x = (ball.x - ourGoal.x)/8 + ourGoal.x;
move = new Vec2(x, (ball.y + ourGoal.y)/2);
setDisplayString("Goalie: Guard our goal (Far).");
} else if(ball.x > 0 && ball.x < Common.RADIUS OF PLAYER
+ Common.RADIUS OF PLAYER) {
// very close and just in front, kick to side edge
move = new Vec2(ball.x-Common.RADIUS OF BALL, ball.y);
kickit = true;
setDisplayString("Goalie: Kick to side.");
} else {//if(ball.x - ourGoal.x > Common.GAME COURT WIDTH/S) {
/1 close, Guard goal
Vec2 newBallPos = new Vec2();
// speed of per 100 millisec
newBallPos.setr(Common.MAXSPEED * .1);
newBallPos.sett(ballSteer);
if(newBallPos.x < 0) {
double newR = Math.abs(ball.r * newBallPos.y / ball.y);
newBallPos.setr(newR);

newBallPos.add(ball);
move = newBallPos;
} else {

double x = (ball.x - ourGoal.x)/8 + ourGoal.x;
move = new Vec2(x, ball.y);

if(this.ourGoal.x > Common.RADIUS_OF_PLAYER
+ Common.RADIUS OF BALL) {
move.setx(0);

}

//move.setr(Common.MAXSPEED);,
}

kickit = true;
setDisplayString("Guard our goal (Close).");

106

// parallel when I am next to the Goal
if(ourGoal.x > -Common.RADIUS OF PLAYER + 0.001) {
if(move.t > Common.Pl 2 && move.t < Common.PI) move.t =
Common.Pl 2;
if(move.t > Common.PI && move.t < Common.P1 + Common.PI_2) move.t =
Common.Pl 2+ Common.PI;

i

// stick around goal width
if(move.y > upGoal team.y) move.y = upGoal team.y;
if(move.y < downGoal team.y) move.y = downGoal team.y;

f

)}'**
* Implementation of goalie.
*/
private void playGoalie ByTony() {
/1 1f the ball is behind me try to kick it out
if(ball.x < 0) {
move.sett(ball.t);
move.setr(1.0);
kickit = true:
setDisplayString("Kick out ball.");
i else if((Math.abs(ourGoal.x) > Common.RADIUS OF PLAYER * 1.4) ||
(Math.abs(ourGoal.y) > Common.RADIUS OF PLAYER * 4.25)) {
//1f 1'm outside the goal area go back toward the goal
avoidCollision(ourGoal);
setDisplayString("Go back mto goal.");
} else {
// stay between the ball and the goal
move.sety(Math.signum(ball.y) * 7.0);
move.setx(-1.0);

if(Math.abs(ball.y) < Common.RADIUS OF PLAYER *0.15) {
move.setr(0.0);

} else {
move.setr(1.0);

}
setDisplayString("Guard goal.");

",l’**

107

* Implementation of offside player (block opposing goalie).
'
private void playOffside() {
/1 the other team's goalie is whoever is closest to the goal
int goalie = closestTo(theirGoal, opponents);
Vec2 target = new Vec2(opponents[goalie]);

/[find the point just behind

the "goalie"
// in the way of their goal
Vec2 behindVector = getBehindPoint(opponents[goalie], theirGoal);
behindVector.setr(Common.RADIUS OF PLAYER),
target.sub(behindVector);

/' We want to block the goalie, but avoid others.
if(goalie == closestOpponent) {
move = target;
move.setr(1.0);
setDisplayString("Block goalie.");
} else {
avoidCollision(target);
setDisplayString("Charge goalie.");
}
}

!-’73*
* Implementation of backup player.
5
private void playBackup() {
Vec2 target = new Vec2(ball);

if(ball.r < teammates[closestToBall].r) {
// I'm closer than my closest team mate.
driveBall();
} else {
// if i'm not closest to the ball, set up a position 3
// robot radii behind the ball
Vec2 behindVector = getBehindPoint(ball, theirGoal);
//Vec2 behindVector = getBehindPoint(ball,
Common.DISTANCE BALL PLAYER RADIUS +
Common.RADIUS OF BALL, theirGoal);
behindVector.setr(3 * Common.RADIUS OF PLAYER);
target.add(behindVector);
avoidCollision(target);

108

setDisplayString("Backup driver.");

}
i

[E*

* Implementation of center player.

i

private void playCenter() {
errCode <<=4;
// find the center (opposite of my _absolute position.
Vec2 target = new Vec2(myAbsPosition);
target.setr(-target.r);
errCodet++;

Vec2 tmpMate = new Vec2(teammates[closestTeamMate]);
tmpMate.sub(ball);
errCodet++;
if(ball.r < teammates[closestToBall].r) {
errCodet++;
// I'm closer than my closest team mate.
driveBall();
} else {
errCodet++;
errCode++;
// 1f 1'm not closest to the ball stick around the center
// and wait for a fast break
target.add(getBehindPoint(target, theirGoal));
avoidCollision(target);
setDisplayString("Stand by.");
j

errCode >>=4;

‘,f**
* Drive the ball towards the goal, and possibly try to score.
*¥/
private void driveBall() {
if(behindPoint(ball, theirGoal)
&& (ball.t <4 * Common.RADIUS OF PLAYER)) {
Vec2 target = new Vec2(theirGoal);
move = new Vec2();
move.sett(target.t);
move.setr(1.0);
setDisplayString("Drive ball.");

109

/1 if i'm within 15 ROBOT RADII away from and aiming
/I relatively at the goal try to kick the ball
if(readyToKick(theirGoal)) {
kickit = true;
setDisplayString("Kick ball.");
}
} else {
// otherwise get behind the ball and avoid colliding with
// other players
Vec2 target = new Vec2(ball);
//target.add(getBehindPoint(ball, theirGoal));
if (ball.r < teammates[closestToBall].r) {
int closestToTheirGoal = closestTo(theirGoal, teammates);
Vec2 tmpl = new Vec2(teammates|[closestToTheirGoal]);
if(tmpl.r < theirGoal.r) {
// Go streight to the ball, beat others
/if(closestToTheirGoal != myNum) {
target.add(getBehindPoint(ball, teammates[closestToTheirGoal]));
kickit = true;
} else {
target.add(getBehindPoint(ball, theirGoal));
setDisplayString("Charge ball.");
H
move.sett(target.t);
move.setr(1.0);
setDisplayString("Charge ball."),
} else {
target.add(getBehindPoint(ball, theirGoal));
avoidCollision(target);
setDisplayString("Position to ball.");
}
h
}

[E%

* Determins which object in an array is closest to a given point.
*
* @param point Reference point.
* @param objects Array of object locations to check.
* @return Index of robot in array objects that is closest.
*f
private int closestTo(Vec2 point, Vec2[] objects) {
double dist = Common.FARFARAWAY;

110

int result = 0;
Vec2 temp;// = new Vec2(0, 0);

for(int 1 = 0; 1 < objects.length; i++) {
// find the distance from the point to the current
/1 object
temp = new Vec2(objects|[i]);
temp.sub(point);

// if the distance is smaller than any other distance
// then you have something closer to the point
if(temp.r < dist) {

result = i;

dist = temp.r:

L
i

return result;

JE*

* Gets a point behind another point with respect to a given orientational
* point. This point is relative to the reference point.
* E. g. get behind the ball with respect to the direction of the goal.
#
* (@param point Reference point.
* (@param orient Directional point.
* @return Point behind the reference point (relative to it).
2/
private Vec2 getBehindPoint(Vec2 point, double r, Vec2 orient) {
Vec2 behind _point = new Vec2(point);

behind_point.sub(orient);
behind point.setr(behind point.r + r);
behind_point.add(orient);

return behind point;

[H*

* Gets a point behind another point with respect to a given orientational
* point. This point is relative to the reference point.

* E. g. get behind the ball with respect to the direction of the goal.
o

111

* (@param point Reference point.
* @param orient Directional point.
* @return Point behind the reference point (relative to it).
o
// from DTeam
private Vec2 getBehindPoint(Vec2 point, Vec2 orient) {
Vec2 behind point = new Vec2(0,0);
double behind = 0;
double point_side = 0;

// find a vector from the point, away from the orientation
// you want to be

behind point.sett(orient.t);

behind point.setr(orient.r);

behind point.sub(point);
behind point.setr(-Common.RADIUS OF PLAYER*1.8);

// determine if you are behind the object with respect
// to the orientation
behind = Math.cos(Math.abs(point.t - behind point.t));

// determine if you are on the left or right hand side
// with respect to the orientation
point_side = Math.sin(Math.abs(point.t - behind point.t));

/[if you are in FRONT
if(behind > 0) {
// make the behind point more of a beside point
// by rotating it depending on the side of the
// orientation you are on
if(point_side > 0)
behind_point.sett(behind_point.t + Math.P1/2);
else
behind point.sett(behind point.t - Math.P1/2);

}

// move toward the behind point
return behind point;

JEE

* Returns a true, if the robot at "point" is behind the object
* relative to the orientation "orient" within a certain degree

112

* of tolerance in angle.
*
* (@param point Location of robot.
* (@param orient Directional point.
* (@return Am [behind?
*/
private boolean behindPoint(Vec2 point, Vec2 orient) {
// you are behind an object relative to the orientation
// if your position relative to the point and the orientation
// are approximately the same
if(Math.abs(point.t - orient.t) < Math.P1/10) {
return true;
} else {
return false;

[x*

* Introduced from v_SweetSpot r.java
* Return a Vec2 pointing from the
* center of the robot to the sweet spot.
* (@param timestamp long, only get new information
¥ if timestamp > than last call or timestamp == -1.
* @return the sensed ball
®/
private Vec2 kickFromTo(Vec2 point, Vec2 destination) {
Vec2 last spot = new Vec2(point.x, point.y);
last spot.sub(destination);
last spot.setr(Common.RADIUS OF PLAYER);
last spot.add(point);
return(last_spot);

}

f}'**

* Set move vector to move towards target while avoiding collisions.
*

* (@param target Location the robot is aiming for.
¥/
private void avoidCollision(Vec2 target) {
if(DEBUG) notifyBoard("Avoid Collision");
/I Generally we want to move towards our target.
move = new Vec2(target);
if (closestPlayer.r <2.1 * Common.RADIUS OF PLAYER) {
// Someone's touching me, get free!

113

move.sett(closestPlayer.t + Math.PI);
move.setr(Common.MAXSPEED);

} else {
// At this angle we're facing our closest obstacle
double angle = move.t - closestPlayer.t;

// For fuzzy control distance is in robot radii and angle is in degrees.

frs avoidCollision.setVariable("distance",
closestPlayer.r/Common.RADIUS OF PLAYER);

frs avoidCollision.setVariable("angle", Math.abs(Units.RadToDeg(angle)));

frs_avoidCollision.evaluate();

double correctAngle =
frs avoidCollision.getVariable("turn").getLatestDefuzzified Value();

correctAngle = -Math.signum(closestPlayer.t) *
Units.DegToRad(correctAngle);

double speed =
frs_avoidCollision.getVariable("speed").getLatestDefuzzified Value();

/I Correct the vector for our movement.
move.rotate(correctAngle);
move.setr(speed);

h
;

/** am I closest to ball than all other players(teammates & opponents)
* (@return true if I am cloest to ball
*/
private boolean amIClosestToBall() {
Vec2 tmp = new Vec2(teammates|[closestToBall]);
tmp.sub(ball);
if(tmp.r < ball.r) return false;

/I opponents
int index = closestTo(ball, opponents);

tmp = opponents[index];
tmp.sub(ball);

if(tmp.r < ball.r) return false;
return true;

}

T T
// BALL PASSING

114

T T
private void passBall() {
passBall fuzzy(behaveObject);

j

J,."=|t==|=
* Adjust my towarding angle to kick the ball in order to make ball
* moving as expected
*/
private void passBall fuzzy(int to) {
errCode <<= 4;
if(readyToKick(teammates[to])) {
errCode += 1;
if(DEBUG) notifyBoard("Ready to pass to " + to);
adjustAngleToKick(teammates[to]);
} else {
errCode += 2;
If(DEBUG) notifyBoard("Move back ball toward teammate " + to);
Vec2 ballTarget = adjustBallOrient(teammates[to]);

moveBehind(ball, Common.DISTANCE BALL PLAYER RADIUS,
ballTarget);
'

errCode >>= 4;
}

’H‘*
* Get the coming ball (continue the passing)
o'
private void getPassingBall() {
if(behaveObject != Common.SUNDEF) {
getPassingBall(behaveObject);
return;

;

Vec2 ballTarget = new Vec2();

ballTarget.sett(ballSteer);

ballTarget.add(ball);

move.sety(move.y + Math.signum(ballTarget.y)
* Common.RADIUS OF PLAYER);

j

[

* Get the passing ball, decide to pass

115

* @param from : the kicker index
o)
private void getPassingBall(int from) {
Vec2 ballTarget = adjustBallOrient(Common.ORIGIN _POINT);
move = ballTarget;

Vec2 newBall = new Vec2();

newBall.sett(ballSteer);

move.sety(move.y + Math.signum(newBall.y)
* Common.RADIUS OF PLAYER);

H

f**

* Adjust angle to kick

* Only when it is ready to kick (call readyToKick() for check first)
* @param pos : target position where the ball to go

*]
private void adjustAngleToKick(Vec2 pos) {

errCode <<=4;

Vec2 pos_fromBall = new Vec2(pos);
pos fromBall.sub(ball);
errCode += 1;

Vec2 ball fromMe = new Vec2(ball);

ball fromMe.sett((ball fromMe.t - pos_fromBall.t)/2
+ pos_fromBall.t);

errCode += 1;

move = new Vec2();
move.setr(Common.MAXSPEED);
move.sett(ball fromMe.t);

kickit = true;

errCode +=1;

errCode >>= 4;
}

r‘,-‘)Ilﬂit

* Move behind the point and towarding the orient direction
* @param obj : object position

* @param r : radius of the object

* (@param orient : orientation

116

i
private void moveBehind(Vec2 obj, double r, Vec2 orient) {
move = getBehindPoint(obj, r, orient);

}

JE*

* Fuzzy Adjust ball angle in order to pass to teammate with minimum threat from
opponents
¥ @param index : teammates index
* (@return
¥/
private Vec2 adjustBallOrient(Vec2 teammate) {//int teammatelndex) |
errCode <<= 4;

Vec?2 target;

if(action == Common.ROLE PASSING ||
action == Common.ROLE CATCH PASS) {
errCode += 1;
target = new Vec2(teammate);
target.sub(ball);

double rotateAngle = adjustBallAngle(ball, teammate, opponents);
target.sett(target.t + rotateAngle);

Vec2 newPos = new Vec2(teammate);
newPos.sub(ball);

target.setr(newPos.r * 0.66);
target.add(ball);
} else {
errCode += 15;
Common.err(CURLOCATE, "Not recommended to pass ball.");
target = new Vec2(0, 0);
}

errCode >>=4;

return target;

|

J,|’=|‘HIi=

* Fuzzy Adjust ball angle in order to pass to teammate with minimum threat from
opponents

17

* @param from : the point calculate from

* @param to : teammate that pass to

* @param opponents : opponents that take into accounts
* @return

b |

private double adjustBallAngle(Vec2 from, Vec2 to, Vec2[] opponents) {
errCode <<= 4;

double correctAngle = 0;

double maxPositiveAngle = 0,
minNegativeAngle = 0;

// shift "to" coordinate
Vec2 to_fromBall = new Vec2(to);
to_fromBall.sub(from);

for(int 1=0; i<opponents.length; ++1) {
// shift "opponent" coordinate
Vec2 opponent_fromBall = new Vec2(opponents[i]);
opponent fromBall.sub(from);

if(opponent fromBall.r > to_fromBall.r) {
continue;

}

// rotate "opponent" coordinate
double newt = opponent fromBall.t - to fromBall.t;
opponent fromBall.sett(newt);

// fuzzy control to find suitable adjusted ball angle
correctAngle = fuzzyAngle Adjust(
opponent fromBall.t, opponent fromBall.r);

if(correctAngle > maxPositiveAngle) {
// maximum positive angle
maxPositiveAngle = correctAngle;

} else if(correctAngle < minNegativeAngle) {
// minimum positive angle
minNegativeAngle = correctAngle;

j
}

/1 final correct angle

118

correctAngle = maxPositiveAngle + minNegativeAngle;
errCode >>=4;

return correctAngle;

}

JE*

* Fuzzy Control to adjust the object to turn
* in order to minimize the potential threat

* @param in_angle :input angle in radian

* (@param in_distance : input distance in real map distance
* @return : output angle to turn in radian

74

private double fuzzyAngleAdjust(double in_angle,
double in_distance) {
errCode <<= 4;
double correctAngle;

// avoid some bug that input angle's abs value is greater than PI
while(in_angle > Math.PI) in_angle -= Common.PI12;
while(in angle <-Math.PI) in_angle += Common.PI2;

// convert radial distance to input format (number of times of the player radius)

frs ballPass.setVariable("distance",
in_distance/Common.RADIUS OF PLAYER);

// convert radian angle to input degree angle

frs ballPass.setVariable("angle",
Math.abs(Units.RadToDeg(in angle)));

// start evaluation

frs ballPass.evaluate();

/I get output degree angle turn

correctAngle = frs_ballPass.getVariable("turn™)
.getLatestDefuzzifiedValue();

// convert degree angle to radian angle and to other direction

correctAngle = -(Math.signum(in_angle))
* Units.DegToRad(correctAngle);

if(DEBUG) {
String str = "\n"
+ "\tinput angle in radian : " +
in_angle + "\n"
+ "\tinput angle in degree : " +
Units.RadToDeg(in angle) + "\n"

119

+ "\tinput distance inreal : " +

in_distance + "\n"

+ "\tinput distance in radius : "

+ in_distance/Common.RADIUS OF PLAYER +"\n"
+ "\toutput angle in radian : "

+ correctAngle + "\n"

+ "\toutput angle in degree : "

+ Units.RadToDeg(correctAngle);

notifyBoard(str);

}

errCode >>=4;
return correctAngle;

}

[

* Check is current angle between line "me-ball" and "me-target" OK for SHOOT

* @pos : Target Position
* @return :is OK to kick ball now?
5/

private boolean readyToKick(Vec2 pos) {
double angle = pos.t - ball.t;
while(angle > Common.PI) { angle -= Common.PI2; }
while(angle < -Common.PI) { angle += Common.P12; }
return Math.abs(angle) < Common.ANGLE OK TO KICK;

}

r,r‘**
* Introduced from tony
// get angle between 2 lines
// which the crossing point is "me"
* *,f"
private double getAngle(Vec2 tol, Vec2 to2) {
Vec2 from = new Vec2(0.0, 0.0);
return getAngle(from, tol, to2);

}

;‘**

* Introduced from tony
* get angle between 2 lines
* 1st line: from -> tol, 2nd line: from -> to2
* @param from
* @param tol
* @param to2

120

* (@return
*/
private double getAngle(Vec2 from, Vec2 tol, Vec2 to2) {
double angle;
Vec2 tmpl = new Vec2(tol),
tmp2 = new Vec2(to2);
tmp1.sub(from);
tmp2.sub(from);
angle = Math.abs(tmp1.t - tmp2.t);
if(angle > Math.PI) angle = Common.PI2 - angle;
return angle;

J,"**

* Constructor

#

* (@param client : indicate the client side control system

* (@param id : indicate the control robot id

* (@param flag : indicate the team id that the robot is belonging to

o

*/

public RCS Simulation(Receiver obj, int id, int flag) {
init(id, flag, String.format("Robot [%d]", myID));
addReceiver(obj);
setGoal(-Common.GAME COURT WIDTH/2, 0);
/foutput("My Num : " + myID);

teammates = new Vec2[Common.MAXPLAYERINTEAM - 1];
opponents = new Vec2[Common.MAXPLAYERINTEAM];
_teammates = new Vec2[Common.MAXPLAYERINTEAM - 1];
_opponents = new Vec2[Common.MAXPLAYERINTEAM];
_teammatesSteer = new double[Common.MAXPLAYERINTEAM - 1];
_opponentsSteer = new double[Common.MAXPLAY ERINTEAM];
notifyBoard("Start player basic configuration i

this.configure();

this.reset();

notifyBoard("After configuration.");

}

public void setGoal(double goalX, double goalY) {
this.ourGoal = new Vec2(goalX, goalY);
this.theirGoal = new Vec2(-goalX, goalY);

}

121

protected boolean setPlayer(int id, int flag, double x, double y, double steer) {
/motifyBoard("\n[Set Player : "+id+"-"+flag+":"+x+","+y+"]");
int index;// = id;
if(id == myID) {
/MmotifyBoard("It is me."),
_myAbsPosition = new Vec2(x, y);
_mySteer = steer;
} else if(Common.isBall(id, flag)) {
// is ball
_ball = new Vec2(x, y);
_ballSteer = steer;
} else if(Common.isTeammate(id, flag)) {
// is teammate
if(id < myID) {
index = id - Common.ID_START OF TEAM;
_teammates[index] = new Vec2(X, y);
_teammatesSteer[index] = steer;
} else {
index = id - Common.ID START OF TEAM - 1;
_teammates[index] = new Vec2(x, y);
_teammatesSteer[index] = steer;
b
} else if(Common.isOpponent(id, flag)) {
/I is opponent
index = id - Common.ID START OF OPPONENT;
_opponents[index] = new Vec2(x, y);
_opponentsSteer[index] = steer;

}

return true;

}

public boolean setBehave(int id, int behave, int behaveObject) {
if(id == myID) {
_behave = behave;
notifyBoard("set Behave as : " + behave);

if(behaveObject >= Common.ID_START OF TEAM && behaveObject <
mylID) {
_behaveObject = behaveObject - Common.ID START OF TEAM,;
} else if(behaveObject > myID && behaveObject <=
Common.ID_ END OF TEAM) {
_behaveObject = behaveObject - (Common.ID_START OF TEAM + 1);
} else if(behaveObject >= Common.ID START OF OPPONENT &&

122

behaveObject <= Common.ID END OF OPPONENT) {
_behaveObject = behaveObject - Common.ID _START OF OPPONENT;
} else {
_behaveObject = behaveObject;
J
}

return true;

}

public boolean setGlobalStrategy(int gb, int gbo) {
_behaveGlobal = gb;
_behaveGlobalObject = gbo;

if(gb == Common.ROLE ASSIST) {
if(behaveGlobalObject >= Common.ID START OF TEAM &&
behaveGlobalObject < myID) {
_behaveGlobalObject -= Common.ID START OF TEAM;
i else if(behaveGlobalObject > mylD && behaveGlobalObject <=
Common.ID END OF TEAM) {
_behaveGlobalObject -= (Common.ID _START OF TEAM + 1);
i else if(behaveGlobalObject >= Common.ID_START OF OPPONENT &&
behaveGlobalObject <= Common.ID_END OF OPPONENT) {
behaveGlobalObject -= Common.ID START OF OPPONENT;
;
{

return true,

y

J,.fﬁlﬁlc

* Calculate the relative coordinates
* for ball, goals and all players
i
private void resetPosition() {
errCode <<=4;
myAbsPosition = new Vec2(_myAbsPosition);
ball = new Vec2(_ball);
errCode +=1;
for(int 1=0; i<_teammates.length; ++1) {
teammates[i] = new Vec2(_ teammates][i]);
}
errfCode +=1;
for(int i=0; i< _opponents.length; ++1) {
opponents[i] = new Vec2(_opponents[i]);

123

}

errCode += 1;
ballSteer = ballSteer;
mySteer = _mySteer;

behave = behave;
behaveObject = behaveObject;

behaveGlobal = behaveGlobal;
behaveGlobalObject = behaveGlobalObject;

_behave = behaveGlobal = Common.SUNDEF;

_behaveObject = behaveGlobalObject = Common.SUNDEF;

errCode += 1;
T T
setGoal(-Common.GAME COURT WIDTH/2, 0);
errCode += 1;
if(ourGoal == null || theirGoal == null) {
Common.err(CURLOCATE, "Our Goal is null.");
errCode = Common.ERROR RCS SIM_ GOALMISS;
errCode >>=4;
return ;
h
errCode += 1;
if(myAbsPosition == null) {
Common.err(CURLOCATE, "My Position is null.");
errCode = Common.ERROR_RCS_SIM_ABSPOSMISS;
errCode >>=4;
return;
}
ourGoal.sub(myAbsPosition);
theirGoal.sub(myAbsPosition);
errCode +=1;
upGoal opponent = new Vec2(theirGoal.x,
theirGoal.y+Common.GOAL_HALF _WIDTH);
downGoal opponent = new Vec2(theirGoal.x, theirGoal.y-
Common.GOAL HALF WIDTH);
upGoal_team = new Vec2(ourGoal.x,
ourGoal.y+Common.GOAL HALF WIDTH);
downGoal team = new Vec2(ourGoal.x, ourGoal.y-
Common.GOAL HALF WIDTH);
errCode += 1;
ball.sub(myAbsPosition);
//motifyBoard("Ball Position : " + ball.x + ", " + ball.y);

124

errCode += 1;

nt 1=0;

for(; i<teammates.length; ++1) {
opponents[i].sub(myAbsPosition);
teammates|[i].sub(myAbsPosition);
/loutput(i+ " :: " + teammates[i].x + ", "+ teammates|[i].y);

i

errCode +=1;

// opponents array have one more player than teammates array

/I (in teammates array, "me" is not there)

opponents[i].sub(myAbsPosition);

errCode >>=4;

}

T T

// Abstract Function

I

public void init(int id, int flag, String name) {
this.myID = id,;
this.myTeamflag = flag;
notifyBoard("Initialize simulation for player " + id);

//mylndex = 1d%Common.MAXPLAYERINTEAM;

switch (myID%Common.MAXPLAYERINTEAM) {
case 0: role = Common.ROLE_GOALIE; break;
case |: role = Common.ROLE BACKUP; break;
case 2: role = Common.ROLE_OFFSIDE; break;
case 3: role = Common.ROLE DRIVE BALL; break;
default : role = Common.ROLE CENTER;

;

behave = behave = -1;
behaveObject = behaveObject =-1;
}

public void setPosition(double x, double y) {
setPosition(new Vec2(x, y));

}

public void setPosition(Vec2 pos) {
this.myAbsPosition = pos;

}

}

public Vec2 getPosition() {
return this.myAbsPosition;

}

public Vec2 getMove() {
return move;

}

public int getOperation() {
if(kickit) return Common.OPERATION KICK;
return Common.OPERATION MOVE;

}
N S v T 8 AN D W

private void notifyBoard(String str) {
Common.processMessage(CURLOCATE, str);

}

126

