
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Synthesized Cooperative Strategies for Intelligent Multi­

Robots in a Real-Time Distributed Environment

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Science

ll1

Computer Science

at Massey University, Albany, New Zealand.

Caoyun, Lin

2009

Abstract
ln the robot soccer domain , rea l-time response usuall y curtail s the deve lopment of
more complex Al-based game strategies, path-planning and team cooperation between
intelli gent agents. In light of thi s problem, di stributing computationall y intensive
algori thms between severa l machines to contro l, coordinate and dynamica ll y ass ign
ro les to a team of robots, and allowing them to communicate via a network gives ri se
to rea l-time cooperation in a multi-robotic team. Thi s research presents a myriad of
algorithms tested on a di stributed sys tem pl atform that allows fo r cooperating multi­
agents in a dynami c environment. The tes t bed is an ex tension of a popular robot
simulation system in the public domain developed at Carnegie Mell on Uni versity,
known as TeamB ots. A low-l evel rea l-time network ga me protoco l using TCP/IP and
UDP were incorporated to allow for a conglomeration of multi -agent to communi cate
and work cohes ive ly as a team. Intelligent agents were defin ed to take on ro les such
as game coach agent, vision agent, and soccer player agents. Further, team
coopera tion is demonstra ted by integrating a rea l-time fuzzy log ic-based ball-pass ing
algorith m and a fuzzy logic algorithm for path pl ann ing.

Artific ial Intelli gence, Ba ll Pass ing, the coaching system, Co llabora ti ve, Distributed
Mul ti-Agent, Fuzzy Logic, Role Ass ignment

A ck11owledae1ne11t <..,

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Napoleon

Reyes during this work. And , finally, I am forever indebted to my friends and fami ly

for their understanding, encouragement and supports.

Ill

Table of Contents

I Research Descripti on I
1.1 Introduction I
1.2 Research Objectives I
1.3 Signifi cance of the Research 2
1.4 Overview the Probl em Domain: Robot Soccer 2

1.4.1 RoboCup 2

1.4.2 FJRA Cup 3

1.4.3 Artific ial Intelligence in Robot Soccer. .. .4

1 .4.4 Multi-Agent Roles, Strategies and Tactics4
2 Review of Related Literature 7

2. 1 Rea li za ti on of a Ball Pass ing Strategy for a Robot Soccer Game: A Case Study
of In tegrated Plann ing of Contro l 7
2.2 Supervised Control of Cooperati ve Multi-Agent Roboti c Vehi cles 8
2.3 System Design and Strategy In tegration fo r Five-on-five Robot Soccer
Con1petition I 0
2.4 A Cooperati ve Mu lti-Agent System and Its Rea l Time Application to Robot
Soccer. 11

2.5 Protocols for Co ll abora ti on, Coordination and Dynamic Role Ass ignment in a
Robot Tean1 13

2.6 Decision Mak ing for MiroSot Soccer Playing Robot 14

2.7 Robots Playing to Win : Evolutionary Soccer Strategies 16

3 The Algorithms 17

3. 1 Game System Simulation Cycle 17

3.2 General Sys tem Architectures 18

3.2. 1 General Model of Single Contro l Sys tem 18

3.2.2 Genera l Model of Mu lti -Agent System 19

3.3 Supervised Multi-Agent System 20

3.3. 1 Supervised Multi-Agent System Architecture 20

3.3.2 Supervised Multi-Agent System Des ign 21

3.3.2. 1 TeamBots 2 1

3.3.2.2 UML Description 23

3.3.2.3 implementation Issues and Performance 25

3.3.3 Robot Control System 26

3.3.3. 1 Description 26

3.3.3 .2 Implementation Issues and Perforrnance 27

3.4 Real-time Network Game Protocol.. 27

3.4. 1 Communication Mechanism 27

3.4.2 Network Flow 28

3.4.3 Communication Message Format. 30

3.4.3. I Message Sent from Vision System 31

V

3.4.3.2 Message Sent from the Coaching System 33
3.4.3.3 Message Sent from Robot Control System. 34

3.5 Passive Role Assignment. 36

3.5.1 Overview of Role Assignments Problem Domain 36
3.5.2 Passive Role Assignment Approach 36
3.5.3 Experiment on Passive Role Assignment on Goalie 37

3.6 Fuzzy Control for Realization of Ball Passing 39
3.6.1 Overview of Ball Passing Problem Domain ... 39
3.6.2 Realization of Ball Passing41
3.6.3 Fuzzy Inference System for Desired Passing Angle44
3.6.4 FIS Output Applied for Passer and Receiver Agents 52

4 Simulation Environment Evaluation 55
4.1 Prerequisite and Assumptions 55
4.2 Performance Measurement. 57

5 Synthesis of Research Contributions 65
6 Conclusions 69
References 7 I
Appendix A: Fuzzy rule set file for fuzzy control ball passing 75
Appendix B: Fuzzy rule set file for obstacle avoidance 79
Appendix C: The coaching system's simulation file - Coach_ Simulation.java 81
Appendix D: Robot control system simulation file - RCS_ Simulation.java 95

VI

List of Figures

Figure I Small size league of RoboCup [27). 2
Figure 2 Middle size league of RoboCup 2004 [27) 3
Figure 3 Simulation league of RoboCup [27). 3
Figure 4 Four-legged league [27). 3
Figure 5 RoboCup 2006 humanoid [27]. 3
Figure 6 Three roles in a cycl ic ball pass ing situation [l 3). 7
Figure 7 Three mobile robots path planning fo r ba ll pass ing strategy [13]. 8
Figure 8 Shows a scheme for deliberati ve task decomposition and planning of
cooperative robots [I]. I 0
Figure 9 Shoot and position_to_shoot actions [30). I I
Figure IO Intercept ball ac tion [30). I 2
Figure 11 Sweep ball action [30). I 2
Figure 12 Block action [30). I 3
Figure 13 Protocol for dynami c ro le assignment [23). 13
Figure 14 Three layers for rule-based fuzzy decision mak ing mechani sm [26]. l 4
Figure 15 The ShootAtGoa l action in an XML representat ion [26). 15
Figure 16 Rules logic tree [26). l 5
Figure 17 Game world communication 17
Figure 18 Single control system model for robot soccer competition 18
Figure 19 Multi-agent control system model fo r robot soccer competition 19
Figure 20 Mode l of coaching control sys tem 20
Figure 21 Message communi cation fl ow 21
Figure 22 Virtual RoboCup compet ition in 3D [27). 22
Figure 23 Software packages 24
Figure 24 UML description : class diagra m 25
Figure 25 Mu lti-pl ayer network game - Counter-Strike v l .6 27
Figure 26 Network flow chart... 29
Figure 27 Specified game situation for message sent from the vision system 32
Figure 28 Specified game situation for message sent from the coaching system 34
Figure 29 Specified game situation for message sent from the control system 35
Figure 30 Initial stage of role switching (Goalie: player 5) 38
Figure 31 Role switched (Goalie: 6) 38
Figure 32 ls inside check40
Figure 33 Same-side-technique40
Figure 34 Ball passing state42
Fi gure 35 Ball passing input in geometry43
Figure 36 Multi-adjusted-ball-passing angles43
Figure 37 Fuzzy inference sys tem44
Figure 38 Polar coordinate of ball pass ing45
Figure 39 Fuzzy inputs - pol ar coordination46

V II

Figure 40 Fuzzy input - angle48
Figure 41 Fuzzy input - distance48
Figure 42 Fuzzy output - angle to turn49

Figure 43 Ball passing simple test.49
Figure 44 Enhanced with polar coordinate ball passing area 50

Figure 45 Ball passing - FIS applied for opponent 1 I 51
Figure 46 Ball passing - FIS Applied for opponent 12 5 I
Figure 47 Ball passing - desired ball passing path to avoid interception 52
Figure 48 Ball passing: passer to kick the ball... 53
Figure 49 Ball passing test with trails 53
Figure 50 Ball passing: receiver to catch the passing ball... 54
Figure 51 The control window 56
Figure 52 Time consumption of the coaching system and the robot control system .. . 60
Figure 53 Time consumption of general multi-agent system 61
Figure 54 Ball passing stage 1 63
Figure 55 Ball passing stage 2 63
Figure 56 Ball passing stage 3 63
Figure 57 Ball passing stage 4 63
Figure 58 Ball passing stage 5 63
Figure 59 Ball passing stage 6 63
Figure 60 A desired ball passing [13). 67

Vlll

Index of Tables

Table 1 Classes comparison with original. ... 22

Table 2 Fuzzy Associative Memory (FAM) matrix46

Table 3 Fuzzy input distance membership sets (in number of ball radius)47

Table 4 Fuzzy input angle membership sets .. .47

Table 5 Defuzzify output "angle to turn" membership sets .. .4 7

Table 6 Objects' position in Figure 43 .. 50

Table 7 Polar coordinate positions .. 50

Table 8 FIS takes inputs and produces output. ... 51

Table 9 Testing computer details .. 55

Table IO Scope and limitation .. 57

Table 11 Performance measurement data ... 59

lX

1 Research Description

1.1 Introduction

The robot soccer game, s111ce its inception 111 1987 was aimed at providing the
research community with an exciting and fert il e ground for art ificial in te lligence,
machin e vision, communications, control sys tems, sensor data fusion , multi -agent,
mechanical and electrical integration, decision-making and response, arti ficia l life and
multi -robotics resea rches among many others.

This research endeavor ex tends the computing capab iliti es and compl ex ity of
coopera tion between multi-agent by harn ess ing a distributed system approach, while
ensuring that rea l-time decis ion schemes could be executed. A network ga me protocol
is built on top of an ex isting popular robot soccer simul ation pl atform deve loped at
Carnegie Mellon Uni versity, known as TeamBots. The system allows fo r the
parti cipation of a multitude of computers interconnected to form and control a robot
soccer team. The di stributed system is comprised of a vision agent, intelligent coach,
and robot occer pl ayers and each could be run on a separate machine. The main
impetus is that each robot is allowed to perfo rm co mplex tasks, given a ro le that is
dynam ica ll y ass igned by the coach, depending on the game situation. Each robot in
turn , performs target pursuit , obstacle avoidance, ball dribb ling, ball pass ing and ball
shooting independentl y of the others. With the aid of an intelligent coach, full­
cooperation between the robots is made feas ibl e. As an example, experiment resu lts
demonstrate how ball-passing is improved between players by utili zing a fuzzy logic­
based approach. Moreover, rol e allocation is passive ly computed by the coach to
des ignate the best candidate robot mos t suited for a given role (e. g. goa l keeper,
attacker, defender, support, etc.). All these cooperating multi-agent and the artificia l
intelligence inculca ted in them were te ted in an actua l intranet connection that passes
through the complete IP stack. The system performance was measured and eva luated
and were shown to run all in real-time.

1.2 Research Objectives

The primary obj ectives of thi s research are:
I. To design and implement a rea l-time Supervised Multi-Agent System (SMAS)

for coord inating a team of robots in a distributed environment (discussed in
Sec. 3.3).

2. To develop a rea l-time network communication protocol and fuse it with the
TeamBots robot soccer engine (Sec. 3.4) .

3. To develop an algorithm for role allocation in a changing environment (Sec.

3.5) .

4. To develop an adaptive fuzzy logic control system for ball passing between

multi-agents and enhance their cooperation (discussed in Sec. 3.6).

1.3 Significance of the Research

This research proposes SMAS in order to achieve real-time multi-agent

collaboration and more efficient delegation of algorithm computation among agents

(Sec. 3.3). Contrary to non-supervised multi-agent systems, the proposed architecture

allows for more complex algorithms to be deployed among agents, allowing for

independent path-planning. An intelligent coach is designated to device the team's

strategy, allocating specific roles to each member of the team (Sec. 3.5). This

approach significantly reduces redundancy of role assignments and enhances team

cooperation.

1.4 Overview the Problem Domain: Robot Soccer

1.4.1 RoboCup

RoboCup is an attractive international competition that poses an interesting problem

in the planning of coordinated motion of individual players as a team against an

opponent team. It aims to promote researches on real-time searching for an optimal

coordinated motion of the intelligent agents. The ultimate goal of the RoboCup

project is that by 2050, a team of fully autonomous humanoid robots that can win

against the human world champion team in soccer will be developed [27].

Related events:

(1) Small Size League (diameter of less than 15 cm)

Figure I Small size league of RoboCup [27]

(2) Middle Size League (15 cm <((50 cm)

2

Figure 2 Middle size league of RoboC11p 2004 [27}

(3) Simul ation League

Figure 3 Simulation league of RoboC11p [271

(4) Four-Legged League

Figure 4 Four-legged league [2~1

(5) Humanoid League

Figure 5 RoboCup 2006 humanoid [27}

1.4.2 FIRA Cup

FIRA Cup is yet another world-wide roboti cs project that promotes research on

autonomous mobile roboti c intelligent systems. It is a research initi ati ve that helps

generate interests among the young generati on to be involved with cutting-edge

technology resea rches . The impact of these researches is believed to change the future

life of mankind in a vari ety of ways.

3

1.4.3 Artificial Intelligence in Robot Soccer

Artificial Intelligence (AI) is the core of research that this study aims to contribute in.
Inculcating intelligence in a team of robots to make them autonomous, cooperative
and adaptive to a dynamic hostile environment is the focus of this research. To
mention a few of the candidate algorithms suitable for this problem, we have the

following AI technologies:

I . Fuzzy logic is deemed to be very much suitable for robots motion control [8] ,
such as role assignment [24] ,collision avoidance problem [7] and path planing
[22]. It is in fact, a precise problem-solving methodology and utilizing the
approach can result to higher accuracy and smoother control. The technique
mimics the way humans think, allowing for vague description of the solution
in tenns of fuzzy rules . Fuzzy logic is regarded to be a promising technology
with products worth hundreds of billions now available in the market.

2. Neural network in [20] and Q-learning refen-ed in [18] are popular AI
techniques that are suitable for the robot soccer problem domain. The
paradigm could be utili zed to allow robots to learn from the environment by
interaction. The learning mechanism behind Neural Networks imitates the
communication process in the central nervous system, involving neurons.
Through a network of neurons working together to perform some global task,
the system as a whole could exhibit complex global behaviors.

3. The A* algorithm is also one good candidate algorithm as it is an optimal path
plarming technique.

4. Alpha-beta pruning is not commonly used in the robot soccer game strategies
currently, but it can be used for improving decision-making in the game.

5. Hybrid intelligent approaches, like the combination of any of the mechanisms
above, such as path planning that combines algorithms like Fuzzy logic and
A* is also being reported to be an excellent option in the literature [2] .

1.4.4 Multi-Agent Roles, Strategies and Tactics

There are some common strategies and algorithms in robot soccer matches:

1. Dynamic role assignment is one important mechanism that could be employed
in the game. Depending on various situations, robots are assigned varying

roles to be a more effective member of the team with different action selection
mechanisms and action selection problem is also widely researched, such as in

4

[11] and [19].

2. The goa l keeper position is assigned to on ly one robot per team; therefore, thi s
position is deemed to be of extreme importance, as it dictates largely the result
of the competition. Most teams are prioriti zing in developing intelligence for
the goa lie position.

3. Ball pass ing enhances the effic iency of coordination and team work .
Therefore, this strategy translates to better team performance, and yet another
fac tor that cou ld lead to the domination of the ga me.

4. Target pursuit, is a fundamental algorithm necessary for retrieving the ball and
taking contro l of it. However, a target is not necessaril y just a physica l obj ect.
Algorithms fo r target pursuit are also used for blocking an opponent or
in tercepting the ball.

5. Path planning is crucia l to the game and has been widely researched on in
genera l. It takes into account obstac les along the path and should be executed
in real-time. The A* a lgorithm is one powerful technique for findin g the
shortest path to any des tination objects. ERRT [5] is another so lution to so lve
the time required path pl aning problem.

5

2 Review of Related Literature

The objecti ve of thi s research is to deve lop a di stributed cooperati ve system, guided

by an inte lligent coaching sys tem via a networking pro toco l. In addition, optimized

ro le ass ignment, and cooperati ve ball pass ing stra tegies are a lso inves ti gated. In thi s

section, a number of re lated works are di scussed and contrasted w ith the research

proposed.

2.1 Realization of a Ball Passing Strategy for a Robot

Soccer Game: A Case Study of Integrated Planning of

Control

Ba ll pass ing strategy is one signi fica nt facto r that influ ences the team 's success. A

proposed research in [13] exa mines the rea li zat ion and visualizat ion of ba ll pass ing

based on dynamic fo rmati on, ca lcul ating w hen an agent is ready to pas a ball

cyc li ca ll y. The robot fo rmat ion undergoes a z igzag patte rn .

P ~e\/ iOUlS player

• ..
• . -

Ba11 ° • . : •· , --lL..-,

Passer

Next player

Figure 6 Three roles in a cyclic ball passing situation [1 3}

There are three ro les involved fo r a cycli c ba ll pass ing as showed in Figure 6: Passer,

Prev ious player and ext player. It in vo lves two ball pass ing procedures w hi ch are

"Prev ious player to Passer" and " Passer to N ext player". To make a success ful system

for ba ll passing, careful traj ectory path pl anning is required. In turn , the problem has

been decomposed into a geo metri c path planning problem and a ve locity pl anning

prob lem. Wi th a predi cted kicking pos ition and path planning (as shown in Figure 7),

the pass ing acti ons are done successively. The implementa tion increases the chances

7

of breaking through the defense of opponents by surprise. However, each passing
procedure does not consider the effects of interceptions, which causes failure of ball
passing in the majority of situations. This problem has become one of the major

topics in this research and is discussed in detail in Sec. 3.6.

Figure 7 demonstrates the three kick-position corrections for robot "a". robot "a" acts
as the "previous player", while robot "b" serves as the "passer" and robot "c" serves
as the "next player" in this specific ball passing cycle. Dotted lines represent the ball
locus; dashed lines are three trajectories generated by kick predictions, and thick solid
curve is the actual trajectory that "a" desires to track. Vector v1 suggests the
approximate next kick position a, ' for the "previous player" which is robot "a".
Vector v2 is added to a new kick position to predict more accurate kick position

a2 ' when robot "a" is at locus P1 • Vectors v, and v2 are applied to generate
the trajectory a - a,' and P, - a2 ' separately as robot's reference trajectory.

Motion predictor tells the robot the exact kick position (a3 ') when robot "a"
arrives at P2 , and finally, trajectory p2 - a3 ' is generated.[13]

Figure 7 Three mobile robots path planning for ball passing strategy [I 3]

However, each passing procedure does not consider the effects of the interception,
which causes failure of ball passing in the majority of situations. Consequently, this
becomes one of the major topic in this research and is discussed in details in Sec. 3.6.

2.2 Supervised Control of Cooperative Multi-Agent

Robotic Vehicles

Cooperative task planning problem of robotic systems is a dynamic and complex
problem and is very challenging. As described in [l] , the author addresses 6 layers of

supervisory control architecture for coordinated task planning of a group of multi­
agent robots:

8

1. Executive Layer: is main ly responsible for overal l task mission plann ing of
Multi-agent Cooperative Robots. High-level de liberative sub-task plans are
generated in this control loop.

2. Perception Layer: produces motion plans for cooperative robots according to
deliberative task deployment schemes generated by the executive control loop.

3. Reactive Layer: is responsibl e for task- level navigational behavior of multi­
agent robots .

4. Reflex ive Layer: ts responsive to naviga tional emergencies and exceptional
situation handling.

5. Low Level Mobi lity Control Layer: is to facilitate mapp111g of motion
commands to motors/actuators low- level instructions that are communicated to
the physical robots via a scheduler through di stributed communication
channels.

6. Ca libration Layer: is to maintain and rectify inconsistency between simul ated
world model of cooperati ve robots and their phys ica l world mode l.

The approach presented in the paper invo lves decomposition, assignment, resource
allocation, task execution and monitoring. Figure 8 depicts deliberative task strategies
in the perception layer. Deliberati ve task strategies can be considered as a subset of
goa l-o ri ented tasks that cooperative robots may be engaged to perform in
synchron ized fas hion in both time and space.

9

Deliberative Cooperative/
Navigational Task

Deployment Strategies

Subsumptlon-based
Navigational Behaviors
~ ... - ""'~ ,,~~-~-! Adapriv~ }

t .. , ... Fnzzy-Logir J
~ ,(• • . : •• ~ ... ! m ! mo• ' •~ :

~ Refle1ive ·
3 , ..
.:., •• ·:.v..;.:,: w .. n,n .. • .. · •. · .. · .. ·...: .
....... *'"'~6.~~,.~!,:,.~,-!I,!,~:
~ Vuiual ~:

t Poteurii:1I-Field __ J.
~ -:t,,..,w:u -"'~'~~J:t.el:<!«fft: _
~ Un.ifonn- :;·

Gu•rd•d f

Figure 8 Shows a scheme for deliberative task decomposition and planning of
cooperative robots [J J

The solution overcomes a huge problem by dividing it into smaller and easier tasks

and assigning different roles to the mobile robots. ln relation to the soccer game, ball

passing tactic is able to perfom1 in synchronized fashion among players . The task is

decomposed as follows: a player with the job of kicking and passing the ball , another

player with the job of receiving the ball (Sec. 3.6) and even more players with the job

of further assisting [13].

2.3 System Design and Strategy Integration for Five-on­

five Robot Soccer Competition

The paper in [17] focuses on strategy realization of dual direction movement with

formation which is described as a role assignment for defensive and offensive

policies. Dual direction movement of the robotic offensive is highly increased by

using both front and rear sides of the robot to hit the ball. lt reveals fast mobility and

controls efficiency according to its experiments.

The role assignment strategy proposed by authors is dynamic according to the

location where the ball stays. For example, the n01mal formation in which there are

two strikers, a center, a backfielder and a goalkeeper is adopted when the ball stays

around middle field , and the offensive formation strategy is selected in which there

are three strikers but no center when the ball stays in the front half field.

Each role has its own duty, such as strikers is to get points, the center is to prevent the

ball entering home area and to kick the ball toward the front half field, and

10

backfi e lders take on senous defensi ve and substitute the goalkeeper to provide a

better protection if the goal becomes "open door", w hi ch is similar to goa li e rol e

switching (Sec. 3.5.3) .

2.4 A Cooperative Multi-Agent System and Its Real Time

Application to Robot Soccer

The resea rc h [30] po ints three control schemes such as remote-brainless soccer robot

system, a v ision-based system and a robot-based system . Remote-brainless one is too

simple to compl ete complex task by commanding robot's veloc ities like a radi o­

contro ll ed car, thus it is not recommended. The vis ion-based system is considered to

be a sys tem at an intermedi ate leve l between the remote brainl ess and th e robot-based

sys tem w ith mot ion contro l which is li ke a traditi ona l su pervisory sys tem. Robot­

based scheme a llows autonomous robots to make a dec ision based on in fo rm ati on

received by itse lf.

The control sys tem we developed is the robot-based one w ith its own intelligence

which is di scussed at Sec. 3.3 .3. However, a centrali zed superv isory system is

in trodu ced to prov ide g lobal s tra tegies (Sec . 3.3) which is simil ar to v ision-based

scheme.

Second ITlCVI point

\
- ~\

Figure 9 Shoot and position_to _shoot actions [30]

The di scuss ion and implementation al so in volves a control struc ture, behaviors and

common actions, which are Shoot and position_ to_ shoot actions, Lntercept_ ball

action , Sweep_ball action and Block action, and zoned strategies with role assignment

for the control system with some specifi ed situations in MIROSOT'96.

Figure 9 illustrates the shoot and pos iti on_ to_shoot ac tions . The fir t move point is

the des ired position to shoot ball to goa l pos ition , and moving towa rds " First move

II

point" is the pos1t10n_to_shoot action which is taken firstly. Then, by marking
"Second move point", shooting the ball at orientation from "First move point" to

"Second move point" will bring the ball to goal position which is known as shoot
action.

Eetimated +
intamtclion point I

(Xi, Yi) I
current
ball poaition _ .,. -

(Xb ,Yb) ---
....&-:.,..- .. ~ -... -

(Xbo .Y1>o}
Previou~
ball position

Cumin!

-
__ ...

robot position

Figure 10 Intercept ball action [30]

Figure 10 illustrates the intercept_ bal I action by calculating the the estimated
interception point between ball and the robot at the least time cost. According to the
estimated interception point, the robot will accelerate to maximum speed and orient
direction which is from current robot location pointing to estimated interception point.

e:~•
Robot ···-Eft·•·······

Homegoal Opposite goal

Figure 11 Sweep ball action [30]

Figure 11 illustrates the sweep_ ball action which is simple to implement by kicking
ball straight towards front half field. And Figure 12 shows the action of blocking
opponent away from the ball .

12

Figure 12 Block action [30]

For the ball pass ing strategy di scussed at Sec. 3.6.2, the shoot and pos ition_to_shoot
ac ti ons are adopted on the pa ser side. The rece ive r on the other hand , is abl e to ca tch
the ball by appl ying a similar in tercept_ball act ion.

2.5 Protocols for Collaboration, Coordination and

Dynamic Role Assignment in a Robot Team

Jn the research proposed in [23) , the methods fo r highl y moti va ting coopera tion 1s
rea li zed by empl oying a hierarchica l teammate avo idance algori thm and the support
of minimi zing in terfe rence between pl ayers. The teammates support is one of the
main foc us under di scuss ion which includes the cooperati on between goa lie and

ha lfback. The goa li e has the mos t priority to obtain the ball. The cooperation between
robots th rough communi cation by message sending is different from hav ing a the
coaching sys tem, wherein the communication is done through a centra li zed coach to
achieve collaboration among robots .

Send Ack

Figure 13 Protocol f or dynamic role assignment [23}

13

Another algorithm described in the research is to introduce the dynamic role
assignment to reduce the risk of the disadvantages of some important game situations.
For example, if the halfback loses control of the ball when it is close to opposite goal
and the floater moves out of defensive zone, the halfback is able to take advantage of
its position to become a striker and the floater becomes a halfback. Then, there is no
need for players to move around the field. The protocol of dynamic role assignment is

depicted in Figure 13 . Robots receiving roles are following the procedure as in the left
chart, and the right chart is followed by the robot initiating the reassignment.
Dynamic role assignment is an important and effective solution to the various
changing situations.

However, this requires the control system to utilize the limited system resources for
role selection checking every time even though the role is keeping unchanged most
time of the game. We have introduced a new concept "Passive role assignment" to
maximize the performance of the control system and it is discussed at Sec. 3.5.

2.6 Decision Making for MiroSot Soccer Playing Robots

The paper in [26] presents a rule-based fuzzy decision making mechanism for a
system which consists of three layers as showed in Figure 14 in the order of top to
bottom.

Strategy

Task Distribution

Action (Task)

Figure 14 Three layers for rule-based fuzzy decision making mechanism [26}

"Strategy layer decides the main behavior or strategy (offensive, defensive) for the

team, in order to reach the global goal. Role assignment."[26]. The task distribution
layer performs behavior selection as role assignment. The basic action layer
implements classic actions which are possible to be further divided into simple base­

actions, such as goto-position command. Fuzzy-based evaluation is introduced to the

system among three layers to avoid the toggling of decisions and XML is proposed
for description of environmental and behavior information in colloquial terms.

14

- <Act ion ref= "ShootAtGoa I">
<Weight ref= "Fo,wa rd " value=" l.0" />
<Weight ref="Defender" va lue="0.3 " />
<Weight ref="Goa lkeeper" va lue="0.05" / >

- < RuleSet>
- < And >

<Va lue term ="FreeToBall " / >
<Value term ="NearestToBall" />
<Value term ="BehindBall " />
<Va lue term = "FacingBall" />
<Va lue set="DistanceToBall" term ="N e ar" />

- < Not>
<Value term ="Oppon entNea rBall" />

</Not>
</And >

</RuleSet>
</Acti on >

Figure 15 The Shoo/A !Goal action in an XML representation [26]

--------/ --

DislanceToBall OpponentNear
->Near Ba ll

Figure I 6 Rules logic tree [26]

The spec ified XML fo rmed ShootAtGoa l ac ti on is showed in Figure 15 and its log ic

tree is depicted as Figure 16. Forward pl ayer, defender and goa lkeeper are th ree

weight fie lds in thi s act ion, and act ion will be performed if six-conjuncti vc­

precondi tions rul e, of whi ch fi ve preconditions are pos iti ve and one is nega ti ve, are

satisfi ed .

Low er level layer depends on the dec ision makin g by th e layer above it. The proposed

architecture of decision mak ing system enab les to so lve a big problem (e. g . to-win­

the-game) by di viding it into small er tasks (e. g . goalkeeper, attacker). In our cases,

we have separated some of g lobal cooperations to an add itional the coaching system,

not onl y ro le ass ignment, but al so the team cooperati ons, and it is go ing to be

di scussed at Sec. 3 .3.

15

2.7 Robots Playing to Win: Evolutionary Soccer

Strategies

The article [3] has proposed a special action selection mechanism according to role
allocation which is called "Tropism-Based Control Architecture" [3] and its system
behaves according to its likes and dislikes by selecting actions randomly. A number of
tropism elements are embedded with the system to match the sensory information.
The actual robot behavior is unpredictable but it is possible to be guessed which
actions have a higher probability to be chosen. E.g. aggressive control system would
more likely to perform offensive strategies, however it is also possible to act in a
defender's role under the same circumstance.

The system with tropism-based control becomes unpredictable to opponent's team.
However, the proposed system has a problem of not taking action if a robot senses a
novel situation for which no tropism exists in the system. Moreover, to achieve the
team coordination, robot behavior should be predictable by other teammates. With the
centralized the coaching system proposed by this research, an new approach is
introduced by improving tropism-based control architecture. By sending a global
random factor from the coaching system to all control systems, players behaviors
become unpredictable to opponents but predictable to teammates.

16

3 The Algorithms

This paper presents an approach to centralized cooperative strategies for inte lli gent

multi-robots in a rea l-time distributed system. Passive ro le ass ignment and

cooperat ive ball pass ing algorithm are developed, employed and tested in the new

proposed di stributed system.

3.1 Game System Simulation Cycle

Before discussing the system's design , it is adamant to comprehens ively understand

the components of the whole ga me process.

The majority of modern robot soccer systems are mainl y comprised of tbe fo ll owing

components (F igure 17): GAME ELEMENTS, SENSO RY DEV ICES and

S IM ULATO R-CO TROLLER.

Sensory
Devices

Game
Elements

Simulator &
Controller

send all objects' basic information (location)

Figure 17 Game world communication

GAME ELEME TS: are the phys ica l confined pl aying field , and all essential

obj ects participating in the ga me (team robots , opponent robots and ba ll).

SENSORY DEVICES: are the hardware and software devices sensing the

exp loratory environment for extracting the fundamental ga me detail s, such as locating

all objects position (e. g. v ision system, etc .).

17

SIMULATOR & CONTROLLER: is an intelligent simulation system that emulates

the game environment and evaluates the robot's decision with the reasoning machine.

On the other hand, the controller is tasked to move the robot in accordance with the

decision made. Each player in the game usually has its own simulator and controller,

and they are both employed in the automated system in general. The robot's behaviors

are attuned to yield the best possibility of achieving a common goal in the game.

During the game, SENSORY DEVICES will keep on extracting the information from

GAME ELEMENTS. This requires message passing using a standardized message

fonnat and broadcasting them to the SIMULATOR & CONTROLLER module.

Subsequently, the SIMULATOR will respond to the message received and will

produce the decision that will eventually be executed by the CONTROLLER.

3.2 General System Architectures

The conventional system architectures for implementing the robot soccer game are

discussed below.

3.2.1 General Model of Single Control System

ln the early system designs, the single control system takes the responsibilities for all

controllable automatons in the game [25] and its model is showed in Figure 18.

General Model of Single Control System Communication (Message Passing)

Game Elemen~

Other Player and Objects

Team Player

A Co ntro l System

Sensory Devices Simulator & Controller

Figure 18 Single control system model for robot soccer competition

The data of computation is shared by all robots, as they are controlled by a single

computer. This does not require interaction or communication between robots . In

18

addition, the set of actions assigned to each robot is ca lcu lated sequentially. The

conseq uence is obv iously a sca lability problem, as the cost of computation increases

exponentia ll y as the number of intelligent agents increase. Managing and contro lling

the team of agents also becomes very difficult and time consuming. Therefore, this

approach is not the best so lution and can be improved.

3.2.2 General Model of Multi-Agent System

To so lve the management problem of the s ing le contro l system, a multi-agent system

is introduced as a solution. This approach allows for parallel computations for all

automatons [29]. Figure 19 shows a model of the distributed multi-agent control

system.

General Model for Multi-Agents Control System Communication (Message Passing)

Game Elements

Sensory Devices Simulator & Controller

Figure 19 Multi-agent control system model for robot soccer competition

Unfortunately, the most sign ifi cant problem is the co ll aboration in real-time and

communication between control systems.

19

3.3 Supervised Multi-Agent System

3.3.1 Supervised Multi-Agent System Architecture

A similar distributed control architecture for cooperative robot soccer system is
proposed in [30] . One aim of this research is to create an intelligent the coaching
system that will highly enhance team collaboration among agents and will allow for a
more extensible distributed multi-agent environment.

Supervised Multi-Agent System (SMAS) is constructed based on a classic distributed
multi-agent system with an extra coaching system that broadcasts formatted
collaborative messages to all agents . SMAS is acting the role of a SIMULATOR,
which receives the message from the SENSORY DEVICES and evaluates decisions
that will be executed by the CONTROLLER.

\

..
C: ..
C:
0

E
\J ..
0

C:

J:

Model of Coaching Control System communication (Message Passing)

Robot Soccer Game World(Simulation)

~
~ ~ Other Player and ObJects

~ ---- - - - -- ---------- - ------- -- --

J

j --
Vision System Coaching System

Figure 20 Model of coaching control system

SMAS is composed of a coaching system and a group of control systems. There is

20

usually one control system (CS) for an agent whi ch is showed in Figure 20. Jt is

poss ible to a llow one agent to have mul tiple control system s for incul cating more

complex abili ties. However, in thi s research, we have limited the d is tribution of the

control systems in a one-computer-per-agent. The coaching system communica tes

w ith the contro l systems th roug h a standardi zed communication network protoco l.

The message, consisting of the basic game info rmation is sen t from the vision system

to the coaching sys tem and th e rest of the contro l sys tems . Jn turn , the coaching

sys tem might decide to eva luate an instru c ti on for a ll control sys tems. Subsequentl y,

the contro l systems w ill generate a robot movement dec ision based on the bas ic game

info rmati on received, and th e recent instru ction comi ng fro m the coaching system. A

complete message communica ti o n fl ow cyc le is depicted in Figure 21.

'o
C::
0

5
,._, <lJ
::i E
n. ro .s l'J

E e
lL

Coach I nstr uction
(Coach ing System)

u
~

:, 5
Q. <lJ
:, E
0 ro

l'J

t,

I mage Processing
(Vision System)

Movement decid ing Robot Motion Control
(Robot Contro l System) (Automatons)

Figure 21 Message commu11 icationflo111

3.3.2 Supervised Multi-Agent System Design

The chances of w inning the game large ly depends upon the control agents' movement

decision. The accuracy of the game in fo rmati on prov ided by sensors and the

perfo rmance of the system algorithms influence the movement dec ision directl y. In

accordance w ith the research obj ectives; that is, to construct and deve lop an effi cient

di stributed multi -agent system, s trategies and a lgorithms, experiments were

performed on a simulated soccer world, kn own as "TeamBots". This platform

provides a precise and real-time competition environment, allowing thi s research to

focus more on deve loping the SMAS architecture, strategies and algorithms.

3.3.2.1 TeamBots

The rea l robot soccer game 1s mapped into an animated, s imulated ga me program

2 1

which could be either in 2D or 3D. The 3-D environment is depicted in Figure 22.

Before system development starts, the simulation program is introduced, which is

developed by CMU -- "TeamBots". TeamBots is an open source program and more
details of it can be found by visiting http: //www.cs.cmu.edu/~trb/TeamBots/. Robot

control systems developed in TeamBots can run in simulation mode using the TBSims
simulation application. Alternatively, for actual mobile robots, the TBHard robot
execution environment can be used.

Figure 22 Virtual RoboCup competition in 3D [2 7]

In order to meet the demands of a distributed system, necessary modifications were
made. Significant modifications for comparison with the original version are showed
in Table 1. A simple program with broadcasting functionality serves as a "virtual
sensory device" (or vision system) to retrieve the game information exactly from the
TeamBots simulation program and broadcast that infonnation to SMAS. This
guarantees accuracy in determining player locations. Eventually, we are able to
concentrate on the structure of the SMAS with more efficient network protocol, better
strategies and algorithms.

Table 1 Classes comparison with original

Classes in new Original classes in Significant Modification
System (Modified) TeamBots Description

Main.java TBSim.java More flexible control
functionality

Coach_ Simulation.java DMod.java Passive role assignment and
bal I passing checking

RCS Simulation.java DMod.java Fuzzy control ball passing
VisionSystem.java NIA Extraction of accurate game

information and broadcasting to
the coaching system and the
control systems .

22

The program "VisionSystem .java" is running and acting as a sensory component in

the game to "see" the competition for the team .

The robots that participates in the game are represented as numbers of s imulated

objects (a membe r of array "sim ulated_objects") m the game

(Simu lationCanvas .java).

The opponent team is controll ed by the contro l systems which are embedded in

TeamBots, and our tea m is controlled by the SMAS which is composed of a coach

(CoachingSys tem.java) and five contro l sys tems (RobotContro lSystem.java).

3.3.2.2 UML Description

There are 4 application packages as depicted in Figure 23 for es tab li shing and running

a simulated robot soccer competi tion . Our team is con troll ed by SMAS. The fo ur

app li ca ti on packages are as fo ll ows:

I. Robot Soccer Game World -

This is "TeamBots", it takes the role of ga me simul at ion to run th e

compet ition.

2. Vision Sys tem -

Captures the image and gets object 's positi on, then , broadcasts the pos ition

detail s to the coaching contro l system and the robot contro l systems.

3. Coaching Control System -

This represents as a "coach" in the game to a llow cooperation in the team .

The "coach" receives a message, which contains the game information . In

turn , it makes g lobal co llaboration decisions, such when to execute ball

passing between players .

4 . Robot Control System -

Represents as an agent that receives game details and instructions, and then

integrates a ll information to make a move-decision and app ly it to the

autonomous agent.

Figure 24 shows the bas ic UML description for classes and interfaces of the coaching

contro l system. On the side of the coaching contro l system, it keeps the team

members ' details and has a coach li stener to observe the competition, and a coach

23

simulation to animate the competition . The connection listener accepts the incoming
connection requests and constructs the coITesponding connection prologue to decline
or authorize a control permit for the remote control system. At the same time the
control permit is granted, a broadcaster for the remote control system is established.
the coaching system will send the instructions by demand to the remote control
system once a decision is made.

Package

Robot occc•r (i:1111c• \\'or ld

Coaching Control
System

[C , ,,,hi"g s, """

-l C'o1111 r clio11
Lis tener

i • Cun ncl'f iun

Packa e

Robot Con trol System
1.isll·nL·r

~i,nulation

S imnl:llion

i P, olui,:

1C Si"'"'" ,·d r,,," -----1~-U-ro_a_d_Cl_lSl-l'-.. ~
Rubul Cunl rul

S~ Sl l' lll
I .isll.'m·r

>-+--------------~

Figure 23 Software packages

The robot control system has its main body to start the program and procedure and
establishes a connection with the control system. It requests for the control permit
from the coaching system. As soon as the permission is granted, the listener is set up
to gather messages from both the coaching system and the vision system. The control
system's simulation side evaluates a movement decision according to the game details
received by the listener.

24

~-. . ,__,_
1

Attributes
--

Methods

1

o .. *

~ 1•• . •"•· -
Attributes

Methods

+

g
C - o
u
OJ
N
·c:
0

£
::,
<>:

,.
1~-. - -. IHI I

1 1

Attributes

Methods

1

Vision System

I
I Message from Vision System
~--1

t
- -.. . ·-··

1 l
Attributes Attributes

Methods Methods

1

0
:,.r,r,;1,

Attributes

Methods

I Coaching Syste
I

m

1--
+

ir'- ., -
Robot Control Syste m

Attributes

Methods

2

1

- -.: "'
,:;,,-,,,,,.

.1 • 11111

1 1

Attributes

Methods

Attributes

Methods

I
I
I r--------"•'• a mose _________ J

Robot :[Jj

Figure 24 UML description : class diagram

3.3.2.3 Implementation Issues and Performance

The ro le of SMAS is to analyze the bas ic game environment in fo rmation and to

25

generate the instructions for the agents . In a real game, a coach instructs players based

on observations from global scope with the purpose of finding and broadcasting a
global strategy for the entire team.

Response from the coaching system has to be efficient and accurate, thus, only the
critical global strategies needed to be computed in the coaching system. One of them
is plaiming for a cooperative ball passing strategy. In comparison to non-coaching
systems, collaboration among agents is performed through a series of communication
exchanges. Each individual control system will have to determine their roles
independently and this would result to a very slow process of situation checking.

In the simulation game, there are two possible solutions for implementing agent
behaviors with the coaching system:

1) Sequential: the control systems (agents) only respond according to the
instruction that was sent by the coaching system and would not act otherwise
if no instruction is received

2) Synchronized: control systems (agents) act according to the message received
from the vision system and the coaching system. The coach only sends
instructions whenever deemed necessary. In tum, the agents can
independently plan and execute their actions based on some global strategy.
Consequently, the agents have more autonomicity.

According to the experiments on the sequential scheme, the delay of response from
the control systems is significant, especially when perfonning complex tasks. On the
other hand, for the coach-guided team, each agent will be able to independently
contribute to the team as they can do path-planning, obstacle avoidance and ball­
passing all the same time.

3.3.3 Robot Control System

3.3.3.1 Description

The robot control system performs the general motion control task in the same way as
the traditional control system does. However, some common strategies have been
shifted from the control system to the intelligent coaching system for some global
cooperative task's prerequisite checking, such as pattern matching check for ball

passmg.

The motivation of the robot control system development is to optimize the algorithms

to perform more powerful, efficient and accurate tasks.

26

3.3.3.2 Implementation Issues and Performance

First of all, the robot control system starts connecting the coaching system to request
an authori zation for an autonomous control. Once the permiss ion is granted, the
li stener for the coaching system and vision sys tem is estab li shed and the simu lation of
the control system is initi ali zed and waiting for game to be activated.

As soon as the game is started, the message that contains the deta il s of the game is
sent regularl y from the vision system to the control sys tem. The control system re­
constructs the simulation environment immedi ately as soon as the message arrives
and makes the response if the tactical message was sent by the coaching sys tem.

Currentl y, the main algorithms that were employed into the agent 's simul ati on are role
ass ignment, obstacle avo idance, path planning and ball passi ng. Role ass ignment and
path planning are two fund amental algorithms of the control systems. Fuzzy logic is
applied for obstacle avo idance and is employed in the control sys tems to enhance and
smoothen their movements. Ball passing is the main algorithm which is go ing to be
developed with the new control sys tem and is discussed in Sec. 3.6.

3.4 Real-time Network Game Protocol

3.4.1 Communication Mechanism

The elementary requirement to construct a di stributed sys tem is to determine the way
the communi cation goes. It is a lso the crucial factor affecting th e game's effic iency,
and even success in the competition .

Figure 25 Multi-player neti,vork game - Counter-Strike vl .6

27

Modern multi-player network game systems, such as Counter-Strike (Figure 25), Age

of Empire, Warcraft, and Starcraft and so on, are using TCP/IP and UDP as the

mechanism to communicate which is introduced to the system.

In this research, the system based on TCP/IP and UDP is created and used. TCP stands

for Transmission Control Protocol; it is a reliable message transfer mechanism which

has been imported for the essential information passing between the systems. UDP

stands for User Datagram Protocol; it does not guarantee the delivery of a datagram

but with faster transformation which makes it more efficient to carry the game

info1mation.

3.4.2 Network Flow

To understand the processing of the system, we assume

1) vision system has already been constructed, and it broadcasts messages with a

fixed interval time

2) And the autonomous is placed in the game and has been activated.

The network flow of the new network protocol is showed in as Figure 26.

On coach side:

1. Before the competition is started, the coaching system is constructed and the

communication with vision system is established.

2. the coaching system initializes the game environment with the information

received from vision system and starts a TCP socket to listen to the incoming

connection request from remote agents.

3. Once a connection is accepted, the available team member's motion control

task is assigned to the remote control system by sending a message that

contains the team member ID . Afterwards a broadcaster is set up to instruct

the remote control system.

4. The system is waiting for competition to start after all remote control systems

are connected.

5. Once the competition is started and on the run, the coaching system decodes

the message received from vision system and extracts data to set up the

simulation.

28

6. The coaching system eva luates the cooperative strategies when any pattern is

matched by simulating the instantaneous competition environment, then g ives

instructi ons to remote agents through the built-in broadcasters.

Net work Protocol : Flowch art
Sensory Devices

• au thorize I
Prcpilrc and •

I c111ttu,r,,I

I

Prepare
broadcasting

Fetch game
detai l

~~
I Send message

I
I

I

On the control sys tem s ide:

Prepare game
- and ask ror

broadcast task

' • Receive init ial
environmen t

'
Authon th ize &

trigger
coaching task

H and le
message

' Make desicion

' Broadcast

' I nitialize
environment

' Ask for_contro l I
perm1ss1on

1

' • Rcc4:ivc ini t ia l I
cnv 1ronmcnt

•

' Trigger ac t ion l
tak i ng task

Handle
message

Figure 26 Network flow chart

' Initial ize
environmen t

' Get Game
Dcl~ils

_J _

send Gam e
Deta ils

' • App ly move on
autonomous

Actio n

Flow Direction

l . Before the game starts, the robot control system is constructed and it is trying

to crea te a connection between itself and the coaching system.

29

2. After the connection with the coaching system is established, it will request a

control permission and the coaching system will grant a control permission by
providing available team member ID to be controlled. Afterwards, the listener
is set up to receive the instructions from the coaching system.

3. Then, it requests broadcasting task of competition information from vision
system by providing the UDP listening socket that is open on local machine,
and wait for competition to start.

4. If the message from vision system or the coach system is received, the robot
control system will try to decode the message and set up the simulation
environment and evaluates a movement decision.

5. Eventually, the movement decision is applied to the autonomous agent to
make a move until the competition finished.

3.4.3 Communication Message Format

After the structure of the distributed networking system is constructed, it is time to

standardized the message format to carry the information.

As it is known that the less data is sent, the faster the transmission and time for
decoding is going to be, the message is composed by digits as much as possible
instead of the characters.

1 . In order to decode a message, we are using the first component of the message
to represent both the sender's ID and the type of message .

2. To confirm the message, the unique id for the message is required.

3. The classification of information carried by message is required.

4. To distinguish multi pieces of data carried by one message, a separator is
required, which is presented as a semicolon.

5. To distinguish multi content in a piece of data, a content separator is required,
which is presented as a white space.

6. To confirm the information that consists inside the partial message, the prefix
for each part is required.

Therefore, every message comprises three parts source, tag ID and content, and each
paii ends with a separator. It looks like:

30

[SOURCE];[TA G- ID] ;[CONTENT];

Notes:

White space"" is used for separate individual message pieces' content

Semicolon ";" i used for separa te indi vidual message pieces

Symbo l " []" indicates a pi ece of message

Combination Symbol "{} *"

indicates tha t th ere can be multiple same styl e message

3.4.3.l Message Sent from Vision System

First of a ll , the message passed mostl y among the competition is sent from the v ision

system to the coaching system, and all remote contro l sys te ms. The message format is

as fol lows:

"[SOURCEJ;[TAG-1D[;[SCORE-JNFORMATIONl;{ [PLAYER-D ETA ILS[;}*

[SOURCE]

Description :

Format:

E.g.

[TAG-ID]

Description:

Format:

E.g.

Where the message comes from or the source of the message that

has been sent; it is a lso can be used to ind icate th e way that me sage

format. The source is represented as the di git number, such as I

presents the message from Vision System.

"C H [channe l-no]"

"C H I"

Unique identifi cation fo r the message that has been sent from the

vision system.

"TAG [tag-no]"

"TAG 123"

[SCORE-INFORMATION]

D escription:

Format:

E.g.

Contains the game score information

" SCR [west-team-score] [east- team-score]"

"SCRO I"

[PLAY ER-DETA ILS]

Description:

Format:

E.g.

The player in formation has been appended, wh ich inc lude player id ,

team belong ing to, abso lute location (x , y) , where its head ing

towards to .

" ID [player- id] [player-fl ag] [position-x] [position-y] [player-steer]"

"10 6 I 1.0 -0.5 1.57"

31

Whole message that sent from vision system is going to look like:

"CH [channel];TAG ftag-id];SCR !west-team-score] f east-team-score];{ID
[player-id] fplayer-flag] [position-x] [position-y] [player-steer];}*"

Figure 27 Specifted game situation for message sent.from the vision system

For the situation showed in Figure 27, the completed message sent from the vision
system is:

"CH 1 ;TAG 1 ;SCR 0 O;ID 5 3 0.0 0.0 0.0;1D 6 1 -1 .2 0.0 0.0;1D 7 I 0.5 -0.25
0.18556932891554936;1D 8 1 0.15 0.5 5.988476206608273;1D 9 1 -0.15 0.0
0.0;ID 10 I -0.15 -0.5 0.22355022620219825 ;1D 11 2 -0.7041717163715389
0.19831275890417688 3.5259273655 18515;ID 12 2 -0.5041888237436802
-0.2483556899184216 2. 767527765458856;ID 13 2 -0.153984 79736480422
0.49790921307602876 3.6247973 l 33764937;ID 14 2 0.0957398884789801
0.34855036217334345 3.469583614066388;ID 15 2 0.6457529654761074
-0.49851248604952275 2.804697208964362;"

Explanation:

• "CH l " - indicates that the source of the message is the vision system

• "TAG 1" - indicates the unique identification of the message

• "SCR 0 0" - indicates the scores for both west team and east team which
are both zero.

• The rest pieces of the information indicates the players' position, and their

32

heading direction . E. g. "ID 7 I 0.5 -0.25 O. l 855693289 1554936" shows
player 7 belongs to team 1 which is our team, and stands at position (0.5,
-0.25) according to the center of the play field, and heading direction in radian
is O. I 855693289 1554936.

3.4.3.2 Message Sent from the Coaching System

SMAS has additional communication channel between the coaching sys tem and the
remote control systems and it allows the coaching system to give instructions for all
remote control systems. The format of the message call"ying the instructions is:

"ISOURCEl;ITAG-IDl;IGLOBAL-STRATEGYl ;{ IPLAYER-STRATEGYI ;}*"

[SOU RCE]
Description:

Format:
E.g.

[TA G-ID]
Description:

Format:
E. g.

Where the message comes from or the source of the message been
sent, it is also can be used to indicate the way that message format.
"CH [chan nel] "
"CH 2"

Unique identification for the message that been sent from the
coaching system.
"TAG [tag- id]"
"TAG 123 "

[GLOBAL-STRATEG Y]
Description:
Format:
E.g.

Contains the strategy that is app li ed to the whole team
"GS [strategy] [object-applied-to]"
"GS 5 6"

[PLAYER-STRATEGY]
Description:
Format:
E. g.

The stra tegy that applied to individual team member
"ID [player-id] [strategy] [obj ect-applied-to]"
"10 6 3 7"

Whole message that sent from the coaching system is going to look like:

"CH jchannel];TAG jtag-id]; GS !strategy] jobject-applied-to];{JD jplayer­

id] !strategy] !object-applied-to];}*"

For situation showed in Figure 28, the coaching sys tem has determined a ball pass ing
situation and is going to ask player 9 pass bal I to player 7, rest of team member assist
pl ayer 7 and block the opponents if it is possible. The completed message sent from
vision system is:

33

"CH 2;TAG 4;GS 5 7;ID 9 3 7;1D 7 5 9;"

Figure 28 Specified game situation for message sent from the coaching system

Explanation:

• "CH 2"
system.

• "TAG 4"

• "GS 5 7"

- indicates the source of the message 1s the coaching

- indicates the unique identification of the message.

- indicates this is a global strategy information, the second
integer 5 indicates the strategy to assist someone or an area which is
identified by the third integer 7 that means the object that needs assisting
is player 7.

• "ID 9 3 7" - indicates the strategy for player 9, the second integer 3
indicates player 9 is going to pass the ball, and the third integer 7 indicates
the receiver is player 7

• "ID 7 5 9" - indicates the strategy for player 7, the second integer 5
indicates player 7 is going to catch a passing ball, and the third integer 9

indicates the player 9 is going to pass the ball

3.4.3.3 Message Sent from Robot Control System

Finally, the control system receives the message from the v1s1on system and the
coaching system and is ready to make the movement decision whose format is :

34

[SOURCE]

Description:

Format:

E . g.

[TAG-ID]

Description :

Format:

E.g.

[RCS-ACTION]

Description:

Format:

E.g.

"ISOURCEl;[TAG-1D];IROBOT-ACTIONJ;"

Where the message comes from or the source of the message been

sent, it is also can be used to indicate the way that message format.

"CH [chan ne l]"

"CH 7"

Uniq ue identifi cation fo r the message that been sent from the robot

control system.

"TAG [tag-id]"

"TAG 123 "

Contained the robot contro l system's act ion or movement.

"ID [player-id] [action]"/" ID [player-id] [steer] [speed] [operation]"

"ID 6 2" or " ID 6 0 I I"

Whole message that is sent from the robot contro l system is going to look like:

"C H lchannell ;TAG ltag-idl ;ID !player-id] lactionl ;"

Or

"CH lchannell;TAG ltag-idl;ID lplayer-idl lstcer l lspecdl lopcrationl ;"

Figure 29 Spec[fied game situation for message sent.from the control system

35

For the situation showed in Figure 29, the control system is taking control of player 9,

and the coaching system instructed the player 9 to pass the ball to player 7 previously.

After the computation, the movement decision is made by the control system which is

showed as an arrow in Figure 29. The completed message sent from the control

system is:

"CH 7;TAG 4;1D 9 0.5477148459690647 1.0 10"

Explanation :

• "CH 7" - indicates the source of the message is a control system.

• "TAG 4" - indicates the unique identification of the message.

• "ID 9 0.5477148459690647 1.0 10" - indicates player 9 is moving

heading direction in radians 0.5477148459690647, and the speed is reach

1.0, the third digit 10 means it is only doing operation "move" . lf it is

trying to kick the ball and the value of the third integer becomes I 1.

3.5 Passive Role Assignment

3.5.1 Overview of Role Assignments Problem Domain

Role assignment is a typical method for robot control that directs the action selection.

The majority of the simulation control systems have developed the algorithms for this

domain; general characters are goalie, attacker, defender and backup player.

Conventional approaches are:

1) Fixed role assignment for the entire duration of the competition.

2) Dynamic role assignment based on the robot's position relative to the different

ranges of the field and position of the ball as in [23].

3.5.2 Passive Role Assignment Approach

With the coach embedded in SMAS, there is another solution for role assignment

approach which is passive role assignment. It allows the control system to be assigned

a role by other systems, such as the coaching system in SMAS.

By contrast, a system without a coach, the control systems have to determine their

roles either by self-checking dynamically during the competition or fixed at the

36

beginning of the game. In the dynamic rol e ass ignment without a coach, it is likely

that the same role is taken twice and therefore multiple messages will have to be

exchanged to prevent such red undant rol e ass ignment from happening. This will

degrade system performance and therefore not suitable for rea l-time environments.

In addition, in similar to other systems with fixed rol es, utili zing a coach in a

di stributed environment has the same advantage of fast rol e assignment, but with the

fl ex ibility of adapting to changes in game situat ions.

We have deve loped pass ive ro le ass ignment and appended to the SMAS . However,

the approach presented here onl y appli es to the goa lie whi ch is recommended to have
first pri ority to prevent ball get close to the goa l of a ll other ac ti ons in [9], and it 's still

in deve lopment stage. the coachi ng sys tem checks the game environment and noti fies

the players to exchange the ro les when it is necessary.

The responsibili ty of the goa li e is to guard the goa l and to keep the ba ll away fro m

goal area as much as poss ibl e. The goa li e should be close enough to the goa l area ;

otherw ise, any sudden attack is a potential threa t to the team.

On the side of the coaching system, it determines the di stance from each team

member to the goa l center poin t. The playe r with shortes t di stance is ass igned with the

ro le a a goa lie. Once the dec ision has been made, a message that conta ins the role
exchange is sent fro m the coaching sys tem and the message looks li ke:

"CH 2;TAG 123; !0 7 0 0;"

" CH 2" indicates the message is sent from the coaching system and "Tag 123"

indicate the unique message ID . The content of the message with the hiding deta il s
about goa li e is " ID 7 0 O" . The " ID" poin t out that the message conta ins the

informati on about the player stra tegy setting or ro le ass ignment. First number 7 is the

unique identifi cati on of the team member that is go ing to be ass igned with new ro le.

Second number O indi cates new ro le is going to be goali e. And third number gives the

observa ti on area fo r the team member, which O means goa l area. According to the

in fo rmation above, it is easy to fi gure out that player with ID 7 is new goa li e to guard

our goa l area. Previous goalie player is notifi ed and takes on the player 7' s rol e.

Once the agent receives a message from the coach that it should switch role as the

new goalie, then the simulati on environment is reconfigured. The robot in turn , takes

on the goalie rol e and performs its duti es straight away.

3.5.3 Experiment on Passive Role Assignment on Goalie

In the situation showed in Figure 30, let vari abl e D5 be the di stance between player 5

and the center of the goa l area, vari able 0 6 to be the di stance between player 6 and the

center of the goa l area, variabl e D1 to be the di stance between player 7 and the center

37

of the goal area, variable D 8 to be the distance between player 8 and the center of the
goal area, and variable D9 to be the distance between player 9 and the center of the
goal area. At the initial stage, player 5 is the goalie and D 5 is the smallest distance in

all distances listed above. Then, player 6 is corning towards the ball for goal defense
support. In order to protect the lower edge of the goal area, 0 5 is increasing. At the

same time, player 6 moves closer to the center of the goal during ball tracking.
Finally, D5 becomes larger than D6, and the coaching system decides to hand over the
goalie control task to player 6, and player 5 becomes a backup moving out the goal

width for better ball pursuit and control which is showed in Figure 31 .

Figure 30 Initial stage of role switching (Goalie: player 5)

F;gure 31 Role switched (Goalie: 6)

38

3.6 Fuzzy Control for Realization of Ball Passing

3.6.1 Overview of Ball Passing Problem Domain

The ball pass ing algorithm is a significant domain of the research and considered to
be one of the most advanced technologies of the AI fi eld in robot soccer competition .
It invo lves role ass ignment, target pursuit, and shooting algorithm and requires the
team cooperation and action's consistency.

To achieve a successful ball pass ing, there are three main procedures:

I. The system rea li zes the ball pass ing situation and iden tifi es passer and
receiver.

2. Passer kicks the ball.

3. Receiver catches and takes control of the ball.

Ball pass ing strategy has already been employed to TeamBots by previous researcher
Chen, Liu. In hi s research, each mobile agent recogni zes the ball passing situat ion,
then passer is identifi ed to kick the ball to the idea l rece iver and receiver catches the
ball by applying the common targe t pursuit mechani sm. The procedure i :

I. Am I dominat ing the ball , if not, then skip the ball pass ing check .

2. Check with all teammates, if the teammate has clea r shooting area, then
proceed to the nex t step.

3. Check with the teammate from previous stage, if all obstacles are not poss ib le
to cause the fai lure of the ball pass ing, then I am assigned the role of kicker in
the ball passing strategy and the catcher is the teammate has just been
checked, assume the teammate is A.

4. Find the point P behind the ba ll and the direction from point to ball shou ld be
pointing to the teammate A.

5. Move towards the point P and avo id the co ll ision with the ba ll.

Obvious ly, the ba ll passing algorithm is on ly app lied to the kicker side and it is not
exactly implementing cooperation in the team. Figure 32 Show robot " Is inside
check" solution for both clear shooting area and ba ll pass ing area-checking probl em.
The algorithm however requires a lot of computations and is therefore time

39

-consummg.

C

B

if a +~ +O' =360, then P is inside the triangle
Notes: a ,~ and (j are three acute angles

Figure 32 Is inside check

A

It is inaccurate and also slows down the system by calculating three angles which are
high-cost computations.

Figure 33 Same-side-technique

According to our research, there is a better and more efficient approach to check

40

whether a point is inside a triangle by app lying the " Same-side-technique" three times

respectively w ith three sides of the triangle [21]. The equation below shows the side

checking with a g iven vector CA.

App li es the function above w ith a ll three sides of the triangle wi ll generate the res ult

whether point Pi s ins ide the triangle. The point Pis inside of the triangle on ly w hen it

is above or below three sides of the triang le at the same time.

The same-side-technique a lgorithm is simple and effi cient with on ly a max imum of 9

subtractions and 6 multipli ca tions in voked for each tri angle side check ing. Following

" is lns ide" function code is ex tracted from Coach_ Simulation.java (Appendix C) file

a nd it implements " Is in side check". Three para meters " from ", " to !" and " to2" are

equi va lent to three po ints "A", " B" and "C" in th e triang le from Figure 32 and Figure

33, and " point" is the point required to be checked.

private boolean islnside(Vec2 from , Vec2 fo l , Vec2 to2, Vec2 point) {

boolean result = fa lse;

}

double ma_x = point.x -_fi-0111.x;

double ma_y = point.y -.fi"O!n.y;
double mb _x = point. x - to l .x;

double mb _y = point.y - to I .y;

double me _x = point.x - to2.x;

double me _y = pointy - to2.y;

boolean ab, be, ca;

ab = (ma_x * mb_y - ma_y * mb_x >= OJ ? true :.false;

be = (mb _:-'(* me _y - mb _y * me_:' >= 0) ? true: .false;

if(ab == be) {

}

ca = (mc_x * ma_y - mc_y * ma_x >= 0) ? true :.false;

i.f(bc == ca) result = true;

return result;

3.6.2 Realization of Ball Passing

Assume that the ball pass ing dec ision has already been made by th e coach ing system

as showed in Figure 34, the teammate who is trying to pass the ball is named A, and

41

the teammate to catch the ball is named B. ln order to maximize the possibility of the
game to achieve success, the threat to ball passing is required to be minimized. In the
game, the main threat that most concerns are about is from opponents and it is also the

only threat that needs to be taken into account during the ball passing situation.

Player A (Player to pass ball)

Player B (Player to catch ball)

Figure 34 Ball passing state

Before moving further, some variables are defined as shown in Figure 35.

FIS takes distance D As and angle LBAC as inputs and produces the adjusted-ball­
passing angle. After all, each opponent that is taken into account has generated a
corresponding angle.

In general, the control function could be described by Equation 2.

Tn = f (D AB, LBAc) Equation 2

f (D AB, L BAC) represents any algorithm that calculates the adjusted-ball-passing
angle. In Sec. 3.6.3, we employ a fuzzy ball-passing algorithm. T,, is the desired
adjusted-ball-passing angle to opponent player "n".

42

B (X
8

, Y
8

) - Opponent

C (Xe, Y c> - Receiver

Figure 35 Ball passing input in geometry

B (X
8

, Y
8

) - Opponent

...... B'
D'

Figure 36 Multi-adjusted-ball-passing angles

With multi -opponents taken into account, there will be more than one adjusted-ball­
passing angles. For example, as depicted in Figure 36, there are two calculated angles
corresponding to opponents B and D above the vector AC: .LB' AC and .LD' AC. To
eliminate the threat fro m player B, the system suggest a better ball passing path AB'
by a given angle .LB 'AC with vector AC. The same is true for angle .LD 'AC. It is

43

apparent that LO ' AC is greater than LB' AC, and by avoiding interception from
opponent D, the interception from opponent B is evaded. Finally, the only largest
angle on the side is kept for further computation. The same algorithm is applied for

another side 's opponents and opposite side's angle is kept.

Integrating both sides' angle results by applying addition, because of the angle's
different direction, a mean angle result is evaluated. It is depicted in the following
equation:

Angle Jina,= Max (Angle; : Angle; E Angles I\ Angle; "2. 0)
+ Min (Angle; : Angle; E Angles I\ Angle; ~ O) Equation 3

Function Max is the maximum angle to all positive angle.
Function Min is the minimum angle to all negative angle.

Anglefi""'is the desired integrated angle result.
n is the set of all opponent's id .
Angles is the set of all recommended ball turning angles to opponents.

3.6.3 Fuzzy Inference System for Desired Passing Angle

Fuzzy logic was first proposed by Zadeh [28] which is based on the idea that humans
think in terms of concepts, but not in terms of crisp numbers. It is A fuzzy inference
system in Figure 37 includes a rule processing means for receiving an input signal and
inferencing the input signal in accordance with a plurality of fuzzy rules to generate
inferenced data, a defuzzify means for synthesizing and defuzzifying the inferenced
data to generate a decided, and a dominant rule means receiving the inferenced data
and decided value for finding a dominant rule of the plurality of fuzzy rules which has
the largest contribution degree to the decided value. Appendix B is fuzzy rule set file
for obstacle avoidance that pre-embedded to allow the smoothly path planning.

Cri sp
Inputs

Fuzzlfier

Fuzzy Input
Sets

---------- .
I
I
I
I
t
I
I
I

I
I

---------- '

Defuzzifier

FuzzyOutpl.ll
Sets

Figure 3 7 Fuzzy inference system

44

Cnsp
Outpu ts

To impl ement it, we need a new polar coordinate system, whose orig in point is the
locus of the ball, and the radial coordinate is from ball pointing to the rece iver. Then,
all the computation wi ll be based on the new polar coordinate.

Figure 38 Polar coordinate of'ba/1 passing

The danger caused by opponent player is determined by the distance S from ba ll to
opponent and the included angle 0 between vector "ball-to-opponent" and vector
"ba ll-to-receiver". It is easy to define the turning angle subranges to be used in the
fu zzy rules . Assum ing that there are onl y five turning subranges (very sharp tum,
sharp turn , med ium turn , small turn , zero turn), five distance concepts (very fa r, fa r,
medium, close, very close) and fi ve angle concepts (very large, large, med ium, small ,
very small), the situati ons to match fi ve turning are fo llowing:

To tum ve ry sharp :
If di stance is very close and angle is very small or
If di stance is very close and ang le is small or
If di stance is close and angle is very small.

To turn sharp ly:
If distance is very close and angle is medium or
If distance is close and angle is small or
lf distance is medium and angle is very small.

To turn medium angle:
If distance is very close and angle is large or
If di stance is very close and angle is very large or
If di stance is close and angle is medium or
If di stance is close and angle is large or
Jf di stance is medium and angle is sma ll or
If di stance is medium and angle is medium or

45

If distance is far and angle is very small or

If distance is far and angle is small or
If distance is very far and angle is very small.

To tum small angle:
If distance is close and angle is very large or
If distance is medium and angle is large or
If distance is medium and angle is very large or
If distance is far and angle is medium or
If distance is far and angle is large or
If distance is very far and angle is small or
If distance is very far and angle is medium.

To tum zero degree:
If distance is far and angle is very large or
If distance is very far and angle is large or

If distance is very far and angle is very large.

In real research and after practicing, Appendix A is fuzzy rule set file for fuzzy control
ball passing strategy. The ranges of fuzzy sets from Appendix A can be describe as in
Figure 39

veryfar

far

medium

close

veryClos

0

75°

2 5

large

7 9

Angle(Degree)

37.5°
medium

7.5°
1
1

verySmall

11 Distance(Radius)

Figure 39 Fuzzy inputs - polar coordination

Table 2 Fuzzy Associative Memory (FAM) matrix
Angle/Distance Very Close Close Medium Far Very Far

Very Small Very S hari> Turn Very Sharp Turn Sharp Turn Sharp Turn Medium turn
Small Very Sharp Turn Sharp Turn Sharp Turn Medium turn small Turn

Medium Sharp turn Sharp turn Medi um turn small Turn Small turn
lm'l!e Sharp turn Medium turn small Turn small turn zero turn

Veq , larJ!e Med ium t urn small Turn small turn zero Turn zero Tu rn

46

Fuzzy output sets for angle are weighted together to produce one defu zifi ed value

using a centre of gravity function , and the fu zzy member sets are described as in Table

3, Table 4 and Tabl e 5.

Table 3 Fuzzy input distance membership sets (in number of ball radius)
Distance\degree 0 .. 1 l 1 .. 0

very close \ ~ 2 2 ~ 4
close 2 ~ 3 3 ~ 5 5 ~ 7

medium 3 ~ 6 6 ~ 8 8 ~ 12
fa r 6~ 9 9 ~ 11 11 ~ 17

very fa r 9 ~ 12 12 ~ \

Table 3 is desc ribing the membership sets fo r input distance parameter, and the va lue

is based on th e ba ll rad ius. For exampl e, second ce ll of firs t row in Tab le 3 indicates

that less th an 2 ball -radius is definite ly "very c lose". Figure 40 shows membership

sets for input distance para meter in gra phi c chart.

Table 4 Fuzzy input angle membership sets
Angle\degree 0 .. 1 I 1 .. 0

very small \ ~ 7.5 7.5 ~ 15
small 7.5 ~ 15 15 ~ 22.5 22.5 ~ 30

medi um 15 ~ 30 30 ~ 45 45 ~ 60
large 30 ~ 45 45 ~ 60 60 ~ 75

very large 60 ~ 75 75 ~ \

Table 4 is descri bing the membership sets for inpu t angle parameter. Figure 4 1 shows

membership sets fo r input ang le para meter in grap hi c chart.

Tab le 5 Defitzzify output "angle to turn " membership sets
Angle Turn\dcgree 0 .. 1 I 1..0
zero turn \ ~ O 0 ~ 2
small turn 9 ~ 10 IO 10 ~ 11
medium turn 14 ~ LS 15 15 ~ 16
sharp turn 24 ~ 25 25 25 ~ 26
very sharp turn 39 ~ 40 40 40 ~ 41

Table 5 is describing the membership sets fo r output ang le to turn aga inst vector "ba ll ­

receiver". Figure 42 shows membership sets for output angle in graphic chart.

47

~ angle

angle
1.0 7 1 0.9

\:'

l

I
I I

0.8

a. 0.7
.c
~ 0.6
Q)

.0 0.5
E

,i i
Q) 0.4
~

0.3

0 .2

0.1

0 .0
0 25 50 75 100 125 150 175

X

- verySmall - veryl arge sma ll large medium

Figure 40 Fuzzy input - angle

~ di sta nce

distance
1.0

0 .9

0 .8

c. 0 .7
.r.
~ 0.6
Q)

..Cl 0 .5
E
Q) 0 .4
~

0 .3

0 .2

0.1

0 .0 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X

l - ve1yFar - veryClose far mediumDis close I

Figure 41 Fuzzy input - distance

48

l_M turn Gi]Qill~
turn

1.0

11
,,, 0.9

0 .8
11

11 a. 0 .7 I I
,-

I I
I I

"§ 0 .6 I I Q) I I ~ 0 .5
I I C I I ~ 0.4

I I I I
0 .3 I I 0 .2 I I I I I I
0 .1 I I
0 .0 I

0 5 10 15 20 25 30 35 40

X

- sharpTurn - smallTurn zero Turn veIySl1arpTurn Ille di LI Ill Turn

Figure 42 Fuzzy output - angle to turn

The fu zzy system is about the maximum threat from opponents, it takes two
parameters as input, the di stance from ball to opponent player and the included angle
of vector "ball to opponent" and vector "ball to tea mmate", then eva luates and
produces the output of the angle that could avoid the opponent 's intercepti on with
minimum angle of turning.

Figure 43 Ball passing simple test

49

The initial state of the ball passing si tuation may appear as Figure 43 and all objects'

basic information is li sted in :

Table 6 Objects' position in Figure 43

I Object \ Coordinates X y

~ Ball _ 0 0
- ~ - -- ~ - ~ ~ - - ~ ~

Player l 1.0 0.0

Player 6 -0.12 -0.02

1
Player 11 0.2078 0.1199

Player 12 0.2699 -0.32 17
-- ~ ~ ~ ~ ~ - -

Figure 44 Enhanced with polar coordinate ball passing area

Enlarging the central part where ball passing is accruing with built-in polar system,

the image will be seen as Figure 44 and the objects' information based on the polar

coordinate is li sted in Table 7.

Table 7 Polar coordinate positions
Polar radian(r) Polar angle(tbeta) Angle in degree

Ball 0.0 0.0 0.0
Player 1 0.96 0.0 0.0
Player 6 0.16 3.1417 :::::: 184°

Player 11 0.24 0.5235 ::::::30°
Player 12 0.42 -0.8764 :=:::-50°

Player 11 and Pl ayer l 2's polar coordinations are translated into FIS required format,

50

which di stance is based on the number of robot's radius, and then, FJS takes di stance

and angles as inputs and produces the output for both opponents and the detail va lue

is li sted in Table 8.

Table 8 FIS takes inputs and produces output
Number of robot radius Angle Output

Player 11 4.0 0 .5235 -0 .3739
Player 12 7.0 -0.8726 0.2 155

adjusted ball heading angle

Figure 45 Boll passing - FIS applied/or opponent I I

Figure 46 Ball passing - FIS Applied for opp onent l 2

51

To avoid interception by opponent 11 and 12, Figure 45 and Figure 46 show the
recommended ball turning angles respectively. After calculating turning angle for both
opponents, the desired ball heading angle as showed in Figure 47 is to synthesize both

angles by applying Equation 3.

Angle final= Max({Angle;: Angle; E Angles A Angle;~0})
+ Min({Angle;: Angle;EAngles A Angle;<0})

Angle final= Max({Angle;: Angle;E{-0.3739, 0.2155} A Angle;~0})
+ Min({Angle;: Angle;E{-0.3739, 0.2155} A Angle;<0})

Angle final= Max({0.2155}) + Min({-0.3739})

Angle final= 0.2155 +-0.3739

Angle final= -0.1584 (equals to -9.0°)

Figure 47 Ball passing- desired ball passing path to avoid interception

Both passer side and receiver side evaluate the same result according to the same
Fuzzy Inference System applied and the same input imported. Implementation of ball
passing is coded in simulation file on the control system side which is showed in
Appendix D.

3.6.4 FIS Output Applied for Passer and Receiver Agents

Furthermore, the resu It of the adjusted bal I heading direction is used for both passer

52

and receiver to make further computation. Now, we borrow the example above aga in.

Ball Passing : Passer to kick the ball

Desired passer locus
to kick the ball

' ' ' ' ' ', ,,,,.,
V , ,

, '
I '

I '
I '

I '

: '" I
I

I
I

,-/Ball's position ____ .,,..,.

Desired ball passing direction

Passer initial position

Figure 48 Ball passing: passer to kick the ball

At passer agent, with adjusted angle "A ngle1;",/', passer is ab le to loca te the kicking
pos ition and pass the ball 's des ired locati on. First of all, checking with the passer, does
it have a good ki ck ing angle? And if the answer is yes, then the passer kicks the ball
with the best ve loc ity. Otherwise, will look fo r a poss ib le player pos ition that is
behi nd the ball and the direction pointing to the ball is the same as the des ired ball
pass ing direction as showed in Figure 48. The passer heads towards that pos ition
afterwa rds.

Figure 49 Ball passing test with trails

Figure 49 shows the passmg movement by applying fuzzy contro l ball passmg
algori thm on passer side with condition described on Figure 38. The tra il s at the

53

center of the image tells that the passer moved towards its right-top which was behind
the ball and pointing to receiver, then went straight towards the ba ll and ki cked it to
the receiver. It successfully chose a secure ball passing path that leads towards the

receiver.

Ball Passing : Receiver to catch the ball

Ball's initial position -------------------------------------:-,----
------ ,Anglefinal ., ---l_ .;--, .,,,.,.,,,..,,,.

-------{- , Receiver 's initial position

Distan ~J

I
I

t
/

____ .,.,

Ce ' ;

/ ' ., Expected ball position
I

Distance is various according to the direct
distance between ball and receiver

Figure 50 Ball passing: receiver to catch the passing ball

At the receiver agent, with the adjusted angle "Anglefina/ ', the receiver is able to catch
the ball properly by predicting the passing path and intercepting the ball in advance as
showed in Figure 50.

54

4 Simulation Environment Evaluation

4.1 Prerequisite and Assumptions

To ensure the feasibi lity of the sys tem, the experiments are taken under various
situati on with ava ilabl e resources. Because of the limitation of the testing hardware
equipments, all the experiments are taken with available resources (maximum six PC
at home LAN) and the basic information of six PC is showed in Tab le 9.

Computer lndex

A

B

C

D

E

F

Table 9 Testing computer details

Info rmation (C PU / Memory I Operating System)
-- --

Intel Core 2 Dual 2.2GHz / 2G Memory / MS Windows XP

I Intel Core 2 Dual 1.8G Hz / 2G Memory / MS Windows XP

Intel Pentium4 2.4 / I G Memory / MS Windows XP

Intel Pentium4 2.4 / I G Memory / MS Windows XP

Intel Pentium-M 1.7 / I G Memory / MS Windows XP

Intel Pentium-M 1.7 / IG Memory / MS Windows XP

Computer A is always employed for running the game simulati on program, v1s1on
system and the coaching system for the reason of the better performance and respond .
With fu ll contro l of the soccer competition , computer A is abl e to start , pause and end
the game through a visuali zation wi ndow as showed in Figure 51. Five players of our
team are running on computer B, C, D, E and F.

There are several steps to set up a competition:

I) Run main game simu lat ion program and the control panel wi ll pop up as
shown in Figure 51 .

2) Start the coaching system by clicking the "Coach" button on the control panel.
3) Run individual autonomous agent and connect with the coach ing system.
4) Start the game by cli ck ing the "Start" button on the control panel when all

players are connected.

55

System time the message occured
Message Board

....... ""'°"'~

Control Window

Game Score

Play Field

Goal

Team player

0 § 00
Ready to accept the robot move from re

Recv. SCR O •;ID 5 3 0 0 0.0 0.0;ID 6 1 -1.2 0.0 0.0;ID 7 1 0
[1 J[T121 47133 44046! SCRO •;ID 5 3 0 0 0.0 0.0;ID 6 1 -1.2
Vis ion System is sta rt liste nning fo r broadcasting .. .

' I • ' I Start listenning on 36048

start game

restart game pause game

• I)

_,,,

• • -------~--·- ~--- --

• •
FiRure 5 I The control window

reset ball position

speed up

speed level

slow down

Quit Game

. -

In Table 10, it gives the general setting and environment to run the simulation system.

56

Construct Environment

JDK

Fuzzy lib rary

Network

Communicati on Protocol

Game Detail s

umber of Teams

umber of Balls

Table IO Scope and limitation

1.6. 0.3

jFuzzyLogic v I .2.1
--- ----t----

1Pv4 & LAN

TCP/IP & UDP

Number of Players in the team =r.5

Virtual unit length (Number of pixels) J 182.48

Real unit length It can map to any length in the rea l world

Soccer court

Goal width

Radius of a player

Radius of the ball

Time duration

~!

2.74 * 1.465 unit square

0.5 units

0.06 units

0.02 units

60 minutes

Interva l time for location broadcasting 40 frames per second
(25 milli second per frame)

4.2 Performance Measurement

First of all , the system is tested with two computers A and B. The simulation program
and the coachi ng system are both running on the fastest computer A, wh il e the five
control systems are running on computer B. Unfortunate ly, it is rare ly ab le to pass the
test because of the long latency of the sys tem's response time for five control systems.

Then, the test is done with three computers A, B and C. Simulation program and the
coaching system is still running on computer A, and two control systems on computer
B, three control systems on computer C. The performance is getting better than
previews test that all fi ve control systems running on one computer. However, it is
still not ab le to catch the speed of the games all the time. The average time cost for
robot to respond with a certa in moment is 6 1 ms which is much longer than the
genera l requirement (40ms).

Furthermore, the test is done with four computers A, B, C and D. Simulation program
and the coaching system is still running on computer A, and there are two contro l
systems running on computer B, two contro l systems rutming on computer C and one

57

control system is running on computer D. ln this case, the team is able to respond
much effective and the average time cost for responding is 36ms. Unfortunately, it is

required more hardware support to achieve better result and gain the success.

With five computers deployed to the game, and four computers are used to run five
control systems, the team players are able to achieve the great success in the game
with 21 ms responding time cost. Even though, the performance can be maximized to
13ms average time cost for responding when each control system is running on its
own computer, which means six computers are employed and there are five computers
running with five control systems. The result of 13ms responding time means that
many system resources is still available even with cooperative ball-passing strategy,
fuzzy obstacle avoidance and passive role assignment embedded already, and the
control system is extensible with more complex algorithms.

Response time cost calculated above consists communication time cost, algorithms
calculation time cost and action taking time cost. It can be depicted as:

Response time cost= Message passing+ SMAS algorithms execution

+ Action taking Equation 4

In Equation 4, message passing time cost is the time consumed for a control system to
receive the message from the vision system. SMAS algorithms execution time is the
total time cost to make an action decision since the message is received by the control
system, and action taking time cost can be considered as another message passing
time cost from the control system to simulation program to finalize the movement
action in simulated robot soccer competition.

In contrast, the original "TeamBots" simulation system 1s runnmg fluidly and the
response time costs about 12ms. lt is noticed that the response time cost for original
"TeamBots" system, running on a single computer is almost as much as the time
consuming for algorithm computation, and message transmission cost can be ignored
because of the inter-chip message communication. And the system is degraded when
ball-passing strategy is employed and it is can be easily discovered through the
visualization tools . Obviously, it is the limitation of a standard robot soccer
application and it conflicts with the elementary requirement for ball passing which is
efficiency.

In each of the experiments performed, two teams are playing against each other.
Team A employs the original TeamBots algorithms without ball passing, while Team
B employs the the following SMAS algorithms:

the coaching system: Passive role assignment, ball-passing determination
Control System: Passive role assignment, Fuzzy obstacle avoidance and ball

58

pass ing, ball Shooting, path-planning, goal defend er, ba ll interception

In ba ll tes t scenari os, numbers of ball pass ing scenari os were considered for each

ex periment as showed in column "Number of ball pass ing tes t" of Tabl e 11 . ln Tabl e

11 , it shows the performance on a complete competition simul ation with one

additional computer used fo r running the simul ati on progra m and the coaching

system. Column " umber of ba ll pass ing tes ts" is the tota l number of ba ll pass ing

tes ts whi ch are chosen randoml y and column "N umber of fa ilures" is the total number

of fa ilures w ith a ll ba ll pass ing tes ts. As showed in Equation 5 the " Percentage of

success" fun cti on, the result showed in Tabl e 11 depi cts how successful th e ba ll

pass ing s tra tegy is perfonn ed res pectively.

Percentage of success = I 00 - (Number of fa ilures--:- Number of ball passing tests)
Equation 5

Ball pass ing is considered to be one tac til e th at w ill direct influence the game res ul t,

so the las t co lumn could a lso be considered as the fig ure of how effic ient the w hole

the coaching sys tem is. It is obvious that more computers are in vo lved, more powerful

the coaching sys tem is go ing to be.

Table J J Pe,.formance measurement data

um ber of computers Average time cost umber of ba ll Num ber Percentage
to run contro l sys tems (ms) pass ing tes ts of fa ilures of success

(%)
One compu ter > 100 NIA IA NIA

Two compu ters 61 30 24 20
-------r-

l

I

,~
Three computers 36 40 22 45

Four computers 21

I
40 11 73

Fi ve computers 13 40 6 85

Figure 52 is a typica l partial process ing di agram show ing approximate time cost fo r

data handling . Each cell indicates a time duration for the data to be managed and

green cell informs the message transmission .

59

~

QI
E
'Z

N
QI
E

l l
Vision System

Coaching System

Robot Control System

~

QI
E ..
RI
C
0
'Z
RI
:I
~
UI

~
'ti
C
RI
::c

N
QI
E
'Z ..
RI
C
0
'Z
RI
:I ..
'iii
~
'ti
C
RI
::c

D Duration of data processing on Vision System

• Duration of data processing on Coaching System

D Duration of data processing on Robot Control System

Message transmission

Figure 52 Time consumption of the coaching system and the robot control system

GO

Vision System I I I I I I i
General System

M .::t'
(l) (l)

E E
~ +' ~
+' +' +' ro ro ra
C: C: r:
0 0 0
+' +' +' ro ra ro
::I ::I ::I
+' +' +'
II) II) II)

(l) (l) (l)

"C "C "C
C: r: r: ro ra ra :c :c :c

D Duration of data processing on Vision System

D ... __ ___. Duration of data processing on General System

Figure 53 Time consumption of general multi-agent system

As shown in Figure 53, the data that retri eved at time 2 is skipped and that might

happen to the genera l multi-agent system. The advantage of SMAS is to redu ce such

ri sk by distributing the tasks to severa l computers. the coaching system copes w ith the

s ituati on reorganizati on and stra tegy se lection and the robot control sys tem takes

responsibility fo r algori thms ca lculating. In order to achieve better performance, the

system is req uiring more resources. And it reaches the max imum performance when

th ere are fi ve computers working fo r fi ve contro l systems.

61

To achieve the best result of the competition, the system is test with max11num
available resources (each control system is running on one computer) and the system
measurement is described as follow:

1. Average time cost for a message cycle (since message sent from the vision

system till the action is taken by the autonomous) is 13 milliseconds.
2. Average time cost for communicating is about 3.2 milliseconds and this value

is based on local home LAN. With more powerful and efficiency that the
network is going to be, the communicating time cost will be reduced.

3. Average time cost for taking a step according to one message on a control
system is 9 milliseconds.

4. According to ball passing situation test, there is about 88% chances to success
ball passing procedure.

From Figure 54 to Figure 59, there are sequential images showing one successful ball
passing procedure.

In Figure 54, at the initial stage of ball passing realization, the coaching system
matches a ball passing pattern and starts to notify passer and receiver. In Figure 55,
both passer and receiver receive the instruction and apply the Fuzzy Control Ball
Passing Algorithm. Passer finds the best kicking position and moves toward to it. At
the same time, the receiver predicts the ball passing path and adjusts its heading
direction. In Figure 56, Figure 57 and Figure 58, the receiver is moving smoothly
towards where the ball is heading to . Finally, the receiver catches the ball successfully
as showed in Figure 59. The cooperative ball passing strategy defined in SMAS is not
completed and it failed some times during the experiments. To achieve better results,
the fuzzy memberships required some slight adjustment to be more precise through
more experiments.

The competition between the coaching system and non-the coaching system has been
taken. The opponent's team, named as DMod which is embedded within the TeamBots
simulation program and it is a reflexive, heuristic, heterogenous soccer team and
extended using fuzzy logic to avoid collisions. With several experiments, the coaching
system is able to gain 25% more score than opponent's team at the majority of the
competitions.

62

F;gure 54 Ball passing stage I Figure 55 Ball pass ing stage 2

Figure 56 Ball passing stage 3 figure 57 Ball pass ing stage 4

Figure 58 Ball passing stage 5 Figure 59 Ball passing stage 6

63

64

5 Synthesis of Research Contributions

The central thes is of thi s research is to all eviate the amount of computational work in
ca lcul ating team coordination. For the platfo rm that we used, since we have a global
vision system, we have capitalized on the fac t that coordinating the robots and
pass ive ly ass igning roles in rea l-time could be dramati ca ll y improved th rough an
intelligent coach .

In a dynami c multi -robot environment, the ability to perceive and respond to
situati ons in minimum time is essentia1[4]. the coaching system is a high-level rea l­
time decision making sys tem that allocates tasks dynamica ll y and takes out essentiall y
the burden of coord inat ion computation fro m the genera l contro l sys tem, which
handl es the nitty-gritty deta il s of motor contro l. The coaching component analyzes the
game situation and gives the instructions without go ing deeply th rough the exact
deta il s of execution as these details are imposed on the robot players themselves. The
rol es taken by the robots are as foll ows : Play centra l (2 agents), back-up , attacker and
goa li e. Role allocation stra tegies presented in [12] and [30] , and ass igns the goa l
keeper task to the same robot du ring the entire dura ti on of the game. However, the
best goa l keeper ass ignment is crucial in w inning the game and so we have devised a
pass ive role allocation strategy that pri oriti zes in defending the goa l at all cos t. The
player 's pos ition relat ive to the center goa l pos ition is taken into accoun t and the
di ffe rent ro les are sw itched whenever necessary. Thi s approach is effecti ve for team
co ll abora ti on as dec ision-mak ing is done th rough a global scope and red uces
redundancy.

Pass ive rol e a lloca ti on is considered as an advanced task of robot control. In general ,
dynamic ro le alloca tion strategies are ca lculated according to the area of the play ing
fi eld occupied by the player; thereby implementing a zone- related type of role
all ocati on. Pass ive task allocation and fu zzy ball pass ing control are two significant
algorithms that contribute to team cooperation. These tasks are achi eved in a
di stributed system without significant overhead required, except passmg
communication messages, encoding and decoding them. Contrary to other cooperati ve
approaches [12] , [I 3], [I 6] and [31], the bulk of computation done for team
cooperation are placed on the intelli gent coach. For instance, in a ball -passing
scenario, the coach determines the feasibility of ball pass ing based on the clearance
range between the ball carri er and it team members. The coach then allocates these
tasks to the identified players and broadcasts these task instructions. The beauty of
thi s approach is that each player contributes to the cooperation computation by
empl oying intelligent fu zzy techniques for measuring the potential threats,
determining the exact locations for pass ing and receiving and executing path planning
and obstac le avoidance.

65

ln the non-the coaching system, the role determinations are all computed in the
individual agents, and before the real cooperation are done. Moreover, the role of each

teammate should be taken checked in every game cycle. On the other hand, with the
coaching system, the role assignment task is placed in an isolated system, while the
agents are only notified whenever the roles are changed. This happens only under
important circumstances. Therefore, the intelligent agents' resources are set free for
more complex algorithm tasks, and are able to concentrate on it in real-time, such as
path planning and obstacle avoidance.

SMAS has significantly enabled the powerful functionalities of team control and
enl1anced the team's cooperation. However, there is some delay introduced in the
initial state of the game, when the multi-agent have not received any instructions from
the coach. This is still considerably fast as it takes only one message to enable team
cooperation. ln a real match, the vision sensory captures an image and takes some
period of time to interpret the image and convert this inf01mation into a set of
comprehensible messages for the intelligent agents. the coaching system receives all
the relevant inf01mation about the players and ball and figures out the appropriate
strategies and tactics applicable for the situation. Eventually, the coach then instructs
all the multi-agent with the appropriate roles . In tum, the intelligent agents handle
both messages from the vision system and the coaching system. Independently, each
intelligent agent figures out the best move by employing fuzzy target pursuit, obstacle
avoidance, bal I-passing and defense of the goal.

The current transmission protocol UDP does not guarantee reliable delivery of
messages and so it is possible to lose some messages from the coach and the messages
could be delayed as well. Nonetheless, in our experiments, the delay due to the
communication between agents and the lost messages are compensated for by always
taking the latest message (instruction) received from the coach. When the computer
becomes very powerful and the time consumed during transmission becomes a
bottleneck, the performance efficiency of real-time game control is degraded.

To conquer the problem, more efficient communication mechanisms needs to be
discovered and introduced into the system, such as CS MA/CD [1 O], or the time cost
of the algorithms have to be reduced. Moreover, another solution is to import the idea
of parallel computation. With parallel computation, the hardware itself supports
parallelism by having multi-core and multi-processors within a single machine[32]. It

is considered to be one of the most high-perfo1mance computations around the world
and requires more concutTency on a global scale than the sequential ones with more
complexity on the programming.

With the system developed, due to extreme importance in identifying the best goalie,
the coach prioritizes on determining which robot gets assigned as the goal keeper. The

individual agents on the other hand take into account who should be the striker, half-

66

back, back-up, general defender, general attacker. It is only evident that the burden of
identifying which robot should take on such roles could also be placed on the
intelligent coach.

<:
'/ .
-,
r;
C.

- I

b'

/ a, __ ... ·········" , ''

~ ; ;_:" \
I /
"\ I
i' ..

I
I

I

····-.
-.....

--.:.~ ..
•. · ' I

.·· ' /
/ ;A

.·· ., '

I

~ I
b .. ·· .,, .,,,, 'f. ___ , \

I

' .,
"' I '

I

R bot 13

. I

I

- - - ·· .. a I

--~--~.. , /Ro hot A
o· ,,,

/ ~..,,.,. I
.:.··--~ I

Robot C.,,.

Figure 60 A desired ball passing [13]

There is also so lution for ball passmg that involves more robots with desired ball
passing path. The diagram above shows the algorithm that is more unpredicted by
opponents. This feature cou ld also be developed in the future as an extens ion of this
work.

SMAS is currently tested under the simulation compet ition only but now allows for
communication with a real vision system for the real robot soccer competition. The
actual competition requires a rea l-time vision sys tem that communicates through the
network protocol defined by SMAS, and the autonomous agents to receive the action
decisions made by the robot control system. The autonomous agents will in turn
decode them and execute the action decisions.

67

68

6 Conclusions

Robot soccer planning, strategy and control have been widely researched for a
di stributed rea l-time inte lligent sys tem, such as in [6] and [14]. SMAS in conjunction
with the fu zzy ball pass ing control system developed enhances the capabi liti es of a
general multi -agent system to act in real-time in a di stributed system. the coach ing
system instructs the control system synchronously. It is able to ana lyze the entire
game and perfo rm better decision-making for the team. This approach allows the
soccer agents to save more system resources that cou ld be used for ca lculating more
comp lex motion control. Another advantage of the new sys tem is that it enabl es
cooperation in the team by the assignment of the same global task to a team of agents
in rea l-time.

Lastly, to ascertain the va lidity and effic iency of the algorithms and di stributed
architecture presented in thi s work , we have presented ex periments that successfully
demonstrated bal l-passing between agents in varying scenarios, measured the
communi cation time between the coach and agents to be 3.8 msec on the average, and
tested the competiti ve edge of the who le distributed system by running game
competition simul ations aga inst the original TeamBots configuration . The time
required for one compl ete cyc le of process ing (message transmission , and intelligent
agen t reaction) is onl y in the range of 12 to 15 msec. Thi s is ev idence is sufficient
enough to ascertain that thi s di stributed system works in rea l-time.

69

70

References

[I] Shirkhodaie, A.: Supervised control of cooperative multi-agent robotic vehic les.

In : System Theory, 2002. Proceedings of the Thirty-Fourth Southeastern

Symposium on. (2002) pp. 386-390.

[2] Gerdelan, A.P. And Reyes, .H .: A novel hybrid fuzzy A* robot navigation system

for target pursuit and obstacle avoidance . In : Proceedings of the First Korean-New

Zealand Joint Workshop on Advance of Computational Intelligence Methods and

Applications. (2006) pp. 75-79.

[3] Agah, A. and Tanie, K.: Robots playing to win: Evolutionary soccer strateg ies. In :

Robotics and Automation, 1997 . Proceed ings., 1997 IEEE Internationa l

Conference on. (1997) pp. 632-63 7.

[4] Browning, B. , Rybsk i, P.E., Searock, J . and Veloso , M.M.: Deve lopment of a

soccer-playing dynamically-balancing mobil e robot. In: Robotics and Automation ,

2004. Proceedin gs. IC RA '04. 2004 IEEE International Conference on. (2004) pp .

1752-1757.

[5] J . Bruce and M. Bolwing and B. Browning and M. Veloso: Multi-robot team

response to a multi-robot opponent team. In : Robotics and Automation , 2003.

Proceed ings. IC RA '03 . IEEE International Conference on. (2003) pp. 2281-2286.

[6] Messom , C.: Robot soccer: sensing, planning, strategy and contro l, a di stributed

real time intelligent sys tem approach . In : Proceed ings of The Third Internati onal

Symposium On Artificia l Life And Robotics. (1998) pp. 422-426.

[7] Ching-Chang Wong, Ming-Fong C hou , Chin-Po Hwang, Cheng-Hsin Tsai and

Shys-Rong Shyu: A method for obstacle avoidance and shooting action of the

robot soccer. In : Robotics and Automation , 200 I. Proceedings 200 I JCRA. IEEE

Internationa l Conference on. (2001) pp. 3778-3782.

[8] Dadios, E.P., Maravillas, O.A. And Jr.: Fuzzy logic controller for micro-robot

soccer game. ln : industrial E lectronics Society, 200 1. IECON '0 I. The 27th

Annua l Conference of the lEEE. (200 I) pp. 2154-2 159.

[9] Groen , Frans C. A. , Roodhart, Jeroen, Spaan, Matthijs , Donkervoort, Raymond,

and Vlassis, Nikos: A distributed world model for robot soccer that supports the

development of team ski ll s. In: Proceedings of the 13th Belgian-Dutch

Conference on Artificia l intelligence (BNAIC'0l). (2001) pp. 389-396.

[I OJ Gao Zhijun , Yan Guozheng, Ding Guoqing and Huang Heng: Research of

71

communication mechanism of multi-agent robot systems. In: Micromechatronics

and Human Science, 2001 . MHS 2001 . Proceedings of 2001 International
Symposium on. (2001) pp. 75-79.

[11] Heung-Soo Kim, Hyun-Sik Shim, Myung-Jin Jung and Jong-Hwan Kirn: Action
selection mechanism for soccer robot. In: Computational Intelligence in Robotics
and Automation, 1997. CIRA'97. , Proceedings., 1997 IEEE International
Symposium on. (1997) pp. 390-395.

[12]Tzu-Chen Liang and Jing-Sin Liu: Motion controller realizing cyclic ball passing
strategy among multiple mobile robots in robot soccer games. In: Robotics and
Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on.
(2002) pp. 2587-2592.

[13]Jing-Sin Liu, Tzu-Chen Liang and Yi-An Lin: Realization of a ball passmg
strategy for a robot soccer game: A case study of integrated plaiming of control.
Robotica (2004) vol. 22, pp. 329-338.

[14] Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation.
In: Robotics and Automation, IEEE Transactions on. (1998) pp. 220-240.

[15]Mark M. Chang and Gordon F. Wyeth: Achieving cooperation in a distributed
multi-robot team. In: Proceedings of the 2003 Australasian Conference on
Robotics and Automation. (2003) pp. 1-7.

[16] M. T. J. Spaan, N. Vlassis, and F. C. A. Groen: High level coordination of agents
based on multi-agent markov decision processes with roles. In: IROS'02
Workshop on Cooperative Robotics. (2002) pp. 66-73 .

[l 7]Ming-Yuan Shieh, Juing-Shian Chiou, Tien-Lung You , Ke-Hao Chang and
Sheng-Pao Cheng: System design and strategy integration for five-on-five robot
soccer competition. In: Mechatronics, 2005. ICM '05. IEEE International

Conference on. (2005) pp. 461-466.

[18] Peter Stone: Leaming and multi-agent reasoning for autonomous agents. In: The
20th International Joint Conference on Artificial Intelligence. (2007) pp. 13-30.

[19] Peter Stone and David McAllester: An architecture for action selection in robotic

soccer. In: Proceedings of the Fifth International Conference on Autonomous
Agents. (2001) pp. 316-323.

[20] Peter Stone and Manuela Veloso: A layered approach to learning client behaviors

in the RoboCup soccer server. Applied Artificial Intelligence 12 (1998) pp. 165-
188.

72

[2 I] Blackpawn : Point in tri angle tes t.

http ://www.blackpawn .com/texts/pointinpolv/default.html (November 2008)

[22] Qingchun Meng, X iaodong Zhuang, Changjin Zhon, Ji anshe Xiong, Yulin Wang,

Tao Wang and Bo Yin: Ga me strategy based on fuzzy logic for soccer robots. ln:

Systems, Man, and Cybern etics, 2000 IEEE Interna tional Conference on. (2000)

pp. 3758-3763.

[23] Emery, R., Sikorski, K. and Balch , T.: Protocols for collaboration , coordination

and dynamic role ass ign ment in a robot team. In : Robotics and Automation , 2002 .

Proceedings. IC RA '02. IEEE International Conference on. (2002) pp.3008-30 15.

[24]Sng, H.L. , Sen Gupta , G. and Messom, C. H.: Strategy for coll abora ti on in robot

soccer. In : Electroni c Design, Test and Applicati ons, 2002. Proceed ings. T he First

IEEE Internati onal Workshop on. (2002) pp. 347-351 .

[25]Sung-Wook Park, Jung- Han Kim, Eun-Hee Kim and Jun-Ho Oh : Deve lopment of

a multi-agent sys tem for robot soccer ga me. In : Robotics and Automation , 1997.

Proceedings ., 1997 IEEE International Conference on. (I 997) pp. 626-63 1.

[26] Uwe Eg ly., Gregor Novak. and Dan iel Weber.: Dec ision mak ing fo r M iroSot

soccer pl ay ing robots . In : Decision Making for MiroSot Soccer Play ing Robots.

(2005) pp. 69-72.

[27]The RoboCup Federation.: http : ,, ,, ,, .robocup.org (May 2008).

[28] Yager, R. R. and Zadeh, L. A. : An Introduction to Fuzzy Log ic Applications in

Inte lligent System. Springer (1992) .

[29] Sh im H .-S. , Kim H.-S ., Jung M.-J. , Choi 1.-H ., Kim J.-H . and Kim J.-O .:

Designing di stributed contro l architecture for cooperative multi -agent system and

its real-time app li cation to soccer robot. In : Proceedings of the Micro-Robot

World Cup Soccer Tournament. (1997) pp. 149- 165.

[30] Kim, J.-H ., Shim, H .-S., Kim, H .-S. , Jung, M .-J. , Choi , 1.-H . and Kim, J .-O .: A

cooperative multi-agent system and its real time app lication to robot soccer. In :

Proceedings of IEEE International Conference on Robotics and Automation.

(I 997) pp. 638-643 .

[31] Michael Bowling, Brett Browning and Manuela Veloso: Plays as Effective

Multiagent Plans Enabling Opponent-Adaptive Play Selection . In : Proceedings of

international Conference on Automated Pl anning and Schedul ing . (2004) .

73

[32]Parallel computing : http: //en.wikipedia.org/wiki/Parallel computation (July

2008)

74

Appendix A: Fuzzy rule set file for fuzzy control ball passing

I**
* Example: An ball passing angle adjusting FIS (fuzzy inference system)

* Calculates adjust angle that ball heading on 'distance' and 'angle' of obstacle

*I

FUNCTION_BLOCK AngleControl II Block definition (there may be more than

one block per file)

VAR INPUT
distance : REAL;

angle : REAL;

END VAR

VAR OUTPUT
turn : REAL;

END VAR

II Define input variables

II Define output variable

FUZZIFY distance II Fuzzify input variable 'distance'

TERM veryClose := (0, I) (2, I) (4, 0);

TERM close := (2 , 0) (3 , I) (5 , l) (7, 0);
TERM mediumDis:= (3 , 0) (6 , I) (8 , I) (12, 0);

TERM far := (6, 0)(9, 1)(11 , 1)(17, 0);

TERM veryFar := (9, 0) (12, I);

END FUZZIFY

FUZZIFY angle

TERM verySmal I

TERM small

TERM medium

TERM large

TERM veryLarge

END FUZZIFY

II Fuzzify input variable 'angle'

:=(0, 1)(7.5, 1)(15, 0);
:= (7.5, 0)(15, 1)(22.5 , 1)(30, 0);

:= (15, 0)(30, 1)(45, 1)(60,0);

:=(30, 0)(45, 1)(60, 1)(75, 0);
:=(60, 0)(75 , 1)(180, 1);

DEFUZZIFY tum II Defuzzify output variable 'tum'

TERM zeroTum := (0, 1) (2, 0);

TERM smallTum := (9, 0) (10, 1) (11,0);

TERM mediumTum := (14, 0) (15, 1) (16, 0);

TERM sharpTurn := (24, 0) (25, 1) (26, 0);

TERM verySharpTurn := (39, 0) (40, 1) (41, 0);

ACCU :MAX;

METHOD : COG;

75

DEFAULT:= O;
END DEFUZZIFY

RULEBLOCK Nol
AND: MIN; // Use 'min' for 'and' (also implicit use 'max' for 'or' to fulfill

DeMorgan's Law)
ACT: MIN; // Use 'min' activation method

RULE 1 : IF distance IS veryClose AND angle IS verySmall THEN tum IS
verySharpTum;

RULE 2 : IF distance IS veryClose AND angle IS small THEN tum IS
verySharpTum;

RULE 3 : IF distance IS veryClose AND angle IS medium THEN tum IS
sharpTum;

RULE 4 : IF distance IS veryClose AND angle IS large THEN tum IS
sharpTum;

RULE 5 : IF distance IS veryClose AND angle IS veryLarge THEN tum IS
medium Tum;

RULE 6 : IF distance IS close
verySharpTum;

RULE 7 : IF distance IS close
sharp Tum;

RULE 8 : IF distance IS close
sharpTum;

RULE 9 : IF distance IS close
medium Tum;

RULE 10 : IF distance IS close
smallTum;

AND angle IS verySmall THEN tum IS

AND angle IS small THEN tum IS

AND angle IS medium THEN tum IS

AND angle IS large THEN turn IS

AND angle IS veryLarge THEN turn IS

RULE 11 : IF distance IS mediumDis AND angle IS verySmall THEN tum IS
sharpTum;

RULE 12 : IF distance IS mediumDis AND angle IS small THEN turn IS
sharpTum;

RULE 13 : IF distance IS mediumDis AND angle IS medium THEN tum IS
medium Tum;

RULE 14 : IF distance IS mediumDis AND angle IS large THEN turn IS
smallTurn;

RULE 15 : IF distance IS mediumDis AND angle IS veryLarge THEN turn IS
smallTurn;

RULE 16: IF distance IS far AND angle IS verySmall THEN turn IS
sharp Turn;

RULE 1 7 : IF distance IS far AND angle IS small THEN turn IS

76

medium Tum;

RULE 18 : IF distance IS far AND angle IS medium THEN turn JS

smallTum;

RULE 19 : IF distance IS far

RULE 20 : IF distance IS far

AND angle IS large THEN turn IS smallTum;

AND angle IS veryLarge THEN tum IS zeroTum;

RULE 21 : IF distance IS veryFar AND angle IS verySmall THEN turn IS

medium Turn;

RULE 22: IF distance IS veryFar AND angle IS small THEN turn IS

smallTurn;

RULE 23 : IF distance IS veryFar AND angle IS medium THEN turn IS

smallTum;

RULE 24: IF distance IS veryFar

RULE 25 : IF distance IS veryFar

zero Turn;

END RULEBLOCK

END FUNCTION BLOCK - -

AND angle IS large THEN turn IS zeroTurn;

AND angle IS veryLarge THEN turn IS

77

78

Appendix B: Fuzzy rule set file for obstacle avoidance

I**
* Example: An obstacle avoidance FIS (fuzzy inference system)

* Calculates avoidance movement on 'distance' and 'angle' of obstacle

*I
FUNCTION BLOCK avoidCollision II Block definition (there may be more than

one block per file)

VAR INPUT

distance : REAL;

angle : REAL;

END VAR

VAR OUTPUT

turn: REAL;

speed : REAL;

END VAR

II Define input variables

II Define output variable

FUZZlFY distance II Fuzzify input variable 'distance': {'near', 'far' , 'veryFar'}

TERM near := (0.0, 1) (1.0, 0);
TERM far := (0 .5 , 0) (2.0, 1) (3.0 , 1) (5.0, 0);
TERM veryFar := (3.0, 0) (5 .0, I) (20.0, I);

END FUZZIFY

FUZZIFY angle

TERM small

TERM medium

TERM large

END FUZZIFY

DEFUZZIFY tum

// Fuzzify input variable 'angle' : { 'small' , 'medium', 'large' }

:= (0, I) (I 4, I)(20, 0);
:= (14, 0) (20, I) (34, I) (40, 0);
:= (34, 0) (40, I) (360, 1);

II Defuzzify output variable 'tum': {'zeroTum', 'mildTerm',

'mediumTum', 'sharpTum', 'verySharpTum'}

TERM zeroTum := (0, 1) (1, 0);
TERM mildTum := (9, 0) (10, 1) (11,0);

TERM mediumTurn := (24, 0) (25 , 1) (26, 0);
TERM sharpTum := (34, 0) (35 , l) (36, 0);
TERM verySharpTum := (59, 0) (60, 1) (61, 0);
ACCU :MAX;

METHOD : COG;

DEFAULT:= O;
END DEFUZZIFY

79

DEFUZZIFY speed II Defuzzify output variable 'speed' : {'verySlowSpeed',

'slowSpeed', 'mediumSpeed', 'fastSpeed', 'veryFastSpeed'}
TERM verySlowSpeed := (0.1 , 0) (0.2, 1) (0.3, O);
TERM slowSpeed := (0.4, 0) (0.5, 1) (0.6, O);
TERM mediumSpeed := (0.6, 0) (0.7, 1) (0.8, O);
TERM fastSpeed := (0.9, 0) (1.0, 1);

ACCU :MAX;
METHOD : COG;
DEFAULT := 1.0;

END DEFUZZIFY

RULEBLOCK Nol
AND: MIN; II Use 'min' for 'and' (also implicit use 'max' for 'or' to fulfill

DeMorgan's Law)
ACT: MIN; II Use 'min' activation method

RULE 1 : IF distance IS near AND angle IS small THEN turn IS verySharpTurn;
RULE 2 : IF distance IS near AND angle IS medium THEN turn IS sharpTurn;
RULE 3 : IF distance IS near AND angle IS large THEN turn IS mediumTurn;
RULE 4 : IF distance IS far AND angle IS small THEN turn IS sharpTum;
RULE 5 : IF distance IS far AND angle IS medium THEN turn IS mediumTurn;
RULE 6 : IF distance IS far AND angle IS large THEN turn IS mildTurn;
RULE 7 : IF distance IS veryFar AND angle IS small THEN turn IS zeroTurn;
RULE 8 : IF distance IS veryFar AND angle IS medium THEN turn IS zeroTurn;
RULE 9: IF distance IS veryFar AND angle IS large THEN turn IS zeroTurn;

END RULEBLOCK

RULEBLOCK No2
AND: MIN; II Use 'min' for 'and' (also implicit use 'max' for 'or' to fulfill

DeMorgan's Law)
ACT: MIN; II Use 'min' activation method

RULE 1 : IF distance IS near AND angle IS small THEN speed IS
verySlowSpeed;

RULE 2 : IF distance IS near AND angle IS medium THEN speed IS slowSpeed;
RULE 3 : IF distance IS near AND angle IS large THEN speed IS fastSpeed;
RULE 4 : IF distance IS far AND angle IS small THEN speed IS slowSpeed;
RULE 5 : IF distance IS far AND angle IS medium THEN speed IS fastSpeed;
RULE 6 : IF distance IS far AND angle IS large THEN speed IS fastSpeed;

RULE 7 : IF distance IS veryFar AND angle IS small THEN speed IS fastSpeed;
RULE 8 : IF distance IS veryFar AND angle IS medium THEN speed IS fastSpeed;

RULE 9 : IF distance IS veryFar AND angle IS large THEN speed IS fastSpeed;
END RULEBLOCK

END FUNCTION BLOCK - -

80

Appendix C: The coaching system's simulation file -

Coach_ Simulation.java

/*
* The coach simulation

* Algorithms involved :

* - passive role assignment applied on coach side

* - ball passing pattern matching includes "is inside triangle" check

*I

package CoachingSystem;

import networkcommon. *;
import EDU .gatech.cc. is . uti I. Vec2;

/**
*

* @ author Clainy.Lin

*I
public class Coach_ Simulation {

public boolean DEBUG = false;

private String CURLOCATE = "CoSIM";

private boolean hasMessage;

private Message message;

public Coach_Simulation() {

init();

}

/**
* Has new message setting for the player according to ID

*/
private boolean[] hasNew = new boolean[Common.MAXPLAYER];

private Vec2[] teammates= new Vec2[Common.MAXPLAYERINTEAM];

private Vec2[] opponents = new Vec2[Common.MAXPLAYERINTEAM];

private Vec2 ball;

/**

* each players's role

* - only on our team

*I

81

private int[] role = new int[Common.MAXPLAYERINTEAM];
private int[] strategy = new int[Common.MAXPLAYER];
private int[] strategyOn = new int[Common.MAXPLAYER];

private int strategyGlobal = Common.SUNDEF;
private int strategyGlobalObject = Common.SUNDEF;

/** Initialize when the simulation start */
private void init() {

for(int i=0; i<teammates.length; ++i) {
teammates[i] = new Vec2();
opponents[i] = new Vec2();

}

for(int i=0; i<strategy.length; ++i) {
strategy[i] = Common.SUNDEF;

}

countRegularNotification = 2;

// initialize role, from team DMod.java
for(int i=0; i<teammates.length; ++i) {

switch(indexToID(i, Common.TEAMMATEFLAG) %
Common.MAXPLAYERINTEAM) {

}

}

case 0:
role[i] = Common.ROLE_GOALIE;
break;

case 1:
role[i] = Common.ROLE_BACKUP;
break;

case 2:
role[i] = Common.ROLE_OFFSIDE;
break;

case 3:
role[i] = Common.ROLE_DRIVE_BALL;
break;

default:
role[i] = Common.ROLE CENTER;

}

/** Initialize before each time take a step */

private void updateEnvironment() {

82

II set all to be initial value

for(int i=0; i<hasNew.length; ++i) {

hasNew[i] = false;

}

for(int i=0; i<strategy.length; ++i) {

strategy[i] = Common.SUNDEF;

}

strategyGlobal = Common.SUNDEF;

strategyGlobalObject = Common.SUNDEF;

II find player closest to ball

teammateClosestToBal 1 = closestTo(bal 1, teammates);

opponentClosestToBall = closestTo(ball, opponents);

II notifyBoard(11 Closest index: 11 + teammateClosestToBall

II + 11 and"+ opponentClosestToBall);

II notifyBoard("Closest ID: 11

II + indexTolD(teammateClosestToBall, Common.TEAMMATEFLAG)

II + 11 and"+ indexTolD(opponentClosestToBall,

Common.OPPONENTFLAG));

}

Vec2 tmp I = new Vec2(ball);

Vec2 tmp2 = new Vec2(ball);

tmp l .sub(teammates[teammateClosestToBall]);

tmp2.sub(opponents[opponentClosestToBal l]) ;

isTeamContro!Ball = (tmp l .r < tmp2.r) ? true : false;

I** Set a player's detail *I
public void setPlayer(int id, int team, double x, double y, double steer) {

switch(team) {

}

}

case Common.BALLFLAG:

ball = new Vec2(x, y);

break;

case Common.TEAMMATEFLAG:

teammates[idTolndex(id, team)]= new Vec2(x, y);

break;

case Common.OPPONENTFLAG:

opponents[idTolndex(id, team)] = new Vec2(x, y);

break;

default:

Common.err(11 Unknown id 11 + id+ " in 11 + team);

83

I** Converting player ID to the index in the player list *I
private int idToindex(int id, int team) {

}

int index= -1;
II team
if(team == Common.TEAMMATEFLAG) {

for(int i=0; i<Common.TEAMMATEID.length; ++i) {
if(Common.TEAMMATEID[i] == id) {

index= i;
break;

}

}

}
II opponent
if(team == Common.OPPONENTFLAG) {

}

for(int i=0; i<Common.OPPONENTID.length; ++i) {
if(Common.OPPONENTID[i] == id) {

}
}

index= i;
break;

return index;

I** Converting player index in the list to player ID *I
private int indexToID(int index, int team) {

}

int id= Common.INVALIDID;
switch(team) {

}

case Common. TEAMMATEFLAG:
id= Common.TEAMMATEID[index];
break;

case Common.OPPONENTFLAG:
id= Common.OPPONENTID[index];
break;

case Common.BALLFLAG:
id = Common.BALLID;
break;

default:
Common.err("Unknown index " + index + " to team: " + team);

return id;

84

/**

* count down to active the role notification regularly

*I
private int countRegularNotification = 2;

/** Take a step *I
public int takeStep() {

int operation = Common.OPERATION_FAILED;

hasMessage = false;

updateEnvironment();

I
// Goalie

int goalie = wholsGoalie(Common.TEAMMATEFLAG);
II notifyBoard(11 Goalie : 11 + goalie

II + 11 (id = 11 + indexTolD(goalie, Common.TEAMMATEFLAG) + 11
)

11
);

// if new goalie assigned

if(role[goalie] != Common.ROLE_GOALIE) {
// found previous goalie, and switch the role

// mark to notify remote control system

for(int i=0; i<role.length; ++i) {

}

if(role[i] == Common.ROLE_GOALJE) {

// swap roles

}

}

role[i] = role[goalie];

role[goalie] = Common.ROLE_ GOALIE;

int i = indexToID(i , Common.TEAMMATEFLAG);
int _goalie = indexTolD(goalie, Common.TEAMMATEFLAG);

if(DEBUG) {
notifyBoard(11 Swap roles[NEW]: 11 + _i + 11 ->11 + role[i]

+ 11
;

11+ _goalie+ 11-> 11 + role[goalie]);

}
strategy[_i] = role[i];

strategy[_goalie] = role[goalie];

strategyOnLgoalie] = Common.SGOALPOSITIVE;

hasNewLi] = hasNew[_goalie] = true;
hasMessage = true;

i = 99;
//break;

85

if(isTeamControlBall) {// && ball.x > teammates[teammateClosestToBall].x) {
Ill Ill Ill/// /Ill I// I// Ill/ Ill I /I/ I II II/ Ill/
// Shooting the goal Checking-----------

///II
// Passing Ball Checking----------------­
if(DEBUG) notifyBoard("Pass check:");
int to= betterToPass(teammateClosestToBall);
//int to= Common.INVALIDID;
if(to != Common.INVALIDID) {

if(Common.DISPLAY_MESSAGE_COACH_SIM_BALL_PASS != 0)
notifyBoard("[BALL PASS] from"

+ teammateClosestToBall + " to " + to);
int passer= indexToID(teammateClosestToBall,

Common.TEAMMATEFLAG);

}

}

int receiver = indexToID(to, Common.TEAMMATEFLAG);

strategy[passer] = Common.ROLE_PASSING;
strategyOn[passer] = receiver;

strategy[receiver] = Common.ROLE_CATCH_PASS;
strategyOn[receiver] = passer;

hasNew[passer] = hasNew[receiver] = true;

strategyGlobal = Common.ROLE_ASSIST;
strategyGlobalObject = indexToID(to, Common.TEAMMATEFLAG);

hasMessage = true;

// Other Strategy

// is time to send roles setting regualarly?
// if value is <=0 then yes
if(this .countRegularNotification <= 0) {

//System.out.print("Regular check : ");
for(int i=0; i<role.length; ++i) {

int _id= indexToID(i, Common.TEAMMATEFLAG);
// already assign with the new strategy?
if(strategy[_id] == Common.SUNDEF) {

//role
strategy[_id] = role[i];

86

}

}

hasNew[_id] = true;
//System.out.print(" I");

}

//System.out. print("0");

}

/ /System.out.print("\n");

countRegularNotification = 9;
hasMessage = true;

//System.out.println("--- " + this.getMessage() . to String());
countRegularNotification--;
operation = Common.OPERATION_OK;
return operation;

public Message getRoles() {
String str = "";
for(int i=0; i<role.length; ++i) {

str += assembleMessage(indexToID(i , Common. TEAMMATEFLAG),
role[i] , Common.SUNDEF);

}

return new Message(str);
}

/**
* Get the result as a message
* @return : result message

*I
public Message getMessage() {

String messageStr = "";

// Global Strategy
if(strategyGlobal != Common.SUNDEF) {

messageStr += Common.PREFIX_ GLOBAL_ S
+ Common.CONTENT SEPERATOR

+ this.strategyGlobal + Common.CONTENT_SEPERATOR
+ this.strategyGlobalObject + Common.SEPERATOR;

}

// individual strategy

for(int i=0; i<hasNew.length; ++i) {
if(hasNew[i]) {

87

if(DEBUG)

notifyBoard("Strategy: "

+ assembleMessage(i, strategy[i], strategyOn[i]));

messageStr += assembleMessage(i, strategy[i], strategyOn[i]);

}

}

if(DEBUG) notifyBoard(

"Get message: "+ messageStr) ;

message= new Message(messageStr);

return message;

}

/**

* has new message

* @return : has new message?

*I
public boolean hasNewMessage() {

return hasMessage;

}

public void markRead() {
hasMessage = false;

}

/**
* Assemble the message string

* @param id : Player ID

* @param s : Strategy

* @param son : StrategyOn
* @return : message string

*I
private String assembleMessage(int id, int s, int son) {

}

return String.format("%s%s%d%s%d%s%d%s",

Common.PREFIX _PLAYER, Common.CONTENT_ SEPERATOR,

id, Common.CONTENT_ SEPERATOR,

s, Common.CONTENT_SEPERATOR,
son, Common.SEPERATOR);

I
// Simulation Computation

IIIIII II IIII Ill llllllllllll llll I/ IIII /Ill/ II/I I/ II

88

private Vec2 ourGoal = new Vec2(-Common.GAME_COURT_ WIDTH/2, O);
private Vec2 theirGoal = new Vec2(Common.GAME COURT WIDTH/2, O);

- -

private Vec2 upGoal =

new Vec2(theirGoal.x, theirGoal.y+Common.GOAL_HALF _ WIDTH);

private Vec2 downGoal =

new Vec2(theirGoal.x, theirGoal.y-Common.GOAL_HALF _ WIDTH);

//int closestToBallTeam;

private boolean isTeamControlBall;

private int teammateClosestToBall;

private int opponentClosestToBall;

private int closestTo(Vec2 obj , Vec2[] players) {

int index = Common.lNVALIDID;

}

Vec2 trnp ;//, trnp2;

double dist = Double.MAX_ VALUE;

for(int i = O; i < players. length; ++i) {

tmp = new Vec2(players[i]) ;

tmp.sub(obj);

// find closer point

if(tmp.r < dist) {

}
}

index = i;

dist = tmp.r;

return index;

/**

* find out who is the goalie of the "team"

* @param team: teammates or opponents

* @return: Goalie index

*I
private int wholsGoalie(int team) {

int index = -1;

// find team goalie

if(team == Common.TEAMMATEFLAG) {

index= closestTo(ourGoal, teammates);

}

// find opponent goalie

if(team == Common.OPPONENTFLAG) {

index = closestTo(theirGoal , opponents);

89

}

return index;

}

private int betterToPass(int from) {
int to= -1;

}

II not close to ball, don't have situation to pass ball
I /if(! isClosestToBall) return to;

for(int i=O; i<teammates.length; ++i) {

}

I I teammate have to be at ball right side (if our side are -1)

if(i == from II teammates[i].x <= ball.x) { continue; }

II don't have good shooting position (full shooting goal width)
if(!haveGoodPos(i)) { continue; }

II don't have clear area for passing ball
if(!haveClearArea(i)) { continue; }
II have all situation to accept passing ball
to= i;
break;

I I if there are someone in team have good position shoot &
II have clear passing area to receive ball
II pass ball to "to"
I I otherwise, to=-1, means there is no one, I keep drive ball
return to;

I* * have clear area to pass ball (ball -> teammates[n]) toward goal
*

*I
private boolean haveClearArea(int n) {

Vec2 to;
I lint dirPass;

if(!islnside(ball, upGoal, downGoal, teammates[n])) {
I I teammate is higher than ball

if(teammates[n].y > ball.y) {
to= new Vec2(upGoal);

} else {
to = new Vec2(downGoal);

}

} else {

90

}

if(teammates[n].y > ball.y) {

to = new Vec2(down Goal);

} else {

to = new Vec2(upGoal);

}

// is any opponents inside the passing area

// return false , ifthere is(are)

// return true, if it's clear

for(int i=O; i<opponents.length; ++i) {

if(islnside(ball ,teammates[n] , to, opponents[i])) {

return false;

}
return true;

}

/**

* To check is there any objects in the Triangle
*

*@param p 1 : Triangle point 1

*@param p2 : Triangle point 2

*@param p3 : Triangle point 3
*

*@return

* - true, yes, one or more objects is in the Triangle

* - false, its clear in the Triangle

*/

private boolean isClearTriangle(Vec2 p I , Vec2 p2, Vec2 p3 , Vec2[] objects) {

boolean result = true;

}

for(Vec2 object : objects) {

if(islnside(pl , p2, p3 , object)) {

result= false;

}
}

break;

return result;

/** check if have good shooting position

91

* the way that I did is to check if has full shooting width

* only assume side == -1..

*

*@paramn
*

: the player id need to be check

*@return

* - true, have clear shooting area

* - false, someone is blocking it

*I
private boolean haveGoodPos(int n) {

boolean result= false;

}

result = isClearTriangle(teammates[n], upGoal, downGoal, opponents);

return result;

/**

* To check is the giving point inside of the TRIANGLE

* The TRIANGLE is generated by three points "from", "tol", "to2"
*

* Method : Cross product (fast and efficient)

*
*@return

* - true, if the giving point is inside the triangle

* - false , otherwise
*

*I
private boolean islnside(Vec2 from, Vec2 tol, Vec2 to2, Vec2 point) {

boolean result = false;

double ma_ x = point.x - from.x;

double ma_y = pointy - from.y;

double mb _ x = point.x - to 1.x;
double mb _y = point. y - to 1. y;

double me_ x = point.x - to2.x;

double mc_y = pointy - to2.y;

boolean ab, be, ca;

ab= (ma_x * mb_y - ma_y * mb_x >= 0)? true: false;

be = (mb_x * mc_y - mb_y * mc_x >= 0)? true: false;

if(ab == be) {

ca= (mc_x * ma_y - mc_y * ma_x >= 0)? true: false;

if(bc == ca) result = true;

92

}

}

return result;
}

private void notifyBoard(String msg) {
Common.processMessage(CURLOCATE, msg);

}

93

94

Appendix D: Robot control system simulation file -

RCS_ Simulation.j ava

I*
* Robot Simulation
*

* Only consume that our team is on west side,
* rotate court 180 degrees according to
* center point if on east team
*

*/

package robotcontrolsystem;

import networkcommon. *;

import EDU.gatech.cc.is.util.Vec2;
import net.sourceforge.jFuzzyLogic.FIS;
import net.sourceforge.j Fuzzy Logic.rule.Fuzzy RuleSet;
import EDU.gatech.cc.is.util.Units;
/**
*

* @author Clainy.Lin

*I
public class RCS_Simulation {

private String CURLOCATE = "RCSSJM";
/**

* For error tracking (not completed)
* Each time the takestep() calls
* errCode indicates where is wrong

*I
private int errCode = Common.ERROR_NO;
/**

* Debug mode

*I
public boolean DEBUG = false;
public boolean DEBUG_ACTION = true;

public boolean DEBUG_FUZZY_INDIVIDUAL = false;

Receiver controlSystem;

/** My ID */

private int myID;

95

I** My team flag *I
private int myTeamflag;

public void addReceiver(Receiver receiver) {
controlSystem = receiver;

}

II For the fuzzy system:
private FIS fis _avoidCollision;
private FuzzyRuleSet frs _ avoidCollision;

private FIS fis _ ballPass;
private FuzzyRuleSet frs _ ballPass;

I** My absolute position *I
private Vec2 myAbsPosition;
private Vec2 ball; II Where is the ball?
private Vec2[] teammates; II Where are my teammates? (including me)
private Vec2[] opponents; II Where are my opponents?
private Vec2 ourGoal; II Where is our goal?
private Vec2 theirGoal; II Where is their goal?
II Goal upper and lower point
private Vec2 upGoal_team, downGoal_team;
private Vec2 upGoal_ opponent, down Goal_ opponent;

private double
private double
private double[]
private double[]

mySteer;
ballSteer;
teammates Steer;
opponents Steer;

I I Who is the closest...
private int closestTeamMate; II Index of team mate?
private int closestOpponent; I I Index of opponent?
private Vec2 closestPlayer; II Place closest overall.
private int closestToBall; II Index of team mate to the Ball?

private boolean isClosestToBall; I I am I closest to ball

I**
* Personal Strategy or role

*I
private int behave;

I**
* Personal strategy applied object or area

96

*I
private int behaveObject;

/**

* Global strategy

*I
private int behaveGlobal ;

/**

* Global strategy common applied object

*/

private int behaveGlobalObject;

/**

* M essage to communicate, only like a comment

*/

private String comment; // comment to send

/**

* Movement

*I
private Vec2 move; // Velocity vector of movement

// (direction: move.t, speed: move.r)

/**

* kick ball option

*I
private boolean kickit; // Try to kick it

/**

* player's role and action

*/

private int role, action;

/**

* only for ball passing, for ball catch side

*/

private int passStage;

I/ I I/ I I I I/// II I/////////////////////////// II//
// temp var to keep latest record

/** My absolute position */

private Vec2

private Vec2

private Vec2[]

private Vec2[]

_ my AbsPosition;

_ball;

_ teammates ; // Where are my teammates? (including me)

_opponents; // Where are my opponents?

97

private double[]

private double[]

private double

private double

_ teammates Steer;

_ opponentsSteer;

ballSteer;

_mySteer;

private int

private int

private int

_behave;

_behaveObject;

_ behaveGlobal;

private int _behaveGlobalObject;

/**

* Configure the control system. This method is

* called once at initialization time. You can use it

* to do whatever you like.

*I
private void configure() {

// setup fuzzy inference system for collision avoidance

notifyBoard("Setting up fuzzy inference system for Avoid Collision ");

fis _ avoidCollision = FIS.load(Common.FUZZY _ CONTROL _FILE);

if (fis _ avoidCollision = null) {

controlSystem.receive(Common.CHANNEL _ SIM,

new Message("Can't load file: " + Common.FUZZY_ CONTROL _FILE

+ "'."));
Common.err(CURLOCATE, "Can't load file: " +

Common.FUZZY_CONTROL_FILE + "'.");

Common.messageBoard.save(Common.FILE _ LOG + "Robot_" + this.myID +

"_log.txt");

System.exit(!);

}
frs _ avoidCollision = fis _ avoidCollision.getFuzzyRuleSet();

//frs _ avoidCollision.chart();

// setup fuzzy inference system for ball passing

notifyBoard("Setting up fuzzy inference system for Ball Passing ");

fis _ ballPass = FIS.load(Common.FUZZY _ANGLE_ ADJUST _FILE);

if (fis _ ballPass == null) {

controlSystem.receive(Common.CHANNEL _ SIM,

new Message("Can't load file: " +

Common.FUZZY_ANGLE_ADJUST_FILE + "'."));

Common.err(CURLOCATE, "Can't load file: " +

Common.FUZZY_ANGLE_ADJUST_FILE + "'.");

Common.messageBoard.save(Common.FILE_LOG +"Robot_"+ this.myID +

"_log.txt");

System.exit(!);

}

frs _ ballPass = fis _ ballPass.getFuzzyRuleSet();

98

I lfrs _ ballPass.chart();

}

I**
* Initialize an empty stage with nothing setup

*I
public void reset() {

}

errCode = Common.ERROR_NO;

this .behave = Common.SUNDEF;

this .behaveObject = Common.SUNDEF;

this .behaveGlobal = Common.SUNDEF;

this.behaveGlobalObject = Comrnon.SUNDEF;

I* *
* Called every time

*I
public int takeStep() {

try {

errCode = I ;

updateEnvironment() ;

errCode++;

if(DEBUG) notifyBoard("behave: " + behave

+ " - behaveObject: " + behaveObject);

role = playRole(behave, behaveObject) ;

action = getAction(behave, behaveObject);

if(DEBUG) notifyBoard("Role [" + role

+ "] , Action [" +action+"]");

errCode++;

errCode <<= 4;

String message = null;

I I perform action

switch(action) {

case Common.ROLE PASSING

errCode += 1 ;

II --> request to pass ball <-­

message = "Passing ball.";

if(DEBUG _ ACTION) notifyBoard(message);

passBall();

break;

99

case Common.ROLE CATCH PASS
errCode += 2;
I I request to get ball
message= "Catching the passing ball";
if(DEBUG _ ACTION) notifyBoard(message);
getPassingBall();
break;

case Common.ROLE DRIVE BALL : - -
errCode += 3;
message = "Drive ball";
if(DEBUG _ACTION) notifyBoard(message);
driveBall();
break;

case Common.ROLE GOALIE I I --- Goalie ---
errCode += 4;
message= "Play Goalie";
if(DEBUG _ ACTION) notifyBoard(message);
playGoalie();
break;

case Common.ROLE_ BACKUP: II --- Backup --­
errCode += 5;
message = "Play Backup";
if(DEBUG ACTION) notifyBoard(message);
playBackup();
break;

case Common.ROLE OFFSIDE: II --- Offside --­
errCode += 6;
message = "Play Offside Original";
if(DEBUG _ACTION) notifyBoard(message);
playOffside();
lldriveBall();
break;

case Common.ROLE_OTHER: II --- Designated Driver --­
errCode += 7;
message= "drive ball With Other Roles";
if(DEBUG _ACTION) notifyBoard(message);
driveBall();
break;

case Common.ROLE CENTER: II --- Center --­
errCode += 8;
message= "Play Center";
if(DEBUG _ ACTION) notifyBoard(message);
playCenter();
break;

100

}

case Common.ROLE ASSIST :
errCode += 9;
message= "Play Assistant" ;
if(DEBUG _ ACTION) notifyBoard(message);
break;

default:
errCode += 1 O;
message = "Default[" + role + "] Drive ball";

if(DEBUG ACTION) notifyBoard(message);
driveBall() ;
break;

errCode >>= 4;
errCode++;

move.r *= Common.PLAY _ACTlON_SHARPNESS;
if(move.r > Common.MAXSPEED) {

move.setr(Common.MAXSPEED);

}
//if (speed > Common.MAX SPEED) speed = Common.MAXSPEED;
else if (move.r < 0) move.r = O;

// if(!(ball.r < Common.DISTANCE_CLOSE)) {
// speed = Common.MAXSPEED;

// }

errCode++;
// make a move immediate after decision made and calculation finished
Number[] data = new Number[8];
int indexOfData = O;
data[indexOfData++] = Common.CHANNEL_SIM;
data[indexOfData++] = Common.INVALIDTAG;
data[indexOfData++] = Common.DD_ TO MOVE;

data[indexOfData++] = move. t;
data[indexOfData++] = move.r;
data[indexOfData++] = (kick it ? 1 : O);
data[indexOfData++] = Common.DD_ END;

if(DEBUG) {
String rnessageMove = String.format(

"Move: ¾s ¾s ¾d", move.t, rnove.r,

(kickit? 1 : O));
notify Board(messageMove);

101

}

controlSystem.receive(data);
I lcontrolSystem.receive(Common.CHANNEL _ SIM, new

Message(messageMove));

}

llapplyMove(move.t, speed, (kickit? 1 : 0))

I I make ready for next simulation

reset();

return Common.OPERATION_ OK;
} catch (Exception ex) {

}

Common.err(ex, CURLOCATE,
"Simulation take step error [errCode:" + errCode + "].");

return Common.OPERATION _FAILED;

I**
* Before doing anything, this should get our environmental
* view refreshed for the current situation.

*I
private void updateEnvironment() {

errCode <<= 4;
errCode += 1 ;

I I reset position related to me
resetPosition();
errCode += 1 ;

I I get closest players
closestTearnMate = closestTo(Comrnon.ORIGIN_POINT, teammates);
closestOpponent = closestTo(Comrnon.ORIGIN_POINT, opponents);

errCode += 1 ;
if (teammates[closestTeamMate].r < opponents[closestOpponent].r) {

closestPlayer = teammates[closestTeamMate];

} else {
closestPlayer = opponents[closestOpponent];

}

errCode += 1 ;

II Which teammate is cosest to the ball?
closestToBall = closestTo(ball, teammates);
llclosestToOpponentGoal = closestTo(theirGoal, teammates);

102

en-Code += 1 ;

II am 1 closest to BALL
isClosestToBall = amlClosestToBall();

en-Code += J ;

I lmyDirection = abstract_robot.getS teer Heading(currentTime);

II set kicking

kickit = false;

en-Code >>= 4;

I**
* Play role

*I
private int playRole(int behave, int behaveObject) {

int _role = Common.ROLE_ UN DEF;

if(behave == Common.ROLE GOALIE) {
_role = Common.ROLE_GOALIE;
return _role;

}

if(behave == Common.ROLE_DRIVE_BALL) {
_role = Common.ROLE_DRIVE_BALL;
return _role;

}

if(behave == Common.ROLE_ BACKUP) {
role= Common.ROLE BACKUP;
return _role;

}

if(behave == Common.ROLE_ CENTER) {

_role= Common.ROLE_CENTER;
return _role;

}

if(behave == Common.ROLE_OFFSlDE) {
_role= Common.ROLE_OFFSlDE;
return _role;

}

103

_role = role;

return _role;
}

I**
* Perform action in the game (at the moment)

*I
private int getAction(int behave, int behaveObject) {

int _action= Common.SUNDEF;

I I Ball Passing has first priority
I I passing ball
if(behave == Common.ROLE _PASSING) {

_action= Common.ROLE_PASSING;
return _action;

}

I I catch passing ball
if(behave == Common.ROLE_CATCH_PASS) {

}

passStage = Common.PLAY_BALLPASS_TOTALSTEPS;
action= Common.ROLE_CATCH_PASS;

return _ action;

I I to continue the catching passing ball
if(passStage > 0) {

passS tage--;
action= Common.ROLE_CATCH_PASS;

return _action;
}

passStage = O;

II player to assist another player
if(behave == Common.ROLE_ASSIST && amIAbleToHelp(behaveObject)) {

action= Common.ROLE_ASSIST;
return _ action;

}

II Goalie
if(role == Common.ROLE_ GOALIE) {

action= Common.ROLE GOALIE;

104

}

return _action;

}

if(role == Common.ROLE_BACKUP) {
_action= Comrnon.ROLE_BACKUP;
return _ action;

}

if(role == Common.ROLE_ CENTER) {
_action = Common.ROLE_CENTER;

return _ action;
}

if(role == Common.ROLE DRIVE BALL) {
- -

}

_action = Common.ROLE_DRIVE_BALL;
return _action;

if(role == Common.ROLE_ OFFSIDE) {
action= Common.ROLE_OFFSIDE;

return _ action;

}

return _ action;

private boolean amlAbleToHelp(int i) {
boolean result = false;

return result;
}

private void playGoalie() {
//playGoalie _ ByClainy();
playGoalie _ ByTony();

}

/**
* Implementation of goalie.

*I
private void playGoalie _ ByClainy() {

if(ball.x <= 0) {
Yec2 newBall = new Vec2(

ball.x-Common.RADIUS_OF_BALL-Common.RADIUS_OF_PLAYER,

105

ball.y);
move.sett(newBall.t);
move.setr(1.0);
kickit = true;
setDisplayString("Goalie: Kick out ball.");

} else if(ball.x - ourGoal.x >Common.GAME_ COURT_ WIDTHl3) {
II far away from goal, stay 1/4 from our goal to ball
I I (only vertical direction, fast)
double x = (ball.x - ourGoal.x)l8 + ourGoal.x;
move= new Vec2(x, (ball.y + ourGoal.y)l2);
setDisplayString("Goalie: Guard our goal (Far).");

} else if(ball.x > 0 && ball.x < Common.RADIUS OF PLAYER
+ Common.RADIUS_OF _PLAYER) {

I I very close and just in front, kick to side edge
move= new Vec2(ball.x-Common.RADIUS_OF _BALL, ball.y);
kickit = true;
setDisplayString("Goalie: Kick to side.");

} else {l/if(ball.x - ourGoal.x > Common.GAME_ COURT_ WIDTHl5) {
I I close, Guard goal

}

Vec2 newBallPos = new Vec2();
I I speed of per 100 millisec
newBallPos.setr(Common.MAXSPEED * .1);
newBallPos.sett(ballSteer);
if(newBallPos.x < 0) {

double newR = Math.abs(ball.r * newBallPos.y I ball.y);
newBallPos.setr(newR);
newBallPos.add(ball);
move = newBallPos;

} else {
double x = (ball.x - ourGoal.x)l8 + ourGoal.x;
move= new Vec2(x, ball.y);

if(this.ourGoal.x > Common.RADIUS_OF_PLAYER
+ Common.RADIUS_OF _BALL) {

move.setx(0);

}

I lmove.setr(Common.MAXSPEED);

}

kickit = true;
setDisplayString("Guard our goal (Close).");

106

II parallel when I am next to the Goal

if(ourGoal.x > -Common.RADIUS_OF _PLAYER + 0.001) {

if(move.t > Common.Pl_2 && move.t < Common.PI) move.t =
Common.Pl_2;

if(move.t > Common.PI && move.t < Common.Pl + Common.PI_2) move.t =
Common.PI_2 + Common.Pl;

}

}

II stick around goal width

if(move.y > upGoal_team.y) move.y = upGoal_team .y;

if(move.y < downGoal_team.y) move.y = downGoal_team.y;

I**
* Implementation of goalie.

*I
private void playGoalie _ B yTony() {

}

II if the ball is behind me try to kick it out

if(ball.x < 0) {

move.sett(bal I. t);
move.setr(1.0);

kickit = true;

setDisplayString("Kick out ball.") ;

} else if((Math.abs(ourGoal.x) > Common.RADIUS_ OF _ PLAY ER * 1 .4) 11

(Math.abs(ourGoal.y) > Common.RADIUS_OF _PLAYER * 4.25)) {

II if i'm outside the goal area go back toward the goal

avoid Col I is ion(ourGoal) ;

setDisplayString("Go back into goal.");

} else {

}

II stay between the ball and the goal

move.sety(Math.signum(ball.y) * 7.0);

move.setx(-1 .0) ;

if(Math.abs(ball.y) < Common.RADIUS_OF _PLAYER* 0.15) {

move.setr(0.0);

} else {

move.setr(l .0);

}

setDisplayString("Guard goal.");

I**

107

* Implementation of offside player (block opposing goalie) .

*I
private void playOffside() {

I I the other team's goalie is whoever is closest to the goal
int goalie= closestTo(theirGoal, opponents);
Vec2 target = new Vec2(opponents[goalie]);

I I find the point just behind
the "goalie"

}

II in the way of their goal
Vec2 behindVector = getBehindPoint(opponents[goalie], theirGoal);
behindVector.setr(Common.RADIUS OF PLAYER);
target. sub(behindVector);

II We want to block the goalie, but avoid others.
if(goalie == closestOpponent) {

move = target;
move.setr(1.0);
setDisplayString("Block goalie.");

} else {

}

avoidCollision(target) ;
setDisplayString("Charge goalie.");

I**
* Implementation of backup player.

*I
private void playBackup() {

Vec2 target = new Vec2(ball);

if(ball.r < teammates[closestToBall].r) {

II I'm closer than my closest team mate.
driveBall();

} else {
I I if i'm not closest to the ball, set up a position 3

II robot radii behind the ball
Vec2 behindVector = getBehindPoint(ball, theirGoal);

I Nec2 behind Vector = getBehindPoint(ball,
Common.DISTANCE BALL PLAYER RADIUS+ - -
Common.RADIUS_ OF_ BALL, theirGoal) ;

behindVector.setr(3 * Common.RADIUS_ OF _PLAYER) ;

target. add(behindVector);
avoidCollision(target);

108

setDisplayString("Backup driver.");

}
}

/**

* Implementation of center player.

*/

private void playCenter() {

errCode <<= 4;

}

// find the center (opposite of my _absolute_ position.

Vec2 target = new Vec2(myAbsPosition);

target.setr(-target.r);

errCode++;

Vec2 tmpMate = new Vec2(teammates[closestTeamMate]);

tmpMate.sub(ball);

errCode++;

if(bal 1.r < teammates[closestToBal l].r) {

errCode++;

// J'm closer than my closest team mate.

driveBall();

} else {

errCode++;

errCode++;

}

// if i'm not closest to the ball stick around the center

// and wait for a fast break

target.add(getBehindPoint(target, theirGoal));

avoidCollision(target);

setDisplayString("Stand by.");

errCode > >= 4;

/**

* Drive the ball towards the goal, and possibly try to score.

*I
private void driveBall() {

if(behindPoint(ball, theirGoal)

&& (ball.t < 4 * Cornmon.RADIUS_OF _PLAYER)) {

Vec2 target= new Vec2(theirGoal);

move = new Vec2();

move.sett(target. t);

move. setr(1. 0);

setDisplayString("Drive ball.");

109

}

// if i'm within 15 ROBOT_RADII away from and aiming

// relatively at the goal try to kick the ball

if(readyToKick(theirGoal)) {

kickit = true;

setDisplayS tring("Kick ball.");

}
} else {

II otherwise get behind the ball and avoid colliding with

I I other players
Vec2 target = new Vec2(ball);

I /target. add(getBehindPoint(ball, theirGoal)) ;

if (ball.r < teammates[closestToBall].r) {
int closestToTheirGoal = closestTo(theirGoal, teammates);

Vec2 tmpl = new Vec2(teammates[closestToTheirGoal]);

if(tmpl .r < theirGoal.r) {

II Go streight to the ball, beat others

//if(closestToTheirGoal != myNum) {
target. add(getBehindPoint(ball, teammates [closestTo TheirGoal]));

kickit = true;

} else {

}

target. add(getBehindPoint(ball, theirGoal)) ;

setDisplayString("Charge ball.");

move.sett(target. t);

move.setr(l.0);
setDisplayString("Charge ball.");

} else {

}

}

target.add(getBehindPoint(ball, theirGoal));

avoidCollision(target);

setDisplayString("Position to ball.");

/**

* Determins which object in an array is closest to a given point.

*
* @param point Reference point.

* @param objects Array of object locations to check.

* @return Index of robot in array objects that is closest.

*/

private int closestTo(Vec2 point, Vec2[] objects) {

double dist= Common.FARFARAWAY;

110

}

int result = O;

Vec2 temp;//= new Vec2(0, O);

for(int i = O; i < objects.length; i++) {

// find the distance from the point to the current

II object

temp = new Vec2(objects[i]);

temp.sub(point);

// if the distance is smaller than any other distance

// then you have something closer to the point

if(temp.r < dist) {

}

}

result = i;

dist = temp.r;

return result;

/**

* Gets a point behind another point with respect to a given orientational

* point. This point is relative to the reference point.

* E. g. get behind the ball with respect to the direction of the goal.
*

* @param point Reference point.

* @param orient Directional point.

* @return Point behind the reference point (relative to it).

*I
private Vec2 getBehindPoint(Vec2 point, double r, Vec2 orient) {

Vec2 behind _point= new Vec2(point) ;

}

behind _point.sub(orient);

behind _point.setr(behind _point.r + r);

behind _point.add(orient) ;

return behind _point;

/**

* Gets a point behind another point with respect to a given orientational

* point. This point is relative to the reference point.

* E. g. get behind the ball with respect to the direction of the goal.

*

111

* @param point Reference point.

* @param orient Directional point.
* @return Point behind the reference point (relative to it).

*I
I I from DTeam

private Vec2 getBehindPoint(Vec2 point, Vec2 orient) {
Vec2 behind _point = new Vec2(0,0);

}

double behind= O;
double point_ side = O;

II find a vector from the point, away from the orientation
I I you want to be
behind _point.sett(orient.t);
behind _point.setr(orient.r);

behind _point.sub(point);
behind _point.setr(-Common.RADIUS_ OF _PLAYER* 1.8);

II determine if you are behind the object with respect
I I to the orientation
behind = Math.cos(Math.abs(point.t - behind_point.t));

II determine if you are on the left or right hand side
II with respect to the orientation
point_side = Math.sin(Math.abs(point.t - behind_point.t));

I I if you are in FRONT
if(behind > 0) {

II make the behind point more of a beside point
II by rotating it depending on the side of the
I I orientation you are on
if(point_ side > 0)

behind _point.sett(behind _point. t + Math.PI/2);
else

behind _point.sett(behind _point. t - Math.PI/2);
}

I I move toward the behind point
return behind _point;

I* *
* Returns a true, if the robot at "point" is behind the object
* relative to the orientation "orient" within a certain degree

112

* of tolerance in angle.

*

* @param point Location of robot.

* @param orient Directional point.

* @return Am I behind?

*I
private boolean behindPoint(Vec2 point, Vec2 orient) {

// you are behind an object relative to the orientation

// if your position relative to the point and the orientation

// are approximately the same

if(Math.abs(point.t - orient.t) < Math .PI/I 0) {

return true;

} else {

}
}

/**

return fal se;

* Introduced from v _ SweetSpot_r.java

* Return a Vec2 pointing from the

* center of the robot to the sweet spot.

* @param timestamp long, only get new information

* if timestamp > than las t call or timestamp == -1.

* @return the sensed bat I

*I
private Vec2 kickFromTo(Vec2 point, Vec2 destination) {

Vec2 last_spot = new Vec2(point.x , point.y);

}

last_ spot.sub(destination) ;

last_ spot.setr(Common.RADIUS_OF _PLAYER);

last_ spot.add(point) ;

return(last spot);

/**

* Set move vector to move towards target while avoiding collisions.
*

* @param target Location the robot is aiming for.

*I
private void avoidCollision(Vec2 target) {

if(DEBUG) notifyBoard("Avoid Collision");

// Generally we want to move towards our target.

move = new Vec2(target);

if (closestPlayer.r < 2.1 * Common.RADIUS_OF _PLAYER) {

// Someone's touching me, get free!

11 3

move.sett(closestPlayer.t + Math.PI) ;
move.setr(Common.MAXSPEED);

} else {
II At this angle we're facing our closest obstacle
double angle= move.t - closestPlayer.t;

II For fuzzy control distance is in robot radii and angle is in degrees.
frs _ avoidCollision.setVariable("distance",

closestPlayer.r/Common.RADIUS _ OF _PLAYER);
frs _avoidCollision.setVariable("angle", Math.abs(Units.RadToDeg(angle)));
frs _ avoidCollision.evaluate();
double correctAngle =

frs _ avoidCo llision. get Vari ab le(" tum"). getLatestDefuzzifi edValue();
correctAngle = -Math.signum(closestPlayer.t) *

Units.DegToRad(correctAngle);
double speed=

frs _ avoidCollision. get Vari ab le(" speed"). getLatestDefuzzifiedValue();

}
}

// Correct the vector for our movement.
move.rotate(correctAngle);
move. setr(speed);

/** am I closest to ball than all other players(teammates & opponents)
* @return true if I am cloest to ball

*I
private boolean amIClosestToBall() {

Vec2 tmp = new Vec2(teammates[closestToBall]);
tmp.sub(ball);
if(tmp.r < ball.r) return false;

I I opponents
int index= closestTo(ball, opponents);

}

tmp = opponents[index];
tmp.sub(ball);
if(tmp.r < ball.r) return false;
return true;

I /////////II////////////// I/Ill/// I Ill! I/ I//// II//
// BALL PASSING

11 4

I I//
private void passBall() {

passBal 1_ fuzzy(behaveObj ect);

}

/**

* Adjust my towarding angle to kick the ball in order to make ball

* moving as expected

*/

private void passBall fuzzy(int to) {

errCode <<= 4;
if(readyToKick(teammates[to])) {

errCode += 1 ;
if(DEBUG) notifyBoard("Ready to pass to" + to);

adjustAngleToKick(teammates[to]);

} else {

errCode += 2;

if(DEBUG) notifyBoard("Move back ball toward teammate" + to);

Vec2 ballTarget = adjustBallOrient(teamrnates[to]) ;

moveBehind(ball, Common.DISTANCE_ BALL_PLAYER_RADIUS ,

ballTarget);

}
errCode >>= 4;

}

/**

* Get the coming ball (continue the passing)

*I
private void getPassingBall() {

if(behaveObject != Comrnon.SUNDEF) {

getPassingBall(behaveObject);

}

return;

}

Vec2 ballTarget = new Vec2();

ballTarget.sett(ballSteer);

ballTarget.add(ball);

move.sety(move.y + Math.signum(ballTarget.y)

* Common.RADIUS_OF_PLAYER);

/**

* Get the passing ball, decide to pass

115

* @param from : the kicker index

*I
private void getPassingBall(int from) {

Vec2 ballTarget = adjustBallOrient(Common.ORIGIN_POINT);

move = ballTarget;

Vec2 new Ball= new Vec2();

newBall.sett(ballSteer);
move.sety(move.y + Math.signum(newBall.y)

* Common.RADIUS_ OF _PLAYER);

}

/* *
* Adjust angle to kick
* Only when it is ready to kick (call readyToKick() for check first)

* @param pos : target position where the ball to go

*/

private void adjustAngleToKick(Vec2 pos) {

errCode <<= 4;

Vec2 pos_fromBall = new Vec2(pos);

pos _ fromBall.sub(ball);
errCode += 1 ;

Vec2 ball_fromMe = new Vec2(ball);

ball_ fromMe.sett((ball_ fromMe. t - pos _ fromBall. t)/2

+ pos_fromBall.t);

}

errCode += 1 ;

move = new Vec2();

move.setr(Common.MAXSPEED);

move.sett(ball_fromMe.t);

kickit = true;

errCode += 1 ;

errCode >>= 4;

/**

* Move behind the point and towarding the orient direction

* @param obj : object position

* @param r : radius of the object

* @param orient : orientation

116

*I
private void moveBehind(Vec2 obj , double r, Vec2 orient) {

move = getBehindPoint(obj , r, orient) ;

}

!**
* Fuzzy Adjust ball angle in order to pass to teammate with minimum threat from

opponents

* @ param index : teammates index

* @ return

*I
private Vec2 adjustBallOrient(Vec2 teammate) {//int teammatelndex) {

en-Code <<= 4;

}

Vec2 target;

if(action == Common.ROLE_PASSlNG II
action == Common.ROLE_ CATCH _ PASS) {

en-Code += I ;

target = new Vec2(teammate);

target.sub(bal I) ;

double rotateAngle = adjustBallAngle(ball , teammate, opponents) ;

target.sett(target.t + rotateAngle);

Vec2 newPos = new Vec2(teammate);

newPos.sub(ball);

target.setr(newPos.r * 0.66);

target.add(ball);

} else {

}

errCode += 15;

Common.err(CURLOCATE, "Not recommended to pass ball.");

target = new Vec2(0, O);

errCode > >= 4;

return target;

/**

* Fuzzy Adjust ball angle in order to pass to teammate with minimum threat from

opponents

11 7

* @param from : the point calculate from
* @param to : teammate that pass to
* @param opponents : opponents that take into accounts
* @return

*I
private double adjustBallAngle(Vec2 from, Vec2 to, Vec2[] opponents) {

errCode <<= 4;

double correctAngle = O;

double maxPositiveAngle = 0,
minNegativeAngle = O;

II shift "to" coordinate
Vec2 to_fromBall = new Vec2(to);
to_fromBall.sub(from);

for(int i=O; i<opponents.length; ++i) {
II shift "opponent" coordinate

}

Vec2 opponent_fromBall = new Vec2(opponents[i]);
opponent_ fromBall. sub(from);

if(opponent_ fromBall.r > to_ fromBall.r) {
continue;

}

II rotate "opponent" coordinate
double newt= opponent_fromBall.t - to_fromBall.t;
opponent_fromBall.sett(newt);

I I fuzzy control to find suitable adjusted ball angle
correctAngle = fuzzyAngleAdjust(

opponent_ fromBall.t, opponent_ fromBall.r);

if(correctAngle > maxPositiveAngle) {
II maximum positive angle
maxPositiveAngle = correctAngle;

} else if(correctAngle < minNegativeAngle) {
I I minimum positive angle
minNegativeAngle = correctAngle;

}

I I final correct angle

118

correctAngle = maxPositiveAngle + minNegativeAngle;

errCode >>= 4;

return correctAngle;

}

!**

* Fuzzy Control to adjust the object to turn

* in order to minimize the potential threat

* @pararn in_ angle : input angle in radian

* @param in_distance : input distance in real map distance

* @return : output angle to turn in radian

*/

private double fuzzyAngleAdjust(double in_angle,

double in_distance) {

errCode <<= 4;

double correctAngle;

// avoid some bug that input angle's abs value is greater than Pl

while(in_angle > Math.PI) in_angle -= Common.Pl2;

while(in_angle < -Math.PI) in_angle += Common.PI2;

// convert radial distance to input format (number of times of the player radius)

frs _ bal lPass.setVariable(11 di stance 11
,

in_ distance/Common.RADIUS_ OF _PLAYER);

// convert radian angle to input degree angle

frs _ ballPass.setVariable(11 angle 11
,

Math.abs(Units.RadToDeg(in_angle)));

II start evaluation
frs _ bal !Pass.evaluate();

II get output degree angle turn

correctAngle = frs _ bal1Pass.getVariable(11 turn 11
)

.getLatestDefuzzifiedValue();

II convert degree angle to radian angle and to other direction

correctAngle = -(Math.signum(in _angle))

* Units.DegToRad(correctAngle);

if(DEBUG) {

String str = 11\n"

+ 11 \tinput angle in radian : 11 +

in _angle+ 11 \n"

+ "\tinput angle in degree : 11 +

Units.RadToDeg(in_angle) + 11 \11 11

119

+ "\tinput distance in real : " +

in distance+ "\n"

+ "\tinput distance in radius : "

+ in distance/Common.RADIUS OF PLAYER+ "\n"

+ "\toutput angle in radian : "

+ correctAngle + "\n"

+ "\toutput angle in degree : "

+ Units.RadToDeg(correctAngle);

}

notifyBoard(str) ;

}

errCode >>= 4;

return correctAngle;

/* *

* Check is current angle between line "me-ball" and "me-target" OK for SHOOT

* @pos : Target Position

* @return : is OK to kick ball now?

*I
private boolean readyToKick(Vec2 pos) {

double angle = pos.t - ball.t;
while(angle > Common.PI) {angle-= Common.PI2;}

while(angle < -Common.PI) {angle+= Common.PI2; }

return Math.abs(angle) < Common.ANGLE_ OK_ TO_ KICK;

}

/**

* Introduced from tony

// get angle between 2 lines
// which the crossing point is "me"

* *I
private double getAngle(Vec2 to 1, Vec2 to2) {

Vec2 from= new Vec2(0.0, 0.0);

return getAngle(from, tol, to2) ;

}

/* *

* Introduced from tony

* get angle between 2 lines

* 1st line: from -> to 1, 2nd line: from -> to2

* @param from

* @param tol
* @param to2

120

* @return

*I
private double getAngle(Vec2 from, Vec2 to 1, Vec2 to2) {

double angle;

}

Vec2 tmpl = new Vec2(tol),

tmp2 = new Vec2(to2);

tmp 1.sub(from);

tmp2 .sub(from);

angle= Math.abs(tmpl.t - tmp2.t);

if(angle > Math.PI) angle= Common.Pl2 - angle;

return angle;

/**

* Constructor

*
* @param client : indicate the client side control system

: indicate the control robot id * @param id

* @param flag
*

: indicate the team id that the robot is belonging to

*/
public RCS_ Simulation(Receiver obj , int id, int flag) {

init(id, flag, String.fom1at("Robot [¾d]", mylD));

add Receiver(obj);

setGoal(-Common.GAME_COURT_ WIDTH/2, O);
//output("My Num: " + mylD);

}

teammates = new Vec2[Common.MAXPLAYERINTEAM - I];
opponents = new Vec2[Common.MAXPLAYERINTEAM];

_teammates = new Vec2[Common.MAXPLAYERINTEAM- I];
_opponents = new Vec2[Common.MAXPLAYERINTEAM];

_teammatesSteer = new double[Common.MAXPLAYERINTEAM - I];

_opponentsSteer = new double[Common.MAXPLAYERINTEAM];
notifyBoard("Start player basic configuration ");

this.configure();

this.reset();

notifyBoard("After configuration.");

public void setGoal(double goalX, double goalY) {

this.ourGoal = new Vec2(goalX, goa!Y);

this. theirGoal = new Vec2(-goalX, goalY);

}

121

protected boolean setPlayer(int id, int flag, double x, double y, double steer) {

//notifyBoard(11\n[Set Player : 11 + id+ 11
-

11 +flag+ 11
:

11 + x + 11
,

11 + y + 11
]

11
);

int index;// = id;

}

if(id == myID) {

//notifyBoard(11 It is me. 11
);

_myAbsPosition = new Vec2(x, y);

_ mySteer = steer;

} else if(Common.isBall(id, flag)) {

// is ball

_ball= new Vec2(x, y);

_ ballSteer = steer;
} else if(Common.isTeammate(id, flag)) {

// is teammate

if(id < myID) {

index = id - Common.ID_ START_ OF_ TEAM;

_teammates[index] = new Vec2(x, y) ;

_teammatesSteer[index] = steer;

} else {

}

index = id - Common.ID_ START_ OF_ TEAM - 1;

_teammates[index] = new Vec2(x, y);

_teammatesSteer[index] = steer;

} else if(Common.isOpponent(id, flag)) {

// is opponent

}

index = id - Common.ID_ START_ OF_ OPPONENT;

_opponents[index] = new Vec2(x, y);

_ opponentsS teer[index] = steer;

return true;

public boolean setBehave(int id, int behave, int behaveObject) {

if(id == myID) {

_ behave = behave;

notifyBoard(11 set Behave as: 11 + _behave);

if(behaveObject >= Common.ID_ START_ OF_ TEAM && behaveObject <

mylD) {

_ behaveObject = behaveObject - Common.ID_ START_ OF_ TEAM;

} else if(behaveObject > myID && behaveObject <=

Common.ID_ END_ OF_ TEAM) {

_ behaveObject = behaveObject - (Common.ID_ START_ OF_ TEAM + 1);

} else if(behaveObject >=Common.ID_ START_ OF_ OPPONENT &&

122

behaveObject <= Common.ID_ END_ OF_ OPPONENT) {

_ behaveObject = behaveObject - Common. ID_ START_ OF_ OPPONENT;

} else {

}

}

_behaveObject = behaveObject;

return true;

public boolean setGlobalStrategy(int gb, int gbo) {

_ behaveGlobal = gb;

_ behaveGlobalObject = gbo;

if(gb == Common.ROLE_ASSlST) {

if(behaveGlobalObject >= Common.fD _START_ OF_ TEAM &&
behaveGlobalObject < mylD) {

behaveGlobalObject-= Common.ID START_OF _TEAM;

} else if(behaveGlobalObject > myJD && behaveGlobalObject <=

Common.ID_END_OF_TEAM) {

_behaveGlobalObject-= (Common.ID_START_OF_TEAM + l);

} else if(behaveGlobalObject >= Common.ID_START_OF _OPPONENT &&
behaveGlobalObject <= Common.lD_END_OF _OPPONENT) {

_behaveGlobalObject-= Common.ID_START_OF _OPPONENT;

}
}

return true ;

}

/**
* Calculate the relative coordinates

* for ball, goals and all players

*I
private void resetPosition() {

errCode <<= 4;

myAbsPosition = new Vec2(_myAbsPosition);

ball = new Vec2(_ ball);

errCode += 1 ;

for(int i=0; i<_ teammates.length; ++i) {

teammates[i] = new Vec2(_teammates[i]);

}

errCode += 1 ;

for(int i=0; i<_ opponents.length; ++i) {

opponents[i] = new Vec2(_ opponents[i]);

123

}

errCode += 1 ;
ballSteer = _ ballSteer;
mySteer = _mySteer;

behave = _ behave;
behaveObject = _behaveObject;

behaveGlobal = _ behaveGlobal;
behaveGlobalObject = _ behaveGlobalObject;

_behave= _behaveGlobal = Common.SUNDEF;
_behaveObject = _behaveGlobalObject = Common.SUNDEF;
errCode += 1 ;
Ill Ill I////////////////////////////////// I//
setGoal(-Common.GAME_COURT_ WIDTH/2, O);
errCode += 1 ;
if(ourGoal == null II theirGoal == null) {

Common.err(CURLOCATE, "Our Goal is null .");
errCode = Common.ERROR_ RCS_ SIM_ GOALMISS;
errCode >>= 4;
return;

}
errCode += 1 ;
if(myAbsPosition == null) {

Common.err(CURLOCATE, "My Position is null.");
errCode = Common.ERROR_RCS_SIM_ABSPOSMISS;
errCode >>= 4;
return;

}

ourGoal.sub(my AbsPosition);
theirGoal.sub(myAbsPosition);
errCode += 1 ;
upGoal_opponent = new Vec2(theirGoal.x,

theirGoal.y+Common.GOAL _HALF_ WIDTH);
downGoal_opponent = new Vec2(theirGoal.x, theirGoal.y­

Common.GOAL _HALF_ WIDTH);
upGoal_ team = new Vec2(ourGoal.x,

ourGoal.y+Common.GOAL_HALF _ WIDTH);
downGoal_team = new Vec2(ourGoal.x, ourGoal.y-

Cornmon.GOAL_HALF _ WIDTH);
errCode += 1 ;
ball.sub(myAbsPosition);
//notifyBoard("Ball Position : "+ ball.x + ", "+ ball.y);

124

}

errCode += 1;

int i=0;

for(; i<teammates.length; ++i) {

opponents[i].sub(myAbsPosition);

teammates[i].sub(myAbsPosition);

//output(i + ": : " + teammates[i].x + ", "+ teammates[i].y);

}
errCode += I ;
// opponents array have one more player than teammates array

// (in teammates array, "me" is not there)

opponents[i].sub(myAbsPosition);
eJTCode >>= 4;

//////I I II///// II/////// I II////// II/// I I I II///
// Abstract Function

////////////////////////////////////Ill/// Ill/
public void init(int id, int flag, String name) {

this .myID = id;

}

this.myTeamflag = flag;
notifyBoard("lnitialize simulation for player" + id);

//mylndex = id¾ Common.MAXPLAYERlNTEAM;

switch (myID¾ Cornmon.MAXPLAYERINTEAM) {

case 0: role = Cornmon.ROLE_GOALIE; break;

case I: role = Cornmon.ROLE_BACKUP; break;

case 2: role = Cornmon.ROLE_OFFSIDE; break;

}

case 3: role = Cornmon.ROLE_DRIVE_BALL; break;

default: role = Cornmon.ROLE_CENTER;

behave = _ behave = -1;
behaveObject = _ behaveObject = -1 ;

public void setPosition(double x, double y) {

setPosition(new Vec2(x, y));

}

public void setPosition(Vec2 pos) {

this.myAbsPosition = pos;

}

125

}

public Vec2 getPosition() {
return this.myAbsPosition;

}

public Vec2 getMove() {
return move;

}

public int getOperation() {
if(kickit) return Common.OPERATION_KICK;
return Common.OPERATION_ MOVE;

}
///////////////////////////////I//////////// Abstract END /////////////////// // /////////

private void notifyBoard(String str) {
Common. processMessage(CURLOCATE, str) ;

}

126

