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shapter One

INTRODUCTION

The problem the writer wishes to consider
here,is essentially one related to the classical field

description of Nature.

The framework of General Relativity provides
a theory for the geometry of the four dimensional space-
time manifold and at the same time gives a description of
the gravitational field in terms of the metric tensor,
while the electromagnetic field can be interpreted in
terms of a particular second rank, skew-symmetric tensor
—— the covariant curl of a vector field defined on the
manifold. However the scalar field, the simplest geo-
metric object that could be defined on the manifold, does
not seem to be experimentally evident when it is interpret-
ed as a third, classical long range field. In spite of
this lack of experimental evidence and as there appears to
be no theoretical objection to the existence of such a long
range field, the problem is to introduce the scalar field
-into the classical scheme of things and to construct a

viable theory containing all three long range fields.

It is interesting to compare the physical
descriptions involved with these fields. Both the gravi-
tational and the electromagnetic fields have gauge-like
degrees of freedom and before a situation could be physic-
ally relevant these degrees of freedom must be fixed ~—
for the gravitational field by imposing coordinate condi--
tions while for the electromagnetic field, after coordin-
ate conditions have been imposed the gauge of the field
potential must be chosen. As a consequence of these' 
gauge freedoms, in order that the fields couple consist-
ently with matter sources, the energy momentum tensor of

the source must be covariantly conserved and the electro-



magnetic current density of the source must be conserved.
The scalar field on the other hand has no gauge-like
degree of freedom and consequently has no conserved
"charge" as a source. Thus for example, in contrast to
the other two fields, no constraints exist by which the
scalar field could be separated into a source "bound"

part and a free "wave!'" part.

In recent years the problem of incorporating
the scalar field into the description of gravitation has
led to the investigation of a special class of gravita-

tion theories —— the scalar-tensor gravitation theories.

With the previcusly mentioned problem in

mind, the goals of this thesis are

(1) to review work that has been done on

these theories and

(ii) to discuss them in a way that compares
them to the theory of gravitation given

in General Relativity.

Chapter Two basically gives an historical back=-

ground and introduces more specific motives for considering

the scalar field as a fundamental physical field.

Chapter Three considers the important class

of scalar-tensor gravitation theories based on a Riemann

space~time and Chapter Four continues this theme by looking

at the "most developed" and perhaps simplest member - the

Brans-Dicke theory.

For completeness the '"massive Brans-Dicke!
theories and some special scalar-tensor theories are looked

at briefly in Chapter Five.

Chapter Six returns to the scalar-tensor model

of gravitation developed in Chapter Three and looks at the

implications for the model in more general space-times.
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Chapter Two

BACKGROUND

The electromagnetic and gravitational fields
were described in the introduction as classical long range
fields. These fields are responsible for forces that
fall off inversely proportional to the square of the dis-
tance apart of the interacting bodies (sources); in
contrast to short range forces which show an exponential
hehaviour. Einstein (1916) ( 1 ), attributed to the space-
time manifold a Riemann structure ¢nd gave "meaning'" to the
gravitational field in terms of curvature through his gravi-

tational field ecquations

Gﬁv - RHV - ﬁg“vﬂ - 8HGTFv 4 -

where G is Newton's gravitational constant.

The notation established here is used in most
sections. Units of length and time are chosen such that
¢ ¥ 1, although with this understanding some formulae may-still
contain c . Greek indices range over the values
ia’l,g’ai ,the coordinates x° and xl, (L =,2,q),
are assumed time-like and space-like respectively and the
signature of the space-time nmetric, 8. i w 4+ 4+ 4 -

The Riemann and Ricci tensors have the respective forms
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where i’ “\,) = ZE (gm’,, + gm,“ o gllv'?\_) and partisl
differentiation is denoted by a comma.

.

The close relation between the Riemann curvature
tensor and gravitational effects is further illustrated,
for example, in the equations of geodesic deviation, (2)
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where x“(7), ¥*(7) + 8x"(x) define the paths of & .
pair of neighbouring, freely falling particles and Th
denotes the 2bsolute derivative along the curve xa(T),
A freely falling particle is at rest in a ccordinate
frame falling with it, whereas a pair of neighbouring
freely falling particles will show & relative accelera-
tion given by €gs 2.2 Tc¢c an observer travelling with
the frame this motion will indicate the presence of a

gravitational field.

The electromagnetic field on the other hand,
appears in this picture as a field "embedded" in space-tinme,
the geometry of which is determined by gravitation. A
resclution of this difference in the roles of the two
long range fields was proposed by Weyl (1918), ( 2, & ).
However, along with other attempts at unification it was
generally considered to be physically unsatisfactory, and
so except for some special references, the electromag-
netic field is included in the source side ( i.e. the
right hand side ¢f eg. 2.1 ) of Einstein's field equa-
tions or of these eguations in any subsequently modified

form.

Basic to Weyl's approach was a generalisation
of Riemann space-time - the Weyl space~time, for short.
This space-time has been revived quite recently by some
authors ( e.g. Ross, Lord, and Omote, (5, 6, 7) ) as a
framework for scalar-tensor gravitation theories and for
this reason it deserves.a few comments about its histori-
cal cvrigins, in addition to the treatment given in Chapt-

er Six.

Curvature in Riemann space-time can be related
to the idea of the parallel displacement of & vector - the
transport of a vector by parallel displacement around a
closed curve resulting in the final direction of the
vector being different from its initial direction. Weyl
supposed that the transported vector has a different

length as well as a different direction and so for Weyl



space-time, unless two points are infinitesmally close
together lengths at these points can only be compared
with respect to a path joining them, borause a deter-
mination of length at one point leads to only a first
order approximation to a determination of length at
neighbouring points one must set up, arbitrarily, a
standard of length at each point and with lengths re-
ferred to this local standard a definite number can be
given for the length of a vector at a point. If a
vector which has length,lat a point with coordinates x“
is parallelly displaced to the point with coordinaztes

x* & 5x* then its change.of length Weyl gave tc be
8% e & 12r,‘:ifoé"‘, 2.3

where QP are the components of a vector field.

For parallel displacement around a small
closed curve the total change of length of the transported

vector turns out to be
o o il:"\.
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where 0a describes the element of area enclosed by the

curve, and

i = oL - :'
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Weyl set proportional to the electromagnetic potential

YL
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field tensor, %DL 5 Thus the electromagnetic potential

determines by eq. 2.3 the behaviour of length on parallel

is made proportional to the electromagnetic

displacement and the electric and magnetic fields find ex-
pression in the derived tensor, ﬂﬂx' This tensor can be
shown to be independent of the initial choice of length
standard, which is a necessary condition if it is to be

physically meaningful.

A difficulty of the theory was an apparent con-
flict between eq. 2.% and the interpretation given

above, with the idea that atomic standards of length and



time appear absolute and independent of space-time
position;J If the cocfficient of proportionality between

. 206 :
¢ and A is assumed real and put equal tos* ( e is

E;e eharé; of an electron and C is dimensionless ) then a
recent experiment, (8), places an upper bound on C of
10-4?. Such a figure, however, does not exclude the
geometric interpretation of the electromagnetic field in
terms of the Weyl space-time if, for example, Weyl's
original idea of eguivalent initial length standards is

modified to give special status to atomic standards.

Aside from introducing the Weyl space-time
these comments emphasize a feature of length standards
in Riemann space-time, where.once they are defined in
terms of atomic standards at a point, parallel dis-
placement allows the comparison of lengths taken at
separated points. Without getting involved in prob-
lems of measurement we shall just assume that on this
basis, the physical descriptions of atomic systems are
independent of space-time positicn and that by using
these systems the space-time interval measured between

neighbouring events is given by
1.V
wdlax 246

where g“v is identified with the gravitational field

o ﬁ;v

variable appearing in eq. 2.1.

With this brief and rather indirect look at
some of the ideas involved in the Riemann space-time we
return to look at Einstein's field equations and his
description of gravitation in order to provide a back-

ground before introducing the scalar field,

Because the dynamical variable of the
gravitational field in General Relativity is the metric
tensor, it plays an important geometry-determining role
in space-time and the field egquations can be understood
to ccouple the geometry of space-time to matter. Thus

the only physical constraint imposed by these equations

i

so under parellel disilacenent e vector nmaintains its
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on the nature of matter is that its energy-momentum

tensor has zero divergence.

Implicit in all of the discussion so far has
been the division between the gravitational field and
matter. In his discussion of the action principle
formulation of his field equations, Einstein (9), stated
an assumption to ensure that this distinction carried
over to the action principle —— that is, the Lagrangian
density could be divided into two parts, one of which
refers to the gravitational field and contains only the
metric tensor and its derivatives. The appropriate
density for this part is the Riemann scalar density and
apart from a cosmological term the resulting action for
the free gravitational field is unique in giving field
equations which are linear in the second derivatives of
the metric and which in the weak-Tield limit give the

Newtonian case.

In spite of this success in giving empty
space~-time field equations that are unique modulo a
cosmological term, the action principle without further
assumptions,does not offer much insight into the nature
of the energy-momentum tensor. So the action principle
remains an important method for constructing field equa-

tions.

In order to make progress later on, much use

is made of the Principle of Minimal Coupling, ( c.ge 10 ),

which Anderson notes is not an essential part of General
Relativity. If a material system is considered in Spec-

ial Relativity as a set, % of matter fields thon iis falor-
Lagrange equations of moticn, in some inertial frame, will

follow from an action principle

8 fLMd“'x =0

for suitable variations of the variables ¥ . The
action ( § Imdﬁx ) will depend on the Lorentz metric;ﬁlv ™
and with

v replaced by guv this action when added to



the free gravitationafield action gives the required
action1 for the gravitational and matter field equations.
If"I’"NG- denotes the matter or nongravitational part of
the full Lagrangian density ( i.e. with the principle
assumed, du e is the minimally coupled LM ) then

the c¢nergy-momentum tensor of the material system is de-
fined in terms cf the system's ''respcnse' to the metric
field by

Y b
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This definition still holds without appeal to the
Principle of Minimal Coupling but in this case the connec-
tion described betwcen & e and LL. could rot be supposed
to hold.

An aspect of the field equations noted here
then, is that the nature of the energy-momentum tensor is
determined by criteria outside of General Relativitye. To
work within the framework of General Relativity leads to
an extreme position such as suggested by McCrea (11),
that the Einstein tensor is to be interpreted or identified
as an energy-momentum tensor and the central guestion is
then which geometric constraints imposed by the field
equations are physically meaningful. This rather formal
approach has been developed a little by Harrison, (12),
in a way, to suggest that scalar-tensor gravitation theories
are in fact derivative from Einstein's theory by suitable
interpretations of the energy-momentum tensor. However
this view is a bit unorthodox and we shall return to it

later.

It was mentioned in the introduction that the
gravitational field, as described by Einstein, has a gauge-

like degree of freedom. This of course corresponds to

. this minimalcoupling prescription is sometimes, when needed.
supplenented with the rule that :-

partial derivatives —- covariant derivatives.



the coordinate transformations of the metric tensor and
one can always introduce at a point a local coordinate
system, sometimes characterised as a locally freely
falling system, in which fcr a sufficiently small
neighbourhood of the point the metric is the Lorentz
metric. By describing physics in this neighbourhood
in terms of such a coordinate system the effects of the
gravitational field are transfocrmed away. Essentially
it is this feature of General Relativity - that gravita-
tional or cosmological effects can be made to vanish in
the small, which has been questioned and led to the

scalar-tensor gravitation theories.

In 1937 Dirac, (13), ( and 1938 (14) ),
suggested that an expanding model of the Universe not
only provided & cosmic time scale but also allowed the
possibility that th; gravitational constant may vary with
this time. By taking the ratic of the age of the Universe
to & unit of time fixed by atomic constants ( Cele %:; or %ca )
one obtains a number, t, of the order 1040 y and b; tak- B
ing the ratio of the gravitational force to the electric
force between typically charged-particles one obtairs a

Ga” ~L0

dimensionless expression, <-% ,of the order 10 .
e

So for this epoch

e® N AT, 249
02

and with m and o© supposed constant this relation becomes

G o~ £, 2410
which Dirac’s hypothesis implied, held for all epochs.
In more general terms Dirac's hypothesis, (14), stated
that "any two of the very large dimensicnless numbers
occurring in Nature are connected by & simple mathematical
relation in which the coefficients are of the order of
magnitude unity" and as a consequence if a number varies
with epoch then other dimensionless numbers may be re-
quired to vary with epoch in order to keep the relations

between them.
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A feature of the cosmology which Dirac was
led to, is that fundamental significance need not be
given to these numbers. For example, from eq. 2.9, the
ratio of gravitationzl to electric forces is small because
the Universe is old. Although Dirac's cosmeclogy could
almost be ruled out by present observations, the idea re-
mains that fundamental constants and in particular, the
gravitational constant, may not in fact be constant.
Some observable effects of a variable gravitational con-
stant have been discussed by Jordan, (15), and by Dicke,
(16), but because these effects are geophysical or cos-
mological, the systems involved are complex and the
numerical data available is insufficient as evidence for
variation of the gravitational constant. Recent results
by Shapiro, (17), using planetary radar systems, and
atomic clocks put an experimental limit on the fractional
time variation of the gravitational constant as 4 x 10-1O/year
and so the idez of a variasble gravitational constant is still
a conjecture which has not been established by direct ob-

servation.

Einstein's equations appear at present to
describe local gravitational effects quite adequately and
one could expect these equations to hold for the Universe
As a whole. But, since the equations require the gravi-
tational constant, when measured in units defined by atomic
standards, to be constant they need to be modified if Dirac's
hypothesis is assumed to be valid. A simple way to intro-
duce & variable gravitational constant into the field
equations is to make the gravitational constant a new local

scalar field variable depending on position in space-time.

Historically, Jordan (1948) was the first to use
this approach to incorporate a variable gravitational constant
in a field theory of gravitation.. He originally usecd the
five-dimensional representation of General Relativity de-
veloped by Kaluza (1921) and Klein (1926) and later (1955)](\33)

he and others developed the theory as a four-dimensional
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scalar-tensor formalism. These earlier references to
Jordan's theory are given more completely by Pauli,

(19), and a comprehensive review of Jordan's theory is
given in an article by Brill, (20). The most widely
known theory of gravitation which includes a variable
gravitational constant is the Brans-Dicke theory (1961)
which is formally, very closely related to Jordan's
theory. From 1961 onwards, the existence of such a
long-range scalar field scemed feasible ( but perhaps
experimentally doubtful ) and in the writer's opinion

the most interesting developments to come from the Brans-
Dicke theory relate to the problem of constructing
dynamical laws invelving the gravitational field variable,
the scalar field variable and matter field variables.
Finally, one notes that, to intrcduce the scalar field

as a long range cosmological field for the purpose of
obtaining a variable gravitational constant is by no
means the only way of giving expression to Dirac's

hypothesis.

In a pattern similar to that described above,
other authors have postulated a scalar field and intro-
duced scalar field terms intc Einstein's field equations
in order to deduce from these equations preferable models
of the Universe. Hoyle's equations (1948) (21) implied
that matter was not conserved and gave a steady-state
model of the Universe. Here the scalar field was related
to the creation of matter, in contrast to the scalar field
postulated by Rosen (1969) (22) which had no interaction
with matter. Rosen's equations gave an oscillating model

of the Universe.

The Machian idea of a connection between local
physical laws and properties of the Universe as a whole
has already been partly met, with Dirac's hypothesis. In
an effort to explain inertia, the Brans-Dicke theory was
based more on Mach's Principle than on Dirac's hypothesis.
Some further references to these ideas are given in

Chapter Four while passing mention is made here to Caloi
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and Firmani's (1970) (23) modified Brans-Dicke theory in
which radiation is given a more Machian property in de-
termining along with matter, the inertia of a body.
However their theory is restrictive and applies only to

a homogeneous, idftropic space-time in which the matter
content can be represented as a perfect fluid. Gursey's
(24) theory is Machian motivated in a different kind of

way and this theory is discussed in Chapter Five.

It is apparent that the scalar field
has been introduced into the General Relativistic frame-
work to incorporate many quite different physical
features which have been thought desirable and found not
to follow from the usual interpretations of Einstein's
field equations. The field equations of the scalar-
tensor gravitation theories that have been devised, poss-
ess cosmological solutions describing a variety of models
of the Universe. So with these rather general comments
summarizing (and substituting for) what could have been a
lengthy look at the individual theories, the relation be-
tween the scalar-tensor and Einstein's descriptions of
gravitation is taken up with reference to Harrison's

papers (12, 25).

Harrison, (12), states that the scalar-
tensor field equations "constitute in fact a limited and
particular class of equations that derive from General
Relativity and are of lesser generality". He arrives
at this view after showing that the forms of the action
principles of different scalar-tensor theories can be
transformed into each other and into the form of the
action principle for General Relativity, by recalibrations
( i.e. conformal or scaling transformations ) of the field
variables. Thus, together with the observation noted
earlier that the physical nature of the energy-momentum
tensor lies outside of the scope of the theory of General
Relativity, a scalar-tensor gravitation theory seems to
be, (25), "a specialised application of the theory of

General Relativity'". In this way the scalar-tensor and
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Zinstein's theories of gravitation do not have the same
status as gravitation theories, General Relativity be~
comes in a sense &a generic theory where one works in a
Riemann space-time and postulates field equations based
on assumptions about the content of the energy-momentum
tensor in Einstein's field equations. A classic example
of this procedure is given by McCrea (1951), (26), who
found that Hoyle's results (1948) could be derived from
Einstein's field equations if negative stress was allowed
in the energy-momentum tensor of the Universe. Another
example is implied by remarks of Dirac (1938) that, assum-
ing the gravitational constant was variable with respect
to atomic standards of measurement, Einstein's equations
should hold for units which vary appropriately with respect

to the atomic standards.

Ferhaps this view emphasizes the geo-
metrization of gravitation achieved by General Relativity
and the special importance placed on the interpretation of

the Einstein tensor,

In contrast, the assumption of the follow-
ing chapters is that one wants the scalar field to be an
integral part of the description of gravitation — for the
purpose of giving position dependence to the gravitational
constant, inertial mass or just to offer new models of the
Universe — and therefore the scalar-tensor and Einstein's
theories of gravitation are to be on equal footing as

gravitation theories.





