Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Investigating Downdraft Gasification of Biomass

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Physics

Massey University, Palmerston North, New Zealand.

Donna Louise Giltrap 2002

Abstract

Gasification of biomass is a potential source of renewable energy. Downdraft gasifiers are comparatively cheap and can produce gases with low tar content. We constructed a simple, phenomenological model of downdraft gasification which we compared to both previously published data and our own experimental results. The steady-state gas compositions predicted by the model were quite close to those found experimentally, although the model tended to over-predict the amount of methane in the dry product gas. The steady-state gas composition predicted depended upon the conditions assumed at the top of the gasifier.

The experimental part of this investigation looked at the effect of the air flow rate into the gasifier and the length of the gasifier bed. However, the uncertainties in the experimental measurements were too large to determine whether the experimental results followed the same trends as predicted by the model.

The gasifier was run successfully using both 18.7% moisture content pine chips and 12.3% moisture content walnut shells (weight percentage, dry basis) as fuel. Both fuel types produced dry exit gases of similar compositions.

Acknowledgements

This project received funding from the Institute of Fundamental Sciences Graduate Research Fund and the Massey University Research Equipment Fund.

I would also like to thank the following for their contributions towards this project:

- Bill Dwyer of Dwyer Technical Services for his help in developing the gasifier ignition system and for the loan of a gas bottle and fittings.
- The Institute of Fundamental Sciences specialist services staff for their help in manufacturing, altering and repairing the experimental apparatus.
- The Fielding Lumber Co. for the donation of some freshly cut pine chips.
- The Institute of Technology and Engineering for the loan of a digital anemometer and the use of the gas chromatograph.
- Malcolm Harbrow for allowing himself to be drafted to help carry equipment and fuel.
- My supervisors Geoff Barnes and Robert McKibbin.

Table of Contents

ABSTRACTii
ACKNOWLEDGEMENTSiii
LIST OF FIGURES AND TABLES vii
1. INTRODUCTION1-1
1.1 The World Energy Situation
New Zealand Energy Usage1-3
1.2 GASIFICATION
Downdraft1-7
Updraft
Fluidised Bed1-9
1.3 REVIEW OF RELATED RESEARCH
(A) Electricity Production Using Gasification
(B) Gasification of Biomass1-10
(C) Modelling Gasification1-11
1.4 THESIS ORGANISATION
2. EXPERIMENTAL APPARATUS2-1
2.1 Gasifier Ignition System
2.2 TRANSDUCERS AND CALIBRATION
(A) Temperature
(B) Inlet Air Flow Rate2-5
(C) Exit Gas Flow Rate2-8
(D) Pressure Gradient across bed2-11
(E) Fuel Moisture Content2-12
(F) CO detector
2.3 Gas Collection and Analysis
(A) Gas Sampling2-13
(B) Gas Chromatograph2-13
3. STEADY STATE AND TIME DEPENDENT MODELS 3-1

3.1-DIMENSIONAL STEADY-STATE MODEL	3-2
(A) Reaction Rates	3-2
(B) Mass and Energy Balances	
(C) Model Sensitivity to Initial Conditions	
Varying Initial Temperature	
Varying Initial Pressure	
Varying Initial Velocity and C_{RF}	
Varying Initial CO ₂	3-13
Varying Initial CO and CH₄	
Varying Initial H ₂	
Varying Initial H ₂ O	
(D) Initial Values	
Initial Gas Concentrations.	
Initial Gas Temperature	
Char Reactivity Factor (C_{RF})	
Pyrolysis Fraction	
(E) Comparison with Experimental results	
3.2 I-DIMENSIONAL STEADY STATE MODEL WITH COMBUSTION REACTIONS	
3.3 TIME DEPENDENT MODEL	
(A) Model Construction	3-29
(B) Agreement with Steady State Model	
3.4 CONCLUSION	
4. EXPERIMENTAL RESULTS	4-1
4.1 PERFORMANCE OF GASIFIER RUN IN BATCH MODE	4-1
(A) Mass and Energy Balances of Gasifier	
4.2 EFFECT OF VARYING BED LENGTH	4-5
(A) Exit Gas Temperature	
(B) Exit Gas Composition	
(C) Mass and Energy Balance of Gasifier	4-10
(D) Summary	4-11
4.3 EFFECT OF VARYING AIR FLOW RATE	
(A) Exit Gas Temperature	4-12
(B) Exit Gas Composition	4-15
(C) Mass and Energy Balances of Gasifier	4-18
(D) Summary	4-22

4.4 EFFECT OF DIFFERENT FUEL TYPES	
(A) Exit Gas Temperature	
(B) Exit Gas Composition	
(C) Mass and Energy Balances of the Gasifier	
(D) Summary	
4.5 CONCLUSION	
5 COMPARING EXPERIMENTAL RESULTS WITH MODEL PREDICTIONS	
5.1 MODEL WITHOUT METHANE COMBUSTION	
(A) Effect of Varying Air Flow Rate	
(B) The Effect of Varying Bed Length	
(C) Summary	
5.2 MODEL INCLUDING METHANE COMBUSTION REACTIONS	
(A) The Effect of Varying the Air Flow	
(B) The Effect of Varying Bed Length5-14	
(C) Summary5-17	
6 CONCLUSION	
APPENDIX A: JUSTIFICATION OF THE IDEAL GAS APPROXIMATION. 7-1	
APPENDIX B: EQUILIBRIUM CONSTANTS FOR REACTIONS	
APPENDIX C: MATLAB SCRIPTS	
REFERENCES 10-1	

List of Figures and Tables

FIGURE 1.1: NEW ZEALAND ENERGY CONSUMPTION BY FUEL TYPE FOR THE CALENDAR
YEAR 2001
Figure 1.2: New Zealand CO_2 emissions by sector for the calendar year 2001
FIGURE 1.3: NEW ZEALAND ELECTRICITY GENERATION FOR THE YEAR ENDED MARCH
2002
FIGURE 1.4: SCHEMATIC OF A TYPICAL DOWNDRAFT GASIFIER
FIGURE 1.5: SCHEMATIC OF A TYPICAL UPDRAFT GASIFIER
FIGURE 1.6: SCHEMATIC OF A TYPICAL FLUIDISED BED GASIFIER
FIGURE 2.1: DOWNDRAFT GASIFIER CONFIGURATION
FIGURE 2.2: CALIBRATION OF N-TYPE THERMOCOUPLE USED IN EXPERIMENTS2-5
FIGURE 2.3: VOLUME FLOW RATE OF AIR OUT OF VACUUM CLEANER VS THE SETTING OF
THE VARIAC VARIABLE TRANSFORMER ATTACHED TO THE VACUUM CLEANER POWER
SUPPLY
FIGURE 2.4: AIR SPEED AT VACUUM CLEANER INLET VS. THE VOLUME FLOW RATE
OUTPUT OF THE VACUUM CLEANER
FIGURE 2.5: AIR FLOW RATE PRODUCED BY VACUUM CLEANER AT DIFFERENT VARIAC
SETTINGS WHEN OPERATING AGAINST ATMOSPHERIC PRESSURE AND WHEN
CONNECTED TO AN OPERATING GASIFIER
FIGURE 2.6: PRESSURE DROP ACROSS THE VENTURI CONSTRUCTION PLOTTED AS A
FUNCTION OF VOLUME FLOW RATE AND TEMPERATURE
FIGURE 2.7: PRESSURE GRADIENT AS A FUNCTION OF SUPERFICIAL GAS VELOCITY FOR
GASIFIER BEDS OF WOOD CHIPS AND WALNUT SHELLS
FIGURE 2.8: LOG OF THE NORMALISED CONCENTRATION OF H_2 REMAINING IN SAMPLE VS
TIME
TABLE 3.1: NET RATE OF PRODUCTION OF THE DIFFERENT GASEOUS SPECIES BY
CHEMICAL REACTIONS IN TERMS OF THE RATES OF REACTIONS 1 - 4
TABLE 3.2: INITIAL VALUES USED IN SIMULATIONS TO TEST THE MODEL SENSITIVITY.3-8

FIGURE 3.2: THE EFFECTS OF CHANGING THE INITIAL PRESSURE ON (A) THE GASIFIER
TEMPERATURE PROFILE, (B) THE DRY GAS HHV and (C) the molar flux of DRY
GAS PREDICTED
FIGURE 3.3: THE EFFECTS OF VARYING SUPERFICIAL GAS VELOCITY ON (A) THE GASIFIER
TEMPERATURE PROFILE AND (B) THE DRY GAS HHV PREDICTED
FIGURE 3.4: The effects of varying the C_{RF} on (A) the temperature profile of
THE REDUCTION ZONE AND (B) THE DRY GAS HHV PREDICTED
FIGURE 3.5: The effects of varying initial CO_2 concentration on (A) the
TEMPERATURE PROFILE OF THE REDUCTION ZONE AND (B) THE DRY GAS HHV
PREDICTED
FIGURE 3.6: THE EFFECTS OF VARYING THE INITIAL CONCENTRATION OF CO ON (A) THE
TEMPERATURE PROFILE OF THE REDUCTION ZONE AND (B) THE DRY GAS HHV
PREDICTED
FIGURE 3.7: The effects of varying initial CH_4 concentration on (A) the
TEMPERATURE PROFILE IN THE REDUCTION ZONE AND (B) THE DRY GAS HHV
PREDICTIONS
FIGURE 3.8: The effects of varying initial H_2 concentration on (A) the
TEMPERATURE PROFILE OF THE REDUCTION ZONE AND (B) THE DRY GAS HHV
PREDICTIONS
Figure 3.9: The effects of varying the initial H_2O concentration on (A) the
TEMPERATURE PROFILE OF THE REDUCTION ZONE, AND (B) THE DRY GAS HHV
PREDICTIONS
TABLE 3.3: COMPOSITION OF PINUS RADIATA WOOD
TABLE 3.4: CALCULATED COMPOSITION OF THE VOLATILE COMPONENT OF PINUS
RADIATA WOOD
FIGURE 3.10: GASIFIER TEMPERATURE PROFILES PREDICTED BY THE MODEL USING
DIFFERENT C_{RF} VALUES
FIGURE 3.11: N_2 CONCENTRATIONS IN DRY GAS PREDICTED BY MODEL USING DIFFERENT
F_P VALUES
TABLE 3.5: PARAMETERS USED IN EXPERIMENTAL DOWNDRAFT GASIFICATION AND IN
THE MODEL SIMULATION
FIGURE 3.12: DRY EXIT GAS COMPOSITION PREDICTED BY THE STEADY STATE MODEL
COMPARED WITH THE EXPERIMENTAL RESULTS OF CHEE (1987) AND SENELWA
(1997)

FIGURE 3.12: DRY EXIT GAS COMPOSITION PREDICTED BY THE STEADY STATE MODEL COMPARED WITH THE EXPERIMENTAL RESULTS OF CHEE (1987) AND SENELWA FIGURE 3.13: DRY EXIT GAS COMPOSITION PREDICTED BY THE STEADY STATE MODEL. COMPARED WITH THE EXPERIMENTAL RESULTS OF CHEE (1987) AND SENELWA **TABLE 3.6:** NET RATE OF PRODUCTION OF THE DIFFERENT GASEOUS SPECIES BY FIGURE 3.14: DRY EXIT GAS COMPOSITION PREDICTED BY MODEL INCLUDING METHANE. COMBUSTION REACTION COMPARED WITH EXPERIMENTAL RESULTS FROM CHEE FIGURE 3.15: DRY EXIT GAS COMPOSITION PREDICTED BY MODEL INCLUDING METHANE COMBUSTION REACTION AND ASSUMING PYROLYSIS GAS CONSISTS OF CO_2 , CH_4 and H₂O, COMPARED WITH EXPERIMENTAL RESULTS FROM CHEE (1987) AND SENELWA FIGURE 4.1: EXIT GAS TEMPERATURE PLOTTED AGAINST TIME FOR GASIFIER OPERATED FIGURE 4.2: COMPOSITION (BY VOLUME FRACTION) OF DRY EXIT GAS SAMPLES TAKEN AT TABLE 4.1: VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL FIGURE 4.3: EXIT GAS TEMPERATURE VS TIME FOR GASIFIER BED LENGTHS (A) 10CM. (B) FIGURE 4.4: "STEADY-STATE" EXIT GAS TEMPERATURE OF GASIFIER VS BED LENGTH.... 4-7 FIGURE 4.5: O2 CONCENTRATION FOR GASIFIER RUNNING ON PINE CHIPS AT NEAR FIGURE 4.6: COMPOSITION OF DRY EXIT GAS VS TIME FOR BED LENGTHS (A) 0.10 FIGURE 4.7: AVERAGE COMPOSITION OF THE DRY EXIT GAS DURING "STEADY-STATE" **TABLE 4.2:** VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL MEASUREMENTS OF STEADY-STATE DOWNDRAFT GASIFIER PRODUCT GAS FOR

FIGURE 4.8: GAS EXIT TEMPERATURE VS TIME FOR GASIFIER USING PINE CHIPS AS FUEL.
TABLE 4.3: TIME INTERVALS FOR WHICH THE GASIFIER OPERATION WAS APPROXIMATELY
STEADY-STATE
FIGURE 4.9: EXIT GAS TEMPERATURE DURING STEADY-STATE OPERATION VS THE MOLAR
FLOW RATE OF AIR INTO THE INLET
FIGURE 4.10: MEASURED GAS CONCENTRATIONS (EXPRESSED AS VOLUME
PERCENTAGES) VS TIME FOR GASIFIER USING PINE CHIPS AS FUEL
FIGURE 4.11: STEADY-STATE COMPOSITION OF DRY EXIT GAS VS THE FLOW RATE OF AIR
INTO THE GASIFIER
TABLE 4.4: VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL
MEASUREMENTS OF STEADY-STATE DOWNDRAFT GASIFIER PRODUCT GAS FOR
VARIOUS AIR FLOW RATES
TABLE 4.5: ENERGY BALANCE FOR GASIFICATION OF A MOLE PINE CHIPS WITH DIFFERENT
AIR INFLOW RATES
FIGURE 4.12: ENERGY BALANCES FOR GASIFICATION OF PINE CHIPS AT AIR FLOW RATES
OF (A) 0.22 ± 0.03 MoL/s, (B) 0.32 ± 0.06 MoL/s and (C) 0.6 ± 0.1 MoL/s4-20
TABLE 4.6: RATE OF EXIT GAS CHEMICAL ENERGY PRODUCTION FOR DIFFERENT AIR
FLOW RATES
FIGURE 4.13: TEMPERATURE OF EXIT GAS VS TIME FOR GASIFIER OPERATING ON WALNUT
SHELLS
FIGURE 4.14: COMPOSITION OF DRY EXIT GAS. GASIFIER OPERATING WITH WALNUT
SHELLS FOR FUEL, BED LENGTH = 10 ± 1 CM
FIGURE 4.15: COMPOSITION OF STEADY-STATE DRY EXIT GAS FOR GASIFIER RUN ON PINE
CHIPS AND WALNUT SHELLS
TABLE 4.7: COMPOSITION OF WALNUT SHELLS 4-25
TABLE 4.8: VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL
MEASUREMENTS OF STEADY-STATE DRY EXIT GAS COMPOSITION FOR DOWNDRAFT
GASIFIER OPERATED USING WALNUT SHELLS AS FUEL
FIGURE 5.1: THE DRY EXIT GAS COMPOSITION FOUND FOR A GASIFIER RUN USING AN AIR
Flow rate of 0.22 ± 0.03 mol.s ⁻¹ and BED length of 0.10 ± 0.01 m compared
TO THE MODEL PREDICTION

TABLE 5.1: SUPERFICIAL GAS VELOCITIES CORRESPONDING TO THE DIFFERENT AIR FLOW
RATES
FIGURE 5.2: EXPERIMENTAL RESULTS AND MODEL PREDICTIONS OF THE EXIT GAS
TEMPERATURE VS INITIAL GAS VELOCITY
FIGURE 5.3: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR
FRACTION OF (A) N_2 , (B) CO_2 , (C) CO , (D) CH_4 and (E) H_2 in the Dry exit gas
AS THE INITIAL SUPERFICIAL GAS VELOCITY IS VARIED
FIGURE 5.4: EXPERIMENTAL MEASUREMENT AND MODEL PREDICTION OF THE STEADY-
STATE EXIT GAS TEMPERATURE VS GASIFIER BED LENGTH
FIGURE 5.5: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR
FRACTION OF (A) N_2 , (B) CO_2 , (C) CO , (D) CH_4 and (E) H_2 in the Dry exit gas
AS THE BED LENGTH WAS VARIED
FIGURE 5.6: EXPERIMENTAL RESULTS AND MODEL PREDICTIONS OF THE STEADY-STATE
EXIT GAS TEMPERATURE VS INITIAL GAS VELOCITY
FIGURE 5.7: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR
FRACTION OF (A) N_2 , (B) CO_2 , (C) CO , (D) CH_4 and (E) H_2 in the dry exit gas
AS THE INITIAL SUPERFICIAL GAS VELOCITY IS VARIED
FIGURE 5.8: EXPERIMENTAL MEASUREMENT AND MODEL PREDICTION OF THE STEADY-
STATE EXIT GAS TEMPERATURE VS GASIFIER BED LENGTH
FIGURE 5.9: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR
FRACTION OF (A) N_2 , (B) CO_2 , (C) CO , (D) CH_4 and (E) H_2 in the Dry exit gas
AS THE BED LENGTH WAS VARIED
TABLE 7.1: CORRECTION TERMS TO THE IDEAL GAS EQUATION FOR GASES WITH $T = 900$
K, $V_M = 7.38 \times 10^{-2} \text{ m}^3/\text{MOL}$, $P = 101,300 \text{ PA}$
TABLE 7.2: CORRECTION TERMS TO THE IDEAL GAS EQUATION FOR GASES IN GASIFIER
WITH $T = 900$ K, $V_M = 7.38 \times 10^{-3} \text{ m}^3/\text{MOL}$, $P = 1,013,000$ PA7-3
FIGURE 8.1: THE LOG OF THE EQUILIBRIUM CONSTANTS FOR REACTIONS 1-5 PLOTTED
AGAINST THE RECIPROCAL OF THE TEMPERATURE
TABLE 8.1: FORMULAE USED TO CALCULATE EQUILIBRIUM CONSTANTS OF REACTIONS AT
DIFFERENT TEMPERATURES