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Abstract 

Animals adjust their investment in different life history traits according to their 

surroundings to maximise their fitness. Using a polygamous insect, the Mediterranean 

flour moth Ephestia kuehniella Zeller, which produces fertile eupyrene and infertile 

apyrene sperm, I investigated resource allocation strategies employed by males in 

response to socio-sexual cues during the adult and juvenile stages. I demonstrate that 

adult males raised their lifetime production and ejaculation of both eupyrenes and 

apyrenes after detecting either acoustic or chemical cues from adult rivals with 

combined cues strengthening such response, and that rival-experienced males could 

remember the sperm competition risk for most of their reproductive life. I manipulated 

juvenile socio-sexual settings and then examined their sperm production and 

ejaculation as well as survival, body and testis size, and mating behaviour. I provided 

the first evidence that juvenile social cues from conspecific larvae, pupae or adults had 

lasting impacts on lifetime sperm production and allocation. Adults from group-reared 

larvae, regardless of sex ratio, had smaller testes but produced more eupyrenes at 

emergence than from singly reared ones, and that body size and apyrene numbers 

remained the same across treatments. Male pupae had similar testis size but increased 

production of both eupyrenes and apyrenes at emergence in response to cues from 

conspecific pupae irrespective of sex. Late instar male larvae were able to detect cues 

from adult rivals and subsequently produced more sperm of both types at emergence, 

but adult cues had no effect on body and testis size. Juvenile socio-sexual environment 

had significant effects on sperm production and ejaculation during adult stage. My 

study indicates that after their late instar larvae were exposed to juvenile or adult rivals, 

adults produced and ejaculated more eupyrenes and apyrenes in their lifetime and had 

shorter mating latency. However, rival exposure had no effect on males’ mating 

frequency and longevity. Knowledge generated here enhances our understanding of 

how males of a polygamous insect calibrate their resource investment in response to 

dynamic social environment.  
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CHAPTER 1  

General Introduction 

1.1 Introduction  

A fundamental assumption in most evolutionary theories is that individuals cannot 

maximise both reproduction and survivorship indefinitely (Kirkwood, 1977; Stearns, 

1989; Roff, 2002). As the future survival is uncertain, individuals may prioritise their 

resource allocation to reproduction, resulting in trade-offs with other life-history traits, 

such as growth and somatic maintenance (Bonduriansky et al., 2008; Ghalambor et al., 

2010; Maklakov & Immler, 2016). These trade-offs are often associated with highly 

variable environmental conditions, especially the rapidly changing socio-sexual 

environment (Kasumovic et al. 2008). Through phenotypic plasticity, animals can 

modulate their reproductive traits, strategies, and investment according to their socio-

sexual surroundings throughout development and aging process to maximise their 

fitness (Pigliucci, 2005; Kasumovic & Brooks, 2011; Taborsky, 2016; Dore et al., 2018; 

Westneat et al., 2019). 

The Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: 

Pyralidae), is an ideal model species for investigating how individuals adjust their 

resource allocation to reproduction in response to the socio-sexual environment (e.g., 

Xu & Wang, 2010a, 2014; Esfandi et al., 2015, 2020). This is owing to the ease of 

mass-rearing along with its short developmental period, simple diet, early sexual 

maturation, high levels of promiscuity in both sexes, high female fecundity, polygamy, 

and non-feeding during adult stage (Calvert & Corbet, 1973; Sedlacek et al., 1996; 

Rees, 2004; Xu et al., 2007; Xu & Wang, 2009a, 2009b; Sadeghi et al., 2018). 

Furthermore, as a lepidopteran insect, E. kuehniella males produce two types of sperm, 

infertile apyrenes and fertile eupyrenes (Garbini & Imberski, 1977; Koudelová & Cook, 

2001; Friedländer et al., 2005), allowing evaluation of differential resource allocations 

to these sperm in response to socio-sexual environment.  
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1.2 Relevance of the study 

In nature, animals unintentionally or intentionally generate cues throughout their 

lifetime (Kasumovic & Brooks, 2011; Dore et al., 2018). Conspecifics detecting those 

cues can adjust their behaviour and physiology to maximise their fitness (Parker, 1998; 

Danchin et al. 2004; Parker & Pizzari, 2010; Bretman et al., 2013; Corbel et al., 2022). 

For example, when males face an increased sperm competition risk, they often increase 

their resource allocations to reproduction, developing larger testes and producing 

ejaculates of greater sperm numbers, to raise the probability for a focal ejaculation to 

compete against at least one rival ejaculation (Parker, 1970; Parker et al., 1997; Vahed 

& Parker, 2012). Because manufacturing sperm is costly (Dewsbury, 1982; Lemaître et 

al., 2020), increased investment in sperm may cause trade off with other life traits 

(Ramm & Stockley, 2009; Devigili et al., 2015; Paschoal & Zara, 2022). 

Prior to response to sperm competition risk, animals need to ensure the cues they 

detect reflect socio-sexual situations accurately and reliably (Auld et al., 2010; Dore et 

al., 2020). At the adult stage, such detection may involve the input of chemical 

(delBarco-Trillo & Ferkin, 2004; Lane et al., 2015; Larsdotter-Mellström et al., 2016a) 

and/or acoustic (Bateman & MacFadyen, 1999; Dunn et al., 2015; Charlton & Reby, 

2016; Rebar & Greenfield, 2017) stimuli from their conspecific rivals. For instance, 

Bretman et al. (2011a) and Maguire et al. (2015) demonstrate that male flies need to 

sense at least two types of cues from rivals to respond to the sperm competition 

environment. Yet, in most mating systems it is not clear whether a single rival cue 

can elicit a response, whether combined cues can strengthen the response, and how 

these rival cues affect sperm allocation and production in a male’s lifetime.  

Animals’ social experience during their juvenile stages may also influence 

resource allocations to reproduction and survival (West-Eberhard, 2003; Kasumovic & 

Brooks, 2011; Taborsky, 2016; Lange et al., 2021). Studies show that male insects 

increase their investment in testes (Gage, 1995; Stockley & Seal, 2001; Johnson et al., 

2017) and sperm allocation in the first mating (Yamane & Miyatake, 2005; McNamara 

et al., 2010) if their larvae are reared in high density, indicative of future sperm 
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competition risk. However, it is still not clear (1) how larval and pupal social cues affect 

investment in testes and sperm production before emergence; (2) how juvenile socio-

sexual settings influence lifetime sperm production and allocation, and (3) whether 

exposure to similar social-sexual settings by different juvenile stages lead to diverse 

lifetime sperm expenditure.     

Conspecific young and adults may co-exist spatially and temporarily (e.g., Harris 

& Moore, 2005; Chapman et al., 2007; Magellan & Magurran, 2009; Lemaître et al., 

2011; Lee et al., 2013; Prounis et al., 2015; Bayoumy et al., 2021; Ham et al., 2022). 

Therefore, cues from adult males may indicate sperm competition risk to juvenile 

males, influencing their resource allocations to future growth, reproduction, and 

survival (Kasumovic & Brooks, 2011; McDowall et al., 2019). To date, only a few 

studies have examined how the presence of adult rival cues during juvenile stages alters 

reproductive investment in testes (Bailey et al., 2010; Bretman et al., 2016) and 

ejaculation in the first mating (Gray & Simmons, 2013; Simmons & Lovegrove, 2017). 

Nonetheless, it remains to be ascertained whether juvenile sensitivity to adult male cues 

is stage dependent and whether these cues affect lifetime sperm production and 

ejaculation.  

1.3 Aims and objectives 

The aim of my thesis study is to address the above questions and provide insight into 

adaptive resource allocations by males as responses to the socio-sexual cues present at 

different life stages using E. kuehniella as a model organism, with five objectives: 

(1) To test whether and how adult males adjust their investment in lifetime 

reproduction in response to single (acoustic or chemical) and combined cues (acoustic 

+ chemical, or acoustic + chemical + tactile) from rivals; 

(2) To examine whether and how larval social environment affects sperm 

production and its trade-offs with testis and body size;  
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(3) To determine whether pupal social environment influences sperm production 

and testis size; 

(4) To investigate whether and how males adjust their investment in lifetime 

reproduction and other life-history traits in response to juvenile socio-sexual 

experience; and  

(5) To explore whether the adult rival cues present at different larval stages affect 

testicular investment at emergence and sperm production and allocation patterns in 

lifetime. 

1.4 Literature review 

In this section, I review the current knowledge on male reproductive resource 

allocations in response to socio-sexual environment relevant to my studies on E. 

kuehniella.  

1.4.1 General biology of Ephestia kuehniella  

The taxonomic classification of E. kuehniella is: 

Order: Lepidoptera 

Superfamily: Pyraloidea 

Family: Pyralidae 

Subfamily: Phycitinae 

Genus: Ephestia 

Species: kuehniella 

The life cycle of E. kuehniella includes four stages: egg, larva, pupa, and adult 

(Figure 1.1). The eggs are white and oval-shaped (Figure 1.1A) (Brindley, 1930; 

Kamel, 1969), and hatch within 5 days at 25 ± 1°C, 60 ± 10% relative humidity (Tarlack 

et al., 2014; personal observation). The newly hatched larvae are cream or pink in 
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colour and covered with sparse hairs. The testes are visible through the cuticle on the 

dorsal side of the abdomen from the 4th instar onward (Figure 1.1B) (Brindley, 1930). 

Larval stage lasts 29–31 days, with six instars (14–15 days for 1st–3rd instars and 15–

16 days for 4th–6th instars) (Brindley, 1930; von Gierke, 1932). The width of head 

capsule can be used to determine larval instars (Athanassiou, 2006). Larvae use 

chemical and tactile cues for population density regulation (Corbet, 1971; Mudd, 1983). 

The pupae are pale green at the early stage and become dark about one day before 

emergence (Karalius & Buda, 1995; Hill, 2002). Male and female pupae can be 

determined based on the visible reddish-brown testes on male dorsal side of the 

abdomen (Figure 1.1C). Pupal stage takes 8–9 days (Brindley, 1930), during which 

time, females emit sex pheromones (Calvert & Corbet, 1973). 

Because E. kuehniella adults do not feed, this species obtains all resources for 

reproduction and somatic maintenance during the larval stage (Norris & Richards, 

1932). Adults have pale grey bodies with grey-black-zigzag patterns on forewings 

(Figure 1.1D). Male and female adults live for 7–11 and 6–10 days, respectively 

(Brindley, 1930; Tarlack et al., 2014). Sex of this moth can be determined by the 

terminal abdomen with an ovipositor in females and a pair of claspers in males (Figure 

1.1E) (Hill, 2002). Males have hairpencils near claspers (Figure 1.1F), which are 

believed to release a male courtship pheromone (Barth, 1937; Corbet & Lai-Fook, 

1977). Males produce an ultrasound when fanning wings (Trematerra & Pavan, 1995; 

Salehi et al., 2016), which can be detected by nearby conspecific adults (Pérez & 

Zhantiev, 1976; Salehi et al., 2016). Vision appears negligible in adult communications 

(Traynier, 1968; Ono, 1981). 
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Figure 1.1 Life stages of E. kuehniella: (A) eggs, (B) mature larvae [top, female; 

bottom, male with visible testes (black arrow) on the dorsal side of abdomen], (C) 

pupae [top, female; bottom, male with visible testes (black arrow) on the dorsal side of 

abdomen], (D) adults (left, female; right, male), (E) terminal abdomen of adults [top, 

female with an ovipositor (black arrow); bottom, male with a pair of claspers (black 

arrow)], and (F) male hairpencils [white arrow; adapted from Corbet & Lai-Fook 

(1977)].  

1.4.2 Reproductive biology of Ephestia kuehniella with special reference to males 

The moth has multiple overlapped generations year-round (Richardson, 1926). Adults 

emerge throughout the 24-hr cycle with a peak three hours before the scotophase (Xu 

et al., 2008), and become sexually mature a few hours after emergence and start mating 

during the first scotophase (Calvert & Corbet, 1973; Xu et al., 2008). In the lifespan 

males can mate with up to nine different females (Xu & Wang, 2009a).  

The male internal reproductive system mainly comprises a pair of fused testes 

and a pair of vasa deferentia attached to each testis (Figure 1.2). Each vas deferens 

consists of a swollen upper portion, a seminal vesicle, and a narrow lower tubular 

portion. The vasa deferentia empty into the paired duplex, each portion of which is 
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continuous with an elongate accessory gland. Posteriorly the two portions of the duplex 

join the unpaired ejaculatory duct or simplex (Norris & Richards, 1932; Riemann et al., 

1974).  

 

Figure 1.2 Reproductive system of E. kuehniella males [Adapted from Riemann et al. 

(1974)]. 

 

The spherical testes with both spermatogenic and non-spermatogenic tissues 

(Nowock, 1973; Wolf, 1991) start to grow and develop in the early larval stage (Marec 

et al., 1993). Production of larger fertile eupyrenes (nucleate) and smaller infertile 

apyrenes (anucleate) (Figure 1.3A) begins in the last larval stage and the early pupal 

stage, respectively (Garbini & Imberski, 1977). Prior to ejaculation, apyrene sperm 

bundles disassociate and become motile while eupyrene sperm remain aggregated in 

bundles of 256 spermatozoa (Garbini & Imberski, 1977; Koudelová & Cook, 2001) 

(Figure 1.3B).   



                                                                                                         General introduction 

 

8 

 

 

Figure 1.3 Eupyrene and apyrene sperm (A), and eupyrene sperm bundles (B).  

 

The quantity of sperm available determines the desire for mating (Norris & 

Richards, 1933). During copulation, males produce a spermatophore (Figure 1.4), 

transfer ejaculate into it, and then deliver the entire capsule into the female’s bursa, 

from where both types of sperm move to the spermatheca but only eupyrenes can 

fertilize eggs (Xu & Wang, 2010a) and elicit oviposition (Xu & Wang, 2011). The 

number of sperm from one mating is more than necessary for fertilization of the full 

egg load of a female (Trematerra, 1997). This species has the last male sperm 

precedence (Xu & Wang, 2010a). Males require a 24-hr inter-mating interval to 

produce another spermatophore (Xu & Wang, 2009b). 
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Figure 1.4 Spermatophore produced by a E. kuehniella male during mating. 

 

Xu & Wang (2014) report that E. kuehniella males increase allocation of both 

types of sperm to a mate in the first mating when all three cues (acoustic, chemical, and 

tactile) from rivals are present during copulations. However, males do not adjust 

allocation of either type of sperm if they only detect acoustic and chemical cues from 

conspecific adults during copulations (Esfandi et al., 2015). If focal males are allowed 

to detect acoustic and chemical but no tactile cues from rivals both before and during 

mating, males ejaculate significantly more eupyrenes but do not adjust apyrene 

allocation (Esfandi et al., 2020). These discoveries suggest that acoustic, chemical, 

tactile or combined cues are used for communications between males and these cues 

affect receivers’ sperm allocations to some extent.  

1.4.3 Spermatogenesis and sperm dichotomy in Lepidoptera 

In Lepidoptera, most species produce two distinct spermatozoa: fertile eupyrenes and 

infertile apyrenes, except in two species of the primitive Micropterigidae 

(Sonnenschein & Hauser, 1990; Friedländer et al., 2005). It is long thought that 

spermatogenesis occurs in immature stages, but males stop producing eupyrenes after 

reaching adulthood (Chaudhury & Raun, 1966; Lachance & Olstad, 1988; Witalis & 
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Godula, 1993; Friedländer, 1997; Friedländer et al., 2005; Jarrige et al., 2015; Mari et 

al., 2018). However, in several lepidopteran species, such as the lesser wax moth 

Achroia grisella Fabricius (Fernandez-Winckler & Cruz-Landim, 2004; Fernandez-

Winckler & da Cruz-Landim, 2008), greater wax moth Galleria mellonella L. (Bebas 

et al., 2018) and Asian comma butterfly Polygonia c-aureum L. (Hiroyoshi et al., 2017), 

eupyrene spermatogenesis may continue into the adult stage due to certain stimuli such 

as larval diapause (Bebas et al., 2018) and adult overwintering (Hiroyoshi et al., 2017). 

It is yet unknown whether and how socio-sexual experience gained at the adult and/or 

juvenile stages affects spermatogenesis. 

Although apyrene sperm cannot fertilize eggs, males produce and ejaculate 

significantly more apyrenes than eupyrenes (Silberglied et al., 1984; Swallow & 

Wilkinson, 2002; Friedländer et al., 2005). Apyrenes are thought to play important roles 

in the success of sperm competition and fertilization. For instance, they may function 

as fillers to deceive females about their sperm load, discouraging the females from 

copulating with other males (Cook & Wedell, 1999; Wedell et al., 2009; Mongue et al., 

2019), and assist eupyrenes migration from female bursa copulatrix to spermatheca 

(Sakai et al., 2019; Chen et al., 2020) via their own active motility or activating motility 

of eupyrenes (Osanai et al., 1987; Hayashi, 1998). More recent studies suggest that the 

roles of apyrenes may cease after both types of sperm arrive at the spermatheca 

(Konagaya et al., 2020; Hague et al., 2021). Due to their different functions, eupyrenes 

may evolve faster than apyrenes in response to selection pressures (Fitzpatrick et al., 

2020).  

1.4.4 Socio-sexual environment and sperm competition 

A socio-sexual environment is defined as the composition of individuals of the same 

species surrounding the individuals of interest (West-Eberhard, 2003; Kasumovic et al., 

2008). It can have profound impacts on individual physiology and behaviour (Moore et 

al., 1997; Shuster & Wade, 2003; Bailey & Moore, 2018; Flintham et al., 2018; Leech 

et al., 2021). For example, it can provide males with information on the presence of 

rivals, helping them assess sperm competition risk and adjust resource allocations to 
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reproduction and survival (English et al., 2017; Dore et al., 2018; Westneat et al., 2019; 

Magris, 2021). 

When one female copulates with multiple males within the same reproductive 

episode, sperm competition occurs, i.e., ejaculates from different males compete to 

fertilize a given set of ova (Parker 1970). Although the outcome of sperm competition 

may be affected by sperm morphology and velocity (Morrow & Gage, 2000; Snook, 

2005; Gomendio & Roldan, 2008; Ramm et al., 2014) and seminal fluid proteins 

(Wigby et al., 2009; Sirot, 2019; Ramm, 2020; Polak et al., 2021), the most important 

determinant appears to be sperm number (Tomkins & Simmons, 2000; Kelly & 

Jennions, 2011; Parker et al., 2012; Rowe et al., 2022).  

1.4.5 Responses to conspecific rival cues in adult males  

In response to various conspecific rival cues, males may produce and ejaculate a greater 

number of sperm in the first mating, such as in mammals (Kilgallon & Simmons, 2005; 

delBarco-Trillo & Ferkin, 2004, 2007), fishes (Fraser & Stacey, 2002; Evans et al., 

2003; Fitzpatrick, 2020), birds (Martin et al., 1974; Pizzari et al., 2003; Birkhead & 

Montgomerie, 2020), and insects (Gage, 1991; Gage & Baker, 1991; Gage & Barnard, 

1996; Simmons et al., 2007; Larsdotter-Mellström & Wiklund, 2009; Esfandi et al., 

2020; Noguera, 2022). Furthermore, many studies show that the impact of rival 

exposure on sperm allocation can last in the first few successive matings (e.g., Harris 

& Moore, 2005; Bretman et al., 2012; Larsdotter-Mellström & Wiklund, 2015; Rouse 

& Bretman, 2016; Wylde et al., 2020). Yet, it remains unknown whether rival-cue(s) 

exposure affects males’ sperm investment over their lifespan. 

The main types of cues insect males can detect and respond to sperm competition 

environment are the sound, smell, and tactile, while vision may be trivial (Greenfield, 

2016). For example, Drosophila males respond to the sperm competition situations 

after detecting at least two types of cues (chemical, acoustic and tactile) from rivals 

(Bretman et al., 2011a; Maguire et al., 2015). In moths, males can emit acoustic 

(Spangler, 1987; Trematerra & Pavan, 1995; Skals & Surlykke, 1999; Jia et al., 2001; 
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Nakano et al., 2008) or chemical cues (Nishida et al., 1982; Teal & Oostendorp, 1995; 

Kalinova et al., 2009; Davie et al., 2010; Kindl et al., 2011; Hosseini et al., 2016; 

Stanley et al., 2018) during sexual communication. However, it is not clear whether 

these cues function as a signal of rivalry and how males would respond to them. 

Moreover, for most animal taxa, it is not clear if only one type of rival cues is enough 

to trigger a response to sperm competition environment and if combining more cues 

can enhance the response, i.e., redundant multimodal signals intensify the strength 

of a signal, leading to an increased response of the receiver (Partan & Marler, 1999; 

Dore et al., 2018). 

1.4.6 Responses to conspecific juvenile rivals in immature males  

There is growing interest in exploring how juvenile males allocate their resources to 

cope with the dynamic socio-social environment during growth and development 

(Bretman et al., 2011b; Kasumovic et al., 2011; Taborsky, 2016; Firman et al., 2018). 

Among vertebrates, much evidence shows that juvenile males can adjust their sperm 

production when perceiving cues from other developing peers (Long & Montgomerie, 

2006; Evans & Magurran 1999; Ramm & Stockley, 2009; Dziminski et al., 2010; 

Firman et al., 2013). However, it has not yet determined in any insect species whether 

and how juveniles can alter their sperm production as a response to juvenile socio-

sexual settings although they communicate via acoustic and/or chemical cues during 

the larval and/or pupal stages (Gilbert, 1976; Deinert et al., 1994; Kotaki & Fujii, 1995; 

Yack et al., 2001; Choi et al., 2007; Mankin et al., 2009; Estrada et al., 2010; Scott et 

al., 2010; Fletcher, 2015; Pontier & Schweisguth, 2015; Álvarez et al., 2018; Dolle et 

al., 2018; Thurman et al., 2018; Fitzgerald et al., 2019; Geoffrey et al., 2021).  

Some studies show that in response to increased sperm competition risk young 

males grow larger testes for greater sperm production or mate more frequently later in 

life (evidence in vertebrates: Harcourt et al., 1981; Kusano et al., 1991; Stockley et al., 

1997; Prado & Haddad, 2003; Pitcher et al., 2005; Fitzpatrick et al., 2009; Soulsbury, 

2010; evidence in insects: Gage, 1995; Stockley & Seal, 2001; Johnson et al., 2017). 

However, other studies on vertebrates (Byrne et al., 2002; Fitzpatrick et al., 2012; 
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Firman et al., 2013; Liao et al., 2019) and insects (Gay et al., 2009; Simmons & Buzatto, 

2014; McNamara et al., 2016; Bretman et al., 2016; Chechi et al., 2017; Kapila et al., 

2021) contradict the above findings on testis size. Explanations of these discrepencies 

include (1) males increase the testis efficiency rather than size in response to sperm 

competition environment during sexual maturation (Rowe & Pruett-Jones, 2011; Ramm 

& Schärer, 2014; Giannakara et al., 2016; Parker, 2016; Firman et al., 2018); (2) testes 

suffer aging and degeneration over time, especially in insects (Ward & Simmons, 1991; 

Fernandez-Winckler & Cruz-Landim, 2004; Linklater et al., 2007; Rosa et al., 2019; 

Hiroyoshi et al., 2021), and (3) males dedicate varying parts of testis volumes to 

spermatogenesis and other functions (e.g., De Loof, 2006; Simmons & Fitzpatrick, 

2012; Ramm & Schärer, 2014; Parker, 2016) in response to sperm competition 

environment (Lüpold et al., 2020).  

In several insect species, after male juveniles are reared in higher density or with 

other male juveniles, their adults ejaculate more sperm during their first mating (Gage, 

1995; He & Miyata, 1997; Yamane & Miyatake, 2005; McNamara et al., 2010; Allen 

et al., 2011; Katsuki et al., 2013). Yet, it is unclear whether juvenile males can adjust 

resource allocation to lifetime sperm production and ejaculation in response to their 

juvenile peers. Furthermore, more investment in reproduction may compromise on 

survival due to resource trade-offs (van Voorhies, 1992; Martin & Hosken, 2004; 

Ferkau & Fischer, 2006; Bonduriansky & Brassil, 2005; Bonduriansky et al., 2008; 

McNamara et al., 2008; Oliver & Cordero, 2009; Cornwallis et al., 2014; Metzler et al., 

2016; Mautz et al., 2019; Duxbury et al., 2018; Jehan et al., 2020). However, it is still 

unknown how juvenile males can manage resource allocations for sperm production, 

mating frequency and adult longevity in response to juvenile socio-sexual experience. 

1.4.7 Responses to adult rivals in juvenile males 

Evidence shows that the presence of adult rivals can affect resource allocations in 

juvenile males. For example, after their juveniles are exposed to adult rivals, adult 

crickets Teleogryllus oceanicus Le Guillou have larger testes at emergence (Bailey et 

al., 2010) and ejaculate more sperm in their first mating (Gray & Simmons, 2013; 
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Simmons & Lovegrove, 2017) but adult cockroaches Nauphoeta cinerea Olivier 

ejaculate more sperm in their first mating with no change in the testis size (Harris & 

Moore, 2005). Nonetheless, these studies have not determined whether adult male cues 

affect sperm production of juvenile males and lifetime sperm production and 

ejaculation of resultant adults, and whether there is trade-off between reproduction and 

other life history traits (e.g., juvenile survival, adults’ body size and longevity). 

Individuals at different stages of development should have varied sensitivities to 

environmental cues to strategically allocate resources to reproduction and survival 

(Fawcett & Frankenhuis, 2015; Walasek et al., 2021, 2022). The existence of ‘sensitive 

periods’ has been recognised in humans and mammals for decades (e.g., Illingworth & 

Lister, 1964; Rice & Barone, 2000). In contrast, the window of sensitivity for insects is 

poorly investigated; it remains unclear whether juvenile sensitivity to social cues is 

stage dependent (Gage, 1995; Stockley & Seal, 2001; McNamara et al., 2010; Katsuki 

et al., 2013; Bretman et al., 2016; Johnson et al., 2017).  
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CHAPTER 2  

Combined Cues of Male Competition Influence Spermatozoal 

Investment in Ephestia kuehniella 

This chapter was published in Functional Ecology, 34, 1223–1234 (2020).  
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Abstract  

Male animals usually raise their sperm allocation after detecting sperm competition 

risk. To date, only a few studies have investigated the cues used by males to sense and 

respond to rivals. Yet, it is still largely unknown whether males respond to single or 

combined cues and whether they can increase their lifetime spermatozoal investment 

after a perception of rival cue(s). Here I postulate that males increase ejaculation and 

production of sperm after detecting combined cues from rivals, but such response 

quickly diminishes after the cues are removed. I exposed newly emerged and virgin 

focal males of the moth Ephestia kuehniella to various rival cues and then permanently 

removed the cues. I introduced a virgin female to an exposed focal male and an 

unexposed focal male, respectively, per day and counted the number of sperm 

transferred by the focal males in each mating and recovered in their body after death. I 

demonstrate that males significantly increased their lifetime sperm allocation and 

production after premating detection of either single (acoustic or chemical) or combined 

cues (acoustic + chemical, or acoustic + chemical + tactile) from their rivals with 

combined cues (acoustic + chemical + tactile) somewhat strengthening such response 

in eupyrene production. The number of sperm ejaculated by males significantly 

decreased over successive matings in their lifetime regardless of whether they were 

exposed to rival cues, but the decline was significantly faster in rival-cue exposed males 

than in unexposed ones. This suggests that the increase of spermatogenesis cannot fully 

compensate for that of sperm expenditure in response to rival cues. I show that 10-hr 

premating rival exposure was sufficient to maximise males’ response in sperm 

ejaculation and production. The impact of the rival perception on sperm transfer 

persisted for most of males’ reproductive life, suggesting that the moth males have a 

long-term memory of sperm competition risk experienced in the early adulthood.  
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2.1 Introduction 

When males of polygamous species perceive the presence of rivals, they often raise 

their ejaculate allocation per mate for a higher paternity share (Parker, 1970; Gage & 

Baker, 1991; Parker et al., 1997; Wedell et al., 2002; Parker & Pizzari, 2010; Bretman 

et al., 2011b). For example, following premating exposure to rivals, the moth E. 

kuehniella males increase their sperm ejaculation (Esfandi et al., 2020). Similar 

response to rivals has also been reported in many other species such as the butterfly 

Pieris napi (Larsdotter-Mellström et al., 2016b), the cricket T. oceanicus (Bailey et al., 

2010), and fruit flies D. melanogaster (Bretman et al., 2009; Rouse et al., 2018) and D. 

pseudoobscura (Maguire et al., 2015). However, sperm are not cheap (Dewsbury, 1982; 

Pitnick & Markow, 1994; Savalli & Fox, 1999; Xu & Wang, 2009a) and socio-sexual 

surroundings are fluctuating rapidly in nature (Bretman et al., 2011b; Pizzari, 2017). It 

would thus be important for males to detect the cues that carry correct information on 

their current and future sperm competition environment and to adjust their sperm 

allocation accordingly in a timely manner.  

Animals use acoustic, olfactory, tactile and/or visual cues to communicate for 

various purposes (Romer & Lewald, 1992; Sweeney et al., 2003; Cocroft & Rodriguez, 

2005; Yew et al., 2009; Schiestl, 2010; Alcántara-Alcover et al., 2014; McKinney et 

al., 2015). Many animal species need to detect more than one cue simultaneously before 

responding to a social environment (Partan & Marler, 1999; Acquistapace et al., 2002; 

Uetz & Roberts, 2002; Bro-Jørgensen, 2010; Gray et al., 2014; Zabierek & Gabor, 

2016). In some cases, combined cues can trigger a stronger response (Partan & Marler, 

1999). So far, only a few studies have investigated the cues used by males to detect 

rivals and to react. For example, males may use either chemical (delBarco-Trillo & 

Ferkin, 2004; Carazo et al., 2007; Aragón, 2009; Larsdotter-Mellström et al., 2016b) or 

acoustic (Bailey et al., 2010; Rebar & Greenfield, 2017) cues from their rivals to 

perceive and respond to sperm competition environment. However, to respond to socio-

sexual situations, D. melanogaster males need to detect two of acoustic, chemical and 

tactile cues from rivals (Bretman et al., 2011a) and D. pseudoobscura males require 

both chemical and tactile cues (Maguire et al., 2015). Both studies suggest that males 
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do not respond to single cues and visual cues are not important in rival detection. Yet, 

in most mating systems, it is unclear whether individual rival cues can cause a response 

to sperm competition environment and whether combined cues can enhance the 

response.  

Findings from D. melanogaster demonstrate that the impact of a rival exposure 

may quickly diminish (Bretman et al., 2012; Rouse & Bretman, 2016; Mohorianu et al., 

2017) after the removal of sperm competition risk. This suggests that either the fly 

males can rapidly adjust their sperm allocation in response to changes of sperm 

competition environment or they only have a short memory of an exposure to rivals. In 

the moth E. kuehniella, males do not adjust their sperm allocation if they have no 

premating exposure to rivals but are subject to the presence of rivals from the first 

mating until death (Esfandi et al., 2015). However, when the moth males have both 

premating and lifetime exposure to rival cues, they raise their sperm ejaculation for 

most of their reproductive life (Esfandi et al., 2020). It is still unknown whether moth 

males have a long memory of the premating rival experience or they also rapidly reduce 

their sperm allocation after the removal of premating rival cues.  

Most studies on the impact of sperm competition environment on sperm 

allocation strategies have only tested the first mating following an exposure to a 

particular socio-sexual setting (e.g., Bretman et al., 2009; Wigby et al., 2009; Price et 

al., 2012; Garbaczewska et al., 2013; Jarrige et al., 2015; Ullah et al., 2017). To date, 

only a few studies have examined the first few successive matings (Bretman et al., 

2012; Larsdotter-Mellström & Wiklund, 2015; Rouse & Bretman, 2016; Wylde et al., 

2020). These studies may determine whether males increase allocation of ‘ready’ sperm 

for one or a few matings by accelerating the last stages of sperm maturation, a 

phenomenon called sperm priming (Bozynski & Liley, 2003; Cattelan & Pilastro, 2018; 

Chung et al., 2019). The sperm priming process is different from spermatogenesis 

which needs longer period and occurs before sperm priming in each mating (Evans, 

2009). Therefore, to demonstrate whether sperm production also increases after 

exposure to rivals, we need to count the total number of sperm produced in the lifetime 
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of both rival-exposed and unexposed males, including all sperm that are ejaculated and 

that are recovered in their body after death.  

Traditional knowledge on sperm production reveals that most lepidopteran 

insects stop producing eupyrenes (fertile sperm) after pupation (Lachance & Olstad, 

1988; Friedländer, 1997; review in Friedländer et al., 2005) but several recent studies 

on lepidopterans indicate that spermatogenesis continues into the adult stage in 

response to certain stimuli such as larval diapause (Bebas et al., 2018) and adult 

overwintering (Hiroyoshi et al., 2017). Yet, it is unclear whether lepidopteran males 

might adjust sperm production in response to sperm competition during the adult stage. 

The Mediterranean flour moth, E. kuehniella (Lepidoptera: Pyralidae), is an ideal 

model insect for the study of the function and impact of rival cues on sperm allocation 

and production because its reproductive behaviour and life history strategies are well 

investigated (e.g., Calvert & Corbet, 1973; Pérez & Zhantiev, 1976; Corbet & Lai-

Fook, 1977; Xu & Wang, 2009a, 2009b, 2010a, 2010b, 2014, 2020; Esfandi et al., 2015, 

2020). Adults become sexually mature soon after emergence and mating initiates only 

in the scotophase, particularly the second half of the scotophase (Xu et al., 2008). In 

the present study, adult males live for 9.4 ± 0.2 days and inseminate 6.1 ± 0.3 females 

in their lifetime. Males produce and transfer a spermatophore into the female’s bursa 

during copulation (Xu & Wang, 2010a). Similar to other lepidopterans and many flies 

(Swallow & Wilkinson, 2002; Till-Bottraud et al., 2005), E. kuehniella males produce 

both eupyrene sperm that can fertilize eggs and apyrene sperm that cannot fertilize eggs 

(Xu & Wang, 2010a). Some studies suggest that E. kuehniella males produce an 

ultrasound to persuade females for mating during courtship (Trematerra & Pavan, 1995; 

Salehi et al., 2016) but whether the ultrasound also functions as a cue of rivalry is 

unknown. Furthermore, Barth (1937) and Corbet & Lai-Fook (1977) speculate that E. 

kuehniella males may release a male courtship pheromone from their hairpencils. 

However, the existence and function of the pheromone are still unknown for this moth 

although similar structures of other lepidopteran species produce male sex pheromones 

(Nishida et al., 1982; Mori et al., 1993; Teal & Oostendorp, 1995). Previous work 

shows that E. kuehniella males can detect rivals with (Xu & Wang, 2014) or without 
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(Esfandi et al., 2020) physical contact, suggesting that either acoustic, chemical, tactile 

or combined cues are used for communications between males.  

In the present study, I carried out a series of experiments using E. kuehniella to 

examine how males responded to single and combined rival cues. Based on the 

knowledge outlined above, I proposed to test two hypotheses: (1) either acoustic or 

chemical cue from rivals can trigger males to increase ejaculation and production of 

sperm but combined cues enhance such response, and (2) males’ response to rival cues 

quickly diminishes after the cues are removed. I exposed newly emerged virgin males 

to the following rival cues for 10 hr before mating and then removed the cues 

permanently: (1) acoustic cue only, (2) chemical cue only, (3) combined acoustic and 

chemical cues, (4) combined acoustic, chemical and tactile cues, and (5) no rival cues 

(control). I offered each rival-cue-exposed and control male a virgin female per day 

until they died. I dissected each mated female to count sperm ejaculated and each dead 

male to count sperm remaining in his body at death. These experiments allowed me to 

record sperm ejaculation per mating and lifetime sperm production in response to single 

and combined rival cues.  

2.2 Materials and methods 

2.2.1 Insects and environmental conditions 

I collected E. kuehniella larvae from Turks Poultry, Foxton, New Zealand in December 

2018, and maintained them with their original food until adult emergence in the 

Entomology and IPM Laboratory of Massey University. I introduced about 300 males 

and 300 females into a transparent plastic cage (28 cm length × 28 cm width × 24 cm 

height) lined with porous plastic sheets on the bottom for oviposition. I then introduced 

232 newly laid eggs ( 200 larvae) onto 50 g standard diet (3.0% yeast, 10% glycerine, 

43.5% whole meal wheat flour, and 43.5% maize meal) in each of 10 transparent plastic 

cylinders (8 cm diameter × 10 cm height) covered with cloth meshes (2.8 apparatus per 

mm2). I placed a piece of white paper (8 cm diameter) folded four times in the cylinder 

for pupation. I collected mature pupae from the cylinders, and weighed them using an 
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electronic dual range balance (Mettler Toledo AG135, Greifensee, Switzerland) with 

an accuracy of 0.00001 g. I categorised pupal weight as light (< mean – 1 SD), average 

(mean ± 1 SD), and heavy (> mean + 1 SD), and used the adults that emerged from 

average weight pupae for experiments to minimise the potential effect of body weight. 

The colony was maintained and all experiments carried out at 25 ± 1°C and 60 ± 10% 

relative humidity, with a photoperiod of 14:10 hr (light:dark). 

2.2.2 Premating treatment of focal males 

I manufactured a series of devices for premating treatment of focal males (Figure 2.1). 

A basic device was made of a transplant plastic cylinder (6.5 cm diameter × 17.0 cm 

length) covered with an airtight plastic lid at each end and separated into two chambers, 

the left chamber and the right chamber, by double-layer metal meshes (2.8 apparatus 

per mm2). I made a hole (0.5 cm diameter) in the middle of each lid through which I 

inserted a plastic Y-tube (0.5 cm diameter) and sealed the gap between the tube and lid 

using the glue-gun glue. I placed the device horizontally on the bench top during all 

treatments. The air from a compressed air tap was filtered through activated charcoal, 

measured with an airflow meter, and humidified by passing through distilled water 

before blowing into the cylinder through one arm of the Y-tube at the left end and out 

from one arm of the Y-tube at the right end (Figure 2.1). I set the air speed to replace 

the air in the cylinder once per minute. I used each device only once to avoid potential 

contaminations. 

I set up five treatments to allow newly emerged and virgin focal males to perceive 

the following cues from five newly emerged rivals or their extractions before mating: 

(1) acoustic cue only (+A), (2) chemical cue only (+C), (3) acoustic and chemical cues 

(+A+C), (4) acoustic, chemical and tactile cues (+A+C+T), and (5) no rivals (CONT). 

In treatment +A, I introduced a focal male into the left chamber, turned the air tap on, 

and then transferred five rivals into the right chamber so that the focal male could hear 

but not smell or touch the rivals. For treatment +C, I individually placed one focal male 

and five pieces of filter paper (1.5 cm width × 5 cm length) containing pheromone 

extracts from five newly emerged males in the six cells made of the aforementioned 
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metal mesh in the right chamber. This way the focal male could smell but not hear or 

touch the rival cues. I extracted the male pheromone according to Romel et al. (1992) 

and Stanley et al. (2018). Briefly, I gently clipped the abdominal tip of a newly emerged 

male (<1 hr old) and excised the three terminal abdominal segments with microscissors. 

I placed excised segments of five males into a conical glass vial containing 1 ml 

dichloromethane at 25°C for 1 hr. I then put five pieces of the filter paper into the vial 

to absorb all supernatant, after which, I removed them from the vial and exposed them 

to the air for 10 min for dichloromethane to evaporate fully, before placing them in the 

cells. In treatment +A+C, I transferred six males individually into the six metal mesh 

cells in the right chamber and used all males as focal males after exposure. This 

treatment allowed focal males to hear and smell but not touch rivals. In treatment 

+A+C+T, I introduced six males into the right chamber, allowing them to hear, smell 

and touch each other, and used all males as focal males after exposure. In CONT, I 

placed one focal male in the left chamber and none in the right chamber. In treatment 

+A and CONT, one arm of each Y-tube was blocked with a cork. In treatments +C, 

+A+C and +A+C+T, one arm of each Y-tube was connected with a silicon tube to 

facilitate air circulation between the two chambers. Because most mating initiates in 

the second half of the scotophase (Xu et al., 2008), all focal males were exposed to the 

rival cue(s) for 10 hr (5 hr before the onset of the scotophase and 5 hr after the onset of 

the scotophase) prior to the following experiments. 
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Figure 2.1 Treatments and devices used for premating exposure.  
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2.2.3 Sperm ejaculation and production  

To test the function and impact of rival cues, I made a device consisting of 15 identical 

mating chambers (transparent plastic cylinders, 6.5 cm diameter × 17.0 cm length) for 

each treatment. The air from a compressed air tap was filtered, measured and 

humidified as mentioned above before blowing into the air divider, a large transparent 

plastic cylinder (15 cm diameter × 20 cm height), from which the air was equally 

divided into 15 silicone tubes (0.5 cm diameter), each of which was connected to a 

mating chamber through an airtight plastic lid at one end of the chamber. The air blew 

out through a hole (1 cm diameter) covered with the aforementioned metal mesh at the 

other end of the mating chamber. I set the air speed to replace the air in all 15 mating 

chambers once per minute. 

I introduced a 1-d-old virgin female and a focal male into a mating chamber 

immediately after the focal male’s 10-hr exposure to rival cue(s) or control to allow 5 

hr for mating to occur. I removed the female immediately after the termination of 

copulation and dissected her to count the number of eupyrene and apyrene sperm 

transferred by the focal male according to Koudelová & Cook (2001). I then introduced 

a 1-d-old virgin female per day to the focal male in the mating chamber 5 hr after the 

onset of the next scotophase until the focal male died. Each mated female was dissected 

to count the sperm as above. The number of sperm from dissected females was 

considered the number of sperm ejaculated. I dissected the dead focal male to count the 

number of eupyrene and apyrene sperm remaining in testes, seminal vesicle and vas 

deferens. I found sperm from all mated females and dead males. The total number of 

sperm produced was calculated as the sum of the total number of sperm ejaculated plus 

the number of sperm recovered from dead males. There were 21, 22, 21, 20 and 22 

replicates (focal males) for treatments +A, +C, +A+C, +A+C+T and CONT, 

respectively. 
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2.2.4 Statistical analysis 

All data were normally distributed (Shapiro–Wilk test, UNIVARIATE procedure). In 

order to test how treatment affected the total number of sperm ejaculated and produced 

in lifetime, I analysed the data using a linear mixed effect model (MIXED procedure) 

with the treatment and the number of females a male mated as fixed factors in the 

model. Because six focal males were in the same device in treatments +A+C and 

+A+C+T, I also included the replicate identity as a random factor in the model. A 

CONTRAST statement was applied to perform the multiple comparisons between 

treatments.  

I performed repeated measures analyses using a linear mixed effect model 

(MIXED procedure) to test whether males’ response to rival cues quickly diminished 

after the cues were removed. In the analysis, I included treatment, mating frequency 

and their interaction as fixed factors in the model and a subject effect of focal male in 

the statement of ‘REPEATED/TYPE = cs SUBJECT = focal_male’ after the model. A 

CONTRAST statement was then used to compare the slopes of regression lines of 

sperm ejaculation over successive matings between treatments. Because my data 

showed that the influence of treatment on the number of sperm ejaculated disappeared 

after the fourth mating, I compared the number of sperm ejaculated between treatments 

in each of the first four matings using the CONTRAST statement after removing the 

mating frequency and interaction factors from the linear mixed effect model.  

I analysed the number of eupyrene and apyrene sperm separately. All analyses 

were done using SAS 9.13. 
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2.3 Results 

2.3.1 Effects of the number of cues from rivals on focal males’ lifetime sperm 

ejaculation and production  

My data show that compared to control males, males subject to premating exposure to 

rival cues ejaculated significantly more eupyrene in their lifetime (F4,79 = 9.77, P < 

0.0001; Figure 2.2A). Males exposed to rival cues before mating produced significantly 

more eupyrene sperm in their lifetime than control males (F4,79 = 123.35, P < 0.0001), 

with males exposed to all three cues producing the highest number of eupyrenes (Figure 

2.3A). Premating exposure to rivals also triggered males to ejaculate (F4,79 = 34.34, P 

< 0.0001) (Figure 2.2B) and produce (F4,79 = 127.22, P < 0.0001; Figure 2.3B) 

significantly more apyrene sperm in their lifetime than control males.   
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Figure 2.2 Mean (±SE) number of eupyrene (A) and apyrene (B) sperm ejaculated in 

E. kuehniella males’ lifetime after a premating exposure to rival cues. CONT = no rival 

cue; +A = acoustic cue; +C = chemical cue; +A+C = both acoustic and chemical cues; 

+A+C+T = combined acoustic, chemical and tactile cues. For each box plot, the lower 

and upper box lines indicate 25% and 75% of scores falling beyond the lower and upper 

quartiles, respectively; the line and ‘×’ in a box show the median score and means, 

respectively; the ‘ ’ and ‘ ’ are the lower and upper whiskers representing scores 

outside the 50% middle; the circles are the outliers of minimum scores. Boxes with 

different letters are significantly different in mean between treatments (P < 0.05). 



                                                                                                 Impact of adult rival cues   

 

28 

 

 

Figure 2.3 Mean (±SE) number of eupyrene (A) and apyrene (B) sperm produced in E. 

kuehniella males’ lifetime after a premating exposure to rival cues. CONT = no rival 

cue; +A = acoustic cue; +C = chemical cue; +A+C = both acoustic and chemical cues; 

+A+C+T = combined acoustic, chemical and tactile cues. For each box plot, the lower 

and upper box lines indicate 25% and 75% of scores falling beyond the lower and upper 

quartiles, respectively; the line and ‘×’ in a box show the median score and means, 

respectively; the ‘ ’ and ‘ ’ are the lower and upper whiskers representing scores 

outside the 50% middle; the circles are the outliers of maximum scores. Boxes with 

different letters are significantly different in mean between treatments (P < 0.05). 
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2.3.2 Effects of the number of cues from rivals on focal males’ sperm allocation in 

successive copulations 

The number of eupyrene and apyrene sperm ejaculated by focal males significantly 

decreased over successive copulations in all treatments and the control (F1,511 = 542.38, 

P < 0.0001 for eupyrenes; F1,520 = 571.97, P < 0.0001 for apyrenes; Figure 2.4). In 

comparison of slopes of regression lines, I show that the number of eupyrene sperm 

ejaculated over time declined significantly faster in rival-cue-exposed males than in 

control males (F4,101 = 9.45, P < 0.0001; Figure 2.4A). A similar trend was also found 

in apyrene ejaculation over successive matings (F4,101 = 12.46, P < 0.0001) but less 

obvious (Figure 2.4B).  

Looking into all matings over focal males’ lifetime, I found that the impact of 

rival exposure on sperm transfer disappeared after the fourth mating (P > 0.05). 

Following the analysis of how treatment affected the number of sperm ejaculated in the 

first four matings, I reveal that males ejaculated similar number of eupyrenes in their 

first mating irrespective of whether or not they were exposed to rival cues (F4,101 = 1.13, 

P = 0.3468; Figure 2.5A). Regardless of the type and number of rival cues to which 

males were exposed, they transferred significantly more eupyrenes to their mates than 

the unexposed control in the second, third and fourth matings (F4,96 = 9.01, P < 0.0001 

for the second mating; F4,91 = 3.71, P = 0.0076 for the third mating; F4,78 = 6.42, P = 

0.0002 for the fourth mating; Figure 2.5B–D). Similar patterns occurred for apyrene 

ejaculation in the second, third and fourth matings (F4,96 = 9.64, P < 0.0001 for the 

second mating; F4,91 = 6.26, P = 0.0002 for the third mating; F4,79 = 5.17, P = 0.0009 

for the fourth mating; Figure 2.6B–D) but males exposed to single cues from rivals 

(acoustic or chemical) also transferred significantly more apyrenes in their first mating 

(F4,101 = 4.47, P = 0.0023; Figure 2.6A).  
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Figure 2.4 Number of eupyrene (A) and apyrene (B) sperm ejaculated by focal males 

in successive copulations after rival-cue exposure. CONT = no rival cue; +A = acoustic 

cue; +C = chemical cue; +A+C = both acoustic and chemical cues; +A+C+T = 

combined acoustic, chemical and tactile cues. Treatments (lines) with the same letters 

are not significantly different in slope (P > 0.05). Raw data were subject to analyse but 

means (±SE) were presented.  
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Figure 2.5 Mean (±SE) number of eupyrene sperm ejaculated in the first four matings 

(A–D, respectively) after a premating exposure to rival cues in male E. kuehniella. 

CONT = no rival cue; +A = acoustic cue; +C = chemical cue; +A+C = both acoustic 

and chemical cues; +A+C+T = combined acoustic, chemical and tactile cues. For each 

box plot, the lower and upper box lines indicate 25% and 75% of scores falling beyond 

the lower and upper quartiles, respectively; the line and ‘×’ show the median score and 

means, respectively; the ‘ ’ and ‘ ’ are the lower and upper whiskers representing 

scores outside the 50% middle; the circles are the outliers of minimum or maximum 

scores. For each mating, boxes with different letters are significantly different in mean 

between treatments (P < 0.05).  
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Figure 2.6 Mean (± SE) number of apyrene sperm ejaculated in the first four matings 

(A–D, respectively) after a premating exposure to rival cues in male E. kuehniella. 

CONT = no rival cue; +A = acoustic cue; +C = chemical cue; +A+C = both acoustic 

and chemical cues; +A+C+T = combined acoustic, chemical and tactile cues. For each 

box plot, the lower and upper box lines indicate 25% and 75% of scores falling beyond 

the lower and upper quartiles, respectively; the line and ‘×’ show the median score and 

means, respectively; the ‘ ’ and ‘ ’ are the lower and upper whiskers representing 

scores outside the 50% middle; the circles are the outliers of minimum or maximum 

scores. For each mating, boxes with different letters are significantly different in mean 

between treatments (P < 0.05).  
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2.4 Discussion  

The present study indicates that E. kuehniella males increased their lifetime sperm 

transfers following a premating exposure to either individual (acoustic or chemical) or 

combined (acoustic + chemical or acoustic + chemical + tactile) cues from rivals 

(Figure 2.2). In contrast, D. melanogaster males respond to the presence of rivals after 

detecting any two of the acoustic, chemical and tactile cues from rivals (Bretman et al., 

2011a) while for the same reaction to occur, D. pseudoobscura males require combined 

chemical and tactile cues from rivals (Maguire et al., 2015). The findings from the moth 

and flies hitherto suggest that the type and number of cues required for male insects to 

detect and respond to their rivals may have evolved in response to ecological and 

physiological differences between species across orders. Because acquisition and 

processing of information from the surroundings often involve costs in energy and time, 

animals should be selected to make their decisions based on the trade-off between the 

costs and the risk of making wrong decisions (Schneeberger & Taborsky, 2020). Fruit 

fly adults often live in aggregation, continue to feed and have a long longevity 

(Partridge & Farquhar, 1981). Most activities including mating occur in the morning 

and dusk (Cusumano et al., 2009; Allada & Chung, 2010). These features suggest that 

the fly adults would detect a lot of noise from their social environment, need multiple 

cues from rivals before making correct decisions on sperm allocations and have enough 

resources in terms of energy and time to process multiple cues. However, adults of 

many moth species, such as E. kuehniella, live solitarily, mate during the night, feed 

little and have a short longevity. It would thus be advantageous for moth males to make 

decisions upon detecting any one cue from the rivals. 

In many insect species, spermatogenesis initiates in immature stages and 

continues into the adult stage (e.g., Kuroda, 1974; Ponlawat & Harrington, 2007; 

Malawey et al., 2019). However, various studies suggest that lepidopteran males often 

stop producing eupyrene sperm after pupation (Chaudhury & Raun, 1966; Lachance & 

Olstad, 1988; Witalis & Godula, 1993; Friedländer, 1997; review in Friedländer et al., 

2005; Mari et al., 2018). There are a few exceptions, though, for example, in the moths 

Calpodes ethlius (Lai-Fook, 1982), A. grisella (Fernandez-Winckler & da Cruz-
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Landim, 2008) and G. mellonella (Bebas et al., 2018) and a butterfly P. c-aureum 

(Hiroyoshi et al., 2017), spermatogenesis still occurs during the adult stage following 

certain stimuli such as larval diapause (Bebas et al., 2018) and adult overwintering 

(Hiroyoshi et al., 2017). Prior to the present study, it was not clear whether adult moth 

males might adjust sperm production reacting to experience in sperm competition 

during the adult stage. Through examining the total number of sperm ejaculated during 

focal males’ lifetime and recovered from dead focal males, I demonstrate that rival-

exposed E. kuehniella adult males increased lifetime sperm production after exposure 

to rivals during the early adulthood (Figure 2.3). This finding strongly suggests that 

sperm competition risk can stimulate spermatogenesis during the adult stage in a 

lepidopteran species.   

My data indicate that while a single cue causes an increase in eupyrene 

investment (Figures 2.2 and 2.3), combined cues (+A+C+T) seem to strengthen the 

response in eupyrene production (Figure 2.3A). Studies on other animals such as 

Drosophila spp. (see results in Bretman et al., 2011a; Maguire et al., 2015) and the 

spider Schizocosa ocreata (Uetz et al., 2019) also suggest that combined cues may 

enhance males’ response to sperm competition environment. According to the backup 

signal hypothesis, the receivers should obtain more certain information on their socio-

sexual environment and adjust their resource allocation to reproduction with more 

confidence because detection of increasing number of cues carrying the same message 

may have synergistic impact on males’ response (Partan & Marler, 1999; Dore et al., 

2018). However, there is no evidence that combined cues could enhance production 

of apyrene in their lifetime (Figure 2.3B), probably because apyrene play relatively 

minor roles in sperm competition (Konagaya & Watanabe, 2015; Thorburn et al., 2018; 

Mongue et al., 2019; Sakai et al., 2019).  

I show that the number of sperm ejaculated by focal males decreased over 

successive matings in all treatments and the control (Figure 2.4). Because E. kuehniella 

adults do not feed, my findings fit the model on reproductive output declines with age 

of adults having fixed resources obtained during the immature stages (Begon & Parker, 

1986). Furthermore, males in many different taxa may also suffer from a reduction in 
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the quantity of their sperm with age regardless of whether adults feed (Fricke & 

Maklakov, 2007; Vega-Trejo et al., 2019). However, the decline in eupyrene sperm 

transfer over time went faster in all treatments than in the control although apyrene 

decline rate in two treatments was similar to that in the control (Figure 2.4). The faster 

decrease in sperm transfer in treatments could result from significantly more sperm 

expenditure during the first few matings (Figures 2.5 and 2.6). I suggest that both sperm 

priming and production are involved in the process, but the increase of spermatogenesis 

is not enough to fully compensate for that of sperm expenditure.  

After 10-hr premating exposure (Figures 2.5 and 2.6) or 24-hr premating + 

lifetime exposure (Esfandi et al., 2020) to rival cues, E. kuehniella males allocated 

significantly more sperm in their first few matings. This indicates that 10-hr exposure 

is enough to trigger males to maintain raised sperm allocation for most of their 

reproductive life (first four matings) where they ejaculate about 60% of their lifetime 

sperm (present study; Esfandi et al., 2020). My findings support the notion that insects’ 

brain has a long memory of an exposure to a socio-sexual environment (Dion et al., 

2019). However, D. melanogaster males maintain their response to sperm competition 

risk for 1 and 12 hr following 24 and 36-hr premating exposure to rival cues, 

respectively (Rouse & Bretman, 2016), suggesting that the fly brain can control both 

short and long memory periods (Guven-Ozkan & Davis, 2014) and exposure period is 

important for the duration of memory. Rouse et al. (2018) explain that this plasticity 

should allow a male to react to rapid changes in the sperm competition environment 

through short-term memory and guard against reversion of behaviour when sperm 

competition risk in the vicinity is still high after the immediate risk has been removed.  

I propose that the difference in male longevity and lifetime mating frequency 

between the fly and the moth may underlie the discrepancy in rival exposure period and 

memory duration. E. kuehniella males live for an average of 9 days and inseminate an 

average of six females in their lifespan (present study) while D. melanogaster males 

survive for about 60 days and inseminate > 60 females in their lifetime (Partridge & 

Farquhar, 1981). For insects whose adult males live a long life and mate many times, 

such as D. melanogaster, it would be advantageous to regulate both short and long 
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memory in response to rapid dynamics of socio-sexual situations (Rouse et al., 2018). 

However, short-lived insects whose males can only mate a few times in their lifespan, 

such as E. kuehniella, may have limited room to change and reverse their resource 

allocation rapidly in response to sperm competition levels. Therefore, they would 

benefit from long memory of a rival exposure. Furthermore, E. kuehniella has limited 

dispersal ability (Rees, 2004) and thus sperm competition environment is less likely to 

change rapidly. As a result, it should be relatively safe for males to maintain their 

response to the sperm competition level detected in their early adulthood.  

My findings demonstrate that the focal males ejaculated similar number of 

eupyrenes in their first mating in all treatments and the control (Figure 2.5) while 

Esfandi et al. (2020) reveal that males ejaculated significantly more eupyrenes in their 

first mating after exposure to rival cues. I attribute the divergence of these two studies 

to the duration between rival cue detection and sperm ejaculation. In Esfandi et al. 

(2020) it was more than 26 hr (24-hr exposure to rivals + mating latency) while in the 

present study it was less than 13 hr (10-h exposure to rivals + mating latency). Because 

males constantly release sperm from testes into vas deferens and then into the sperm 

storage site, the duplex (e.g., Thorson & Riemann, 1977; Prosholdi, 1991), the newly 

and increasingly produced sperm after detection of rival cues would take time to arrive 

at storage site. Therefore, the number of sperm at the duplex at the first mating should 

be greater in Esfandi et al. (2020) than in the present study and males just ejaculate 

what they have in the storage after detecting the rival cues. However, the number of 

apyrenes ejaculated (Figure 2.6) at the first mating was not as consistent as that of 

eupyrenes. The reasons behind are not clear. 

In the present study, I have tested how focal males of a moth respond to single 

and combined cues from rivals and discussed ecological implications in relation to 

dynamics of socio-sexual environment. I conclude that (1) males raise their sperm 

allocation and production after detecting either acoustic or chemical cues from their 

rivals with combined cues somewhat strengthening such response, and (2) males can 

remember the sperm competition risk for most of their reproductive life following one 

premating exposure to rival cues. 
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CHAPTER 3  

Larval Social Cues Influence Testicular Investment in 

Ephestia kuehniella 

This chapter was published in Current Zoology, 68, 1–8 (2022).  
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Abstract  

Socio-sexual environment can have critical impacts on reproduction and survival of 

animals. Consequently, they need to prepare themselves by allocating more resources 

to competitive traits that give them advantages in the particular social setting they have 

been perceiving. Evidence shows that a male usually raises his investment in sperm 

after he detects the current or future increase of sperm competition because relative 

sperm numbers can determine his paternity share. This leads to the wide use of testis 

size as an index of the sperm competition level, yet testis size does not always reflect 

sperm production. To date, it is not clear whether male animals fine-tune their resource 

allocation to sperm production and other traits as a response to social cues during their 

growth and development. Using a polygamous insect, Ephestia kuehniella, I tested 

whether and how larval social environment affected sperm production, testis size and 

body weight. I exposed the male larvae to different juvenile socio-sexual cues and 

measured these traits. I demonstrate that regardless of sex ratio, group-reared males 

produced more eupyrenes (fertile and nucleate sperm) but smaller testes than singly 

reared ones, and that body weight and apyrene (infertile and anucleate sperm) numbers 

remained the same across treatments. I conclude that the presence of larval social, but 

not sexual cues, is responsible for the increase of eupyrene production and decrease of 

testis size. I suggest that male larvae increase investment in fertile sperm cells and 

reduce investment in other testicular tissues in the presence of conspecific juvenile cues.   
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3.1 Introduction 

Socio-sexual environment can influence animals’ fitness in reproduction and survival 

(Mohorianu et al., 2017; Alberts, 2019). Such effects can lead to their adjustment of 

behaviour and physiology to maximise their fitness gain (Wilson et al., 2014; Mirth et 

al., 2021). Hence, animals can prepare themselves by allocating more resources to the 

traits that are competitive and beneficial in the particular social setting they have been 

perceiving. For example, a male raises his investment in sperm after he detects the 

current or future increase of sperm competition because relative sperm numbers can 

predict his paternity share (Parker, 1970; Parker et al., 1997; Simmons, 2001; Parker & 

Pizzari, 2010; Lüpold et al., 2020). Although larger males usually have more sperm 

(Pitnick, 1996; Hatala et al., 2018; Chung et al., 2019; Xu & Wang, 2020), the social 

environment experienced by juvenile males does not appear to affect their body size in 

some insects (Gage, 1995; Hosken & Ward, 2001; Allen et al., 2011; Bretman et al., 

2016) and mammals (Hobson et al., 2020).  

The fact that males increase investment in sperm in response to raising sperm 

competition leads to the wide use of testis size as an index of the level of sperm 

competition (Lüpold et al., 2020). Yet, there is evidence that testis size does not increase 

at higher sperm competition levels in some insects (Crudgington et al., 2009; Gay et 

al., 2009; Bretman et al., 2016; Chechi et al., 2017) and vertebrates (Byrne et al., 2002; 

Fitzpatrick et al., 2012; Liao et al., 2019; Hobson et al., 2020). The lack of positive 

relationship between testis size and sperm production could be attributed to at least two 

reasons: (1) animals can dedicate varying portions of testis volumes to spermatogenesis 

and other functions in response to sperm competition environment (Lüpold et al., 2020), 

and (2) adult testis mass can decrease after a mating (Simmons et al., 2000; Greenway 

et al., 2020) or due to senescence (Rosa et al., 2019). Therefore, measurement of testis 

size does not always reflect sperm production.  

So far, most studies on insect sperm investment have focused on males’ response 

to sperm competition environment during the adult stage (e.g., Simmons et al., 2007; 

Moatt et al., 2014; Larsdotter-Mellström & Wiklund, 2015; Simmons & Lovegrove, 
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2017; Lymbery et al., 2019; Esfandi et al., 2020). This is probably because adults can 

detect sperm competition levels using sex-specific cues in their surroundings (e.g., 

Bretman et al., 2011a; Uzsak et al., 2014; Baker et al., 2019; Liu et al., 2020) and adjust 

their sperm investment accordingly (Wedell et al., 2002; Parker & Pizzari, 2010; 

Lüpold et al., 2020). However, insect juveniles can also communicate using various 

cues, such as non-sex specific aggregation pheromones, trail pheromones and defensive 

sounds (e.g., Yack et al., 2001; Duthie et al., 2003; Scott et al., 2010; Fitzgerald et al., 

2019). Furthermore, female pupae of some species release sex pheromones that can be 

detected by conspecific male pupae (Pontier & Schweisguth, 2015) or adults (e.g., Choi 

et al., 2007; Estrada et al., 2010). Hence, male insects should be able to detect their 

socio-sexual situations during immature stages. This can allow juvenile males to predict 

future sperm competition levels and subsequently adjust their resource allocation (Gage, 

1995; Allen et al., 2011; Kasumovic & Brooks, 2011; Gray & Simmons, 2013). 

Because most resource allocation to traits making up the adult body (e.g., 

Oberlander, 1985; Nijhout & Emlen, 1998; Moczek & Nijhout, 2004; Rolff et al., 2019; 

Mirth et al., 2021) and immunity (e.g., Barnes & Siva-Jothy, 2000; Cotter et al., 2004; 

Triggs & Knell, 2012) takes place during larval or nymphal stages in insects, these 

juveniles can adjust their resource allocation to traits of different functions in response 

to socio-sexual cues, leading to potential trade-offs between different body traits 

(Nijhout & Emlen, 1998; Simmons & Emlen, 2006; Luecke & Kopp, 2019). To date, 

only a few studies have investigated how male insects fine-tune their investment in 

reproduction during growth and development as a response to potential sperm 

competition risk. For example, in some holometabolous species, adult males have larger 

testes (Gage, 1995; Stockley & Seal, 2001; Johnson et al., 2017) or ejaculate more 

sperm in the first mating (Gage, 1995; He & Miyata, 1997; McNamara et al., 2010) 

after their larvae are exposed to stronger conspecific social cues (more juveniles are 

present in the vicinity). There are also reports that hemimetabolous adult males 

ejaculate more sperm during their first mating if their nymphs are reared with 

conspecific male nymphs (Allen et al., 2011) or with adult songs of conspecific males 

(Gray & Simmons, 2013). Yet, it is still not clear whether the socio-sexual settings 
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during growth and development affect sperm production and result in any detectable 

trade-off between body size, testis size, and sperm number. Answers to these questions 

would provide insights into adaptive responses of juvenile males to their socio-sexual 

environment.   

In the present study, I used a polygamous insect, E. kuehniella, to investigate 

whether and how the socio-sexual contexts experienced by male juveniles affected their 

investment in body size, testis size and sperm production. E. kuehniella larval stage 

lasts 29–31 days and pupal stage takes 8–9 days, with larvae having six instars (instars 

1–3  14–15 days and instars 4–6  15–16 days) (Brindley 1930; Liu, J.Y. personal 

observation). Adults of this species do not feed and thus all their resources are obtained 

during the larval stage (Norris & Richards, 1932). Females start producing sex 

pheromones at the pupal stage (Calvert & Corbet, 1973). Like most lepidopterans 

(reviewed in Swallow & Wilkinson, 2002), E. kuehniella males produce two types of 

sperm, larger fertile eupyrenes (nucleate) and smaller infertile apyrenes (anucleate) 

which can be easily distinguished (Garbini & Imberski, 1977; Koudelová & Cook, 

2001). Prior to ejaculation, apyrene sperm bundles dissociate and become motile while 

eupyrene sperm remain in bundles (Koudelová & Cook, 2001; Liu, J.Y. personal 

observation). Both types of sperm migrate to the spermatheca but only eupyrenes can 

fertilize eggs (Friedländer & Gitay, 1972; Xu & Wang, 2010a). Apyrene sperm may 

delay the renewal of female receptivity (Cook & Wedell, 1999; Wedell et al., 2009), 

protect eupyrene sperm against a hostile female reproductive tract (Holman & Snook, 

2008) or facilitate eupyrene migration from the bursa to the spermatheca (Sakai et al., 

2019). Due to their different functions, eupyrenes evolve faster than apyrenes in 

response to selection pressures (Fitzpatrick et al., 2020).  

Based on the empirical studies and theoretical predictions outlined above, I 

postulate that males kept together with other males during juvenile stages should be 

smaller with larger testes and more sperm than those reared individually or with 

females. To test this hypothesis, I prepared hundreds of larvae and reared them singly 

or in group with different sex ratios. I then weighed mature pupae, and upon emergence, 

dissected male adults, measured testis size, and counted the sperm in their testes. The 
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design allowed me to determine whether the number of sperm produced was the 

function of testis size and/or body size in response to socio-sexual environment during 

growth and development in E. kuehniella. 

3.2 Materials and methods 

3.2.1 Insect sampling and rearing  

I collected E. kuehniella larvae by hand from chicken feed at Turks Poultry, Foxton, 

New Zealand. I allowed them to feed on their original food and develop to adults in the 

laboratory. I randomly selected and introduced about 300 newly emerged adults into a 

transparent plastic cage (28 cm length × 28 cm width × 24 cm height) lined with porous 

plastic sheets on the bottom for egg laying. I established a laboratory colony using 

larvae that hatched from these eggs. Briefly, I introduced 200 neonate larvae into a 

transparent plastic cylinder (8 cm diameter × 10 cm height) with 50 g standard diet [ad 

libitum (Bhavanam et al., 2012)] consisting of maize meal, whole meal wheat flour, 

glycerine and yeast with a ratio = 43.5:43.5:10.0:3.0. I covered the cylinder with two 

layers of cloth mesh. I maintained 10 cylinders of the colony, from which I randomly 

collected about 300 newly emerged adults and transferred them into the aforementioned 

plastic cage for egg laying. To generate an experimental line, I randomly collected 

1,000 neonate larvae from the eggs laid in the cage and reared them individually in 2-

ml transparent micro-centrifuge tubes with a hole in the lid made by an insect pin for 

ventilation. I provided 0.25 g standard diet per larva in the experimental line. I kept the 

insect colony and experimental larvae at 25 ± 1°C, 60 ± 10% relative humidity, and 

10:14 hr (dark:light) and carried out experiments under these environmental conditions. 

3.2.2 Juvenile socio-sexual settings  

Because sex can be determined through visible testes in male abdomens of the fourth 

instar larvae (Brindley, 1930; Liu, J.Y. personal observation), I randomly selected 

newly moulted fourth instar larvae from the experimental line and transferred them into 

glass vials (2 cm diameter × 7.5 cm height) to form three treatments (Figure 3.1A): (1) 
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SM – one male was maintained in a glass vial from the fourth instar larva to adult 

emergence; (2) 6M – six males were kept in a glass vial from the fourth instar larvae to 

adult emergence; and (3) 1M5F – one male and five females were reared in a glass vial 

from the fourth instar larvae to adult emergence. All vials were provided with standard 

diet of 0.25 g per larva and covered with cotton wool. I only used insects from vials 

where all individuals successfully developed to adults for data collection. I used all 

males from these vials for measurements (see below), that is, the male from each SM 

vial, the male from each 1M5F vial and all six males from each 6M vial. In total, I 

measured 32 adult males from treatment SM and 30 adult males for each of the other 

two treatments. 
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Figure 3.1 Treatment setups (A) and testis measurement (B) for E. kuehniella. SM, 

single male from the fourth instar larva to adult emergence; 6M, six males together 

from the fourth instar larvae to adult emergence, and 1M5F, one male and five females 

together from the fourth instar larvae to adult emergence.  
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3.2.3 Effects of juvenile socio-sexual settings on body size and testis size 

I individually weighed mature male pupae from all three treatments with an electronic 

dual range balance (Mettler Toledo AG135, Greifensee, Switzerland) and returned 

them to their original vials immediately after weighing. I used pupal weight as body 

size as reported in many insects including moths (e.g., Jiménez-Pérez & Wang, 2004; 

Xu & Wang, 2013, 2020).  

Immediately after emergence, I individually transferred adult males into 2-ml 

transparent micro-centrifuge tubes, clearly labelled each tube, and killed them at –20°C 

in a freezer. I then individually dissected all males to extract their testes and measured 

testis volume under a stereomicroscope (Leica MZ12, Wetzlar, Germany) connected 

with a digital camera (Olympus SC30, Tokyo, Japan) operated by an adequate imaging 

software (CellSens® GS-ST-V1.7, Olympus, Japan). Because E. kuehniella testes are 

fused into a single spherical organ (Nowock, 1973; Liu, J.Y. personal observation), I 

determined its radius using the mean diameter from two measurements across the 

organ’s central axis (Figure 3.1B; Raichoudhury, 1936; Gage, 1995) divided by two 

and calculated the testis volume (size) using the formula 4/3πr3, where π = 3.14 and r 

= radius of the testis.  

3.2.4 Effects of juvenile socio-sexual settings on sperm production 

After measurement of testis size, I placed the testis into a drop of Belar saline solution 

on a cavity slide and tore it apart completely using a fine needle tip and then gently 

rotated the cavity slide for ~ 30 s to evenly disperse eupyrene bundles and dissociate 

apyrenes. I counted the number of eupyrene bundles under a phase-contrast microscope 

(Olympus BX51, Tokyo, Japan) at 40× magnification and calculated the total number 

of eupyrenes as the total number of eupyrene bundles multiplied by 256 since each 

bundle contains 256 eupyrenes in E. kuehniella (Garbini & Imberski, 1977). I then 

thoroughly washed the sample off the cavity slide and diluted it with distilled water to 

30 ml in a glass vial. I gently rotated the vial for about 30 s to allow even dispersal of 

apyrenes in the vial and then took eight 10-μl subsamples from the vial using a Gilson 
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autopipette. I placed these subsamples apart from each other on a microscope slide and 

allowed them to air dry. I counted the number of apyrene sperm of all eight subsamples 

under the phase-contrast microscope at 100× magnification and calculated the mean 

number per 10 μl as the sum of apyrene sperm in eight subsamples divided by eight. I 

then calculated the total number of apyrene sperm for each male as the mean number 

of apyrenes per 10 μl multiplied by the dilution factor (3,000) (Koudelová & Cook, 

2001).   

3.2.5 Statistical analysis 

I calculated the residuals of data and tested the residual distribution (Shapiro–Wilk test, 

UNIVARIATE procedure) after fitting the data to a general linear model. I showed that 

data on body size and eupyrene number were normally distributed and those on testis 

size and apyrene number became normally distributed after ln(x)-transformed. As the 

experimental design was pseudoreplicated, I analysed the data using a linear mixed-

effects model (Millar & Anderson, 2004; Harrison et al., 2018) with treatment as a fixed 

factor and replicate nested into vial (male source) as a random factor (Davies & Gray, 

2015; Harrison et al., 2018). I then used a Tukey’s Studentized Range (HSD) Test for 

multiple comparisons between treatments. All analyses were done with SAS 9.4 (SAS 

Inc, USA). 

3.3 Results 

3.3.1 Effects of juvenile socio-sexual settings on body size and testis size 

My results show that socio-sexual cues during immature stages had no significant effect 

on male body size (F2,29 = 2.69, P = 0.0847; Figure 3.2A). I found that adult males that 

developed from group-reared juveniles had significantly smaller testes than those from 

singly reared ones (F2,29 = 4.60, P = 0.0183; Figure 3.2B). However, juvenile sex ratio 

(6 males or 1 male + 5 females) had no significant effect on testis size (F1,29 = 0.18, P 

= 0.6704; Figure 3.2B). 
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Figure 3.2 Effect of socio-sexual environment during immature stages on the body 

weight (A) and testis size (B) of E. kuehniella. SM, single male from the fourth instar 

larva to adult emergence; 6M, six males together from the fourth instar larvae to adult 

emergence, and 1M5F, one male and six females together from the fourth instar larvae 

to adult emergence. Each box plot shows the median line and the upper and lower 

quartiles, that is, the range where 25% of scores fall above and 25% fall below the 

median; the ‘×’ and line in a box indicate the mean and median scores, respectively; the 

‘ ’ and ‘ ’ are the upper and lower whiskers showing the maximum and minimum 

scores, respectively. For each parameter, boxes with different letters are significantly 

different (P < 0.05). 



                                                                                              Impact of larval social cues  

 

48 

 

3.3.2 Effects of juvenile socio-sexual settings on sperm production 

I demonstrate that the testes of males from the group-reared juveniles (6 males and 1 

male + 5 females) produced significantly more eupyrene sperm than those from singly 

reared ones (1 male) (F2,29 = 11.52, P = 0.0002; Figure 3.3A). However, testes in all 

treatments produced a similar number of apyrene sperm (F2,29 = 1.47, P = 0.2458; 

Figure 3.3B). The number of eupyrene and apyrene produced did not vary with sex ratio 

during the immature stages (6 males or 1 male + 5 females) (F1,29 = 0.02, P = 0.8896 

for eupyrene; F1,29 = 1.77, P = 0.1938 for apyrene; Figure 3.3).  
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Figure 3.3 Effect of socio-sexual environment during immature stages on the total 

number of eupyrene (A) and apyrene (B) sperm in testes of E. kuehniella. SM, single 

male from the fourth instar larva to adult emergence; 6M, six males together from the 

fourth instar larvae to adult emergence, and 1M5F, one male and five females together 

from the fourth instar larvae to adult emergence. Each box plot shows the median line 

and the upper and lower quartiles, that is, the range where 25% of scores fall above and 

25% fall below the median; the ‘×’ and line in a box indicate the mean and median 

score, respectively; the ‘ ’ and ‘ ’ are the upper and lower whiskers showing the 

maximum and minimum scores, respectively. For each parameter, boxes with different 

letters are significantly different (P < 0.05). 
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3.4 Discussion  

I found significantly more eupyrene (fertile) sperm in the testes of adults that developed 

from group-reared larvae than from singly reared ones, suggesting that the presence of 

juvenile cues could be an indicator of sperm competition risk and males increase 

resource allocation to eupyrene production when their young are maintained in groups. 

Evidence shows that most spermatogenesis takes place during immature stages in E. 

kuehniella (Garbini & Imberski, 1977) and other lepidopteran insects (Swallow & 

Wilkinson, 2002). This would provide opportunities for males to adjust their investment 

in sperm production based on their social contexts during their growth and 

development. A few earlier studies (Gage, 1995; He & Miyata, 1997; McNamara et al., 

2010) also draw similar conclusions. However, these authors determine the impact of 

juvenile cues by counting the number of sperm in males’ first ejaculates, which may 

not represent the total number of sperm produced by males. Hence, the current findings 

provide the first evidence of the impact of juvenile cues on sperm production in an 

insect. The present study shows that males did not increase investment in apyrene 

production in response to the presence of larval cues. This may be because apyrenes 

play a minor role in sperm competition relative to eupyrenes (Cook & Gage, 1995; 

Thorburn et al., 2018; Esfandi et al., 2020) and the increased resource allocation to 

eupyrene production leaves less resource to produce more apyrenes. Furthermore, the 

last male sperm precedence is common in many insect species (Simmons, 2001) 

including E. kuehniella (Xu & Wang, 2010a). The sperm from the last male can displace 

some sperm from the previous male to dominate paternity in some moths (e.g., Cook et 

al., 1997; Xu & Wang, 2010a). However, the degree of last male sperm precedence may 

depend on the number of sperm ejaculated by both the first and second males. Therefore, 

production of more eupyrene sperm during immature stages may benefit males 

regardless of whether they mate with virgin or mated females.  

Previous studies demonstrate that testis size increases with the increase of 

juvenile density and suggest that larger testes produce more sperm (Gage, 1995; 

Stockley & Seal, 2001; Johnson et al., 2017). However, my data show that while group-

reared males produced significantly more eupyrenes than singly reared males, they had 
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significantly smaller testes than singly reared males in E. kuehniella. Insect testes 

consist of both sperm cells and gland tissues (e.g., Verson, 1889; Nowock, 1973; Wolf, 

1991; White-Cooper et al., 2009) and have functions other than sperm production 

(Simmons & Fitzpatrick, 2012; Ramm & Schärer, 2014; Parker, 2016), such as 

production of sex hormones (review in De Loof, 2006). Therefore, males may be able 

to donate varying portions of testis volumes to spermatogenesis and other functions in 

response to sperm competition environment (Lüpold et al., 2020). Because a resource 

used for one trait may not be used for another, potential trade-offs between traits of 

different functions may occur (Nijhout & Emlen, 1998; Moczek & Nijhout, 2004; 

Luecke & Kopp, 2019). Based on the results from the present study and current 

knowledge about testicular components and functions, I suggest that in response to the 

presence of conspecific social cues E. kuehniella male larvae may increase investment 

in fertile sperm cells and reduce investment in other tissues of the testes. Furthermore, 

body weight remained the same across treatments in the present study, suggesting that 

E. kuehniella young provided with plentiful food and space do not trade off their body 

weight with reproductive traits. Similar conclusions are reached in other insects (Gage, 

1995; Hosken & Ward, 2001; Bretman et al., 2016). In future studies, it may be worth 

testing how larval cues affect resource investment in testicular (Lüpold et al., 2020), 

immune (Barnes & Siva-Jothy, 2000; Cotter et al., 2004; Triggs & Knell, 2012) and 

pre-copulatory (Simmons & Emlen, 2006) functions.  

According to Corbet (1971) and Mudd (1983), E. kuehniella larvae use chemical 

and tactile cues to communicate for population density regulation. Numerous studies 

demonstrate that immature stages of many holometabolous insect species use non-sex-

specific chemical or acoustic cues for various purposes. For example, juveniles 

communicate using aggregation pheromones for feeding in moths (Fitzgerald et al., 

2019) and locating pupation sites in moths (Duthie et al., 2003; Kwadha et al., 2019) 

and beetles (Kojima et al., 2014). Larvae employ trail pheromones for survival in moths 

(Crump et al., 1987; Fitzgerald & Pescador-Rubio, 2011), butterflies (Fitzgerald & 

Underwood, 1998) and sawflies (Flowers & Costa, 2003). Caterpillars use acoustic cues 

to communicate for territorial defence (Yack et al., 2001; Scott et al., 2010). Although 
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none of the above studies reports that those cues could alter investment in reproduction, 

I propose that chemical, acoustic and tactile cues used by the larvae may provide 

reliable information about the future sperm competition levels, supporting Kasumovic 

& Brooks’s (2011) prediction that cues used by immature insects may result in 

anticipatory developmental plasticity as a future mating strategy. 

Several studies report that some lepidopterans including E. kuehniella start 

producing female sex pheromones at the pupal stage (Calvert & Corbet, 1973; Choi et 

al., 2007) and the pheromones released by female pupae of moths (Duthie et al., 2003) 

and butterflies (Estrada et al., 2010) can attract conspecific adult males. However, little 

is known about whether juvenile males of any holometabolous insect adjust investment 

in reproduction as a response to those sex-specific cues. My results demonstrate that 

larval sex ratio did not affect testis size and sperm production, suggesting that testicular 

investment in E. kuehniella juvenile males only responds to the presence of social, but 

not sexual cues, during their growth and development. However, in a hemimetabolous 

insect, males can respond to sex ratio during the immature stage, adjusting ejaculation 

allocation during the adult stage (Allen et al., 2011). Further studies are thus warranted 

to determine whether holometabolous and hemimetabolous males have different 

resource allocation strategies in response to their juvenile socio-sexual environment. 

In the present study, I have tested whether and how larval social cues affect sperm 

production, testis size and body weight in E. kuehniella. I demonstrate that regardless 

of larval sex ratio, group-reared males produce smaller testes but more eupyrene sperm 

than singly reared ones, and that body weight and apyrene numbers remain the same 

across treatments. I conclude that the presence of non-sexual larval social cues is 

responsible for the increase of eupyrene production and decrease of testis size. I suggest 

that male larvae increase investment in fertile sperm cells and reduce investment in 

other testicular tissues in the presence of conspecific cues.  
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CHAPTER 4  

Pupal Cues Increase Sperm Production but not Testis Size in 

Ephestia kuehniella 

This chapter was published in Insects, 12, 679 (2021).  
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Abstract  

Theoretic and empirical studies show that social surroundings experienced by male 

insects during their larval or adult stage can influence their testicular investment in 

diverse ways. Although insect pupae do not feed and crawl, they can communicate 

using sex-specific and/or non-sex specific cues. Yet, it is unknown, in any insect, 

whether and how male pupae can fine-tune their resource allocation to sperm 

production and testis size in response to socio-sexual environment. I investigated this 

question using a moth, Ephestia kuehniella, which produces fertile eupyrene sperm and 

infertile apyrene sperm. I held male pupae individually or in groups with different sex 

ratios, and dissected adults upon eclosion, measured their testis size, and counted both 

types of sperm. I demonstrated that after exposure to conspecific pupal cues regardless 

of sex, male pupae increased production of eupyrenes and apyrenes at the same rate but 

kept testis size unchanged. I suggest that testis size is fixed after pupation because most 

morphological traits are formed during the larval stage, allowing little room for pupae 

to adjust testis size. Like adults, male pupae with fully grown testes have sufficient 

resources to produce more sperm of both types according to the perceived increase of 

sperm competition risk.   
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4.1 Introduction 

Animals adjust their resource allocation strategies to maximise their reproductive 

fitness in response to socio-sexual environment (Dewsbury, 1982; Wedell et al., 2002; 

Dore et al., 2020). For example, male animals may invest more in sperm after they 

detect the presence of rivals to gain an advantage in sperm competition (Wedell et al., 

2002; Bjork et al., 2007; Ramm & Stockley, 2009; Parker & Pizzari, 2010; Kelly & 

Jennions, 2011; Moatt et al., 2014; Firman et al., 2018; Liu et al., 2020). In insects, 

males fine-tune their sperm investment in response to sex specific cues experienced 

during the adult stage (Simmons et al., 2007; Xu & Wang, 2014; Larsdotter-Mellström 

& Wiklund, 2015; Lymbery et al., 2019; Fitzpatrick, 2020; Liu et al., 2020) or non-sex 

specific cues during the larval stage (Gage, 1995; He & Miyata, 1997; McNamara et 

al., 2010; McNamara & Simmons, 2017; Liu et al., 2022a). Although insect pupae do 

not feed and crawl, they can communicate with each other using species-specific 

acoustic (Hinton, 1948; Alexander, 1961; Downey, 1966; Travassos & Pierce, 2000; 

Álvarez et al., 2014; Dolle et al., 2018; Casacci et al., 2019; Lin et al., 2019) or chemical 

cues (Jefferson & Rubin, 1973; Feng & Roelofs, 1977; Tang et al., 1991; Choi et al., 

2007; Kwadha et al., 2019). Furthermore, female pupae can release sex pheromones 

(Calvert & Corbet, 1973; Duthie et al., 2003; Estrada et al., 2010; Pontier & 

Schweisguth, 2015). These findings suggest that male pupae should be able to detect 

conspecific pupal cues representing the density and sex ratio of the local population, 

and thus future sperm competition risk. Yet, prior to the current study, nothing is known 

about whether and how insect pupae can adjust their sperm production in response to 

these cues. 

Testes are a sperm production organ and their relative size or mass may be an 

indicator of sperm production. Evidence shows that male insect larvae, at growth and 

development stage, can adjust their testis size in response to conspecific larval cues 

regardless of sex. For example, with the increase of the larval density, testis size 

increases in some species, suggesting an increase of sperm production (sperm were not 

counted though) (Gage, 1995; Stockley & Seal, 2001; Johnson et al., 2017). In a study 

where testis size is measured and sperm are counted (Liu et al., 2022a), the male larvae 
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exposed to larval cues regardless of sex produce smaller testes but more fertile sperm. 

These discoveries suggest that in response to their social environment, male larvae are 

able to dedicate varying portions of testis volumes to spermatogenesis and other 

functions (Lüpold et al., 2020), resulting in potential trade-offs between traits of 

different functions (Nijhout & Emlen, 1998; Moczek & Nijhout, 2004; Luecke & Kopp, 

2019; Liu et al., 2022a). However, there is no report that insects can alter their testis 

size in response to the socio-sexual environment experienced at the adult stage. This 

may be because most resource allocation to traits making up the adult body takes place 

during growth and development (Oberlander, 1985; Nijhout & Emlen, 1998; Moczek 

& Nijhout, 2004; Shingleton et al., 2007; Rolff et al., 2019; Mirth et al., 2021), leaving 

little room for adults to change their testis morphology. To date, it is not clear whether 

insect pupae can alter their testis size after exposure to different socio-sexual 

environments.  

Here, I used a polygamous moth, E. kuehniella, as a model to investigate whether 

and how the socio-sexual environment during the pupal stage affected male investment 

in testis size and sperm production. Adults of this species do not feed so they acquire 

all resources via larval feeding (Norris & Richards, 1932; Esfandi et al., 2015). Pupal 

stage lasts about eight days (Brindley, 1930; Jacob & Cox, 1977; Liu et al., 2022a), 

during which time, females emit sex pheromones (Calvert & Corbet, 1973). Like most 

lepidopterans (Friedländer et al., 2005), E. kuehniella males produce two types of 

sperm, larger nucleated eupyrenes during the larval and pupal stages, and smaller 

anucleated apyrenes during the pupal stage (Garbini & Imberski, 1977). After mating, 

both types of sperm migrate to the sperm storage site (spermatheca) but only eupyrenes 

can fertilize eggs. Apyrenes may function to delay female remating (Cook & Wedell, 

1999; Wedell et al., 2009) protect eupyrenes in female reproductive tract (Holman & 

Snook, 2008) or enable eupyrenes to migrate to the spermatheca (Sakai et al., 2019). 

More recent studies suggest that the role of apyrenes may be completed after both types 

of sperm arrive at the spermatheca (Konagaya et al., 2020; Hague et al., 2021). The 

apyrene to eupyrene ratio remains consistent under the food shortage during the larval 

stage (Gage & Cook, 1994) or environmental stress during the larval (Sait et al., 1998) 
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and pupal stages (Koudelová & Cook, 2001). However, E. kuehniella males increase 

the ratio after detecting rival cues during the adult stage (Liu et al., 2020) or reduce it 

following exposure to larval cues during the larval stage (Liu et al., 2022a). So far, it is 

still unclear whether the socio-sexual environment during the pupal stage affects the 

sperm production ratio. 

Based on the theoretic framework and empirical evidence outlined above, I 

hypothesize that male pupae kept together with other male pupae should grow larger 

testes and produce more sperm with higher apyrene:eupyrene ratio than those 

maintained individually or with female pupae. To test this prediction, I individually 

reared hundreds of larvae under the same condition, starting from neonate larvae. I then 

transferred newly pupated pupae to experimental arenas and held male pupae 

individually or in groups with different sex ratios. Upon adult eclosion, I dissected 

them, measured their testis size, and counted both types of sperm. This is the first study 

to examine whether and how male insects adjust their testicular investment in response 

to their socio-sexual environment experienced during the pupal stage.  

4.2 Materials and methods 

4.2.1 Insects  

I established a laboratory colony of E. kuehniella from thousands of larvae collected at 

Turks’ Poultry, Foxton, New Zealand. I raised these larvae with their original food until 

adult eclosion in the laboratory. To standardize the colony, I randomly selected and 

confined about 300 newly eclosed adults (approx. 1:1 sex ratio; females with an 

ovipositor and males with a pair of claspers at the end of abdomen) in a transparent 

plastic cage (28 cm length × 28 cm width × 24 cm in height), lined with porous plastic 

sheets on the bottom for oviposition. I then randomly allocated 200 resultant neonate 

larvae to each of the 10 transparent plastic cylinders (8 cm diameter × 10 cm height), 

each filled with 50 g artificial diet (ad libitum) comprising of a 3.0:10.0:43.5:43.5 

mixture of yeast, glycerine, maize meal, and whole meal wheat flour, respectively. I 
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covered the cylinder with a lid. I made a hole (3 cm diameter) in the middle of the lid 

and covered it with two layers of cloth mesh (2.8 apparatus per mm2) for ventilation.  

To generate an experimental line, I randomly collected 1,000 neonate larvae 

produced by adults from the above cylinders and reared them individually in 2-ml 

micro-centrifuge tubes, each with 0.25 g artificial diet for food and a ventilation hole 

in the lid made by an insect pin. I observed their pupation daily after the larvae reached 

the final (sixth) instar. The breeding colony and experimental line were kept and all 

experiments conducted at 25 ± 1 °C and 60 ± 10% relative humidity with photoperiod 

of 10:14 hr (dark:light).  

4.2.2 Experimental setup and data collection  

I randomly selected newly pupated pupae (male pupae with visible reddish testes in the 

abdomen) from the experimental line and transferred them into glass vials (2 cm 

diameter × 7.5 cm height) to create three treatments (Figure 4.1): (1) one male pupa in 

a vial (1M), (2) six male pupae in a vial (6M), and (3) one male pupa and five female 

pupae in a vial (1M5F). Pupae in treatments (2) and (3) were in close contact with each 

other. I plugged the glass vial opening with cotton wool and monitored adult emergence 

daily six days after transfer. All pupae from the vials successfully emerged. 

Immediately after eclosion, I individually transferred newly emerged male adults into 

micro-centrifuge tubes, clearly labelled them and placed them at ˗20 °C in a freezer. I 

considered all emerged males as replicates, i.e., the male from each 1M vial, the male 

from each 1M5F vial and all six males from each 6M vial. In total, I obtained 30 adult 

males (replicates) for each treatment.  
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Figure 4.1 Experimental setup for the entire pupal stage of E. kuehniella: (1) 1M, one 

male, (2) 6M, six males together, and (3) 1M5F, one male and five females together. 

I dissected all males, extracted their testes and measured testis volume with the 

aid of a stereomicroscope (Leica MZ12, Wetzlar, Germany) equipped with a digital 

camera (Olympus SC30, Tokyo, Japan) operated by the Olympus CellSens® software 

(GS-ST-V1.7, Tokyo, Japan). As E. kuehniella testes are fused into a spherical organ 

(Liu et al., 2022a), I calculated its volume using the sphere formula, 4/3πr3. I 

determined the r (radius) using the mean diameter from two measurements across the 

organ’s central axis divided by two (Raichoudhury, 1936; Gage, 1995; Liu et al., 

2022a). After volume measurement, I placed the testes into a drop of Belar saline 

solution on a cavity slide, tore them apart completely, gently rotated the slide, and 

counted the number of eupyrene and apyrene sperm under a phase-contrast microscope 

(Olympus BX51, Tokyo, Japan) according to Liu et al. (2022a). 

4.2.3 Statistical analysis 

Prior to statistical analyses, I fitted data to a general linear model to calculate their 

residuals and test residual distribution (Shapiro-Wilk test, UNIVARIATE procedure). 

Data on eupyrene number, apyrene number, and ln(x)-transformed testis size were 

normally distributed. Because the experimental design was pseudoreplicated, I 

employed a linear mixed-effects model (Millar & Anderson, 2004; Harrison et al., 

2018) to analyse the data with treatment as a fixed factor and replicate nested into vial 
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(male source) as a random factor (Davies & Gray, 2015; Harrison et al., 2018; Amiri & 

Bandani, 2021; Liu et al., 2022a). I used a Tukey test for multiple comparisons between 

treatments. I analysed the relationship between eupyrenes and apyrenes by a general 

linear model (GLM procedure) and the slopes of linear lines by an analysis of 

covariance (ANCOVA) with treatment as the covariate in the model. The numbers of 

eupyrenes and apyrenes were ln(x)-transformed to achieve normal distribution of data 

before performing linear regression and ANCOVA. I performed the statistical analyses 

using SAS 9.4 (SAS Inc, USA). 

4.3 Results 

I demonstrate that males kept in groups (treatments 6M and 1M5F) produced 

significantly more eupyrene (F2,29 = 26.31, P < 0.0001) and apyrene sperm (F2,29 = 

10.07, P = 0.0005) than those maintained singly (treatment 1M) (Figure 4.2A and B). 

Sex ratio did not significantly affect production of either eupyrene (F1,29 = 3.66, P = 

0.0658) or apyrene (F1,29 = 3.19, P = 0.0847; Figure 4.2A and B). Testis size remained 

similar in all treatments (F2,29 = 0.01, P = 0.9852; Figure 4.3).  

My results show that the ratio of apyrene:eupyrene was about 5:1 with no 

significant difference between treatments (F2,29 = 1.24, P = 0.3041). The numbers of 

eupyrenes and apyrenes were significantly positively correlated in all treatments (F1,28 

= 5.31, P = 0.0289 for 1M; F1,28 = 16.65, P = 0.0003 for 1M5F; F1,28 = 11.94, P = 0.0018 

for 6M) but the slopes of regression lines were not significantly different (F2,84 = 0.22, 

P = 0.7996; Figure 4.4). 
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Figure 4.2 Effect of socio-sexual environment during the pupal stage on the number of 

eupyrene (A) and apyrene (B) sperm in testes of E. kuehniella. 1M, one male; 6M, six 

males together; 1M5F, one male and five females together. Each box plot shows the 

range between the first and third quartiles (black box), mean (black dot) and median 

scores (black lines); and ‘violin’ shapes show the shape of the distribution. Different 

letters on the top of the shapes denote significant differences between treatments (P < 

0.05).  
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Figure 4.3 Effect of socio-sexual environment during the pupal stage on testis size of 

E. kuehniella. 1M, one male; 6M, six males together; 1M5F, one male and five females 

together. Each box plot shows the range between the first and third quartiles (black 

box), mean (black dot) and median scores (black lines); and ‘violin’ shapes show the 

shape of the distribution. The same letters on the top of the shapes denote no significant 

differences between treatments (P > 0.05). 
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Figure 4.4 Relationship between the number of eupyrene and apyrene sperm produced. 

For 1M (one male), ln(eupyrene) = 6.58 + 0.31×ln(apyrene), R² = 0.1594; for 6M (six 

males together), ln(eupyrene) = 6.59 + 0.32×ln(apyrene), R² = 0.2990; and for 1M5F 

(one male and five females together), ln(eupyrene) = 7.54 + 0.24×ln(apyrene), R² = 

0.3729. 

4.4 Discussion  

I demonstrate for the first time that male pupae of an insect increased sperm production 

after exposure to conspecific pupal cues regardless of sex (Figure 4.2). Previous studies 

report that male insect larvae also can increase their investment in sperm in the presence 

of non-sex specific larval cues (Gage, 1995; He & Miyata, 1997; McNamara et al., 

2010; Liu et al., 2022a). These findings indicate that juvenile male insects can predict 

future sperm competition risks from cues of conspecific immature stages and 

subsequently adjust their sperm production (Gage, 1995; Allen et al., 2011; Kasumovic 

& Brooks, 2011; Gray & Simmons, 2013; Liu et al., 2022a). In lepidopteran insects, 

adults (Liu et al., 2020) and pupae (current study) adjust production of both fertile 

eupyrene and infertile apyrene sperm, while larvae only fine-tune production of 

eupyrene sperm (Liu et al., 2022a) in response to socio-sexual environment. 
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Furthermore, larvae either increase (Gage, 1995; Johnson et al., 2017) or reduce (Liu 

et al., 2022a) testis size in response to larval cues but pupae (Figure 4.3) and adults do 

not change their testis size under different socio-sexual situations. These discoveries 

suggest that resource allocation to sperm production and testis size differs depending 

on the life stages exposed to sperm competition environment.   

The above diverse responses to social cues may be attributed to the fact that 

resource allocation to morphological traits and spermatogenesis takes place in different 

life stages. Evidence shows that most adult morphological traits are formed during the 

larval stage (Nijhout & Emlen, 1998; Moczek & Nijhout, 2004; Rolff et al., 2019; Mirth 

et al., 2021), allowing the larvae but not pupae and adults to adjust their testis size. 

Lepidopteran males produce most eupyrene sperm during the larval and pupal stages, 

most apyrene sperm during the pupal stage (Friedländer et al., 2005) and continue to 

produce both types of sperm during the adult stage (Liu et al., 2020). Therefore, male 

larvae can donate varying portions of testis volumes to spermatogenesis and other 

functions (Lüpold et al., 2020), and trade off testis size and apyrene sperm production 

to increase eupyrene sperm production in response to increasing sperm competition risk 

(Liu et al., 2022a). However, with fully grown testes adults and pupae have sufficient 

resources to increase production of both types of sperm in response to sperm 

competition environment.  

In sperm-heteromorphic insects, the ayprene sperm often overwhelmingly 

outnumber the eupyrene sperm (Silberglied et al., 1984; Swallow & Wilkinson, 2002; 

Holman & Snook, 2008; Xu & Wang, 2014; Esfandi et al., 2020). Previous studies on 

E. kuehniella show that adult males increase the apyrene:eupyrene ratio in response to 

the presence of rivals (Liu et al., 2020) but male larvae reduce the ratio after exposed 

to larval cues (Liu et al., 2022a). These may be ascribed to the fact that spermatogenesis 

of apyrenes and eupyrenes occurs at different stages of insects (Swallow & Wilkinson, 

2002; Friedländer et al., 2005) and they have different functions in reproduction 

(Holman & Snook, 2008; Wedell et al., 2009; Sakai et al., 2019; Hague et al., 2021), 

allowing adults to increase investment in apyrene and larvae to trade-off apyrene for 

more eupyrene. However, the current study on pupae demonstrates that the 
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apyrene:eupyrene ratio was about 5:1 with no significant difference between 

treatments. Furthermore, the numbers of eupyrenes and apyrenes were significantly 

positively correlated in all treatments with no significant difference in the slopes of 

regression lines (Figure 4.4). I suggest that in all life stages, males should strive to 

increase production of eupyrene sperm to ensure advantages in sperm competition 

(fertilization of more offspring) but also increase production of apyrene when they can 

(such as at the pupal and adult stages) to ensure successful arrival of eupyrene at the 

spermatheca.   

Many studies reveal that insect larvae can communicate with each other using 

non-sex-specific cues (Corbet, 1971; Mudd, 1983; Crump et al., 1987; Fitzgerald & 

Underwood, 1998; Duthie et al., 2003; Flowers & Costa, 2003; Fitzgerald & Pescador-

Rubio, 2011; Kojima et al., 2014; Dombrovski et al., 2017; Kwadha et al., 2019) and 

male larvae can adjust their testicular investment in response to these cues (Gage, 1995; 

Stockley & Seal, 2001; Johnson et al., 2017; Liu et al., 2022a). Although female pupae 

can produce sex pheromones in insects including my study species E. kuehniella 

(Calvert & Corbet, 1973; Duthie et al., 2003; Estrada et al., 2010; Pontier & 

Schweisguth, 2015), I have not found any indication that male pupae can respond to 

this sex specific cue and adjust sperm production accordingly (Figures 4.2 and 4.3). 

Because pupae were in close contact with each other in treatments (2) and (3), physical 

contact cues could also play a role in pupal response. These findings suggest that 

testicular investment in E. kuehniella juvenile males only responds to the presence of 

social (including contact), but not sexual cues, during their growth and development. 

An earlier study demonstrates that E. kuehniella adults can remember rival cues and 

increase sperm allocation for most of their reproductive life after the cues are removed 

(Liu et al., 2020). However, my findings on larval (Liu et al., 2022a) and pupal (current 

study) responses to social environment result from dissecting adults at emergence. 

Therefore, we still do not know whether different larval and pupal social exposures 

influence sperm allocation during their adult lifespan, which warrants further 

investigations. 
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In conclusion, this is the first report on testicular investment in response to the 

social environment during the pupal stage in an insect. I show that after exposure to 

pupal cues, male E. kuehniella pupae increase production of both eupyrene and apyrene 

sperm at the same rate but keep testis size unchanged. I suggest that testis size is fixed 

after pupation because resource allocation to most morphological traits occurs during 

the larval stage, allowing little room for pupae to adjust testis size. With fully grown 

testes, pupae can manipulate production of both types of sperm according to the sperm 

competition risk. Furthermore, sex specific cues such as sex pheromones do not affect 

sperm production.  
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CHAPTER 5  

Juvenile Socio-Sexual Experience Determines Lifetime 

Sperm Expenditure and Adult Survival in Ephestia 

kuehniella 

This chapter was published in Insect Science (2022). 
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Abstract  

Male animals often adjust their sperm investment in response to sperm competition 

environment. To date, only a few studies have investigated how juvenile socio-sexual 

settings affect sperm production before adulthood and sperm allocation during the first 

mating. Yet, it is unclear whether juvenile socio-sexual experience (1) determines 

lifetime sperm production and allocation in any animal species; (2) alters the 

eupyrene:apyrene sperm ratio in lifetime ejaculates of any lepidopteran insects, and (3) 

influences lifetime ejaculation patterns, number of matings and adult longevity. Here I 

used a polygamous moth, Ephestia kuehniella, to address these questions. Upon male 

adult emergence from juveniles reared at different density and sex ratio, I paired each 

male with a virgin female daily until his death. I dissected each mated female to count 

the sperm transferred and recorded male longevity and lifetime number of matings. I 

demonstrate for the first time that males ejaculated significantly more eupyrenes and 

apyrenes in their lifetime after their young were exposed to juvenile rivals. Adult moths 

continued to produce eupyrene sperm, contradicting the previous predictions for 

lepidopterans. The eupyrene:apyrene ratio in the lifetime ejaculates remained 

unchanged in all treatments, suggesting that the sperm ratio is critical for reproductive 

success. Male juvenile exposure to other juveniles regardless of sex ratio caused 

significantly shorter adult longevity and faster decline in sperm ejaculation over 

successive matings. However, males from all treatments achieved similar number of 

matings in their lifetime. This study provides insight into adaptive resource allocation 

by males in response to juvenile social-sexual environment.  
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5.1 Introduction 

Animals are expected to adjust their behaviour and physiology to gain a competitive 

edge in different socio-sexual environments (Kasumovic & Brooks, 2011; Acasuso-

Rivero et al., 2019; Westneat et al., 2019). Various studies show that after adult males 

detect sperm competition risk, they raise their sperm expenditure for a higher paternity 

share (e.g., Parker, 1970; Gage, 1991; Simmons et al., 2007; Jarrige et al., 2015; Esfandi 

et al., 2020; Liu et al., 2020). To date, only a few studies have explored how male 

insects tailor their investment in sperm as a response to juvenile socio-sexual settings. 

For example, adults from juveniles exposed to higher density of conspecific juveniles 

regardless of sex ratio ejaculate more sperm in their first mating (Gage, 1995; He & 

Miyata, 1997; Yamane & Miyatake, 2005; McNamara et al., 2010) or have higher 

sperm counts at emergence (Liu et al., 2021, 2022a). Allen et al. (2011) report that after 

male juveniles are reared together, their adults transfer more sperm during the first 

mating. Yet, it is still unknown whether and how juvenile socio-sexual environment 

influences lifetime sperm production and allocation in any animal species. It is also 

unclear whether exposure to similar social-sexual settings by different juvenile stages 

results in diverse lifetime sperm expenditure in adults.   

Most lepidopteran species produce two distinct spermatozoa, the nucleate 

eupyrenes (fertile) and anucleate apyrenes (infertile), and the most widely accepted 

notion is that spermatogenesis occurs in juvenile stages and eupyrene sperm production 

ends before adult emergence (Swallow & Wilkinson, 2002; Friedländer et al., 2005). 

However, it remains unclear whether juvenile socio-sexual situations affect 

spermatogenesis during the adult stage. Although the apyrene sperm cannot fertilize 

eggs, they assist eupyrene in migration from female bursa copulatrix to spermatheca 

(Sakai et al., 2019; Chen et al., 2020; Konagaya et al., 2020; Hague et al., 2021), protect 

eupyrene sperm against a hostile female reproductive tract (Holman & Snook, 2008) 

and help win sperm competition games (Cook & Wedell, 1999; Wedell et al., 2009; 

Mongue et al., 2019). Therefore, the eupyrene:apyrene ratio could be essential for 

reproductive success in males. Though, it is unknown whether the juvenile socio-sexual 

environment affects the sperm ratio in ejaculates transferred during the adult lifespan. 
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The number of sperm ejaculated by males should decrease over successive 

matings due to limited resources and aging (Wedell & Cook, 1999; Velde et al., 2011; 

Esfandi et al., 2015, 2020; Liu et al., 2020). However, it is not clear whether different 

juvenile experience alters lifetime ejaculation pattern. Because sperm production 

(Dewsbury, 1982; van Voorhies, 1992; Olsson et al., 1997; Pitnick et al., 2006; 

Hayward & Gillooly, 2011; Lemaître et al., 2020) and matings (Martin & Hosken, 

2004; McNamara et al., 2008; Oliver & Cordero, 2009; Metzler et al., 2016; Mautz et 

al., 2019; Jehan et al., 2020) are costly, males may not be able to maintain maximal 

reproduction and longevity simultaneously (Kirkwood, 1977; Roff, 2002). 

Nevertheless, many studies show that the adult socio-sexual environment alters males’ 

reproductive investment but not their longevity (e.g., Janowitz & Fischer, 2010; Moatt 

et al., 2013; Esfandi et al., 2015; Leech et al., 2019). To date, knowledge of how 

juvenile socio-sexual settings affect adult mating frequency and longevity is still 

lacking. 

I used a polygamous moth, E. kuehniella, to investigate how juvenile socio-sexual 

environment influences lifetime sperm expenditure, mating frequency and survival in 

adult males. Under my experimental conditions, larval and pupal stages last about 29 

and eight days, respectively. Adults do not feed, and all resources are acquired during 

the larval stage. Adults become sexually mature at emergence and start mating at the 

onset of the first scotophase (Xu et al., 2008). Adult males increase their sperm 

allocation after exposure to rival cues during early adulthood (Esfandi et al., 2020; Liu 

et al., 2020). Adults have more sperm of both types at emergence after their pupae are 

exposed to higher density of conspecifics (Liu et al., 2021) but if such exposure starts 

at the larval stage, only eupyrene sperm increases at emergence (Liu et al., 2022a), 

suggesting that larvae and pupae may respond to the same social context differently. 

In the current study, I prepared thousands of larvae and manipulated larval-pupal 

and pupal density with varied sex ratios. Upon male adult emergence, I paired each 

male with a virgin female per day until his death. I dissected each mated female to count 

eupyrene and apyrene sperm transferred per mating and recorded males’ lifetime 

mating frequency and longevity. This is the first study on how juvenile socio-sexual 
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experience affects male adult longevity, and lifetime sperm production and allocation, 

eupyrene:apyrene sperm ratio and mating frequency in an insect. Knowledge presented 

here provides novel understanding of adaptive resource allocation by males in response 

to juvenile social-sexual environment.  

5.2 Materials and methods 

5.2.1 Insects and environmental conditions 

I collected E. kuehniella larvae from a poultry farm, in Foxton, New Zealand and reared 

them to adults with their original food (a mixture of wheat and maize flour) in 20 

transparent plastic cylinders (10.0 cm height × 8.0 cm diameter). I randomly selected 

about 300 newly emerged adults (ca. 1:1 sex ratio) from all cylinders and introduced 

them into a transparent plastic cage (24.0 cm height × 28.0 cm length × 28.0 cm width) 

with a porous plastic sheet at the bottom for oviposition. I collected eggs by pulling out 

the sheet and replacing it with a new one once every day for 10 days and incubated the 

eggs in Petri dishes (1.5 cm height × 8.5 cm diameter). I then inoculated 200 neonate 

larvae to 50 g standard diet (ad libitum) (21.75 g whole meal wheat flour, 21.75 g maize 

meal, 5 g glycerine and 1.5 g yeast) in a plastic cylinder as mentioned above. I 

constantly maintained 20 such cylinders as the breeding colony for experimental insects.  

I randomly transferred 300 newly emerged adults (ca. 1:1 sex ratio) from the 

colony to an aforementioned plastic cage for mating and subsequently letting females 

lay eggs in the cage. I then randomly collected 1,000 neonate larvae from the cage to 

establish an experimental line. I reared these larvae individually in 2-ml Eppendorf 

tubes, each of which held 0.25 g standard diet for food and pin holes in the lid for 

ventilation. To prepare virgin females for mating with focal males over the course of 

the experiment, I randomly collected about 1,000 female pupae from the breeding 

colony and individually housed them in the Eppendorf tubes until use for experiment. 

I maintained the colony and experimental insects and carried out all experiments at 25 

± 1°C and 60 ± 10% relative humidity under the photoperiod of 10:14 hr (dark:light).  
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5.2.2 Pre-adult socio-sexual settings for focal males 

The sex of the fourth instar larvae and pupae can be determined by visible testes in 

males’ abdomens (Figure 5.1; Liu et al., 2021). I randomly selected newly molted 

fourth-instar larvae (L) and newly pupated pupae (P) from the experimental line and 

transferred them into glass vials (7.5 cm height × 2.0 cm diameter) to create five socio-

sexual enviroments for focal males (M) (Figure 5.1): (1) single male (SM-LP) – one 

male was kept in a glass vial with a 0.25 g standard diet from the fourth instar larva to 

adult emergence; (2) six males (6M-LP) – six males were raised in a glass vial with a 

1.5 g standard diet from the fourth instar larvae to adult emergence; (3) one male and 

five females (1M5F-LP) – one male and five females (F) were reared in a glass vial 

with a 1.5 g standard diet from the fourth instar larvae to adult emergence; (4) six male 

pupae (6M-P) – six male pupae were maintained in a glass vial for the entire pupal stage 

until adult emergence, and (5) one male and five female pupae (1M5F-P) – one male 

and five females were put in a glass vial for the entire pupal stage until adult emergence. 

All glass vials were covered with wool cotton at the top. 

For all treatments I monitored adult emergence hourly when the pupae turned 

dark brown (ca. 1 day before adult emergence). Immediately after males’ eclosion, I 

individually transferred them into clean glass vials and clearly labelled all vials. To 

keep conditions consistent, I only used males from vials where all individuals emerged 

for data collection. I considered the male from each SM-LP, 1M5F-LP and 1M5F-P 

vial and all six males from each 6M-LP and 6M-P vial as focal males.  
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Figure 5.1 Socio-sexual environment treatments for E. kuehniella males before 

eclosion: (1) SM-LP, single male from the fourth instar larva to adult emergence; (2) 

6M-LP, six males together from the fourth instar larvae to adult emergence; (3) 1M5F-

LP, one male and five females together from the fourth instar larvae to adult emergence; 

(4) 6M-P, six male pupae together for the entire pupal stage until adult emergence; and 

(5) 1M5F-P, one male and five females together for the entire pupal stage until adult 

emergence. 

5.2.3 Data collection 

At the onset of the first scotophase following eclosion, I individually paired the focal 

males with 1-d-old virgin females randomly selected from the breeding colony, in 

transparent plastic cylinders (17.0 cm length × 6.5 cm diameter). Ten red light tubes 

(Sylvania, F36W/Red, Holland) 1.5 m above the cylinders were used for illumination. 

Because a male requires 24-hr recovery time to produce a full spermatophore again 

after each mating (Xu & Wang, 2009b), I randomly assigned another 1-d-old virgin 

female to the focal male in the cylinder at the onset of the next scotophase. This 

procedure was repeated until the death of the focal male. I monitored each mating pair 

once every 15 minutes until mating ended and immediately removed the mated female 

from the cylinder. I recorded mating frequency (lifetime number of matings) and 

longevity (duration between emergence and death) of each focal male. I considered 
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each focal male as a replicate. In total, I achieved 24, 23, 24, 22 and 24 replicates for 

treatments SM-LP, 6M-LP, 1M5F-LP, 6M-P, and 1M5F-P, respectively. 

To record males’ lifetime sperm allocation, I counted the number of sperm 

ejaculated by a male in each mating via dissecting all mated females from the above 

experiment and extracting the spermatophores out from their bursa copulatrix. In total 

I dissected 123, 130, 133, 136 and 142 females for SM-LP, 6M-LP, 1M5F-LP, 6M-P, 

and 1M5F-P, respectively. I placed the bursa copulatrix into a droplet of Belar saline 

solution on a cavity slide. Using two fine needles, I ruptured the spermatophore to 

release sperm under a stereomicroscope (Leica MZ12, Wetzlar, Germany). I then 

counted the number of bundles of eupyrene sperm under a phase-contrast microscope 

(Olympus BX51, Tokyo, Japan). I calculated the total number of eupyrene sperm as the 

total number of bundles multiplied by 256, the number of eupyrene sperm per bundle 

(Garbini & Imberski, 1977). Afterwards, the sample was thoroughly washed off the 

cavity slide and diluted in a glass vial with 30-ml distilled water. I gently rotated the 

vial for about 30 s to deliver even dispersal of apyrenes in the vial. I took eight 10-μl 

subsamples from the vial using a Gilson autopipette and placed them separately on a 

microscope slide. I counted the number of apyrene sperm of all eight subsamples under 

the phase-contrast microscope and calculated the mean number per 10 μl as the sum of 

apyrene sperm in eight subsamples divided by eight. I then calculated the total number 

of apyrene sperm for each mating as the mean number of apyrenes per 10 μl multiplied 

by the dilution factor (3,000) (Koudelová & Cook, 2001). The lifetime number of 

eupyrene and apyrene sperm ejaculated by a male adult is the sum of these sperm 

ejaculated in each mating. 

5.2.4 Statistical analysis 

I analysed all data using SAS 9.13 (SAS Institute Inc, USA) with a rejection level set 

at P < 0.05. Because the experimental design was pseudoreplicated, I analysed the 

mating frequency and lifetime number of sperm transferred by male adults using a 

linear mixed-effects model (MIXED procedure) (Millar & Anderson, 2004; Harrison 

et al., 2018), with treatment as a fixed factor and replicate nested into vial (male source) 
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as a random factor (Davies & Gray, 2015; Harrison et al., 2018). I applied a Tukey test 

in the model for multiple comparisons between treatments. A log-rank test (LIFETEST 

procedure) was applied to compare the survival probability of focal males between 

treatments. The relationship between the total number of eupyrene and apyrene 

ejaculated was analysed by a general linear model (GLM procedure) and an analysis of 

covariance (ANCOVA) was used to compare the slopes of regression lines between 

treatments (Liu et al., 2021). I used a linear mixed-effects model with repeated 

measures (MIXED procedure) to test how treatment affected males’ sperm allocation 

in successive matings. I set treatment, mating frequency and their interaction as the 

fixed effects in the model with a subject effect of focal male in the statement of 

‘REPEATED / TYPE = cs SUBJECT = focal male’ after the model. A CONTRAST 

statement was then applied to compare the slopes of regression lines of sperm 

ejaculation over successive matings between treatments. Because the moths used in the 

current study were from the same batch reared under the same conditions as in Liu et 

al. (2021, 2022a), I used a two-sample t test to compare the number of eupyrene and 

apyrene sperm and their ratio in lifetime ejaculates with those recorded at emergence 

(Liu et al., 2021, 2022a). 

5.3 Results 

5.3.1 Effect of socio-sexual environment during juvenile stages on lifetime sperm 

allocation 

Males that were exposed to conspecific males during larval-pupal stages (6M-LP) or 

the pupal stage (6M-P) ejaculated significantly more eupyrene and apyrene sperm than 

those that were exposed to conspecific females during larval-pupal stages (1M5F-LP) 

or the pupal stage (1M5F-P) or reared singly during larval-pupal stages (SM-LP) (F4,48 

= 4.11, P = 0.0060 for eupyrene; F4,48 = 4.58, P = 0.0033 for apyrene; Figure 5.2). The 

lifetime number of eupyrenes and apyrenes ejaculated was significantly positively 

correlated in all treatments (P < 0.001), with no significant difference in the slopes of 

regression lines between treatments (F4,105 = 0.32, P = 0.8639; Figure 5.3). 
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Both eupyrene (Figure 5.4A) and apyrene (Figure 5.4B) sperm ejaculated 

declined significantly over successive matings (P < 0.001). However, both types of 

sperm ejaculated declined significantly faster in exposed males (6M-LP, 1M5F-LP, 

6M-P, and 1M5F-P) than in unexposed ones (SM-LP) (F4,635 = 4.73, P = 0.0009 for 

eupyrene; F4,635 = 7.96, P < 0.0001 for apyrene) and there was no significant difference 

in slopes among exposed males (eupyrene: F3, 514 = 0.63, P > 0.05; apyrene: F3, 514 = 

0.96, P > 0.05; Figure 5.4). 
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Figure 5.2 Effects of pre-adult socio-sexual environment on lifetime eupyrenes (A) and 

apyrenes (B) ejaculated by E. kuehniella males. SM-LP, single male from fourth instar 

larva to adult emergence; 6M-LP, six males together from fourth instar larvae to adult 

emergence; 1M5F-LP, one male and five females together from fourth instar larvae to 

adult emergence; 6M-P, six male pupae together for the entire pupal stage until adult 

emergence; and 1M5F-P, one male and five females together for the entire pupal stage 

until adult emergence. For each box plot, the lower and upper box lines indicate 25% 

and 75% of scores falling beyond the lower and upper quartiles, respectively; the line 

and ‘×’ show the median score and means, respectively; the ‘ ’ and ‘ ’ are the lower 

and upper whiskers representing scores outside the 50% middle; the circles are the 

outliers of minimum scores. Boxes with different letters denote significant differences 

between treatments (P < 0.05).   
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Figure 5.3 Relationship between the number of eupyrene and apyrene sperm ejaculated 

in E. kuehniella males’ lifetime. For SM-LP, eupyrene = 12.31 + 1.74 × apyrene (F1,22 

= 204.10, P < 0.001); for 6M-LP, eupyrene = 13.17 + 1.76 × apyrene (F1,20 = 130.51, P 

< 0.001); for 1M5F-LP, eupyrene = 16.13 + 1.68 × apyrene (F1,21 = 126.29, P < 0.001); 

for 6M-P, eupyrene = 14.86 + 1.76 × apyrene (F1,20 = 275.94, P < 0.001); and for 1M5F-

P, eupyrene = 20.07 + 1.53 × apyrene (F1,22 = 103.42, P < 0.001). 
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Figure 5.4 Effects of pre-adult social environment on eupyrenes (A) and apyrenes (B) 

ejaculated by E. kuehniella males in relation to mating order (MO). Eupyrene: for SM-

LP, sperm = 32.84 ˗ 2.46 × MO (F1,98 = 56.27, P < 0.001); for 6M-LP, sperm = 40.51 ˗ 

3.95 × MO (F1,108 = 201.38, P < 0.001); for 1M5F-LP, sperm = 35.67 ˗ 4.23 × MO 

(F1,110 = 251.93, P < 0.001); for 6M-P, sperm = 39.49 ˗ 4.02 × MO (F1,113 = 218.17, P 

< 0.001); and for 1M5F-P, sperm = 34.89 ˗ 4.00 × MO (F1,117 = 194.98, P < 0.001). 

Apyrene: for SM-LP, sperm = 16.48 ˗ 1.08 × MO (F1,98 = 33.38, P < 0.001); for 6M-

LP, sperm = 22.11 ˗ 2.28 × MO (F1,108 = 157.73, P < 0.001); for 1M5F-LP, sperm = 

19.62 ˗ 2.54 × MO (F1,110 = 237.20, P < 0.001); for 6M-P, sperm = 20.45 ˗ 2.11 × MO 

(F1,113 = 194.50, P < 0.001); and for 1M5F-P, sperm = 19.91 ˗ 2.42 × MO (F1,117 = 

186.22, P < 0.001). Points and vertical lines represent means and standard errors, 

respectively. 
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5.3.2 Comparison between the number of sperm ejaculated in lifetime and that 

counted at emergence  

In treatments 6M-LP, 6M-P and SM-LP, the lifetime number of eupyrene sperm 

ejaculated (Figure 5.2A) was significantly higher than that counted at emergence (t50 = 

4.20, P = 0.0001 for 6M-LP; t50 = 2.52, P = 0.0159 for 6M-P; t54 = 3.09, P = 0.004 for 

SM-LP) (Liu et al., 2021, 2022a). The lifetime number of apyrene sperm ejaculated 

(Figure 5.2B) was also significantly higher than that measured at emergence in all five 

treatments (t50 = 8.61, P < 0.0001 for 6M-LP; t51 = 3.33, P = 0.0016 for 1M5F-LP; t50 

= 5.58, P < 0.0001 for 6M-P; t52 = 3.21, P = 0.0023 for 1M5F-P; t54 = 5.15, P < 0.0001 

for SM-LP) (Liu et al., 2021, 2022a). Furthermore, the apyrene:eupyrene ratio in 

lifetime ejaculates (6:1) (Figure 5.2) was significantly higher than that (5:1) at 

emergence (Liu et al., 2021, 2022a) (t50 = 7.74, P < 0.0001 for 6M-LP; t51 = 5.99, P < 

0.0001 for 1M5F-LP; t50 = 6.03, P < 0.0001 for 6M-P; t52 = 6.54, P < 0.0001 for 1M5F-

P; t54 = 3.80, P = 0.0004 for SM-LP). 

5.3.3 Effect of socio-sexual environment during juvenile stages on mating 

frequency and longevity 

Pre-adult socio-sexual exposure had no significant effect on the number of matings 

adult males achieved in their lifetime (mean ± SE = 5.13 ± 0.39, 5.91 ± 0.43, 5.78 ± 

0.37, 6.18 ± 0.37, and 5.92 ± 0.30 for SM-LP, 6M-LP, 1M5F-LP, 6M-P, and 1M5F-P, 

respectively) (F4,48 = 1.38, P = 0.2552). However, regardless of sex ratio, adult males 

that were exposed to conspecific individuals during larval-pupal stages or the pupal 

stage (6M-LP, 1M5F-LP, 6M-P, and 1M5F-P) lived significantly shorter than those that 

were reared singly (SM-LP) (𝑥4
2 = 21.44, P < 0.0001), and all exposed males had similar 

longevity (P > 0.05; Figure 5.5).   
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Figure 5.5 Effects of pre-adult socio-sexual environment on adult male longevity in E. 

kuehniella. SM-LP, single male from fourth instar larva to adult emergence; 6M-LP, 

six males together from fourth instar larvae to adult emergence; 1M5F-LP, one male 

and five females together from fourth instar larvae to adult emergence; 6M-P, six male 

pupae together for the entire pupal stage until adult emergence; and 1M5F-P, one male 

and five females together for the entire pupal stage until adult emergence. Lines with 

different letters are significantly different (P < 0.05). 
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5.4 Discussion  

The present study shows that both juvenile stages of E. kuehniella, larvae and pupae, 

are sensitive to their socio-sexual environment and their experience affects lifetime 

sperm production and allocation and adult longevity but not eupyrene:apyrene ratio and 

mating frequency. I demonstrate for the first time that adult E. kuehniella males 

developing from juveniles reared with juvenile rivals transferred significantly more 

eupyrenes (Figure 5.2A) and apyrenes (Figure 5.2B) in their lifetime than those from 

juveniles raised solitarily or with juvenile mates. My findings provide strong evidence 

that the impact of socio-sexual environment during juvenile stages continues 

throughout the adult stage. Furthermore, the sperm allocation patterns remained the 

same following exposure either from late instar larval to pupal stages or just during the 

pupal stage (Figure 5.2). This suggests that the late juvenile stage is a critical period for 

building up the long-term memory of the pre-adult social environment in insects.  

Using the same batch of moths reared under the same condition as Liu et al. 

(2021, 2022a), I show that the number of sperm ejaculated in lifetime (Figure 5.2) was 

significantly higher than that counted at emergence (Liu et al., 2021, 2022a) in E. 

kuehniella. These findings suggest that the production of both eupyrene and apyrene 

sperm continues during the adult stage in lepidopterans, contradicting previous 

perceptions (Swallow & Wilkinson, 2002; Friedländer et al., 2005). The sperm ratio 

(apyrene:eupyrene) in lifetime ejaculates (Figure 5.2) was also significantly higher than 

that at emergence (Liu et al., 2021, 2022a), supporting previous findings that apyrenes 

are cheaper to produce than eupyrenes (Silberglied et al., 1984; Cook & Gage, 1995). 

My study reveals that the sperm ratio in lifetime ejaculates remained the same 

regardless of treatments during juvenile stages (Figure 5.3), suggesting that the sperm 

ratio in ejaculates is critical for reproductive success. 

 Similar to previous findings (e.g., Wedell & Cook, 1999; Velde et al., 2011; 

Esfandi et al., 2020; Liu et al., 2020), I show that the number of sperm ejaculated by 

males significantly decreased over successive matings (Figure 5.4). These patterns fit 

the general prediction that males suffer from reduced quantity of their sperm with 
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(Dewsbury, 1982; Fricke & Maklakov, 2007; Vega-Trejo et al., 2019). However, the 

ejaculation of both eupyrene and apyrene sperm declined significantly faster over time 

in males whose juveniles were exposed to conspecific juveniles of any sex ratio than in 

those unexposed (Figure 5.4). Higher sperm production before emergence in the 

exposed males (Liu et al., 2021; 2022a) may exacerbate sperm senescence (Ball & 

Parker, 1996; Reinhardt, 2007; Pizzari et al., 2008) so that they are of greater urgency 

to expel the accumulated aged sperm in their reservoirs to gain reproductive fitness. 

This may result in ejaculation of more sperm in their first couple of matings, raising the 

starting points of the linear lines and leading to steeper slopes (Figure 5.4).  

Adult E. kuehniella males had significantly shorter longevity after their juveniles 

were exposed to conspecific juveniles of any sex ratio as compared to those whose 

young were individually reared (Figure 5.5). Because most spermatogenesis occurs 

during juvenile stages (Friedländer et al., 2005; Liu et al., 2021, 2022a) and sperm 

production entails significant costs (Dewsbury, 1982; van Voorhies, 1992; Olsson et 

al., 1997; Pitnick et al., 2006; Hayward & Gillooly, 2011; Lemaître et al., 2020), I 

suggest that the increase of resource allocation to sperm production in the presence of 

conspecifics during juvenile stages (Liu et al., 2021, 2022a) causes the early death of 

male adults. I show that males in different treatments achieved the same number of 

matings in their lifetime, suggesting that the number of matings is ultimately important 

for maximal reproductive fitness regardless of juvenile experience in E. kuehniella 

males.  

In conclusion, the present study provides the first evidence that adult E. 

kuehniella males ejaculate significantly more eupyrene and apyrene sperm in their 

lifetime after exposure to rivals during the larval-pupal or pupal stage. In contrary to 

previous predictions for lepidopterans, I show that adults continue to produce sperm of 

both types. Despite different lifetime sperm allocations among treatments, the 

apyrene:eupyrene ratio remains 6:1, implying that the sperm ratio in ejaculates is 

critical for reproductive success. While both types of sperm ejaculated decrease over 

successive matings in all treatments, the rate of decrease is faster in males exposed to 

conspecifics during juvenile stages. This may result from the fact that the exposed 
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males produce more sperm before emergence and ejaculate more in their first mating. 

Adults from juveniles exposed to conspecific juveniles of any sex ratio have shorter 

longevity probably because exposed juveniles allocate more resources to sperm 

production and trade off adult survival. Finally, all E. kuehniella males have similar 

number of matings in their lifetime regardless of whether their juveniles are exposed to 

conspecific juveniles or not. The knowledge generated here provides insight into 

adaptive resource allocation by males in response to social-sexual experience of 

different juvenile stages. 
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CHAPTER 6  

Male Larvae Experience of Cues from Adult Rivals Alters 

Lifetime Sperm Investment Patterns in Ephestia kuehniella 

This chapter was submitted to Insect Science for publication.  
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Abstract  

Male animals may adjust their resource allocations for reproduction and other fitness 

functions in response to cues from rivals. For instance, adult males increase their 

investment in sperm for a higher paternity share when they perceive sperm competition 

risk in their surroundings. In nature, both juveniles and adults may co-exist spatially 

and temporally. Yet, it is not clear how juvenile males of different ages respond to cues 

from adult rivals and fine-tune their lifetime investment in sperm production and 

ejaculation in any insect. Here I used the Mediterranean flour moth, Ephestia 

kuehniella, which produces both fertile eupyrene and infertile apyrene sperm, to explore 

this question. I demonstrate that the late, but not early, instar larvae are sensitive to 

adult male cues. As a response, they produce more sperm before emergence and their 

resultant adults have shorter mating latency and ejaculate more sperm in the first few 

matings. When the juvenile stage produces more eupyrenes, the adult stops making 

these sperm, but regardless of the number of apyrenes produced during the juvenile 

stage, the adult continues to make them. These findings suggest that the number of 

spermatogonia for eupyrenes may be limited and that for apyrenes may be flexible. My 

results show that the insect does not trade off survival, mating frequency, body size or 

testis size for sperm production in response to adult males during the larval stage. 

Knowledge created in the present study offers insight into the stage-dependent 

sensitivity of juvenile males to cues from adult rivals and subsequent lifetime resource 

allocations. 
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6.1 Introduction 

Animals often fine-tune their physiology and behaviour in response to their socio-

sexual environment to gain a competitive advantage (Pigliucci, 2005; Bretman et al., 

2011b; Kasumovic & Brooks, 2011; Taborsky, 2016; Dore et al., 2018). For example, 

adult males increase their investment in sperm for a higher paternity share when they 

perceive sperm competition risk (Parker, 1970; Wedell et al., 2002; Parker & Pizzari, 

2010). Previous studies indicate that juvenile males also can detect their future sperm 

competition risk from their juvenile companions and adjust resource allocations 

accordingly (Gage, 1995; He & Miyata, 1997; Yamane & Miyatake, 2005; McNamara 

et al., 2010; Kasumovic & Brooks, 2011; Taborsky, 2016; Liu et al., 2021, 2022a, 

2022b). In nature, conspecific young and adults may coexist regularly at a given time 

and space, adding adult cues to juvenile socio-sexual surroundings (Chapman et al., 

2007; Nehring & Müller, 2009; Bjørnstad et al., 2016; Arbaiza-Bayona et al., 2022). 

To date, only a few studies have investigated the impact of adult males on resource 

allocations in juvenile male insects, including investment in testes (Bailey et al., 2010; 

Bretman et al., 2016) and ejaculation in the first mating (Gray & Simmons, 2013; 

Simmons & Lovegrove, 2017). Yet, it is still unknown whether juvenile sensitivity to 

adult male cues is stage dependent and whether these cues affect lifetime sperm 

production and ejaculation in any insect.   

Sperm heteromorphic insects such as lepidopterans start producing larger 

nucleate eupyrene sperm and smaller anucleate apyrene sperm during juvenile stages 

(Garbini & Imberski, 1977; Friedländer et al., 2005). Eupyrenes fertilize eggs and 

apyrenes assist in success of sperm competition (Cook & Wedell, 1999; Wedell et al., 

2009; Mongue et al., 2019) and fertilization (Holman & Snook, 2008; Sakai et al., 2019; 

Hague et al., 2021). So far, it is not clear whether and how juvenile males adjust their 

expenditure in these sperm of different functions according to the timing of their 

experience of adult males. Furthermore, changes in resource allocations may result in 

trade-offs between spermatogenesis and other life traits (Ramm & Stockley, 2009; 

Devigili et al., 2015; Simmons et al., 2017; Paschoal & Zara, 2022). However, previous 

studies suggest that juvenile social environment has little impact on juvenile survival 
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(Woodroffe & Macdonald, 2000; Berger et al., 2015; Cannarsa et al., 2015), body size 

at maturity (Gage, 1995; Lemaître et al., 2011; Bretman et al., 2016; Hobson et al., 

2020), and resultant adults’ mating frequency (Rutledge & Uetz, 2014; Liu et al., 

2022b) and longevity (McNamara et al., 2010). Yet, none of these studies has explored 

the effect of juvenile experience on all these traits in any single species, making it 

difficult to determine whether adjustment of investment in sperm would alter resource 

allocation to all other traits.  

My study species, the Mediterranean flour moth, Ephestia kuehniella Zeller 

(Lepidoptera: Pyralidae), is a polygamous moth and a serious pest of stored products in 

the world. It is an ideal model for investigations into how males alter their resource 

allocations to traits of different functions after their larvae of different stages are 

exposed to conspecific adult males because its reproductive behaviour and life history 

strategies have been well studied (Calvert & Corbet, 1973; Xu et al., 2007; Xu & Wang, 

2009a, 2009b, 2010a, 2010b, 2010c, 2011, 2013, 2014; Esfandi et al., 2015, 2020). This 

moth obtains all resources for survival and reproduction from larval feeding as its adults 

do not feed (Calvert & Corbet, 1973). It becomes sexually mature at emergence and 

starts mating at the onset of the first scotophase (Xu et al., 2008), and the quantities of 

sperm available determine their desire for mating (Norris & Richards, 1933). Before 

ejaculation, apyrene bundles disassociate, while eupyrenes remain aggregated in 

bundles of 256 spermatozoa (Garbini & Imberski, 1977; Koudelová & Cook, 2001). 

Since E. kuehniella has multiple and overlapped generations all year round 

(Richardson, 1926; personal observation), both immature and adult stages can occur 

simultaneously. Furthermore, Liu et al. (2020) demonstrate that male adults emit both 

acoustic and chemical cues, which are used as signals of sperm competition risk. I 

predict that juvenile males of this moth may sense these adult cues and adjust their 

resource allocation strategies as a response.  

In the current study, I exposed E. kuehniella larvae of different stages to adult 

males. I recorded their survival to adulthood, and dissected half of the treated males at 

emergence and measured their testis size and sperm number. I paired each of the 

remaining treated males with a virgin female daily and counted the number of sperm 
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ejaculated. I also recorded mating latency of the first mating, mating frequency and 

longevity of these paired males. This design allowed me to test stage-dependent 

sensitivity of juvenile males to adult male cues and subsequent resource allocations, 

providing insight into lifetime reproductive investment of juvenile males in response to 

adult cues. 

6.2 Materials and methods 

6.2.1 Insects and environmental conditions 

I collected more than 2,000 E. kuehniella larvae together with their original food (a 

mixture of wheat and corn flour) from Turks Poultry, Foxton, New Zealand. I then 

transferred these into 20 transparent plastic cylinders (8 cm diameter × 10 cm length) 

covered with cotton gauze (2.8 apparatus per mm2), each with 100 larvae and about 100 

g of their original food, and maintained them in the laboratory. I randomly collected 

300 newly eclosed adults ( 1:1 sex ratio) from all cylinders and introduced them into 

a transparent plastic cage (28 cm length × 28 cm width × 24 cm height), lined with a 

plastic sheet on the bottom for egg collection. I collected eggs daily for 10 days and 

incubated them in Petri dishes (8.5 diameter × 1.5 cm length). I inoculated 200 neonate 

larvae onto 50 g of standard diet (ad libitum), consisting of 3% yeast, 10% glycerine, 

43.5% maize meal, and 43.5% whole meal wheat flour (Liu et al., 2020) in a cylinder 

mentioned above. I maintained 10 such cylinders as the laboratory colony. I kept the 

colony and conducted all experiments at 25 ± 1°C, 60 ± 10% relative humidity, and a 

photoperiod of 10:14 hr (dark:light). Under this condition, larval and pupal stages last 

about 29 and 8 days, respectively.   

6.2.2 Treatments 

I randomly selected 800 neonate larvae from the colony and evenly transferred 200 

larvae into each of four above-mentioned cylinders with 50 g of standard diet. To 

determine whether and how E. kuehniella males adjusted their lifetime investment in 

reproduction and survival after their larvae of different stages were exposed to adult 
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males, I set up three treatments and one control as follows: (1) ELE (early larval 

exposure) – immediately after the transfer of neonate larvae, I introduced 10 adult males 

into the cylinder and allowed them to stay for five days, after which time, I removed all 

adults; (2) LLE (late larval exposure) – 15 days after the transfer of neonate larvae, I 

introduced 10 adult males into the cylinder and allowed them to stay for five days, after 

which time, I removed all adults; (3) CLE (complete larval exposure) – immediately 

after the transfer of neonate larvae, I introduced 10 adult males into the cylinder and 

replaced them with 10 new ones once every five days until pupation, after which time, 

I removed all adults, and (4) CON (control) – no adult males in the cylinder. All adult 

males used at the onset of exposure were newly emerged, virgin and randomly selected 

from the breeding colony. The cylinders were placed in four separate environment 

chambers (Percival Scientific I-36VL, Perry, the USA) with identical environmental 

conditions as the laboratory colony.  

6.2.3 Immature survival, body size, and testis size and sperm count at emergence 

After the larvae reached the final (sixth) instar, I started observing pupation in these 

cylinders daily in the following 8 days (sampling time for body size) and recorded the 

total number of pupae from each cylinder. I individually weighed male pupae using an 

electronic dual range balance with readability of 0.00001g (Mettler Toledo AG135, 

Greifensee, Switzerland) and considered pupal weight as the index of body size (Xu & 

Wang, 2020). I placed weighed male pupae individually in glass vials, stuffed cotton 

wool on the opening of the vials and numbered each vial. I then maintained these pupae 

in their original environment chambers and recorded the total number of emerged males 

from the vials.  

Immediately after eclosion, I randomly selected 30 newly emerged males (< 2 hr 

after eclosion) per day from each cylinder for six days (sampling time) and froze them 

at ˗20°C. I then dissected these males to extract their testes, and measured testis size 

with the aid of a stereomicroscope (Leica MZ12, Wetzlar, Germany) connected with 

imaging software (CellSens® GS-ST-V1.7, Olympus, Tokyo, Japan). Because the 

testis shape of this species is spherical (Nowock, 1973), I calculated its size as volume 
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= 4/3πr3, where π = 3.14 and r = radius of the testis (Liu et al., 2021). I determined its 

radius r using the mean diameter from three measurements across the organ’s central 

axis divided by two (Raichoudhury, 1936; Gage, 1995). I then quantified eupyrene and 

apyrene sperm using the methods detailed in Koudelová & Cook (2001) and Liu et al. 

(2022a). Briefly, I placed the testis into a drop of Belar saline solution on a cavity slide 

and tore it apart using a fine needle. To evenly disperse eupyrene sperm bundles and 

disassociate apyrenes, I gently rotated the solution for 30 s. I counted the number of 

eupyrene sperm bundles on the slide under a phase-contrast microscope (Olympus 

BX51, Tokyo, Japan) at 40× magnification and calculated the total number of 

eupyrenes as the total number of eupyrene bundles multiplied by 256 (each bundle has 

256 eupyrene sperm). I then thoroughly flushed the sample off from the cavity slide 

into a glass vial and diluted it with 30-ml distilled water. I gently rotated the vial for 30 

s to allow even dispersal of apyrenes in the vial and then pipetted eight 10-μl 

subsamples from the vial and dropped them separately onto a microscope slide. After 

air dry, I counted the number of apyrene sperm under the phase-contrast microscope at 

100× magnification and calculated the total number of apyrene sperm for each male as 

the mean number of apyrenes per 10 μl multiplied by the dilution factor (i.e., 3000). 

Thirty males were tested for each treatment and control. 

6.2.4 Mating latency, lifetime mating frequency and longevity 

At the onset of the first scotophase, I randomly selected and individually paired 30 

newly emerged males (< 2 hr of eclosion) from each treatment and control with 1-d-

old-virgin females randomly selected from the breeding colony that had been singly 

housed in glass vials since the pupal stage. Each pair was confined in a mating chamber 

(transparent plastic cylinder, 6.5 cm diameter × 8.5 cm length) with the lid covered by 

cotton gauze (2.3 apparatus per mm2). I monitored the chambers and observed the 

mating behaviour continuously until the end of each copulation under 10 red light tubes 

(Sylvania, F36W/Red, Holland) and recorded the mating latency (time between 

introduction of both sexes and their genital connection) of 28, 26, 27, and 28 males for 

ELE, LLE, CLE, and CON, respectively. 
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Given that a male requires 24-hr refractory period to produce a full spermatophore 

again after each copulation (Xu & Wang, 2009b), I introduced a 1-d-old virgin female 

to the focal male in the mating chamber at the onset of the second scotophase following 

emergence. I repeated this procedure until the focal male died. I inspected the mating 

pair once every 15 minutes until copulation cessation and immediately removed the 

mated female from the mating chamber. I recorded the mating frequency and longevity 

of 28, 26, 27, and 28 focal males for ELE, LLE, CLE, and CON, respectively.  

6.2.5 Lifetime sperm ejaculation   

To determine the lifetime number of sperm ejaculated by each focal male, I dissected 

all mated females from the above experiment and extracted the spermatophores from 

their bursa copulatrix. In total, I dissected 175, 146, 157, and 183 mated females for 

ELE, LLE, CLE, and CON, respectively. I placed a spermatophore into a droplet of 

Belar saline solution on a cavity slide and ruptured it to release sperm under the 

stereomicroscope. I then counted the number of eupyrene and apyrene sperm under the 

phase-contrast microscope using the methods described above. 

6.2.6 Statistical analysis 

All analyses were carried out using SAS 9.13. Rejection level was set at P < 0.05. I 

used a generalised linear model (GENMOD procedure) followed by a CONTRAST 

statement to compare the difference in pupation and emergence rate between treatments 

as an estimate of juvenile survival. Data on the ln(x)-transformed testis size, number of 

sperm counted at emergence, square-rooted mating latency, total number of lifetime 

sperm ejaculated, and longevity were normally distributed (Shapiro-Wilk test, 

UNIVARIATE procedure), and thus analysed using a linear mixed-effect model 

(MIXED procedure) (Davies & Gray, 2015; Liu et al., 2021) followed by a Tukey test 

for multiple comparisons between treatments. Data on the body size and mating 

frequency were not normally distributed (Shapiro-Wilk test, UNIVARIATE procedure) 

and thus analysed using a generalised linear mixed models (GLMMIX procedure) with 

a Poisson distribution in the model followed by a Tukey test for multiple comparisons 
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between treatments. Because the experimental design was pseudoreplicated, I treated 

the treatment as a fixed factor and replicate nested into sampling time as a random 

factor in the models (Millar & Anderson, 2004; Harrison et al., 2018). 

I used a two-sample t test to compare the difference between the number of sperm 

counted at emergence and lifetime number of sperm ejaculated (Figure 6.5). An 

exponential functional model (Archontoulis & Miguez, 2015) was used to fit the data 

on the cumulative percentage of eupyrene and apyrene sperm ejaculated over 

successive matings (Figure 6.6), i.e., cumulative percentage of sperm ejaculated = a × 

[1 ˗ exp(˗b × mating order)], where a (= 1) is the maximum percentage of cumulative 

sperm ejaculated, and b is the increasing rate of sperm cumulation. I used the non-

overlapped 83.4% confidence limits (83.4% CLs) of the cumulative sperm number to 

determine the statistical significance between treatments (Julious, 2004). 

6.3 Results 

6.3.1 Immature survival, body size, and testis size and sperm count at emergence 

I obtained 106, 94, 89 and 86 male pupae and 102, 90, 83, and 85 male adults from 

ELE, LLE, CLE and CONT, respectively, with no significant difference between 

treatments (for number of pupae, 𝑥3
2 = 4.67, P = 0.1975; for number of adults, 𝑥3

2 = 

3.96, P = 0.2653). Body size (Figure 6.1A) and testis size (Figure 6.1B) were also not 

significantly different between treatments (for body size, F3,266 = 0.60, P = 0.6145; for 

testis size, F3,87 = 0.31, P = 0.8192). However, the number of eupyrene and apyrene 

sperm counted at emergence was significantly higher in LLE and CLE than in ELE and 

CON (F3,87 = 15.59, P < 0.0001 for eupyrenes; F3,87 = 12.26, P < 0.0001 for apyrenes; 

Figure 6.2). There was no significant difference in eupyrene count between LLE and 

CLE, or between ELE and CON (P > 0.05).  
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Figure 6.1 Effect of larval exposure to male adults on body size (A) at pupal stage and 

testis size (B) at emergence in E. kuehniella. CON, ELE, LLE and CLE denotes non-

exposure, exposure during the early larval stage, the late larval stage, and the complete 

larval stage, respectively. For each box plot, the lower and upper box lines indicate 25% 

and 75% of scores falling beyond the lower and upper quartiles, respectively; the line 

and ‘×’ in each box show the median score and means, respectively; the ‘ ’ and ‘ ’ are 

the lower and upper whiskers representing scores outside the 50% middle; the dots are 

the outliers of maximum scores. The same letters on the top of the boxes indicate no 

significant differences between treatments (P > 0.05).  
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Figure 6.2 Effect of larval exposure to male adults on eupyrene count (A) and apyrene 

count (B) at emergence in E. kuehniella. CON, ELE, LLE and CLE denotes non-

exposure, exposure during the early larval stage, the late larval stage, and the complete 

larval stage, respectively. For each box plot, the lower and upper box lines indicate 25% 

and 75% of scores falling beyond the lower and upper quartiles, respectively; the line 

and ‘×’ in each box show the median score and means, respectively; the ‘ ’ and ‘ ’ are 

the lower and upper whiskers representing scores outside the 50% middle. The different 

letters on the top of the boxes indicate significant differences between treatments (P < 

0.05).  

 

b 
a 
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6.3.2 Mating latency, lifetime mating frequency and longevity 

Males from LLE and CLE had significantly shorter mating latency than from ELE and 

CON (F3,78 = 55.41, P < 0.0001; Figure 6.3). However, the presence of adult males 

during the larval stage had no significant effect on male mating frequency (mean ± SE 

= 6.25 ± 0.28, 5.62 ± 0.30, 5.81 ± 0.27, and 6.54 ± 0.24 times for ELE, LLE, CLE, and 

CON, respectively) (F3,78 = 0.67, P = 0.5718) and longevity (mean ± SE = 9.93 ± 0.39, 

8.77 ± 0.43, 9.37 ± 0.45 and 9.54 ± 0.34 days for ELE, LLE, CLE, and CON, 

respectively) (F3,78 = 1.48, P = 0.2253). 

 

Figure 6.3 Effect of the presence of adult males during the larval stage on the first 

mating latency of E. kuehniella. CON, ELE, LLE and CLE denotes non-exposure, 

exposure during the early larval stage, the late larval stage, and the complete larval 

stage, respectively. For each box plot, the lower and upper box lines indicate 25% and 

75% of scores falling beyond the lower and upper quartiles, respectively; the line and 

‘×’ in each box show the median score and means, respectively; the ‘ ’ and ‘ ’ are the 

lower and upper whiskers representing scores outside the 50% middle. The different 

letters on the top of the boxes indicate significant differences between treatments (P < 

0.05). 
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6.3.3 Lifetime sperm ejaculation 

My findings indicate that males in all treatments ejaculated similar number of eupyrene 

(F3,78 = 0.90, P = 0.4466; Figure 6.4A) and apyrene sperm (F3,78 = 2.09, P = 0.1080; 

Figure 6.4B) in their lifetime. However, the lifetime number of eupyrene sperm 

ejaculated was significantly higher than that counted at emergence in ELE and CON 

(t56 = 2.29, P = 0.0260 for ELE; t56 = 2.93, P = 0.0049 for CON) while these were 

similar in LLE and CLE (t54 = ˗0.87, P = 0.3892 for LLE; t53 = ˗0.03, P = 0.9774 for 

CLE; Figure 6.5A). In all treatments, the lifetime number of apyrene sperm ejaculated 

was significantly higher than that measured at emergence (t56 = 9.27, P < 0.0001 for 

ELE; t54 = 8.64, P < 0.0001 for LLE; t53 = 10.30, P < 0.0001 for CLE; t56 = 8.65, P < 

0.0001 for CON; Figure 6.5B). The cumulative percentage of both eupyrenes (Figure 

6.6A) and apyrenes (Figure 6.6B) ejaculated over successive matings increased 

significantly faster in LLE and CLE than in ELE and CON (non-overlapping 83.4% 

CLs). 
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Figure 6.4 Effect of the presence of adult males during the larval stage on eupyrene 

(A) and apyrene (B) sperm ejaculated during the lifetime of E. kuehniella. CON, ELE, 

LLE and CLE denotes non-exposure, exposure during the early larval stage, the late 

larval stage, and the complete larval stage, respectively. For each box plot, the lower 

and upper box lines indicate 25% and 75% of scores falling beyond the lower and upper 

quartiles, respectively; the line and ‘×’ in each box show the median score and means, 

respectively; the ‘ ’ and ‘ ’ are the lower and upper whiskers representing scores 

outside the 50% middle. The same letters on the top of the boxes indicate no significant 

differences between treatments (P > 0.05). 
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Figure 6.5 Effect of exposure to adult males during the larval stage on the number of 

eupyrenes (A) and apyrenes (B) counted at emergence and during lifetime ejaculation 

in E. kuehniella. CON, ELE, LLE and CLE denotes non-exposure, exposure during the 

early larval stage, the late larval stage, and the complete larval stage, respectively. Each 

box plot shows the median line and the upper and lower quartiles, i.e., the range where 

25% of scores fall above and 25% fall below the median; the line and ‘×’ in each box 

indicate the median score and means, respectively; the ‘ ’ and ‘ ’ are the upper and 

lower whiskers showing the maximum and minimum scores, respectively. For each 

treatment, lines between boxes with ‘*’ and ‘ns’ indicate significantly different (P < 

0.05) and not significantly different (P > 0.05), respectively.  
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Figure 6.6 Effect of exposure to adult males during the larval stage on cumulative 

eupyrenes (A) and apyrenes (B) ejaculated by E. kuehniella males over successive 

matings. CON, ELE, LLE and CLE denotes non-exposure, exposure during the early 

larval stage, the late larval stage, and the complete larval stage, respectively. 

Cumulative percentage of sperm ejaculated = a × [1 ˗ exp(˗b × mating order)], where a 

(= 1) is the maximum percentage of cumulative sperm ejaculated, and b is the increasing 

rate of sperm cumulation. The increasing rate b with different letters is significantly 

different (non-overlapping 83.4% CLs). 
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6.4 Discussion 

The present study shows that after exposure to conspecific adult males during the late 

or entire larval stage, E. kuehniella males carried more eupyrenes (fertile and nucleate 

sperm) and apyrenes (infertile and anucleate sperm) at emergence (Figure 6.2) and had 

shorter mating latency (Figure 6.3). Adults from the larvae unexposed or only exposed 

to adult males during the early larval stage continued to produce eupyrenes after 

emergence while they kept on making apyrenes after emergence regardless of their 

larval experience (Figure 6.5). Compared to adults from the larvae unexposed or only 

exposed to adult males during the early larval stage, those from the larvae exposed 

during the late or entire larval stage transferred more eupyrenes and apyrenes in their 

early life (Figure 6.6). However, larval exposure to adult males had no effect on 

immature survival, body and testis size (Figure 6.1), and longevity, mating frequency 

and lifetime number of sperm ejaculated in resultant adults (Figure 6.4). These findings 

indicate that E. kuehniella larvae adjust their lifetime sperm production and ejaculation 

depending on whether and when they experience the cues from conspecific adult males.  

Earlier studies have examined insect juvenile response to the cues of conspecific 

adult males but have not determined whether their sensitivity to these cues is stage 

dependent and whether these cues affect sperm production (Bailey et al., 2010; Gray & 

Simmons, 2013; Bretman et al., 2016; Simmons & Lovegrove, 2017). In the present 

study, I demonstrate for the first time that the late instar larvae of E. kuehniella could 

respond to sperm competition risk signalled by adult males, leading to higher sperm 

production before emergence (Figure 6.2) and shorter mating latency in their resultant 

adults (Figure 6.3). The lack of response to adult cues by younger larvae may be 

attributed to the fact that testes start forming their shape only when the larvae reach the 

fourth instar (about 15 days old) (Liu et al., 2022a, 2022b), allowing them to adjust 

their sperm production from this stage on. The shorter mating latency induced by adult 

male cues implies that intra-male competition risk also reduces mate selectivity by 

males.  
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Previous studies report that larval exposure to juvenile rivals increases eupyrene 

counts both at emergence (Liu et al., 2022a) and in lifetime ejaculates (Liu et al., 2022b) 

in E. kuehniella. However, the current study indicates that the higher sperm production 

during the juvenile stage in response to adult males (Figure 6.2) did not translate into 

greater sperm ejaculation during the lifetime of resultant adults (Figure 6.4). These 

findings reveal that male larvae respond to the cues from juvenile rivals and adult males 

differently. I suggest that the cues from juvenile rivals may signal the future sperm 

competition risk while those from adult males may indicate the immediate risk. 

Accordingly, after the larvae detect the immediate risk, they allocate all available 

resources for eupyrene production during the juvenile stage, whereas, if they perceive 

the future risk, they spread their resource allocations for eupyrene production across 

juvenile and adult stages.   

Further comparison of sperm counts at emergence and in lifetime ejaculates 

reveals two clear patterns. First, whether adults could produce eupyrenes and apyrenes 

depended on their larval experience (Figure 6.5). These findings suggest that (1) the 

number of spermatogonia for producing eupyrenes may be limited (Witalis & Godula, 

1993; Jarrige et al., 2015; Mari et al., 2018) so that the adults cannot manufacture more 

eupyrenes if their juveniles have used all of them, and (2) the number of cells for 

producing apyrenes may be less limited and their production may be cheaper 

(Silberglied et al., 1984; Cook & Gage, 1995; Liu et al., 2022b), allowing adults to 

produce more apyrene throughout their life regardless of their larval experience. 

Production of more apyrenes throughout lifetime may be important to gain advantages 

in sperm competition and fertilization success (Cook & Wedell, 1999; Holman & 

Snook, 2008; Wedell et al., 2009; Sakai et al., 2019; Hague et al., 2021). Second, adults 

carrying more sperm at emergence ejaculated more in their first few matings (Figure 

6.6). I suggest that earlier ejaculation of more sperm may contribute to a greater 

reproductive success (Shackleton et al., 2005; Hosken et al., 2008; Wensing et al., 2017; 

Burke & Holwell, 2021) and support the sperm competition game model (Parker & 

Pizzari, 2010). 
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My study indicates that E. kuehniella did not trade off their survival, mating 

frequency, body size and testis size for sperm production in response to the cues from 

male adults during the larval stage (Figures 6.1 and 6.4). I suggest that under the rearing 

conditions with ad libitum food supply (also see Bhavanam et al., 2012; Liu et al., 

2022a), the larvae have sufficient resources to adjust spermatogenesis without 

compromising juvenile survival, adult longevity, body size, and mating frequency, 

which are essential traits for male fitness (Honěk, 1993; Blanckenhorn, 2000; Komo et 

al., 2020; Kappeler, 2021). Although sperm production and testis size are positively 

correlated in some species (review in Vahed & Parker, 2012), various studies 

demonstrate that in response to sperm competition risk, testis size has no significant 

effect on sperm production in E. kuehniella (Liu et al., 2022a) and other animals (Byrne 

et al., 2002; Gay et al., 2009; Fitzpatrick et al., 2012; Bretman et al., 2016; Liao et al., 

2019; Hobson et al., 2020). The lack of correlation between testis size and sperm 

production is probably because probably because animals can dedicate varying portions 

of testis volumes to spermatogenesis and other functions in response to sperm 

competition environment (Lüpold et al., 2020). 

In conclusion, larval sensitivity to the cues from conspecific adult males is age 

specific in E. kuehniella, probably related to the stage of testis development. After 

detecting adult male cues by older male larvae with developed testes, they produce 

more sperm before emergence and their resultant adults start mating earlier and 

ejaculate more sperm in their first few matings, enhancing their reproductive success. 

Adults stop producing eupyrenes if their immatures raise eupyrene production as a 

response to adult cues, but they continue producing apyrenes regardless of their larval 

experience. These findings suggest that the number of spermatogonia for production of 

fertile sperm may be limited but that for producing infertile sperm may be flexible. 

Under our rearing conditions with ad libitum food supply E. kuehniella do not trade off 

their survival, mating frequency, body size and testis size for sperm production in 

response to the cues from male adults during the larval stage. It would be worth testing 

whether any trade-off could occur under food-stressed conditions. The knowledge 
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generated here provides insight into stage-dependent sensitivity of juvenile males to 

adult male cues and subsequent lifetime resource allocations.   
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CHAPTER 7  

General Discussion 

7.1 Introduction  

During my PhD study, I carried out a series of experiments to investigate how males 

adjust their resource allocations according to the socio-sexual experience gained from 

adult and juvenile stages in E. kuehniella. In this chapter, I summarised my main 

findings, discussed their ecological implications, and recommended future studies. 

7.2 Effects of conspecific rival cues on sperm production and allocation 

in adult males  

Many studies show that adult males across animal taxa can adjust their investment in 

reproduction after detecting cues from conspecific rivals (e.g., Birkhead & Pizzari, 

2002; Parker & Pizzari, 2010; Kelly & Jennions, 2011). In their studies on flies, 

Bretman et al. (2011a) and Maguire et al. (2015) demonstrate that males need to sense 

at least two types of cues from rivals before response to the sperm competition 

environment. However, in most mating systems it was largely unknown whether a 

single rival cue could elicit a response, whether combined cues could strengthen the 

response, and how these rival cues affected sperm production and allocation in a 

male’s lifetime. Using E. kuehniella, I have carried out experiments to address these 

questions in Chapter 2.    

I exposed adult males to a single (acoustic or chemical) cue or combined cues 

(acoustic + chemical, or acoustic + chemical + tactile) from their rivals before mating. 

I then examined exposed males’ lifetime sperm production and allocation. My results 

demonstrate that following the detection of either a single or combined rival cues, males 

significantly increased the number of sperm ejaculated in their lifetime (Figure 2.2). 

This suggests that a single rival cue is sufficient to trigger a response by E. kuehniella 
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males to sperm competition environment, contrasting with previous findings in flies 

(Bretman et al., 2011a; Maguire et al., 2015). However, males exposing to combined 

cues produced more eupyrene sperm than those exposing to a single cue (Figure 2.3A). 

My findings imply that different types of rival cues may carry the same message and 

combined cues enhance receivers’ response, perhaps due to synergistic impact (Partan 

& Marler, 1999; Dore et al., 2018).  

 My examination of sperm allocation in successive matings reveals that after 10-

hr premating exposure to rival cues, E. kuehniella males allocated significantly more 

sperm in their first four matings (Figures 2.5 and 2.6). Therefore, the impact of sperm 

competition environment on E. kuehniella sperm allocation can last more than half of 

their reproductive life, supporting the notion that insects’ brain has a long memory of 

an exposure to a socio-sexual environment (Dion et al., 2019). Because E. kuehniella 

is a short-lived species and its males can only mate a few times in their lifespan, there 

is limited room for them to reverse their resource allocation triggered by sperm 

competition levels earlier in life. Moreover, their sperm competition environment is 

unlikely to change rapidly because of their limited dispersal ability (Rees, 2004). It 

should thus be safe for them to maintain their response to the sperm competition level 

detected in the early adulthood.    

7.3 Effects of juvenile social environment on sperm production and 

testis size in juvenile males 

Insect larvae and pupae can communicate with each other using various non-sex and 

sex specific cues (Yack et al., 2001; Choi et al., 2007; Scott et al., 2010; Pontier & 

Schweisguth, 2015; Dolle et al., 2018). Yet, it was not fully clear whether and how 

larval and pupal social cues affected testicular investment during insects’ growth and 

development. In Chapters 3 and 4, I explored these questions. I maintained juvenile 

males singly or with other juveniles of different sexes at the larval-pupal or pupal stage 

and measured testis size and counted sperm from testes upon adult emergence.  
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My results show that E. kuehniella adults that developed from group-reared 

larvae (Figure 3.3A) or pupae (Figure 4.2A) produced significantly more eupyrene than 

those from singly reared ones. These suggest that social cues at both larval and pupal 

stages could be indicative of sperm competition risk and males increase resource 

allocation to eupyrene production when their young are maintained in groups. Because 

many insects feature the last male sperm precedence (Simmons, 2001) including E. 

kuehniella (Xu & Wang, 2010a), production of more fertile eupyrene sperm during 

juvenile stages may increase males’ reproductive output regardless of whether they 

mate with virgin or mated females. 

My study demonstrates that E. kuehniella larvae only fine-tuned eupyrene 

production (Figure 3.3) while pupae adjusted both eupyrene and apyrene sperm (Figure 

4.2) in response to social environment. Furthermore, under different juvenile socio-

sexual settings, larvae (Figure 3.2B) but not pupae (Figure 4.3) could change testis size. 

These findings suggest that larvae and pupae may respond to the same social context 

differently and resource allocations to sperm production and testis size differ depending 

on the life stages exposed to sperm competition environment. The diverse responses to 

larval and pupal social cues may be attributed to the fact that resource allocations to 

morphological traits (Nijhout & Emlen, 1998; Mirth et al., 2021) normally take place 

from the early larval stage which is ahead of spermatogenesis (Swallow & Wilkinson, 

2002; Friedländer et al., 2005).  

7.4 Effects of adult rivals on sperm production in juvenile males 

In nature, adult and juvenile males often co-exist, with adults providing juveniles with 

potential sperm competition risk (Kasumovic & Brooks, 2011; Lange et al., 2021). 

Bretman et al. (2016) demonstrate that insects’ testis size changes after the larvae are 

reared with conspecific adult males. Yet, it was not clear whether juvenile sensitivity 

to adult male cues is stage dependent and whether these cues affect sperm production.  

In Chapter 6, I exposed E. kuehniella to adult males at the early, late, or complete 

larval stage and then counted sperm produced upon male emergence. I demonstrate that 
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only the late larval stage was sensitive to adult cues and exposed males increased 

production of both eupyrenes and apyrenes (Figure 6.2). The lack of response to adult 

male cues by younger larvae may be attributed to the fact that testes start forming their 

shape only when the larvae reach the fourth instar (Figures 3.1 and 5.1), allowing them 

to adjust their sperm production from this stage on.  

7.5 Effects of juvenile social cues on body size and survival in males 

Earlier studies suggest that juvenile socio-sexual environment has little effect on 

insects’ body size (Gage, 1995; McNamara et al., 2010; Allen et al., 2011; Bretman et 

al., 2016; Müller et al., 2016; Johnson et al., 2017; McNamara & Simmons, 2017; 

Gascoigne et al., 2021). Results from Chapter 3 and Chapter 6 support this view. I find 

that E. kuehniella body weight remained the same regardless of whether male larvae 

were group reared or not (Figure 3.2A) or whether they were exposed to adult males at 

different larval stages (Figure 6.1A). Furthermore, survival of juvenile males was 

similar between treatments. These discoveries indicate that under favourable rearing 

conditions, e.g., with ad libitum food supply and plentiful space, E. kuehniella larvae 

have sufficient resources to adjust spermatogenesis without sacrificing their juvenile 

survival and body size, which reflect overall fitness for animals (Honěk, 1993; 

Blanckenhorn, 2000; Komo et al., 2020; Kappeler, 2021).  

7.6 Effects of juvenile social experience on adult reproductive 

performance and survival  

Previous studies have only tested how insect adults allocate sperm in the first mating 

after their young are exposed to juvenile rivals (Gage, 1995; He & Miyata, 1997; 

Yamane & Miyatake, 2005; McNamara et al., 2010) or adult males (Gray & Simmons, 

2013; Simmons & Lovegrove, 2017). Therefore, it was not clear whether and how these 

juvenile experiences affected adults’ investment in reproduction over the lifetime, and 

in survival. I explored these questions in Chapter 5 and Chapter 6.  
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I demonstrate that E. kuehniella males developing from juveniles (larvae and 

pupae) reared with conspecific immature rivals ejaculated significantly more eupyrenes 

and apyrenes in their lifetime than those from juveniles raised solitarily or with 

immature females (Figure 5.2). The results suggest that the impact of socio-sexual 

environment during immature stages continues throughout the adult stage. 

Furthermore, the sperm allocation patterns remained the same following exposure 

either from late instar larval to pupal stages or just during the pupal stage (Figure 5.4), 

indicating that the late juvenile stage is a critical period for building up the long-term 

memory of the pre-adult social environment in insects. 

Male larvae responded to the cues from juvenile rivals and adult males 

differently. Larval exposure to juvenile rivals increased eupyrene counts both at 

emergence (Figure 3.3A) and in ejaculates during lifetime (Figure 5.2A). However, the 

higher sperm counts at emergence (Figure 6.2) due to larval exposure to adult males 

did not translate into greater lifetime sperm ejaculation in adults (Figure 6.4). This 

difference may be because the cues from juvenile rivals signal the future sperm 

competition risk while those from adult males indicate the immediate risk. I suggest 

that larvae can adjust their eupyrene investment strategy in response to future and 

immediate sperm competition risk.  

My results show that juvenile males exposed to conspecific juveniles (Figures 3.3 

and 4.2) or to adult males (Figure 6.2) produced more sperm at emergence, and their 

resultant adults had shorter mating latency (in LLE and CLE males, Figure 6.3) and 

ejaculated more sperm in their first few matings (Figures 5.4 and 6.6). These findings 

may be attributed to the fact that greater sperm storage before emergence exacerbates 

sperm senescence (Ball & Parker, 1996; Reinhardt, 2007; Pizzari et al., 2008; Cattelan 

& Gasparini, 2021; Noguera, 2022) and males carrying more sperm may have higher 

motivation to discharge them from their reservoirs (Norris & Richards, 1933; 

Reinhardt, 2007; Pizzari et al., 2008; Cattelan & Gasparini, 2021), enhancing the 

reproductive fitness. 
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The exposure to juvenile conspecifics, regardless of sex ratio during immature 

stages, led to shorter longevity in male adults (Figure 5.5). This may be because most 

spermatogenesis occurs during immature stages (Figures 3.3 and 4.2) and sperm 

production entails significant costs (Dewsbury, 1982; Lemaître et al., 2020). As a result, 

the increase of resource allocation to sperm production in the presence of conspecifics 

during immature stages (Figures 3.3 and 4.2) causes the early death of male adults. 

Moreover, males with different juvenile social experiences (exposure to conspecific 

larvae, pupae or adult males) achieved the same number of matings in their lifetime, 

suggesting that the number of matings is ultimately important for maximal reproductive 

fitness regardless of juvenile experience in E. kuehniella males. 

7.7 Effects of juvenile social experience on sperm production during 

the adult stage  

Sperm competition theory predicts that males should increase sperm production after 

exposure to rivals because they may gain advantage in sperm competition (Wedell et 

al., 2002; Parker & Pizzari, 2010). In Lepidoptera, it is generally believed that eupyrene 

spermatogenesis stops after pupation (Chaudhury & Raun, 1966; Lachance & Olstad, 

1988; Witalis & Godula, 1993; Friedländer et al., 2005; Jarrige et al., 2015; Mari et al., 

2018). However, my results show that E. kuehniella adult males increased lifetime 

eupyrene sperm production after exposure to rivals during the early adulthood (Figure 

2.3A) and the number of eupyrene sperm ejaculated in lifetime was higher than that 

measured at emergence after exposure to rivals during the juvenile stages (Figures 

3.3A, 4.2A and 5.2A). These findings provide strong evidence that sperm competition 

risk can stimulate eupyrene spermatogenesis during the adult stage in a lepidopteran 

species.   

My work indicates that adults continued to produce more apyrenes if they were 

exposed to rivals during the early adulthood (Figure 2.3B). Furthermore, regardless of 

males’ juvenile social experience, the number of apyrenes or sperm ratio 

(apyrene:eupyrene) ejaculated in the lifetime (Figures 5.2 and 6.5) was higher than that 
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measured at emergence (Figures 3.3 and 4.2). These findings suggest that compared to 

eupyrenes, the number of cells for producing apyrenes may be less limited and their 

production may be cheaper (Silberglied et al., 1984; Cook & Gage, 1995). Because 

apyrene sperm play versatile roles in sperm competition and enhance fertilization 

success (Cook & Wedell, 1999; Friedländer et al., 2005; Holman & Snook, 2008; 

Konagaya et al., 2020; Hague et al., 2021), the ability to increase apyrene production 

during the adult stage helps maximise their reproductive fitness.  

7.8 Conclusion  

This thesis provides insights into the reproductive strategies employed by males of the 

Mediterranean flour moth E. kuehniella in response to various socio-sexual cues present 

at juvenile and adult stages. I demonstrate that adult males raise their sperm production 

and allocation after detecting either acoustic or chemical cues from their rivals with 

combined cues strengthening such response, and adult males can remember the sperm 

competition risk for most of their reproductive life following premating exposure to 

rival cues. I provide the first evidence that juvenile social cues from conspecific larvae, 

pupae or adult males also have lasting impacts on lifetime sperm production and 

allocation. The knowledge generated here contributes to broadening our understanding 

of how polygamous animals in general and E. kuehniella in particular calibrate their 

reproductive investment in response to social environmental heterogeneity. 

7.9 Recommendations for future research  

The experiments in my thesis have focused on how the social experience from different 

life stages influences males’ adjustment in sperm quantity. It would be of interest to 

understand whether and how the experience affects sperm quality, such as sperm 

motility, viability, morphological characteristics, and metabolic rates, together with 

seminal fluid composition (Morrow & Gage, 2000; Snook, 2005; Wigby et al., 2009; 

Sirot, 2019; Ramm, 2020; Polak et al., 2021). By doing so, we would learn if there 

would be trade-offs between sperm counts and other sperm traits/performance, 
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knowledge of which would advance our understanding of adaptive resource allocations 

by males in response to social environment. 

My study demonstrates that under ideal conditions, such as ad libitum food supply 

during growth and development, the adjustment of sperm production and allocation has 

little impact on other crucial life-history traits (e.g., juvenile survival, body size, and 

mating frequency). However, it is unclear if trade-offs between these traits occurs under 

food-stressed conditions. Further studies on this question are warranted. Furthermore, 

I have carried out experiments under environmental conditions optimal to E. kuehniella. 

However, thermal variations affect animal reproduction and survival (Deutsch et al., 

2008; Iglesias-Carrasco et al., 2020; Rodrigues et al., 2022; Ristyadi et al., 2022). It 

may thus be worth testing how males respond to socio-sexual environment under 

gradual warming conditions due to climate change.  
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