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Abstract

These notes are based on the monograph Development of Elliptic Functions according to Ra-
manujan by K. Venkatachaliengar [2]. The goal of the notes is to show how some of the main
properties of Jacobian and Weierstrass elliptic functions can be developed in an elementary way
from the 1ψ1 function.

All of the ideas presented in these notes can be found in Venkatachaliengar’s book. The only
thing I have done is to rearrange the order in which the material is presented. I am entirely re-
sponsible for any errors in these notes, and would be very grateful to be informed about them,
whether they be large or small.

1 Introduction

Throughout these notes, let τ be a fixed complex number which satisfies Im τ > 0 and let q = eiπτ ,
so that |q| < 1. We will make use of the following notation for products. Let

(a; q)n =
n−1∏
j=0

(1− aqj),

(a; q)∞ =
∞∏

j=0

(1− aqj),

(a1, a2, . . . , an; q)∞ = (a1; q)∞(a2; q)∞ . . . (an; q)∞.

We will use the symbol
∑

n to denote summation over all integer values of n from −∞ to ∞, and∑′
n will be used to denote summation over all integer values of n from −∞ to∞, excluding n = 0.

The 1ψ1 function is defined to be

1ψ1(a; b; q, x) =
∑

n

(a; q)n

(b; q)n
xn.

Ramanujan’s 1ψ1 summation formula is∑
n

(a; q)n

(b; q)n
xn =

(ax, q/ax, q, b/a; q)∞
(x, b/ax, b, q/a; q)∞

. (1.1)

For a proof of this result and for additional information about the 1ψ1 function, please see [1,
equation (3.15)].

The Jordan-Kronecker function, which is introduced by Venkatachaliengar on p.37, is a special
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case of the 1ψ1 function, and is defined as follows.

Definition Let

f(a, t) =
∞∑

n=−∞

tn

1− aq2n
. (1.2)

This series converges provided |q2| < |t| < 1, and so long as a 6= q2k, k = 0,±1,±2, . . .. Using the
1ψ1 summation formula (1.1) we obtain

f(a, t) =
(at, q2/at, q2, q2; q2)∞
(t, q2/t, a, q2/a; q2)∞

. (1.3)

This extends the definition of f to all values of a and t except for a, t = q2k, k = 0,±1,±2, . . .,
where there are simple poles. The following results are immediate from (1.3):

f(a, t) = f(t, a), (1.4)
f(a, t) = −f(1/a, 1/t), (1.5)
f(a, t) = tf(aq2, t) = af(a, tq2). (1.6)

The twelve Jacobian elliptic functions correspond to the twelve functions f(A, Beiθ), where A = −1, q
or −q, and B = 1,−1, q or −q. The precise identifications will be given at the end of these notes.
The Weierstrass σ and ℘ functions are also related to the Jordan-Kronecker function f , and some
of these connections will be given in sections 3 and 4.

At the beginning of chapter 3 of [2], Venkatacheliangar derives a fundamental multiplicative iden-
tity for the function f . He uses this identity to develop the theory of the Weierstrass and Jacobian
elliptic functions. These notes describe how to obtain results such as the differential equations and
addition formulas for the Jacobian elliptic functions, the connection between the Weierstrass ℘
function and the Jacobian elliptic functions, and the differential equation for the ℘ function, from
Venkatachaliengar’s fundamental multiplicative identity.

These notes deal with only a small part of the theory of elliptic functions. Topics such as hyperge-
ometric functions, modular transformations and the problem of inversion are not even mentioned
here. These topics, however, are taken up and developed in Venkatachaliengar’s book.

2 The fundamental multiplicative identity and the Weierstrass ℘ func-
tion

Venkatachaliengar’s development of elliptic functions is based on the following result (see [2, p. 37]).

Theorem (Fundamental multiplicative identity)

f(a, t)f(b, t) = t
∂

∂t
f(ab, t) + f(ab, t)(ρ1(a) + ρ1(b)), (2.1)

where the function ρ1 is defined by

ρ1(z) =
1
2

+
∑

n

′ zn

1− q2n
. (2.2)

Remark

The series (2.2) defining ρ1 converges in the annulus |q2| < |z| < 1. Shortly we will obtain the
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analytic continuation of ρ1, so the identity (2.1) will be valid for all values of a, b and t.

Proof

For |q2| < |a|, |b| < 1, we have

f(a, t)f(b, t) =
∞∑

m=−∞

∞∑
n=−∞

ambn

(1− tq2m)(1− tq2n)

=
∞∑

m=−∞

ambm

(1− tq2m)2
+

∑
m6=n

ambn

(1− tq2m)(1− tq2n)
. (2.3)

The first sum is
∞∑

m=−∞

(ab)m

(1− tq2m)2
=

∞∑
m=−∞

∂

∂t

(ab/q2)m

(1− tq2m)

=
∂

∂t
f(ab/q2, t)

=
∂

∂t
[tf(ab, t)]

= t
∂

∂t
f(ab, t) + f(ab, t) (2.4)

The penultimate step above follows from (1.6). The interchange of differentiation and summation
is valid as all series converge absolutely and uniformly (in t) on compact sets which aviod the poles
t = q2k, k = 0,±1,±2, . . . , provided |q4| < |ab| < |q2|. By analytic continuation, equation (2.4)
continues to remain valid for |q4| < |ab| < 1.

Using partial fractions, the second sum on the right hand side of (2.3) becomes∑
m6=n

ambn

(1− tq2m)(1− tq2n)

=
∞∑

m=−∞

∑
k

′ ambm+k

(1− tq2m)(1− tq2m+2k)

=
∞∑

m=−∞

∑
k

′ ambm+k

(1− tq2m)(1− q2k)
+

∞∑
m=−∞

∑
k

′ ambm+k

(1− tq2m+2k)(1− q−2k)

=
∞∑

m=−∞

ambm

(1− tq2m)

∑
k

′ bk

(1− q2k)
+

∑
k

′ a−k

(1− q−2k)

∞∑
m=−∞

am+kbm+k

(1− tq2m+2k)

= f(ab, t)

[∑
k

′ ak

1− q2k
+

∑
k

′ bk

1− q2k

]
= f(ab, t) [ρ1(a) + ρ1(b)− 1] . (2.5)

All of the series in the derivation of (2.5) converge at least for |q| < |a|, |b| < 1 and t 6= q2k,
k = 0,±1,±2, . . ., and so the series rearrangements above are valid. Now combine (2.3), (2.4)
and (2.5). This gives (2.1) and proves the theorem.

The analytic continuation of ρ1 can be obtained as follows.

ρ1(z) =
1
2

+
∑

n

′ zn

1− q2n
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=
1
2

+
∞∑

n=1

zn

1− q2n
+
∞∑

n=1

z−n

1− q−2n

=
1
2

+
∞∑

n=1

zn(1− q2n + q2n)
1− q2n

−
∞∑

n=1

z−nq2n

1− q2n

=
1
2

+
z

1− z
+
∞∑

n=1

znq2n

1− q2n
−
∞∑

n=1

z−nq2n

1− q2n

=
1 + z

2(1− z)
+
∞∑

n=1

∞∑
m=1

(znq2mn − z−nq2mn)

=
1 + z

2(1− z)
+
∞∑

m=1

(
zq2m

1− zq2m
− z−1q2m

1− z−1q2m

)
. (2.6)

This last series converges for all values of z except z = q2k, k = 0,±1,±2, . . ., where there are
poles of order 1. Thus (2.6) gives the analytic continuation of the function ρ1, and so now the
fundamental multiplicative identity (2.1) is valid for all values of a, b and t.

The function ρ1 is related to the Weierstrass ℘ function in the following way. The Weierstrass
℘ function with periods 2π and 2πτ is defined by

℘(θ) =
1
θ2

+
∑
m,n

′
[

1
(θ − 2πn− 2πτm)2

− 1
(2πn + 2πτm)2

]
. (2.7)

The symbol
∑

m,n
′ denotes a double sum over all integer values of m and n from −∞ to ∞,

excluding (m, n) = (0, 0). Using the results

∞∑
n=−∞

1
(θ − 2πn)2

=
1

4 sin2 θ
2

and
∞∑

n=1

1
n2

=
π2

6
,

we have that

℘(θ) =
1
θ2

+
∑

n

′
[

1
(θ − 2πn)2

− 1
(2πn)2

]

+
∑
m

′ ∞∑
n=−∞

[
1

(θ − 2πn− 2πτm)2
− 1

(2πn + 2πτm)2

]

=
∑

n

1
(θ − 2πn)2

− 2
4π2

∞∑
n=1

1
n2

+
∑
m

′ ∞∑
n=−∞

[
1

(θ − 2πn− 2πτm)2
− 1

(2πn + 2πτm)2

]

=
1

4 sin2 θ
2

− 1
12

+
∑
m

′
[

1
4 sin2( θ

2 − πτm)
− 1

4 sin2 πτm

]

= − 1
12
− 1

2

∞∑
m=1

1
sin2 πτm

+
1
4

∞∑
m=−∞

1
sin2( θ

2 + πτm)
.
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Recall that q = eiπτ . Then

℘(θ) = − 1
12

+ 2
∞∑

m=1

1
(qm − q−m)2

−
∞∑

m=−∞

1
(eiθ/2qm − e−iθ/2q−m)2

= − 1
12

+ 2
∞∑

m=1

q2m

(1− q2m)2
−

∞∑
m=−∞

eiθq2m

(1− eiθq2m)2
. (2.8)

Continuing, we have

℘(θ) = − 1
12

+ 2
∞∑

m=1

q2m

(1− q2m)2

− eiθ

(1− eiθ)2
−
∞∑

m=1

[
eiθq2m

(1− eiθq2m)2
+

e−iθq2m

(1− e−iθq2m)2

]

= − 1
12

+ 2
∞∑

m=1

q2m

(1− q2m)2
+ i

d

dθ
ρ1(eiθ).

Formula (2.6) was used to obtain the last line. Thus if we let

P = 1− 24
∞∑

m=1

q2m

(1− q2m)2
, (2.9)

then we have
℘(θ) = i

d

dθ
ρ1(eiθ)− P

12
. (2.10)

3 Jacobian elliptic functions

We will now look at three special cases of the function f(a, t), which we shall call f1, f2 and f3.
These functions will turn out to be the Jacobian elliptic functions cs, ns and ds, respectively, up
to rescaling. The precise identifications will be given at the end of the notes.

A number of properties of f1, f2 and f3 (Fourier series, infinite product formulas, double pe-
riodicity, location of zeros and poles) will follow immediately from the definition of f(a, t) and
Ramanujan’s 1ψ1 summation formula. We will then use the fundamental multiplicative identity
(2.1) to obtain some of the other properties of these functions, namely the connection with the ℘
function, elliptic analogues of the formula sin2 θ + cos2 θ = 1, derivatives and addition formulas.

Definition Let

f1(θ) =
1
i
f(eiπ, eiθ), (3.1)

f2(θ) =
eiθ/2

i
f(eiπτ , eiθ), (3.2)

f3(θ) =
eiθ/2

i
f(eiπ+iπτ , eiθ). (3.3)

The factors 1/i and eiθ/2/i are included so that f1, f2 and f3 will be real valued when θ is real.
The Fourier expansions follow directly from (1.2), the definition of f . For example

f1(θ) =
1
i

∞∑
n=−∞

einθ

1 + q2n
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=
1
i

[
1
2

+
∞∑

n=1

einθ

1 + q2n
+
∞∑

n=1

e−inθ

1 + q−2n

]

=
1
i

[
1
2

+
∞∑

n=1

einθ −
∞∑

n=1

q2neinθ

1 + q2n
+
∞∑

n=1

q2ne−inθ

1 + q2n

]

=
1
i

[
1
2

+
eiθ

1− eiθ
−
∞∑

n=1

q2n

1 + q2n
(einθ − e−inθ)

]

=
1
2

cot
θ

2
− 2

∞∑
n=1

q2n

1 + q2n
sin nθ. (3.4)

Similarly,

f2(θ) =
eiθ/2

i

∞∑
n=−∞

einθ

1− q2n+1

=
1
2

csc
θ

2
+ 2

∞∑
n=0

q2n+1

1− q2n+1
sin(n +

1
2
)θ, (3.5)

f3(θ) =
eiθ/2

i

∞∑
n=−∞

einθ

1 + q2n+1

=
1
2

csc
θ

2
− 2

∞∑
n=0

q2n+1

1 + q2n+1
sin(n +

1
2
)θ. (3.6)

Infinite product formulas follow from (1.3). We find that

f1(θ) =
1
i

(−eiθ,−q2e−iθ, q2, q2; q2)∞
(eiθ, q2e−iθ,−1,−q2; q2)∞

(3.7)

=
1
2

(q2; q2)2∞
(−q2; q2)2∞

cot
θ

2

∞∏
n=1

(1 + 2q2n cos θ + q4n)
(1− 2q2n cos θ + q4n)

, (3.8)

f2(θ) =
eiθ/2

i

(qeiθ, qe−iθ, q2, q2; q2)∞
(eiθ, q2e−iθ, q, q; q2)∞

(3.9)

=
1
2

(q2; q2)2∞
(q; q2)2∞

csc
θ

2

∞∏
n=1

(1− 2q2n−1 cos θ + q4n−2)
(1− 2q2n cos θ + q4n)

, (3.10)

f3(θ) =
eiθ/2

i

(−qeiθ,−qe−iθ, q2, q2; q2)∞
(eiθ, q2e−iθ,−q,−q; q2)∞

(3.11)

=
1
2

(q2; q2)2∞
(−q; q2)2∞

csc
θ

2

∞∏
n=1

(1 + 2q2n−1 cos θ + q4n−2)
(1− 2q2n cos θ + q4n)

. (3.12)

Either from the Fourier series (3.4) or from the infinite product formula (3.7), we see that f1(θ + 2π) = f1(θ).
From the infinite product (3.7), we obtain

f1(θ + 2πτ)
f1(θ)

=
(−q2eiθ,−e−iθ; q2)∞

(q2eiθ, e−iθ; q2)∞
÷ (−eiθ,−q2e−iθ; q2)∞

(eiθ, q2e−iθ; q2)∞

=
(1 + e−iθ)
(1 + eiθ)

(1− eiθ)
(1− e−iθ)

= −1,

and therefore f1(θ + 2πτ) = −f1(θ). Similar calculations can be done for f2 and f3. The results
are summarized below.

f1(θ + 2πm + 2πτn) = (−1)nf1(θ), (3.13)
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f2(θ + 2πm + 2πτn) = (−1)mf2(θ), (3.14)
f3(θ + 2πm + 2πτn) = (−1)m+nf3(θ). (3.15)

Here m and n are integers. Thus f1 is doubly periodic with periods 2π and 4πτ , f2 is doubly
periodic with periods 4π and 2πτ , while f3 is doubly periodic with periods 4π and 2π + 2πτ .

From the infinite product expansion (3.7) we see that f1 has zeros when 1 + q2neiθ = 0, where n is
any integer. Remembering that q = eiπτ , this implies that f1(θ) = 0 when θ = (2m + 1)π + 2nπτ ,
for any integer values of m and n. The zeros of f2 and f3 are at θ = 2mπ + (2n + 1)πτ and
θ = (2m + 1)π + (2n + 1)πτ , respectively. The poles of f1, f2 and f3 all occur when 1− q2neiθ = 0,
that is, when θ = 2mπ + 2nπτ .

Before describing the connection of f1, f2 and f3 with the Weierstrass ℘ function, we define
the Weierstrass invariants e1, e2 and e3.

Definition Let

e1 = ℘(π), (3.16)
e2 = ℘(πτ), (3.17)
e3 = ℘(π + πτ). (3.18)

Explicit formulas for e1, e2 and e3 follow at once from equation (2.8). Specifically,

e1 =
1
6

+ 2
∞∑

m=1

q2m

(1− q2m)2
+ 2

∞∑
m=1

q2m

(1 + q2m)2
, (3.19)

e2 = − 1
12

+ 2
∞∑

m=1

q2m

(1− q2m)2
− 2

∞∑
m=1

q2m−1

(1− q2m−1)2
, (3.20)

e3 = − 1
12

+ 2
∞∑

m=1

q2m

(1− q2m)2
+ 2

∞∑
m=1

q2m−1

(1 + q2m−1)2
. (3.21)

Relation of f1, f2 and f3 to the Weierstrass ℘ function

Let b→ 1/a in the fundamental identity (2.1):

lim
b→1/a

f(a, t)f(b, t) = lim
b→1/a

t
∂

∂t
f(ab, t) + lim

b→1/a
f(ab, t)(ρ1(a) + ρ1(b)). (3.22)

The left hand side is just f(a, t)f(1/a, t).
The first limit on the right hand side is

lim
b→1/a

t
∂

∂t

∞∑
n=−∞

tn

1− abq2n
= lim

b→1/a

∑
n

′ ntn

1− abq2n

=
∑

n

′ ntn

1− q2n
= t

d

dt
ρ1(t).

From equation (2.6) it follows that ρ1(b) = −ρ1(1/b). Using this and the infinite product
formula (1.3) for the function f , the remaining limit on the right hand side of equation (3.22)
becomes

lim
b→1/a

f(ab, t)(ρ1(a) + ρ1(b))
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= lim
b→1/a

(1− ab)f(ab, t) lim
b→1/a

ρ1(a) + ρ1(b)
1− ab

= lim
b→1/a

(1− ab)
(abt, q2/abt, q2, q2; q2)∞
(t, q2/t, ab, q2/ab; q2)∞

lim
b→1/a

ρ1(a)− ρ1(1/b)
a− 1/b

(
−1

b

)
= (1)ρ′1(a)(−a).

Thus
f(a, t)f(1/a, t) = t

d

dt
ρ1(t)− a

d

da
ρ1(a).

On letting a = eiα, t = eiθ and using equation (2.10), this becomes

f(eiα, eiθ)f(e−iα, eiθ) = ℘(α)− ℘(θ). (3.23)

Remark

This formula can also be obtained by combining the two terms on the right hand side of (3.23)
into a single series using (2.8), and then applying the 6ψ6 summation formula.

Letting α = π, α = πτ and α = π + πτ in (3.23), respectively, and simplifying, gives

f2
1 (θ) = ℘(θ)− e1, (3.24)

f2
2 (θ) = ℘(θ)− e2, (3.25)

f2
3 (θ) = ℘(θ)− e3. (3.26)

Successively letting θ = πτ in (3.24), θ = π + πτ in (3.25) and θ = π in (3.26), and using the infinite
products for f1, f2 and f3, gives

e1 − e2 =
1
4

(−q; q2)4∞(q2; q2)4∞
(q; q2)4∞(−q2; q2)4∞

(3.27)

e3 − e2 = 4q
(−q2; q2)4∞(q2; q2)4∞
(−q; q2)4∞(q; q2)4∞

(3.28)

e1 − e3 =
1
4

(q; q2)4∞(q2; q2)4∞
(−q2; q2)4∞(−q; q2)4∞

(3.29)

Note that since Im τ > 0 this implies that e1 6= e2 6= e3 6= e1. Further, if τ is purely imaginary,
then q is real, and so in this case we also have e1 > e3 > e2.

If we let

x =
e3 − e2

e1 − e2
= 16q

(−q2; q2)8∞
(−q; q2)8∞

, (3.30)

x′ =
e1 − e3

e1 − e2
=

(q; q2)8∞
(−q; q2)8∞

, (3.31)

then clearly x + x′ = 1, and hence we obtain Jacobi’s formula

(q; q2)8∞ + 16q(−q2; q2)8∞ = (−q; q2)8∞.

If the equations (3.24), (3.25) and (3.26) are combined two at a time to eliminate the ℘(θ) term,
we obtain

f2
2 (θ)− f2

1 (θ) = e1 − e2, (3.32)
f2
2 (θ)− f2

3 (θ) = e3 − e2, (3.33)
f2
3 (θ)− f2

1 (θ) = e1 − e3. (3.34)
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These are the elliptic function analogues of the trigonometric identity sin2 θ + cos2 θ = 1. In fact,
from (3.4)–(3.6) and (3.19)–(3.21), we have

lim
q→0

f1(θ) =
1
2

cot
θ

2
, lim

q→0
f2(θ) = lim

q→0
f3(θ) =

1
2

csc
θ

2
,

lim
q→0

e1 = 1/6, lim
q→0

e2 = lim
q→0

e3 = −1/12.

Therefore when q = 0, (3.32) and (3.34) reduce to

1
4

csc2 θ

2
− 1

4
cot2

θ

2
=

1
4
,

while (3.33) reduces to a tautology.

Derivatives

In the fundamental multiplicative identity (2.1), let t = eiθ to get

f(a, eiθ)f(b, eiθ) =
1
i

∂

∂θ
f(ab, eiθ) + f(ab, eiθ)(ρ1(a) + ρ1(b)). (3.35)

Now let a = eiπ and b = eiπτ . From (2.6) we have ρ1(eiπ) = 0, ρ1(eiπτ ) = 1
2 , hence

f(−1, eiθ)f(q, eiθ) =
1
i

∂

∂θ
f(−q, eiθ) +

1
2
f(−q, eiθ). (3.36)

The left hand side of this is

f(−1, eiθ)f(q, eiθ) = if1(θ)ie−iθ/2f2(θ) = −e−iθ/2f1(θ)f2(θ).

The right hand side of (3.36) is

1
i

∂

∂θ

(
ie−iθ/2f3(θ)

)
+

i

2
e−iθ/2f3(θ)

= e−iθ/2f ′3(θ)−
i

2
e−iθ/2f3(θ) +

i

2
e−iθ/2f3(θ)

= e−iθ/2f ′3(θ).

Combining gives
f ′3(θ) = −f1(θ)f2(θ). (3.37)

Similarly, letting a = eiπτ , b = eiπ+iπτ and a = eiπ+iπτ , b = eiπ in (3.35) leads, respectively, to

f ′1(θ) = −f2(θ)f3(θ), (3.38)
f ′2(θ) = −f3(θ)f1(θ). (3.39)

Venkatachaliengar shows how to obtain the differential equation for the ℘ function from the funda-
mental multiplicative identity. We will instead obtain it by putting together the previous results.
From (3.24) we have that

℘(θ) = e1 + f2
1 (θ).

Differentiate both sides and use (3.38) to simplify the result.

℘′(θ) = 2f1(θ)f ′1(θ) = −2f1(θ)f2(θ)f3(θ).

Therefore, by (3.24), (3.25) and (3.26), we have

(℘′(θ))2 = 4f2
1 (θ)f2

2 (θ)f2
3 (θ) = 4(℘(θ)− e1)(℘(θ)− e2)(℘(θ)− e3). (3.40)
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Addition formulas

The fundamental multiplicative identity (2.1) can be written in the form

f(eiα, eiθ)f(eiβ , eiθ) =
1
i
f(ei(α+β), eiθ) + f(ei(α+β), eiθ)(ρ1(eiα) + ρ1(eiβ)).

Apply ∂/∂α− ∂/∂β to both sides. The result is

∂

∂α
f(eiα, eiθ)f(eiβ , eiθ)− ∂

∂β
f(eiα, eiθ)f(eiβ , eiθ)

= f(ei(α+β), eiθ)
(

d

dα
ρ1(eiα)− d

dβ
ρ1(eiβ)

)
.

Rearranging this and using (2.10) gives

f(ei(α+β), eiθ) =
i

[
∂

∂α
f(eiα, eiθ)f(eiβ , eiθ)− ∂

∂β
f(eiα, eiθ)f(eiβ , eiθ)

]
℘(α)− ℘(β)

. (3.41)

Let θ = π in this to get

if1(α + β) =
i [if ′1(α)if1(β)− if1(α)if ′1(β)]

℘(α)− ℘(β)
.

Simplify this using (3.24) and (3.38). The result is

f1(α + β) =
f1(α)f2(β)f3(β)− f1(β)f2(α)f3(α)

f2
1 (β)− f2

1 (α)
. (3.42)

Similarly, letting θ = πτ and θ = π + πτ in (3.41) leads to

f2(α + β) =
f2(α)f3(β)f1(β)− f2(β)f3(α)f1(α)

f2
2 (β)− f2

2 (α)
, (3.43)

f3(α + β) =
f3(α)f1(β)f2(β)− f3(β)f1(α)f2(α)

f2
3 (β)− f2

3 (α)
. (3.44)

The fundamental multiplicative identity (2.1) can also be used to derive addition formulas for
the Weierstrass ℘ function. Venkatachaliengar’s derivation of the symmetric form of the addition
formula for the ℘ function goes as follows.

Let t = ev and write the Jordan–Kronecker function as

f(a, t) = f(a, ev) =
∞∑

n=−∞

env

1− aq2n

=
1

1− a
+
∞∑

n=1

env(1− aq2n + aq2n)
1− aq2n

+
∞∑

n=1

e−nv

1− aq−2n

=
1

1− a
− 1

ev − 1
− 1 +

∞∑
n=1

(
envaq2n

1− aq2n
− e−nva−1q2n

1− a−1q2n

)
. (3.45)

The series (3.45) converges for |Re v| < Im 2πτ . Hence in the annulus 0 < |v| < min{2π, Im 2πτ},
the function f(a, ev) can be expanded further as a Laurent series in powers of v. Since

v

ev − 1
=
∞∑

k=0

Bk

k!
vk,
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where Bk are the Bernoulli numbers, we have

f(a, ev)

=
1

1− a
− 1− 1

v

∞∑
k=0

Bk

k!
vk +

∞∑
k=0

vk

k!

∞∑
n=1

(
nkaq2n

1− aq2n
− (−1)knka−1q2n

1− a−1q2n

)

= −1
v

+

(
−1

2
+

1
1− a

+
∞∑

n=1

aq2n

1− aq2n
− a−1q2n

1− a−1q2n

)

+
∞∑

k=1

vk

k!

(
−Bk+1

k + 1
+
∞∑

n=1

nkaq2n

1− aq2n
− (−1)knka−1q2n

1− a−1q2n

)
. (3.46)

The term independent of v in this expansion is

−1
2

+
1

1− a
+
∞∑

n=1

aq2n

1− aq2n
− a−1q2n

1− a−1q2n

which is precisely ρ1(a), the same function as in equation (2.6). The reason why ρ1 occurs both
here and in the fundamental multiplicative identity (2.1) will become clear below. For v ≥ 2, let
us define

ρk(a) = −Bk

k
+
∞∑

n=1

nk−1

[
aq2n

1− aq2n
− (−1)k−1a−1q2n

1− a−1q2n

]
. (3.47)

Then equation (3.46) becomes

f(a, ev) = −1
v

+
∞∑

k=0

ρk+1(a)vk

k!
. (3.48)

With t = ev, the fundamental multiplicative identity can be written as

f(a, ev)f(b, ev) =
∂

∂v
f(ab, ev) + f(ab, ev)(ρ1(a) + ρ1(b)).

Substitute the expansion (3.48) into this to obtain[
−1

v
+
∞∑

k=0

ρk+1(a)vk

k!

] [
−1

v
+
∞∑

k=0

ρk+1(b)vk

k!

]

=
1
v2

+
∞∑

k=1

ρk+1(ab)vk−1

(k − 1)!
+

[
−1

v
+
∞∑

k=0

ρk+1(ab)vk

k!

]
(ρ1(a) + ρ1(b)).

(3.49)

Let us compare coefficients of vk on both sides. Clearly the coefficients of v−2 are equal. The
coefficients of v−1 are both equal to −(ρ1(a) + ρ1(b)). Thus if ρ1 is defined to be the term
independent of v in the expansion (3.48), then this explains why the term ρ1(a) + ρ1(b) occurs on
the right hand side of the fundamental multiplicative identity (2.1). Equating coefficients of v0 in
(3.49) gives

−ρ2(a)− ρ2(b) + ρ1(a)ρ1(b) = ρ2(ab) + ρ1(ab)(ρ1(a) + ρ1(b)). (3.50)

From (2.6) and (3.47) we have ρ1(1/c) = −ρ1(c) and ρ2(1/c) = ρ2(c), respectively. Let c = 1/ab.
Then (3.50) becomes

ρ1(a)ρ1(b) + ρ1(b)ρ1(c) + ρ1(c)ρ1(a) = ρ2(a) + ρ2(b) + ρ2(c). (3.51)
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Venkatachliengar gives a direct proof of this identity at the beginning of his book, and uses it to
derive a number of results about the Weierstrass ℘ function. Applying a∂/∂a− b∂/∂b to both
sides gives

aρ′1(a)(ρ1(b) + ρ1(c))− bρ′1(b)(ρ1(a) + ρ1(c)) = aρ′2(a)− bρ′2(b).

Now apply ab∂2/∂a∂b to this to obtain

a2bρ′′1(a)ρ′1(b)− ab2ρ′1(a)ρ′′1(b)
+ b2cρ′′1(b)ρ′1(c)− bc2ρ′1(b)ρ

′′
1(c)

+ c2aρ′′1(c)ρ′1(a)− ca2ρ′1(c)ρ
′′
1(a) = 0.

This can also be written in the form

det

 1 1 1
aρ′1(a) bρ′1(b) cρ′1(c)
a2ρ′′1(a) b2ρ′′1(b) c2ρ′′1(c)

 = 0.

Now let a = eiα, b = eiβ and c = eiγ , so that α+β+γ = 0. Using (2.10) and elementary properties
of determinants, this equivalent to

det

 1 1 1
℘(α) ℘(β) ℘(γ)
℘′(α) ℘′(β) ℘′(γ)

 = 0,

provided α + β + γ = 0. This is the symmetric form of the addition formula for the Weierstrass ℘
function. Venkatachaliengar also uses equation (3.51) to derive the addition formula in the form

℘(α + β) =
1
4

(
℘′(α)− ℘′(β)
℘(α)− ℘(β)

)2

− ℘(α)− ℘(β).

Please see [2, p. 9] for the details. This formula can also be obtained by taking the logarithm of

(3.23) and then applying
∂

∂α
+

∂

∂β
twice to both sides.

4 Identification with the notation and formulas in Whittaker and Wat-
son

1. The modulus and complementary modulus.
The quantities x and x′ defined in equations (3.30) and (3.31) correspond to the squares of
the modulus k and complementary modulus k′, respectively. We have

x = k2 = 16q
(−q2; q2)8∞
(−q; q2)8∞

,

x′ = k′2 =
(q; q2)8∞

(−q; q2)8∞
.

See [2, p. 86, eqn. (5.47)] and [3, p. 479 or p. 488, ex. 9,10].

2. Ramanujan’s z and the complete elliptic integral K.
Although it was not introduced in these notes, Venkatachaliengar makes extensive use of
the quantity z that was introduced by Ramanujan. We mention z now, to aid with the
identification of f1, f2 and f3 with Jacobian elliptic functions.

z =

( ∞∑
n=−∞

qn2

)2

= (−q; q2)4∞(q2; q2)2∞,



S. Cooper, The development of elliptic functions 77

K =
π

2
z.

See [2, p. 86, eqn. (5.49)] and [3, p. 479].

3. f1, f2, f3 and Jacobian elliptic functions.
On comparing the Fourier series (3.4)–(3.6) with those in [3, p. 511–512], we find

f1(θ) = (K/π) cs(Kθ/π, k), cs(u, k) = (2/z)f1(2u/z),
f2(θ) = (K/π) ns(Kθ/π, k), ns(u, k) = (2/z)f2(2u/z),
f3(θ) = (K/π) ds(Kθ/π, k), ds(u, k) = (2/z)f3(2u/z).

4. The functions f(a, t), ρ1(z) and the Weierstrass σ, ζ and ℘ functions.
Earlier, we showed that the Weierstrass ℘ function with periods 2π and 2πτ is related to the
function ρ1 by equation (2.10). Here is the formula again.

℘(θ) = i
d

dθ
ρ1(eiθ)− P

12
.

The corresponding Weierstrassian ζ function is related to the function ρ1 as follows.

ζ(θ) = −iρ1(eiθ) +
Pθ

12
.

See [3, pp. 445–447]. Recall that P is given by (2.9). In particular, this together with
equation (2.6) gives

η1 = ζ(π) =
Pπ

12
,

η2 = ζ(πτ) = − i

2
+

Pπτ

12
,

from which Legendre’s identity (see [3, p. 446, sect. 20.411]) follows trivially:

η1πτ − η2π =
1
2
πi.

The corresponding Weierstrass σ function is as follows.

σ(θ) = ie−iθ/2ePθ2/24 (eiθ, q2e−iθ; q2)∞
(q2; q2)2∞

.

See [3, pp. 447–448]. The Jordan–Kronecker function f(a, t), (equation 1.2), is related to
the Weierstrass σ function by

f(eiα, eiθ) = ie−Pαθ/12 σ(α + θ)
σ(α)σ(θ)

.

Location of the main formulas in Venkatachaliengar’s book

1. Ramanujan’s 1ψ1 summation formula (1.1) is proved in [2, pp. 24–30].

2. The Jordan–Kronecker function f(a, t), (equation 1.2), is defined in [2, p. 37]. The infinite
product for f(a, t), (equation 1.3), is [2, p. 40, eq. 3.32]. See also [3, p. 460, ex. 34], which is
basically equation (1.3) in disguise. The fundamental multiplicative identity (2.1) is proved
in [2, p. 41].

3. The function ρ1, (equation 2.2), is defined in [2, p. 5] and some of its properties, including
the analytic continuation, are given there.
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4. The connection between the Weierstrass ℘ function and the fuction ρ1 given by equation
(2.10) is given in [2, p. 8, eq. 1.21]. Essentially the same formula is in [3, p. 460, ex. 35].

5. The functions f1, f2 and f3, (equations 3.1–3.3), are defined in [2, p. 111]. The Fourier
series for essentially the same functions are given in [3, pp. 511–512].

6. The Weierstrass invariants e1, e2 and e3, (equations(3.16–3.18), are defined in [2, p. 59].

7. Equation (3.23) is derived in [2, p. 112, eqn. 6.50]. It is equivalent to example 1 on p. 451
of [3].

8. Formulas (3.24)–(3.26) are in [2, p. 112]. Compare these with [3, p. 451 example 4] and [3,
p. 505, section 22.351].

9. The infinite products (3.27)–(3.29) are given in [2, p. 66].

10. Formulas (3.30) and (3.31) for x and x′ are in [2, p. 86, eqn. 5.47]. Analogous formulas for
k and k′ are in [3, p. 479 and p. 488, ex. 9, 10].

11. The derivatives of f1, f2 and f3 are computed in [2, p. 111].

12. The differential equation for the Weierstrass ℘ function is in [2, p. 13, eqn. 1.49].

13. The addition formulas for f1, f2 and f3 are given in [2, pp. 112–113].

14. Formula (3.48) is given in [2, p. 43].

15. Formula (3.51) as derived here in the notes is given in [2, p. 43]. Also see [2, pp. 3–4].

16. Addition formulas for the ℘ function are derived in [2, pp. 8–9].
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