
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Declaration Patterns in

Dependency Management

A thesis presented in partial fulfilment of the

requirements for the degree of

Master of Science

in

Computer Science

at Massey University, Manawatū, New Zealand.

Jacob Stringer

2020

Abstract

Dependency management has become an important topic within the field of

software engineering, where large-scale projects use an increasing number of de-

pendencies to quickly integrate advanced functionality into projects. To take

advantage of agile principles - with their fast release cycles - it has become

common to delegate the task of dependency management to package managers,

whose responsibilities it is to find and download a specified version of the depen-

dency at build time. The principles of Semantic Versioning allow developers to

specify version declarations that allow package managers to choose from not just

one, but a range of versions, giving rise to the automatic updating of dependen-

cies - a convenient but potentially risky option due to backwards incompatibility

issues in some updates.

In this thesis, we examine the types of declarations used and their effects

on software quality. We find a large variation in practices between software

ecosystems, with some opting for conservative, fixed declaration styles, others

that prefer Semantic Versioning style ranges, and a few that use higher risk open

range styles. We then delve into the consequences of these declaration choices

by considering how they affect technical lag, a software quality indicator, finding

that declaration styles can have a significant effect on lag.

In order to avoid technical lag, in all but the most extreme cases (using

open ranges), it is necessary to update declarations periodically. In the case of

fixed declarations, updates must be made with every change to the dependency

- an ongoing challenge and time outlay for developers. We considered this

case to find how regularly developers that use fixed declarations update lagging

declarations, finding that developers rarely keep up with changes.

The datasets used for these works consisted of large-scale, open-source projects.

A developer survey has also been included to contextualise the quantitative re-

sults, allowing insight into the intentions of developers who make these decla-

ration choices, and to gain insight on how applicable these findings might be to

closed-source projects.

1

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Amjed Tahir, who

provided immense support and mentorship on my research journey. His un-

wavering optimism, literature recommendations and timely advice gave me the

confidence to branch off to new questions.

I would also like to thank my former supervisor, A/Prof. Jens Dietrich,

for starting me along my postgraduate journey and in this topic. His broad

knowledge in the field gave me a strong overview to understand the context of

these studies within the wider body of knowledge.

Much of the research in this thesis has been done as collaborative studies. I

would like to acknowledge and thank Dr. Kelly Blincoe for her insights, work

and collegiality in the creation of Chapters 5 and 7, along with Dr. David Pearce

for his input into Chapter 5.

I acknowledge and extend my gratitude to my former colleagues within the

CSIT department, whose regular conversations and advice have helped me shape

the direction of this research.

Finally, I could not have done this without my husband, whose has been

instrumental in nurturing motivation, and my parents, who have been a constant

source of support and encouragement.

2

Contents

1 Introduction 10

2 Background 14

2.1 Semantic Versioning . 14

2.2 Package Managers and Dependency Resolution 17

3 Literature Review 22

3.1 API Stability . 23

3.2 Binary Compatibility . 26

3.3 Managing Breaking Updates . 29

3.3.1 Using Semantic Versioning 30

3.3.2 Client Project Risk Management Strategies 30

3.3.3 Strategies for Signalling Pending Breaking Changes 33

3.3.4 Web APIs . 36

3.3.5 Summary . 37

3.4 Dependency Graphs . 38

3.5 Dependency Management Trends 41

3.5.1 Version Constraint Trends 42

3.5.2 Technical Lag . 43

3.5.3 Security Vulnerabilities of Technical Lag 43

3.5.4 Update Strategies . 45

3.5.5 Summary . 46

3.6 Automating the Update Process 47

3.7 Summary . 49

3

4 Prelude: Declaration Classifications using GitHub 51

4.1 Methodology . 51

4.1.1 Custom GitHub Dataset 52

4.1.2 Analysis . 54

4.2 Results . 56

4.3 Summary . 59

5 A Large-Scale Study on Declaration Classifications 60

5.1 Introduction . 61

5.2 Methodology . 64

5.2.1 Dataset Acquisition . 64

5.2.2 Package Managers Covered 64

5.2.3 Categories . 66

5.2.4 Declaration Parsing . 68

5.2.5 Classification Aggregation 71

5.2.6 Version Ordering . 72

5.3 How Projects Declare Dependencies 72

5.4 Changing Dependency Versioning Practices as Projects Evolve . 74

5.4.1 Project Level Analysis . 75

5.4.2 Individual Dependency Level Analysis 76

5.5 Conclusion . 77

6 Developer Survey on Dependency Management 83

6.1 Survey Design . 83

6.1.1 Survey Participants . 83

6.1.2 Survey Design . 84

6.2 Survey Results . 85

6.3 Developer Perspective . 87

6.4 Summary . 94

6.5 Conclusion . 94

7 A Large-Scale Study on Technical Lag and Update Patterns 96

7.1 Introduction . 96

7.2 Methodology . 98

7.2.1 Declaration Classifications 98

7.2.2 Parsing Declarations to Satisfies Set S 99

4

7.2.3 Classification and Filtering Process 102

7.2.4 Quantifying Technical Lag 104

7.2.5 Update Classification . 107

7.2.6 Validation . 108

7.2.7 Identifying reasons for backward changes 109

7.3 Lagging Dependencies . 111

7.3.1 Which Declaration Types Lag Most? 111

7.3.2 Most Common Types of Lag 112

7.3.3 Would Semver Declarations Reduce Lag? 114

7.4 Lag Quantity per Dependency . 118

7.5 Update Frequencies . 122

7.6 Update Strategies . 124

7.7 Backwards Updates . 127

7.8 Threats to Validity . 130

7.9 Conclusion . 131

7.10 Future Work . 132

8 Conclusions 136

8.1 Future Work . 138

5

List of Figures

2.1 Semantic Version Example . 15

2.2 Diamond Dependency with Issues 18

3.1 An Example Dependency Graph from npm 40

5.1 Declaration Range Continuum 68

5.2 Example Rule [Dietrich et al., 2019] 69

5.3 Changes in Dependency Declarations from First to Last Version 76

6.1 Developer Experience in Years 84

6.2 Semver Familiarity (Least to Most Familiar) 86

6.3 Self-Described Dependency Declaration Styles 87

7.1 Example Test File . 102

7.2 Quantifying Technical Lag . 105

7.3 Version Lag by Package Manager 118

7.4 Time Lag by Package Manager (in days) 120

7.5 Updates by Package Manager . 122

6

List of Tables

2.1 Incrementing Versions . 16

3.1 Breaking Changes to an API . 24

4.1 Configuration Files and Parsing Methods. 53

4.2 Example Patterns Mapped to Categories 55

4.3 Summary of Declarations by Package Manager 56

4.4 Mean Dependency Declarations per Project 56

4.5 Flexible Styles Used in Projects 57

4.6 Do Projects Use Multiple Declaration Styles? 57

5.1 Package Managers Used . 65

5.2 Declaration Styles . 67

5.3 Example Declarations . 78

5.4 Dependency Version Classification 79

5.5 Aggregated Dependency Version Classification 80

5.6 Dependency Numbers At Start and End of Lifetime 81

5.7 Adaption of Semantic Versioning and Flexible Versioning 82

6.1 Package Managers Used by Survey Participants 85

6.2 Self-Declared Developer Declaration Styles by Package Manager . 88

7.1 Dependency Declaration Types 99

7.2 Project Pairs Included by Package Manager 104

7.3 Update Categories for Fixed Declarations 107

7.4 Percentage of Dependencies that Lag 112

7.5 Most Common Types of Lag . 116

7

7.6 Lag Reduction Using Semver . 117

7.7 Means and Standard Deviation of Version Lag 119

7.8 Frequency of Declaration Updates 123

7.9 Updates vs Lag . 126

7.10 Frequency of Backwards Changes 127

8

List of Publications

Chapter 5 consists of a collaborative work resulting in the MSR publication

listed below. The author’s contribution is estimated at 20% of the work. Chap-

ter 6 was included in the same publication, but primarily represents the work

of the author.

Dietrich, J., Pearce, D., Stringer, J., Tahir, A., & Blincoe, K. (2019, May).

Dependency versioning in the wild. In 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR) (pp. 349-359). IEEE.

A paper derived from Chapter 7 has been accepted into the APSEC 2020 con-

ference. This chapter represents the work of the author, except two sections

(see footnotes within the chapter for details) - these sections have been included

for their relevance to the topic.

Stringer, J., Tahir, A., Blincoe, K. & Dietrich, J., (2020, December). Techni-

cal lag of dependencies in major package managers. APSEC ’20: Proceedings

of the 27th Asia-Pacific Software Engineering Conference (pending publication).

9

Chapter 1

Introduction

Many modern software systems are built from existing packages (i.e. modules,

components, libraries - henceforth, just packages). This realises a vision almost

as old as software engineering itself: that is, in order to be on par with other

parts of a modern economy, re-usable software components must be produced

and used at scale [McIlroy et al., 1968]. Many common tasks are carried out

using third party packages (called dependencies): logging, using packages such as

Log4j (Java) or Serilog (.NET), quickly creating websites using web frameworks

like Spring (Java) or Django (Python), or unit testing using mocking libraries

such as Mockito (Java) and Moq (.NET) to isolate sections of code during

testing. These dependencies can be extremely widespread across industry: Log4j

has over 15,000 usages from other packages hosted on the Maven repository alone

(which generally themselves are packages intended for reuse), and Moq has had

134,000,000 downloads from the NuGet repository at the time of writing.

In recent years, many systems have moved to a model where packages are

stored in a central repository that is accessed from a client-side package manager

(e.g. Maven for Java, Cargo for Rust, CPAN for Perl, etc). Such tools access

packages as required (e.g. at build time) and, often times, have flexibility over

which exact version to use. The use of package managers has considerably

simplified the build process (compared with ad-hoc methods used previously)

and, furthermore, enabled automatic package evolution (e.g. for the controlled

propagation of security fixes and other improvements), decreasing the costs

associated with updating dependencies. This has important implications on

10

agile concepts such as continuous delivery, where updates happen regularly,

making it almost inevitable for dependencies without automatic updating to

become outdated. Allowing dependencies to become outdated has implications

not just on the stability and security of an application (due to missing out

on bug or security fixes), but can make it impossibly difficult to update the

dependency at a later point to take advantage of new features, as exemplified

in Section 3.3.2.

Automatic updating of dependencies promises to simultaneously cut down

on the time it takes for developers to keep their dependencies up to date, as

well as reduce the lag time for bug fixes, security updates, and feature improve-

ments to be integrated into a project (Section 3.5.2). However, it comes with

risks, as not all updates are suitable to be automatically used within existing

projects due to issues surrounding backwards compatibility. Versioning systems

were implemented to order the published releases, but most did not convey any

additional meaning beyond the order - they had no semantics built into the

versioning scheme to explain the type of change made, and specifically if the

change should be backwards compatible. An industry-led standard, semantic

versioning (also known as semver)1, was introduced to solve this problem. It

provides a framework for developers to categorise the types of changes made,

with the idea being that package managers can then automatically update a

range of versions that meet specific criteria.

Semantic versioning has one major weakness. Currently, there are no auto-

mated ways for a developer to be able to tell what type of changes have been

made since the last version of the project. A developer must manually cate-

gorise the changes made, which in semver terms, means to make a micro change

(bug or performance fix), minor change (new feature), or major change (back-

wards breaking change). This can be a surprisingly difficult task, particularly

when considering whether changes both preserve API stability, semantic con-

tracts (Section 3.1), and binary compatibility (Section 3.2). Studies have found

that potentially 1 in 3 version updates have been misclassified, by introduc-

ing a backwards incompatibility in an update which should preserve backwards

compatibility (Section 3.3.1), an issue which has serious implications on auto-

matically updating dependencies.

Given that there is no automated way of correctly updating version num-

1https://semver.org

11

bers, client projects automating dependency updates enter into a social contract

with the developers of the dependency - a contract where client developers have

to place trust that the dependency developers correctly use semantic versioning

and correctly signal when a breaking change is being made. This is challenging,

as there are few ways of incentivising the dependency’s developer(s) to up-

hold this contract - potential reputation hits (amongst a potentially anonymous

clientele) and increased bug reports are the only major downsides to getting it

wrong. Allowing automatic updates means handing over a measure of control

of a programme to a set of external developers who are generally not known

to the developer in question, and who have limited incentives to care about

not breaking a client programme. Therefore, the option of automatic updat-

ing comes down to a question of how much risk a developer is comfortable

with, along with the reputation of reliability and backwards compatibility of

the third-party project.

Despite the limitations of current approaches to automatically update de-

pendencies, the results from this thesis indicate that developers do indeed find

updating external libraries to be important. Given this tension, this thesis seeks

to explain the ways in which developers update their dependencies - do they up-

date their dependencies automatically or manually, or do they not bother at all

with updates? How do these strategies affect project quality, and how common

are each?

We use a mixed-method approach to answer the above questions. The bulk of

the studies in this thesis centre around an open-source dataset from libraries.io

(Section 5.2.1) which provides over 80 million dependency declarations from

projects across a wide variety of software ecosystems.2 This has allowed this

study to make generalisations about the majority of open-source projects. A sur-

vey was undertaken that asked software developers currently working in industry

several open ended questions about their approach to dependency management.

There were over 170 completed responses from a variety of software ecosystems,

experience levels, and geographical locations, providing further insights into the

empirical results.

This thesis is structured as follow: it begins by introducing several key

concepts within dependency management. Chapter 2 explains a number of key

2An ecosystem is defined as “a collection of software projects, which are developed and

co-evolve in the same environment” [Lungu, 2009].

12

concepts related to these studies - semantic versioning, package managers, what

declarations and updates are and how we have chosen to categorise them, and

some background on the two datasets used. Chapter 3 guides the reader through

current literature on dependency management and understanding the contracts

that exist between upstream developers3 and downstream developers4. It spends

a significant amount of time discussing what backwards compatibility between

projects looks like and discussing how to minimise disruption from breaking

changes, before diving deeper into dependency networks, declaration patterns,

technical lag5, and update strategies - the latter three being our main topics of

investigation. It concludes with an overview of what tools are currently available

to automate the processes within dependency management.

Following this introduction, there are four research chapters presenting our

findings. Chapter 4 begins as a prelude to the original work presented in this the-

sis - it represents the earliest experiments into declaration patterns. These ex-

periments showed significant differences in declaration styles between the three

package managers tested, and led us to delve further into this topic. Chapter 5

expands the empirical side of Chapter 4’s findings by moving to the libraries.io

dataset, which included 17 package managers, allowing much more generalis-

able conclusions on declaration patterns across open-source software. Chapter

6 qualitatively follows up on Chapters 4 and 5 by asking developers for their

reasoning about dependency management strategies, giving us some insights as

to why such significant differences exist between ecosystems. Finally, Chap-

ter 7 investigates the consequences of these declaration patterns by considering

how declaration types affect technical lag (a software quality metric), and how

developers update their most restrictive declarations, fixed declarations.

We conclude this work with a discussion of the results in Chapter 8. There

is significant scope to improve and simplify dependency management for the

average developer, with stronger tooling integrated into software workflows be-

ing a major recommendation. We also suggest that additional understanding

of backwards compatibility would improve semantic versioning adherence, and

improve the efficacy of automated dependency updating.

3Upstream developers are those who produce the project used as a dependency.
4Downstream developers are those who consume a specific dependency.
5Technical lag is a software quality measure that determines how far out of date a project’s

dependencies are.

13

Chapter 2

Background

This chapter covers two key areas required to understand the section of depen-

dency management that this thesis builds upon. The first topic is semantic

versioning, which forms the basis for project versioning, and therefore the basis

of this thesis. The second topic introduces package managers, and specifically

the role that they play in dependency resolution.

These two concepts, one which defines versions, and the other which chooses

one specific version out of multiple possible versions, will be used to understand

how different flexible version declaration patterns will impact on the final version

chosen by package managers.

2.1 Semantic Versioning

Semantic versioning1 (abbreviated semver) is an industry-led standard for how

versions should be updated. It encourages developers to adopt a standardised

format for project version numbers, and to increment them in a way that carries

meaning about the type of update that has occurred. In this way, developers

that are planning to use this project as a dependency (downstream developers)

are given a summary of the type of update made, and signals if the developer of

the project that is a dependency (upstream developer) believes that this update

can be used without any changes to the dependent project.

When we discuss versions in this work, we refer to semantic versions, as

1https://semver.org/

14

they standardise how versions are numbered. This not only allows for a sensi-

ble ordering to be enforced on a range of versions, but it additionally conveys

information about the types of updates that projects undergo over their lifetime.

At the heart of semantic versions are three sets of numbers separated by

periods. Each of these three numbers represents a different type of version

update when changed, as shown in Figure 2.1:

1. MAJOR - Incrementing the left-most, major number signals that this

update includes backwards compatibility breaking changes. There are

likely to be many new features associated with these versions, along with

extensive API redesigns which can cause downstream projects to require

significant changes to their source code. A well known example of a major

version change is when the Python language moved from version 2 to 3.

2. MINOR - Incrementing the middle, minor version signals that new fea-

tures have been added to the programme. According to semver specifica-

tions, minor updates should not break backwards compatibility.

3. MICRO - Incrementing the right-most, micro version signals that bug

fixes or security updates have been made. According to semver principles,

it should not include backwards compatibility breaking changes or new

features.

Figure 2.1: Semantic Version Example

In addition to major, minor and micro updates, it is possible to include a

pre-release tag at the end of the version, separated by a hyphen. These tags are

considered to be ‘sub-micro’ and are recommended for use in internal develop-

ment. However, in practice they are occasionally included in published releases,

where tags such as -alpha, -beta, -release, -stable, or the published timestamp

15

of the release are common. There is little agreement across package managers

or even across projects with how these tags can be compared with each other,

forming an ad hoc system chosen by each development group. These sometimes

need to be ordered internally when there are multiple tags within a single micro

version. In this thesis, where ordering tags has been necessary, the published

timestamp has been used2 - all other methods based on the alphabetisation and

other lexicographic information suffered from accuracy issues in such a varied

dataset.

It is possible that there are additional numbers after the micro number, but

before the tag. For example, in the Rubygems ecosystem, it is quite common

to have four numbers - the fourth being smaller bug fixes. These are accounted

for in our thesis in terms of ordering, but no semantic information is drawn

from these extra numbers, as the finest grain information we harvest are micro

updates. Instead they are considered to be multiple versions of the same micro

number in the same way tags are.

Update Type Old Version New Version

Major 4.7.3 5.0.0

Minor 4.7.3 4.8.0

Micro 4.7.3 4.7.4

Table 2.1: Incrementing Versions

As shown in Table 2.1, incrementing versions is done in the following way:

whenever a number is incremented, all numbers to the right of it should be

reset to zero. For example, if the minor version is increased, the micro version

will be reset to 0, but the major version will remain unchanged. Some tools,

such as npm’s semver tool3, will automatically update the version number for

a developer, but the developer must still decide if it is a major, minor or micro

change, which requires knowledge of the changes made and how they affect the

syntactic and behavioural contracts that the project has implicitly or explicitly

created.

2Due to published timestamps sometimes being erroneous (see Section 7.8), a heuristic was

added for Chapter 7 where any published versions with a timestamp difference of less than 24

hours would be ordered alphabetically.
3https://www.npmjs.com/package/semver [Accessed 18 March 2020]

16

Updating versions in this manner allows ranges of similar releases to form.

When working with version 4.7.0, semver allows you to assume that 4.7.2,

4.7.4, and even 4.7.102 will all be similar to the version currently in use. The

only difference is that they will have bug fixes or security fixes. This predictabil-

ity allows automated package managers to make decisions about which versions

would be suitable to use, simply based off a declaration, such as one that allows

future micro versions within the same major and minor version to be acceptable

(Section 5.2.3’s micro range).

Versions of projects that are in pre-development stages have additional rules

attached to them, according to semver principles. The most common of these

is that the major version is set to 0, and then the minor is considered a break-

ing change (like a major update usually would be), and micro is considered

a feature improvement (like minor updates usually are). The public APIs of

0.x.x versions are considered inherently unstable (see Section 3.1), so declar-

ing version ranges on pre-1.0.0 versions entails additional risks. Note that

some well-known projects (such as pandas4, a widely used statistical package in

Python) may continue in the 0 major range for quite some time, and be used

by many dependent projects before changing to version 1.0.0.

Even though each ecosystem has their own semver conventions, semantic

versions are ubiquitous across package managers, which are discussed in the

following section.

2.2 Package Managers and Dependency Resolu-

tion

Modern software systems rely on package managers to automatically build and

package their source code on demand. Agile methodologies require these builds

to happen regularly, so the builds must be fast, efficient and as automated as

possible. Some package managers allow dependencies to be downloaded from

online repositories at need. Most that have this ability also are able to note if

there are newer versions available, and take a declaration that defines a range

of possible versions and choose from those. We focus on the package managers

4https://pandas.pydata.org/. They have only recently moved to using semver https://

pandas.pydata.org/pandas-docs/version/1.0.0/whatsnew/v1.0.0.html [Accessed 22 Mar

2020], after years of using their own ad hoc versioning system.

17

Figure 2.2: Diamond Dependency with Issues

able to source dependencies from online repositories in this work.

One of the important jobs of a package manager is to decide which versions

of a dependency to use. Unlike in the case of a fixed declaration, where only

one version can be chosen, flexible declarations allow for a range of versions to

be chosen, so it is up to the package manager to choose which one will best suit

the project’s needs - this process is called dependency resolution.

Generally, when there are a number of versions from which a version of the

dependency is chosen, the package manager will choose the latest (stable release)

of these. Therefore, in this work, where a range of versions are possible, it is

assumed that the latest will be used. This assumption is particularly important

in Chapter 7, which deals with quantifying technical lag - the versions and time

that the chosen dependency version is behind the latest version. This practice

can vary by package manager however.

The most common instance of when a version chosen is not be the latest

version is when it is a transitive dependency - a dependency declared by a de-

pendency that the project relies on (this dependency could be any number of

steps away from the downstream project as each dependency must download its

own dependencies, who download their own, etc.). When transitive dependen-

cies occur, it is possible to get a situation such as Figure 2.2 where a project

indirectly relies on a dependency through two other dependencies. In this ex-

18

ample, Project A relies on both B and C, who in turn rely on D. The problem

here is that Project B relies on D within the 1.0.0 micro range, while Project

C relies on D within the 1.0.0 minor range.

DB = {version | 1.0.0 ≤ version < 1.1.0}

DC = {version | 1.0.0 ≤ version < 2.0.0}

Suppose we have the above dependency declarations for B and C, along

with the following ordered versions of D, there are two main5 options that the

package manager might choose:

D = {. . . , 1.0.0, 1.0.1, 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.1.0, . . . , 1.6.2, 2.0.0, . . . }

• Version 1.6.2 gets chosen. It satisfies C’s declaration, but not B’s. This

is the most recent version that can be chosen6, but it lies outside of B’s

declaration - a potential risk.

• Version 1.0.5, the last version within the 1.0.0 micro range, gets chosen.

This fulfils both B and C’s declarations, but results in an older version of

D being used than C would allow.

While it seems obvious that the second option is the better choice (after

all, it satisfies both declarations), it may not be chosen. Dependency resolution

is an NP-complete problem [Abate et al., 2012] and, even with optimisations,

a complete search can be impractical in reality [Jenson et al., 2010]. Linux

package managers (Debian and RPM) have developed complete dependency

resolution solvers based off SAT-solver algorithms [Vouillon and Cosmo, 2013].

While these are potentially computationally expensive, for the majority of cases,

graph preprocessing (ordering, flattening, etc.) allows this process to be com-

pleted quickly, albeit at the cost of increasing complexity and a less transparent

dependency resolution process (as greedy strategies might still be needed in the

cases that these optimisations do not simplify the problem sufficiently). In fact,

5There is nothing to stop a package manager choosing some other option, such as 1.0.0 for

example. The version chosen is dictated by the dependency resolution policy of each package

manager.
6Note that 2.0.0 and beyond exist, but they fit neither DB nor DC so would not be chosen.

19

currently, most package managers employ a greedy strategy, such as Maven’s

nearest-wins7 strategy, which uses a breadth first search where the first version

found is the version downloaded (even if deeper transitive dependencies needed

a different version). When using this strategy, the package manager ‘hopes for

the best’, knowing that the version satisfies the dependency closest to the root

project, and hoping that it works for any subsequent dependencies as well. If

the version chosen does not have the method or class required, this can cause

run-time errors to be thrown, such as Java’s LinkingError subclasses. Another

strategy is its fail-fast equivalent, a dependency conflict. With this strategy, if

the version chosen cannot satisfy later dependencies, the build fails and the

developer must manually choose a version of the dependency in question8.

In addition to the above two options, there is a third strategy to dependency

resolution - download both versions. This is the strategy chosen by npm9, which

would allow B to download its own version of D if C had already downloaded D

at a version not in DB . This duplication generally works10 but at the expense

of very large distributions where dependencies are regularly duplicated.

Note that npm’s nested dependency strategy is quite unusual across package

managers. The general strategy of using global classloaders naturally limits

programmes to only one version of any given class (or file) at a time. There

are some frameworks that get around this issue, such as Java’s OSGi11 model,

which are mostly used in large-scale projects as they add a significant amount

of complexity to a project.

Once dependency resolution is considered for transitive dependencies, it is

not immediately clear which version will be chosen - this comes down to how

each package manager implements its own strategies to conflicts and the path

the dependency resolver takes through the dependency directed acyclic graph

(DAG). That is why, while it is assumed that the newest version will be cho-

sen if it matches the declaration, this is not necessarily true. Since this work

7https://maven.apache.org/plugins/maven-dependency-plugin/examples/

resolving-conflicts-using-the-dependency-tree.html/ [Accessed 28 Jan 2020]
8This situation is commonly referred to as ’DLL Hell’ after the Windows dynamic link

library folder - each DLL file in this folder contains a project, and only one DLL file for each

project may exist in the DLL folder, causing the same version conflict issue.
9https://lexi-lambda.github.io/blog/2016/08/24/understanding-the-npm-dependency-model/

10This strategy becomes more difficult when custom objects are passed across package

boundaries, but this practice is not common in JavaScript.
11https://www.osgi.org/

20

deals primarily with direct dependencies (ignoring transitive dependencies), this

assumption is considered reasonable.

As a note, NuGet in fact resolves to the oldest dependency that will satisfy

its declarations12. This behaviour is worthy of note as developer behaviour in

NuGet differs from many other package managers in Chapters 5 and 7 - this

unusual resolution strategy may contribute to the behaviour differences.

Jezek and Dietrich discuss the problems that can be caused by automated

dependency resolution in greater detail [Jezek and Dietrich, 2014]. In addition

to an incorrect version of a dependency being chosen, it is also possible to have

namespace collisions, where two classes of the same name from different packages

are required (classloaders will generally only load one of the two). Redundancy

can also occur, where classes are downloaded but are never used in runtime (due

to only a fraction of the dependency’s functionality being needed). Redundancy

will not break applications, but they do make distributions unnecessarily large,

and is a particular issue in npm builds as described above.

12https://docs.microsoft.com/en-us/nuget/concepts/dependency-resolution/

[Accessed 6 Feb 2020]

21

Chapter 3

Literature Review

Dependency management issues have become more prominent with time, espe-

cially with the increased use of package managers. The main reason for this

increase is the growing size of modern ecosystems, and the increasing speed of

change in packages.

Projects are relying more on external packages than in the past. Gonzalez-

Barahona et al. studied the growth of the Debian Linux distribution, finding

that the average size of packages remained stable, while the overall size of the

distribution has been doubling every 2 years and the number of dependencies

increased exponentially [Gonzalez-Barahona et al., 2009]1. A recent whitepa-

per survey of 400 developers reported that there were an average of 73 de-

pendencies used per project by these developers, indicating that dependency

management is an extremely important aspect of software development and

maintenance [Vanson Bourne, 2018].

There are some challenges with managing dependencies. Using fixed dec-

larations is directly correlated with dependencies being out of date (shown in

Chapter 7), which leads to issues of security vulnerabilities (Section 3.5.3) and

difficulties to update later to take advantage of new features (such as the case

study discussed in Section 3.3.2). Allowing for automatic updating of dependen-

cies solves most issues of dependencies going out of date2, but adds an element

1This is consistent with our findings in Section 5.4 on how the number of dependencies

increased over the lifetime of a project.
2If semver-compliant ranges are used, there is still a possibility that there will be some

issues with outdated dependencies.

22

of risk, as dependencies are updated without testing that they have not broken

compatibility. For this reason, a key prerequisite of successfully automating

dependency updates is ensuring that automatic updates only happen with new

versions of the dependency are backwards compatible. Sections 3.1 - 3.3 discuss

various aspects of backwards compatibility and measures developers can take

to minimise the number of backwards incompatibilities, along with limiting the

negative impact of those updates when they do occur. With a solid grounding

in issues with version compatibility, we are ready to discuss topics specifically

involved in dependency management. Section 3.4 discusses the topology of de-

pendency graphs and how transitive dependencies can affect dependency man-

agement and automatic updating. Section 3.5 considers the current research

into how developers are actually managing dependencies - these works form the

basis of our research in the following chapters. Finally, Section 3.6 considers

which parts of dependency management can currently be automated, or are on

the cusp of automation.

3.1 API Stability

In order for two projects to communicate with each other, there needs to be

connection points between the two. All projects that intend for others to use

them in some way should define a set of classes and methods that can be used

by others. These are marked as public in languages with built-in visibility

modifiers - such as Java which allow encapsulation principles to be enforced

at compile-time - or are implicitly public by means of naming conventions and

documentation in languages such as Python.

Where a class, method or field is not public, it is intended for use inside the

package only, termed here private. While the definition of private classes,

methods and fields differs by language, here we define it in terms of whether

it is intended for use by other projects, or only for intra-package use. This

distinction between public and private is the basis for managing backwards

compatibility between projects that share code.

An Application Programming Interface (API) is the collection of public

classes, methods and fields within a package. In order to maintain backwards

compatibility, there are limitations on what changes can be made to an API. API

stability describes how well a project adheres to syntactic limitations imposed by

23

backwards compatibility requirements. API stability is one aspect of backwards

compatibility - an unstable API means introduced breaking changes that will

force downstream developers to refactor their code to maintain compatibility.

Over time, evolving conditions and demands on software provide impetus

for change to cope with additional complexity and reduce technical debt. In the

process of maintaining a mature project, developers usually face the choice of

keeping an API stable, or introducing changes needed to bring the project up

to date and solve underlying issues that collect over time.

Position Change Type

1 Method removed

2 Class removed

3 Field removed

4 Parameter type changed

5 Method return type changed

6 Interface removed

7 Number of arguments changed

8 Method added to interface

9 Field type changed

Table 3.1: Breaking Changes to an API

Table 3.1 is derived from a study by Raemaekers et al. [2014], ordering the

most common types of backwards breaking changes to an API. It is difficult to

keep an API stable - doing so often can involve compromising decisions such

as keeping methods or classes that have major flaws (bugs, designs inconsistent

with the rest of the API, or inefficiencies) in order to maintain stability (see

Section 3.3.3).

In addition to API instability, there are other factors that can cause breaking

changes for dependent projects:

• The software licence could change, making a dependent project no longer

able to use the dependency without changing part of its business practice,

e.g. a dependency of a closed-source project moving to a GPL licence,

which would require the dependent project to become open-source.

• The semantics of the dependency could change. The behaviour of a

24

method could change without any changes to its API - for example, if

a method throws an exception for negative inputs when it accepted them

before, this changes the semantics and may break the dependent project.

It could also be more insidious, for example if the results of a call differ

between versions due to a new implementation, this would instill a form of

non-determinism into the project, constituting a type of breaking change.

• In compiled code, binary compatibility is an additional consideration, as

API changes that do not break source code compatibility can still break

binary compatibility, for example where ‘hot updates’ are done - pro-

grammes that are recompiled in parts rather than a whole. Section 3.2

discusses this in more detail.

Semantic Compatibility

In order to ensure semantic compatibility (also known as behavioural compatibil-

ity), Beugnard et al. [1999] suggested basing components on contracts. In this

work, they cover four types of contracts, syntactic, behavioural, synchronisation

and quantitative. A syntactic contract is the idea of API stability discussed

above. Behavioural contracts encompass design by contract ideas using pre-

and post-conditions, guaranteeing certain behaviours of a piece of code (which

languages like Eiffel3 are based on) - see also the book The Pragmatic Program-

mer [Andrew and David, 2000, p. 109]. Synchronisation contracts ensure that

the component will deliver the correct result under multithreaded conditions,

and quantitative contracts guarantee that a component will do all of the above

efficiently, taking into consideration quality-of-service indicators. All four types

of contracts must be maintained in order to keep backwards compatibility.

Dietrich et al. investigated the use of contracts in code across an evo-

lutionary dataset of Java programmes harvested from the Maven repository

[Dietrich et al., 2017]. They found no evidence of widespread usage of pre-

condition checks, but that projects who use them continue to use them and

expand on them as their project grows, indicating that projects which use

them continue to promote them through their codebase. They also found a

large number of backwards incompatible contract changes, such as strength-

ening pre-conditions (breaking Liskov’s Substitution Principle), indicating that

behavioural violations are a major concern in terms of backwards incompatibil-

3https://www.eiffel.org/

25

ities.

API Stability and Project Success

The API stability of dependencies can have a significant impact on the quality of

the dependent project’s code. Linares-Vásquez et al. conducted a study of An-

droid applications, looking for differences between the API stability of dependen-

cies in successful apps versus unsuccessful apps4 [Linares-Vásquez et al., 2013].

They found that high-rated apps were much less likely to have dependencies

with unstable APIs with fewer bugs, with only 20-33% as many API changes

and faults as low-rated apps. Many of the comments for low-rated apps were

to do with bugs and other faults, which the authors attributed in part due to

faults inherited through dependencies and API changes.

API Stability for Pre-1.0.0 Versions

As mentioned in Section 2.1, semantic versioning principles recommend that

projects with versions below 1.0.0 be considered to have unstable APIs. Semver

recommends that minor updates be treated as backwards breaking, while only

micro updates should still keep backwards compatibility. However, this recom-

mendation has not been implemented consistently across projects or ecosystems.

In a bid to improve clarity about which version updates will introduce backwards

incompatibility, npm has taken the step of recommending that developers start

their versioning at 1.0.05. It remains to be seen if the pre-1.0.0 semver-

compliance improves, or if the convention becomes avoided in other package

managers as well.

3.2 Binary Compatibility

A less obvious backwards compatibility concern in compiled languages is binary

compatibility. Binary compatibility allows for linked modules to be recompiled

separately before recombining (a process called relinking) and expecting them to

continue to work with the dependent project [Drossopoulou et al., 1998]. Java

introduced this as a formal feature of its language specification, allowing for

situations such as making modifications to modules where recompilation is not

practical (such as where the source code is not available) or the size of the project

4They rated success based on user ratings - highly successful apps were the highest quintile

of ratings, and unsuccessful aps were the lowest quintile of ratings.
5https://docs.npmjs.com/about-semantic-versioning [Accessed 4 Feb 2020]

26

discourages recompiling all units simultaneously. Compiled files are written in

either an intermediate language (such as bytecode for JVM languages or IL for

.NET), or in machine code (e.g. C) - in either case this compiled code can vary

in subtle ways from source code which introduces its own compatibility issues

if the phase of compiling projects together is skipped.

At first glance, it may be assumed that binary compatibility would be im-

plied if the projects are source compatible (by having a stable API and seman-

tics). However, there are instances where projects can be source compatible,

but not binary compatible, and vice versa. Traditionally, languages have under-

specified the requirements for binary compatibility, so formal definitions have

been provided and increasingly implemented in modern enterprise language de-

sign [Drossopoulou et al., 1998, Drossopoulou et al., 1999]. The listing below

derived from Dietrich et al. [2014] gives examples of differences between source

compatibility and binary compatibility (using Java-based examples):

1. Source compatible, Binary incompatible changes:

• The return type of a method gives a subtype of the previous method

(e.g. a List is promised instead of a Collection). This is considered

as safe subtyping by the Liskov’s Substitution Principle, and the

compiler will be able to reason this and determine the source code to

be compatible, despite their binary incompatibility.

• The parameter type of a method requests a supertype of the previous

method (e.g. a Collection is now requested instead of a List).

• Changing between primitives and their corresponding object type in

languages that have both primitive and object types, e.g. int and

Integer.

• When constants are changed, inlined constants are not updated, lead-

ing to incorrect values being used.

2. Source incompatible, Binary compatible changes:

• When a generic type is changed, it does not show at a binary level

due to erasure, infamously used in Java. Therefore, a method return

that changes from List<String> to List<Integer> will be binary

27

compatible, even though the source code is not, as generic type infor-

mation is removed at compile-time, and the bytecode will only show

that it is a List.

In general, there are more examples of code being source compatible but bi-

nary incompatible than the reverse. Any of the above examples (and more)

could lead to run-time exceptions, often with puzzling stack traces for the

developer to solve. Dietrich et al. used static analysis to study how com-

mon binary compatibility issues are when projects are relinked rather than

recompiled [Dietrich et al., 2014]. They found that breaking changes are com-

mon (they estimated that up to 75% of versions introduce binary incompatible

changes), but that this rarely affects dependent projects in reality, as only a

subset of the dependency’s code gets used.

Dietrich et al. went on to gather survey responses from 414 developers about

what they know of binary compatibility [Dietrich et al., 2016]. The survey was

structured as a quiz, testing the developers’ understanding of what changes

would cause binary incompatibility. They found that, while many developers

understood the rules for source compatibility, very few understood the rules for

binary compatibility, even amongst developers who considered themselves expe-

rienced or expert. The fact that so few of the surveyed developers understood

binary compatibility makes trusting semantic version numbers alone to convey

compatibility difficult.

The study also counted how regularly relinking exceptions occurred, based

on GitHub and StackOverflow hits. They found that a relinking exception,

NoClassDefFoundError, had almost as many questions as the extremely com-

mon NullPointerException. While it is possible that this is a more puzzling

exception and thus gets asked about more regularly than the straightforward

reasons why NullPointerExceptions occur, it still indicates that binary incom-

patibility impacts on software quality and developer productivity significantly.

Jezek and Dietrich suggested a modified Java compiler that avoids some

binary incompatibility issues, but they note that this involves invasive changes

to how the standard Java compiler works and, while technically feasible, may

not be chosen due to business concerns [Jezek and Dietrich, 2016]. This work

points to how compiler design may be able to limit binary incompatibility in

future language and tool design.

Another approach to improving binary compatibility - automating refactor-

28

ing to maintain binary compatibility - has been proposed by Şavga and Rudolf

[2007]. In their example, they formalised the process required for projects re-

lying on a .NET framework to be automatically refactored to maintain binary

compatibility, using automatically generated adapter layers at the border be-

tween modules.

Binary compatibility is an often overlooked but major issue within the topic

of API stability. Changes which are source compatible, and therefore consid-

ered compatible by most developers and researchers, can still cause problems for

downstream developers attempting to update dependencies. Increased aware-

ness of these issues would benefit both upstream developers, where binary in-

compatible changes could be postponed until major updates (and therefore limit

the number of times downstream developers have to recompile their projects),

and downstream developers, where run-time exceptions related to relinking can

be quickly understood and solved with recompilation. Tool usage can help de-

velopers to understand binary incompatibility issues as well, such as Eclipse’s

API Tools discussed in Section 3.3.3.

3.3 Managing Breaking Updates

Breaking updates of APIs are an ongoing issue for developers who rely on depen-

dencies. Xavier et al. estimated that, across 1,000 Java projects studied, 28%

of API changes were breaking, with the majority of API changes not breaking

backwards compatibility - operations such as additional implemented API meth-

ods6, increasing visibility or removing deprecated features [Xavier et al., 2017].7

Interestingly, mature APIs were more likely to break - likely due to accrued tech-

nical debt or necessary changes that develop over time. The impact of any one

breaking change on clients is relatively small, however, with only 2.5% of clients

being affected by the median breaking change.

6Adding implemented methods to concrete classes does not break API compatibility, unlike

adding methods to an interface, which forces a client who implements this interface to create

a new method implementation to maintain compatibility.
7Xavier et al. considered removing deprecated features to not break compatibility as

users have been given advance notice [Xavier et al., 2017]. However, removing API methods,

deprecated or not, does in fact break downstream projects if they have not adjusted their

projects.

29

3.3.1 Using Semantic Versioning

Semantic versioning has given developers a framework to think about updates

that are done in projects and help with isolating API instability to major ver-

sions, where client developers expect such changes to be made. However, semver

is a social contract and comes down to developers following these principles. It

turns out that this is quite a difficult task to do manually, and there are currently

few tools that can help automate this process (discussed in Section 3.6).

Updates often exhibit backwards incompatibility, even in cases where they

should be compatible. Raemaekers et al. showed that many semver versions

are incorrectly updated - 23% of micro updates, and 36% of minor and ma-

jor updates broke backwards compatibility [Raemaekers et al., 2014]. This is

problematic for flexible version declarations, as they are based on the assump-

tion that micro and minor updates do not have any backwards incompatibility.

While not all code within a dependency will used by every dependent project,

the projects that exhibited backwards incompatibility averaged 30 compatibility

issues even in micro and minor updates, so there is a good chance that there

will be problems in reality. This study by Raemaekers et al. focused on source

compatibility - the large amount of binary incompatibility (Section 3.2) is an

additional challenge that developers face.

The same study found that breaking changes in minor and micro releases

decreased over time from 28.4% in 2006 to 23.7% in 2011, indicating that de-

velopers are becoming more aware about semver ideas. Another point is that

semantic versioning has become much more entrenched in software engineering

since this study took place (see Section 3.5.1), so it is possible that if this study

were repeated again now, backwards compatibility in minor and micro updates

may have improved.

3.3.2 Client Project Risk Management Strategies

One of Lehman’s eight Laws of Software Evolution is that programmes must

continuously change, or progressively become less relevant [Lehman, 1980]. As

change happens at a high cost to projects, there are several strategies prevalent

in industry to help mitigate the effects of API instability and cope with this

external change impetus:

1. Semantic versioning provides a framework for developers to signal that

30

they are creating a breaking change, in the form of major updates, as dis-

cussed in Section 2.1, however this is not always foolproof, but it provides

information of the upstream developer’s intent.

2. Design patterns that minimise the places where a project connects to an

external API, e.g. Adapters (Design Patterns, [Gamma et al., 1993]), a

practice that is recommended by many, including Martin [2009].

3. Implement unit tests based on the external API. This way, when the

API or its behaviour changes in some way, there is instant and useful

information available to the developer, suggested both in Clean Code

[Martin, 2009] and in a case study by Raemaekers et al., [2012].

4. Consider in-project solutions when the resulting code is not overly com-

plex, rather than adding a dependency. When a dependency must be used,

be conservative about which dependency to rely on, taking into account

its historical API stability [Bogart et al., 2015, Bogart et al., 2016].

5. Avoid early adoption, unless aware of the risks of greater instability -

Espinha et al. noted that early versions of projects have particularly

unstable APIs [Espinha et al., 2014].

As noted above, Lehmann’s laws of software evolution involve continuing

change and growth [Lehman, 1980]. Mens et al. searched for evidence of

Lehmann’s laws in the Eclipse ecosystem [Mens et al., 2008], finding that Eclipse

bundles indeed do continue to change and grow over time. Keeping these laws

in mind, adopting an architecture that insulates projects from external change

is a sensible choice to protect projects.

Delaying updating dependencies for a long period of time can cause major

issues, not only in terms of opportunity costs (Section 3.5.2), but also it can

complicate the updating process when it finally occurs. Raemaekers et al. pro-

vide a case study about a project that avoided updating its dependencies for

seven years, deferring them due to breaking changes that had been made in the

dependencies [Raemaekers et al., 2012]. By the time this project was forced to

update to a new version for new required functionality, the dependencies that

were changed required their entire framework to be updated. They also needed

to update their Java Server Pages (JSPs) because its syntax had changed during

31

a minor update. The process of updating this dependency took a week of devel-

opers’ time due to the cascading changes, and it was commented on that this

update might have been impossible if there had been a lack of regression tests

to be able to understand the scope of the changes. It showed that accumulating

technical lag (the measure of how outdated dependencies are) can lead to large

amounts of refactoring to be done in one go if delayed - very similar to what

happens when technical debt is accumulated. It also showed an instance of a mi-

nor update introducing breaking changes (Struts), and how updated transitive

dependencies can increase the amount of work required to update.

Bogart et al. interviewed 28 developers from three ecosystems, Eclipse,

CRAN and npm [Bogart et al., 2016] to check how they managed dependency

updates. A few interviewees actively monitored dependencies to check for

changes, using GitHub feeds (to varying success, due to overwhelming amounts

of information). Some developers actively contributed to their dependencies

with features and fixes that they wanted for their own project downstream.

Others tried to keep an eye on changes more broadly, often using Twitter up-

dates (in npm especially). Many projects use continuous integration to detect

compile-time errors - this gives a quick feedback loop for API changes in up-

stream dependencies, allowing developers to become aware of changes quickly8.

Additional information can be harvested from continuous integration builds

when automated tools are used, as discussed in Section 3.6.

In the absence of information about whether updates are going to include

backwards breaking changes, care must be taken by developers. To supplement

semantic versioning, additional metrics could help developers understand the

risks involved with updating a particular dependency. Bogart et al. has pro-

posed a measure based on the past binary and source compatibility history of a

project in order to give developers more confidence in updating projects which

have a history of stable APIs [Bogart et al., 2015]. Decan et al. call for similar

metrics through their discussions with industry developers, which they term the

health metrics of a dependency [Decan et al., 2018]. For both direct and transi-

tive dependencies, this information would be useful, as an unhealthy transitive

dependency can still have negative implications for a project (Section 3.5.3).

8This assumes problems can be picked up at compile-time. It would not spot behavioural

changes, or help in non-compiled languages

32

3.3.3 Strategies for Signalling Pending Breaking Changes

Managing APIs carefully can have very positive effects for upstream developers.

Zibran et al. completed a study of over 1,500 bug reports, finding that as many

as one third of bugs were related to API issues [Zibran et al., 2011]. These

generally related to breaking changes to the API, but in some cases also involved

transitive dependencies - dependencies of the upstream project were causing

conflicts for downstream developers, or optional dependencies were requested to

give greater flexibility for managing version conflicts.

When breaking changes must be implemented, there is mixed evidence that

upstream developers can help downstream developers that rely on their project

to adjust to future breaking changes by using deprecation patterns.

Robbes et al. undertook a study on the effectiveness of deprecation patterns

in the Smalltalk (specifically Squeak and Pharo) ecosystem [Robbes et al., 2012].

It is a small ecosystem consisting of 2,600 projects. They found that roughly

40% of deprecations caused downstream developers to react in active projects.

For those who did react, it was generally within the first two months of the dep-

recation, and most followed the developer’s recommendation for what to change

to (when the developer did suggest an alternative).

A follow up study on deprecations was undertaken by Sawant et al. to con-

sider the effects of deprecation on a mainstream ecosystem, Java. It included

several methodological improvements over the Robbes et al. study which were

possible due to Java being a statically typed language with deprecation annota-

tions [Sawant et al., 2016]. Analysing over 2,600 client projects of 5 major APIs

(Guava, Guice, Hibernate, Easymock and Spring), it was found that depreca-

tion patterns do help downstream developers to update their code. However,

their results came with some major caveats. First, the majority of the projects

involved never updated the dependencies in question, so deprecations were ir-

relevant for many of the studied projects. Of those that were affected by the

deprecations, less than a quarter updated them. In general, the ones that did

update had less changes to make - one project would have had to make over

17,000 method changes to update9. Of those that did choose to make updates,

the most common strategy was to delete the method rather than to update it

to the replacement. This contrasts with the Smalltalk study, where developers

9Needless to say, it was a project that did not update in the study.

33

tended to replace based on the upstream developer’s recommendations.

One interesting point that the study noted was that over 95% of the projects

studied added calls to already deprecated methods. At the same time, the

authors noted that almost all moves away from deprecated methods happened

within days of the deprecation being added. If the goal is to move clients

away from deprecated methods before deletion, there is a case for only keeping

deprecated methods for a short time, if at all (Google Guice was noted as not

using deprecation patterns at all).

Sawant et al. followed up this quantitative study by interviewing Java de-

velopers who were involved with API maintenance [Sawant et al., 2018]. They

found that about half of API producers will usually remove features two or more

releases after deprecation. From the study, it seems that developers are reluc-

tant to remove deprecated features - only 25% of respondents said they always

will seek to remove a deprecated feature eventually. It is likely that this lack

of follow through with regard to removing deprecated features contributes to

developers often not updating away from deprecated methods.

Hora et al. followed on from the previous study by Robbes et al. by look-

ing more widely at how API changes affect projects in the Smalltalk (Pharo)

ecosystem [Hora et al., 2015]. They found further evidence that deprecation

strategies work in that ecosystem, but also that it takes some time for devel-

opers to respond to changes - a month on average. They also found that in all

analysed cases of projects, clients were using the internal API of dependencies,

causing problems (as internal APIs are not intended to stay stable)10. Finally

they found that the reactions to API changes can be partially automated. The

idea of automated refactoring to manage breaking updates is discussed further

in Section 3.6.

Bogart et al. studied the weighing up of the relative costs of breaking APIs

among upstream developers through a series of developer interviews, by looking

at three ecosystems with very different philosophies on change - Eclipse (Java),

CRAN (R), and npm (JavaScript) [Bogart et al., 2016]:

• Eclipse developers - predictably as major Java projects - focused strongly

on backwards compatibility, including using sophisticated tools such as

10This is made possible by the lack of visibility modifiers in Smalltalk allowing a compiler

to enforce encapsulation principles - a shortcoming of a number of common languages.

34

API Tools11 to compare APIs in an update and spot binary and source

incompatibilities. They engage in simultaneous releases across the ecosys-

tem once a year, with minor updates in between. They were willing to

accept large amounts of technical debt in order to keep backwards com-

patibility, and several interviewees cited duplicating classes and interfaces

to allow for changes to be made while still keeping the old versions avail-

able for backwards compatibility purposes. Another cited example was a

method that had been deprecated for 11 years and still was not removed.

Note that we do not study the Eclipse ecosystem directly in this work,

but the Maven ecosystem (which we do study) overlaps with the Eclipse

ecosystem in terms of tooling, developers involved, and programming lan-

guages served.

• CRAN developers placed a large emphasis on forewarning downstream de-

velopers that changes would need to be made in their projects within the

coming fortnight or month. In this way downstream and upstream changes

are synchronised and breaking updates are closely managed, but at a sig-

nificant effort for both sets of developers. Daily manual and automated

checks (using unit and integration tests) are done to ensure consistency

throughout the ecosystem between the newest releases of each project.

In this way, the ecosystem as a whole remains stable, but closely con-

trolled. In CRAN, new versions must have a higher version number than

the version they replace, so parallel development is not supported in this

ecosystem - delaying responses to breaking updates is not a viable option

by design.

• Out of the three ecosystems, npm developers most value moving fast. As

such, breaking changes are seen as less problematic than in the previous

two ecosystems, and the developers are willing to make breaking changes

as necessary to fine-tune their APIs. The developers in this ecosystem

emphasised the role of semantic versioning in signalling breaking changes

to downstream developers. In order to lower the burden of managing

change on downstream developers, parallel development is common in

npm, with a quarter of the 100 most starred projects on GitHub having

released maintenance releases for old major versions, acknowledging that

11https://www.eclipse.org/pde/pde-api-tools/

35

many downstream developers have stayed on an old major version to delay

adjusting to the breaking updates introduced in the new major version.

The above highlights the strategies that upstream developers may employ to

manage breaking changes. Maintaining old interfaces (leading to duplication),

using parallel releases (to allow downstream developers to delay updating), col-

laboratively planning new releases together with downstream developers (such

as in CRAN and Eclipse), and communicating with downstream developers

(through use of email lists, forums, GitHub feeds, or documentation of what

methods to change to) are all potential strategies to mitigate the negative im-

pact of breaking updates.

Across ecosystems, the primary reason for introducing breaking updates

from an upstream developer’s perspective was due to fixing technical debt,

rather than bug fixes or efficiency reasons (although these were sometimes the

concern). Bogart et al. suggested that this is because the developers have

thought about this issue in depth - technical debt is something they are faced

with on a daily basis, and changes must be thought out in detail before imple-

mentation [Bogart et al., 2016].

3.3.4 Web APIs

Up until now, this chapter has focused on statically linked APIs - dependencies

that can be downloaded as a local copy and run on the same machine as the

downstream project. This downloaded dependency remains constant until such

a time as the downstream developer chooses to update to a new version, or the

package manager automatically downloads a new version such as the declaration

allows. There is a second way of linking to the API of a dependency though -

using web APIs such as Google Maps. Instead of downloading the dependency,

the downstream project links to the upstream project remotely, by sending

HTTP requests to a remote server where the upstream project is being hosted.

The difference between web APIs and locally available dependencies could be

considered similar to serverless architecture versus traditional architectures as

the infrastructure requirements in both web APIs and serverless architectures

are abstracted away, simplifying the process but at the cost of losing a measure

of control.

This represents a paradigm shift in dependency management - the depen-

36

dency used are almost exclusively the newest version in web APIs. Some cases

involving paid APIs offer multiple versions, but this is the exception rather

than the rule. For those that do not offer the older version of APIs, whenever

breaking changes are implemented, the downstream developer must immedi-

ately react - the stalling tactic of remaining at an older version is not possible.

Espinha et al. studied how the Google Maps, Twitter, Facebook and Netflix

web APIs evolved over time [Espinha et al., 2014]. Several interesting points

emerged out of that study. First, deprecation policy varied significantly from

project to project. The Netflix and Twitter APIs did not have a deprecation

policy, meanwhile Facebook pushed breaking changes every three months, and

Google had a one year deprecation policy that in some cases stretched out to

over three years - in the case of Google deprecations, many developers left it

until the last possible moment to upgrade. Communication between upstream

and downstream developers was discussed in detail in this study - much like in

Section 3.3.3, communication was seen as playing a key role in helping devel-

opers to stay up to date with breaking changes. Requiring an API key12 (and

therefore an email or other contact information) in order to use the web API

allowed upstream developers a method of communicating upcoming changes to

the downstream developer - this system gives an upstream developer more in-

formation about who the downstream developers of a project are than what is

generally available to upstream developers. Despite the differences with stan-

dard dependencies and the requirements to stay completely up to date with web

APIs, many of the strategies are still the same - keep good lines of communica-

tion between upstream and downstream developers, unit test the external APIs,

and keep the boundary between internal logic and the external API small.

3.3.5 Summary

Breaking updates happen regularly in projects, even during minor or micro

updates, although these do not always break client code. For an upstream de-

veloper, communicating with downstream developers about upcoming breaking

changes is helpful, such as through forums, Twitter or by deprecating features

before removal. When deprecating features, the research recommends making

documentation that informs how downstream developers should respond to the

12An API key is a token that a developer is issued upon registering for the API service

which allows the upstream project to monitor and restrict usage to client projects.

37

change, and that this should be followed up by a complete removal within a pe-

riod of a few months to avoid new calls being made to the deprecated method.

For downstream developers, when including a new project as a dependency is

advantageous, including unit tests for the API to check for contract changes

(in terms of syntax or behaviour) is recommended, as is using design patterns,

such as adapters, to limit the size of the boundary between the internal logic

of a programme and external logic. Active monitoring of upstream dependen-

cies and continuous integration can allow downstream developers to be alerted

to breaking updates more quickly, so can form part of an effective dependency

management strategy. Moving forward, several sources have called for the de-

velopment of health metrics that allow developers, at a glance, to gauge a de-

pendency’s activity and history of breaking changes, which will allow developers

to make informed decisions when choosing dependencies.

From here, the chapter moves on from compatibility issues to surveying the

state of dependency management and what practices have been observed across

the industry.

3.4 Dependency Graphs

It is normal for most projects to have dependencies. When a dependency itself

has dependencies, this creates a chain of transitive dependencies, all of which can

in some measure affect the end project. To visualise these connections between

projects, a dependency graph is used. The dependency graph is an abstract rep-

resentation of project dependencies within an ecosystem. The topology of each

graph differs by ecosystem, but generally consists of deep structures (represent-

ing long chains of transitive dependencies) containing a number of dominating

nodes (representing a project that many others depend on).

Dependency graphs are complex and often contain dominant nodes - projects

depended on directly or transitively by a large number of other projects (as seen

in Figure 3.1). Removing any of these projects which form dominant nodes

would cause a significant portion of the ecosystem to fail (such as the infamous

left-pad incident in npm, whose removal caused thousands of npm builds to

38

fail13). Kikas et al. studied the dependency graphs of three major ecosystems

- JavaScript, Ruby, and Rust [Kikas et al., 2017]. They found that over two-

thirds of Ruby projects and over half of JavaScript projects indirectly depend

on a single dependency, and that in JavaScript, transitive dependencies have

rapidly grown, with the number of transitive dependencies growing 60% in a

single year. The study mused that JavaScript has more transitive dependencies

than the other ecosystems (a mean of 55 transitive dependencies per project),

but that this may occur because the npm dependency resolution model allows

multiple versions of the same project to be included through transitive depen-

dencies. Decan et al. noted that, in order to lower the risk of dominating

packages breaking a large portion of the ecosystem, Cargo, NuGet and now

npm (since the left-pad incident) prevent packages from being removed out of

their respective ecosystems [Decan et al., 2018].

Decan et al. [2018] studied the topology of dependency graphs in seven

ecosystems: Cargo, CPAN, CRAN, npm, NuGet, Packagist, and RubyGems.

Like the work of Kikas et al., this study found a significant number of dominator

nodes within the dependency graph, with all package managers studied having

at least 40 projects that were transitively depended on by at least 5% of nodes

in the graph.

Several authors investigated the tooling aspect of precisely extracting and

representing dependencies from a dependency graph. This includes the work

of Lungu et al. [2010] for the Smalltalk ecosystem and German et al. [2007]

who worked on the Debian ecosystem. These works allow models to be built for

transitive dependencies, and to resolve version conflicts more elegantly.

Claes et al. [2018] conducted a study on the R and Debian ecosystems. Both

ecosystems seek to provide snapshots of packages that are compatible with each

other, working towards a stable graph. Unfortunately, in some cases, strong

conflicts exist that stop two components from being able to be used together

under any circumstance (meaning that only one of the two components can be

installed), an issue this study calls a problem of co-installability. They looked

13https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/ pro-

vides an interesting account of the incident - the left-pad project is 11 lines of straightforward

code used for string manipulation. This heavy reliance on dependencies for basic functionality

is completely at odds with some other ecosystems, such as R, where developers will actively

copy code between projects to avoid dependencies [Bogart et al., 2015]. It also highlights why

the suggestion to limit the number of dependencies in Section 3.3.2 is relevant.

39

Figure 3.1: An Example Dependency Graph from npm
https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d [Accessed 12 Apr 2020]

40

further into CRAN (R’s main repository) where daily continuous integration

checks are run by the repository to check for interoperability of the most re-

cent versions of projects in the repository (in CRAN, only the latest version is

available for download). This study found that over half the errors fixed by the

package maintainers were errors introduced via dependencies, an even higher

amount than the 33% reported by Zibran et al. [Zibran et al., 2011].

The Claes et al. and Zibran et al. studies show that developers have

a significant amount of work to keep their projects up-to-date. This may

shed further light on why developers are often so keen to avoid dependencies

[Bogart et al., 2015, Decan et al., 2018].

While our work focuses on direct dependencies, it is important to understand

this in the context of that these dependencies usually will have their own de-

pendencies, leading to additional transitive dependencies being downloaded and

consumed by the project. Understanding the topology of dependency graphs

gives a greater appreciation of why limiting dependency usage can have a large

impact on the overall complexity of dependency management. It also helps un-

derstand how version conflicts occur in the face of co-installability issues, along

with that version constraints may have to be ignored by the package manager

in order to create a successful build, an issue discussed in Section 2.2.

3.5 Dependency Management Trends

This section discusses the trends in dependency management from the perspec-

tive of downstream developers. We analyse the literature around declaration

patterns (which can also be considered a version constraint in that they can

limit the potential versions chosen). Because there are often constraints on the

versions chosen, dependencies can get out of date, a phenomenon called techni-

cal lag. We consider how prevalent technical lag is, outline its cost in terms of

security vulnerabilities, and if there are specific ways in which developers act to

reduce this lag in the form of updates.

This section directly relates to our research in Chapters 4 - 7. Where ap-

plicable, there have been connections made between what has been studied

previously along with where our work lies within the field.

41

3.5.1 Version Constraint Trends

Prior to our work in Chapters 4 and 5, there had been little related work into

the types of version constraints that are used in different package managers.

Since our publication [Dietrich et al., 2019], there has been a second group of

work that has considered dependency declarations and how they change over

time.

Decan and Mens studied four package managers, also using the libraries.io

dataset - Cargo, npm, Packagist and Rubygems - in order to understand seman-

tic versioning declaration choices [Decan and Mens, 2019]. They analysed five

years of data (2013-2018) and considered how declaration styles changed over

time. They grouped the declarations in one of three ways:

• Restrictive - Considered fixed in this study, along with ranges that form

a proper subset of a micro or minor range.

• Semver Compliant - Considered micro or minor ranges in this study (note

that custom ranges that are semver compliant would be considered com-

pliant, unlike in our work).

• Permissive - Considered open ranges by this study, or ranges that are more

permissive than minor ranges.

One result they found was that pre-1.0.0 releases are generally permissive,

indicating that developers recognise and accept the risk of these pre-release de-

pendencies, and also that Cargo had a very high proportion of these versions

compared with other studied package managers (over 70% vs 20%)14. They also

checked for how semver compliance was trending over time, finding a significant

increase in semver-compliant declarations across all four package managers, with

between 30-40% of all declarations changing to being semver compliant over the

studied time frame. In Cargo, almost all declarations were initially permissive,

and then within a space of months, went to being almost all compliant15. Fi-

nally, Decan and Mens found anecdotal evidence of developers varying their

14Interestingly, the proportion of pre-1.0.0 versions in npm has decreased dramatically over

the past years, which may be due in part to npm recommending projects to start versions

only at 1.0.0 as discussed in Section 2.1.
15This was due to the package manager no longer supporting the Cargo any classification,

‘*’, with a strong recommendation to move to semver-compliant syntax - a good example of

how a package manager shapes an ecosystem’s behaviour with its policies.

42

declaration strategy based on a dependency’s reputation of maintaining semver

compliance, using lodash and underscore.

3.5.2 Technical Lag

Technical lag is a term used to measure how far out of date dependencies

are [Gonzalez-Barahona et al., 2017]. It can be considered an analogue of tech-

nical debt for its ability to cause decreased quality and increasing complexity

to update dependencies within a project. There had been a handful of small-

scale studies quantifying lag in specific ecosystems, such as a subset of Maven

projects, or across npm. Zerouali et al. studied technical lag in npm (including

for transitive dependencies) [Zerouali et al., 2018].

Raemaekers et al. studied the version and time lag on 2,984 dependency

updates from projects on the Maven repository, finding that most projects did

not have large amounts of technical lag - the median project had no major,

minor or micro lag, but that minor and micro lags were present above the 75th

percentile of projects, i.e., at least a quarter of projects contained minor lag and

a quarter contained micro lag [Raemaekers et al., 2014].

Zerouali et al. also used libraries.io to quantify technical lag, focusing on

npm dependencies [Zerouali et al., 2018]. They found that the median technical

lag was one minor and three micro versions, and that much of the technical lag

was due to inheriting lag transitively. Zerouali et al., in further studies, showed

that javascript-based docker images generally included some lag, particularly in

micro versions [Zerouali et al., 2019a, Zerouali et al., 2019b].

While there have been a few studies on the quantity of technical lag which

we build on, our work represents the first large-scale evaluation of technical lag.

3.5.3 Security Vulnerabilities of Technical Lag

There have been several studies aimed at understanding the correlation between

technical lag and security vulnerabilities. While technical lag has multiple costs,

including a lack of bug fixes, feature improvements and efficiency improvements,

security vulnerabilities are among the most urgent reasons to update, and are

the easiest to quantify, which is perhaps why this particular aspect of technical

lag costs has been investigated the most.

Developers are often not aware that their dependencies are outdated and

43

contain security vulnerabilities. Kula et al. analysed over 2,700 library depen-

dencies from GitHub projects, finding that 81.5% of the studied projects had

outdated dependencies, and that 69% of interviewees were unaware of vulnera-

ble dependencies in their projects [Kula et al., 2018]. So, while developers may

be consciously choosing to delay updating dependencies at times, there are other

times where they are simply unaware that updates are available, a finding that

agrees with the discussion in Section 3.3.2. Section 3.6 presents some tools that

help bridge this information gap, so developers can make conscious and timely

decisions about whether to update or delay updating dependencies.

Technical lag has a major effect on project vulnerabilities. Lauinger et al.,

using 72 libraries harvested from GitHub, pinpointed technical lag as a major

source of security vulnerability, and that libraries included transitively are more

likely to be vulnerable. They found that the time lag in projects depending on

these libraries can often be measured in years, which increases their security

vulnerabilities [Lauinger et al., 2018]. This increased vulnerability has a major

effect - Cox et al. found in a study of 74 projects that projects using outdated

dependencies were four times more likely to have security issues than those with

up-to-date dependencies [Cox et al., 2015].

One piece of good news about security vulnerabilities is that not all secu-

rity vulnerabilities in dependencies will cause problems in client code. This

mirrors Section 3.3, where only a portion of breaking changes affecting down-

stream projects. Zapata et al. found in an npm based study that 73% of

projects did not use the vulnerable functions inherited from their dependen-

cies [Zapata et al., 2018].

Keeping dependencies up to date may result in most vulnerabilities being

avoided. Pashchenko et al. [2018] studied the impact of vulnerabilities in open-

source projects, along with selected commercial SAP products to cross-reference.

They noted that many, but not all, vulnerabilities can be fixed by simply up-

dating dependencies. Derr et al. studied library dependencies in Android apps,

and found a large number of outdated versions of libraries being used that could

be easily upgraded - in many cases the outdated versions had known vulnera-

bilities [Derr et al., 2017], echoing the results of Pashchenko et al.

44

3.5.4 Update Strategies

Several studies have sought to find out at what points developers update lagging

dependencies, and if there are specific triggers that cause developers to update.

Decan and Mens found that declarations are updated every 3-7 versions (this

result is higher than our and other studies), with more restrictive declarations

and pre-1.0.0 versions being updated more regularly than older, more flexible

declarations [Decan and Mens, 2019].

Cox et al. showed that projects are most likely to make micro updates

[Cox et al., 2015]. In the instance that downstream developers are not updating

their declarations regularly, it is likely that they will have a relatively large

amount of micro lag compared to minor or major lag.

Kula et al. investigated latency when adopting library releases and found

that developers were more likely to adopt updated versions later into a project’s

lifecycle [Kula et al., 2015], which according to Espinha et al., generally have

more stable APIs [Espinha et al., 2014]. They also found that the trend is for

developers to automatically go to the newest version when introducing new

libraries.

Raemaekers et al. studied the version and time lag on 2,984 dependency

updates from projects on the Maven repository, finding that major changes

to dependency versions were usually included in major updates of a project

[Raemaekers et al., 2014]. They also checked if the presence of breaking changes

influenced lag, finding small but statistically significant evidence of this be-

haviour, where developers will avoid updating due to the existence of breaking

changes.

Roseiro Côgo et al. looked at backwards changes to version declarations in

the npm package manager, explaining that downgrades were caused by either

moving away from buggy versions to a stable release, or as a preventive mea-

sure, going from a version range to a fixed version [Roseiro Côgo et al., 2019].

They found that most downgrades happened to only one dependency at a time,

indicating that this is usually done as a fix rather than a policy change, and

that the median downgrades were significant, skipping back a major, minor and

3 micro versions.

With fixed declarations, there is mixed evidence showing that developers are

being conscious with their updating strategy. Bavota et al. [2015] studied 147

Apache projects which collectively had 1,964 releases, finding that projects do

45

not automatically update dependencies, but make a conscious decision whether

the update works for them, and only upgraded about 60% of the time. When

the dependency has bug fixes, it is more likely to be adopted, but they also

noted that in most cases, changes to the dependency did not require large code

changes to the downstream project.

Salza et al. studied updating patterns in mobile apps [Salza et al., 2018].

They found that only 2% of commits updated dependencies, and up to 70% of

dependencies were out of date. Interestingly, they found a strong correlation

between developers regularly updating their dependencies and their mobile app

being highly-rated. While it is not possible to say if there is a causative relation-

ship between the two, it does agree with other studies that have shown updating

dependencies to be an effective strategy for reducing security vulnerabilities and

bugs (a correlation discussed in [Linares-Vásquez et al., 2013]).

In general, there is a leaning towards developers updating if the update is

simple, such as updating to a new micro version, and putting off updates that

introduce breaking changes. It is from this basis of (mostly small-scale) studies

that we investigate further the types of updates that developers perform across

package managers.

3.5.5 Summary

There have been various small-scale studies that have considered how prevalent

technical lag is in projects. In most studies, slightly less than half of projects

were out of date, with most being behind by a single major or minor version,

or a few micro versions. Having technical lag has been pinpointed as a major

security vulnerability by several studies listed in Section 3.5.3, and in many

cases studied, developers were unaware that they had been using an outdated

and vulnerable dependency. There is a dearth of literature comparing technical

lag to bugginess in programmes - the only hint that there may be a correlation is

a study showing a strong correlation between low technical lag and high ratings

in mobile apps.

Updates tend to occur sporadically, bringing projects up to date in most

cases. It has been noted that more restrictive version constraints lead to devel-

opers updating more regularly - an interesting but unsurprising conclusion. It

has also been noted that developers update mature dependencies more regularly,

a practice that correlates with mature dependencies having more stable APIs.

46

There has also been some evidence that developers will delay major updates

or updates with known breaking changes until a major revision of their own

project.

3.6 Automating the Update Process

Previous sections have discussed that developers often delay updating their de-

pendencies. This is mainly due to the fact that updating dependencies is a task

that must be done manually, and at times can require a significant amount of

effort. Lowering the costs of updating dependencies by automating this process

has been the topic of several studies over the past decade, and holds promise

for reducing the workload involved in the update process.

Several tools are available that assist with automating the process of up-

dating declarations as needed. Greenkeeper16, Dependabot17, and Dependen-

cies.io18 are some of the services that sit within a continuous integration ser-

vice or as a git repository plugin, sending pull requests to update declarations

whenever dependency updates occur. This allows developers to test the branch

containing the dependency update (some services build the project and run its

regression tests automatically to further automate the process), and merge it if

there are no issues. Automating this process gives instant feedback to develop-

ers when dependency updates have occurred, meaning that developers can at

least know that the dependency update exists and decide if they want to update

immediately or delay the update. Another tool, Snyk19, works in a similar way

to alert developers of security vulnerabilities in their dependencies. For both

types of tools, the emphasis is on providing a quick transfer of information,

solving the issue that researchers have pointed out about developers often being

unaware of updates or vulnerabilities.

There are a number of tools that can detect breaking API changes, including

Clirr20 (widely used in research but not updated since 2005) and Revapi21 for

16https://greenkeeper.io/
17https://dependabot.com/
18https://www.dependencies.io/
19https://www.snyk.io/
20http://clirr.sourceforge.net/
21https://revapi.org/

47

Java, or NDepend22 for .NET. In Section 3.3.3, PDE API Tools23 was also dis-

cussed as a tool used by the Eclipse community which does a similar job. These

are helpful for detecting API changes, and pinpoint where developers must look

closely at the dependency updates, and in some cases can be plugged into tools

such as Maven, Visual Studio or cloud-based platform tools. This integration

with the automated build cycle is desirable - making the build process as au-

tomated as possible [Humble and Farley, 2010], and is considered best practice

within DevOps. Jezek and Dietrich benchmarked nine API compatibility tools

against a suite of API breaking changes, finding that there are now some highly

usable and accurate tools available [Jezek and Dietrich, 2017]. For all API com-

patibility tools, it should be noted that they only focus on API changes, and

ignore that semantic changes within projects can also be breaking, so they only

cover one aspect of compatibility.

Foo et al. report on an API incompatibility checker that uses static analy-

sis [Foo et al., 2018]. A statically constructed callgraph is used to detect deep

changes that can effect compatibility. The tool works for the Maven, PyPi, and

RubyGems ecosystems, and the authors report that based on the experiments

with the tools, 26% of library versions are in violation of semantic versioning.

The authors caution that this analysis suffers from the imprecision of the static

analysis being used (VTA) though, with a large amount of false positives being

associated with this method.

According to Dig and Johnson [2006], over 80% of breaking changes are

refactoring based. As such, they recommended that a refactoring-based tool be

created to limit the developer workload when updating, a tool called Catchup,

created by Henkel and Diwan [2005], which records refactorings, and create a

tool that takes the refactorings and adapts client code. Subsequently, Cossette

and Walker performed a study to test the upgrade techniques that had been

previously suggested by literature and found that only about 20% of refactoring

changes would be automated correctly. So, while refactoring is a significant

source of the work required for updating client code, it is not trivial to perform

correctly.

22https://www.ndepend.com/
23https://www.eclipse.org/pde/pde-api-tools/

48

3.7 Summary

Dependency management is an important part of managing highly effective

software projects. With such large volumes of dependencies being used in an

average project, and many more added into the project via transitive require-

ments, there is a strong potential for errors and issues that the developer must

spend time monitoring and fixing as they arise.

Backwards compatibility is a major concern when considering updating de-

pendencies. There are four main contracts which a dependency must uphold

for backwards compatibility to be ensured - syntactic contracts (which we broke

down into API stability and binary compatibility sections), behavioural con-

tracts (pre- and post-conditions which define the semantics of a code snippet),

synchronisation contracts and quality of service contracts. Syntactic contracts

are the type that is most often considered - when there are violations, it will

either cause compile time errors or run time errors. Checking that these con-

tracts hold is also something that is within the reach of automation, with API

comparison tools and automatic refactoring tools being used or in development.

Behavioural contracts are much harder to reason about and spot, particularly

as few languages enforce the pre- and post-conditions needed for tools to au-

tomate checks. Yet breaking behavioural contracts is problematic, leading to

issues that are difficult to debug.

We discussed declarations and how they are version constraints - limiting the

possible dependency versions that can be chosen to a subset of the versions avail-

able. Increasingly, ecosystems are moving to semver-compliant ranges, which

provide a mixture of automated dependency updates and some protection from

breaking updates - assuming upstream developers respect semver guidelines and

can identify all types of breaking changes. Several studies highlighted in this

chapter note, however, that this does not yet happen industry-wide and is, re-

alistically, very complicated. Yet, at this point, both open ranges and fixed

declarations are still widely used in some ecosystems, a key finding from Chap-

ters 4 and 5. Understanding the exact reasoning for why developers choose

specific styles of version constraints is an open question, with a few hints being

found in research in Section 3.5. Chapter 6 looks closely at why developers

choose specific versioning styles.

Keeping dependencies up to date and free of technical lag is a proven way to

49

reduce security vulnerabilities and fault-proneness. All non-open-range decla-

rations must be updated from time to time in order to stay up to date. Current

research points to updates happening every handful of published versions, but

this varies wildly by ecosystem, with a study suggesting as few as 1 in 50 ver-

sions of mobile apps update dependencies. There have been some tools that

help developers know when new dependency versions are available and nudge

them in the direction of updating, which has helped to close the information

gap that earlier research noted was a partial cause of technical lag. In general,

we can say that small amounts of technical lag exists in the average project,

but that it incurs major costs. Chapter 7 examines the topic of lag and updates

in great detail, providing the first large-scale study across most major package

managers.

50

Chapter 4

Prelude:

Declaration Classifications

using GitHub

In this chapter, we discuss a pilot experiment to ascertain the relative frequency

of fixed declarations versus flexible declarations. It produced interesting results

which led to further investigations in the form of a developer survey in Chap-

ter 6, and this study was extended with a larger dataset which covers more

package managers, as discussed in Chapter 5. Since these results were used to

cross validate the results from Chapter 5’s experiments, this chapter has been

included, in a very short form, as a prelude to the main research chapters that

follow. The goal of this study was to answer the following question, which we

expected would lead to further questions:

RQ1: What is the overall proportion of fixed vs flexible dependency

declarations in a given project?

4.1 Methodology

In order to gather the initial data required to find out how dependencies are

declared, projects were harvested off GitHub, the largest repository of open

51

source projects available online. This first dataset was custom-built, gathered

by scraping projects from GitHub over a two month period at the beginning

of 2018, and consisted of all publicly visible projects that used npm, Maven,

Gradle or Ant as their package managers at that time.

4.1.1 Custom GitHub Dataset

At the time of the study, we were not aware of any pre-made data sets containing

dependency information, so a custom-built dataset was created by collecting

projects from online repositories and extracting the declaration strings needed

to answer the research question.

Gathering data by scraping GitHub or other online repositories is a common

methodology, and Kalliamvakou et al. [2014] discusses the pitfalls of scraping

GitHub projects. Some of the points from that paper were not applicable here,

however, there were a few points which will affect the data and should be kept

in mind:

• Most projects have very few commits.

• Many projects are no longer under active development.

• Some projects are personal projects - for example using GitHub as a

backup only.

While these do not necessarily invalidate the data from this dataset, the

dataset gathered for this study includes all available projects that used our tar-

get package managers - everything from small-scale, personal projects right up

to highly influential, open-source projects. For our analysis, projects without

dependencies have been excluded (after reporting how many do not have de-

pendencies) - most of these are small projects. Projects that are forked (and

therefore are potentially duplicated projects) have also been excluded, but all

others have been included by default.

The scraping tool targeted open source projects using the npm, Gradle,

Maven or Ant package managers. When such projects were found, the config-

uration files for that package manager found in the master branch were down-

loaded - this generally represents the most recent version of the project. The

Ant files were later discarded from the dataset, as those with dependency dec-

larations (using Ivy) were found to be a very small overall proportion of the

52

total projects, indicating that most projects using Ant used dependencies lo-

cated locally on file systems rather than using online fetching methods required

for flexible declaration patterns.

Package Manager Metadata File(s) Parsing Method

npm package.json Document Tree

Gradle build.gradle, settings.gradle Custom parsing algorithm

Maven pom.xml Document Tree

Table 4.1: Configuration Files and Parsing Methods.

After harvesting the configuration files from GitHub, the next step was to

parse the files to extract the declaration strings. The configuration files listed in

Table 4.1 were parsed according to each package manager’s syntax. Maven and

npm files were parsed using an object tree model, allowed by their XML and

JSON file structures (misformed files were discarded). This allowed declarations

to be extracted cleanly, with the complication that Maven files allow for vari-

ables to be where declarations are needed. This involved a recursive resolution

strategy, as it is possible for multiple levels of indirection to exist, but a near

complete variable resolution count was achieved.

Gradle was much more difficult to parse, as its configuration files are written

in the Groovy language, rather than a structured markup file. The method

chosen to extract declaration strings was a manual traversal combined with

regular expresions, which proved more error-prone - sampling indicated that 3%

of Gradle files were parsed incorrectly using this method. It was subsequently

found that Gradle commonly used submodules in its projects, so submodule

configuration files (build.gradle and settings.gradle) were gathered at a

later point, about three months after the initial files. This is a threat to the

validity of the data, as in some cases, the root configuration file will be from a

different published version than the submodule configuration files.

The submodule files in Gradle often contained variables that were needed

for resolving Gradle declaration variables. It was also possible for variables to

exist in plugins linked to Gradle, so some variables were not able to be resolved.

The process for resolving the variables was done in a similar way as Maven,

except that the searching process was more involved due to the less structured

53

nature of the files. After multiple iterations of validation and improvements,

about 2.5% of Gradle variables remained unresolved.

Overall, four million projects were gathered and analysed for this dataset,

providing a useful comparison for later results. It also represents a wider dataset

than used in subsequent chapters.

4.1.2 Analysis

Once the version declaration data was collected, we classified each version in one

of five ways, based loosely on semantic versioning principles but being flexible

enough to include other styles of version ranges:

• Fixed version - only 1 single version can be accepted

• Micro range - multiple versions accepted but only within the same minor

range

• Minor range - multiple versions accepted but only within the same major

range

• Major range - multiple versions accepted within at least two possible major

versions

• Other - examples include urls or local files, generally equivalent to fixed

versions

These categories are loosely based on semver, but differ slightly from the

categorisations used in later chapters. In particular, micro ranges and minor

ranges in this chapter are subsets of micro and minor ranges in the following

chapters, i.e.,

microthischap ⊆ microlaterchaps

minorthischap ⊆ minorlaterchaps

Two examples are shown of this in Table 4.2 where an npm micro range

looks like 1.7.3 - 1.7.6 (excluding any micro updates that come after 1.7.6)

and a minor range looks like 1.7.3 - 1.9 (where any minor updates after 1.9

are out of range).

54

When further aggregations are used, micro, minor and major ranges map

to flexible declarations. The other classifications are ignored except when

considering total numbers of dependencies, as they do not adhere to the fixed

versus flexible dichotomy that we are investigating in this study.

Package Manager npm Gradle Maven

Fixed Version 1.7.3 1.7.3 1.7.3

Micro Range 1.7 1.7.3+ [1.7.3, 1.8)

1.7.+ 1.7.+

1.7.*

˜1.7.3

1.7.3 - 1.7.6

Minor Range 1 1.7+ [1.7.3, 2)

1.+ 1.+

1.*

ˆ1.7.3

1.7.3 - 1.9

Major Range * 1+ [1.7.3,),

+ + [1.7.3, 2.5.0)

<1.7.3 latest

>= 1.7.3

1.7.3 - 2.4.8

Table 4.2: Example Patterns Mapped to Categories

Regular expressions were used to categorise the string version declarations,

attempting to match the version declarations to one of the example patterns

noted in Table 4.2. In some cases, this became complicated due to package

managers having several possible declaration syntaxes - with npm there were 19

different classifications used, which have been mapped to the above 5 categories

for reporting purposes. For syntactic patterns where multiple possible classi-

fications exist (e.g. the range syntax in Maven), the versions were extracted

and programmatically examined to determine if the declaration was fixed, or a

micro, minor or major range.

55

4.2 Results

RQ1: What is the overall proportion of fixed vs flexible dependency

declarations in a given project?

Table 4.3 shows the number of projects that contain dependencies, which

ranges from 73% of npm projects to almost 92% of Gradle projects - those

without dependencies are filtered out of the study.

Projects Dependencies Exist Fixed Flexible

npm 2 575 654 1 883 482 (73.1%) 514 154 (27.2%) 1 788 206 (94.9%)

Gradle 851 981 782 729 (91.8%) 748 282 (95.6%) 114 386 (14.6%)

Maven 746 562 623 406 (83.5%) 620 587 (99.5%) 15 155 (2.4%)

Table 4.3: Summary of Declarations by Package Manager

Of the projects that do use dependencies, Table 4.3 shows how many include

fixed or flexible declarations. Where a project uses both, it is counted in each

column. There is a sharp divide between the npm package manager and the

JVM ecosystems, with Gradle and Maven extremely likely to use fixed versions,

while almost all npm projects use some flexible declarations. There are also a

significant amount of projects that use both - roughly one in five npm and one

in ten Gradle projects will use both fixed and flexible version declarations.

Fixed Micro Minor Major Total

npm 1.17 1.03 5.58 0.39 8.21

Gradle 5.42 0.05 0.15 0.05 6.84

Maven 8.28 0.003 0.005 0.036 8.33

Table 4.4: Mean Dependency Declarations per Project

The mean sum of direct dependencies are similar in all three package man-

agers studied. Table 4.4 agrees with the previous findings that npm projects

generally use flexible declarations while Maven and Gradle predominantly use

fixed declarations. However, npm uses a lot more fixed declarations overall than

the other package managers use flexible declarations, indicating that npm devel-

56

opers may switch between the two styles more readily. Gradle has a large num-

ber of other classifications - averaging more than one declaration per project.

The following results look further into the usage of flexible declarations,

filtering projects that do not use flexible declarations.

Projects Micro Ranges Minor Ranges Major Ranges

npm 1 788 206 369 758 (21%) 1 557 683 (87%) 147 885 (8%)

Gradle 114 386 26 409 (23%) 76 373 (67%) 21 681 (19%)

Maven 15 155 1 277 (8%) 1 387 (9%) 12 987 (86%)

Table 4.5: Flexible Styles Used in Projects

Flexible declarations can be broken down into micro, minor and major

ranges, as described in Section 4.1. Table 4.5 shows the proportion of projects

(containing flexible declarations) that use each type. Semantic versioning prin-

ciples recommend developers use minor ranges - maximising the opportunity

to receive automatic updates while (hopefully) avoiding breaking updates - or

micro ranges as a safer option given that semantic versions are not always up-

dated correctly. npm developers seem to follow this recommendation, with 87%

of npm projects that use flexible declarations contain minor ranges, and 21%

contain micro ranges. Gradle developers who use ranges also follow this rec-

ommendation, pointing to an overall awareness of semver principles within its

ecosystem. Semantic versioning recommends that developers do not use major

ranges, as by definition they allow breaking changes. The few Maven projects

that use flexible declarations tend to ignore this advice - 86% of them include

major ranges.

Projects Mixes Ranges Inc Fixed

npm 1 788 206 14.6% 23.8%

Gradle 114 386 8.3% 89.3%

Maven 15 155 2.9% 81.4%

Table 4.6: Do Projects Use Multiple Declaration Styles?

Initial results showed that developers will sometimes use more than one

declaration style (micro, minor, major, fixed) in a given project. Table 4.6

57

looks at how common it is for projects to mix flexible declaration types, and

those that use both flexible and fixed declarations together. While most Maven

users stick to one specific flexible style (generally the Maven keyword latest), it is

somewhat more common for Gradle and npm developers to mix and match, with

8% and 15% of projects using more than one type of flexible style respectively.

A significant number of projects using flexible declarations also use fixed

declarations. In Gradle and Maven, over 80% of projects containing flexible

declarations will also contain fixed declarations. That said, Gradle and Maven

projects only include flexible declarations 15% and 2% of the time respectively,

so the average project in both package managers will likely contain only fixed

declarations.

Based on these initial results showing npm having substantially more flexible

declarations, we hypothesise that npm developers, who come from a fast-moving

web background, are more comfortable with risk than Gradle and Maven devel-

opers. This may also reflect a difference in the cost-benefit considerations faced.

Websites (npm’s main use case) can be changed quickly, as there are copies of

the programme in relatively few places - usually under the developer’s direct

control. When a problem is discovered, the fix affecting all users can be rolled

out in a matter of minutes. In the case of mobile apps (Gradle’s main market)

or desktop applications, once a specific version has been downloaded by a client,

they may be slow to update, or may not update at all. This simple difference

in distributing updates could be a contributing factor of why some ecosystems

are more risk-averse than others.

Another factor that may affect declaration usage is convenience. Both Gradle

and npm use shortcuts that allow micro and minor semver-compliant declara-

tions to be typed within seconds, as opposed to Maven’s verbose range notation.

On the other hand, Gradle and Maven both rely heavily on the Maven repository,

which generates code stubs containing fixed declarations that can be added to

the configuration files. If these code stubs are widely copy-pasted within these

ecosystems, this would influence the average project to lean heavily to fixed

declarations, potentially without the developer making a conscious choice to do

so.

The other interesting result from this initial experiment is the idea that

developers mix and match dependency declaration styles. It could be that

multiple developers work on a single project, each having a different style, or it

58

could be that the one developer working on this does not have a consistent style

themselves. A more interesting possibility, however, would be that developers

adjust their versioning strategy based on the perceived ‘trust’ that is associated

with the dependency’s history of backwards compatibility.

4.3 Summary

This pilot study reported in this chapter described the state of declaration

patterns for dependencies in three major package managers (npm, Gradle and

Maven), pointing to some interesting trends, in particular the strong division of

the use of semantic versioning principles and more generally fixed versus flexible

declarations between package managers, with npm users tending to use flexible

declarations, while Gradle and Mavem users primarily use fixed declarations.

The exploratory nature of this chapter created numerous questions, such as:

1. Do other major package managers also have quite distinct styles of declara-

tion usage from one another as observed between npm and Gradle/Maven?

2. What causes developers and ecosystems to adopt such distinct dependency

management strategies?

3. How often do developers use more than one declaration pattern on pur-

pose, and why?

4. How widespread is semantic versioning knowledge amongst developers?

Chapter 5 seeks to answer the first question with quantitative measures by

looking at the declarations developers use in a large-scale open-source dataset.

Chapter 6 focuses on the developer knowledge about semver and their usage

practices, by asking developers directly about questions relating to the second,

third and fourth questions.

59

Chapter 5

A Large-Scale Study on

Declaration Classifications

Many modern software systems are built on top of existing packages (modules,

components, libraries). The increasing number and complexity of dependencies

has given rise to automated dependency management where package managers

resolve symbolic dependencies against a central repository. When declaring

dependencies, developers face various choices, such as whether or not to declare

a fixed version or a range of versions. The former results in runtime behaviour

that is easier to predict, whilst the latter enables flexibility in resolution that

can, for example, prevent different versions of the same package being included

and facilitates the automated deployment of bug fixes.1

We study the choices developers make across 17 different package managers,

investigating over 70 million dependencies. We find that many package man-

1This chapter consists of a collaborative work between the author, supervisors (A/Prof.

Jens Dietrich, Dr. Amjed Tahir), and collaborators from University of Auckland (Dr. Kelly

Blincoe) and Victoria University of Wellington (Dr. David Pearce). The author’s contribution

is estimated at 20% of the overall work. Sections 5.2.1 - 5.2.4 have been added to provide

further background to the reader of the thesis, and other sections have been changed for this

thesis. The full work was published in the Mining Software Repositories (MSR) Conference

2019 [Dietrich et al., 2019], however the sections the author did not personally contribute to

have been removed, and the remaining sections have been edited to tie in with the wider body

of work. The developer survey the author undertook with A/Prof Dietrich (Chapter 6) was

published in conjunction with this study, however, logically it is presented as a stand-alone

component.

60

agers support - and the respective community adapts - flexible versioning prac-

tices. We see some uptake of semantic versioning in some package managers,

supported by tools. However, there is no evidence that projects switch to se-

mantic versioning on a large scale.

The results of this study can guide further tooling support for automated

dependency management, and aid the adaptation of semantic versioning in prac-

tice.

5.1 Introduction

One challenge now faced by software developers is deciding, for a given package,

on which version to depend. For example, one can depend upon a fixed version

of a given package (i.e. “use only version 1.2.2”) or on a version range (i.e.

“use version 1.2 or higher”). With fixed versions, builds are more determinis-

tic2, but critical fixes in later versions of the package will not be automatically

included [Derr et al., 2017]. In contrast, version ranges have the disadvantage

that builds can now fail if changes between versions are not backwards com-

patible [Dietrich et al., 2014, Raemaekers et al., 2017, Xavier et al., 2017]. On

the upside, version ranges allow the package manager to select the “best” ver-

sion with respect to some metric (e.g. the latest stable version meeting all

constraints). This means new versions which fix bugs, address security vulnera-

bilities, or improve performance are automatically included whenever a project

is rebuilt. Another benefit of version ranges is that the package manager can

handle packages that are included multiple times by intersecting all constraints

to find a single match, thereby preventing multiple inclusions of the same pack-

age. This problem has become exasperated in recent times as packages have

more and more (transitive) dependencies. While some techniques exist to sep-

arate those packages at runtime, such as the use of class loaders in OSGi3 or

JavaScript programming patterns to avoid conflicts in the global namespace

like jQuery’s noConflict()4, many systems are still prone to runtime version

conflicts and the DLL-hell-style bugs [Szyperski, 1999] resulting from them.

2Even when only fixed version dependencies are used, builds are not necessarily guaranteed

to be completely deterministic, e.g. a dependency may itself declare further dependencies using

ranges, therefore the transitive dependencies would not be deterministic.
3https://www.osgi.org/
4https://api.jquery.com/jquery.noconflict/ [Accessed 6 Apr 2020]

61

On the other hand, in order to correctly signal incompatible changes to

client projects, developers also must understand how incompatible changes be-

tween versions arise (as discussed in Sections 3.1 - 3.3, this can be complicated).

Packages are governed by multi-faceted contracts that are often only implic-

itly stated [Beugnard et al., 1999]. This may include API signatures, semantic

contracts (expressed informally or formally through pre- and post-conditions),

expectations on performance and resource usage, and non-technical aspects such

as licenses. For instance, API signatures are often considered as easy to reason

about but, even for well-specified, statically typed languages like Java, the situ-

ation is surprisingly complex: most developers don’t understand the compatibil-

ity rules [Dietrich et al., 2016], tools that try to detect incompatible evolution

are incomplete [Jezek and Dietrich, 2017], and incompatible evolution that can

break client packages is common [Dietrich et al., 2014, Raemaekers et al., 2017,

Haney, 2016]. Semantic contract violations present an even bigger challenge for

detection. For example, updating an API so that some parameter no longer

accepts null is not backwards compatible as it is strengthening a precondi-

tion, as it would previously allow some inputs that it now refuses. Whilst such

a violation could conceivably be detected using some form of non-null static

analysis [Ekman and Hedin, 2007, Male et al., 2008, Chalin and James, 2007,

Fähndrich and Leino, 2003]5, things are less clear for arbitrary contracts (e.g.

JML [Jacobs and Poll, 2001]). Of course, testing provides some capability here

[Claessen and Hughes, 2000] but, due to its inherent unsoundness, may easily

miss violations. Therefore, many issues caused by incompatible evolution of

packages may only be detected after deployment and, hence, can be particu-

larly damaging.

In practice, developers have to make trade-offs between those two strate-

gies, balancing the opportunities of optimised systems with the risks of in-

compatibility errors. Semantic versioning has arisen as a popular approach

for managing package evolution which uses structured versions of the form

“major.minor.micro” (see Section 2.1). The idea is to associate certain com-

patibility guarantees with changes to parts of this structure. For example, when

increasing the minor version of a package (e.g. 1.2.3 =⇒ 1.3.0), all changes

should be backwards compatible with previous versions at the same major level.

5Nullaway (https://github.com/uber/NullAway) and Checkerframework (https://

checkerframework.org/) are both widely used packages for null checking

62

In contrast, incompatible changes are only permitted between versions at the

major level (e.g. 1.2.0 =⇒ 2.0.0). The challenge for developers, however, lies

in correctly following this protocol. This is because (as discussed above, along

with in Section 3.3) incompatible changes are sometimes subtle and hard to

spot, even for seasoned developers. Likewise, there is limited tooling available

for checking adherence to the protocol (Section 3.6).

We are particularly interested in the adaptation of semantic versioning. That

is, given the above difficulties in sticking with the semantic versioning proto-

col, what do developers do? They might, for example, simply eschew semantic

versioning altogether in favour of fixed versions; or, they might throw caution

to the wind, and fully embrace semantic versioning despite the challenges, or

potentially use some other flexible declaration scheme other than semantic ver-

sioning. This study can be considered complementary to the study by Decan

and Mens [2019] (outlined in Section 3.5.1), who take a time-sensitive approach

that looks at how general declaration styles have changed over time in a subset

of package managers, in contrast with our focus on more fine-grained declara-

tion styles across more package manager, and how the number of dependencies

change over time. The aim of this study is to investigate which choices de-

velopers make across different package managers. Looking at different package

managers gives insight into the ecosystems of specific languages (e.g. Java versus

JavaScript) and language features (e.g. static versus dynamic typing).

More specifically, we (1) set out to capture the current practice regarding

how developers declare dependencies, and (2) we also investigate whether and

how developers change their approach as projects mature. This is of particu-

lar interest as it will provide some evidence about whether a certain approach

is working or not. Therefore, we ask the following research questions in this

chapter:

RQ1 How do projects declare dependencies?

RQ2 Do projects change their approach as they evolve?

These two questions together provide an overview of how common specific

declaration styles are, and an indication of how they are changing over time.

63

5.2 Methodology

In this section, the methodology used to acquire and analyse data is discussed.

We will discuss limitations and threats to validity within the subsections as

necessary.

5.2.1 Dataset Acquisition

We used the libraries.io dataset for this study, using the v1.2.0 (March 2018)

dump. The data set contains dependency data in CSV format that we imported

into a PostgreSQL database for further analysis and processing. In particular,

the dataset contains a dependencies table which has versioned dependencies

of packages to other packages. This table has 71,884,555 records with depen-

dency information for packages from 17 different package managers, listed in

Section 5.2.2.

For each project, the dataset contains information about each version, in-

cluding a publication timestamp, the repository where it was found, and im-

portantly for this study, the dependency declarations (saved as raw strings)

and the project name of the dependency for each version. Note that unlike

with the GitHub dataset from Chapter 4, Maven variables were not resolved in

the libraries.io dataset, leading to roughly 13% of declarations being classed as

unresolved. A comparison of results between the two chapters show that the

presence of these unresolved variables do not introduce noticeable bias into the

results.

Atom is a special case as it also allows users to specify dependencies to npm

packages. However, Atom packages are managed in a different repository6, and

we therefore decided to keep those packages in the data set.

5.2.2 Package Managers Covered

As we study dependencies in this work, and not all package managers deal

with dependency resolution, only a subset of the available package managers

were chosen. The dataset used in this study, libraries.io, contained 17 package

managers which supported dependency management. Table 5.1 provides an

overview of the package managers used.

6https://atom.io/packages [Accessed: 16 Jan 2019]

64

Package Manager Primary Language(s) Notes

Atom JavaScript Uses npm for dependency management

Cargo Rust

CPAN Perl

CRAN R

Dub D A successor of C++

Elm Elm Functional front-end language

Haxelib Haxe ActionScript successor

Hex Erlang

Homebrew Ruby Package installer for MacOS and Linux

Maven JVM languages Includes Gradle and Ivy

npm JavaScript

NuGet .NET languages

Packagist PHP See footnote7

Pub Dart Client-optimised for multiple platforms

Puppet Ruby Configuration management tool

PyPI Python

Rubygems Ruby

Table 5.1: Package Managers Used

As shown in Table 5.1, most major package managers are included in this

work, along with a variety of much smaller package managers. The table also

includes notes about some of the lesser known languages, for reference. Most

package managers focus on building projects, and have specific languages that

they work with - in most cases a package manager is tied to one specific language

or language family. For this reason, when talking about a package manager’s

community, we often refer to them as an ecosystem, a self-contained unit, distinct

from other ecosystems, that uses one language (or a few related languages), a

package manager, and a set of tools that work with those technologies.

Maven is unusual in that it combines several related JVM package managers.

It supports Maven, Gradle, and Ivy declarations as part of the same classifica-

7Packagist is Composer’s default repository - it has been listed as Packagist by the li-

braries.io dataset, but the more appropriate label may be Composer instead, which is the

main PHP package manager.

65

tion. As shown in Chapter 4, the Gradle community has a slightly different

approach to dependency management compared with Maven, so that should

be kept in mind when reading Chapters 5 and 7. The sbt package manager is

also included in the Maven classification through its use of Ivy (a dependency

management add on originally confined to Ant but has since been used in sbt

and Gradle) for dependency management.

Most package managers studied are intended to be used to build projects

in specific languages. Homebrew and Puppet are unusual in that they focus

on installing packages within a MacOS and Linux environment and as a config-

uration management tool respectively, rather than collecting dependencies for

a specific application build. Both use Ruby for defining tasks, and therefore

the primary language was noted as Ruby, but unlike Rubygems, they are not

intended to build Ruby-based projects.

There are some notable exceptions that have not been studied. Major miss-

ing ecosystems include C/C++ (with their plethora of build tools), Haskell

(Cabal), Go and Swift (package management can be done directly through tools

built into the language), Objective C (CocoaPods), and Chocolatey (Windows).

The choice of including or excluding package managers ultimately came down to

the data available - we did not find easily accessible data for these ecosystems.

5.2.3 Categories

Projects will generally publish multiple versions over their lifetime, each distinct

from the next. When a project depends on another project, in order to avoid

compatibility issue, it is necessary to declare the version of the dependency re-

quired. The declaration can come in one of two general flavours, fixed or flexible.

Fixed declarations allow package managers to choose only one possible version

of the dependency to satisfy the declaration, whereas flexible declarations will

allow more than one.

The flexible declarations can be further categorised depending on how many

versions could possibly satisfy the declaration. In general, we have categorised

these according to semantic versioning. Table 5.2 lists the main declaration

types used in this study.

Chapter 5 further specifies the classifications in Table 5.2 by including the

following:

66

Classification Explanation Example Satisfies Set S

Fixed Only one version S = {x | x = 1.3.3}
Micro Any later version in the same micro range S = {x | 1.3.3 ≤ x < 1.4.0}
Minor Any later version in the same minor range S = {x | 1.3.3 ≤ x < 2.0.0}
At-Least Any later version S = {x | 1.3.3 ≤ x}
At-Most Any earlier version S = {x | x ≤ 1.3.3}
Any Any version S = {x | x ∈ DepV ersions}
Range Some custom range S = {x | 1.3.3 ≤ x < 1.6.0}

Table 5.2: Declaration Styles

1. soft - a type of fixed declaration that some package managers use to assist

dependency resolution of conflicts.

2. latest - a type of any declaration that specifically chooses the newest

version (as pointed out in Section 2.2, although we assume that the highest

version that satisfies a declaration will be chosen, this may not always

happen).

3. not - a type of inverse range, where instead of defining a satisfies set S by

inclusions, it defines it by exclusions, e.g. S = {x | x 6= 1.3.3}.

4. unresolved - some package managers allow variables to be used in dec-

larations. These were not always resolved before being included in the

dataset, so were not able to be analysed.

5. other - a particularly unusual pattern which did not fit into any other cat-

egory, or one that did not follow semver versioning styles, but is otherwise

something that we expect to find in the dataset and can create parsing

rules for, e.g. a GitHub repository URL.

6. unclassified - a declaration that didn’t conform to any parsing rule for

that package manager.

In Chapters 5 and 7, these categories are regularly grouped further, as dif-

ferent types of analysis are undertaken.

67

Figure 5.1: Declaration Range Continuum

5.2.4 Declaration Parsing

Each package manager has its own syntax for declarations. The declarations

must be parsed in order to categorise them, which means that each package

manager requires parsing rules to take a declaration in the form of a raw string,

and produce a categorisation.

This process was done over the course of Chapter 5 in a collaborative effort

that resulted in an MSR publication [Dietrich et al., 2019]. This section outlines

the parsing process, which was a significant proportion of the work required for

this study. The repository for that study8 has the exact parsing rules for each

package manager.

For each package manager, a list of rules were created. As shown in Fig-

ure 5.2, each rule consisted of a regular expression that encompassed one type of

syntax and mapped to one category. For a given raw string containing a decla-

ration, the string was progressively tested against each rule within the package

manager until it found a rule that satisfied it, or it exhausted the rules without

a match and received an unclassified categorisation.

For validation purposes, each rule is accompanied by several test strings that

satisfy that regular expression. Some tests were created from the specifications

of that package manager, and others were added during the validation process

as false positives were spotted in the dataset, checked by both the author of

the rules and a reviewer. At each test, a sample of declarations were chosen

and classified that would give a 95% confidence level and a 5-10% confidence in-

terval, along with additional classifications for under-represented classifications

to ensure each sample had at least 10 declarations of each classification. The

sample would then be checked by the author and the reviewer for false posi-

8https://bitbucket.org/jensdietrich/lib.io-study/src/master/mapping-rules/

68

Figure 5.2: Example Rule [Dietrich et al., 2019]

tives. Where issues were found, the rules would be updated and the sample was

regenerated. This continued iteratively until both the author and reviewer were

satisfied that all possible declarations in the sample were classified correctly.

I created rules for Atom, npm and Rubygems. I then reviewed rules created

for Cargo, Elm, Haxelib and Maven. Later, in the process of the Chapter 7

study, I made further alterations to the Packagist rules.

An interesting sidenote is that due to the rule reliance on regular expressions,

there were in practice some exponential complexity parsing operations. In both

Chapters 5 and 7, it was necessary to account for this and avoid parsing some

declarations. The approach in Chapter 5 was to monitor threads that were

parsing declarations and terminate any that took an abnormal amount of time

to terminate. In Chapter 7, where multithreading9 was not used, the approach

was to blacklist specific offending projects - a total of four Packagist project

pairs.

Table 5.3 shows example syntax patterns for micro, minor and range clas-

sifications, which were the categories that varied most by package manager.

In addition to the declarations shown in Table 5.3, almost all languages had

options for at-most and at-least classifications, along with fixed classifications.

With minor differences, these generally looked similar (<4.0.0, >=4.0.0, or

4.0.0 respectively). It was also common for package managers to allow com-

9There were two reasons for not using multithreading: 1. Originally one of the classes was

incompatible with concurrency (this was later changed), and 2. the computational load was

not high enough to warrant the additional effort.
10Note that this should be classified as a minor range

69

binations of the above rules, creating composite declarations or finer grained

detail where necessary. It is worth noting that some package managers did not

allow for micro, minor or range declarations, in which case the relevant Table 5.3

cells were left blank.

In most cases, the rules allowed for additional whitespace and superfluous

characters such as = or v before the version.

While many package managers had similar syntax, care was taken to look

at the finer details. It was common for the declarations to look similar but for

the package manager in question to interpret them differently. This happened

often in the pre-1.0.0 versions, where package managers inconsistently applied

semver’s guidelines about what minor or micro ranges look like for these versions.

At other times, whitespace had meaning in some package managers and not

others, and the process of joining multiple conditions was not consistently an

AND or OR operation (an important point when parsing to a satisfies set, as

discussed in Section 7.2.2).

Syntactic Mapping vs Semantic Mapping

The approach taken in this study was to parse according to a syntactic mapping

strategy. This means that the categorisation was chosen solely based on the syn-

tax chosen for the declaration, rather than any underlying semantics that could

be embedded in the declaration. For example, while the Elm range in Table 5.3

fits the description of a minor range, it has been classified as a (custom) range.

This approach was chosen for two reasons:

1. It is quite difficult to create a semantic mapping, and practically impossi-

ble when using regular expressions and rules as structured in Figure 5.2.

It is possible to achieve using the programmatic abstractions created in

Section 7.2.2, but this abstraction was created almost a year after the

categorisation study. While it would be interesting to consider how many

of the ranges are micro or minor ranges, particularly in the package man-

agers that do not support micro or minor ranges, this remains as a next

step for the study.

2. When package managers have shortcuts for micro and minor ranges, it

explicitly shows the developer’s intent to follow a semver-compliant range.

While it could be inferred that generic ranges are intended to be a micro

or a minor range, there is nothing to say that that was the developer’s

70

intention.

This reliance on using syntax rather than semantics to categorise declara-

tions mostly affects range classifications. Some range classifications could be

considered micro, minor, or even fixed classifications if semantics were consid-

ered. The result of this choice is that, in ecosystems where range declarations

are common, it understates the amount of time micro or minor ranges are used

(as, in this study, range classifications are considered custom ranges without

necessarily following semver principles).

5.2.5 Classification Aggregation

While the classification scheme provides a fine-grained view on the various pat-

terns used, it is sometimes useful to consider dependency versioning from a more

abstract point of view where we are interested to distinguish between the dec-

laration of fixed versions and variable versions of some kind. Since one of the

goals of this study is to investigate the uptake of semantic versioning, we also

consider syntax that directly supports semantic versioning practices.

The aggregation of classification categories is defined by the following set of

rules, using a simple rule syntax:

SEMVER := var−micro | var−minor

FLEXIBLE := range | s o f t | any | l a t e s t | not | at−l e a s t | at−most

FIXED := f i x e d

OTHER := other | unreso lved | u n c l a s s i f i e d

The semantics of the rules are straight forward: if a dependency is classified

using any category in the body (right side) of the rule, then it is classified in

the category in the head (left side) of the rule.

The above mapping considers the soft classification to be flexible. As noted

in Section 5.2.3, this interpretation was later updated to being a variant of fixed

classifications, one which gives additional options to the package manager for

resolving version conflicts. As such, Table 5.5 in RQ1 should be viewed as Maven

having almost entirely fixed declarations, rather than having predominantly

flexible declarations.

71

5.2.6 Version Ordering

In order to answer RQ2, it was necessary to identify the first and the last

version of each project in the dataset. Using a näıve lexicographical order of

version strings is not sufficient to achieve this with a sufficient level of accuracy,

for instance, while this would yield 1.2.3 < 1.2.4 as expected, this method

would also result in 1.2.10 < 1.2.9. We therefore opted for a more accurate

approach to first sanitise version strings (removing leading “r” or “R” preceding

version strings), then to tokenise leading substrings matching \d+(\.\d+)* and

comparing versions by comparing those numerical tokens from left to right. This

was then implemented in a script that produced a table consisting of project

name, first version, and last version for each package manager. Those tables

were then sampled and peer-reviewed in order to ensure a sufficient level of

accuracy.

We did not consider the semantics of additional strings following the nu-

meric parts of the version, (such as -alpha, -beta, or -rc1), and used the

lexicographical order for those suffixes. The reason for this decision was that

there are a large number of custom prefixes (including hashes referring to com-

mits), that are often platform and project specific. This can lead to cases where

our method may not be able to extract the very first or the very last version in

the dataset. For instance, we infer 1.2.3-ga < 1.2.3-rc which is incorrect if

one takes the meaning of the respective suffixes (-ga – general availability, -rc

– release candidate) into account.

5.3 How Projects Declare Dependencies

Table 5.4 shows how the version constraints were classified for each package

manager using the methodology described in Sections 5.2.3 and 5.2.4. The table

also contains the number of records in the dataset for each package manager

in the second column, where each record represents a single dependency of a

version of a package to some version of another package. It is notable that the

number of records varies by a factor of over 104 between the package managers

with the smallest (Homebrew, 4,886) and the the largest (npm, 52,886,593).

Considering the data in Table 5.4, the kind of dependency versioning syntax

used differs significantly between package managers, and no one common pattern

72

emerges, indicating that the divide between ecosystems in terms of using fixed,

ranged and semver-compliant declarations spotted in Chapter 4 are not unique

to the JavaScript and JVM ecosystems. Table 5.5 provides a more abstract

view on the data, using the aggregation rules discussed in Section 5.2.5. It

appears that there is a preference towards some kind of flexible dependency

versioning declaration in all package managers, with significant uptake of a

semantic-versioning style syntax in Atom, Cargo, Hex, npm and Rubygems.

We note however that we only measured the syntax being used, not the in-

tent of the developer. In particular, there is one package manager where those

two aspects may not be aligned - Maven. In Maven, 85.7% of dependencies are

declared using the soft version syntax. We think that many developers look

up libraries using the maven repository search engine11, and copy and paste

dependency declaration snippets into the project’s pom.xml or equivalent build

files (for Gradle, Ivy, etc.). These snippets use the soft version syntax, and

it is not clear (1) how many developers actually understand that this is not a

fixed version and (2) how often Maven resolves this to a different version than

what is declared in actual builds using dependency management, mediation and

exclusions12. Anecdotal experience makes us suspect that many developers are

not aware of the difference and Maven will, in most cases, resolve the refer-

ence to the very version declared, indicating that Maven is actually an example

of a system where developers take a conservative approach that favours fixed

versions.

Elm and Homebrew stand out as both use only one particular versioning

strategy. All Elm dependencies are declared using the version range syntax.

This is the only syntax supported13, and the dependency version is generated

by the elm package install command. This is consistent with the overall

approach of Elm to automate versioning and to limit the control developers

have.

All Homebrew packages use the any syntax, granting full flexibility to the

package manager to resolve dependencies. This is despite Homebrew offering

a syntax for versioned dependencies - a minimum version can be declared as

11https://mvnrepository.com/
12https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.

html [Accessed: 21 April 2020]
13Although there is no schema that formally defined the syntax of the package manifest

elm-package.json

73

additional dependency information14.

As discussed in Chapter 3, the CRAN repository only allows the latest ver-

sion of a project to be downloaded and used. It makes sense then that declara-

tions are virtually all open ranges (any or at-least).

RQ1 How do projects declare dependencies?

All package managers investigated use predominantly some form of flexible de-

pendency version syntax except Maven, where there is a strong tendency to

use soft declarations. Some systems make extensive use of semantic versioning

syntax. For Maven, it is unclear whether developers understand the difference

between the soft and fixed declaration styles available to them.

5.4 Changing Dependency Versioning Practices

as Projects Evolve

In order to answer RQ2, we extracted the first and the last version of each

project, which were identified using the methodology described in Section 5.2.6.

We then compared the dependencies declared in the first and last version, ex-

cluding projects that had less than two versions - allowing us to investigate

evolution of declared dependencies over time. Table 5.6 describes attributes of

typical packages within an ecosystem, in particular how many packages only

contained one recorded version, and how many dependencies were declared.

The majority of projects have more than one version in the dataset, with the

exception of the projects using Homebrew15.

Table 5.6 also shows the average number of versions per project and their

respective standard deviations. Those numbers indicate that projects are typ-

ically represented by large version ranges, with a significant variation between

projects. For instance, there are 33 npm projects with 1,000 or more versions

in the dataset, and a further 2,584 projects with between 100 and 999 versions.

The project with the most versions is wix-style-react — it provides common Re-

act UI components, with 3,550 versions (ranging from 1.0.0 to 1.1.3547). The

large version ranges reflect the trend towards shorter, often highly automated

14https://docs.brew.sh/Formula-Cookbook [Accessed: 21 April 2020]
15Homebrew, being a configuration tool, lends itself to a ‘set-and-forget’ style of usage,

explaining why many projects only have one release version.

74

build and release cycles.

Finally, Table 5.6 compares the number of declared dependencies the first

and the last version for each project, computed using the methodology described

in Section 5.2.6. The data indicates that the number of dependencies signifi-

cantly increases over time for projects in all package managers except Home-

brew, where the number stays constant. If we consider external dependencies

as a source of complexity of a system, this confirms Lehmann’s first and second

law of software evolution: projects evolve and become more complex by doing

so [Lehman, 1980]. Note that there is some additional hidden complexity as we

only measure direct, not transitive dependencies. The average project in the

dataset has at least one additional dependency by its last recorded version than

its first. Compared to Chapter 4, the Maven projects studied here have slightly

fewer dependencies, while the npm projects have slightly more - overall, the

results between the two chapters corroborate.

5.4.1 Project Level Analysis

First, we examined the dependency strategies at a high-level by considering

the strategies used across all dependencies for each project. The results are

summarised in Table 5.7. We report the number of projects that use at least

one flexible or semantic version style dependency in the first version, and add or

drop those dependency versioning strategies, shown by its presence or absence in

the last version. This is based on the aggregated classification scheme discussed

in Section 5.2.5.

As shown in Table 5.7, projects tend to stick to their way of declaring de-

pendencies, and generally resist change, with very few projects introducing new

dependency versioning strategies or completely removing existing strategies.

When projects do change their strategies, they more often move towards us-

ing semantic versioning or otherwise flexible dependency declarations, although

there are exceptions (notably, Maven16).

16Here this would refer to Gradle, as Maven itself does not have shortcuts for var-micro or

var-minor declarations as are required in this study to be considered semver.

75

5.4.2 Individual Dependency Level Analysis

To complement this coarse, project-level analysis, we also analysed how individ-

ual dependencies change over time as we hypothesized that projects will change

their versioning practice for some, but not all, of their dependencies.

Figure 5.3: Changes in Dependency Declarations from First to Last Version

Again, we found no general trend towards or away from flexible or semantic-

versioning style dependency versioning. Once a project chooses a dependency

strategy for a particular dependency, it is very unlikely that they will change that

strategy. Figure 5.3 shows that nearly 90% of projects keep the same dependency

strategy from their first recorded version until their last recorded version. This

shows that it is very important for projects to consider the implications of these

decisions when adding a new dependency.

The results of this section contrast with the work by Decan and Mens [2019]

discussed in Section 3.5.1, who found that there has been a significant shift in

some ecosystems (particular Cargo and npm) towards semver-compliant declara-

tions. A difference in that study was that it was an aggregation of declarations,

rather than of projects. Another difference is that they filtered and split their

results by time intervals. As our results include many projects that happened be-

fore their time period, it is possible that the large shift towards semver-compliant

ranges is a recent phenomenon. It is also possible that projects which favour

semver-compliant ranges have faster release cycles (it may not be unreasonable

to assume that projects who embrace semver also embrace continuous delivery

ideals) which would overstate the move towards semver-compliant ranges, and

that newer projects use semver more than older projects (our analysis bases

76

comparisons with itself, not other projects).

RQ2 Do projects change their approach as they evolve?

The number of dependencies increase as projects develop across all package

managers investigated except for Homebrew, where it stays constant. Projects

both adapt and drop flexible and semantic version-style dependency version

declarations, although the number of projects changing strategy is relatively

small.

5.5 Conclusion

We have studied how developers declare dependencies across 17 different pack-

age managers, investigating over 70 million dependencies. We find that many

package managers support, and the respective communities use, flexible dec-

larations. We see uptake of semantic versioning in some package managers,

supported by tools. However, there is no evidence that projects switch to se-

mantic versioning on a large scale after they have chosen another declaration

strategy.

Given that many projects use either fixed or semver-compliant declarations,

which are susceptible to lag, an interesting follow up question is how much

technical lag could we expect to find in a declaration, given its type. Related

to this, how much lag can semver-compliant ranges help projects to avoid?

Furthermore, given that fixed declarations must be updated regularly to keep

up to date, how often are updates actually occurring, and what sort of load does

this place on developers? Each of these questions are considered in the follow

up study, reported in Chapter 7.

Other interesting topics for future research include more detailed analysis of

what the technological and social barriers to the wider adaptation of semantic

versioning are, and how particular communities deal with this. We touch on

these topics in the developer survey next in Chapter 6.

77

Package Manager Micro Minor Range

CPAN <2.0, >3.0

CRAN

Cargo ∼1.2.3 ˆ1.2.3 <0.6.0, >= 0.4.2

Dub ∼> 1.30.11 ∼> 1.2 >1.2 <2.0

Elm 3.0.0 <= v <4.0.0

Haxelib

Hex ∼> 1.30.11 ∼> 1.2 >2.0.0 and <2.1.0

Homebrew

Maven [1.2.0,2.0.0)

(Gradle-like) 1.2.+ 1.+

(Ivy-like) [0.0.0, 1.0.0[

NPM (or Atom) ∼1.2.3 ˆ1.2.3 >=1.2.3 <2.0.0

1.2.3 - 1.2.8

NuGet [1.1.*] [1.*] [1.0,2.0)

>= 3.2.0.11 <3.3.0

ˆ1.5.0

Packagist 1.0.* 1.* >=1.0 <1.1 ‖> = 1.2

∼1.2.3 ˆ1.2.3 1.0 - 2.0

Pub >=2.3.5 <2.4.0

ˆ1.0 (10)

Puppet 1.2.x 1.x >=1.2.3 <2.0.0

Pypi ∼=1.2.1 ∼=1.2 <0.6.0,>=0.4.2

Rubygems ∼> 1.30.11 ∼> 1.30 <0.6.0, >= 0.4.2

Table 5.3: Example Declarations

78

total fixed soft var-micro var-minor any at-least at-most range latest not other unresolved unclassified

Atom 215,433 17.69% 0% 18.53% 57.26% 1.76% 2.32% 0.1% 0.08% 0.93% 0% 1.26% 0% 0.07%

CPAN 2,406,593 0% 0% 0% 0% 63.14% 36.84% 0% 0% 0% 0% 0.01% 0% 0%

CRAN 277,856 0% 0% 0% 0% 80.41% 19.58% 0.01% 0% 0% 0% 0% 0% 0%

Cargo 350,862 2.92% 0% 72.86% 16.32% 6.37% 1.2% 0.02% 0.3% 0% 0% 0% 0% 0%

Dub 11,410 6.92% 0% 23.07% 2.15% 8.23% 37.09% 0% 13.94% 0% 0% 8.59% 0% 0.01%

Elm 16,450 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

Haxelib 5,776 39.87% 0% 0% 0% 60.13% 0% 0% 0% 0% 0% 0% 0% 0%

Hex 50,227 7.24% 0% 36.81% 44.72% 0% 6.99% 0.02% 0.36% 0% 0% 3.86% 0% 0%

Homebrew 4,886 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Maven 3,592,035 0.03% 85.7% 0.05% 0.03% 0% 0.37% 0% 0.77% 0.01% 0% 0.01% 13.04% 0.01%

npm 52,886,593 16.48% 0% 21.61% 56.69% 2.92% 0.72% 0.01% 0.08% 0.8% 0% 0.58% 0% 0.1%

NuGet 3,097,666 6.91% 0% 0% 0% 0.01% 87.14% 0.02% 5.91% 0% 0% 0% 0% 0%

Packagist 4,178,062 11.41% 0.02% 14.21% 8.02% 7.9% 3.39% 0.11% 54.29% 0% 0% 0.66% 0% 0%

Pub 119,810 1.69% 0% 0% 0% 17.1% 5.92% 0.1% 73.61% 0% 0% 1.57% 0% 0%

Puppet 57,292 5.79% 0% 0.86% 3.11% 0% 56.64% 0.35% 33.04% 0% 0% 0% 0% 0.21%

Pypi 126,536 11.78% 0% 0% 0% 49.51% 33% 0.71% 4.97% 0% 0% 0% 0% 0.03%

Rubygems 4,487,068 4.59% 0% 14.87% 29.42% 0% 49.25% 0.23% 1.62% 0% 0.02% 0% 0% 0%

Table 5.4: Dependency Version Classification

79

TOTAL FIXED FLEXIBLE OTHER SEMVER

Atom 215,433 17.69% 5.19% 1.33% 75.78%

CPAN 2,406,593 0% 99.99% 0.01% 0%

CRAN 277,856 0% 100% 0% 0%

Cargo 350,862 2.92% 7.89% 0% 89.19%

Dub 11,410 6.92% 59.26% 8.6% 25.21%

Elm 16,450 0% 100% 0% 0%

Haxelib 5,776 39.87% 60.13% 0% 0%

Hex 50,227 7.24% 7.37% 3.86% 81.52%

Homebrew 4,886 0% 100% 0% 0%

Maven 3,592,035 0.03% 86.85% 13.05% 0.07%

npm 52,886,593 16.48% 4.54% 0.68% 78.3%

NuGet 3,097,666 6.91% 93.09% 0% 0%

Packagist 4,178,062 11.41% 65.7% 0.66% 22.23%

Pub 119,810 1.69% 96.73% 1.57% 0%

Puppet 57,292 5.79% 90.03% 0.21% 3.97%

Pypi 126,536 11.78% 88.19% 0.03% 0%

Rubygems 4,487,068 4.59% 51.12% 0% 44.29%

Table 5.5: Aggregated Dependency Version Classification

80

PROJ ONE AVG STDEV AVG1 STDEV1 AVGL STDEVL

Cargo 11,251 3,236 6.13 9.56 3.85 3.54 4.86 4.39

Maven 63,497 16,952 9.96 23.23 5.03 6.3 5.3 7.01

CRAN 11,646 3,223 5.56 8.75 3.54 3.87 6.05 5.98

Pypi 4,083 935 8.76 14.87 2.71 2.85 3.15 3.25

CPAN 28,015 5,055 7.49 15.04 7.24 9.33 10.87 14.34

Elm 1,273 352 4.43 6.36 2.5 1.75 2.54 1.79

Homebrew 1,806 1,784 1.01 0.13 2.77 2.61 2.77 2.61

npm 547,338 153,412 7.34 22.52 8.75 16.16 9.76 15.78

Atom 3,845 600 11.18 22.11 2.92 3.79 4.08 5.43

Haxelib 470 188 6.06 9.84 1.8 1.26 1.89 1.31

NuGet 76,775 19,860 12.28 48.76 2.77 3.54 2.96 3.77

Dub 550 144 8.69 18.76 1.58 1.18 1.85 1.8

Packagist 104,585 28,340 7.59 16.48 3.37 3.97 4.04 4.6

Rubygems 119,942 35,671 6.41 15.35 4.19 3.41 4.89 3.95

Hex 3,667 1,248 5.4 8.01 2.14 1.56 2.33 1.7

Pub 2,867 688 9.06 17.72 3.08 2.45 3.95 3.34

Puppet 3,703 956 5.61 8.08 2.01 1.83 2.29 2.31

Table 5.6: Dependency Numbers At Start and End of Lifetime
*Project evolution by package manager (PROJ - project count, ONE - projects with only one

version, AVG/STDEV - average / standard deviation of number of versions per project, AVG1 /

STDEV1 - average / standard deviation of number of dependencies in first version, AVGL / STDL

- average / standard deviation of number of dependencies in last version

81

Projects SEMV1 SEMV+ SEMV- FLEX1 FLEX+ FLEX-

Cargo 11,251 6,981 751 30 7,857 111 16

Maven 63,497 324 23 238 43,133 5 5

CRAN 11,646 0 0 0 8,422 0 0

Pypi 4,083 0 0 0 2,908 81 34

CPAN 28,015 0 0 0 22,960 0 0

Elm 1,273 0 0 0 921 0 0

Homebrew 1,806 0 0 0 22 0 0

npm 547,338 336,963 10,793 5,680 370,102 5,786 5,208

Atom 3,845 2,698 151 51 2,928 90 37

Haxelib 470 0 0 0 219 20 23

NuGet 76,775 0 0 0 54,981 285 624

Dub 550 158 54 28 342 12 7

Packagist 104,585 27,295 6,140 4,860 71,314 2,593 541

Rubygems 119,942 54,001 5,503 3,200 83,207 474 263

Hex 3,667 2,096 80 50 2,213 56 9

Pub 2,867 0 0 0 2,052 24 7

Puppet 3,703 154 28 46 2,660 41 9

Table 5.7: Adaption of Semantic Versioning and Flexible Versioning
* Adaptation of flexible dependencies by package manager (PROJ - project count, SEMV1 / FLEX1

- projects using semantic versioning / flexible dependency syntax in first version, SEM+ / SEM- -

projects adapting / dropping semantic dependency versioning syntax between first and last version,

FLEX+ / FLEX- - projects adapting / dropping flexible dependency syntax between first and last

version

82

Chapter 6

Developer Survey on

Dependency Management

To complement the results of Chapters 4 and 5, which showed that ecosystems

approach dependency management in vastly different ways, we created a survey

to investigate how developers approach dependency management. This survey

informs our understanding on how these trends form, and highlights decision

making processes that developers in different ecosystems face when maintaining

dependencies.

6.1 Survey Design

The survey was circulated by email during August 2018 to the authors’ industry

contacts, and often was further disseminated by the participating developers

to others in their companies and beyond. It was also presented to professional

developer groups, which prompted many of the developers present to participate.

6.1.1 Survey Participants

The 170 responses came from a broad range of locations predominantly across

Europe, North America and Australasia. There was a broad range of experience

levels, as seen in Figure 6.1.

We also asked participants which package managers they had used (results

83

Figure 6.1: Developer Experience in Years

in Table 6.1), which shows good coverage of the package managers represented

in the libraries.io dataset. There is only a single system which none of the

participants use (Dub). Many respondents reported they use multiple package

managers (86 use 3, 48 use 4, and 20 use 5), likely due to developers developing

programmes in multiple ecosystems and programming languages.

6.1.2 Survey Design

In addition to the developer meta data discussed above, the survey then asked

the following questions:

1. How familiar are you with Semantic Versioning? (On a scale of 1-5)

2. How do you declare dependencies to libraries?

(a) Always using fixed declarations.

(b) Always using version ranges.

(c) Both depending on the context.

(d) Adopting the styles of others (e.g. copy pasting).

3. Has your approach to declaring dependencies changed over time?

84

Package Manager # Participants Package Manager # Participants

NPM 90 Atom 8

Pypi 56 CRAN 7

Homebrew 55 Elm 4

Maven 46 Puppet 4

Rubygems 29 Hex 2

Cargo 22 Haxelib 1

NuGet 22 Pub 1

CPAN 15 Dub 0

Packagist 11 Other 50

Table 6.1: Package Managers Used by Survey Participants

4. Do you use any tools to help you version your code?

5. Additional comments about your approach to dependency management.

Free form responses were provided to answer those questions in more detail

where the respondent wished to elaborate. These proved valuable in gaining

insight into the thought processes that underpin the decisions developers make

when managing dependencies.

6.2 Survey Results

The developer survey, described in Section 6.1, provided further insight into how

versioning strategies are used in practice. The majority of developers surveyed

were familiar with semver, as seen in Figure 6.2, with 73% responding as either

familiar or very familiar. Only 9% responded as being not familiar with it at

all.

Interestingly, as shown in Figure 6.3, developers tended to self-identify as

varying their dependency declaration strategy between fixed and range dec-

larations depending on the situation (45%). 32% of developers always used

fixed declarations, 11% always used ranges, 6% followed the styles of others

(e.g. copy-pasting declarations from Maven repository), and 5% followed other

strategies.

Table 6.2 breaks down the dependency management styles by package man-

ager. An important point when reading this table is to note that most respon-

85

Figure 6.2: Semver Familiarity (Least to Most Familiar)

dents use multiple package managers. This has led to situations like Homebrew

having a large proportion of fixed dependency responses despite syntactically

only allowing ranged dependencies. The more common package managers most

closely mirror the data in Table 5.5 - indicating that the use of multiple package

managers is the reason for differences between these tables. It also implies that

developers change their declaration style based on the conventions each package

manager’s community and syntax creates.

Further comments showed that sometimes developers vary their strategy at

a library level, for example if some libraries are perceived as better at main-

taining backwards compatibility than others, but also that developers change

their strategies between types of projects, such as commercial vs. open-source

projects. This result contrasts with the analysed dependency declarations in

Chapter 5’s Tables 5.4 and 5.5, which show most package managers having one

main declaration style used by convention.

Developers were also asked if they have changed their approach to declaring

dependencies. In this survey, 42% of respondents had changed their method of

dependency declarations. However, when analysing the direction of change, no

clear shift to or from semver was discernable. This closely mirrors the results

discussed in Section 5.4.

86

Figure 6.3: Self-Described Dependency Declaration Styles

6.3 Developer Perspective

Interestingly, the number of survey respondents who report to have changed

their dependency declaration approach was rather high (42%). This seems to

contradict the results from Chapter 5, although not the study by Decan and

Mens (Section 3.5.1). We attribute this to the nature of survey participants –

we believe that most participants had an above average level of experience and

interest in managing dependencies.

In general, a number of respondents noted that they cared more about de-

pendency management as their experience grew. Although changes towards and

away from semver-compliant declarations were reported, changes towards the

use of fixed versions were slightly more common1.

Changes Towards Fixed Declarations

Developers who reported moving away from flexible dependency versioning com-

monly cited concerns about build stability and the introduction of compatibility-

related bugs. The following quotes are illustrative of these concerns2:

1In the survey, we have only asked “Has your approach to declaring dependencies changed

over time?”, and respondents had the option to provide additional text to elaborate, so the

above statement is based on a qualitative analysis of the comments.
2Each quote is followed by some summary data about the respective respondent: years of

experience, package managers used, and level of familiarity with semver

87

Package Fixed Ranges Depends Follows Other # Responses

Atom 29% 0% 71% 0% 0% 7

CPAN 20% 7% 47% 20% 7% 15

CRAN 67% 17% 17% 0% 0% 6

Cargo 26% 4% 57% 4% 9% 23

Elm 25% 25% 25% 0% 25% 4

Hex 0% 0% 100% 0% 0% 2

Homebrew 38% 6% 45% 3% 8% 64

Maven 44% 0% 45% 8% 1% 71

NPM 26% 9% 54% 6% 5% 104

NuGet 21% 4% 64% 4% 4% 28

Packagist 17% 33% 42% 0% 8% 12

Pub 0% 0% 100% 0% 0% 1

Pypi 31% 5% 57% 3% 3% 58

Rubygems 18% 6% 71% 0% 3% 34

Puppet 0% 0% 75% 25% 0% 4

Table 6.2: Self-Declared Developer Declaration Styles by Package Manager

“I have been burned too many times by so-called point releases on

npm.”

[10 - 20 years experience, uses npm, NuGet, Pypi]

“Taking end-to-end responsibility for software conception, develop-

ment, and deployment requires predictable outcomes. If you do not

use fixed versions, then rebuilding an artifact to resolve an issue

identified during QA testing can cause unrelated changes that can

manifest in production.”

[10 - 20 years, uses Homebrew, Maven, very familiar with semver]

“You begin to realize how sloppy upstream people are, and the issues

it causes, so you get a bit better about it.”

[10 - 20 years, uses Homebrew, npm, NuGet, Pypi, Rubygems, very

familiar with semver]

“I used to declare version ranges, then I realized that even ver-

88

sion ranges cannot capture the full ‘compatibility range’ of a depen-

dency.”

[10 - 20 years, uses npm, Nix, very familiar with semver]

“Packages not following semver caused issues with repeatable builds.”

[10 - 20 years, uses npm, Nix, very familiar with semver]

“Updated versions of packages broke functionality when using ranged

version, so [I] switched to fixed versioning to prevent this. We now

manually update dependencies in order to roll back more easily.”

[5 - 10 years, uses Homebrew, Maven, npm, Other, very familiar

with semver]

“Version ranges were useful but some libraries do not practice semver

very well.”

[10 - 20 years, uses CPAN, Cargo, Maven, npm, Other, very familiar

with semver]

“Usually due to package maintainers not conforming 100% to semver

resulting in them shipping code that isn’t compatible with the pre-

vious version. This is most noticeable on npm; if I pick up a client

project that is older than six months its 50/50 wether (sic) npm will

complete the install and even if it does its 50/50 that the tests will

complete.”

[10 - 20 years, uses npm, Composer, very familiar with semver]

“I changed from ranges to fixed versions, since I noticed libraries

broke compatibility even when it shouldn’t given their semver.”

[5 - 10 years, uses Homebrew, Maven, Pypi, Other, very familiar

with semver]

One developer explicitly stated mistrust for his package manager, a sensible

sentiment given that greedy approaches to dependency resolution are used:

“This is a hard problem, [I] always choose fixed to prevent the pack-

age manager trying to be smarter than it is.”

[5 - 10 years, uses Homebrew, Maven, 5]

89

Different Approaches Depending on the Ecosystem

Some experienced developers report differences between package managers, and

adopt a horses for courses approach:

“As much as Python packages claim to implement semver, they al-

ways find a way to break something in a minor release. No issues

with Rust though.”

[5 - 10 years, uses Cargo, Pypi, very familiar with semver]

“Due to package maintainers not conforming 100% to semver result-

ing in them shipping code that isn’t compatible with the previous

version[, I have changed to restrictive declarations]. This is most

noticeable on npm. ”

[10 - 20 years, uses npm, Packagist, very familiar with semver]

This is sometimes also extended to the usage context, with a more conser-

vative approach taken in commercial projects, or from organisations imposing

rules:

“In serious production code, always fixed version... in open source

code, more relaxed.”

[20+ years, uses Homebrew, Maven, npm, Rubygems, very familiar

with semver]

“At work, some packages we are told to keep under a certain range

because it is more supported.”

[2 - 5 years, uses Homebrew, Maven, npm, not familiar with semver]

Changes Towards Flexible Declarations

There were also cases where developers reported their rationale for changing

towards flexible dependency versioning practices:

“Because while exact versions give you predictability, they’re diffi-

cult to keep up to date in manually when you have a lot of depen-

dencies (particularly with pip; pipenv improves on that).”

[10 - 20 years, uses npm, Pypi, very familiar with semver]

90

“Used to be fixed, but I wanted to keep up to date and using version

ranges helped to do that automatically.”

[5 - 10 years, uses npm, NuGet, Pypi, Others]

“At the start, it felt the easiest to just use a library and keep the

fixed version. However, it ended up being quite limiting (especially

when there’s ‘so many cool new features’ that I couldn’t use). I

therefore prefer accepting a certain range of versions to keep the

software ‘fresh’ for a longer time.”

[5 - 10 years, uses CRAN, NuGet, not familiar with semver]

“I now prefer declaring patch versions over just having a fixed value.

Have yet to be burnt by a patch version update, but the ideals of

keeping up where possible is a good place to be.”

[10 - 20 years, uses Homebrew, Maven, npm, Rubygems, familiar

with semver

“Frequently updates on the minor version of libraries have some

major bug fixes. This requires frequent change in library versions.

Declaring them using ranges makes this easy.”

[10 - 20 years, uses Homebrew, Maven, npm, NuGet, Other, not

familiar with semver]

Tooling Supporting Flexible Declarations

Some developers have moved to more permissive declarations as they have

adopted stronger tooling such as testing, CI and lockfiles:

“I used to be very careful with specifying ranges (e.g. 3.3.x only, not

3.x) but from my experience, any type of package change is prone

to changing behaviour or breaking things. I now rely on testing

(automated and QA) to catch any changes when updating packages.”

[10 - 20 years, uses npm, Composer, Rubygems, very familiar with

semver]

“First, realizing that without fixed versions things can break, second

change was when I started using Cargo which introduced lockfiles.”

[10 - 20 years experience, uses Cargo, Pypi, very familiar with semver]

91

Legacy Code Dependency Management Issues

A couple of developers noted how not being specific enough with declarations

have hurt them in legacy code maintenance:

“For Haskell (Cabal) I used to not declare versions very often, e.g.

just use ‘some-library’. After coming back to some projects after

a few years, and experiencing how difficult it is to figure out which

versions it was actually built for, I now tend to declare minimum ver-

sions, e.g. ‘some-library >= 3’. I usually don’t force upper bounds,

or specific versions, unless I encounter an actual breakage.”

[10 - 20 years, uses Pypi, Other, 5]

“The more I interact with old projects, the more I see the need to

be more explicit.”

[10 - 20 years, uses NuGet, Pypi, Other, very familiar with semver]

Minimising Dependency Numbers

One developer noted about minimising dependency numbers so that security

vulnerabilities could be more actively monitored, a strategy discussed in Sections

3.3 and 3.5.3. Another does the same just to keep on top of dependency issues

in general.

“Mainly looking at the security checks of older dependencies and

figuring out how to minimize the amount of dependencies so that

the dependencies that are used can be scrutinized for security vul-

nerabilities along with using the latest versions (typically those two

things correlate).”

[2 - 5 years, uses Homebrew, Maven, Other, very familiar with

semver]

“I usually keep an eye on the packages I use and update versions

when I see it to be advantageous - e.g bug fixes, security patches,

new features that are useful. To this point I try to keep the number

of dependencies down so the administration of them is less of a

concern. Both npm and composer have tools that list the packages

you have installed and whether there are any updates available; as

92

part of our CI system we have a task that runs those and raises a

warning when dependencies are getting ‘out-of-date’.”

[10 - 20 years, uses npm, Composer, very familiar with semver]

Updating Patterns

Some developers noted the need to keep dependencies up to date, citing similar

issues to those discussed in literature from Sections 3.3 and 3.5.

“I try very hard to keep all dependencies up to date with the latest

release version, as I’ve found this is the surest way to ensure compat-

ibility. Falling behind can be very expensive in terms of effort when

an upgrade becomes necessary. Most small open source projects do

not do security releases for older versions.”

[10 - 20 years, uses Homebrew, Maven, very familiar with semver]

“Versioning libs is a pain. The best approach is to try to keep up

to date. Avoid bit rot and avoid the same infrastructure requiring

different versions.”

[5 - 10 years, uses CPAN, npm, somewhat familiar with semver]

Miscellaneous

Several respondents pointed to using a package manager called nix, which allows

npm-style isolated dependency resolution for Linux packages. There were also a

large number of responses that mentioned package locks in npm and Rust as giv-

ing them the confidence of reproducibility when moving to flexible declarations

or in the face of breaking updates.

Finally, one developer makes the same conjecture as this study - semver is

first and foremost a social construct, where trust is required in order for it to

succeed:

“Semver is more of a social contract than anything technically pre-

cise. In Rubygems and npm, you never really know what a minor or

patch version is — it’s down to the author/publisher who often have

their own idiosyncratic ideas about what to communicate through

version numbers. Some claim to use semver, but you still sometimes

93

have to look at changelogs and code diffs to really understand the

impact of a change on the way you use the code.... ”

[10 - 20 years, uses Atom, Homebrew, npm, Pub, Rubygems, very

familiar with semver]

6.4 Summary

This chapter described the results of a dependency management survey sent

out to developers. It gathered information from 170 developers across a broad

geographical area and wide range of experience levels.

This survey showed that most developers surveyed were very familiar with

semver, with less than 10% having no familiarity with it. When asked what style

of declaration patterns they used, almost half responded that they switched

between fixed and flexible declarations as the situation called for it. One third

always used fixed declarations. Very few always used flexible declarations (11%)

or copy-pasted / followed the style of other developers (6%).

Almost half of developers have changed their approach to dependency dec-

larations over time. There are examples of developers going both more towards

fixed and flexible styles, with anecdotal evidence of most of the advantages and

disadvantages discussed in this work being shared by developers. Broadly speak-

ing, developers want automated updates but note that upstream developers do

not consistently follow semver standards. Many of the more experienced devel-

opers stress the need for reproducible builds, and have either moved towards

fixed declarations or using lockfiles to achieve this. The free form responses give

a wide agreement - industry developers want to use semver, but trust between

developers is problematic, and better tooling is required to allow the system to

function.

6.5 Conclusion

This survey was conceived after the discovery in Chapter 4 that npm and Maven

had such different approaches to declaration patterns. Both Chapter 4 and the

follow on study in Chapter 5 highlighted the heterogeneity of declaration styles

across ecosystems. Given the empirical data, we expected to find the responses

in this survey to differ based on the ecosystem the developer comes from. In the

94

responses, we only found hints of this - certainly not enough to fully explain the

empirical data. However, many respondents used multiple package managers,

so it is possible that their style in each differs and follows the wisdom of the

crowd. This idea is supported in part by the qualitative analysis conducted, as

well as the responses summarised in Figure 6.3, where almost half of developers

self-described their declaration style as varying based on the context.

This survey highlights that developers understand many of the challenges in-

volved with dependency management, and that, these challenges present regular

issues for developers. The responses also present further validation to existing

literature - the responses for updating patterns, minimising the quantity of de-

pendency, and upstream developers violating semver patterns were all discussed

in Chapter 3. Quite specifically to our work, the qualitative analysis mirrors the

Chapter 5 finding that developers move both from flexible to fixed declarations,

and vice versa, with no clear bias towards either direction - both options cur-

rently have significant drawbacks. This survey gives an insight into the thought

processes of developers, supplementing the empirical data in Chapters 4, 5 and,

later in Chapter 7. Overall, it comes to a similar conclusion about the state of

semver as the empirical chapters - semver is a good idea, but one that is not

fully realised and is currently plagued with problems.

95

Chapter 7

A Large-Scale Study on

Technical Lag and

Update Patterns

This large-scale study on technical lag in open source projects analyses how

often dependencies are kept up-to-date and, when lagging, how far outdated

dependencies get. It uses open-source projects from 14 package managers (see

Section 5.2.2) using the libraries.io dataset (see Section 5.2.1). We find that, in

the projects analysed, the majority of fixed declarations, along with a significant

number of flexible declarations, are outdated. When fixed declarations become

outdated, this study considers how developers respond - do they update the

dependencies or let them fall further out of date, and are they more likely to

make smaller updates or wait until larger updates become available (e.g. a micro

update, or a major update as discussed in Section 7.2.5)?

7.1 Introduction

Most modern software systems are built from existing packages (e.g. modules,

components, libraries - henceforth termed dependencies) that allow complex

functionality to be delivered easily. These libraries are generally created by

third-party developers and are linked to a project via a symbolic dependency

96

declaration resolved by modern package managers, such as Maven for JVM lan-

guages, Cargo for Rust, or npm for JavaScript. These package managers allow

dependencies to be downloaded from a remote repository at build time by declar-

ing constraints which describe the versions of a dependency compatible with the

project, giving significant flexibility and agility to the dependency management

process compared to the ad-hoc methods that preceded this system.

Dependencies are generally active projects which publish updates intermit-

tently, so it is easy for dependency declarations to become outdated over the

life cycle of a project if the version requested by the package manager does not

get updated regularly to the latest available version of the dependency. Keep-

ing dependencies up to date can cause a significant overhead on a developer’s

time (particularly if it is not automated), but it is important for the secu-

rity and overall health of the project [Lauinger et al., 2018, Cox et al., 2015,

Pashchenko et al., 2018, Salza et al., 2018].

While flexible declarations are widely used, a significant number of projects

still employ fixed version dependencies [Dietrich et al., 2019] - this was discussed

in detail in Chapter 5. This has the advantage of greater control - dependen-

cies only get updated after being integration-tested with the rest of the project.

The downside of fixed version declarations is that it makes the updating pro-

cess less agile. It requires developers to manually find updates and change the

relevant configuration files by hand, which can be really hard and time consum-

ing especially in the presence of large number of dependencies in modern sys-

tems. When manually updating dependencies, they are often not updated imme-

diately, potentially resulting in technical lag [Gonzalez-Barahona et al., 2017],

where newer versions - with their bug fixes, security fixes and other improve-

ments - are available but not used. This technical lag potentially has a high asso-

ciated cost associated with it in the form of security vulnerabilities, bugfixes and

missed improvements [Kula et al., 2015, Lauinger et al., 2018, Cox et al., 2015,

Derr et al., 2017]. See Sections 3.5.2 and 3.5.3 for more details about recent

technical lag literature.

There have been some studies on technical lag and updating strategies in

recent literature, however they have all focused on one specific package man-

ager (e.g. npm or Maven), making them hard to generalise across the indus-

try. This study builds on previous studies such as [Raemaekers et al., 2014,

Zerouali et al., 2018] highlighted in Section 3.5.2 by quantifying lag across pack-

97

age managers in the first large-scale, cross-ecosystem study on lag that we are

aware of. Our goal is to describe how much technical lag exists across open-

source projects in general, and how developers update declarations to manage

technical lag. In the process, we consider practical techniques of how technical

lag might be reduced, and how effective they could be.

This chapter studies, in detail, this technical lag, and more specifically, sets

out to answer the following five research questions:

• RQ1: How often do dependencies lag?

• RQ2: How much lag is there in dependencies when they are not up-to-

date?

We then focus on how developers update fixed version declarations, by studying

the following questions:

• RQ3: What type of updates are most common, and what type of project

releases contain dependency updates?

• RQ4: How often do developers perform updates when they lag behind,

and do those updates bring them up to date?

• RQ5: How often do developers make a backwards change to their depen-

dencies, and why?

7.2 Methodology

This chapter uses the v1.4.0 (December 2018) dump of the libraries.io dataset

[Katz, 2018], containing over 2.7 million unique open source projects from 37

package managers and 235 million dependencies between projects, introduced in

Section 5.2.1. The way that this dataset is structured means that not only can

we take each declaration individually and classify it, but also take a longitudinal

approach to project timelines, to gather how projects change over subsequent

versions of a project. This makes it suitable for the declaration update research

questions posed in RQ3 - RQ5.

7.2.1 Declaration Classifications

In this chapter, we focus on a subset of the declaration classifications discussed

in Section 5.2.3. For reference, Table 7.1 demonstrates the main types of de-

98

pendency version declarations that we focused on in this study. All declarations

that allow for more than one version are termed flexible, while declarations that

only allow one version are termed fixed. We further break down the flexible

declarations into semver-compliant ranges, micro and minor, and other ranges

listed in the table. In principle, the at-least and any (open ranges) classifica-

tions should not suffer from technical lag1, but risk compatibility issues due to

allowing major updates which are expected to include breaking changes.

Classification Explanantion Example

Fixed One specific version 1.3.0

Micro Micro versions from min [1.3.2, 1.4.0)

Minor Micro or minor versions from min [1.3.2, 2.0.0)

At-Most Any versions up to a limit [0.0.1, 1.3.2]

At-Least Any versions from min [1.3.2, ∞)

Any Any versions [0.0.1, ∞)

Range Any custom range [0.3.2, 0.7.1]

Table 7.1: Dependency Declaration Types

7.2.2 Parsing Declarations to Satisfies Set S

The parsing strategy discussed in Section 5.2.4 is enough to be able to cate-

gorise the type of declarations, but it lacks the ability to tell if the declaration

is satisfied by a given version. This is a fundamental step in ascertaining the ex-

istence and quantity of lag within a given declaration. Without this abstraction,

this chapter would be limited to fixed declarations, without being generalised

to other declaration categories.

In order to overcome this problem, a second abstraction for parsing dec-

larations was developed, which created a set S that encompasses the versions

that could satisfy the declaration. This was done programmatically, producing

Declaration objects (henceforth, the italicised declaration will refer to the ob-

ject derived from the declaration string) that consisted of closed ranges, where

1We note that technical lag is still possible, depending on the package resolution strategy

used by the respective package manager, as discussed in Section 2.2 - for example NuGet

resolves to the oldest possible version that satisfies the declaration, not the newest one.

99

any version within that closed range would match, allowing for a method inside

Declaration with the method signature shown in Equation 7.1. In other words,

given a declaration, we can tell if a Version object (an abstraction of a semantic

version as described in Section 2.1) satisfies this declaration.

fun matches(version: Version): Boolean (7.1)

This declaration needed to be general enough to work with any arbitrary

declaration mentioned in Sections 5.2.3 and 5.2.4. As it is possible for composite

declarations to be used (e.g. Equation 7.2), two linked lists were used internally,

connecting the declaration to 0 or more other declarations, one via an AND

operator, the other via an OR operator. Two other details were subsequently

added, one to deal with not classifications, and the other to deal with cases

that only allowed for pre-releases in a specific version (this is a requirement in

Rubygems when ranges are specified along with a starting version that contains

a pre-release tag). This reflected an operator tree approach, which mirrors how

declaration strings are written, and therefore virtually all declaration strings

could be parsed to a declaration.

S = {x | (1.0.0 ≤ x < 1.1.0) ∨ (1.2.0 ≤ x < 1.3.0)} (7.2)

This abstraction can be used to categorise how declaration ranges have

changed (see Section 7.10). However, it is possible that the operator tree ap-

proach used could flag two declarations expressing the same version intervals

but expressed in different syntactic methods as being different if the approach

is not careful. The best way to manage this may be to transform this operator

tree object into a series of maximal disjoint intervals for comparison.

Parsing Method

Parsing the declaration strings to a declaration required a complete overhaul of

the categorisation method described in Section 5.2.4. For each package manager,

a class was created with a method getDec (Equation 7.3) to take a declaration

string and the classification derived from Section 5.2.4, and return a declaration.

fun getDec(class: String, dec: String): Declaration (7.3)

There is one class per package manager, each of which contains the logic

required to convert a string declaration to a declaration, given the rules of that

100

package manager. In the case of some package managers, the classification was

used as a ‘hint’ to route the declaration to specific logic. In other cases, the

string was parsed without other assistance. The rules created in the categori-

sation parsing step were used as a guideline when creating the programmatic

parsing logic, although it was still necessary to refer back to the documentation,

particularly for how to correctly deal with composite declarations - this is not

a detail needed for classification, but is important for creating a satisfies set S.

Not all declaration strings could be parsed. There were two instances of

declarations (one Rubygems at-least classification, and one NuGet fixed classifi-

cation) that could not be parsed. Additionally, a call was made in some package

managers not to parse some types of patterns with complex syntax and limited

numbers; the other classification in Dub, Maven and Pub, and the unresolved

classification in Maven, which cannot be parsed due to being unresolved vari-

ables. These unsupported other patterns amounted to 8.5% of Dub, 1.6% of

Pub2 and 0.01% of Maven declarations.

Validation

Due to each package manager having its own set of logic that was independent

to other package managers, it was important to test the programmatic parsing

methods for each package manager. For this, test cases were chosen from the

rule tests (such as in Figure 5.2) - these test cases were chosen because they

represented both the standards for that package manager, as well as more exotic

cases found in the dataset. Choosing test cases in this manner has increased

our confidence that the created logic is valid for this dataset.

For each package manager, a file of test cases were created (see Figure 7.1)

to test the class. Each category would have at least two declarations - often

more where syntax could vary, and each declaration would be given versions

that they would match or not match, testing boundary cases. In this manner,

50-100 test cases were created for most package managers, depending on the

complexity of the syntax and number of possible classifications.

2Dub and Pub are very small parts of the dataset, so this only represented about a hundred

declarations.

101

Figure 7.1: Example Test File

7.2.3 Classification and Filtering Process

Due to requiring metadata about both the downstream and upstream project

history to calculate lag and update values, which was not always available, not

all pairs of downstream and upstream projects could be included. From all

possible pairs of projects A and B, where A depends on B, pairs were classified

into one of the following categories:

Fixed and Flexible

If a dependency declaration could be satisfied with more than one version of

the dependency, it is a flexible dependency declaration. Any pairs with at

least one flexible declaration are used for answering questions about lag, but

have been excluded from the research questions RQ3 - RQ5 that focus on the

updating strategies used for fixed declarations. To check for the classification of

the declaration, the process in Section 5.2.4 was used. The FIXED and FLEXI

columns in Table 7.2 show the number of pairs considered fixed or flexible,

respectively.

Not Semver-Compliant Syntax

The NOT SV column in Table 7.2 shows the number of dependency pairs filtered

out due to semver violations. Projects with versions that could not be parsed to

the semver format specified in Section 2.1 were discarded, as we could not rely on

automated version ordering. Similarly, versions with unusually large numbers

(with values over 100,000 - usually related to timestamps) were discarded. The

102

Packagist numbers are particularly high due to common shortcut commands

such as @dev and @stable being filtered by this check3.

Missing Project Information

Projects sometimes include dependencies to other projects which were not in-

cluded in the dataset. This meant that information about their version history

was not available, making them unsuitable for our study. The MISSING column

in Table 7.2 shows the number of pairs filtered out due to lack of data - this is

about 1% of the total set of dependencies considered.

Groups of Packages with Coordinated Releases

Often, the developers working on project A also work on its dependency B.

This is most regularly associated with the two projects being components of

a single overarching project. Often these dependencies are updated as part

of the internal release procedures (e.g. coordinated product release, Apache

Lucene is an example of such coordinated releases4). Including them would be

highly likely to lead to under-reporting the level of technical lag in independent

projects. The SUBCMP column in Table 7.2 shows the number of pairs filtered

out due to being suspected subcomponents. For the purpose of this study, pairs

are considered subcomponents of a wider project if either the first half of their

names (minimum 4 characters) are the same, or their entire project names are

the same. To ensure that this only captures subcomponent pairs, a manual

validation on the first 300 pairs per package manager was conducted by the

authors and cross-validated the results by a collaborator - we found a low false

positive rate (< 1%) from the validation, having a confidence interval of less

than ±6%, with a 95% confidence level.

There were initially 17 package managers with dependencies in the dataset,

listed in Section 5.2.2. Three package managers (CPAN, CRAN, Homebrew)

were ruled out of scope as their declaration patterns are entirely open range

(the any and at-least classifications) which means they cannot have technical

lag in the sense studied here (see Section 7.2.1). Table 7.2 shows how the pairs

in the remaining 14 package managers were classified. These package managers

were used to answer the questions about how much technical lag is present in

3These declarations are considered unresolved variables.
4https://mvnrepository.com/artifact/org.apache.lucene

103

PM FIXED FLEXI NOT SV SUBCMP MISSING

Atom 2276 17565 2 642 147

Cargo 1237 81543 90 4030 42

Dub 43 999 0 109 128

Elm 0 3988 0 253 0

Haxelib 192 568 0 266 5

Hex 698 10531 0 592 88

Maven 389044 23860 7358 106631 47015

npm 876534 7449356 2254 335976 19130

NuGet 2010 245725 738 64038 13568

Packagist 19250 474455 19784 70975 19886

Pub 157 16142 0 809 672

Puppet 204 7210 0 1800 242

Pypi 3300 25418 31 1185 569

Rubygems 14940 606994 93 21931 1586

Table 7.2: Project Pairs Included by Package Manager

dependencies. However, only 9 of the 17 package managers (from the most fixed

pairs to the least - npm, Maven, Packagist, Rubygems, Pypi, Atom, NuGet,

Cargo and Hex) were included in answering the questions based around update

strategies, as the remaining package managers have too few fixed declaration

pairs to compare results against other package managers in a meaningful way.

7.2.4 Quantifying Technical Lag

For each project, the versions are ordered according to semver principles (dis-

cussed in Section 2.1). In order to quantify technical lag, we work with a timeline

of two projects. For every version of project A (the client project), Ai, that has

a dependency to a version of project B, Bdep, there is technical lag present if

Bdep is not the latest version of project B. We measure technical lag in two

ways, the number of versions behind (version lag) and the time behind (time

lag). Figure 7.2 provides a working example of how technical lag is quantified.

Version lag is formalised below, where Bnewer is any dependency version

104

Figure 7.2: Quantifying Technical Lag
The arrows indicate the dependencies. As depicted, technical lag (grey shaded regions) occurs

when Project A depends on a Bdep that is not the latest version of B available at the time Ai was

released. Figure courtesy of Dr. Kelly Blincoe.

with a higher version numbers than Bdep, and Bmajor, Bminor, and Bmicro

are the major, minor or micro numbers extracted out of the overall version

number (e.g. Bnewer = 1.2.3, then Bnewermajor = 1, Bnewerminor = 2, and

Bnewermicro = 3):

MAJOR LAG = count({Bnewermajor | Bnewermajor > Bdepmajor})

MINOR LAG = count({Bnewerminor | Bnewerminor > Bdepminor

∧Bnewermajor = Bdepmajor})

MICRO LAG = count({Bnewermicro | Bnewermicro > Bdepmicro

∧Bnewermajor = Bdepmajor

∧Bnewerminor = Bdepminor})

Ai TOTAL LAG = (MAJOR LAG,MINOR LAG,MICRO LAG)

Major lag is calculated as the distinct major versions later than Bdep. Minor

lag is calculated as the distinct minor versions later than Bdep within the same

major range, and micro lag is calculated as the distinct micro versions later

than Bdep within the same minor range. This means that there could be a

great deal more newer minor and micro versions than reported, but within

other major or minor version ranges. Limiting micro and minor lag to the

these narrower version ranges allows direct comparisons to be made with semver

compliant micro and minor ranges - the most common alternative declarations

to fixed declarations [Dietrich et al., 2019]. Total lag is defined as the major

lag, minor lag and micro lag, following the semver idea that any major lag is

105

more significant than all minor lag, and any minor lag is more significant than

all micro lag.

In Figure 7.2, project A 4.1.0 depends on 1.0.0 of project B. Since this

was not the latest version of project B at the time of release of project A 4.1.0,

there is technical lag. Both the major and minor lag are 1 since there was

one later major release and one later minor release available when 4.1.0 was

released. The micro lag is 2 since there were two later micro releases available

within the 1.0 minor release. Note that there is also a micro release 2.0.1

available, but since it is not within the 1.0 release, it is not considered since

most flexible versioning strategies would not automatically update to this micro

release.

Time lag is calculated as the number of days before the release of Ai that

Bdep’s first subsequent update was available. Time lag is also calculated in

three parts: major, minor, and micro. As mentioned above, 4.1.0 has major,

minor, and micro lag in Figure 7.2. Since this release was made on 1 December,

the time lags are:

• 91 day micro lag since 1.0.1 was released on the 1st of September.

• 61 day minor lag since 1.1.0 was released on the 1st of October.

• 30 day major lag since 2.0.0 was released on the 1st of November.

Note that the release of 1.0.2 on the 15th of September does not impact the

micro time lag since this is not the first micro update after Bdep. The depen-

dency began to be out of date the moment 1.0.1 was released, so the time lag

is calculated based on this release date.

Lag is counted for every version Ai which has a Bdep. Therefore, project

pairs with long version histories of dependencies are represented multiple times

in the aggregated results. This event-based method, focused on counting lag at

each version of A, follows previous studies on technical lag [Zerouali et al., 2018,

Zerouali et al., 2019a, Zerouali et al., 2019b, Raemaekers et al., 2014].

This study is based around the use of semantic versions (Section 2.1), and

in particular major, minor and micro versions. Tag updates, considered pre-

release by semver principles, and further sub-micro numbers are not considered

as relevant changes when counting technical lag (due to varying semantics of

these sub-classifications, and the overriding convention that these are very small

106

changes). However, as dependencies are sometimes updated within tag or sub-

micro releases, they are still included in the analysis as no-change updates of a

project or dependency.

7.2.5 Update Classification

For RQ3-5, we look at how developers update fixed declarations. When a dec-

laration is fixed, updates could be classified in seven ways, shown in Table 7.3.

When looking at updates in more detail, the interesting part is to understand

how much the downstream developer had to change. While it is impossible to

say for certain how widespread the changes were without closely inspecting the

diffs between published versions, semver standards give us hints in the form of

the major, minor and micro update patterns. If a declaration is changed to

a newer major version, we can infer that the effect on the dependent project

(in terms of benefits - additional and hopefully better functionality, as well as

costs - time spent refactoring and ensuring integration) will be larger than a

minor change, and that the effects of a minor change will be larger than a micro

change.

FORWARDS MAJOR Matches a later major version

FORWARDS MINOR Matches a later minor version in the

same major range

FORWARDS MICRO Matches a later micro version in the

same minor range

NO CHANGE Dependency stays the same or matches

a different pre-release tag

BACKWARDS MICRO Matches an earlier micro version in the

same minor range

BACKWARDS MINOR Matches an earlier minor version in the

same major range

BACKWARDS MAJOR Matches an earlier major version

Table 7.3: Update Categories for Fixed Declarations

Between any two versions, Ai and Ai+1, if there exists a declaration to

project B in both, the declarations are compared. This results in either classi-

fying the declaration change as no change, a forwards change, or a backwards

107

change. The forwards and backwards changes are further split into major (if

the major version changed), minor (if the minor version changed but not the

major version), or micro (if only the micro version changed). In the case that

one of the two contiguous versions did not have a declaration, no update data

is recorded.

In cases where Ai is before Ai+1 in both version and chronological date,

the results from the preceding comparison make sense. This is the case for

any two versions in the same micro range, due to the semver practice of always

incrementing numbers by one. However, at the border between minor and major

ranges (e.g. 3.5.2 and 3.6.0), it is possible that Ai+1 has been published

before Ai, a practice called parallel development. Where Ai is a lower version

than Ai+1, but published later, the update result is not always sensible.

To illustrate why the chronological order is important, suppose a given

project A has versions S = {. . . , 3.5.2, 3.5.3, 3.6.0, 3.6.1, . . . }. 3.6.0 was pub-

lished after 3.5.2, but before 3.5.3. After 3.6.0 was published, a security hole

was found in a dependency, so it was upgraded to a newer version that fixed

the vulnerability and released as 3.5.3, to support downstream projects using

the 3.5.x micro range, and 3.6.1 for those using the 3.6.x micro range. Now,

comparing 3.5.2 with 3.5.3 will show a forwards update to the dependency,

while comparing 3.5.3 with 3.6.0 will show a backwards update to the de-

pendency. Logically, it does not make sense to categorise 3.6.0 as a backwards

update, when there was no change between it and 3.5.2, the version chrono-

logically preceding it. To account for this case, where Ai+1 is published before

Ai, the version chronologically preceding Ai+1 is selected instead.

7.2.6 Validation

There have been two main processes used to transform the data in the libraries.io

dataset for analysis. For RQ1 - RQ2, declaration objects were used. The parsing

and validation method used to convert these objects from strings are shown in

Section 7.2.2.

For RQ3 - RQ5, validation was done in an iterative manner. The entire state

of 10 random pairs from each package manager were manually checked for data

validity, ordering and categorisation by the author. Where there were issues,

tests were created before fixing the code. Then, another 10 pairs were reviewed,

until there were no further issues found. Rare cases such as pairs updating to an

108

older dependency version, or outlier lag values have been considered separately

by the same process.

As noted in Section 7.2.5, backward updates had additional complications

due to simultaneous development. To validate these heuristics, we manually

analysed a random sample of 95 pairs with backward changes, looking for false

positives where our heuristics identified a backward change but one did not

occur. This sample size gives us a confidence interval of 95% with a 10% margin

of error. The manual analysis was done by the author and a collaborator. For

each pair of a backward change, a search was done of the commit history in the

related repositories to identify whether it is actually a true backward change.

We excluded samples where repository information is not publicly available.

Of the 95 manually analysed backward changes identified through our heuris-

tics, 5 or 5.3% were false positives (meaning no backward change had occurred).

There were two reasons for the false positives. In one case, the dependent project

had changed its dependency strategy from a date based versioning system to

semver. Thus, the dependency changed from 2015.03.12 to 1.4.6, which was

incorrectly identified as a backward change by our heuristics. The other four

false positives occurred due to the projects performing parallel release develop-

ment. In some of these cases, the projects appeared to explicitly maintain a par-

allel release to continue to offer support for a prior version of a dependency. For

example, one project released v0.7.0 with a dependency on project B v2.15.0.

Shortly after that release, another release was made called v0.7.0-projB-2.12

which depended on v2.12.4 of project B. Our heuristics incorrectly classified

these as backward changes since the release of the parallel version depending on

the older version of project B occurred after the release which was updated to

the new version of project B.

Since our heuristics were able to correctly classify 90 of the 95 (94.7%) back-

ward changes, and the other cases could not be easily identified automatically,

we used these heuristics to identify backward changes for the remaining analysis.

7.2.7 Identifying reasons for backward changes

To understand the reasons why developers make backwards changes to depen-

dencies, we used the random sample of 95 backward changes identified by the

109

heuristics.5

For each backward change, a search was done in the project repositories to

look for the related commits, any associated issues or discussions, and release

notes to look for mentions of reasons why the backward change was being made.

We were able to find information on the reason behind the change for 66 of the

backward changes. We used Thematic Content Analysis [Braun and Clarke, 2006]

to identify the main themes from these reasons. Three of the authors jointly

discussed the reasons to develop the themes.

5Please note that Section 7.2.7 is the work of Dr. Amjed Tahir from Massey University

and Dr. Kelly Blincoe from the University of Auckland, which was conducted to complement

the empirical investigation for RQ5.

110

7.3 Lagging Dependencies

RQ1: How often do dependencies lag?

7.3.1 Which Declaration Types Lag Most?

Table 7.4 shows the proportion of declarations that lag in each package manager,

based on classifications discussed in Section 7.2.1. It was found that the more

restrictive the declaration is, the more likely it is to lag. Fixed declarations are

more likely to lag than micro ranges, which are more likely to lag than minor

ranges. At-most declarations tend to lag even more than fixed versions. Open

range declarations have been excluded from this table, as by definition, they are

not expected to lag.

In most package managers, ranges form a small minority of the overall num-

ber of declarations - often a range differs from micro or minor ranges to cover

a set of versions that do not have a specific semver meaning. However, in Elm,

Packagist and Pub, ranges are the most common way to set up flexible decla-

rations, even where micro or minor ranges are intended. Perhaps due in part

to these factors, there is little correlation between range declarations and the

likelihood of technical lag across package managers.

Across most package managers, minor range declarations have a low prob-

ability of being outdated, with npm at a high of 26% to Cargo with a low of

3% lagging minor range declarations. The outlier here is Rubygems in which a

staggering 61% of its minor ranges are lagging. About 30% of Rubygems dec-

larations are minor ranges, so this is a widespread issue in Rubygems projects

where semver compliant declarations are not being kept up to date.

Micro range declarations tend to be between 10-20 percentage points less

current than minor range declarations, and there is about the same difference

between micro ranges and fixed declarations. In general, fixed versions are more

often out of date than they are current.

Some package managers are much more likely to include out of date depen-

dencies. This is especially true for Maven (63% lagging), which both primarily

uses fixed declarations, and those fixed declarations lag more than average.

Rubygems (54%), NuGet (49%) and Pypi (46%) are relatively outdated as well,

but in all three, the most common declarations are any or at-least, so over-

all, dependencies are more current than suggested in Table 7.4. In the other

111

PM Fixed Micro Minor At-Most Range Overall

Atom 49.9% 40.7% 17.4% 34.0% 17.4% 28.3%

Cargo 36.3% 13.6% 2.8% 51.0% 19.8% 11.7%

Dub 29.9% 13.1% 10.3% - 12.0% 15.4%

Elm - - - - 18.1% 18.1%

Haxelib 8.1% - - - - 8.1%

Hex 34.6% 21.5% 9.8% 50.0% 11.0% 16.2%

Maven 63.2% 29.2% 7.8% 75.0% 14.8% 63.0%

npm 51.6% 34.6% 26.5% 47.2% 38.6% 32.2%

NuGet 39.2% - - 69.8% 54.0% 49.4%

Packagist 71.7% 47.7% 23.1% 80.0% 35.9% 31.9%

Pub 57.5% - - 11.0% 18.4% 19.0%

Puppet 33.6% 52.7% 8.5% 47.5% 13.0% 15.7%

Pypi 51.5% - - 69.8% 23.5% 45.8%

Rubygems 56.6% 39.5% 61.0% 72.0% 22.0% 53.5%

Table 7.4: Percentage of Dependencies that Lag
*This excludes declarations that cannot lag, such as ’at-least’ or ’any’

packages, less than one third of non-open-range dependencies lag.

7.3.2 Most Common Types of Lag

In addition to considering how dependencies lag based on the type of declaration

used, we also considered what type of lag is present in the dependencies. Micro

version lag may not mean a significant difference between the dependency used

compared to the newest dependency available, but lagging behind by a major

or minor version generally implies that there are more improvements that have

been missed out on.

Using all declarations (including the ’any’ and ’at-least’ classifications fil-

tered from Table 7.4), Table 7.5 categorises the type of lag found in each dec-

laration, along with the percentage of declarations without lag in each package

manager. As noted from Table 7.4, Maven has a significant percentage of tech-

nical lag within its ecosystem, having twice as much lag as the next ecosystems

112

(Packagist, npm and Atom). We also see the effects of including the declara-

tions that cannot lag. Three package managers with high levels of lag in Table

7.4 - NuGet, Pypi and Rubygems - show very low levels of lag once accounting

for their ’any’ and ’at-least’ declarations. So while their levels of lag are low

overall, when using declaration styles that can lag, there is a higher probability

that they will not be kept current.

Table 7.5 splits how a declaration lags into seven categories - the seven possi-

ble combinations of major, minor and micro lag. When a dependency has major

lag, it is behind by at least one major version from the newest available, but it

is up to date within its declared major version - it has no minor or micro lag. In

the case of simultaneous development branches of projects where multiple major

versions of a project are being maintained, this set of dependencies can be con-

sidered to be up to date, but in the older development branch. In several package

managers, such as Atom, Maven, npm and Packagist, there are a disproportion-

ate number of dependencies that lag only by major versions and therefore are

up to date within that specific major range, mirroring anecdotal accounts that

projects in these ecosystems choose to keep old major versions updated with

bug and security fixes to avoid dependent projects having to deal with breaking

updates (see Section 3.3.3). This could be the result of minor ranges keeping

them up to date within that major version, or because the project has made a

conscious decision to stay within that specific major range of the dependency -

this remains a question for follow up research.

In Cargo, there is a significant amount of minor lag. The Cargo ecosystem is

relatively new with many major packages having versions within the 0.x.x range

(over 70% are in the zeroth major range, according to Decan and Mens [2019],

compared to less than <20% in the mature package managers they studied).

Semver-compliant projects consider the zeroth major version to be under heavy

development. Semver suggests that a minor update in the zeroth major range

be considered backwards incompatible in the same way that major updates are

for post-1.0.0 versions. Therefore, these minor lag numbers in Cargo can be

considered similar to the major lag found in mature package managers.

Most package managers have a spread in the types of lag encountered. A

significant proportion have major, minor or micro lag, but not a mixture. This

is most likely to occur because they are only lagging by a single version, and

generally signals a shorter amount of time lag. Those that have a mixture of

113

lags have had multiple versions released without being updated, and represent

longer periods of technical lag.

In general, there are three distinct groups of package managers separated by

the amount of lag present and the styles of declarations present in Chapter 5.

One group consists of the mature package managers that primarily use fixed

or semver compliant ranges. In this group, comprised of Maven, Packagist,

npm and Atom, between one-third and two-thirds of declarations lag. A second

group consists of other mature package managers that primarily use open ranges

- often relying heavily on ’any’ and ’at-least’ classifications. Due to this reliance

on open ranges, this group, consisting of NuGet, Pypi and Rubygems, has low

levels of lag (<15%). The third group consists of newer package managers. This

group has extremely low levels of lag (<12%) with most lag being micro and

minor lag. While the author believes that much of these differences in lag types

and quantities are explained by the age of the ecosystem, it remains as a follow

up question to consider if this is the main reason, or if there are other factors.

7.3.3 Would Semver Declarations Reduce Lag?

Semver is intended to make automatic updates easier, which in turn can reduce

technical lag. The question is, how large is the effect on technical lag between

using a fixed declaration versus using a semver-compliant declaration. To mea-

sure the effect that moving from fixed declarations to semver declarations would

have, projects with fixed declarations were considered to be replaced with the

most permissive semver-compliant declaration that encompassed that fixed dec-

laration, a minor range, to see what effect this would have on technical lag

across the ecosystem, e.g. instead of Bdep = 4.7.3, this section assumed that

Bdep = [4.7.3, 5.0.0), the minor range equivalent of the listed fixed declaration,

and considered the effect this had on technical lag.

Table 7.6 notes the impact that switching from fixed declarations to a

semver-compliant minor range would have on technical lag. While it makes

little difference for some package managers that already have a high uptake of

semver-compliant or open range declarations, the ‘Eliminates Lag’ column shows

that in most package managers it would eliminate technical lag in roughly 10%

of dependencies, a significant proportion of the dependencies which have tech-

nical lag. Maven, shown above to have abnormally high amounts of technical

lag, is an outlier in this case - some 56% of dependencies would benefit from

114

a reduction in technical lag if declarations were changed to minor ranges. The

‘Lag Using Semver’ column shows how many dependencies would still lag with

semver declarations, compared to the ‘Current Lag’ column showing how many

currently lag. In most cases, it would resolve between one-third and two-thirds

of technical lag.

There are downsides to using minor semver-compliant ranges, in terms of po-

tential breaking updates from mislabeled updates. However, this section shows

that if the tooling aspects of dependency management improve, semantic ver-

sioning provides a significant part of the answer to technical lag. For tooling,

smart API incompatibility checkers and semantic reasoning (where possible)

being included in the build cycles would allow upstream developers better hints

about what version numbering to make, and could allow package managers to

automatically check compatibility before they download dependency updates.

This would make backwards compatibility issues a problem much less of the

time6, leading to better trust and fewer problems with dependency updates.

RQ1 Summary:

Technical lag is common, although the quantity varies widely by package man-

ager, from two-thirds in Maven lagging, down to less than a quarter in others.

The more permissive open range declarations are much more likely to be current

than semver compliant ranges or fixed declarations. When closed range decla-

rations are used, most mature package managers exhibit technical lag in >30%

of dependencies. Increased usage of semver-compliant ranges would decrease

technical lag significantly.

6But not all of the time, as there are aspects of compatibility that cannot be automatically

checked given current language constraints, such as many of the behavioural contracts that

exist.

115

Contains lag Major Major & Minor Major & Micro Major & Minor & Micro n

Atom 15.93% 2.76% 0.47% 0.37% 240653

Cargo 1.81% 0.24% 0.26% 0.00% 521006

Dub 2.56% 0.42% 0.54% 0.01% 7616

Elm 4.21% 0.00% 0.03% 0.00% 17613

Haxelib 0.36% 0.13% 0.15% 0.00% 5286

Hex 6.47% 0.61% 0.03% 0.01% 64621

Maven 9.80% 3.67% 4.39% 2.57% 3467909

npm 20.24% 2.22% 0.64% 0.49% 75733660

NuGet 1.33% 0.20% 0.13% 0.04% 2748879

Packagist 19.84% 2.01% 0.39% 0.29% 4562384

Pub 2.85% 0.08% 0.02% 0.02% 128692

Puppet 5.13% 0.30% 0.05% 0.05% 50281

Pypi 1.44% 0.95% 0.30% 0.31% 459160

Rubygems 6.96% 0.87% 0.17% 0.11% 4765613

Minor Minor & Micro Micro No Lag n

Atom 6.87% 0.90% 2.49% 70.22% 240653

Cargo 8.91% 0.07% 0.37% 88.33% 521006

Dub 6.21% 0.05% 2.60% 87.61% 7616

Elm 0.01% 0.00% 0.09% 95.66% 17613

Haxelib 0.79% 0.09% 1.84% 96.63% 5286

Hex 5.45% 0.38% 0.89% 86.15% 64621

Maven 19.85% 12.23% 13.08% 34.40% 3467909

npm 5.49% 0.88% 1.59% 68.45% 75733660

NuGet 0.48% 0.07% 0.11% 97.64% 2748879

Packagist 6.82% 0.82% 1.05% 68.79% 4562384

Pub 4.07% 0.36% 0.56% 92.04% 128692

Puppet 1.26% 0.16% 0.31% 92.74% 50281

Pypi 4.96% 1.70% 2.26% 88.07% 459160

Rubygems 4.74% 0.44% 0.57% 86.13% 4765613

Table 7.5: Most Common Types of Lag

116

Adopting Semver Lag Totals

PM Eliminates Lag Major Lag Remains Lag Using Semver Current Lag

Atom 10.3% 3.6% 19.5% 29.8%

Cargo 9.4% 0.5% 2.3% 11.7%

Dub 8.9% 1.0% 3.6% 12.4%

Elm 0.1% 0.0% 4.2% 4.3%

Haxelib 2.7% 0.3% 0.7% 3.4%

Hex 6.7% 0.7% 7.2% 13.9%

Maven 45.2% 10.6% 20.4% 65.6%

npm 8.0% 3.4% 23.5% 31.5%

NuGet 0.4% 0.7% 2.0% 2.4%

Packagist 8.7% 2.7% 22.1% 31.2%

Pub 5.0% 0.1% 3.0% 8.0%

Puppet 1.7% 0.4% 5.5% 7.2%

Pypi 8.9% 1.6% 3.0% 11.9%

Rubygems 5.8% 1.2% 8.2% 13.9%

Table 7.6: Lag Reduction Using Semver

117

7.4 Lag Quantity per Dependency

RQ2: How much lag is there in dependencies when they are not up-

to-date?

Version Lag

Figures 7.3 and 7.4 show the mean value of technical lag (in terms of number

of versions) and time lag (in terms of days) by package manager, based on the

approach described in Section 7.2.4. Despite dependencies often having technical

lag, the median declarations do not have lag for major, minor and micro versions.

The data is quite skewed, where a few percent of dependencies are heavily

outdated, with the vast majority behind by 0 - 2 versions. Once dependencies

without the respective types of lag have been excluded, the standard deviation

of the data is generally similar in size to the mean, indicating a predictably

right-skewed distribution, as seen in Table 7.7.

Figure 7.3: Version Lag by Package Manager

As shown in Figure 7.3, when there is a lag in major releases, all package

managers have an average of 1 to 2 major versions lag. The values increase

for micro releases, where lag can be over 5 (Packagist, NuGet). Micro releases

118

Major Minor Micro

PM Mean StdDev Mean StdDev Mean StdDev

Atom 0.25 0.67 0.66 2.13 0.56 3.42

Cargo 0.00 0.07 0.06 0.38 2.02 10.44

Hex 0.04 0.20 0.27 0.67 0.37 1.12

Maven 0.28 0.78 0.74 1.79 1.12 3.90

npm 0.30 0.70 0.64 2.38 0.62 2.30

NuGet 0.35 0.76 0.26 0.73 0.33 2.26

Packagist 0.27 0.57 0.77 2.01 2.04 4.76

Pypi 0.16 0.89 0.79 1.70 0.98 4.26

Rubygems 0.18 0.88 0.78 2.00 0.67 1.81

Table 7.7: Means and Standard Deviation of Version Lag

happen much more frequently than minor or major releases, accounting for 67%

of the releases in this dataset (2% are major, 16% are minor and 15% are tag

updates), so more micro lag is to be expected.

NuGet contains a high micro lag, coming from only 0.35% of dependencies

with a standard deviation of 3.5 times the mean. This indicates that a small

handful of outlier projects with large micro lags are responsible for its large

result. This results in NuGet fixed declarations needing to be updated much

more frequently than other package managers in Figure 7.5 - dependencies ac-

crue technical lag quickly in NuGet. Note that its micro time lag is similar

to other package managers, indicating that the reason for the increased micro

version lag is that NuGet micro releases seem to happen at a quicker pace.

Rubygem’s micro lag results are similarly right-skewed as NuGet’s, while the

others (including Packagist’s high micro lag result) exhibit a standard deviation

similar to the mean. In all cases, the outlier values are not significant, with the

95th percentile being less than 10 and in all but a few cases, the maximum lag

being under 100.

Time Lag

For time lag (Figure 7.4), the lag in number of days for major releases is

higher than minor and micro releases for most package managers, which could

point to a reluctance to update, as noted in the literature (Section 3.5.4). There

119

Figure 7.4: Time Lag by Package Manager (in days)
* mean values where the relevant type of lag is present in the declaration

is a range between Pub, which has an average of 112 days lag, to Rubygems,

which has an average of 498 days lag between major versions. In most mature

package managers, when lag exists, it is between half a year to a year out of

date. The outlier lag values are higher in mature package managers, with the

maximum lag in Maven being 13 years, but most are below 10 years of lag.

Maven is an interesting outlier for time lag, as the value of time lag for

major releases is much higher than other package managers (1439 days). This

could be due to the Maven ecosystem’s long history of simultaneous develop-

ment in prominent packages, where developers can continue to use an outdated

major version and still receive the necessary updates to keep it secure. The

Maven ecosystem tends to be conservative (it is the only major package man-

ager that primarily uses fixed declarations, see Chapter 5, and works within

the Java philosophy of maintaining backwards compatibility as much as possi-

ble7). It also suffers from binary compatibility issues during updates that may

dissuade developers from updating. Other package managers such as npm, on

7To quote Martin Buchholz: ‘Every change is an incompatible change. A risk/benefit

analysis is always required.’ (https://blogs.oracle.com/darcy/kinds-of-compatibility:

-source,-binary,-and-behavioral)

120

the other hand, inform developers of vulnerabilities in dependencies, motivating

them to update dependencies faster. Other generic tools, such as Snyk8, also

provide similar functionalities of warning developers of potential vulnerabilities

in libraries.

RQ2 Summary:

When lag exists, it is generally in small amounts. Most dependencies do not

get more than 1-2 major or minor versions behind, or 3-5 micro versions, owing

to that micro updates represent two-thirds of project updates. The time lag for

most package managers sits between half a year to a year and a half.

8https://snyk.io

121

7.5 Update Frequencies

RQ3: What type of updates are the most common, and what type of

project releases contain dependency updates?

This research question investigates update frequencies for fixed declarations

only, as discussed in Section 7.2.3.

Figure 7.5: Updates by Package Manager

Figure 7.5 shows how often a given dependency is updated, and the types

of dependency updates made - whether the dependency is increased a micro

version, a minor version or a major version.

The predominant type of dependency update is the micro update, where only

the micro number is increased, e.g. 1.0.1 → 1.0.2. In most package man-

agers, micro declaration updates are two to three times more likely to occur

than minor updates. Despite this, due to the high number of micro updates in

projects (67% of updates), this increased number of micro declaration updates is

unable to keep up with the dependency development, leading to the higher levels

of micro lag noted in Section 7.4. However, micro updates are less likely to cause

compatibility issues. Semver mandates that they never cause compatibility is-

sues, although in practice this does not always happen [Raemaekers et al., 2014].

122

Across all ecosystems, major declaration updates, where we expect backward

breaking changes to occur, are observed in less than 1% of updates.

The amount developers update their dependencies varies significantly by

package manager, with dependencies being updated less than 5% of the time in

Pypi, npm and Atom, through to over 45% of the time in NuGet.

Project A Update

Type

Dependency Update Type

Major Minor Micro

Major 5.16% 5.43% 3.83%

Minor 0.96% 4.34% 3.15%

Micro 0.27% 0.92% 2.19%

Tag update 0.28% 2.12% 2.70%

Table 7.8: Frequency of Declaration Updates

The types of declaration updates that developers do varies by the type of

update in their own project, as shown in Table 7.8. Across package managers,

major updates to dependencies most often coincide with major changes to the

dependent project A. Minor updates are more likely in major or minor updates of

project A, while micro updates tend to happen in micro or pre-release changes

(the Tag update row, e.g. 1.4.0-beta.1 → 1.4.0-beta.2). These results

make sense within the semver construct, as major updates to dependencies are

more likely to require a significant amount of refactoring or redesigning of a

project if the external APIs are not well insulated from the internal logic, so it

may be easier to make these disruptive dependency updates when the dependent

project is already undergoing significant changes.

RQ3 Summary:

In most package managers, fixed version dependencies are not updated regularly.

NuGet (46%), Cargo (33%) and Hex (20%) are the only package managers where

fixed dependencies are updated in over 10% of version releases. On the other

extreme, in Pypi dependencies are only changed in 1.15% of version releases.

Developers tend to update fixed dependencies much more often in major changes

to their own projects than in minor or micro updates. They are also more likely

to update to a new major version of the dependency at this point as well.

123

7.6 Update Strategies

RQ4: How often do developers perform updates when they were be-

hind, and does this bring them up to date (or are they intentionally

staying behind in some way)?9

Table 7.9 shows the amount of time that dependencies are updated based on

if they are outdated. The first two columns together show the dependencies that

are outdated. The second column shows the ones that are out of date and did

not have any changes made to them - these are the dependencies that automatic

updates would reduce technical lag on. Notice that in most package managers,

over half of fixed dependencies fall within this category. The first column are the

dependencies that have had some type of change, but are still out of date. These

ones are the most interesting, as they indicate that the developer is choosing

an outdated version (potentially for a specific reason), rather than going to the

newest version. While this practice of updating to another outdated version

varies between ecosystems, it happens from 5% of the time in Cargo, up to

51% of the time in Packagist. The reasons for this are unclear and present an

interesting direction for future study.

The final column of Table 7.9 shows dependencies that were already up to

date, so did not require developer intervention. The second-to-last column shows

the amount of time dependencies are updated and are now current (without

the developer’s intervention, they were or would have become outdated), e.g.

Bdepi−1
is 3.7.2 and Bdepi

has been changed to 3.7.3 - the newest version of B

available. Together these two columns make up the fixed declarations that do

not have technical lag. In most cases, declaration updates are not made when

lagging (being updated <10% of the time). However, in Cargo and NuGet, over

half the time that a declaration needs updating, it is updated.

The definition of being outdated is quite coarse - if there is any lag (major,

minor or micro), the dependency is considered outdated. However, a common

situation in some ecosystems is to have a project with simultaneous develop-

ment on two major versions (Python 2 and Python 3 being a very well known

example). This analysis was rerun, considering major lag as not being outdated,

and only considering minor and micro lag to be outdated, allowing for projects

9This question also focuses on fixed declarations.

124

in a lagging major version to still be counted as up to date if they are at the

newest minor and micro version. This is reported in the two right-most columns

of Table 7.9. Comparing the second half of Table 7.9 with the first half shows

that over 10% of projects using fixed declarations in Atom, Maven, npm and

NuGet are lagging overall but are up to date within that old major version.

RQ4 Summary:

Developers in some package managers update fixed dependencies regularly to

stay up-to-date, with NuGet and Cargo updating their lagging dependencies

most of the time. In most package managers, however, less than 10% of depen-

dencies that are out-of-date get updated with a new version. Anywhere between

5-51% of updates do not default to the latest version. Projects in NuGet, Maven

and npm have a higher probability that fixed declaration dependencies are up-

to-date in a lagging major version.

125

Updated No Update Updated No Update

& Outdated & Outdated & Current & Current

(With any lag being considered as outdated)

Atom 0.6% 52.1% 2.9% 44.4%

Cargo 1.8% 23.0% 31.5% 43.7%

Hex 2.3% 35.4% 17.8% 44.5%

Maven 3.8% 62.7% 4.8% 28.7%

npm 0.7% 49.2% 2.3% 47.9%

NuGet 7.3% 28.9% 38.6% 25.2%

Packagist 2.9% 62.0% 2.8% 32.3%

Pypi 0.3% 54.0% 0.9% 44.9%

Rubygems 2.2% 50.7% 7.1% 40.1%

Allowing for major lag to be classified as current*

Atom 0.5% 41.9% 3.0% 54.6%

Cargo 1.8% 22.7% 31.5% 43.9%

Hex 2.2% 33.2% 17.9% 46.7%

Maven 2.8% 53.8% 5.8% 37.7%

npm 0.4% 38.8% 2.5% 58.2%

NuGet 4.5% 19.7% 41.5% 34.4%

Packagist 2.5% 57.3% 3.2% 37.0%

Pypi 0.2% 49.2% 0.9% 49.6%

Rubygems 1.7% 45.1% 7.5% 45.7%

Table 7.9: Updates vs Lag
*with only minor or micro lag being reported as outdated

126

7.7 Backwards Updates

RQ5: How often do developers make a backwards change to their

dependencies?

In the fixed declarations analysed, backwards changes, where a project de-

liberately increases the technical lag in a dependency, were a rare case. Table

7.10 reports the frequency of backwards changes across all package managers.

The results range from zero found in Cargo, up to 0.33% found in Maven (aggre-

gating the 3 columns together) - representing 1 in 300 declarations. There are

no major trends towards making a particular type of backwards change based

on the dependency’s version change.

PM Micro Minor Major

Atom 2 0.01% 3 0.01% 0 0.00%

Cargo 0 0.00% 0 0.00% 0 0.00%

Hex 0 0.00% 2 0.08% 0 0.00%

Maven 1357 0.05% 7453 0.25% 899 0.03%

npm 1561 0.02% 2828 0.04% 1890 0.03%

NuGet 5 0.02% 41 0.13% 37 0.12%

Packagist 176 0.15% 53 0.05% 49 0.04%

Pypi 17 0.03% 16 0.03% 13 0.02%

Rubygems 25 0.02% 33 0.03% 13 0.01%

Table 7.10: Frequency of Backwards Changes

Reasons for backwards changes:10

Through the manual review of backward changes and Thematic Content

Analysis described in Section 7.2.7, we identified several reasons why backward

changes were made in 66 separate cases:

• Project A goes stable.

The most common time we saw backward changes in dependencies is when

10Please note that the following section presented is the work of Dr. Amjed Tahir from

Massey University and Dr. Kelly Blincoe from the University of Auckland, which was con-

ducted to complement the author’s empirical investigation for RQ5 and has been included

due to relevance.

127

project A moves from an unstable release to a stable release (26 of the 66

backward changes). These downgrades were not explicitly discussed in the

project repositories, but it is likely they tried to update their dependencies

to the latest versions in the unstable release candidates, but experienced

some problems and reverted when releasing the stable version.

• Compatibility issues.

The next most common reason for backward changes were compatibility

issues (14 of 66). The project A developers often discussed the compatibil-

ity issues in the new version before downgrading the dependencies. Some

examples include11:

“...many of our production systems use OTP20 still and this

change is not backwards compatible.”

“Downgrade to [project B] 2.7.5 until [our project] is compatible

with 2.8.”

• Bug in project B.

Another common reason (11 of 66) was that the backward change was

made because of a bug introduced in the project B release. For example,

after encountering issues after the project B dependency upgrade, one

developer identified the problem stems from project B and explains12:

“I made the following change to [project B]’s source code ... can

we push this issue upstream ... could we downgrade [project B]

until an upstream fix can be applied?”

• Release not available.

Another reason for backward changes (7 of 66) was that the project B

release was no longer available in the dependency manager.

• Performance issues.

The new release of project B introduced performance issues in project A

(2 of 66).

11https://github.com/AdRoll/erlmld/pull/9
12https://github.com/renovatebot/renovate/issues/196

128

• New stable version of project B.

Project A depended on an unstable new minor release of project B and

project B released a new stable micro release of the previous minor version

(2 of 66).

• Consistency.

One of the backward changes was made to ensure consistency across the

components in project A.

“update [project B] version to match other components”

• Mistake.

One of the backward changes was made by mistake. The project went from

depending on version 1.0.1 to version 0.0.1. When this was questioned,

one of the developers said “Thank you; it’s a typo. We’ll fix it.”13. The

change was reverted in the next release.

The remaining two backward changes with explanations did not provide

enough details for us to categorize them into one of our themes. They both

mentioned that the change was being made as a fix, but did not provide ad-

ditional details on what was being fixed. It is likely these were compatibility

issues or bugs in project B, but we did not include them in the categories above

due to lack of available information.

RQ5 Summary

Backwards updates are uncommon across package managers, with the highest

rate being 1 of 300 dependency changes in Maven.

Through qualitative analysis of a sample of backward changes, we identified

several common reasons for the backward changes in dependencies including:

project A moving from an unstable to stable release, project A not being com-

patible with the newer version of project B, and project B introduced a bug.

13https://github.com/pouchdb/pouchdb/issues/5430

129

7.8 Threats to Validity

There are two main threats that can affect the validity of the results reported

in this chapter:

Construct Validity.

This threat is mainly related to our automatic approach that used to mine data

from the libraries.io dataset. We developed a number of scripts that extracted

and then processed data obtained from libraries.io. We built our scripts in

iterations, first testing them on small samples size (from a selected set of package

managers) that could be manually verified before employing them on the larger

dataset in order improve precision. Our scripts and filtered dataset are publicly

available for replication purposes14.

External Validity.

This study used a data dump from libraries.io that contains data from over 2.7

million projects from 37 package managers. We consider this to be a representa-

tive sample size for a large scale empirical study. However, we cannot claim that

the results can be generalised for other package managers that are not investi-

gated in this study or for closed source projects. Different package managers

might have different approaches in handling dependencies, which might result

in different conclusions.

The libraries.io dataset has been validated in each of the experiments. Most

of the data has been deemed to be of high standard. There have been some times

where timestamps are off by a small amount - an artefact of the web scraping

process - and there are occasional missing data points. These inconsistencies

are not deemed to affect the overall validity of the results. There are also a few

places where data has been incorrect, such as timestamps from the year 1900.

The following outlines the places we noticed issues:

• The dependency declaration data for some versions is missing from the

dataset. This occurs roughly 5% of the time. No data for these versions

were included.

• While the timestamps of when versions were published are intended by

the dataset to be the published time, in some cases, they were not ac-

curate. When checking for lag in the at-least declaration classifications,

14https://github.com/jacobstringer/masters/

130

there existed lag in 40% of Pub, 8% of npm, 3% of Maven, and <1% of

other package managers. Since it seems unlikely that developers would

choose a declaration that cannot be satisfied by any version, a more log-

ical explanation is that the published timestamps on some versions are

not accurate. Informal tests showed this accuracy issue to be a matter

of hours to a few days in most cases, so further investigations were not

carried out. A second issue with timestamps is in NuGet, where 275 pairs

have default timestamps (1900-01-01). These pairs were removed from

the time lag analysis in Section 7.2.4.

7.9 Conclusion

In this chapter, we investigated technical lag in a wide range of package man-

agers. We also studied the frequency of updates, updating strategies, and the

reasons for backward updates.

The results of this analysis show that technical lag is common. Many de-

pendencies lag, but this varies widely by package manager, as declarations can

be anywhere on a continuum from fixed (where lag is avoided by regular devel-

oper intervention), to open ranges (where the latest version is always able to be

used). In between these two extremes are semver compliant ranges, micro and

minor, which have less lag than fixed declarations, but still can lag when the

dependency has minor or major updates respectively. Moving from restrictive

declarations to semver-compliant ranges could solve a significant amount of lag,

avoiding lag in one-third to two-thirds of dependencies which currently lag.

When lag exists, it is generally in small amounts. Most dependencies do not

get more than 1-2 major or minor versions behind, or 3-5 micro versions behind.

In terms of the frequency of which developers update their dependencies, in most

package managers, fixed version dependencies are not updated regularly. When

they are updated, as much as 50% of the time they are not updated to the most

recent versions.

Developers tend to update fixed dependencies much more often in major

changes to their own projects than in minor or micro updates. They are also

more likely to update to a new major version of the dependency at this point

as well. Developers in some package managers (e.g. NuGet and Cargo) up-

date their fixed dependencies regularly to stay up-to-date. However, this is not

131

common across other package managers.

Backwards updates are uncommon across package managers - the package

manager with the highest rate being 1 in 300. When backward changes happen,

the most common reasons for them are that project A moves from an unstable

to a stable release, project A is not compatible with the newer version of project

B, or that project B introduces a bug.

This study only analysed update changes for fixed declarations. An inter-

esting follow up question would be if these results can be generalised to flexible

declarations - a topic which is discussed further in Section 7.10. This might

also help shed light on why update patterns vary so wildly by package manager.

This study also found that in particular ecosystems, such as Maven and npm, a

significant number of projects are up-to-date in an old major version. It would

be interesting to know how often this is done deliberately, and why developers

have avoided migrating their projects to new major versions of dependencies.

This study also points to how effective semantic versioning ranges are in

reducing technical lag in dependencies. We believe that improved tooling for

detecting incompatible updates and increased integration into build cycles are

still needed to shield developers from breaking changes, and for them to have

the necessary trust in upstream developers to use these more permissive decla-

rations.

7.10 Future Work

Classifying Update Types for Flexible Declarations

One of the future directions directly in the line of this work would be to under-

stand how developers choose to update flexible declarations - expanding on the

work in this chapter to understand how fixed declarations are updated.

If we wish to extend updates to flexible declarations, it is possible with the

declaration object discussed in Section 7.2.2, but requires different categorisa-

tions for updates. Categorising changes to flexible declarations is more complex

than for fixed declarations, as changes come in many forms - the starting ver-

sion can change, as can the ending version, additional ranges can be added or

removed, and all of these can happen independently of one another. There are

a large number of possibilities, some of which are outlined below:

Classification Based on Ranges

132

S1 = Satisfies set of the penultimate declaration

S2 = Satisfies set of the latest declaration

S#min = First version in set

S#max = Last version in set

1. Declarations are two disjoint sets: S1 ∩ S2 = ∅

(a) S2 consists of older versions

(b) S2 consists of newer versions

(c) Both or neither of the above15

2. Declarations overlap but differ: S1 ∩ S2 6= ∅, S1 6= S2

(a) S2 includes newer versions: S2max > S1max, S2min = S1min

(b) S2 excludes newer versions: S2max < S1max, S2min = S1min

(c) S2 includes earlier versions: S2max = S1max, S2min < S1min

(d) S2 excludes earlier versions: S2max = S1max, S2min > S1min

(e) S2’s range is further forward: S2max > S1max, S2min > S1min

(f) S2’s range is further back: S2max < S1max, S2min < S1min

(g) S2 has a wider range: S2max > S1max, S2min < S1min

(h) S2 has a narrower range: S2max < S1max, S2min > S1min

3. Declarations are the same: S1 = S2

There are further classifications that could be made in item 2 due to decla-

rations possibly consisting of multiple ranges, and item 1c encompasses several

options, but even the above classifications are likely to be too fine-grained. Each

of the three main classifications give interesting information, but by themselves

do not fully describe what choices developers are making. I would hypothesise

that 1a, 1b, 2a, 2b, 2e, 2h, and 3 are the most common patterns. That accounts

for micro to minor range changes (2a, 2e) and minor to micro range changes

(2b, 2h), with the choices depending if the developer takes the time to update

the minimum to the newest version simultaneously. 2d would be the equivalent

15If either S1 or S2 is a disjoint set where the other fully lies within a gap of its range, this

condition is possible, although I would hypothesise that this is exceedingly rare in practice

based on the results from Chapter 5.

133

of 2e and 2h in the case where the developer decides that the newest version

is compatible with the project and sets it as the new minimum but no other

changes are made. It would be interesting to know how often developers in-

crease the minimum version (2d, 2e and 2h combined) when they already had

set a range.

In addition to the above set of classifications being quite unwieldy, it gives

little information about the motivation of why developers made the declaration

update. Given that we have a model to think about declarations, and in partic-

ular because semver-compliant ranges are widely used (as shown in Chapter 5),

it would be more interesting to frame the updates in terms of moving between

different styles of declarations.

Classification Based on Semver Declarations

Another possible way to describe declaration updates would be to use a com-

posite classification, based on three orthogonal classifications:

1. Declaration Type Changes

(a) Declaration type remains the same

(b) S1 was micro, S2 is minor

(c) S1 was minor, S2 is micro

(d) S1 was a semver-compliant range, S2 is fixed

(e) S1 was fixed, S2 is a semver-compliant range

(f) S1 was a custom range, S2 is a semver-compliant range

(g) S1 was a semver-compliant range, S2 is a custom range

(h) Other style change

2. Range Changes

(a) No change, e.g. S1 = S2

(b) S2 is newer, e.g. S2max > S1max ∨ S2min > S1min

(c) S2 is older, e.g. S2max < S1max ∨ S2min < S1min

3. Sets Overlap

(a) Overlap, e.g. S1 ∩ S2 6= ∅

134

(b) No Overlap, e.g. S1 ∩ S2 = ∅

The above set of classifications would focus first on style changes - movements

along the declaration risk continuum in Figure 5.1. These types of updates are

easy to understand and interpret, as they build on a layer of abstraction (by first

classifying the type of range), unlike the previous set of categories. Similarly,

custom ranges which could be replaced with a semver-compliant range need

not be treated differently at this stage, giving a much more generalisable set of

data. While it is possible for other changes to exist (e.g. going between fixed

and custom ranges), unless it turns out that 1h gets a significant portion of the

changes, there is a risk of going too fine grained.

The range changes in the second part of the classification give a coarse in-

dication if the change is to newer versions or older versions. Since these three

options do not fully account for range changes (for example, it is possible that

2b and 2c could be true simultaneously, such as when a range is widened), it

is possible to substitute them for the range classifications in the previous clas-

sification set. However, based on the results from previous chapters, that level

of fine grained results is not likely to provide too much additional information

despite its added complexity.

The third criteria, checking if sets overlap, provides a sense of scale to the

change. A change that adds versions to the satisfies set will tend to be smaller

than one that completely replaces the set (e.g. updating a minor range from

version 3 to version 4). Combining this information with part two will provide

additional insights regarding the size and direction of the updates.

135

Chapter 8

Conclusions

Dependency management is a necessary part of any modern, large-scale project.

It can also be complex - dependencies are usually under development at the same

time as client projects, and therefore linking a project to a compatible version

of a dependency is imperative to creating a stable build. However, keeping a

dependency at a specific, compatible version means missing out on any fixes

(bugs, security patches etc.) that are released. This missing out of dependency

updates is a phenomenon called technical lag, which literature has repeatedly

shown to negatively affect the quality of a project.

Semver was released 20 years ago as a framework for dependency manage-

ment automation. It allows upstream projects to signal to downstream projects

what sort of changes they are making, and specifically, if they believe the update

is going to introduce breaking changes - the idea being that package managers

can automatically download new versions of dependencies as long as they do

not break, leading to smaller amounts of technical lag and requiring a smaller

time commitment from developers. In order for package managers to choose

between multiple versions, a developer only needs to create a declaration that

allows any minor versions or micro versions of a given major range. This dec-

laration is called a flexible declaration, as multiple versions would satisfy it, as

opposed to fixed declarations which only allow one specific version to be used.

While recent studies have pointed to semver-compliant ranges being used more

in declarations in some ecosystems, the work reported in this thesis shows that

there is a long way to go for its full potential to be realised.

136

Upon starting these studies, we expected to find that, while semver was a

great idea, it did not have great uptake in industry - a view that was perhaps

shaded by our backgrounds using Maven, an ecosystem where fixed version dec-

larations are commonplace and the community is dominated by conservative

practitioners. After the initial experiment reported in Chapter 4, we realised

that the picture was much more complicated, with each of the three ecosys-

tems studied having quite different approaches to dependency management and

semver uptake. This led to a much larger study in Chapter 5 which found

that this was not unique to npm versus Maven, but that almost all package

managers have different declaration patterns, and therefore different views on

automating dependency management - although one interesting finding is that

the Maven ecosystem is unique in just how conservatively it approaches depen-

dency management. Chapter 6 cross-validated our findings, when developers

gave free form answers of how they practiced dependency management - while

there were some themes which we will discuss below, the most interesting part

was the heterogeneity of the responses, mirroring the data captured in Chapter

5.

With the findings showing little agreement in dependency management styles

and declaration patterns between ecosystems, our focus turned to the ramifi-

cations of these results. Each declaration style has to weigh up two competing

factors - on one hand, being more restrictive with the declaration means invest-

ing more developer time into maintenance (or alternatively increasing technical

lag with each update of the dependency), and on the other hand, being more

permissive leaves a project more vulnerable to breaking changes released in up-

dates of the dependency. There have been studies looking at the cons of being

too permissive (see Section 3.3), and others that have looked at the cons of hav-

ing technical lag (see Section 3.5.3 in particular), however, we are not aware of

any studies that allow us to generalise how much technical lag is present, or give

us an indication of how declaration patterns will affect lag. It also quantifies the

choice that a developer makes when a declaration is fixed - the most restrictive

declarations of all - how often do they invest time into updating, versus how

often do they ignore it and allow technical lag to increase.

The results corroborated previous research findings and added additional

nuances. Overall, fixed declarations incurred technical lag a great deal of the

time, and by and large developers are not good at keeping up with updates

137

when it has to be done manually. They tend to leave updating dependencies

until major milestones in development (such as major releases of their own

project), unless the change is trivial. We also looked into how much would

semver-compliant ranges help reduce technical lag. The results were staggering

- depending on the ecosystem, up to two-thirds of lagging dependencies could be

up-to-date if using minor ranges, and in all ecosystems, at least three-quarters

of dependencies would be up-to-date.

8.1 Future Work

Given our results, it is clear that semver offers a way to reduce technical lag,

allowing for higher quality projects. In the course of these studies though, we

often ran into reasons why it currently cannot fulfil its potential.

In order to understand why semver has been a mixed success so far, it is

necessary to realise that semver is a social contract between developers rather

than a technical issue to be solved. The system relies on upstream developers

(1) understanding what types of updates can cause breaking changes, and (2)

following an implicit contract in the form of semver principles when updating

their version numbers. Both in the literature and from developers’ experiences

shared in Chapter 6, it is clear that each point is problematic. For downstream

developers, semver relies on trust - trust that upstream developers do both.

Because a notable number of upstream developers either ignore or are unaware

of all the subtle ways that a project can break backwards compatibility (which

is an extremely complex process), downstream developers often lose trust in the

upstream developers’ ability to protect them from breaking updates, causing

the contract to fall apart.

No social contract can ever be fool-proof. However, most successful social

contracts build in incentives for agents to keep the contract, or penalties for

agents who break the contract. An example of a similar social contract is bul-

lying on social media. There are generally no explicit rules that can stop this

behaviour, but for any agents who bully others, there is a penalty in the form

of social policing. This penalty usually helps to avoid this negative social be-

haviour as the potential bully does not wish to be ostracised by their social

group.

For upstream developers, breaking the social contract they have with (po-

138

tentially anonymous) downstream developers by introducing breaking changes

carries fewer penalties than the social media bullying example. There may be

some reputation damage, and downstream developers may increase their work-

load by reporting more issues, but the penalties involved for upstream developers

who introduce breaking changes tend to be small. While the cost of introducing

breaking changes for upstream developers is low, it can be high for downstream

developers who must immediately fix the issues created by the dependency up-

date.

Some ecosystems have attempted to increase cooperation between upstream

and downstream developers, in order to heighten both the benefits of keep-

ing the contract, and increasing the penalties of ignoring it. CRAN is a good

example of this, where the repository runs daily integration tests to ensure

that projects can build successfully.1 To supplement this, it requires both up-

stream and downstream developers to work together on breaking changes, in

order to keep projects up-to-date. Eclipse2 employs a similar tactic, where

its yearly releases give a consistent snapshot of projects that work with each

other [Tahir et al., 2017]. However, the costs of maintaining consistency is high,

so these models are not common throughout the industry.

Another approach that has been suggested [Decan et al., 2018] is to increase

the penalties of non-compliance by creating health metrics for dependencies -

making reputation highly visible. If projects are rated on their activity levels and

ability to keep compliance with semver, this would make it easier for downstream

developers to make choices about which dependencies to include. Well respected

dependencies would be used more, and ones that often break contracts with their

downstream users would be shunned by their communities. Social problems tend

to have social solutions, and this social pressure may prove to be an effective

strategy if it became widely used.

While semver may never be perfect, due to its reliance on social contracts,

there are also technical measures that we can use to improve it:

1. Improve the information that upstream developers have access to. For

upstream developers, having tools that analyse programme changes and

make smart suggestions for what the semantic version should be updated

1See https://cloud.r-project.org/web/checks/check_summary_by_maintainer.html for

daily updates of R CMD check integration tests done by the CRAN maintainers.
2https://www.eclipse.org/

139

to would improve the fidelity of the versioning numbers and decrease the

amount of accidental breaking changes that projects make (which is cur-

rently very high).

2. Improve existing tools which check updates for breaking changes and avoid

automatic updates where issues are detected. For downstream developers,

because it is not possible to trust that upstream developers have correctly

incremented their version number, having additional, independent infor-

mation is essential. Integrating a tool that scans for breaking updating

into a package manager or continuous integration cycle would be the best

case, as the survey has shown that while some sophisticated API checking

tools are available, none of the respondents currently use any of them. For

this case, it is both about having high quality tools available, and rolling

them out widely.

Unfortunately, the process of automatically spotting breaking changes is

exceedingly difficult. Not only must syntactic contracts be kept (there are cur-

rently tools that automate this in statically typed languages), but behavioural

contracts (pre- and post-conditions) and other non-technical elements such as

licences must also be kept. A few behavioural contract checks can be automated

(such as nullability and errors thrown), but without the adoption of languages

that enforce pre- and post-conditions, most behavioural contracts remain out of

the reach of automation.

In the meantime, there are tools that can help bridge the communication gap

between upstream and downstream developers. The literature confirms that a

good portion of technical lag stems from developers not being aware of depen-

dency updates - tools like Greenkeeper3 or Dependencies.io4 which check for new

dependencies and let developers know of possible updates are a light-weight first

step to keeping technical lag down in an environment where automatic updating

via semver-compliant declarations is not safe enough for many developers.

Automation is the future for dependency management, but that is still some

way from occurring, as tools must be improved and be helped by advances in

language design. In the immediate future, education for both upstream and

downstream developers is imperative to ensure the social contracts between

3https://greenkeeper.io/
4https://dependencies.io/

140

them can be as stable as possible. Social pressure is likely to be effective as well,

with the first step being making a project’s reputation and semver-compliance

highly visible - the community’s social policing may well make breaking changes

have much stronger repercussions than currently, making upstream developers

more careful with their version numbering schemes.

141

Bibliography

[Abate et al., 2012] Abate, P., Di Cosmo, R., Treinen, R., and Zacchiroli, S.

(2012). Dependency solving: a separate concern in component evolution

management. Journal of Systems and Software, 85(10):2228–2240.

[Andrew and David, 2000] Andrew, H. and David, T. (2000). The pragmatic

programmer: From journeyman to master.

[Bavota et al., 2015] Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., and

Panichella, S. (2015). How the apache community upgrades dependencies: an

evolutionary study. Empirical Software Engineering, 20(5):1275–1317.

[Beugnard et al., 1999] Beugnard, A., Jézéquel, J.-M., Plouzeau, N., and

Watkins, D. (1999). Making components contract aware. Computer, 32(7):38–

45.

[Bogart et al., 2015] Bogart, C., Kästner, C., and Herbsleb, J. (2015). When

it breaks, it breaks: How ecosystem developers reason about the stability of

dependencies. In 2015 30th IEEE/ACM International Conference on Auto-

mated Software Engineering Workshop (ASEW), pages 86–89. IEEE.

[Bogart et al., 2016] Bogart, C., Kästner, C., Herbsleb, J., and Thung, F.

(2016). How to break an api: cost negotiation and community values in three

software ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, pages 109–120.

[Braun and Clarke, 2006] Braun, V. and Clarke, V. (2006). Using thematic

analysis in psychology. Qualitative research in psychology, 3(2):77–101.

142

[Chalin and James, 2007] Chalin, P. and James, P. R. (2007). Non-null refer-

ences by default in Java: Alleviating the nullity annotation burden. pages

227–247.

[Claes et al., 2018] Claes, M., Decan, A., and Mens, T. (2018). Inter-component

dependency issues in software ecosystems. Software Technology: 10 Years of

Innovation in IEEE Computer.

[Claessen and Hughes, 2000] Claessen, K. and Hughes, J. (2000). QuickCheck:

A Lightweight Tool for Random Testing of Haskell Programs. In Proceedings

of the International Conference on Functional Programming (ICFP), pages

268–279. ACM.

[Cox et al., 2015] Cox, J., Bouwers, E., Van Eekelen, M., and Visser, J. (2015).

Measuring dependency freshness in software systems. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, volume 2,

pages 109–118.

[Decan and Mens, 2019] Decan, A. and Mens, T. (2019). What do package de-

pendencies tell us about semantic versioning? IEEE Transactions on Software

Engineering.

[Decan et al., 2018] Decan, A., Mens, T., and Grosjean, P. (2018). An empiri-

cal comparison of dependency network evolution in seven software packaging

ecosystems. Empirical Software Engineering, pages 1–36.

[Derr et al., 2017] Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M.

(2017). Keep me updated: An empirical study of third-party library up-

datability on android. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, pages 2187–2200. ACM.

[Dietrich et al., 2014] Dietrich, J., Jezek, K., and Brada, P. (2014). Broken

promises: An empirical study into evolution problems in java programs caused

by library upgrades. In 2014 Software Evolution Week-IEEE Conference

on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-

WCRE), pages 64–73.

[Dietrich et al., 2016] Dietrich, J., Jezek, K., and Brada, P. (2016). What java

developers know about compatibility, and why this matters. Empirical Soft-

ware Engineering, 21(3):1371–1396.

143

[Dietrich et al., 2017] Dietrich, J., Pearce, D. J., Jezek, K., and Brada, P.

(2017). Contracts in the wild: A study of java programs (artifact). In DARTS-

Dagstuhl Artifacts Series, volume 3. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik.

[Dietrich et al., 2019] Dietrich, J., Pearce, D. J., Stringer, J., Tahir, A., and

Blincoe, K. (2019). Dependency versioning in the wild. In Proceedings of

the 16th International Conference on Mining Software Repositories, pages

349–359.

[Dig and Johnson, 2006] Dig, D. and Johnson, R. (2006). How do apis evolve? a

story of refactoring. Journal of software maintenance and evolution: Research

and Practice, 18(2):83–107.

[Drossopoulou et al., 1999] Drossopoulou, S., Eisenbach, S., and Wragg, D.

(1999). A fragment calculus-towards a model of separate compilation, link-

ing and binary compatibility. In Proceedings. 14th Symposium on Logic in

Computer Science (Cat. No. PR00158), pages 147–156. IEEE.

[Drossopoulou et al., 1998] Drossopoulou, S., Wragg, D., and Eisenbach, S.

(1998). What is java binary compatibility? In Proceedings of the 13th ACM

SIGPLAN conference on Object-oriented programming, systems, languages,

and applications, pages 341–361.

[Ekman and Hedin, 2007] Ekman, T. and Hedin, G. (2007). Pluggable checking

and inferencing of non-null types for Java. 6(9):455–475.

[Espinha et al., 2014] Espinha, T., Zaidman, A., and Gross, H.-G. (2014). Web

api growing pains: Stories from client developers and their code. In 2014 Soft-

ware Evolution Week-IEEE Conference on Software Maintenance, Reengi-

neering, and Reverse Engineering (CSMR-WCRE), pages 84–93.

[Fähndrich and Leino, 2003] Fähndrich, M. and Leino, K. R. M. (2003). Declar-

ing and checking non-null types in an object-oriented language. pages 302–

312.

[Foo et al., 2018] Foo, D., Chua, H., Yeo, J., Ang, M. Y., and Sharma, A.

(2018). Efficient static checking of library updates. In Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages 791–796.

144

[Gamma et al., 1993] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

(1993). Design patterns: Abstraction and reuse of object-oriented design.

In European Conference on Object-Oriented Programming, pages 406–431.

Springer.

[German et al., 2007] German, D. M., Gonzalez-Barahona, J. M., and Rob-

les, G. (2007). A model to understand the building and running inter-

dependencies of software. In Reverse Engineering, 2007. WCRE 2007. 14th

Working Conference on, pages 140–149. IEEE.

[Gonzalez-Barahona et al., 2009] Gonzalez-Barahona, J. M., Robles, G.,

Michlmayr, M., Amor, J. J., and German, D. M. (2009). Macro-level software

evolution: a case study of a large software compilation. Empirical Software

Engineering, 14(3):262–285.

[Gonzalez-Barahona et al., 2017] Gonzalez-Barahona, J. M., Sherwood, P.,

Robles, G., and Izquierdo, D. (2017). Technical lag in software compilations:

Measuring how outdated a software deployment is. In IFIP International

Conference on Open Source Systems, pages 182–192.

[Haney, 2016] Haney, D. (2016). Npm & left-pad: Have we for-

gotten how to program ? https://www.davidhaney.io/

npm-left-pad-have-we-forgotten-how-to-program/.

[Henkel and Diwan, 2005] Henkel, J. and Diwan, A. (2005). Catchup! capturing

and replaying refactorings to support api evolution. In Software Engineering,

2005. ICSE 2005. Proceedings. 27th International Conference on, pages 274–

283. IEEE.

[Hora et al., 2015] Hora, A., Robbes, R., Anquetil, N., Etien, A., Ducasse, S.,

and Valente, M. T. (2015). How do developers react to api evolution? the

pharo ecosystem case. In 2015 IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 251–260. IEEE.

[Humble and Farley, 2010] Humble, J. and Farley, D. (2010). Continuous De-

livery: Reliable Software Releases through Build, Test, and Deployment Au-

tomation. Addison-Wesley Signature Series (Fowler). Pearson Education.

[Jacobs and Poll, 2001] Jacobs, B. and Poll, E. (2001). A logic for the Java

modeling language JML. pages 284–299.

145

[Jenson et al., 2010] Jenson, G., Dietrich, J., and Guesgen, H. W. (2010). An

empirical study of the component dependency resolution search space. In

International Symposium on Component-Based Software Engineering, pages

182–199. Springer.

[Jezek and Dietrich, 2014] Jezek, K. and Dietrich, J. (2014). On the use of

static analysis to safeguard recursive dependency resolution. In 2014 40th

EUROMICRO Conference on Software Engineering and Advanced Applica-

tions, pages 166–173. IEEE.

[Jezek and Dietrich, 2016] Jezek, K. and Dietrich, J. (2016). Magic with

dynamo–flexible cross-component linking for java with invokedynamic. In

30th European Conference on Object-Oriented Programming (ECOOP 2016).

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[Jezek and Dietrich, 2017] Jezek, K. and Dietrich, J. (2017). Api evolution and

compatibility: A data corpus and tool evaluation. Journal of Object Technol-

ogy, 16(4):2–1.

[Kalliamvakou et al., 2014] Kalliamvakou, E., Gousios, G., Blincoe, K., Singer,

L., German, D. M., and Damian, D. (2014). The promises and perils of

mining github. In Proceedings of the 11th working conference on mining

software repositories, pages 92–101.

[Katz, 2018] Katz, J. (2018). Libraries.io Open Source Repository and Depen-

dency Metadata.

[Kikas et al., 2017] Kikas, R., Gousios, G., Dumas, M., and Pfahl, D. (2017).

Structure and evolution of package dependency networks. In Proceedings of

the 14th International Conference on Mining Software Repositories, pages

102–112. IEEE press.

[Kula et al., 2015] Kula, R. G., German, D. M., Ishio, T., and Inoue, K. (2015).

Trusting a library: A study of the latency to adopt the latest maven release. In

2015 IEEE 22nd International Conference on Software Analysis, Evolution,

and Reengineering (SANER), pages 520–524.

[Kula et al., 2018] Kula, R. G., German, D. M., Ouni, A., Ishio, T., and Inoue,

K. (2018). Do developers update their library dependencies? Empirical

Software Engineering, 23(1):384–417.

146

[Lauinger et al., 2018] Lauinger, T., Chaabane, A., Arshad, S., Robertson,

W., Wilson, C., and Kirda, E. (2018). Thou shalt not depend on me:

Analysing the use of outdated javascript libraries on the web. arXiv preprint

arXiv:1811.00918.

[Lehman, 1980] Lehman, M. M. (1980). Programs, life cycles, and laws of soft-

ware evolution. Proceedings of the IEEE, 68(9):1060–1076.

[Linares-Vásquez et al., 2013] Linares-Vásquez, M., Bavota, G., Bernal-

Cárdenas, C., Di Penta, M., Oliveto, R., and Poshyvanyk, D. (2013). Api

change and fault proneness: a threat to the success of android apps. In Pro-

ceedings of the 2013 9th joint meeting on foundations of software engineering,

pages 477–487. ACM.

[Lungu et al., 2010] Lungu, M., Robbes, R., and Lanza, M. (2010). Recov-

ering inter-project dependencies in software ecosystems. In Proceedings of

the IEEE/ACM international conference on Automated software engineering,

pages 309–312. ACM.

[Lungu, 2009] Lungu, M. F. (2009). Reverse engineering software ecosystems.

PhD thesis, Università della Svizzera italiana.

[Male et al., 2008] Male, C., Pearce, D., Potanin, A., and Dymnikov, C. (2008).

Java bytecode verification for @NonNull types. pages 229–244.

[Martin, 2009] Martin, R. C. (2009). Clean code: a handbook of agile software

craftsmanship. Pearson Education.

[McIlroy et al., 1968] McIlroy, M. D., Buxton, J., Naur, P., and Randell, B.

(1968). Mass-produced software components. In Proceedings of the 1st Inter-

national Conference on Software Engineering, pages 88–98.

[Mens et al., 2008] Mens, T., Fernández-Ramil, J., and Degrandsart, S. (2008).

The evolution of eclipse. In Software Maintenance, 2008. ICSM 2008. IEEE

International Conference on, pages 386–395. IEEE.

[Pashchenko et al., 2018] Pashchenko, I., Plate, H., Ponta, S. E., Sabetta, A.,

and Massacci, F. (2018). Vulnerable open source dependencies: Counting

those that matter. In Proceedings of the 12th ACM/IEEE International Sym-

posium on Empirical Software Engineering and Measurement, page 42. ACM.

147

[Raemaekers et al., 2012] Raemaekers, S., Van Deursen, A., and Visser, J.

(2012). Measuring software library stability through historical version anal-

ysis. In 2012 28th IEEE International Conference on Software Maintenance

(ICSM), pages 378–387. IEEE.

[Raemaekers et al., 2014] Raemaekers, S., Van Deursen, A., and Visser, J.

(2014). Semantic versioning versus breaking changes: A study of the maven

repository. In 2014 IEEE 14th International Working Conference on Source

Code Analysis and Manipulation, pages 215–224.

[Raemaekers et al., 2017] Raemaekers, S., van Deursen, A., and Visser, J.

(2017). Semantic versioning and impact of breaking changes in the maven

repository. Journal of Systems and Software, 129:140–158.

[Robbes et al., 2012] Robbes, R., Lungu, M., and Röthlisberger, D. (2012).

How do developers react to api deprecation?: the case of a smalltalk ecosys-

tem. In Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering, page 56.

[Roseiro Côgo et al., 2019] Roseiro Côgo, F., Oliva, G., and Hassan, A. E.

(2019). An empirical study of dependency downgrades in the npm ecosystem.

IEEE Transactions on Software Engineering, PP:1–1.

[Salza et al., 2018] Salza, P., Palomba, F., Di Nucci, D., D’Uva, C., De Lucia,

A., and Ferrucci, F. (2018). Do developers update third-party libraries in mo-

bile apps? In Proceedings of the 26th Conference on Program Comprehension,

pages 255–265. ACM.

[Şavga and Rudolf, 2007] Şavga, I. and Rudolf, M. (2007). Refactoring-based

support for binary compatibility in evolving frameworks. In Proceedings of

the 6th international conference on Generative programming and component

engineering, pages 175–184.

[Sawant et al., 2018] Sawant, A. A., Aniche, M., van Deursen, A., and Bacchelli,

A. (2018). Understanding developers’ needs on deprecation as a language

feature. In 2018 IEEE/ACM 40th International Conference on Software En-

gineering (ICSE), pages 561–571.

[Sawant et al., 2016] Sawant, A. A., Robbes, R., and Bacchelli, A. (2016). On

the reaction to deprecation of 25,357 clients of 4+ 1 popular java apis. In

148

2016 IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 400–410. IEEE.

[Szyperski, 1999] Szyperski, C. (1999). Greetings from dll hell. Software Devel-

opment, 7(10).

[Tahir et al., 2017] Tahir, A., Licorish, S. A., and MacDonell, S. G. (2017). Fea-

ture evolution and reuse-an exploratory study of eclipse. In 2017 24th Asia-

Pacific Software Engineering Conference (APSEC), pages 582–587. IEEE.

[Vanson Bourne, 2018] Vanson Bourne (2018). White paper: The trials and

tribulations of component security; are organizations at risk? Technical

report, Veracode, CA Technologies.

[Vouillon and Cosmo, 2013] Vouillon, J. and Cosmo, R. D. (2013). On software

component co-installability. ACM Transactions on Software Engineering and

Methodology (TOSEM), 22(4):1–35.

[Xavier et al., 2017] Xavier, L., Brito, A., Hora, A., and Valente, M. T. (2017).

Historical and impact analysis of api breaking changes: A large-scale study.

In 2017 IEEE 24th International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 138–147.

[Zapata et al., 2018] Zapata, R. E., Kula, R. G., Chinthanet, B., Ishio, T., Mat-

sumoto, K., and Ihara, A. (2018). Towards smoother library migrations: A

look at vulnerable dependency migrations at function level for npm javascript

packages. In 2018 IEEE International Conference on Software Maintenance

and Evolution (ICSME), pages 559–563.

[Zerouali et al., 2018] Zerouali, A., Constantinou, E., Mens, T., Robles, G., and

González-Barahona, J. (2018). An empirical analysis of technical lag in npm

package dependencies. In International Conference on Software Reuse, pages

95–110.

[Zerouali et al., 2019a] Zerouali, A., Cosentino, V., Mens, T., Robles, G., and

Gonzalez-Barahona, J. M. (2019a). On the impact of outdated and vulnerable

javascript packages in docker images. In 2019 IEEE 26th International Con-

ference on Software Analysis, Evolution and Reengineering (SANER), pages

619–623.

149

[Zerouali et al., 2019b] Zerouali, A., Mens, T., Robles, G., and Gonzalez-

Barahona, J. M. (2019b). On the relation between outdated docker con-

tainers, severity vulnerabilities, and bugs. In 2019 IEEE 26th International

Conference on Software Analysis, Evolution and Reengineering (SANER),

pages 491–501.

[Zibran et al., 2011] Zibran, M. F., Eishita, F. Z., and Roy, C. K. (2011). Useful,

but usable? factors affecting the usability of apis. In 2011 18th Working

Conference on Reverse Engineering, pages 151–155. IEEE.

150

