Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Electroencephalographic responses of calves to the noxious sensory input of slaughter by ventral neck incision and its modulation with non-penetrative captive bolt stunning

A thesis presented in partial fulfilment of the requirements of the degree of:

Doctor of Philosophy In Physiology

Massey University Palmerston North New Zealand

Troy John Gibson 2009

INSTITUTE OF VETERINARY, ANIMAL AND BIOMEDICAL SCIENCES Private Bag 11 222 Palmerston North New Zealand T 64 6 350 5070 F 64 6 350 5714 www.massey.ac.nz

11th May 2009

Declaration of regulatory compliance

This is to certify that the work performed in the Doctoral Thesis entitled "Electroencephalographic responses of calves to the noxious sensory input of slaughter by ventral neck incision and its modulation with non-penetrative captive bolt stunning" in the Institute of Veterinary, Animal and Biomedical Sciences at Massey University, Palmerston North, New Zealand:

- Is the original work of the candidate, except where cited in text, diagrams and/or in the acknowledgements.
- That the text, excluding appendices does not exceed 100,000 words.
- All the ethical requirements applicable to the study have been complied with as required by Massey University and relevant legislation.

Animal Ethical Authorisation codes: Protocol no. 04/86 and 06/61.

Candidate: Troy J. Gibson

Chief Supervisor: Dr Craig Johnson

Signature:

, and tableon

Signature:

Date:

11th May 2009

Date:

INSTITUTE OF VETERINARY, ANIMAL AND BIOMEDICAL SCIENCES Private Bag 11 222 Palmerston North New Zealand T 64 6 350 5070 F 64 6 350 5714 www.massey.ac.nz

11th May 2009

Candidate's Declaration

This certifies that the research carried out for my Doctoral thesis entitled "Electroencephalographic responses of calves to the noxious sensory input of slaughter by ventral neck incision and its modulation with non-penetrative captive bolt stunning", in the Institute of Veterinary, Animal and Biomedical Sciences at Massey University, Palmerston North, New Zealand is my own work except where cited in text, diagrams and/or in the acknowledgements and that the thesis material has not been used in part or whole for any other qualification.

Candidate: Troy J. Gibson

Signature:

, og labson

Date:

11th May 2009

INSTITUTE OF VETERINARY, ANIMAL AND BIOMEDICAL SCIENCES Private Bag 11 222 Palmerston North New Zealand T 64 6 350 5070 F 64 6 350 5714 www.massey.ac.nz

11th May 2009

Supervisor's Declaration

This certifies that the research carried out for the Doctoral thesis entitled *"Electroencephalographic responses of calves to the noxious sensory input of slaughter by ventral neck incision and its modulation with non-penetrative captive bolt stunning*", was done by Troy J. Gibson in the Institute of Veterinary, Animal and Biomedical Sciences at Massey University, Palmerston North, New Zealand. The thesis material has not been used in part or whole for any other qualification, and I confirm that the candidate has pursed the course of study in accordance with the requirements of the Massey University regulations.

Chief Supervisor: Dr Craig Johnson

Signature:

Date:

Declaration Confirming Content of Digital Version of Thesis

I confirm that the content of the digital version of this thesis

Title: Electroencephalographic responses of calves to the noxious sensory input of slaughter by ventral neck incision and its modulation with non-penetrative captive bolt stunning

is the final amended version following the examination process and is identical to this hard bound paper copy.

Student's Name: Troy J. Gibson

Student's Signature:

Joyladoson

Date: 11th May 2009

ABSTRACT

Slaughter by ventral neck incision (VNI) is performed on some animals without prior stunning in New Zealand and other countries. A single incision with a razor sharp blade is made in the ventral aspect of the neck, sectioning both carotid arteries and jugular veins, though, not the vertebral arteries. There are a number of potential welfare concerns surrounding slaughter by VNI including pain due to the incision, which may lead to distress during the time before loss of consciousness. The aims of this thesis were to identify cortical responses indicative of noxious stimulation due to slaughter by VNI using analysis of the electroencephalogram (EEG) power spectrum and to investigate the effects of non-penetrative captive bolt (NPCB) stunning on these cortical responses.

The studies utilised adaptations of a minimal anaesthesia model, which has been validated in a range of mammalian species. Surgical dehorning was used as a validation technique for this methodology in cattle and demonstrated a 'typical' EEG response to noxious stimulation. Cattle slaughtered by VNI without prior stunning produced specific responses in the EEG that strongly indicated responses to noxious stimulation. Causation was investigated in cattle where blood flow through the brain remained intact during neck tissue incision (NTI) or the major blood vessels of the neck were isolated and transected independently of other neck tissues (BVT). The response to neck incision in intact animals was principally due to the noxious sensory input due to incision of neck tissues and not mainly as a result of loss of blood flow through the brain. NPCB stunning produced states of cortical activity that were incompatible with the maintenance of sensibility and pain perception. Experimental examination of the time to onset of undoubted insensibility was attempted in cattle subsequent to a pilot study in sheep. The generation of somatosensory-evoked potentials was problematic in cattle.

The conclusions of this thesis are that incision of neck tissues during slaughter without prior stunning constitutes a substantial noxious stimulus. Were an animal conscious, this stimulus would be perceived as painful until the onset of hypoxiainduced insensibility. This would represent a significant compromise to animal welfare.

ii

ACKNOWLEDGEMENTS

This thesis could not have been possible without the help, expertise, support and encouragement of my supervisors: Dr Craig Johnson, Professor David Mellor, Professor Kevin Stafford and Dr Geoff Barnes.

I am grateful to the C Alma Baker Trust for the award of C Alma Baker Trust Postgraduate Scholarship. The Ministry of Agriculture and Forestry of New Zealand and the Department of Environment, Food and Rural Affairs of the United Kingdom jointly funded the work presented in this thesis.

Special thanks goes to all the people that have assisted me during my experimental work, it was often cold, it was often wet, it was sometimes dark but because of the team it was always fun. Dr Jo Murrell for all your expert help with experimentation, dinner parties and neuro drinks. Sheryl Mitchinson and Corrin Hulls for all your hard work and friendship during the course of my studies. I would also like to thank the following for their help in experimental work and helpful discussion: Leanne McCracken, Kavitha Kongara, Nicki Grint, Zoe Matthews, Dr Paul Chambers and Des Waters. Thank you to my office mates: Amanda McIlhone, Megan McGregor and Laureline Maynier for all the helpful discussion, fun and for putting up with my untidy desk. Thank you Tamara Diesch for translating obscure German theses.

I am indebted to a number of people that have helped me during my studies: Neil Ward for his help with experimentation and computers, Mike Hogan for your advice and use of post-mortem room and equipment. Members of: the Massey University Large Animal Teaching Unit; the Small Animal Production Unit; the Deer Research Unit; and Dairy Unit 1. Especially their managers: Robin Whitson, Debbie Chesterfield and Martin Chesterfield. Dr Alistair Johnstone for your histological expertise, Alan Nutman for helpful discussion, and Allain Scott for your support during my studies. Many thanks to my stock agent Sam Jones, able to find suitable stock within a moments notice.

Thank you to my friends and family for all your love and support during the course of my studies. My parents John and Yvonne Gibson for your encouragement and support. I am very lucky to have parents like you, thanks. Finally my biggest thanks goes to my loving wife Willow for your love, encouragement, support and understanding.

TABLE OF CONTENTS

ABSTRACT	I
ACKNOWLEDGEMENTS	III
TABLE OF CONTENTS	V
LIST OF FIGURES	IX
LIST OF TABLES	XV
ABBREVIATIONS AND ACRONYMS	XVII

CHAPTER 1 SLAUGHTER WITHOUT STUNNING	1
1 1 INTRODUCTION	1
1.2 Research Focus	3
1.2.1 Primary focus	3
1.2.2 Secondarv foci	3
1.3 STRUCTURE OF THE THESIS	4
1.4 References	5
CHAPTER 2 BACKGROUND AND LITERATURE REVIEW	7
2.1 Animal Welfare	7
2.2 SOME REFLECTIONS ON THE ETHICS OF SLAUGHTER	9
2.2.1 The Ethics of Slaughter Based Research	10
2.3 JEWISH AND MUSLIM SLAUGHTER BACKGROUND	11
2.3.1 Jewish Slaughter	11
2.3.2 Muslim Slaughter	15
2.4 Emergency Slaughter	17
2.5 NEW ZEALAND LEGISLATION CONCERNING THE SLAUGHTER OF ANIMALS WITHOUT PRIOR	
STUNNING	18
2.6 Physiology of Pain	21
2.6.1 Measurement of Pain in Livestock	23
2.7 Electroencephalogram and Evoked Potentials	24
2.7.1 Electroencephalogram	25
2.7.1.1 Recording of the EEG	26
2.7.1.2 Interpretation of Noxious Sensory Input with the EEG	
2.7.1.3 Minimal Anaesthesia Model	34
2.7.2 Evoked Potentials	35
2.7.2. Tinterpretation of the Evoked Potential Waveform	
2.0 TIME TO INSENSIBILITY	
2.9 DLOOD SUPPLY TO THE DOVINE DRAIN	45
2.9.1 Veneoral Arteries auring staugner in Cattle	40
2.10 FAIN DURING SLAUGHTER	40
2.11 REFERENCES	
CHAPTER 3 VALIDATION OF THE ACUTE ELECTROENCEPHALOGRAPHIC	
RESPONSES OF CALVES TO NOXIOUS STIMULUS WITH SCOOP DEHORNING	65
3.1 Abstract	66
3.2 INTRODUCTION	67
3.3 MATERIALS AND METHODS	69
3.3.1 Animals	69
3.3.2 Anaesthesia	69
3.3.3 EEG and ECG Recording	70

3.3.5 EEG and ECG Analysis	72
3.3.6 Statistical Analysis	72
3.4 RESULTS	73
3.5 DISCUSSION	77
3.6 References	80
CHAPTER 4 ELECTROENCEPHALOGRAPHIC RESPONSES OF CALVES TO	
SLAUGHTER BY VENTRAL NECK INCISION WITHOUT PRIOR STUNNING	85
4.1 ADSTRACT	96
4.1 ABSTRACT	00 97
4.2 INTRODUCTION	/ ۵ ۵۵
4.3 MATERIALS AND METHODS	9 89
4 3 2 Anaesthesia	
4 3 3 EEG and ECG Recording	90
4.3.4 Experimental Procedure	
4.3.5 EEG and ECG Analysis	
4.3.6 Histopathology	
4.3.7 Statistical Analysis	
4.4 Results	94
4.5 DISCUSSION	101
4.6 References	105
CHAPTER 5 COMPONENTS OF ELECTROFNCEPHALOCRAPHIC RESPONSES T	'n
SLAUGHTER' EFFECTS OF CUTTING NECK TISSUES COMPARED TO MAJOR I	U SLOOD
VESSELS	
5.1 ABSTRACT	110
5.2 INTRODUCTION	
5.3 MATERIALS AND METHODS	
5.3.1 Animals	
5.3.2 Andesthesia, EEG and ECG	112 112
5.3.5 Experimental Procedure	
5.2.5 Statistics	113 116
5.7.5 Statistics	
5.4 1 FEG Power Spectra Indices	
5.4.7 Compressed Spectral Arrays in Individuals	120
5.4.2 Compressed Speerral Arrays in Individuals	
5.5 DISCUSSION	
5.6 References	
CHAPTER 6 ELECTROENCEPHALOGRAPHIC RESPONSE TO CONCUSSIVE NO.	N- 121
FENEIRA IIVE CAFIIVE BOLT STUNNING IN CATILE	
6.1 Abstract	132
6.2 INTRODUCTION	
6.3 MATERIALS AND METHODS	
6.3.1 Animals	
6.3.2 Anaesthesia	
6.3.3 EEG and ECG Recording	
6.3.4 Experimental Procedure	
6.3.5 Data and Statistical Analysis	
6.4 RESULTS	
6.5 DISCUSSION	144
0.0 KEFERENCES	
CHAPTER 7 AMELIORATION OF ELECTROENCEPHALOGRAPHIC RESPONSES	5 ТО
SLAUGHTER BY NON-PENETRATIVE CAPTIVE BOLT STUNNING AFTER VENT	'RAL
NECK INCISION IN HALOTHANE ANAESTHETISED CALVES	151
7.1 Abstract	152
7.2 INTRODUCTION	
7.3 MATERIALS AND METHODS	

	154
7.3.1 Animals	154
7.3.2 Anaesinesia ana Instrumentation	154
7.5.5 Experimental 1 Toceaure	155
7 4 RESULTS	157
7.5 DISCUSSION	163
7.6 References	166
CHAPTER 8 INHERENT VARIABILITY OF ACUTE ELECTROENCEPHALOGRAPH RESPONSES TO NOXIOUS SUPRAMAXIMAL ELECTRICAL STIMULI IN CALVES.	IIC 169
8.1 ABSTRACT	170
8.2 INTRODUCTION	171
8.3 MATERIALS AND METHODS	172
8.3.1 Animals	172
8.3.3 FFG FCG and Arterial Blood Pressure Recoding	173
8.3.4 Experimental Procedure	173
8.3.5 Data and Statistical Analysis	175
8.4 Results	175
8.5 DISCUSSION	181
8.6 References	183
CHAPTER 9 PILOT STUDY TO DEVELOP A METHOD OF GENERATING AND RECORDING SOMATOSENSORY EVOKED POTENTIALS WITHOUT SURGICALL' IMPLANTED COPTICAL ELECTRODES	Y 185
IVII LANTED CONTICAL ELECTRODES	103
9.1 Abstract	186
9.2 INTRODUCTION	187
9.3 MATERIALS AND METHODS	188
9.3.1 Animais 0.3.2 Anaosthosia	100 188
9.3.2 Antuesinesia	188
9.3.4 Experimental Procedure	189
9.4 Results	190
9.5 Discussion	193
9.6 References	195
CHAPTER 10 INVESTIGATION OF CORTICAL FUNCTION WITH THE USE OF SOMATOSENSORY-EVOKED POTENTIALS IN RESPONSE TO VENTRAL NECK INCISION OR NON-PENETRATIVE CAPTIVE BOLT STUNNING IN CALVES	197
10.1 Abstract	198
10.2 Introduction	199
10.3 MATERIALS AND METHODS	200
10.3.1 Animals	200
10.3.2 Anaesthesia and Blood Pressure	201
10.3.3 Superficial Peroneal Nerve Preparation	201
10.3.4 EEG and SEP 10.3.5 Experimental Procedure	202
10.3.6 Interruption of FEG and SEP Waveforms	203
10.3.7 Statistics	203
10.4 Results	206
10.4.1 SEP	206
10.4.2 Spontaneous EEG	208
10.4.3 Blood Pressure	210
10.5 DISCUSSION	212
1U.0 KEFERENCES	214
CHAPTER 11 GENERAL DISCUSSIONS AND CONCLUSIONS	217
11.1 INOLIUUSNESS OF SLAUGHTEK	218
11.3 Cortical Function After NPCB Stunning or VNI Slaughter	220

11.4 Experimental Limitations	
11.5 Future Work	
11.6 FINAL CONCLUSION	
11.7 References	
APPENDIX 1 EEG SPECTRAL ANALYSIS PROGRAMME CODE	
APPENDIX 2 STUNNING POSITION IN CATTLE	
APPENDIX 3 PUBLISHED SCIENTIFIC PEER-REVIEWED PAPERS	
APPENDIX 4 SCIENTIFIC CONFERENCE PRESENTATIONS	

LIST OF FIGURES

FIGURE 2.1. FLOW CHART DETAILING THE IMPORTANT STEPS IN THE RECORDING AND ANALYSIS OF THE EEG, FROM A SUBJECT, INCLUDING AMPLIFICATION, ANALOGUE FILTERING, ANALOGUE-TO-DIGITAL CONVERSION AND COMPUTER-BASED ACQUISITION TO DIFFERENT FORMS OF EEG ANALYSIS
FIGURE 2.2. DIAGRAMMATIC REPRESENTATION OF THE EEG POWER SPECTRUM AND THE FOUR SINGLE DESCRIPTORS USED IN ANALYSIS. A: MEDIAN FREQUENCY (F50); B: 95% SPECTRAL EDGE FREQUENCY (F95); C: TOTAL EEG POWER (PTOT); AND D: FREQUENCY BAND ANALYSIS
FIGURE 2.3. COMPRESSED SPECTRAL ARRAY FROM THE EEG OF A ANAESTHETISED CALF, WITH TIME (SECONDS) ALONG THE X-AXIS, FREQUENCY (HZ) ALONG THE R-AXIS AND POWER (μV^2) on the Y-AXIS
FIGURE 2.4. FLOW CHART DETAILING THE MAJOR STEPS IN THE RECORDING AND ANALYSIS OF THE SOMATOSENSORY EVOKED POTENTIALS, FROM SUBJECT, AMPLIFICATION, ANALOGUE FILTERING, ANALOGUE-TO-DIGITAL CONVERSION, TRIGGERING, WAVEFORM SUMMATION AND INTERPRETATION
Figure 2.5. Example of a somatosensory evoked potential (SEP) waveform and the measurement of latency (msec) and amplitude (μ V). This evoked potential represents the summation of 32 repetitions
FIGURE 2.6. DIAGRAMMATIC ILLUSTRATION OF THE BLOOD SUPPLY TO THE BRAIN IN CATTLE AND SHEEP. Adapted from Baldwin (1971); Blackmore and Delany (1988)
FIGURE 3.1. DIAGRAM OF THE EXPERIMENTAL DESIGN FOR SCOOP DEHORNING ALONE (DH) OR SCOOP DEHORNING WITH LIDOCAINE RING BLOCK (DH+LA) GROUPS OVER TIME (MINUTES) FROM INDUCTION OF ANASESTHESIA (0 MINUTES) TO RECOVERY (45 MINUTES)
Figure 3.2. Median frequency (F50) (mean) of the electroencephalogram (EEG) before and after dehorning in Calves dehorned with (—) (DH+LA) or without (—) a lidocaine ring block (DH) (a = values significantly different between treatment groups, $P<0.01$; $B = values$ significantly different from pre-treatment DH, $P<0.01$), 0 seconds = time point of dehorning
Figure 3.3. Mean 95% spectral edge frequency (F95) of the electroencephalogram (EEG) before and after dehorning in Calves dehorned with (—) (DH+LA) or without (—) a lidocaine ring block (DH) (a = values significantly different between treatment groups, p<0.01; b = values significantly different from pre-treatment DH, p<0.01), 0 seconds = time point of dehorning
Figure 3.4. Mean total power (Ptot) of the electroencephalogram (EEG) before and after dehorning in calves dehorned with (—) (DH+LA) or without (—) a lidocaine ring block (DH) (a = values significantly different between treatment groups, p<0.01; b = values significantly different from pre-treatment DH, p<0.01), 0 seconds = time point of dehorning
FIGURE 4.1. DIAGRAM OF THE EXPERIMENTAL DESIGN IN MINUTES FOR VENTRAL NECK INCISION (GROUP VNI) AND SHAM INCISION (GROUP SI). ANAESTHESIA OCCURRED AT 0 MINUTES AND VENTRAL NECK INCISION (VNI) AT 25 MINUTES

Figure 4.2. Mean 95% spectral edge frequency (F95) following ventral neck incision (VNI) at 0 seconds. Electroencephalogram (EEG) from the right (—) and from the left (—) of the cranium. A = significant difference from pre-treatment right (P<0.05), B = significant difference from pre-treatment left cerebral hemisphere (P<0.05)...........95

Figure 5.7. Mean changes in blood pressure (MMHG) following neck tissue incision (—) (NTI) and transection of blood vessels (—) (BVT) at 0 seconds (— \pm SEM). A = significant difference between treatments, P<0.001
FIGURE 6.1. DIAGRAM OF THE EXPERIMENTAL DESIGN WITH INDUCTION AT 0 MINUTES AND NON- PENETRATIVE CAPTIVE BOLT (NPCB) STUNNING AT 25 MINUTES (MARKED WITH A VERTICAL GREY BLOCK)
FIGURE 6.2. EEG TRACE FROM A CALVE SHOWING THE COURSE OF CHANGES FROM ACTIVE EEG (A), TO TRANSITIONAL EEG (B) AND TO AN ISOELECTRIC EEG (C)
Figure 6.3. Mean changes total power (Ptot) of the electroencephalogram (EEG) before and after non-penetrative captive bolt (NPCB) stunning only; simple response (n=4). Right cerebral hemisphere (—), left cerebral hemisphere (—). (A) = significant difference from pre-treatment values Ptot (P<0.05) right cerebral hemisphere 140
FIGURE 6.4. MEAN CHANGES TOTAL POWER (PTOT) OF THE ELECTROENCEPHALOGRAM (EEG) BEFORE AND AFTER NON-PENETRATIVE CAPTIVE BOLT (NPCB) STUNNING ONLY; BIPHASIC RESPONSE (N=5). RIGHT CEREBRAL HEMISPHERE (—), LEFT CEREBRAL HEMISPHERE (—). (A) = SIGNIFICANT DIFFERENCE FROM PRE-TREATMENT VALUES PTOT (P<0.05) RIGHT CEREBRAL HEMISPHERE 140
FIGURE 6.5. EXAMPLE OF THE COMPRESSED SPECTRAL ARRAY FROM A CALF WITH A SIMPLE RESPONSE AFTER NON-PENETRATIVE CAPTIVE BOLT (NPCB) STUNNING AT 0 SECONDS
FIGURE 6.6. EXAMPLE OF THE COMPRESSED SPECTRAL ARRAY FROM A CALF WITH A BIPHASIC RESPONSE AFTER NON-PENETRATIVE CAPTIVE BOLT (NPCB) STUNNING AT 0 SECONDS
FIGURE 6.7. CHARACTERISTICS OF THE SPONTANEOUS ELECTROENCEPHALOGRAM (EEG) IN INDIVIDUAL ANIMALS OVER TIME (SECONDS). VISUALLY EXAMINED AND CLASSED AS EITHER, ACTIVE, TRANSITIONAL, CYCLIC EEG AND ISOELECTRIC. R REPRESENTS EEG RECORDED FROM THE RIGHT AND L THE EEG RECORDED FROM THE LEFT SIDE OF THE CRANIUM. TIME DURATIONS IN SECONDS

FIGURE 6.8. CHANGES IN MEAN FEMORAL ARTERIAL BLOOD PRESSURE (MMHG) BEFORE AND AFTER
NON-PENETRATIVE CAPTIVE BOLT (NPCB) STUNNING (\pm SEM). (A) = SIGNIFICANT DIFFERENCE
FROM PRE-TREATMENT VALUES (P <0.05). THE ARROW DENOTES THE APPLICATION OF NPCB
STUN

FIGURE 7.3. A TYPICAL EXAMPLE OF A COMPRESSED SPECTRAL ARRAY FROM AN INDIVIDUAL CALF	
BEFORE AND AFTER VENTRAL NECK INCISION FOLLOWED 5-SECONDS LATTER BY NON-	
PENETRATIVE CAPTIVE BOLT STUNNING (VNI+NPCB).	.159

 $\begin{array}{l} \mbox{Figure 7.6. Mean} \pm \mbox{standard error of the mean} (--) \mbox{ changes in femoral arterial blood} \\ \mbox{pressure} (mMHg) \mbox{ before and after ventral neck incision followed 5 seconds later} \\ \mbox{with a non-penetrative captive bolt stun} (VNI+NPCB). (a) = \mbox{significant difference} \\ \mbox{from pre-treatment values} (P<0.05). \mbox{ Short dashes represent VNI, long dashes} \\ \mbox{represent NPCB}. \qquad 161 \end{array}$

- FIGURE 10.3. EXAMPLES OF SOMATOSENSORY EVOKED POTENTIALS (SEP) FROM TWO CALVES AFTER EITHER VENTRAL NECK INCISION SLAUGHTER (CALF 8 VNI GROUP) OR NON-PENETRATIVE CAPTIVE STUNNING (CALF 7 NPCB GROUP). THESE WERE THE ONLY DATA SETS WHERE PRE-TREATMENT SEPS WERE ABLE TO BE GENERATED. EACH WAVEFORM IS THE SUMMATION OF 32 TRACES. THERE WAS A STIMULUS DELAY OF 100 MS WITH THE STIMULUS BEING DELIVERED AT 0 MINUTES....... 207

LIST OF TABLES

CABLE 2.1. STUDIES INTO THE EFFECTS OF EXPERIMENTAL PAIN IN HUMANS AND ANIMALS ON EEG FREQUENCY BAND POWER.
TABLE 2.2. MAJOR STUDIES INVESTIGATING THE TIME TO INSENSIBILITY AFTER VENTRAL NECK INCISION (VNI) SLAUGHTER WITHOUT PRIOR STUNNING IN VARIOUS SPECIES AND THE PARAMETER REPORTED IN PUBLICATIONS
CABLE 2.3. STUDIES OF THE TIME TO INSENSIBILITY IN CATTLE WITH DIFFERENT STUNNING TECHNIQUES: PENETRATIVE CAPTIVE BOLT (PCB); NON-PENETRATIVE CAPTIVE BOLT (NPCB); ELECTRICAL STUNNING. THE PARAMETER USED AND TIME TO INSENSIBILITY ARE INDICATED.
CABLE 2.4. STUDIES OF THE TIME TO INSENSIBILITY IN SHEEP WITH DIFFERENT STUNNING TECHNIQUES: PENETRATIVE CAPTIVE BOLT (PCB); NON-PENETRATIVE CAPTIVE BOLT (NPCB); ELECTRICAL STUNNING. THE PARAMETER USED AND TIME TO INSENSIBILITY ARE INDICATED.
CABLE 2.5. STUDIES OF THE TIME TO INSENSIBILITY IN POULTRY WITH DIFFERENT STUNNING TECHNIQUES, PENETRATIVE CAPTIVE BOLT (PCB) AND NON-PENETRATIVE CAPTIVE BOLT (NPCB). THE PARAMETER USED AND TIME TO INSENSIBILITY ARE INDICATED.
TABLE 3.1. MEAN ± STANDARD ERROR OF THE MEAN OF HEART RATE (BEATS PER MINUTE) AS A PERCENTAGE OF INDIVIDUAL PRE-TREATMENTS AT TIME POINTS AFTER THE START OF DEHORNING FOR SCOOP DEHORNING ALONE (DH) OR SCOOP DEHORNING WITH LIDOCAINE RING BLOCK (DH+LA) GROUPS.
CABLE 4.1. MEAN ± STANDARD ERROR OF THE MEAN, CHANGES IN HEART (BEATS PER MINUTE) AT TIME POINTS AFTER VENTRAL NECK INCISION (VNI).
CABLE 4.2. HISTOLOGY RESULTS FOR CALVES AFTER VENTRAL NECK INCISION (VNI). SECTIONS TAKEN FROM OBEX, SPINAL CORD, PONS, CEREBELLUM, MIDBRAIN, THALAMUS, INSULA AND SOMATOSENSORY CORTEX. CHATTER = PROCESSING ARTEFACT.
CABLE 6.1. MEAN + STANDARD ERROR OF THE MEAN OF HEART RATE (BEATS PER MINUTE) AT INDIVIDUAL TIME POINTS AFTER NON-PENETRATIVE CAPTIVE BOLT (NPCB) STUNNING
CABLE 7.1. MEAN <u>+</u> STANDARD ERROR OF THE MEAN, CHANGES IN HEART (BEATS PER MINUTE) AT TIME POINTS AFTER VENTRAL NECK INCISION FOLLOWED 5 SECONDS LATER BY NON-PENETRATIVE CAPTIVE BOLT STUNNING (VNI+NPCB) OF CALVES
CABLE 8.1 MEAN ± STANDARD ERROR OF THE MEAN (SEM), CHANGES IN HEART RATE (BEATS PER MINUTE (BPM)) AND BLOOD PRESSURE (MMHG) AT DIFFERENT TIME POINTS AFTER A 70-VOLT SUPRAMAXIMAL ELECTRICAL STIMULUS. A = PRE-TREATMENT VALUE, B = 70-VOLT SUPRAMAXIMAL ELECTRICAL STIMULUS.

ABBREVIATIONS AND ACRONYMS

AEP	Auditory evoked potentials
ANOVA	Analysis of variance
bpm	beats per minute
BSE	Bovine spongiform encephalopathy
BVT	Major neck blood vessel transection
CJD	Creutzfeldt-jakob disease
CNS	Central nervous system
CI	Confidence interval
DH	Dehorned only
DH+LA	Dehorned plus lidocaine ring block
ECG	Electrocardiogram/electrocardiographic
ECoG	Electrocorticogram
EEG	Electroencephalogram/electroencephalographic
EMG	Electromyogram / electromyographic
EP	Evoked potential
F50	Median frequency
F95	95% Spectral edge frequency
FFT	Fast Fourier Transformation
Fe'HAL	End-tidal halothane partial pressure
fMRI	Functional magnetic resonance imaging
HALF	High amplitude low frequency
HAHF	High amplitude high frequency
H&E	Hematoxylin and Eosin
HPA	Hypothalamic-pituitary adrenocortical axis
I.M	Intramuscular
NPCB	Non-penetrative captive bolt
NTI	Neck tissue incision with intact blood circulation through the brain
PET	Positron emission tomography
Ptot	Total power of the electroencephalogram
SAM	Sympathetic adrenomedullary system

SD	Standard deviation
SEM	Standard error of the mean
SEP	Somatosensory evoked potentials
SI	Sham incision
TBI	Traumatic brain injury
VAS	Visual analogue scale
VEP	Visual evoked potentials
VNI	Ventral neck incision