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Abstract 
 

Multimodal communication is an essential aspect of human perception, 

facilitating the ability to reason, deduce, and understand meaning. Utilizing 

multimodal senses, humans are able to relate to the world in many different 

contexts. This dissertation looks at surrounding issues of multimodal 

communication as it pertains to human-computer interaction. If humans rely on 

multimodality to interact with the world, how can multimodality benefit the ways 

in which humans interface with computers? Can multimodality be used to help 

the machine understand more about the person operating it and what 

associations derive from this type of communication? 

This research places multimodality within the domain of musical 

performance, a creative field rich with nuanced physical and emotive aspects.  

This dissertation asks, what kinds of new sonic collaborations between musicians 

and computers are possible through the use of multimodal techniques? Are there 

specific performance areas where multimodal analysis and machine learning can 

benefit training musicians? In similar ways can multimodal interaction or analysis 

support new forms of creative processes?   

Applying multimodal techniques to music-computer interaction is a 

burgeoning effort. As such the scope of the research is to lay a foundation of 

multimodal techniques for the future. In doing so the first work presented is a 

software system for capturing synchronous multimodal data streams from nearly 

any musical instrument, interface, or sensor system. 

This dissertation also presents a variety of multimodal analysis scenarios for 

machine learning. This includes automatic performer recognition for both string 

and drum instrument players, to demonstrate the significance of multimodal 

musical analysis. Training the computer to recognize who is playing an 

instrument suggests important information is contained not only within the 

acoustic output of a performance, but also in the physical domain. Machine 

learning is also used to perform automatic drum-stroke identification; training 

the computer to recognize which hand a drummer uses to strike a drum. There 

are many applications for drum-stroke identification including more detailed 
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automatic transcription, interactive training (e.g. computer-assisted rudiment 

practice), and enabling efficient analysis of drum performance for metrics 

tracking. 

Furthermore, this research also presents the use of multimodal techniques in 

the context of everyday practice. A practicing musician played a sensor-

augmented instrument and recorded his practice over an extended period of time, 

realizing a corpus of metrics and visualizations from his performance. Additional 

multimodal metrics are discussed in the research, and demonstrate new types of 

performance statistics obtainable from a multimodal approach. 

 The primary contributions of this work include (1) a new software tool 

enabling musicians, researchers, and educators to easily capture multimodal 

information from nearly any musical instrument or sensor system; (2) 

investigating multimodal machine learning for automatic performer recognition 

of both string players and percussionists; (3) multimodal machine learning for 

automatic drum-stroke identification; (4a) applying multimodal techniques to 

musical pedagogy and training scenarios; (4b) investigating novel multimodal 

metrics; (5) lastly this research investigates the possibilities, affordances, and 

design considerations of multimodal musicianship both in the acoustic domain, 

as well as in other musical interface scenarios. This work provides a foundation 

from which engaging musical-computer interactions can occur in the future, 

benefitting from the unique nuances of multimodal techniques. 
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Chapter 1  
Introduction 

Motivation & Overview 

“Futurist musicians should substitute for the limited variety of timbres that 
the orchestra possesses today the infinite variety of timbres in noises, 
reproduced with the appropriate mechanisms.”  

                                                            –Luigi Russolo (Russolo 1986) 

1.1 Noise and Inspiration 

In the highly regarded manifesto, L’Arte dei Rumori 1  (Russolo 1986), Italian 

Futurist Luigi Russolo exalts in his 1913 letter to Futurist composer Francesco 

Balilla, the idea that novel mechanisms must be created in order to facilitate a 

new means of sonic expression. Russolo believed that humans had grown 

accustomed to the sounds of the matured industrial landscape, and that this 

mechanized urban environment presented an infinite spectrum of unheard 

sonorities and sounds—far surpassing the reproducibility of traditional 

instrumentation. Thus was born the Art of Noises, a manifesto in which Russolo 

first systematically describes a broad history of music; influenced by mans 

growing desire for an increasingly complex nature in sound tonalities, rhythm, 

and musical relationships. Russolo then discusses his belief that the future of 

music (at least as an attempt to convey truly “new” sonorities, rhythms, and 

emotion) was within the “noise-sound” of machines and nature. So much so that 

the only way to achieve these new sounds would be to create new instruments, 

mimicking these noise-sounds and learning to play and compose for them with 

great virtuosity.  

                                                

 
1 “The Art of Noises” translated from Italian to English. 
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 This research does not attempt to fulfill L’Arte dei Rumori’s goal of 

investigating the noise-sound, however, it derives the following from Russolo’s 

fundamental beliefs; (1) there exists a growing desire to investigate novel 

relationships in sound phenomena, and (2) that new tools and methodologies are 

necessary to usher forth a new era of expressivity in musical performance and 

interaction. Specifically, this research investigates the use of novel multimodal 

techniques (a definition of multimodality is provided in section 1.3), and the 

possibilities when applied to the pedagogical aspects of a musician’s practice, the 

learning environment in which a musician grows, and the ways in which a 

machine (computer) can affectively communicate and understand music and 

performance. In addition to the creation of new tools and methodologies, this 

research looks to principles emerging in other fields such as design, affective 

computing, and human-computer interaction (HCI), to investigate the 

implications and potential artistic freedoms gained from the research. Holistically, 

this dissertation explores novel multimodal technologies that enable new sonic 

engagements between musician and sound; an attempt to not only understand 

the intricacies of music and the nuance of a musician’s technique, but to enrich 

the emotive qualities of musical interaction and experiences—L’Arte di Interazione 

Musicale (The Art of Musical Interaction). 

1.2 On Human Interaction 

Everyday human interaction relies on our ability to deduce emotion and intent 

by simultaneously processing multiple channels of information from various 

sensory modalities (e.g. hearing, sight, touch, smell, taste). In even the simplest 

day-to-day interactions, our decisions and actions result from the evaluation of 

our beliefs in non-verbal (e.g. facial expressions, body gestures) and verbal (e.g. 

vocal tone/inflection, etc.) cues. A famous example that exploits this human 

multimodal integration is the McGurk effect (McGurk and MacDonald 1976). 

First published in 1976, the McGurk effect suggested the multimodal nature of 

speech perception by demonstrating an experiment where participants were 
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shown a video of an individual speaking one phoneme2, while the audio was 

dubbed with another phoneme. Participants experienced a third intermediate 

phoneme being spoken, and the experiment proved the interdependency 

between hearing and vision in speech perception. Even when aware of the effect, 

the participant’s perception often remained unchanged, further demonstrating 

the potency of human multimodal integration. 

 

Figure 1: Example of the McGurk effect integrating /ga/ (visual) and /ba/ (auditory), results in 
the perceived /da/ 

 The McGurk effect can be illustrated by pairing the visual /ga/ with the 

auditory /ba/; the viewer or listener often perceives the actual utterance as /da/. 

This has been explained with various justifications. McGurk and MacDonald 

believed that visible speech determines the perception of place of articulation 

whereas the audible speech determines the perception of voicing. The Perceptual 

Science Lab group at the University of California at Santa Cruz reasons the 

human brain’s multimodal fusion mathematically using a fuzzy logic model of 

perception (Figure 1). Using fuzzy degrees of support, each perceived output is 

assigned a support value using multiplicative integration. In the example in 

Figure 1, very much like = 0.9; somewhat like = 0.7; not much like = 0.3; and nothing 

like = 0.1. One can see that /da/ would have almost twice as much support as 

the other options. ; 

                                                

 
2 Phonemes are the smallest segmental unit of sound used to form different utterances in 
language. 

/ga/

/ba/

visual

auditory

very much like /ga/

not much like /ga/

somewhat like /da/

very much like /da/

nothing like /ba/

very much like /ba/

input modality

human perception
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;  (Perceptual Science 

Lab 2012). 

 The ability to process multimodal channels of information much like above 

has become an essential part of human cognition, communication, and survival. 

Humans and other living organisms also use multimodal integration to 

compensate for one sense with another, when the environment places 

constraints on a particular sense. For example, a person may rely more heavily on 

their ears and sense of touch as they slowly navigate a dark room. If the lights 

were on, they might rely more heavily on their sense of sight. This can be 

thought of as a somewhat Bayesian approach, which says that a degree of belief 

should rationally change when given new context or evidence (Bayes and Price 

1763). This approach has been examined over the years in a number of 

disciplines however to date it has been largely underexplored in physical musical-

computer interaction. Musical performance is rich in both physical and acoustic 

relationships, thus this research reasons that multimodality can be highly 

effective by offering the machine a more Bayesian vantage between the physical 

and acoustical aspects of musical performance. This is supported by recent 

applications of multimodal techniques in musical scenarios, and this research 

shows some of the unique affordances and possibilities of multimodal musical 

interaction. The remainder of this section describes the concept of multimodality 

in further detail, its history as part of the greater human-computer interaction 

field, and its relation to this research. 

1.3 A Definition of Multimodality 

In reviewing the published literature on multimodality (not only within music-

related research but also within HCI, the cognitive sciences, and other related 

fields, see 2.1 for more history and related work) basic terms and concepts vary 

in definition and scope. Thus, it is important to first clarify a few key concepts 

and set up a taxonomy in which this research conforms. Firstly, a clarification of 

basic terms is presented, in accord with the work and definitions of Laurence 

Nigay and Joëlle Coutaz, early HCI pioneers in multimodal interaction (Nigay 

and Coutaz 1993): 
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1. Modality: The type of communication channel used to express and 

receive information, and to describe the interaction of communication. 

2. Mode: The way/context in which the information is interpreted. 

  

 A modality defines the type of communication channel or data being 

exchanged, and the mode describes the context in which the data is interpreted. 

For example, the human auditory modality enables one to “hear”, while Bongers 

and Veer say the mode (that is expressed or interpreted) can be symbolic (verbal 

speech), iconic (non-speech), and expressive (non verbal, i.e. tone, etc.) (Bongers 

and Veer 2007). Bongers elaborates that in fact, human communication tends to 

use these modes at the same time, and that the modes are dependent on the 

context in which they are used. 

 Thus, for a system to be multimodal, the system must support the capacity to 

communicate with the user along these different (multi) channels (modalities and 

modes) of information simultaneously. Particularly as is the interest of this 

research, this is achieved by combining analysis of the acoustical output from an 

instrument/performer (auditory modality), with multi-sensory information 

obtained from various sensors measuring physical aspects of musical 

performance. 

 Furthermore, there are at least two distinct agents involved in multimodal 

interaction (the human and the machine), and multimodal interaction can be 

further reduced into a human-centered view and a system centered view 

(Schomaker et al. 1995). The human-centered view deals with perception and 

communication channels while the system-centered view focuses on the modes 

of computer input/output (Raisamo 1999). In general this research is in 

accordance with (Schomaker et al. 1995) in that although physically separated, a 

multimodal system is one that exchanges information through a number of 

communication channels between both agents. 

 As this research is primarily concerned with multimodal human input (into 

the system), for our purposes we define a unimodal system as a system that 

makes use of only one input modality whereas a multimodal system makes use of 

multiple input modalities. When making this distinction, it is important to note 
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that although a unimodal system has only one input modality, it can very make 

use of ‘n’ instances of a singular input modality (Figure 2).   

 

Figure 2: Unimodal vs. Multimodal Musical Interfaces 

 To further illustrate this, imagine you would like to perform gesture analysis 

on the performance of a dancer. One common approach in this type of scenario 

is to use optical or vision based tracking methods. Setting up one camera in front 

of the dance space might not be sufficient to capture the performance; perhaps 

there are objects (scene/props) involved in the piece that might occlude the 

dancer from the front of the space during certain movements, or the dancer 

might go outside of the cameras field-of-view. One obvious solution would be to 

position multiple cameras at different vantage points in the space, and to 

combine the information captured from all cameras. This is a unimodal example 

of having multiple input sources coming from a single input modality—and 

while it may provide similar goals and benefit as true multimodal input, 

fundamentally they are distinctly different approaches as we will see. By the 

definition conformed to in this research, multimodal systems require multiple 

(heterogeneous) communication channels between the agents. 

 It is also possible to have asymmetrical input and output modalities. This 

simply means that the multimodal system is not constrained to being output in 

the same modalities or communication channels of the input (and more generally 

to the same number of information channels). In this way, multimodal systems 

are also commonly feedback-based systems. 

 Additionally, two multimodal-related ideas that are elemental to this research 

are concepts of complimentary modalities, and multimodal fusion. Oviatt says that the 

“explicit goal [of multimodal interaction is] to integrate complementary 

modalities in a manner that yields a synergistic blend such that each mode can be 

capitalized upon and used to overcome weaknesses in the other mode” (Oviatt 

2000). Lets take for a minute the example of the dancer described previously. 

The vision-based tracking system might be well suited for tracking the location 

1
1
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of the dancer within the space, as well as generalized movements and gesture, 

however, affordable vision-tracking systems often exhibit less-than-ideal camera 

resolution and frame rates (this is especially true in musical scenarios where 

response times of less than 20ms are often desired). It could be useful to 

compliment the system with other direct physical or biometric sensors. Although 

the direct sensors might be better suited for capturing more precise physical 

measurements (as they are intrinsically related directly to the body or biological 

systems of the dancer), they may be insufficient in the higher-level performance 

context, spatialization, and localization of the dancer. This scenario begins to 

shed light on the power of complimentary modalities—the ability for disparate 

modalities working together within a multimodal system to enable a broader 

range of information to be obtained.  

 

Figure 3: Overview diagram of Complementary Modalities vs. Multimodal Fusion 

 While Oviatt presents an interesting view of complimentary multimodality, it 

is an important distinction from multimodal fusion. As in the McGurk effect 

example described earlier, multimodal fusion is when information from separate 

input modalities is combined into one final output. Similarly, Nigay and Coutaz 

also describe this distinction (what they call “concurrent” vs. “synergistic” uses 

of modalities), as part of their design space for multimodal systems (Nigay and 

Coutaz 1993). In their design space, they describe that fusion may also be 

performed with or without meaning of the data streams. The distinction of “levels 

of abstraction” in fusion (meaning/no meaning) is important to make, as the 

actual implementation results in different fusion approaches, namely early and 
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late-fusion. Early fusion (also called subsymbolic fusion) fuses data at the feature 

level, and is typically suitable when there are strong (close) temporal bonds 

between the input modalities (this is the primary technique used in 4.3, 4.4, and 

5.4). Late fusion (also called symbolic fusion) fuses data at the semantic level 

(after the feature data has been analyzed for meaning), and is typically suitable 

when there are weak temporal bonds between the input modalities (although it 

can also be useful when there are strong temporal relationships between 

modalities, as will be seen in Chapter 6). 

 In real world scenarios, however, it is important to note that often the power 

of multimodal systems emerges by exploiting both the possibilities of 

complimentary modalities and multimodal fusion, often simultaneously, 

depending on the desired outcomes. As such, this is one of the primary goals of 

this work—to harness the potential of these two techniques on multimodal 

musical input.  

1.4 Overview 

In order to examine multimodal musical interaction in this dissertation, it is 

important to first understand what has already been explored. Chapter 2 presents 

related work by other researchers in the field and is organized as follows. A brief 

history of related work in HCI and musical multimodal systems is provided in 

2.1, followed by a review of musical physical computing (that has informed this 

work) in 2.2. In 2.3, related works in machine musicianship are presented, which 

have directly influenced the data mining and metrics work used throughout this 

research. Lastly, as a large portion of the work in this dissertation turns to 

machine learning, a brief history of related machine learning in music is provided 

in section 2.4. 

 The body of research contributions and experimental trials contained in this 

dissertation are presented in Chapter 3 through Chapter 7. As illustrated in 

Figure 4 the multimodal systems used throughout this research will first be 

introduced (section 3.1). This includes descriptions of the instruments and 

sensor systems employed in the research, as well as Nuance, the multimodal data 
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recording software system custom created to support the research carried out in 

this dissertation.  

 

 

Figure 4: Overview of Research 

Chapter 4 through Chapter 7 investigates the possibilities of multimodal 

musical interaction in a number of scenarios, which support a performer’s 

musical practice, and creative processes. The individual research cases include 

multimodal techniques for performer recognition (Chapter 4), drum-stroke 

computing (Chapter 5), onset detection (Chapter 6), and performance metrics 

tracking in musical learning environments (Chapter 7). 

 This research hopes to show that the “art of musical interaction”, today and 

in the future, is a computer-mediated combination of effective musical practice, 

and affective musical performance. To this end, the holistic goal of this research 

is to investigate the role of multimodality in musical HCI. Specifically, this 

research aims to show that multimodal approaches can in fact support a 

musician’s craft, in terms of daily practice, analysis scenarios, and in the creative 

processes. 
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1.5 Summary of Contributions 

The following list provides an overview of the multimodal contributions 

presented in the dissertation, and is organized by order of appearance. 

 

1. Nuance Software 

a. First cross-platform application specifically designed for 

capturing multichannel, multimodal data streams in musical 

scenarios.  

b. Provides support for nearly any instrument, hyperinstrument, 

and sensor system via serial, MIDI, Open-Sound-Control, and 

audio channels.  

c. Delivers sample-synchronous data capturing with high sampling 

rates (up to 192kHz) 

d. User-configurable with a drag-n-drop interface, designed to be 

operated by researchers and musicians alike, without the need of 

computer programming or patching. 

2. Performer Recognition 

a. First research that quantitatively shows the significance of a 

multimodal approach for performer recognition tasks over 

previous audio-only based approaches. 

b. Provides a test bed to experimentally look at the data and 

features extracted from the Esitar and snare drum performance 

to support future investigations into performance metrics, 

tracking, and musical pedagogy in the remainder of the 

dissertation. 

c. Can train the computer to recognize sitar and drum performers 

from beginner to advanced skill levels. 

3. Drum-stroke computing 

a. First work in automatic drum-hand recognition, which can be 

used in many tasks ranging from performance metrics, to 

automatic transcription, and rudiment recognition. 
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b. Provides a multimodal look at drum performance metrics and 

statistics, introducing multimodal features such as cross-modal 

Onset Difference Time (ODT). 

c. Uses multimodal surrogate data training to automatically label 

training data in machine learning scenarios. 

4. Multimodal Onset Detection 

a. Novel algorithm for improving onset detection accuracy using 

multimodal fusion. 

b. Late-fusion technique is algorithm independent, meaning it can 

be used with current (and future) onset detection functions. 

5. Multimodal Performance Metrics and Musical Pedagogy 

a. First focused investigation into the roles of multimodality for 

musical practice and pedagogy scenarios. 

b. Provides multimodal analysis into meaningful performance 

metrics and statistics for practicing bowed string instrument 

players, including tempo analysis, and bow articulation metrics. 

c. Delivers first long-term performance study of bowed string 

instrument performance using multimodal analysis.  



 

 12 

 

 
 

 
Section II 

Related Work 

  



 

 13

Chapter 2  
 

Background and Motivation 

The work in this dissertation combines concepts in multimodality, music related 

physical computing, machine musicianship, and machine learning. As such, this 

chapter begins by discussing related work in multimodality in 2.1. Multimodality 

is presented both in its foundations in the greater field of human-computer 

interaction, as well as in the field of Affective Computing, followed by early 

examples of multimodal techniques in musical applications. In 2.2, a brief history 

of music related physical computing is introduced, specifically focusing on 

instruments and interfaces that influence this research. Finally, a general 

overview of influential machine musicianship and machine learning research is 

provided in sections 2.3 and 2.4 (respectively). While not exhaustive, this chapter 

serves to provide an overview of related work (and areas) in which this research 

draws upon or is inspired by, in its application of multimodal techniques to 

musical interaction. 

2.1 A Brief History of Multimodality and HCI 

As human interaction is highly multimodal in nature, the perceptual and 

cognitive sciences have explored multimodal theory and approaches3. As such, 

related fields with computer driven mediums, such as HCI, have also adopted 

multimodal approaches, and multimodality has now become an important aspect 

of modern user experience and interaction design. Multimodality in HCI 

emerged with Bolt’s “Put-That-There” voice and gesture system, developed at 

                                                

 
3 This section does not go into depth regarding multimodality’s foundations in the cognitive 
sciences. Dumas et. al. provide a good overview and historical context, specifically in cognitive 
load theory, gestalt theory, and Baddeley's model of working memory in (Dumas, Lalanne, and 
Oviatt 2009). 
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the Architecture Machine Group at MIT in the early 1980’s. In this system, users 

could issue commands for a large screen to display, by simultaneously pointing 

and speaking. Pointing to a position on a large screen and saying “put a green 

square there”, would fuse the location detected from a sensor measuring where 

the users hand was pointed, with the recognition of the voice commands, 

instructing the computer to create a green square at that particular location. This 

was an early example showing the convergence of multiple modalities, and how 

they can fuse to provide a natural interface with “increased precision in its power 

to reference” (Bolt 1980). The point-and-speak method of multimodal 

interaction set the tone for much of the subsequent multimodal HCI research, 

such as the CUBRICON mouse-and-speech recognition system (Neal, J.G. and 

Shapiro, S.C. 1991), and other notable early work such as a system that enabled 

interacting with 2D and 3D maps by integrating speech, gaze, and hand gestures 

(Koons, Sparrell, and Thorisson 1993). Generally speaking, Dix et al. concluded 

in “Human-Computer Interaction” (first published in 1993), that multimodality 

is an important aspect of HCI in that it enables 

 

1. Increased bandwidth of interaction between the user and the computer, 

and 

2. More natural human-computer interaction (closer to everyday human-

human interaction),  

 

while at the same time reducing the amount of overload which may occur on a 

particular modality (e.g. visual) when a system and its behaviors become 

increasingly complex (Dix et al. 2003). 

 In recent years, multimodal HCI has ventured outside the point-and-speech 

paradigm that emerged from Bolt’s “Put-That-There” system, looking to other 

modalities to further increase the bandwidth and richness of user interaction. 

Other fields with strong connections to HCI have since also begun to investigate 

multimodal integration, particularly Affective Computing, and also music and 

interactive arts. In the following sections, additional historical references in the 

aforementioned fields will be briefly discussed. For additional information on the 
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history of multimodal HCI and other early examples of multimodal user 

interfaces, please refer to (Raisamo 1999; Dumas, Lalanne, and Oviatt 2009). 

2.1.1 DETECTING AFFECTIVE STATES 

Multimodal theory and its application to human-computer interaction are also 

deeply connected in the field of Affective Computing. Affective Computing, as 

described by visionary pioneer Rosalind Picard, is “computing that relates to, 

arises from, or deliberately influences [human] emotions.” Picard’s Affective 

Computing Group at MIT Media Lab and other researchers in the field believe 

that emotion plays an crucial role in the human experience; thus, affective 

computing builds off the fundamental principle that everyday tasks such as 

cognition, communication, decision-making, and learning, heavily rely on the 

(human) ability to process multiple channels of affective information 

simultaneously. In order to make human-computer interaction more meaningful, 

affective computing explores the use of sensor-systems and technologies to 

make computer systems more emotionally “intelligent”, or aware of its users. 

 Early research in affective computing has focused on unimodal analysis, for 

example, detecting human emotional states using video-based motion capturing 

systems (Asha Kapur et al. 2005). In recent years, however, the field has largely 

moved towards multimodal signal processing for detecting affective states. In 

“Multimodal Affect Recognition in Learning Environments”, Kapoor and Picard 

present a framework for recognizing affective states while learning (Kapoor and 

Picard 2005). The multimodal system designated in the research can detect 

affective states by extracting non-verbal behaviors (features) from facial 

expressions and postures. This is achieved using real-time face tracking and a 

posture-sensing chair. Many other examples in affective computing exist are also 

applying multimodal techniques. Busso et al. used decision and feature level 

fusion (late-fusion and early-fusion) of motion capture (facial expressions) and 

speech (acoustical) data to recognize four emotional states of a user (sadness, 

anger, happiness, neutrality) (Busso et al. 2004). More recently, Kessous et al. 

explored recognition of eight emotional states from ten participants, integrating 
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multimodal data from facial expressions, body movement and gestures, and 

speech (Kessous et al. 2010). 

2.1.2 SELECTED EXAMPLES OF MULTIMODAL MUSICAL SYSTEMS 

While the above are examples from research showing the applications of 

multimodality in the field of affective computing, multimodality has begun to 

permeate musical research and performance. The Casa Paganini InfoMus Lab at 

the University of Genova was established in 1984, and has long been interested 

in human gesture recognition for musical and multimedia performance. As such 

they have led many investigations in multimodal analysis for musical 

performance; one example being a vision tracking and sensor-based performance 

system used in the music theatre production Cronaca del Luogo by Luciano Berio 

(Berio 1999). The InfoMus Lab is also responsible for developing EyesWeb 

(Camurri et al. 2007), a platform for research and applications in multimodal 

analysis and gesture processing. Providing a patching environment where 

multisensory inputs and gesture recognition blocks can be connected and 

synchronized, EyesWeb has been used in many real-time performances and 

research experiments. Additionally, features of EyesWeb motivated the 

development of the Nuance system described in 3.2. 

 Hyperinstruments (discussed in in greater detail in section 2.2.2) are typically 

multimodal in nature. One such hyperinstrument that has influenced many 

aspects of this research is the Esitar (Ajay Kapur 2008). Using a variety of 

sensors to measure various aspects of the performers technique and playing (e.g. 

thumb pressure sensor, fret detection sensor, instrument tilt sensor), Kapur’s 

work with the Esitar is an early musical example demonstrating the far-reaching 

affordances of integrating multimodality and musical HCI. Motivating examples 

which have inspired this research include transcription of multimodal 

performance data for musical pedagogy (Ajay Kapur et al. 2007), late-fusion 

tempo tracking for human-robot performance (Benning et al. 2007), among 

others. 

 Another hyperinstrument that has influenced particular aspects of this 

research is the Hyperbow (Young 2002). In addition to engaging with a violin (or 
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cello) to produce its regular acoustic output, the Hyperbow streams multiple 

channels of information to the computer from multiple modalities, making it 

extremely expressive in both performance and data mining contexts. These 

include various position measurements from the bow, as detailed in 2.2.2. The 

sensing technologies can be used in a number of applications, from analyzing 

player performance data, to controlling performance parameters and synthesis of 

physical models in real-time. 

 In (Tanaka and Knapp 2002), a multimodal, multichannel musical control 

system is implemented using Electromyogram (EMG) bio-signal sensing, and 

relative position sensing (pictures in Figure 5). The authors describe the scenario 

where an EMG on an individual’s bicep would report copious activity if the 

individual were steadily holding a heavy weight, but not portraying active 

movement to the audience. Because EMG sensing (which measures muscle 

activity) may or may not reflect actual perceived muscle motion, a multimodal 

approach integrating the EMG data with other motion sensing makes the system 

more controllable, and expressive for the performer.  

 

Figure 5: EMG biometric and gyro-based position controller (arm bands, headbands and base) 
used in (Tanaka and Knapp 2002) 

 In this way, the authors intend position to serve as the primary musical 

control, which is then further modified by the muscle-tension information 

provided by the EMG (and vice-versa). The authors further warrant that due to 
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the fact that both modalities can be multichannel, the system provides a highly 

expressive, and fluid, multidimensional musical environment for performance. 

 Multimodal musical interfaces can also augment the performance space 

(rather than the playable instrument directly). One example of this is the 

Multimodal Music Stand (MMMS) (Bell et al. 2007), which provides musicians an 

untethered means of sensing continuous and discrete performance gestures for 

real-time musical processing. Instead of creating a new interface or a 

hyperinstrument for a musician to learn and perform, the MMMS enables hands 

free augmentation for traditional electro-acoustic performance. This is realized 

via a variety of capacitance sensors (sensing location in 3-dimensions), combined 

with a microphone for incoming sound processing, and vision based tracking for 

additional gesture recognition. Using multimodal fusion of all three modalities, 

the accuracy of the MMMS gesture sensing is greatly increased, while 

simultaneously providing complimentary steams of performance data. The idea 

of creating systems that can multimodally augment traditional musical scenarios 

(either by themselves or in combination) was one of the inspirations to create the 

XXL system used throughout this research. 

 Other examples of music related multimodal research has appeared in recent 

years, often extending multimodality out of the physical-space, and into the 

symbolic. This is particular true in the field of Music Information Retrieval, 

where multimodality has been applied to tasks such as genre classification. One 

such example is in improving automatic genre classification systems using audio 

(acoustic) features combined with social tags (Zhen and Xu 2010).  

 Another example is a system that combines audio features with song lyrics, 

and visualizes the content using the self-organizing map metaphor. In this work, 

users can navigate the musical material provided by the multimodal linking of the 

audio library (Neumayer and Rauber 2008). Combing the two modalities (audio-

based features and symbolic lyrics) can lead to interesting outcomes, as both 

modalities intrinsically provide different varieties of data. Whereas the audio 

feature may provide information about the sonic qualities and content of the 

music, the lyrics may relate more to the semantics of the content. Combining and 

thinking about these channels in various ways can lead to interesting approaches 

to musical navigation, appreciation, interaction, and experiences. 
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2.1.3 SUMMARY 

Multimodal HCI has shown promise in a variety of areas. As demonstrated by 

systems presented as early as 1980, and other developments in related fields such 

as affective computing, multimodal HCI can foster affective collaborations 

between humans and computers. A large focus in the HCI community has been 

in applying multimodality to every day computer interactions, as well as assistive 

technologies; however, as exemplified in this section, multimodality has also 

influenced musical interaction systems, performance, and analysis techniques. 

This dissertation is primarily concerned with the latter, examining the design and 

implementation of multimodal systems for capturing physical information from 

musical performers, and the affordances and possibilities thereof.  

2.2 A History of Related Physical Computing 

Affording novel musical interactions through new 
devices and sensor systems 

Naturally the research presented requires new musical interface and sensor 

systems to enable multimodal input, and so the following section provides a brief 

history of related work in the realm of “Physical Computing” (O’Sullivan and 

Igoe 2004). Physical Computing, a branch of HCI is a field that has significantly 

influenced musical interactions in recent years, enabling expressive new modes 

of interaction and sound sculpting to musicians and composers. This section 

presents a general overview of hardware systems and techniques that are 

influential to this research. Section 2.2.1 provides an overview of musical 

interfaces that enable new modes of musical interaction, while not explicitly 

augmenting acoustic instruments (although many draw influence in terms of 

design, musical family, or playing technique). Contrastingly, an introduction to 

hyperinstruments and other instruments that have been modified with sensor 

systems can be found in section 2.2.2.  

 Musical physical computing is an extremely active field, as demonstrated by 

the popularity of conferences such as the International Conference on New 

Interfaces for Musical Expression (NIME), and developing communities such as 
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Arduino4, CreateDigitalMusic5, and the Monome6. As such it is out of the scope 

of this dissertation to present an overview of the ever-expanding list of musical 

interfaces and sensor systems currently being created. Rather, this section aims to 

present a concise set of work that has significantly informed the goals and 

considerations of this dissertation, specifically the enabling of multimodal 

musical interaction. 

2.2.1 NEW INTERFACES & CONTROLLERS: BUILDING ON AND 

DIVERGING FROM EXISTING METAPHORS 

Many musicians, technologists, and researchers have explored creating 

completely new interfaces and controllers (often called NIMEs or new interfaces 

for musical expression) in an attempt to enable new sonic engagements. One can 

say that these interfaces and are new in the sense that they are built from the 

ground up (as opposed to augmenting other traditional instruments). In terms of 

interaction however, they can either provide completely new means of input 

(diverging from existing metaphors), or build on top of existing metaphors 

(input interactions). An early example of a “new interface” that made use of 

existing musical metaphors is the percussion-based interface called the Radio 

Baton (Mathews and Schloss 1989). Built at Bell Labs by Bob Boie, and further 

improved by computer music pioneer Max Matthews, the Radio Baton measures 

the individual capacitances between the tips of two batons, and five antennas 

placed within a base-surface. The system is able to localize the batons in 3-

dimensions (providing x, y, and z dimensions of control). Similar to the Radio 

Baton is the Buchla Lighting III7, another baton-based digital interface which 

also provides x, y, and z degrees of freedom, using infrared based optical 

triangulation. Lastly, The Rhythm Tree (Paradiso 1999) is another example of an 

interface utilizing common percussive striking techniques. One of the largest 

electronic percussion instruments, the Rhythm Tree has over 300 drum pads, 

                                                

 
4 http://www.arduino.cc 
5 http://www.createdigitalmusic.com 
6 http://www.monome.org 
7 http://buchla.com/lightning3.html 
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sensitive to various kinds of striking (top, side, sharp, and dull), and is equipped 

with LEDs providing visual feedback to the performer. 

 

 

Figure 6: Max Mathews and the Radio Baton (left) and the Buchla Lightning III (right) 

  

 All three of the examples provided (the Radio Baton, the Buchla Lightening 

II, and the Rhythm Tree) are self-contained instruments (whether or not they 

produce sound themselves, or send control signals to other sound producing 

agents like a synthesizer or computer). With time they can be learned, composed 

for, and performed. These three interfaces have been exemplified here not only 

because they have been longstanding influential interfaces in the community, but 

also because they build on top of existing musical [interaction] metaphors. The 

benefit of building on top of traditional instrumental techniques is providing a 

common access point for musicians and composers who have already spent 

years learning a particular instrument and technique. The user input resembles 

action paradigms that have been refined and proven effective over years. At the 

same time, as demonstrated, they can afford new user engagements, both 

sonically (as demonstrated by the added dimension of control in the baton 

interfaces), and visually (visual feedback on the Rhythm Tree).  

 The idea of building on top of existing metaphors will be revisited again in a 

discussion on hyperinstruments, and exemplified throughout the remainder of 

the dissertation. However, diverging into completely new interactive domains 

also poses great potential for new sonic exchanges. One example in particular 

that has inspired certain aspects of this research is the work of Dutch composer, 

inventor, and electronic musical instrument pioneer Michel Waisvisz. While at 
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STEIM (the STudio for Electro Instrumental Music in Amsterdam, Netherlands) 

Waisvisz created The Hands (Waisvisz 1985), a MIDI controller that converts 

hand, finger and arm movements, and tilting gestures into musical gesture. The 

use of gestural control is one that has been of great interest in recent years, 

inspiring adaptive gestural systems in this research 3.1.4, and many other 

examples in the greater NIME community. Other influential work includes early 

non-contact based instruments such as the Theremin, created in the early 21st 

century by Russian inventor Léon Theremin (Glinsky 2000). While the in-air 

playing technique of the Theremin is particularly hard to master, the Theremin is 

one of the oldest examples of a radical electronic instrument which similarly to 

acoustic instruments, can provide amazingly intricate and subtle musical 

expressivities when mastered. 

 Thinking outside the typical sound-resonating box has led to the exploration 

of various musical interactions including an emerging computing paradigm—

tabletop surface interaction. The Reactable (Jordà et al. 2005) is one such device 

that uses an infrared vision-tracking system to track various objects (called 

fiducials) and touch events on its surface. Much like the modular synthesizers of 

the 1970’s, each object represents a separate module with the ability to interact 

with other objects on the surface by manipulating its spatial location and rotation. 

Some examples of object functions include sound generators (oscillators) and 

audio modifiers (filters, sequencers, etc.). Another example of musical tabletop 

surfaces which similarly convert the motion of the tracked objects and touch 

events on the surface into musical gestures include the AudioPad (Patten, Recht, 

and Ishii 2002). The (multi-user) interactions and visual feedback mechanisms 

made possible by these large-scale tabletop surfaces can offer many unique 

musical experiences, and have influenced this research in appendix A.4.  

Figure 7: Collaborative music making on the Reactable (left), and Bricktable “Roots” (right) 
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 These examples are all influential to this research in a number of ways. In 

particular, the question of building on top of or diverging from existing 

performance metaphors and paradigms has greatly influenced the 

implementations of the multimodal systems throughout this research. Examples 

such as the Radio Baton inform this research by showing the affordances of 

building on top of established interactions when designing new interfaces, while 

adding completely new degrees of expressive musical freedoms such as in air 

position sensing in 3 dimensions. Contrastingly, completely new interface 

paradigms such as tabletop surfaces (tangible and multi-touch) enable completely 

new modes of musical interactions, and encourage other interactions such as 

collaborative music making. Others such as Waisvisz’s The Hands highlight how 

the human body can be taken one step closer to the interface itself, and the 

musical possibilities of controllers that enable highly physical, and gesticulated 

performance. 

2.2.2 HYPERINSTRUMENTS  

Companions of the NIMEs discussed in the previous section are 

Hyperinstruments (Machover and Chung 1989; Machover 1992)—instruments 

designed with the goal of using technology to expand the possibilities of 

traditional instrumentation. Commonly built upon traditional (or redesigned) 

acoustic instruments, hyperinstruments are used extensively in this research, not 

only to provide new channels of control for music parameters, but as windows 

into performance data from human performance and gesture. The term 

hyperinstrument was first coined by composer and inventor Tod Machover, of 

the Hyperinstrument Group at MIT Media Lab. Hyperinstruments have been 

embraced by a wide-range of notable performers and musicians, including Yo-

Yo Ma (hypercello), Prince, and many others. The following provides an 

overview of the set of hyperinstruments in which this research draws upon. 

 Diana Young and the Hyperinstrument Group at the MIT Media Lab 

developed the Hyperbow (Figure 8) to capture the intricate aspects of violin 

bowing technique (Hyperviolin) from virtuosic players. Once captured, the 

physical gesture data can be mapped to audio effects parameters to process the 
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instrument’s sound, as well as to control real-time sound-synthesis and physical 

models of the violin. The original Hyperbow work primarily focused on 

providing information such as position of the player’s hand. However, Young 

revisited the Hyperbow for her Masters and PhD theses at MIT Media Lab, 

broadening the scope of the data capturing capabilities to include invaluable 

information from all applied forces to the instrument by the player (articulation, 

force, acceleration, changes in position, and changes in downward and lateral 

movements) (Young 2007; Young 2002). This was achieved by augmenting an 

electric violin (the RAAD violin designed by Richard Armin) with additional 

sensors including strain gauges, accelerometers, a 6-degrees of freedom inertial 

measurement unit, and an electromagnetic field measurement system for position. 

Young’s work also investigates classification of six bowing techniques. 

 

Figure 8: Final Hyperbow violin design by Diana Young 

 The Bowed-Sensor-Speaker-Array (BoSSA) (Trueman and Cook 2000) is an 

amalgamation and extension of previous work by creators Dan Trueman and 

Perry Cook. BoSSA combines the R-Bow hyperbow designed by Trueman and 

Cook (providing motion data via a biaxial accelerometer and pressure data via a 

force-sensing resistor) with sound-spatialization via a multidirectional 12-channel 

speaker array embedded within a dodecahedron. Using the various sensor 
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streams provided by the R-Bow, additional sensors on the violin itself (Trueman 

and Cook 2000), and the 12-channel speaker array, BoSSA is a rich 

hyperinstrument which not only provides interesting means of sound 

manipulation beyond that of a traditional violin, but also concurrent sound-

diffusion, with the ability to simulate the directivity of many different 

instruments. 

 Another influential hyperinstrument to this research is Curtis Bahn’s SBass. A 

modified upright bass, Bahn’s sensor design was influenced by his signature 

pizzicato playing, resulting in the decision to have various sensors on the bass 

itself instead of focusing on the bow, like others designs (including Bahns own 

Edilruba). While many of the hyperinstruments listed have focused primarily on 

instruments from the western music tradition, together, Bahn and Ajay Kapur 

have also explored hyperinstruments in non-western contexts, focusing on 

North Indian Classical music (Ajay Kapur 2008). Kapur’s Esitar is used for 

performer recognition in 4.3, and a description can be found in section 3.1.1.  

 Because hyperinstruments are typically traditional instruments (or 

instrumental peripherals) modified with sensors, they can be played and 

practiced as regular instruments—requiring little to no adjustments by the 

performer. This allows musicians (even beginners) to easily engage with the 

instrument, without having to become comfortable with an unfamiliar interface. 

As the majority of this research is concerned with obtaining performance data 

from traditional instruments, hyperinstrument are an essential element of this 

research. They offer a nuanced vehicle to obtain performance data from 

musicians, while enhancing traditional instruments with unparalleled means of 

musical expressivity beyond their original designs. While hyperinstruments are 

related to other NIMEs, particularly NIMEs that build on established 

performance metaphors and techniques, both approaches (building on and 

diverging from) can be appropriate depending on the task. Both approaches to 

interface design possess great potentials for musical interaction. As this research 

will show, both can benefit from and enable new musical interactions in the 

practice room and performance space, by harnessing multimodal designs and 

techniques. 
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2.3 Towards Machine Musicianship  

Can quantitative and qualitative tools give the 
computer ears? 

In his book Machine Musicianship (Rowe 2001), Associate Director of Music 

Technology at New York University, Robert Rowe, details the idea that 

computers must be programmed to recognize and reason about human musical 

concepts. Just like humans, essential musicianship skills of listening, performance, 

and composition are required if one wishes to engage with the computer in 

(musically) meaningful ways. In doing so, it will be possible to create more useful 

applications for composition, performance, and practice.  

 In this chapter, we will look at selected analysis and retrieval based methods 

(many inspired by the work in the field of Music Information Retrieval, or MIR) 

that inform the research carried out in this dissertation. These methods represent 

higher-level features—algorithms that serve as descriptors in a musically 

communicative sense. Examples of these higher-level features include note onset 

(event) detection, pitch detection, melody extraction, key and chord recognition, 

beat tracking, etc. The process of obtaining these musically minded higher level 

features involves extracting various lower-level descriptors from a signal, which 

may be related to “physical auditory models or to spectral models of sound, or 

simply be mathematical quirks that happen to show some sort of promise as a 

sound descriptor” (Collins 2010). 

 Section 2.3.1 focuses on selected state-of-the art research in determining 

characteristics of rhythm from performers and section 2.3.2 focuses on pitch 

detection and estimation techniques. 

2.3.1 RHYTHM DETECTION 

“Music is to a great extent an event-based phenomenon for both performer 
and listener. We nod our heads or tap our feet to the rhythm of a 
piece…without [rhythmic] change, there can be no musical meaning.” (Bello 
et al. 2005) 
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Whether tightly codified or free in structure, rhythm is a key aspect of musical 

history, genre, and individual players’ unique style, technique, and proficiency. In 

accord with Rowe’s idea of Machine Musicianship, a primary goal of this 

research is to enable enhanced machine musicianship through multimodal 

channels. Thus, having the computer understand the many facets of rhythm in 

musical material is crucial to this research.  

 In many cases, making machines understand rhythm is really dealing with the 

process of dividing a continuous signal (musical performance) into discrete and 

musically significant events. Depending on the requirements of the task, there 

are many different ways to go about mining the various characteristics of rhythm, 

such as tempo tracking, meter tracking, beat deviation tracking, pattern 

recognition, among others. Here, we will look at a few selected examples that 

directly influence this research. 

 The first challenge in mining rhythm is accurately detecting when musical 

events occur. Bello et al. describe the onset of a musical note as “a single instant 

chosen to mark the temporally extended transient. In most cases, it will coincide 

with the start of the transient, or the earliest time at which the transient can be 

reliably detected.” (Bello et al. 2005) In Onset Detection Revisited (Dixon 2006), 

Dr. Simon Dixon explores the use of spectral analysis to improve rhythm 

detection in situations where the musical material lacks strong percussive 

instruments. 

 Another challenge is not only detecting individual musical events in isolation, 

but also how those events relate to one another in a musical sense. “Beat 

tracking” is the process in which a machine determines locations of beats in 

musical material. It is an innate part of human musical cognition, as 

demonstrated by the tapping of a foot or the synchronization of musicians 

performing together. In this way, beat tracking is extremely useful in assisting in 

other lower level tasks, such as defining boundaries and the best way to segment 

musical material for further feature extraction, like tempo, metric meter, etc. 

BeatRoot is a system developed by Dixon to perform beat tracking and metrical 

annotation of audio-based (recorded) and symbolic (MIDI) musical material 

(Dixon, Simon 2007). BeatRoot builds upon fundamental techniques such as 

onset detection, as discussed in (Dixon 2006; Dixon 2001).  
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 Researchers have also explored other means of rhythm detection. Examples 

include Scheirer’s work in tempo and beat analysis using a small number of 

bandpass filters and psychoacoustically inspired processing, to produce onset 

trains which are fed into banks of comb-filters for tempo estimation (Scheirer 

1998); and, Goto and Muraoka’s work on real-time rhythm tracking based on 

chord-changes and higher level compositional structures (Goto and Muraoka 

1999). The aforementioned tasks (onset detection and beat tracking) are 

elemental in musical analysis, and are used throughout the research in this 

dissertation. More in depth details on note onset detection can be found in 

Chapter 6. 

2.3.2 PITCH DETECTION 

Pitch detection (often used to describe the estimation of a sound’s fundamental 

frequency) is another important aspect of machine musicianship. Musical 

applications of pitch detection are broad, from informing one about their 

intonation, correcting out of tune vocals and instruments in recordings, or as an 

expressive sound-processing tool8. While basic pitch detection is simple in theory 

using techniques such as zero-crossing rate (the rate at which a signal changes 

from negative to positive), these simple techniques prove unreliable in real-world 

situations. This is attributed to a number of reasons, including the fact that even 

basic signals can be highly complex waveforms (consisting of multiple sine waves 

with varying periods), and that in many cases additional noise is present in the 

signal. The aperiodicity of speech and music signals has led to a wide body of 

interest and research into fundamental frequency (further referred to as F0) 

estimation.  

 Common methods of F0 estimation utilize autocorrelation, an algorithm in 

which a signal is cross-correlated against itself (compared to itself looking for 

similarities), as a function of a time lag applied to one of the signals. In 1993, 

Boersma introduced an autocorrelation-based algorithm for periodicity 

estimation that proved to be considerably more accurate than traditional pitch-

                                                

 
8 Antares Auto-Tune (www.antarestech.com) & Melodyne (www.celemony.com) 
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detection algorithms, even at low-registers where pitch detection algorithms tend 

to have larger error rates (Boersma 1993). More recently, Alain de Cheveigné 

from IRCAM presented an algorithm based on autocorrelation that offers many 

interesting improvements (error rates up to three times lower than competing 

algorithms) over traditional autocorrelation techniques in YIN, a Fundamental 

Frequency Estimator for Speech and Music (De Cheveign’e and Kawahara 2002). 

Additionally, Geoffroy Peeters has explored an approach for periodicity 

estimation by combining both spectral and temporal representations (which also 

make use of autocorrelation). This technique adequately estimates pitch and can 

visualize signals with multiple pitch content, while reducing octave ambiguity 

(errors) in pitch estimation. For a review on many different monophonic and 

polyphonic pitch detection methods, please refer to (Cheveigné 2006). 

 Time and time again machine musicianship is at the core of musical HCI. It 

is no surprise, as the aim of machine musicianship is to program the computer to 

explicitly understand human musical concepts such as pitch, harmony, timbre, 

intention, etc. As such, components of machine musicianship are present in 

almost all areas of this research. Whereas traditional machine musicianship 

approaches deduce musicalities by analyzing the acoustic signal of performances, 

this research reasons that at the same time, it is important to extend machine 

musicianship into the physical domain. In doing so, multimodal approaches are 

proposed in which more nuanced channels of machine musicianship can be 

established between the computer and human performers. 

2.4 Music and Machine Learning  

Teaching computers to learn complex musical 
relationships 

Machine learning is a science (stemming from “artificial intelligence”) in which 

algorithms are composed to learn how to behave, without being explicitly 

programmed to behave. It is teaching the computer to learn by experience, and 

to infer the proper output by formulating ideas based on previous experiences. 

In this way, machine learning can be thought of as emulating the ways in which 

humans learn through every day encounters with the world. And when 
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something in the world changes, people learn to adapt in their actions. This is 

also true of machine learning algorithms—the ability for machine learning 

algorithms to model complex relationships between data, and to refine or 

optimize the model’s view in the light of new data. 

 The past decade has seen innumerable advancements as a result of machine 

learning, from bioinformatics to robotics, gaming to computing. From speech 

recognition to self-driving cars, machine learning is a field that is at the forefront 

of modern innovation and industry. It is not surprising then that machine 

learning has become increasingly relevant in answering today’s musical questions. 

2.4.1 SUPERVISED LEARNING AND MODELING COMPLEX 

RELATIONSHIPS IN MUSIC 

Musical performance is rich in complex relationships in the physical, auditory, 

and psychoacoustic domains. The way in which humans experience music is 

through very complex interactions between the various physical, acoustical, and 

affective properties and phenomena. As such, machine learning enables the 

ability to model the complex relationships of high and low level musical features 

(see 2.3 machine musicianship), unlocking a world of possibilities in musical 

pedagogy, live performance, composition, and many other musical scenarios. A 

brief primer on supervised machine learning and terminology is provided in 

Appendix D. 

 Machine Learning has seen an explosion of interest in recent years, 

particularly in the music information retrieval (MIR) community. For an 

extensive review of the field please refer to (Orio 2006). The following section 

details general trends and topics in the field, and how they relate to the 

contributions of this research. Much of the musical focus of machine learning in 

the field has been on music content retrieval, recommendation, and classification 

tasks. An early example of this can be found in (Wold et al. 1996), but a review 

of the field will show many more examples. Rather than recapitulate (Orio 2006), 

this section will briefly mention a few active areas of machine learning in music. 

 One such active area is in automatic genre classification. Genre classification 

attempts to label a piece of music with a music genre (tag), which can help in 
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many tasks such as content browsing, organization, recommendation, etc. Many 

approaches work on short time low-level and high-level features related to 

rhythm, pitch, and timbre. An early example of this was proposed by Tzanetakis 

and Cook in the classification of Classical, Country, Disco, Hip Hop, Jazz, Rock, 

Blues, Reggae, Pop, and Metal genres in (G. Tzanetakis and Cook 2002). Many 

other recent approaches have been proposed (Cataltepe, Yaslan, and Sonmez 

2007; Seyerlehner and Schedl 2009), with some focusing on the difficult task of 

automatic classification and browsing of musically similar sub-genres, such as 

electronic music (Diakopoulos et al. 2009). Alternatives to traditional low-level 

features have also been proposed, such as the use of explicit semantic analysis 

(Aryafar and Shokoufandeh 2011); as well as other combinations of symbolic 

data such as social tags (e.g. artist) (Zhen and Xu 2010), and lyrical content 

(Mayer and Rauber 2011) to aid in classification. 

 Another active classification task that this research draws upon is in 

recognition. One popular example that has gained considerable attention is in 

bow stroke recognition of string players. This has been actively investigated in 

the recent research of Diana Young, Fiebrink, and others (Young 2007; Fiebrink 

2011; Rasamimanana, Flety, and Bevilacqua 2006; Peiper, Warden, and Garnett 

2003). Other examples in gesture recognition have also been explored. Fiebrink 

and collaborators have applied real-time gesture and feature extraction using a 

tool called the Wekinator, for composition and performance in (Fiebrink 2011). 

Brecht and Garnett, proposed work in recognizing beat patterns of a conductor 

as early as 1995 (Brecht and Garnett 1995). 

 There are many other active areas where machine learning is being applied in 

the domain of music. In recent years many approaches have been proposed for 

automatic instrument identification, spanning acoustic instruments (Herrera, 

Klapuri, and Davy 2006; Kitahara et al. 2007; Eggink and Brown 2003; Livshin 

and Rodet 2004; Little and Pardo 2008) and even digital and synthesized 

instruments (Somerville and Uitdenbogerd 2007). Dannenberg et al. proposed a 

musical style classifier for interactive performance systems in (Dannenberg, 

Thom, and Watson 1997). Automatic accompaniment systems have been 

explored, for example, a system where a computer-driven orchestra learns from a 

solo performer in (Raphael 2010). Other musical applications that are actively 
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being researched include automatic playlist generation, musical fingerprinting, 

automatic segmentation and transcription of music and instruments. 

Recommendation systems have stirred great interest in recent years, and typically 

use machine learning based on analysis of musical semantics and tags of a users 

music collection (e.g. Cano, Koppenberger, and Wack 2005; Yoshii et al. 2006). 

 This research is particularly interested in the unique opportunities when 

approaching musical machine learning from a multimodal perspective. To that 

end, this research shows how multimodality can benefit machine learning tasks 

such as performer recognition scenarios in Chapter 2, which further motivates a 

multimodal approach for the other research presented in the dissertation. In 

addition, multimodal machine learning is used for automatic drum stroke 

recognition in 5.4, which can be useful in a number of scenarios such as 

rudiment training and recognition, automatic transcription, and in live 

performance. 

2.5 Summary 

Multimodal techniques have greatly influenced (and continue to influence) the 

world of human-computer interaction. The field of affective computing has 

made great efforts in adapting and establishing new multimodal techniques to 

encourage more affective communication between humans and computers. As 

demonstrated, this can lead to many interesting scenarios in HCI, from every day 

interactions, to assistive technologies and learning. Because music itself 

affectively engages both the performer and listener, multimodal techniques are a 

natural extension of musical interaction. In fact, musical interaction normally 

occurs across multiple modalities, including aspects in the physical, auditory, and 

psychoacoustic domains. Thus, this chapter has provided examples of recent 

work in multimodal musical interaction. 

 At the core of multimodal interaction is the physical input of the performer 

(from multiple modalities). As such, this chapter also looked at “physical 

computing” to investigate the ways in which musicians can input into the 

computer. In relation to this research, physical computing is presented through 

two approaches. These approaches either build on top of, or diverge from, 
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existing performer interaction paradigms. Examples are provided which explore 

these approaches both using novel performance interfaces or NIMEs, as well as 

hyperinstruments. 

 Effective multimodal interaction however requires not only the ability for the 

user to input data into the system, but also to enable the computer to understand 

and reason meaningful musical qualities from human performance. As such this 

chapter also introduced related fields and topics in machine musicianship and 

machine learning.  Machine musicianship attempts to program the computer to 

explicitly understand musical traits and characteristics such as pitch, harmony, 

rhythm, timbre, etc. By enabling the computer to deduce human musical 

concepts, a world of possibilities opens up in musical HCI.  

 This has been further investigated by recent applications of machine learning 

in music. Using machine learning, the computer learns to deduce complex 

relationships between musical features and concepts. Popular topics and 

examples were provided in this chapter in which machine learning is used in a 

diverse set of musical tasks, from music recommendation and content browsing, 

automatically labeling of music, bow stroke recognition, and other classification 

scenarios such as genre and style classification. 

 In this chapter, an overview was provided of significant work in the 

aforementioned fields. While the areas are related, they are often investigated 

separately, or with loose relationships. It is the belief of this research however, 

that it is through conscious exchanges between physical computing, machine 

musicianship, and machine learning, that novel (multimodal) musical interactions 

are possible. Thus, through the examples presented in this chapter, a foundation 

emerges in which multimodal musical interaction can thrive. 
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Chapter 3  
 

The Toolbox 

Overview of the Multimodal Instruments and Sensor Systems Used in the 
Research 

In pursuing this research a wide-range of multimodal instruments and sensor 

systems have been custom designed. In doing so this research attempts to lay a 

solid foundation from which multimodal musical interaction design can be 

further investigated in the future. The musical universe is one that is immensely 

complex, and the scope of this research cannot possibly reach all families of 

instruments or musical contexts. However, it is a primary goal to explore the 

affordances of multimodality in both western and non-western musical traditions, 

and across a variety of instruments, from melodic to percussive. In the process, 

practical design considerations for effective multimodal musical interaction 

design have been identified, and are later discussed in section 8.3. Provided in 

this section is an overview of the multimodal systems used throughout the 

research, and which put these design principles to practice. 

3.1 Instruments, Interfaces, and Sensor Systems 

This section looks specifically at the various instruments and sensor systems that 

have been used throughout the research. These systems range from custom built 

hyperinstruments to auxiliary sensor systems, and have been used in a variety of 

tasks investigating the role of multimodality for musical performance and 

practice. 
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3.1.1 ESITAR 

The Esitar (Figure 9) is a multimodal hyperinstrument designed by Dr. Ajay 

Kapur (Ajay Kapur 2008). Its unique sensor system is designed to capture the 

performance actions of classical North Indian sitar technique. The Esitar 

provides a fret-detection system implemented via a series-connected resistor 

circuit. Essentially, when the performer plays a note, current flows through the 

string and through every resistor between ground and the currently played fret, 

resulting in a voltage drop (determined by the sum of the resistors in series up to 

the played fret). While this provides a fairly robust measure of which fret was 

played, because the sitar enables, and often requires, the performer to pull the 

note up as much as a Major 6th on any given fret, the Esitar typically fuses the 

fret-detection data with real-time pitch detection for increased accuracy in pitch 

tracking (Ajay Kapur et al. 2007).  

 

 

Figure 9: Esitar sensor systems, close up of thumb sensor (left), and usb, standard audio jack, 
knobs, buttons, and switches (right) 

  

 In addition to fret-detection, the Esitar employs a thumb-pressure sensor to 

measure the amount of force applied by the player’s plucking hand. Traditional 

sitar technique requires the player to place their right-hand in a specific location 

on the neck of the instrument, and is elemental to proper playing technique of 

the instrument. This is a prime example of how with careful design, a sensor can 

become specifically embodied to represent elements of a particular instrument, 

musical technique, and other performer attributes. In addition, a tri-axial 

accelerometer is embedded into the headstock of the Esitar to measure the 
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instrument’s angle and tilt. These sensors are combined with a series of switches, 

buttons, and knobs, which enable the performer to engage in the musical 

performance on many levels, including score following, event triggering, enabling 

effect and signal processing, as well as algorithmic processes. Over one USB port, 

the Esitar provides a high level of gestural control, while building off of existing 

concepts of user interaction. The Esitar was used as part of the multimodal 

performer recognition experiments found in 4.3 and has also influenced the 

(research’s) established philosophies on multimodal design considerations. 

3.1.2 EZITHER 

The Ezither (Johnston and Kapur 2012) is a hyperinstrument designed and built 

by collaborator Blake Johnston under the supervision of Ajay Kapur, Owen 

Vallis, and the author. The Ezither (Figure 10) is a 10-string zither like 

instrument that resembles other members of the citre family. The Ezither has a 

force-sensing resistor placed either underneath or on the side of each bridge 

(depending on the intended use), five buttons, and three potentiometers, that 

send information back to the computer via USB MIDI. Additionally the Ezither 

is played with a modified bow that connects directly to the instrument and sends 

data from a triple-axis accelerometer to the computer as MIDI. The Ezither was 

used for multimodal onset detection in Chapter 4, performance metrics tracking 

of bowing technique in Chapter 7, and in the performance report presented in 

appendix A.2.  

 

 

Figure 10: Pictures of the Ezither hyperinstrument and bow 
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3.1.3 ESULING  

The Esuling (Figure 11) is a traditional Balinese ring flute (suling) that has been 

retrofitted with a multimodal sensor system for real-time musical interaction and 

data capturing (Erskine and Kapur 2011). The author co-advised the design and 

build of the Esuling with Ajay Kapur, to create a highly flexible and capable 

hyperinstrument. Near the air jet of the instrument is a microphone providing an 

audio stream of the instrument’s output. A tri-axial accelerometer is also affixed 

to the body of the instrument, converting the performer’s playing gesture into 

real-time control signals. Attached ergonomically onto the shell of the instrument 

are buttons that enable various performance tasks to be executed by the 

performing musician, as well as a pressure (force-sensing resistor) sensor and 

position sensor (linear soft-pot FSR). The Esuling is used in the performance 

discussed in Appendix A.2. 

 

 

Figure 11: Picture of the Esuling controller showing the two FSRs and buttons 
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3.1.4 XXL 

XXL (pronounced double-accel) is an all-purpose wireless accelerometer system 

used to quickly capture gestural information from performers, instruments, or 

anything else they can be attached to. XXL consists of two tri-axial 

accelerometers that can be affixed to the desired object(s), and a wireless 

communication system that transmits the accelerometer data to a receiver 

module (connected to the computer via USB). This can be read directly in a 

capturing system (e.g. Nuance, see section 3.2), or in any MIDI/OSC  (Open 

Sound Control) capable application via a serial-to-MIDI-and-OSC translator 

application called XXLSerial (Figure 12 right).  XXLSerial provides a “map-

mode” function that bypasses data transmission, and enables individual MIDI or 

OSC messages to be sent for easy parameter assignments. Additionally, 

XXLSerial provides a calibration mode and sensitivity adjustment to customize 

the response and feel to the user’s preference. 

 The transmitting device contains an Arduino Fio which samples the current 

state of each accelerometer axis with 10-bit resolution (over two IDC ribbon 

cables), and transmits each reading to a nearby computer over wireless XBee

(ZigBee) RF communication. 

 XXL is used for data collection during drum experiments in sections 4.4, 5.4, 

5.5, and on a bow and dancer for gestural control in live performance in 

appendices A.2 and A.3. 

 

 

Figure 12: XXL sensor system (left) and screenshot of XXLSerial MIDI/OSC translator (right) 
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3.2 Nuance: A Software Tool for Capturing Synchronous 
Data Streams from Multimodal Musical Systems 

The previous section discussed the various hardware systems used throughout 

the research. In this section, the capabilities of a novel multimodal software 

application called Nuance are presented. Nuance is a software application for 

recording synchronous data streams from modern musical systems that involve 

audio and gesture signals. The application currently supports recording data from 

a number of input sources including real-time audio, and any instrument, musical 

interface, or sensor system, which outputs serial, OSC, or MIDI. Nuance is 

unique in that it is a highly customizable to the user and unknown musical 

systems for music information retrieval (MIR), allowing virtually any multimodal 

input sources to be recorded with minimal effort. Targeted toward musicians 

working with MIR researchers, Nuance considerably minimizes the set-up and 

running times of MIR data acquisition scenarios. Nuance attempts to eliminate 

most of the software programming required to gather data from custom 

multimodal systems, and provides an easy drag-and-drop user interface for 

setting up, configuring, and recording synchronous multimodal data streams. 

3.2.1 INTRODUCTION TO NUANCE 

As described previously in related work, multimodal signal processing is a 

fundamental aspect in every day human interaction. Humans process 

information from a variety of senses to deduce meaning when engaging with 

others (verbal communication, body language, etc.), or with their environment. 

Humans and other living organisms can also compensate for one sense with 

another, when the environment places constraints on a particular sense.  

 As such, processing information from a variety of channels is an emerging 

area of research in computer and cognitive sciences; fields such as HCI and 

affective computing have proven some of the benefits of multimodality for more 

emotively aware interaction between humans and computers. As music is a 

domain rich in information on many levels (from the score to the physical 

attributes of a particular performance), researchers have begun to investigate 
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applying multimodal techniques to musical analysis. While analyzing information 

from both the acoustic output and the output from various sensors on 

instruments, performers, and other kinds of systems is promising, there are many 

challenges ahead, even for the simple task of acquiring the data. 

 Imagine a common scenario where a researcher is investigating some music 

related problem. Whether the task is a classification problem, clustering, pattern 

matching, query/retrieval, musical perception and cognition problem, etc., all 

tasks share the initial step of acquiring and preparing the data set. While this 

point seems quite trivial, consider the following. Say the task is a performance 

metrics problem and the data set is a collection of features extracted from 

microphone recordings of a drummer. The researcher would like to perform a 

similar experiment with a saxophonist. No problem, there are tools the 

experimenter could easily use to record the audio, perform feature extraction, 

and finally analysis. This scenario, however, becomes much more difficult when 

the experiment involves custom instruments, interfaces, and 

multimodal/multisensory input systems. Let’s say the drummer mentioned is 

playing a drum modified with various sensors on the drumhead and stick, the 

data of which is to be captured alongside the audio recording. Similarly, an 

accelerometer and air-pressure sensor measures other characteristics of the 

saxophone performance. Given the highly individualized nature of working with 

different instruments and musical contexts, each problem requires a different 

software tool to be written for acquiring the data set. Imagine being a recording 

or live sound engineer and requiring a specific piece of hardware, or software 

plug-in, to interface with each instrument being used in a performance. In this 

section we describe a software tool called Nuance, which begins to address such 

scenarios. Nuance aims to bring the task of gathering multimodal data sets for 

MIR one step closer to the ease, usability, and productive workflow refined in 

traditional Digital Audio Workstations (Duignan, Noble, and Biddle 2010). 

 The remainder of this section is as organized as follows. Section 3.2.2 

describes the motivations behind Nuance, based on the shortcomings of other 

available solutions. Section 3.2.3 describes the software architecture and 

capabilities of Nuance, the program workflow is discussed in 3.2.4, and lastly 

conclusions are discussed in section 3.2.5. 
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3.2.2 BACKGROUND AND MOTIVATION 

Before creating Nuance, a number of available software options were considered. 

While not comprehensive, the tools discussed in this section were the most 

ubiquitous tools that appeared to fit the required use cases. The main 

requirement was to output synchronized recordings from a variety of input 

sources including audio, MIDI, OSC, serial sensor interfaces, and 

hyperinstruments. Figure 13 offers an input requirement comparison between 

five of the available software and framework candidates studied. 

 The three candidates represented by fully dashed rectangles in Figure 13 

(MARSYAS, ChucK, and the CREATE Signal Library or CSL) are popular 

programming languages or frameworks that are capable of multimodal data 

collection. Both MARSYAS (George Tzanetakis and Cook 1999) and ChucK 

(Wang 2008), for example, have many features for performing data capturing, 

analysis, machine learning, retrieval, and synthesis. While they are capable of 

receiving audio, MIDI, and OSC input streams, they do not currently support 

general purpose COM/Serial IO. Serial communication is a significant factor as 

many of the custom interfaces and sensor systems used in these types of 

scenarios output serial messages. Another key factor in deciding not to use these 

three candidates was that a major requirement was to use a tool that required 

little to no programming to operate. With all three candidates, a custom 

application would have to be written for each particular experimental setup, as 

well as implementing a synchronization scheme from the ground up.  We desired 

an application that practicing musicians could run independently, and which 

requires as little technical know-how and investment of time as possible. To do 

so, the application would need to provide an easily navigable user interface 

(GUI). 
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Figure 13: Requirement comparison of other software and frameworks considered as of May 2012 

  

 CLAM (Amatriain, Arumi, and Garcia 2006) and EyesWeb XMI (Camurri et 

al. 2007) (semi-dashed rectangles in Figure 13) are two frameworks that offer a 

wide array of features and an interactive node-based patching environment. 

CLAM includes a Data2Audio transformation module as well as a module to 

export the audio stream to disk. EyesWeb supports all required input streams, as 

well as providing support for additional input streams, like motion capture data. 

Additionally EyesWeb XMI provides a configurable data synchronization 

scheme. While both options seemed viable at first, they did not meet the 

requirements in the following ways. Firstly CLAM does not support (to our 

knowledge) OSC or serial input. Secondly we found that the node-based 

patching environments of both CLAM and EyesWeb were powerful solutions 

for configuring many complex scenarios and experimental systems. However, the 

goal was to utilize a tool that focused solely on data capturing, which 

unsupervised, could be easily configured and used by practicing musicians. In 

our trials, having to patch and synchronize each instrumental setup individually 

was found to be too labor intensive and a more tailored solution was desired. 

Other common visual-based programming languages such as Max/MSP and 

Pure Data are also capable of the desired tasks, and provide additional support 

or accessing data from other inputs streams, but similarly required bespoke 

software patching, synchronization, and configuration for each experiment.  

Marsyas Chuck CLAM CSL EyesWeb

Audio Midi OSC Serial

Nuance

Requirement

Software / Framework Candidates
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 While the above tools all share the ability to capture data from various 

sources, and some even provide additional machine learning capabilities under 

one package, none fulfilled our requirements in dealing with the scenarios as 

described in section 3.2.1. 

 The necessity for a highly adaptable multimodal data acquisition system is 

growing as analysis tools continue to get better, and as multimodal strategies 

become more reliable in solving MIR related problems (Benning et al. 2007; 

Hochenbaum, Kapur, and Wright 2010; Hochenbaum and Kapur 2012; Ajay 

Kapur et al. 2007; Tanaka and Knapp 2002). As previously stated, current 

solutions require the time-consuming task of writing individualized programs or 

patches for each instrument or sensor system. This is counter productive as 

hyperinstruments continue to gain popularity, and as industry produces hybrid 

digital instruments9. In this way, we aim Nuance towards the ultimate goal of 

being a software solution that enables tapping into these types of instruments, 

with the ease and usability achieved in the common audio-recording software 

paradigm. We imagine that it is possible to work within an environment where 

capturing multimodal musical data, whether during the sessions of an album 

recording, or for MIR related research, is as easy as working with typical multi-

track audio recording software.  

3.2.3 ARCHITECTURE AND IMPLEMENTATION 

Nuance has been designed such that it can synchronize and record data from a 

variety on inputs and modalities. This section provides an overview of the 

Nuance recording system and its capabilities. 

 DDESIGN OVERVIEW 

As mentioned in section 3.2.2, the primary aim of Nuance was to develop a 

recording application with a traditional DAW-like workflow. The software 

should be intuitive to use by regular musicians, while providing a high degree of 

                                                

 
9 E.g. Gibson HD.6X digital Les Paul Guitar, YouRock MIDI Electric Guitar, Rock Band 3 
Stratocaster Pro, Fretlight Guitar 
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flexibility and support for a variety of heterogeneous input data streams. As such, 

the following list provides an overview of the main software requirements: 

 

• Support for a variety of input sources including audio, MIDI, OSC, and 
serial sensor interfaces 

• Minimal programming required (little to no programming or “patching”) 
• The ability to save, load, and modify recording setups and sessions 
• Easily configurable user-interface 
• Recording all data in .wav format for analysis 

 

 SSYSTEM OVERVIEW 

The general flow of the software system is detailed in Figure 14. A user provides 

various multimodal input streams, which are recorded as audio files. By default, 

all streams are recorded as 16-bit uncompressed .wav files, at a sample-rate of 

44.1kHz. This can be adjusted in the program preferences panel, depending on 

the requirements and capabilities of the user’s system, up to 24-bit resolution, 

and a 192kHz sample-rate. 

 SYNCHRONIZATION 

Nuance implements a synchronization scheme driven by the computer audio 

card’s sample-rate clock (Figure 14). Each sensor or input is responsible for 

updating itself asynchronously at its own independent rate, and all data-streams 

are read and recorded within a guaranteed synchronous and thread-safe audio 

callback system. Whenever a new audio buffer10 is available, each recorder is 

simultaneously notified to record its data. For an audio input, this simply means 

writing its current block of audio. For serial, OSC, and MIDI data, the most 

recent sample is copied into an array (of equal size as the audio-block) and 

synchronously written to disk. This sample-and-hold and up-sampling of sensor 

data happens at a much faster rate than common sensor systems supply new data, 

and we have found it to be more than sufficient in terms of speed and resolution 

for MIR applications. Other synchronization schemes are possible, and may be 
                                                

 
10 Buffer-size is adjustable via the “preferences panel” 
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required in the future if additional data sources are added. Additionally, Nuance 

has been written to support additional output formats (e.g. SDIF/GDIF11) in the 

future. 

 

 

 
 

Figure 14: Overview of Nuance input synchronization and output scheme 

 

 MMULTIMODAL INPUT 

A primary concern with Nuance was to support heterogeneous input channels. 

While the initial four supported input channels are audio, serial, OSC, and MIDI, 

the Nuance codebase has been written with future extensions in mind. In the 

following section we describe Nuance’s multimodal capabilities in greater detail. 

 AUDIO 

Mono audio recording is achieved in Nuance by adding an Audio Recorder track 

to a Nuance session (Figure 15). Each Audio Recorder has the following 

parameters: real-time waveform visualization, input channel selector, a gain slider, 

and a record arm button. 
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Figure 15: Audio Recorder object 

 SSENSORS (SERIAL DATA) 

As many projects in the community utilize Atmel/Arduino/PIC 

microprocessors, supporting serial communication was a major design 

consideration. For generalization purposes, Nuance currently supports serial 

devices outputting data in the following serial format: 

 

 
Figure 16: Serial Message Format 

A typical use-case using an Arduino microcontroller with two force-sensing 

resistors connected to analog inputs 0 and 1 might look something like Figure 17. 

 

 
Figure 17: Example Arduino serial out messages for two analog sensors 

  

 In this example, “fsr1” and “fsr2” would be the SensorStartMessages, which are 

immediately appended by the data, and finally followed by a new line character 

(via println). Nuance uses the new line character to delineate each serial message. 

Once the serial messages are streaming in the correct format, the user must 

provide an .xml file (Figure 18) to each sensor recorder object. The .xml file 

data (10-bit)SensorStartMessage
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outlines the expected sensor start messages (“start”), paired with a human-

readable name (“ID”) to appear in the Sensor Recorder’s input selector. A built 

in message configuration panel is being considered for a future release, enabling 

start messages (and paired human-readable names) to be defined and 

automatically available to all sensor recorders without having to load an .xml file. 

The serial-protocol currently implemented was designed for simplicity; however, 

other more optimized protocols are being considered in the future. For serial-

based interfaces that cannot conform to the supported protocol format however, 

it is still possible to capture data via the OSC and MIDI recorder objects. 

 

 

Figure 18: Example .xml configuration  

 

 Each Sensor Recorder has the following parameters: XML-Protocol loading 

button, record arm button, serial-device selector (which connected serial-device 

to acquire data from), input range for automatically normalizing incoming data, 

and a real-time slider to visualize incoming sensor data. 

 OOPEN SOUND CONTROL 

Open Sound Control (OSC) is a versatile communication channel that allows 

data to be streamed via external sources. The OSC Recorder greatly extends the 

capabilities of Nuance, making it possible to record data streaming from other 

applications on the host machine, and from applications and sensor systems 

connected to networked or remote computers. Additionally, the OSC recorder 

provides the ability to record sensor-systems or hyperinstruments that do not or 

cannot follow the generic serial protocol (via a serial-to-OSC middleware). 

 Example external sources can be anything such as iPhones and mobile 

devices, vision tracking and analysis systems, real-time feature extractors, and 

other derived-data outputs. OSC support allows Nuance to support nearly any 
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input modality or source natively, while keeping its feature set focused solely on 

the task of providing high-quality, intuitive multimodal recording. Figure 19 

shows the GUI elements associated with Sensor, OSC, and MIDI recorder 

objects. 

 

 
Figure 19: Sensor (serial), OSC and MIDI Recorders 

 MMIDI 

The MIDI Recorder enables data from any native MIDI device to be captured in 

Nuance.  Each MIDI recorder can be configured to listen to individual MIDI 

note or control change (CC) messages from specific devices, including MIDI-

over-network and IAC (InterApplication Control) Bus connections. As all data 

in Nuance is treated as a continuous stream, when recording MIDI note 

messages, Nuance does not differentiate between note-on and note-off messages. 

During analysis however, the rising and falling edges where values transition 

between zero and the value can be interpreted as note-on and note-off events 

locations. In the future, when Nuance supports additional output schemes (such 

as SDIF/GDIF), note-on and note-off events will be preserved in their normal 

form.  
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Figure 20: Nuance session main editor panel screenshot 

3.2.4 WORKFLOW  

A typical use scenario begins with a new empty session. Sessions can be thought 

of as project files, or serializable experiment configurations. Figure 20 shows an 

example Nuance session including several multimodal data-streams. Most of the 

user-interaction happens in the session editor panel. Right clicking anywhere in 

the panel brings up a contextual menu that enables various functions to be 

performed. These functions include adding recorder objects, unlocking the 

editor panel to resize and position recorder objects, and saving/reloading 

sessions. Once a session has been configured, it can be saved for reuse at a later 

time. Modifications to the session can be made any time during the process and 

re-saved for future use. A built-in metronome and count-in can also be enabled 

from the main transport bar, for experimental setups with tightly controlled 

timing requirements. Lastly, a bar/beat counter is provided to give feedback to 

the user about how long they have been recording.  
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3.2.5 SUMMARY 

This section described Nuance, a software tool for recording synchronous 

multimodal data streams. Nuance currently supports high-resolution audio input, 

as well as input from nearly any musical instrument or sensor system via serial, 

OSC, and MIDI protocols. Nuance is different than other solutions in that it is a 

no patching, near-codeless application. Nuance has been designed to be operated 

by musicians and researchers alike, and has already been used in many real-world 

scenarios including performer recognition, drum-stroke identification, and 

performance metrics tracking as demonstrated in the remainder of this 

dissertation. We look forward to a future where capturing multimodal data 

streams are integrated into the general workflow of practicing, composing, and 

performing musicians and composers. Working with multimodal musical 

instruments enables many unique artistic possibilities, from directly manipulating 

sound parameters, to extracting higher level features and using them as control 

parameters. There currently exists just a small list of generalized tools which 

begin to facilitate these interactions outside of the research laboratory (Fiebrink 

2011), and we hope for Nuance to help guide the way in making this accessible 

to today’s musicians and composers. With this in mind, we have written the core 

of Nuance such that it would remain unchanged in the future if we were to 

author a cross-platform version in VST/Audio Unit/AAX plug-in formats. Not 

only can Nuance increase productivity in MIR scenarios, but we hope it points to 

and establishes a foundation for other future musical endeavors, in the MIR-

laboratory, the studio, and the musical classroom. 
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Chapter 4  
 

Performer Recognition 

Can multimodal fusion make the computer 
understand a human performer? 

4.1 Background and Motivation 

If one considers music as a temporal evolution of events, occurring within 

various notions of tonality/atonality, form, harmony/inharmonicity, timbre-

space, (pseudo) random and other algorithmic processes, social contexts, etc., 

music is given function, meaning, or interpretation, when placed within the 

intent of the composer and performer(s). In turn, this is perceived by the listener 

when observing a performance (live or recorded), whether on an analytic or 

purely affective level. Similarly to the ways humans connect on these levels with 

a piece of music, this research imagines establishing a deeper understanding 

between musicians and computers through a new multimodal language. In this 

multimodal dialogue, the computer receives multiple channels of information 

from the performer and interprets these data to derive meaningful information 

and communication between the two agents (musician and computer). It is 

important for the computer first to understand who is the performer, in order to 

tailor a specific and meaningful interaction. Thus, the musician recognition 

framework described in this chapter aims to (1) establish a foundational 

multimodal language that fosters future interactive and educational experiences 

between musicians and computers, and (2) begins to investigate features or 

stylistic signifiers between multiple performers’ interpretations of musical 

material. 

 The common approach to performer recognition uses audio-based 

techniques to identify characteristics from a recording (Ramirez et al. 2008; 
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Ramirez et al. 2007; Stamatatos, Efstathios and Widmer, Gerhard 2005; 

Stamatatos, Efstathios 2002; Stamatatos and Widmer 2002; Stamatatos 2001; 

Widmer 2001). Stamatatos and Widmer explored this approach to quantify 

aspects of multiple players’ performance “styles” and classify/identify 

performers using stylistic subtleties (Stamatatos, Efstathios and Widmer, 

Gerhard 2005). Their use of simple audio-based classifiers to distinguish among 

a small set of highly trained and stylistically polished players inspired our 

approach for data capturing. 

 The approach of this research instead is multimodal in nature, combining 

audio with data from sensors capturing aspects of a performer’s physical 

performance. Past research on other tasks in the field of Music Information 

Retrieval produced higher success rates through the use of multimodal 

instruments as compared to traditional audio-only approaches, while still 

maintaining transparency between user and instrument. An abundance of 

musical information resides not only in the sound produced, but also within the 

performer’s physical interaction with the instrument, and this research shows 

that this physical information is beneficial to the difficult task of player 

identification. 

 Two different instruments were used to test a multimodal approach. First, a 

modified North Indian sitar was used as it is an extraordinarily difficult 

instrument to master, and requires very specific and demanding techniques for 

both the musician’s left and right playing hands. Additionally, the instrument is 

rich in subtle expressivities and allows each musician to develop an individual 

“style” of playing, adding individualized variability to the sitarist’s technique. This 

makes the sitar a great candidate for an empirical study of a particular player’s 

technique, because the musical literature and tradition ask for specific physical 

actions to be performed by the musician, while the musician develops individual 

characteristics of his/her own.  

 Secondly data was collected from ten drummers playing rudiments on a snare 

drum to extend the task across both plucked string and percussion families of 

instruments. Drummers also develop strong rhythmical personalities and groove, 

which could possibly be significant identifiers exposed by multimodal analysis. 
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4.2 Process 

This section provides an overview of the various tools and methodologies used 

in the experiments. For sitar performer recognition, this included the Esitar 

hyperinstrument, as well as an early prototype of Nuance codenamed 

SuperRecorder for capturing synchronous audio and sensor data. For the drum 

experiments, this consisted of drummers playing a regular snare drum while 

wearing gloves housing the XXL gesture system described in section 3.1.4. 

 Figure 21 shows a general overview of the data capturing scenario. 

Performers play a modified instrument (in this research this is either a sitar as 

pictured or a snare drum while wearing specialized gloves) and a computer 

captures the audio output and sensor data. The computer then extracts features 

from the performance and stores them in a feature vector that is used to train a 

machine-learning algorithm for player classification/recognition. 

 

 
Figure 21: Overview of the performer recognition system (only sitar shown in figure) 

 

The remainder of this chapter is divided into two sections. In section 4.3 sitar 

performer recognition is discussed, followed by drum performer recognition in 

4.4. 

4.3 Sitar Performer Recognition 

This section explores the task of performer recognition specifically for sitar 

players. The remainder of this section is as follows. The different musical 

material (data sets) gathered for the sitar performer recognition experiments is 

described in 4.3.1. In 4.3.2 we describe the various features extracted from the

data sets, and an overview of specific windowing and classification details are 
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provided in sections 4.3.3 and 4.3.4 respectively. Finally, results and findings are 

discussed in section 4.3.5. 

4.3.1 DATA COLLECTION 

Using the system described in the overview, a group of five sitar performers 

(beginner, intermediate, and expert) were recorded. Each player performed three 

sitar performance data sets, ranging along a continuum from strictly codified 

material to improvisation. In each case we recorded audio, thumb, and fret 

sensor data from each musician. 

 DDATA SET 1 –  “EXERCISES” (PRACTICE ROUTINE) 

The first data set was designed to record a player’s individual performance 

characteristics during disciplined practice exercises. Two central exercises from 

the vast literature of classical North Indian practice methods were chosen: Bol 

patterns and Alankars (Akbar Khan, Ali 2004). Bol patterns are specific patterns 

of da (up stroke), ra (down stroke), and diri (up stroke and then down stroke in 

rapid succession), which are explicitly used in sitar practice plucking training, as 

well as in performance.12 Alankars refer to scalar patterns that can be modally 

transposed; they form the basis of many musical ornaments and are also often 

used for melodic development and fretting practice. We used the Bol patterns 

and Alankar exercises shown in Table 1, played in the Indian Rag Yaman13 at 220 

beats per minute. Each of these 15 exercises was repeated as necessary to achieve 

a duration of 60 seconds. 

 
 
 
 
 
 
 
 

                                                

 
12 In general da represents the dominant stroke, which for sitar is upwards but for other North Indian 

instruments such as sarode is downwards. 
13 Rag Yaman uses the Lydian scale, i.e., major with a sharpened fourth scale degree. 
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Table 1: Bol Patterns and Alankar exercises (data set 1) 

Stroke Da Ra Diri 
Symbols | − /\ 

 
Bol # Pattern Bol 

Group1   
3 Da Ra Da | - | 
5 Da Ra Da Ra Da | - | - | 
7 Da Ra Da Da Ra Da Ra | - | | - | - 
9 Da Ra Da Ra Da Da Ra Da Ra | - | - | | - | - 

Group2   
2 Da Diri | /\ 
3 Da Diri Da | /\ | 
4 Da Diri Da Ra | /\ | - 
5 Da Diri Da Ra Da | /\ | - | 
6 Da Diri Da Diri Da Ra | /\ | /\ | - 
7 Da Diri Diri Da Diri Da Ra | /\ /\ | /\ | - 
8 Da Diri Diri Diri Da Diri Da Ra | /\ /\ /\ | /\ | - 

 
Alankar Notes Bol 

3 SRG,RGM,GMP... | - | 
4 SRGM, RGMP, GMPD... | - | -  
5 SRGMP, RGMPD, GMPDN... | - | | - | - 

2+3 SRSRG, RGRGM, GMGMP... | - | - | 

 

 DDATA SET 2 –  “YAMAN GAT” (COMPOSITION) 

A gat is a fixed instrumental composition that provides the main theme(s) of a 

piece. Data set 2 contained ten 60-second recordings of each performer (50 total) 

repeating a particular gat in rag Yaman (Akbar Khan, Ali 2004) eight times at 132 

bpm. 

 DATA SET 3 –  “IMPROV”  

Data set 3 consisted of sensor data and recordings collected from five players 

each performing ten different 60-second long free improvisations. This data set 

was completely unconstrained in terms of performers’ technique; it was designed 

to support experiments to determine whether player performance data is 

context/piece specific, or truly a technique-based identifier. 
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4.3.2 FEATURE EXTRACTION 

Each sensor outputs continuous information and the recorded audio is also 

continuous, making the total amount of data a linear function of duration.  For 

classification purposes, regardless of machine learning technique, we need a set 

of features, each of which collapses the recorded time-series data into a fixed 

number of scalar quantities. We examined several features from both the audio 

and sensor data; Figure 22 shows the ones that yielded the best results (best avg. 

classification). 

 
Figure 22: Overview of data capturing and feature extraction 

 TTHUMB PRESSURE FEATURES 

The arithmetic mean is a simple method of extracting a single characteristic 

average of the thumb pressure sensor data for each recording. The player-pool 

included players from various skill-levels; we hypothesized that more highly 

trained sitarists might maintain a more consistent range of thumb pressure for 

the duration of a performance as compared to beginner players. To examine this 

hypothesis, variance was used. Spectral centroid was used to examine high-
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frequency transients produced while plucking, effectively relating to the amount 

of change (from subtle to jerky) in each player’s plucking technique. 

 FFRET FEATURES 

Fret Mean, Variance, RMS, and Spectral Centroid were also extracted from the fret 

sensor network. We were interested in determining if data from fretting 

tendencies and abilities could be effective player identifiers. For example, in data 

sets 1 and 2, fret mean could be an indicator of how frequently a player’s left 

hand lost contact with the string. In data set 3, fret mean is a crude indicator of 

pitch register for each improvisation. The amount of fret variance per window 

could perhaps suggest the amount of distance and range covered by the players 

fretting hand at different moments of a performance. 

4.3.3 WINDOWING 

Each of the data sets consists of 60-second recordings.  In addition to 

computing each feature once per 60-second performance, “windowing” the 

performances into non-overlapping time segments and computing the features 

once per segment was also explored. For example, with 10-second segments, 

each 60 second data recording would be divided into six 10-second “chunks”, 

and the features would be computed for each chunk, multiplying the amount of 

training data by a factor of six. After trying various window lengths, a 15-second 

window was found to yield the best results, and is discussed later in Windowing 

Results. 

4.3.4 CLASSIFICATION 

Five different classifiers were used in the machine learning experiments. These 

included a support vector machine trained using Sequential Minimal Optimization 

(SMO), a multi-layer perceptron (MLP) backpropagation artificial neural network, 

IBk, which implements the k-nearest-neighbors classifier, decision tree (J48), and 

Naive Bayes. More detailed information about these classifiers and Weka, the data 

mining tool used in these experiements can be found in Appendix D and (Witten, 

Frank, and Hall 2011) respectively. 
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4.3.5 RESULTS AND DISCUSSION 

This section describes the outcomes obtained from the various machine-learning 

experiments.  In each case performance was evaluated using 10-fold cross 

validation. As each trial included five performers, chance classification accuracy 

was 20%. 

 RRESULTS: AUDIO ONLY 

This section demonstrates the classification results achieved by examining only 

the features extracted from the audio recordings. The advantage of this 

technique is that it can be performed with any instrumental player, using only the 

sound output of their instrument (either with a microphone or direct line), 

without requiring any modifications to the instrument. 

Table 2: Accuracy achieved using audio only (15-second window) 

 Exerc. (%) Yaman (%) Improv (%) All (%) 
MLP 96.33 100 90 85 
SMO 79.33 95.5 81 66.43 

Naive Bayes 87.33 98 71.5 58.14 
 

 Table 2 shows the classification results achieved using three different 

classifiers, for each data set alone, as well as all three data sets combined into one 

large corpus. Multilayer Perceptron proved to be the most accurate classifier in 

these tests, with the best accuracy being achieved on the exercises and Yaman gat 

composition data sets. For each pass in those two data sets, each player repeated 

the same sequence of defined notes/plucks for the duration of 60-seconds. 

Additionally, in data set 2, each pass contained the same pattern being played for 

its entirety. These two best accuracies may therefore be the result of slight data 

over fitting. Still, accuracy on the free improvisation data set, as well as 

combining all the data into one large pool yielded very satisfactory results.  

 RRESULTS: SENSOR ONLY 

Table 3 shows the results of the same machine learning processes applied to only 

the sensor data. While the accuracy percentage achieved was slightly below the 
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results from our audio features, the results are very exciting because they show 

that useful data does indeed reside in the musicians’ physical gestural information.  

Table 3: Accuracy achieved using sensors only (15-second window) 

 Exerc. (%) Yaman (%) Improv (%) All (%) 
MLP 84.33 100 89 75.15 
SMO 63.67 100 67 60 

Naive Bayes 55.67 99 69 46 
 

 Again, the highest accuracy was achieved using the Yaman gat data set, for 

which the sitarists were instructed to play the same scalar and plucking patterns 

repeatedly, for 10, 60-second long passes. Part of the success of the achieved 

accuracy may be attributed to the fact that the repetition asked of the players by 

the data set routine afforded the players ample time to get into a comfortable 

physical pattern, requiring the least amount of physical change and adjustment 

compared to the other data sets. 

 Using features derived only from the sensor data, the improvisation data set 

yielded the 2nd most accurate player identification across all three classifiers. 

While this could be the result of chance, it raises the possibility that when 

improvising, the musicians might have fallen into physical comfort-zones or 

patterns that they naturally tended to play. In the exercise routines (data set 1), 

for each pass the sitarists were required to change the fretting and plucking 

patterns to a hard defined set of practice routines. Because the exercise data set 

required specific plucking patterns that changed on each pass, and the improv 

data set allowed the musicians to freely play whatever came to them naturally, it 

is possible that specific plucking tendencies of the players’ technique were 

exposed through the improv data set, resulting in higher classification accuracy 

than the exercise data set. 

 RRESULTS: SINGLE SENSOR FEATURES 

In addition to testing using a combined set of sensor features, each feature was 

tested independently to see which features extracted from the sensor data were 

the strongest. Table 4 shows the results using a 15-second window on the sensor 

data obtained from all of the data sets combined. The best results were 62.29% 
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accuracy using Multilayer Perceptron with the thumb-pressure mean feature. In 

choosing the final feature-set combination for the system (described in section 

4.3.2), different combinations of sensor features were experimented with. When 

comparing Table 3 and Table 4, it is evident that a multi-sensor approach helped 

increase the performer recognition accuracy by 12.86% (from 62.29% - thumb 

mean alone, to 75.15% - all sensor features) on all data sets using Multilayer 

Perceptron. 

 

Table 4: Accuracy achieved using individual sensor features on all data sets, T=Thumb F=Fret (15-
second window) 

 MLP (%) SMO (%) Naive Bayes (%) 
Mean (T) 62.29 57.86 59.15 

Variance (T) 36 36 34.71 
RMS (T) 37.57 34.86 36.43 

SC (T) 20.57 24.57 23.43 
Mean (F) 21 20.71 20.43 

Variance (F) 22 18.71 23.57 
RMS (F) 27 21.14 23.71 

SC (F) 20.57 24.43 20.57 

 RRESULTS: MULTIMODAL 

The results in this section were achieved by combining both the audio and 

sensor features into a multimodal database. Table 5 shows the accuracy of the 

same three classifiers applied to all of the data sets as in Table 2 and Table 3. 

Multilayer Perceptron proved to be the best classifier here, yielding 100% 

accuracy on all data sets. While the previous trails using either the audio data 

(features) only or the sensor data (features) only were satisfactory, combining 

them together into a multimodal database proved to be the most effective 

solution for performer recognition. This corroborates the use of a multimodal 

approach to improve systems for musical metrics tracking and performance. 

Table 5: Accuracy achieved using multimodal data (15-second window) 

 Exerc. (%) Yamen (%) Improv (%) All (%) 
MLP 100 100 100 100 
SMO 97.33 100 92.5 86.14 

Naive Bayes 85.33 100 93.5 67 
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DDISCUSSION: WINDOWING RESULTS 

Table 6 shows the accuracy of the system using Multilayer Perceptron over a 

variety of window periods. The machine-learning experiments yielded the best 

results with a window size of 15-seconds. 

Table 6: Identification accuracy of sensors vs. audio vs. multimodal fusion using a combined 
corpus from all data sets (at various window periods) 

Window Size 
(seconds) 

Audio only  
(%) 

Sensor only  
(%) 

Multimodal     
(%) 

60 84.57 72 93.14 
30 85.71 74.57 96.28 
15 85 75.15 100 
10 84.09 79.24 98.85 
5 82.33 76.38 97.76 
3 74.97 72.43 96.29 

  

 The decrease in reliability of the computer’s ability to perform musician 

recognition around the 15-second window sweet-spot can be attributed to a 

variety of factors. As the window size decreases, size of the training set increases 

accordingly, however, as a result, each feature describes a smaller piece of music. 

For example, the mean value derived from the thumb pressure sensor at 5-

second windows, while providing more “mean values” than larger window sizes 

may not provide a large enough chunk of music for the extracted mean to be 

meaningful. Contrastingly, 30-second intervals may not be an appropriate 

representation of the actual thumb-pressure mean because the mean was not 

determined frequently enough. Furthermore, (with the one exception of the 

sensor corpus at 10-second windows), the accuracy identification at 10-seconds, 

5-seconds, and 3-seconds, reduces. This suggests that the features need to be 

determined over a longer window period to allow enough information (samples) 

to be examined for an accurate representation of the feature. 

 DDISCUSSION: TRAINING AND TESTING ON DIFFERENT SETS 

For this experiment the machine learning algorithms were trained using the 

Exercises and Yaman gat data sets, and then player recognition was attempted on 

the improvisation data.  This is a much more difficult, but perhaps a more “real” 
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situation, in which the system is trained on a defined set of data and asked it to 

classify freely improvised playing. 

 Figure 23 compares the results achieved for audio-only, sensor-only, and 

multimodally, using the Multilayer Perceptron classifier in each case. In contrast 

to previous trends, sensor features alone had a slightly higher success rate than 

audio features alone (30.4% accuracy vs. 28% accuracy). But as with previous 

experiments however, the multimodal approach was the most successful, with an 

accuracy rate of 39.2%.  Although these results are far from perfect, they are very 

encouraging in that a multimodal approach improves successful musician 

recognition even in this more difficult case.  

 
Figure 23: Audio vs. sensor vs. multimodal accuracy achieved for improv data set after training 

with Exercise and YYaman  data sets 

  

 The fact that the audio features alone performed only 8% more accurately 

than chance indicates that there may be room for improvement of the system’s 

audio features. Nonetheless the results in the experiments validate the usefulness 

of a multimodal approach. 

4.4 Drum Performer Recognition 

In this section similar classification techniques to those explored for sitar 

performer recognition were applied to snare drum playing. In the aim to support 

future multimodal musical analysis, in this section we collected a larger 
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performer pool than in the previous sitar performer recognition experiments. We 

also begin to investigate useful sensor systems and metrics from drum 

performance, and establish a framework for future drum analysis in Chapter 5. 

Lastly, we begin to explore data visualization as a useful tool in machine learning 

scenarios, and how visualizing features can be useful in identifying performer 

characteristics. 

4.4.1 DATA COLLECTION 

 SSOFTWARE AND SENSOR SYSTEM 

Gesture sensors were embedded within lightweight biking gloves that the 

performers wore while playing the snare drum (Figure 24). Biking gloves were 

chosen as they typically expose the fingertips and are made from thin lightweight 

materials, which minimized their interference on the performers’ technique. 

 

 
Figure 24: Nuance software (Left) and custom sensor system (Right) 

 In the experiments Nuance was used to synchronously record three axis of 

motion from two accelerometers placed on the hands of the performers, as well 

as a single mono microphone recording the acoustic drum signal. The ADXL335 

tri-axial accelerometer was used, as well as a Shure SM57 for recording the audio 

output of the snare drum. The two accelerometers placed on the topsides of the 

performers’ hands were connected to a wireless transmitter (Figure 24 right). The 

data was recorded directly over a serial-connection with the receiving XBee 

module using Nuance. More information on the sensor system called XXL can 

be found in 3.1.4. 
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 DDATA COLLECTION: DATA SETS 

An initial data set of 2917 hits from two performers was used to test, and was 

later replaced with a larger data set collected in these experiments and also for 

the drum-stroke computing analysis and metrics in Chapter 5. There were ten 

drummers in total and they were instructed to play four fundamental drum 

exercises from the Percussive Arts Society14 International Drum Rudiments; 

these included the Single Stroke Roll (referred to as D1 throughout the 

remainder of the work), the Double Stroke Open Roll (D2), the Single 

Paradiddle (D3), and the Double Paradiddle (D4) as shown in Figure 25.  

 

 

Figure 25: Overview of drum rudiments and paradiddles performed by all performers for drum 
performer recognition in 4.4 and drum stroke computing in Chapter 5 

  

 Each exercise was repeated for roughly three minutes, resulting in a total of 

14,761 hits (7,353 left hand hits and 7,408 right hand hits). While the individual 

hits are labeled with a binary label (1 for left hand and 2 for right hand) and 

analyzed later in 5.4, in this section no differentiation is made between left and 

right hand hits. All data regardless of “hand” are labeled with a specific 

                                                

 
14 The PAS is the world’s largest international percussion organization. More information on the 
PAS can be found at http://www.pas.org/ 
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performer class, where each of the ten performers is assigned a class number 

from 1 to 10. 

4.4.2 FEATURE EXTRACTION 

Feature extraction follows the method proposed in 5.3. Rather than extracting 

features within a moving window as per the sitar performer recognition 

experiments, onset locations are predetermined by an onset detection function, 

and the audio and sensor data are windowed around each individual note onset. 

In this way the feature vector is calculated only once per event (strike), and only 

when an event is detected. Please refer to section 5.3 for more information about 

the onset detection algorithm and sensor preprocessing.  

 

 

Figure 26: Overview of features extracted at each event in the data set 

  

 A 22-feature vector is collected at each drum event, consisting of thirteen 

audio features, eight accelerometer features, and one hybrid “multimodal” 

feature which looks at both audio and sensor data. Audio features included root-

mean-squared (RMS), zero-crossing, spectral rolloff, spectral centroid, brightness, 
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regularity, roughness, skewness, kurtosis, spread, attack slope, attack time, and 

Mel-frequency cepstral coefficients (MFCC, 0). Accelerometer features included 

the minimum acceleration in the acceleration envelope, the maximum 

acceleration in the envelope, the average (mean) acceleration in the envelope, the 

standard deviation, the mean of the attack phase (positive acceleration), the mean 

of the release phase (deceleration), the attack slope of the attack phase, and 

finally, the attack time of the attack phase.  

4.4.3 UNDERSTANDING DATA THROUGH MULTIMODAL VISUAL 

FEATURE CLUSTERING 

Visual feature clustering is a valuable technique that can be used to understand 

complex relationships in data. By assigning individual features to the dimensions 

of a plot, e.g. plotting one feature’s data on the x-axis of a scatter plot, and 

another on the y-axis, it is possible to observe and understand similarity and 

other relationships between the features. It is also possible to deduce other 

higher-level relationships and descriptors from the visual clustering of the 

features. In this research, features are plotted on two-dimensions, although 

higher dimension feature plots are possible and can expose more complex 

feature relationships. 

 The selection of audio and sensor features were initially motivated by specific 

acoustical and physical properties of snare drum performance. Visual feature 

clustering was used to refine the feature set, and to observe how well two-

features clustered the performers. In general the more the individual performers 

independently cluster when plotting their features, the greater the features 

individually segregate the performers, which is the fundamental task of 

performer recognition. 

 Looking at the two feature plots in Figure 27 one will notice much more 

defined visual clustering on the right-hand plot, which shows the audio features’ 

regularity plotted against spectral centroid. On the left hand side the regularity 

feature data are plotted against the roughness feature data. While in a recognition 

scenario one might favor the individual clustering of the performers, and the 

goal is to find relationships that segment the performers, overlap in clustering 
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can also show similarities between performers; thus, comparing the visualization 

with the machine learning trial results, as well as a priori knowledge and 

evaluation of the performers, can lead to many interesting conclusions. 

  

 

Figure 27: Feature scatter-plots of audio features rregu lar i ty  vs. roughness  on the left and regu lar i ty  
vs. spec t ra l c en tro id on the right

 One observation from Figure 27 that reappears in the machine learning trials 

is the overlap between performer one (blue) and performer two (red). Observing 

this overlap one could see that the two performers’ data were quite similar in 

terms of their regularity and spectral centroid features. By looking at feature 

cluster plots for performer one and two’s other features, it is possible to observe 

a generalized notion of how the features distinguish the performers, and how the 

features relate to their performance. 

 Plotting feature data extracted from the audio recording against a feature 

data from the sensor-data can also prove to be a useful technique in evaluting the 

inter-connectiveity of the acoustical and physical performance spaces. Figure 28 

plots the audio feature spectral rolloff against the sensor feature average release phase 

deceleration; one can see noticeable clustering, and similarities between previous 

audio-only clustering characteristics. Again performer one (blue) and two (red) 

cluster and overlap with one another, although there is now greater separation 

between than two (compared to the audio only feature plots in Figure 27). 

Plotting multimodal features can lead to interesting observations about the 

physical and acoustical properties of the players’ performance. For example, 

spectral and magnitude features from audio can be paired with the gestural 

features from the performer (attack acceleration and release deceleration, etc.), to 

find links between the physical actions and the acoustic output. 
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Figure 28: Feature scatter-plot of audio feature sspec t ra l  ro l lo f f  vs. sensor feature average  (mean)  
r e l ease  phase  dece l e ra t ion  

 Many other relationships can be drawn from feature clustering. At a glance it 

is possible to get a generalized idea of how spread out the feature-pair data is for 

each performer. Evaluating the distance between the well-clustered performers 

can be as useful as looking at the general clustering and overlap. For example, in 

Figure 27 (right) performers 3, 5, and 6 all individually cluster independently,

although performers 3 and 6 are furthest away from each other (when comparing 

these three specific performers).  

 These ideas and relationships are fundamental to understanding features, and 

the many complex relationships between data across multiple modalities. Similar 

techniques and visualizations will be used throughout the remainder of this 

dissertation, in both machine learning and other metric or feature-based contexts. 

4.4.4 CLASSIFICATION 

Four different classifiers were used in the drum performer recognition 

experiments. As per the sitar performer recognition experiments, these included 

a support vector machine trained using Sequential Minimal Optimization (SMO), 
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a multi-layer perceptron backpropagation artificial neural network (MLP), and 

Naive Bayes. Logistic Regression was also used in these experiments. Additional 

information about the classifiers and algorithms can be found in Appendix D.3 

and (Witten, Frank, and Hall 2011). 

4.4.5 RESULTS AND DISCUSSION 

This section shows the performer recognition results for audio features only, 

sensor features only, and a combined multimodal feature space. 10-fold cross 

validation was used in all recognition tests. The player pool included ten players 

and so chance classification in all tests was 10%. 

 RRESULTS: AUDIO FEATURES ONLY 

As earlier in the sitar performer recognition trials, it is useful to investigate the 

classification accuracy of the audio features independently from the sensor 

features. In this way it is possible to evaluate the effectiveness of the individual 

modalities for the given classification task, how they can be improved (e.g. 

feature selection), and how well they perform multimodality.  

 Best classification performance was achieved using Multilayer Perceptron on 

data set D3, yielding 96.17% recognition. Combining all of the data sets into a 

large corpus however, adds more of the player’s variability into the 

training/testing sets. Each data set increased in difficulty and may have 

influenced the player’s performance; so, combining and testing all sets together 

can help reduce the homogony of the set, while allowing the classification 

algorithms to better generalize the performer’s playing. In doing so Multilayer 

Perceptron achieved the best performer recognition results, yielding 92.58% 

recognition. Logistic regression was the second best classifier yielding 90.96% 

accuracy, followed by SMO (87.38%), and finally Naive Bayes (81.88%). Average 

performer recognition on all data sets using audio features only (and the ODT 

feature) achieved around 88% accuracy, showing promising results from 

analyzing the audio stream of the player alone. 
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Table 7: Performer recognition accuracy using audio features (and ODT feature) only 

 
Single 
Stroke 

(%) 

Double 
Stroke 

(%) 

Single 
Paradiddle 

(%) 

Double 
Paradiddle 

(%) 

All      
(%) 

MLP 94.00 95.86 96.17 95.53 92.58 
SMO 87.76 94.06 93.27 91.11 87.38 

Naive Bayes 85.23 91.29 90.72 89.48 81.88 
Logistic 90.98 95.78 95.79 95.53 90.96 

 

RRESULTS: SENSOR FEATURES ONLY 

Investigating performer recognition on the sensor features only provides 

indication of the uniqueness of the performers’ gesture data. Thus these tests 

serve to motivate this dissertation work in general, and one of its primary goals 

to investigate multimodal metrics and performance data. Again best performance 

was achieved when testing and training on a particular data set using Multilayer 

Perceptron (data set D2, 56.18%). Testing on all data sets, MLP yielded the 

highest recognition with 47.49%, 37.49% above chance. SMO returned second-

best classification (39.86%), followed by logistic regression, and finally Naive 

Bayes.  

 

Table 8: Performer recognition accuracy using sensor features only 

 
Single 
Stroke 

(%) 

Double 
Stroke 

(%) 

Single 
Paradiddle 

(%) 

Double 
Paradiddle 

(%) 

All      
(%) 

MLP 54.95 56.18 52.46 49.42 47.49 
SMO 43.03 44.09 44.61 39.92 39.86 

Naive Bayes 37.75 37.45 39.43 31.14 32.12 
Logistic 55.03 53.84 54.03 51.22 47.35 

  

 While classification results for sensor features only were not as high as audio 

only, it is revealing that useful performance data can be gained from exploring 

the data further. A lower recognition rate in performer recognition results for 

sensor features only does not whole-heartedly mean that the data is less useful 

than the audio features.  
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Figure 29: Confusion matrix for all data sets and sensor features only using the MLP classifier 

  

 For example, the overlap between performers one and two in the clustering 

visualizations showed that in fact the performers were similar in terms of their 

performance. This is extremely useful information when analyzing a performers’ 

metrics, abilities, style, etc. Similar observations can be illustrated by looking at 

the confusion matrix output of the classification task. The confusion matrix in 

Figure 29 summarizes the distribution of the classified instances (feature vectors) 

when classifying all data sets and sensor-only features using MLP. For example, 

class 1 (performer one) was recognized (classified) correctly as performer one 

636 times, but misrecognized as performer two 167 times, performer three 226 

times, and so forth. Investigating the confusion matrix, one can see which 

performers were “confused” for one another the most, and further investigate 

their sensor data to see how that relates to the physicality of their performance 

and gesture. For reference, the bold diagonal line in the matrix makes it easy to 

see the number of correctly identified instances for each performer (class). 

Specifically in the task of performer recognition it is the goal to reduce the 

amount of confusion or misclassification, thus, combining the confusion matrix 

with feature visualizations (e.g. clustering) can help re-evaluate and refine useful 

features for recognition. 
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 RRESULTS: ALL FEATURES 

In this section both feature sets (audio and sensor) were combined into a large 

corpus to test the performance of the classification algorithms on all features 

together. Although performer recognition was already quite high on audio 

features alone, could multimodal relationships between audio and sensor features 

help improve results? 

 

Table 9: Performer recognition accuracy using all features (audio & sensors) combined 

 
Single 
Stroke  

(%)

Double 
Stroke 

(%)

Single 
Paradiddl

e (%)

Double 
Paradiddl

e (%)

All        
(%) 

MLP 95.86 97.52 97.34 96.73 94.21 
SMO 93.24 96.57 94.95 93.98 90.59 

Naive Bayes 90.22 94.28 93.32 90.92 86.18 
Logistic  95.78 97.79 96.58 96.33 93.83 

 Again the two best classifiers were MLP and logistic regression. Best single 

data set recognition was achieved with logistic regression, achieving 97.79% 

recognition for data set D2.  

 

 

Figure 30: Performer recognition accuracy for all classifiers using all features and all data sets D1-
D4 

 When combining all of the data sets and features together, Multilayer 

Perceptron yielded the highest recognition accuracy with 94.21% (Figure 30). 
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and an additional 2% increase over audio-feature only recognition. Comparing 

multimodal feature results to audio-only feature results, logistic regression 

increased by about 2.87%, SMO by 3.21%, and Naive Bayes by about 4.3%. 

Across the board performer recognition results were improved by combining 

both feature sets (audio and sensor) into a large multimodal feature vector. 

 In Figure 31, all of the classifiers results for all data in all sets instances (D1-

D4) are averaged, for audio-only, sensor-only, and combined multimodal 

features independently. Averaging the classifiers’ results in this way, the data set 

with the best results was D2 with 94.25% audio-only recognition, 47.89% 

sensor-only recognition, and 96.54% multimodal recognition. This figure 

presents a general overview of performer recognition accuracy as an average of 

all of the classifiers’ results. Further averaging all data sets by modality (i.e. 

averaging D1-D4 results in Figure 31 for each modality) shows that using a 

sensor-only data set the classifiers can perform recognition on our pool of ten 

players with about 45.57% recognition accuracy; using an audio-only feature set 

can achieve about 91.77% recognition; and combining both into a multimodal 

feature achieves about 94.31% recognition. 

 

Figure 31: Accuracy for audio-only features vs. sensor features vs. multimodal features by averaging 
all classifiers 
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4.5 Discussion 

This chapter explores multimodal performer recognition for both sitar players 

and drummers. While previous research into performer recognition has looked at 

high-level performance features extracted from audio analysis and symbolic data 

(from MIDI-enabled pianos), this research shows that it is also vital to explore 

the physical performance space through various sensors. As such we explore 

thumb pressure and fret-sensor data from the sitar performers, as well as gestural 

accelerometer data that captures the motion and trajectory of the drummers’ 

hands while performing. 

 In exploring one of the overarching goals of this dissertation, which is to 

establish more meaningful communication channels between performer and 

machine, this chapter establishes a foundation showing that multimodality can 

help improve the computer’s understanding of who the performer is. While this 

dissertation further analyses the actual performers’ metrics elsewhere, this 

chapter shows that combining audio and sensor features into multimodal feature 

vectors, increased performer recognition accuracy (for both sitar players and 

drummers) across the board.  

 Improvements in recognition rates could be made in a number of ways for 

both experiments. One area to spend more time could be experimenting with 

additional features, especially for sensor data. Improved feature selection could 

help increase performance recognition both for single-modality recognition, but 

also when combined into the multimodal corpus. In the drum performer 

recognition, it could also be useful to experiment with resetting up the 

microphone a number of times during data collection (for each performer), to 

further minimize the effect of environmental and experimental conditions on the 

results. In the sitar recognition experiments, this is not necessary as the audio 

signal was directly from a pickup on the instrument that is not susceptible to 

such variables. 

 Most importantly, this chapter motivates the rest of this dissertation’s work 

investigating the significant relationships existing both separately within 

individual modalities, and also in between modalities. This chapter’s research into 
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performer recognition has also exposed performance features that are 

meaningful and help portray the characteristics of the actual performance.  

 The remainder of this dissertation in whole is particularly interested in 

evaluating the relationships that exist between the acoustical and physical 

dimensions of musical performance, however, performer recognition in itself 

possesses many possible functionalities and uses. In the post-desktop world of 

“ubiquitous computing”, performer recognition can make the computer more 

intelligently aware of its users. One example could be tailoring feedback to 

individuals in a group without having to switch between user profiles and setups 

that can be cumbersome in a multi-user situation. In music schools, this could be 

useful for group or ensemble exercises and practice. Another use case could be 

specifically using high-level “style” features for classification, and comparing the 

stylistic elements that distinguish multiple performers’ interpretations of a 

musical piece. 
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Chapter 5  
 

Drum-Stroke Computing 

Can multimodal training give an audio recording eyes? 

This chapter revisits the drum data used in the drum performer recognition trials 

to analyze various aspects of drum performance. These include automatic 

labeling of audio strikes using surrogate data training, automatic drum-hand 

recognition, and investigations into multimodal drum performance metrics. 

5.1 Background and Motivation 

Combining machine learning techniques with percussive musical interface and 

instrument design is an emerging area of research that has seen many 

applications in recent years. Tindale investigated drum timbre recognition 

(Tindale et al. 2004) and later applied similar techniques to turn regular drum 

triggers into expressive controllers for physical models (Tindale 2007). Other 

examples have been proposed which even enable human-machine interaction 

with mechanical percussionists who can listen to human performers and 

improvise in real time (Weinberg and Driscoll 2006).  In the previous chapter, we 

investigated automatic performer recognition of ten drummers. 

 In terms of signal processing, there are now robust onset detection 

algorithms for percussive performance (Bello et al. 2005; Dixon 2006) enabling 

accurate identification of when musical events occur. Researchers (including in 

this dissertation) have also been actively investigating other areas of musical 

performance such as tempo estimation (Dahl 2005; Gillet and Richard 2008), 

beat tracking (Dixon, Simon 2007; Goto and Muraoka 1999), and percussive 

instrument segmentation (Goto and Muraoka 1994). Combining many of these 
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techniques together, researchers have explored the task of automatic 

transcription of drum and percussive performance, (Fitzgerald 2004; Gillet and 

Richard 2008; Paulus and Klapuri 2003; Tzanetakis, Kapur, and McWalter 2005). 

Great advances have been made in the aforementioned tasks; however, the 

majority of research into drum interaction scenarios which combine musical 

interfaces/instruments and machine learning have been concerned with the 

segmentation or isolation of individual drums from a recorded audio signal. 

While mono and polyphonic drum segmentation is a key aspect to tasks such as 

automatic drum transcription, a vital feature of drum performance (that we’ve 

yet to see explored in current drum analysis literature) pertains to the physical 

space of drum performance. Not only is it beneficial to know when and which 

drum is played in a pattern, but also which hand is striking the drum. This research 

investigates this question, demonstrating a multimodal signal processing system 

for the automatic labeling and classification of left and right hand drum strikes 

from a monophonic audio source. 

 There are many real-world cases where drum stroke recognition is useful. In 

fact, traditional exercises which practicing drummers study emphasize the 

practice of specific left and right hand patterns. A key element in automatic 

transcription scenarios that has been missing up until now is transcribing which 

hand performed a drum hit. In order to understand ones performance fully, it is 

important to know how the player moves around the drum(s), the nuances and 

differences present in the strikes of their hands (independently), and the possible 

stylistic signifiers resulting from the physical aspects of their individual hand 

strikes. This presents a large problem, as it is nearly impossible to determine 

which hand is hitting a drum from a monophonic audio recording alone. 

 Using direct sensors such as accelerometers on the performer’s hands, 

however, it is possible to capture exceptionally accurate information about the 

movements of the performer’s hands. This comes at the cost of being invasive 

and possibly hindering performance. In a typical controlled machine-learning 

situation it is of course possible to place constraints on the data-capturing 

scenario. One solution would be to only record left hand strikes, and then 

separately record right hand strikes, labeling them accordingly when performing 

feature extraction. A primary goal of this research however is to not only capture 
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each hand playing in isolation, but in context of actual performance and practice 

scenarios. As such, the interplay between left and right hand playing is of utmost 

importance. Another option would be to manually label each audio event as 

being either from the left or right hand, based on a priori knowledge of a specific 

pattern played. As many data capturing scenarios (including ones in the research) 

involve specific patterns to be played, this is a common but time-consuming 

approach to labeling drum training performance data. Additionally this approach 

is blind to inevitable playing errors in the performance, which require manual 

adjustment when labeling the training data. We are also interested in investigating 

the improvisatory elements of drum performance, making the task of manually 

labeling hand-patterns nearly impossible. To overcome these challenges, this 

research turns to an exciting new technique inspired from Surrogate Sensing 

(Tindale, Kapur, and Tzanetakis 2011) to enable the automatic labeling of drum 

hand patterns for classification. 

 One of the earliest studies of drum performance showed how physical 

factors such as the start height of a stick could impact the resulting amplitudes 

and durations of the sound produced (Henzie 1960). More recently, Dahl 

showed similar relationships between the correlation of strike velocity and the 

height and shape of the stroke in user studies (Dahl 2005). Dolhansky et al. 

modeled the shape of a percussive stroke to turn mobile phones with 

accelerometers into physically-inspired percussive instruments (Dolhansky, 

Mcpherson, and Youngmoo 2011). There are many ways which people have 

attempted to analyze the gesture of drum performance and its effect on the 

dynamic and timbre spaces; Tindale et al. provides a good overview of sensor 

capturing methodologies in (Tindale et al. 2005). The research mentioned and 

other countless examples confirm the strong link between the physical space in 

which a performer’s actions exist, and the fingerprint imparted on the musical 

output. To this end we begin to investigate these ties in this chapter by not only 

looking at drum-hand recognition, but also at statistical measures observable by 

multimodal analysis of acoustical instrument (drum) output paired with sensor 

systems.  

 The remainder of this chapter is as follows: in section 5.2 an overview of the 

data collected is detailed, followed by an overview of the analysis framework 
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(including the implementation of surrogate data training for automatic hand 

labeling of training data) in 5.3. Drum hand recognition results are presented in 

section 5.4, and multimodal drum performance metrics in section 5.5. Finally, a 

discussion and conclusion are provided in section 5.6. 

5.2 Data Collection 

In this section the data capturing and analysis system used in the drum-stroke 

recognition experiments is described. From a high-level view, the drum-hand 

recognition experiment employs a three-step process including a data collection 

phase, an analysis phase, and finally the testing and machine-learning phase as 

illustrated in Figure 32. 

 

 
Figure 32: Overview of drum hand recognition system 

  

 The performance data used previously for drum performer recognition was 

used in these experiments. Ten performers played four fundamental drum 

exercises for roughly three minutes each, which resulted in a total of 14,761 hits 

(7,353 left hand and 7,408 right hand). Please refer to section 4.4.1 for more 

information on the specific exercises and data collected for these experiments. 

5.3 Analysis Framework 

The analysis framework is comprised of two main steps, surrogate data training 

and onset detection / peak picking. The following sections describe in detail the 

data analysis and signal processing used to label and train the system from drum 

hand identification. 
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5.3.1 SURROGATE DATA TRAINING  

One of the biggest hurdles for musical supervised machine learning is obtaining 

and labeling a large enough training data set for true results. As described earlier 

in the introduction, manually labeling the training data is not an efficient process, 

nor does it easily deal with errors that are common in the data collection process. 

By using a technique that can automatically label training data, the training 

regimen can be more loosely defined, even allowing the performer to improvise 

(unless there was specific desire to record particular patterns as in our case). 

Common disturbances in the data collection process such as performance 

mistakes, which normally must be accounted for by the researchers manually are 

also no longer an issue. We turn to a new technique inspired by Surrogate 

Sensors (Tindale, Kapur, and Tzanetakis 2011) enabling us to quickly record and 

label each hit in the audio recordings by using known information from direct 

sensors (accelerometers) to navigate unknown information in the data from our 

indirect sensor (microphone). The direct sensors provide the benefit of near 

perfect accuracy making the technique extremely robust (see Table 10). The 

method is also transferable to other sensors and modalities, and the particular 

implementation in this research is described in the following section on onset 

detection. 

5.3.2 ONSET DETECTION 

A triple-axis accelerometer was placed on each of the performer’s hands while 

recording the data sets. The ultimate goal was to use gesture onsets from the 

independent hands’ accelerometers to navigate and label the note onsets in the 

audio streams. As shown in Figure 33, each axis (per accelerometer) is first 

preprocessed in Matlab by removing the DC offset and full-wave rectification. 

The accelerometers each have their three axes summed and averaged to collapse 

the data streams into a single dimension. Next jerk15 is calculated for each 

accelerometer, followed by a threshold function to remove spurious jitter. To 

                                                

 
15 “Jerk” is the derivative of acceleration 
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further smooth the signals before onset detection is applied, the envelopes of the 

signals are extracted, and smoothed with a low pass filter. The onset curve is 

then calculated and peak-picked at local maxima. Lastly onset detection was also 

performed on the audio recording, and all three streams’ (one audio, two 

accelerometer) onset locations (in seconds) are stored in independent vectors. 

More detailed information on the onset detection algorithm can be found in 

(Lartillot, Olivier et al. 2008). 

 

 
Figure 33: Overview of onset detection algorithm 

 

 OONSET DETECTION ACCURACY 

Onset detection accuracy of the accelerometers (for performers 1 and 2) is 

shown in Table 10 using standard measurements called precision, recall, and f-

measure. Generally speaking, these measurements give a sense of the accuracy and 

quality of the results; measuring how many true positives were returned, false 
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positives, etc. For an in depth explanation of the measurements, please refer to 

section 6.4.4.  

 The high yield (99%) in accuracy of the accelerometers makes them a great 

candidate for surrogate labeling the audio onsets as either left or right hand 

onsets. The onset vectors were also exported as .txt files and imported into a 

beat-tracking application called BeatRoot (Dixon, Simon 2007) to visualize and 

correct any errors in the accelerometer onsets detected. It should be noted that 

although correction was performed, the correction step was not necessary, as the 

minor number of falsely detected onsets would not impact the data very much. 

However, we desired 100% ground truth and so any false-positive and false-

negative onsets were manually corrected in BeatRoot prior to feature extraction. 

 

Table 10: Accelerometer onset detection accuracy for performers 1 and 2 

 Precision (L/R) Recall (L/R) F-Measure (L/R) 
Performer 1 0.997 0.997 0.997 
Performer 2 0.993 0.997 0.995 

 

5.3.3 FEATURE EXTRACTION 

After onset detection, features were extracted in Matlab by taking the 

accelerometer onset positions for each hand and searching for the nearest 

detected onset (within a certain threshold determined by the frequency and 

tempo of the strikes) in the audio onsets. The strike in the audio file was then 

windowed to contain the entire single-hit and various features were extracted 

over the windowed segment. The feature vector was labeled with the appropriate 

class (1.0000 = Right, 2.0000 = Left) and exported as an .arff file for machine 

learning analysis in Weka. For each strike a 14-dimension feature vector was 

calculated from the audio-onset containing: RMS, Spectral Rolloff, Spectral 

Centroid, Brightness, Regularity, Roughness, Skewness, Kurtosis, Spread, Attack 

Slope, Attack Time, Zero Crossing, MFCC (0th coeff.), and the Onset Difference 
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Time (ODT16) between the detected audio and corresponding accelerometer 

onsets. 

5.4 Drum Hand Recognition 

Once the data was collected it was imported into Weka for supervised learning. 

The primary focus of this experiment was to investigate if a machine could be 

trained to reliably classify which hand was used to strike a snare drum. 

5.4.1 CLASSIFICATION  

Five classifiers were used in the tests including a Multilayer Perceptron back-

propagation artificial neural network (MLP), the J48 decision tree classifier, 

Naive Bayes, a support vector machine trained using Sequential Minimal 

Optimization (SMO), and Logistic Regression. 10-Fold cross validation was used 

in all tests and the entire 14-dimension feature vector was utilized during testing. 

5.4.2 RESULTS: ABOUT THE TESTS 

The following results sections investigate drum-hand recognition in various 

capacities. Individual and combined recognition results are examined in 5.4.3, the 

effects of training and testing on different data sets in 5.4.4, and cross-performer 

training and testing in 5.4.5. As this is a binary classification scenario 

(classification can either be left or right hand), the chance classification baseline 

for all results is 50%. 

5.4.3 RESULTS: TEST ONE – ALL DATA (INDIVIDUAL VS. COMBINED 

SCORES) 

Using the entire data set and 10-fold cross validation, the best results for all 

performers were achieved using both the multilayer perceptron (MLP) and 

logistic regression (Logistic) classifiers. Classification results and test size 

                                                

 
16 The Onset Difference Time (ODT) is a feature / metric that describes the difference time 
between the onsets detected in an acoustic signal, and a signal derived from a sensor in another 
modality. 
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information for each performer is provided in Table 11. In general, all of the 

algorithms appear to do a decent job at generalizing over the entire data set and 

provide similar classification results with smaller subsets of the feature vector. 

 The best single-performer drum-hand recognition results were achieved for 

performer #8 using multilayer perceptron (97.64%), followed by performer #5 

(if ignoring performer #8’s logistic regression classifier) using logistic regression 

(96.42%). Interestingly performer #8 was one of the most advanced percussion 

players from the test group whereas performer #5 happened to be at a beginner 

level. Achieving high classification accuracy across these two performers 

demonstrates that the feature vector may generalize across skill level quite well 

(not favoring a particular skill level or consistency over another), making the 

technique robust and applicable to the entire range of performers. 

 

Table 11: L/R Drum hand recognition accuracy for all performers and data 

Perf 
# 

MLP 
(%) 

SMO 
(%) 

Naive 
Bayes (%) 

Logistic 
(%) 

J48   
(%) 

# L 
Hits 

# R 
Hits 

Total 
Hits 

1 84.21 81.10 64.97 83.86 79.38 724 726 1450 
2 84.25 81.87 75.12 84.32 81.12 731 736 1467 
3 78.47 76.99 65.01 77.66 71.40 747 739 1486 
4 59.59 55.86 54.85 61.90 57.56 739 736 1475 
5 95.95 90.34 82.64 96.42 88.92 741 739 1480 
6 87.59 80.83 72.55 84.11 78.20 756 767 1523 
7 88.87 87.22 82.82 91.48 86.60 731 724 1455 
8 997.64  92.98 84.21 96.63 93.25 748 734 1482 
9 79.69 72.00 67.02 73.79 73.99 749 758 1507 
10 89.00 79.67 79.81 86.77 80.85 687 749 1436 
All 76.01 60.19 53.82 61.26 75.40 7353 7408 14761 

  

 Accuracy often achieved over 95% for a single performer, and the average 

classification accuracy for each classifier (across all performers) from best to 

worst was MLP (84.53%), logistic regression (83.69%), SMO (79.89%), J48 

(79.13%), and finally Naive Bayes (79.90%), as can be seen in Figure 34. 

 As expected combining the feature vectors from all performers into one 

large corpus of 14,761 left and right hand drum hits achieved slightly lower 

classification results. When combined multilayer perceptron achieved the best 

results yielding 76.01% accuracy. Second best recognition performance was 
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achieved with the J48 classifier, yielding 75.4%. The recognition achieved when 

combining the feature vectors from all performers into a single data set showed 

promising results in the performance generalization across multiple performers 

and skill levels. A performer may have never directly trained the system and yet 

satisfactory results are still achieved, as investigated further in 5.4.5. 

 

  

Figure 34: Average drum-hand recognition accuracy (%) across all performers for each classifier 

  

 

Figure 35: Average classification of all classifiers for each performer 
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Figure 35. Overall, performers #7 and #8 had the best classification accuracy 

when averaging all five classifiers, with 84.68% and 90.71% classification 

(respectively). 

5.4.4 RESULTS: TEST TWO – DATA SPLIT 

In this test the data was split into two partitions. The first partition contained the 

feature vectors from first two rudiments (D1 and D2) and was used for training, 

while the data from the second two rudiments (D3 and D4) was used for testing.  

 As the level of complexity in the patterns played increased with each 

rudiment, training on the earlier rudiments and testing on the latter can perhaps 

provide insight into how well the classification generalizes across the range of the 

players’ performance, having only seen a restricted context of their actual 

performance. This may also provide insight into how consistent the players may 

have performed as a function of time, possibly connected to the experience or 

skill of the individual performers. 

 Table 12 shows the classification results of this test and highlights the 

following. Firstly certain classifiers such as Naive Bayes and sometimes J48 

seemed to have a difficult time generalizing without seeing the entire data set 

while the neural net (MLP), SMO, and Logistic Regression seemed to perform 

reasonably well. In certain cases this caused classification results to drop as much 

as 20% (e.g. performer #5, Naive Bayes, split set which dropped from 82.64% 

down to 62.01%). Interestingly Naive Bayes seems to perform all right on the 

split training/testing sets for certain performers. For example, performer one 

was a more advanced player than performer two, which may suggest a higher 

consistency over the entirety of the performances. This may account for better 

classification for probabilistic classifiers such as Naive Bayes, which rely on the 

independent variances of class variables vs. the entire covariance of the feature 

space. 

 As the amount of training and testing data is roughly halved when testing on 

the split sets, further investigations in how training size might affect classification 

was explored. To do this, training and testing was performed on half the data 

(D1 and D2), which yielded similar classification accuracy as testing and training 
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on the entire data set (which also randomly reorders the data when it is tested 

over k folds). 

 

Table 12: Classification accuracy using separate rudiments for training and testing 

Perf 
# 

MLP  
(%) 

SMO  
(%) 

Naive Bayes  
(%) 

Logistic 
(%) 

J48  
(%) 

1 79.56 80.11 67.17 81.06 73.43 
2 76.53 63.98 57.03 66.03 62.89 
3 69.06 64.28 55.38 71.18 59.89 
4 48.92 54.723 51.22 52.84 54.32 
5 77.05 78.79 62.01 85.10 67.52 
6 61.34 67.10 61.07 59.76 71.82 
7 84.32 87.16 82.57 87.43 81.89 
8 95.57 89.66 85.64 94.63 88.05 
9 62.25 68.08 64.64 70.99 56.69 
10 62.36 63.62 67.28 65.87 61.10 

 

 Training and testing with D1 and D2 for players one and two for example 

yielded 70.16% accuracy for Naive Bayes and 78.88% with MLP. While it is clear 

that some classifiers seem to generalize quite well in all cases, more simple 

probabilistic classifiers such as Naive Bayes seem to benefit greatly from having a 

larger training set that covers a wider variance in feature data. 

5.4.5 RESULTS: TEST THREE – LEAVE ONE (PERFORMER) OUT 

The initial testing on individual performers and the entire corpus of data yielded 

satisfactory results for all player levels (beginner to advanced) individually, as well 

as the entire player pool together. This test was designed to further investigate 

the generalization of the data by leaving one performer out during training, and 

then testing against that performer’s data set during testing. How would the 

system respond to a user that it had never seen before? The two performers 

chosen for the “leave one performer out” experiment included performer #7 

and performer #8, and were chosen as they scored the highest average 

classification when averaging all classifiers (Figure 35). In this way the two best 

performers results can be tested with and without their data in the actual training 

set.  



Chapter 5. Drum-Stroke Computing 

 

91 

 

Figure 36: Classification results for the two best performing players when trained on all oother  data 
sets

 As expected the classification results reduce in accuracy when testing without 

training on a performer’s actual data. The average classification in this scenario 

might need to be increased for robust real-time use, however the classification 

results are encouraging. In fact the highest classification results were achieved 

with the SMO classifier and still classified left and right hand hits for the 

“unknown” performer with nearly 90% confidence. Naive Bayes performed the 

poorest all around, similar to the data split test, barely achieving classification 

results above chance. Other classifiers normally achieved classification results 

above or around 60% - 65%. Nonetheless the results are encouraging and future 

results could be improved by extracting other useful features. With the current 

feature set the system would merely require the user to train and add their own 

data to a large corpus of all trained performers, or selecting a user profile that is 

trained on their own data only. 

5.5 Drum Performance Metrics 

Automatic drum hand recognition proposes exciting new possibilities including: 

more nuanced automatic drum transcription, preservation of performance 

technique from master musicians long after life, providing new controller data 

for live performance, and providing insightful information and metrics during 

regimented practice and musical training. However, the information from direct 

sensors can also be used in conjunction with indirect sensors to provide new 
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angles in statistical performance metrics and features. This section begins to look 

at some of these features, and how they may increase the ability to describe and 

deduce meaningful information from drum performance.  

5.5.1 CROSS-MODAL ONSET DIFFERENCE TIME (ODT) 

In traditional drum performance analysis, temporal information such as timing 

deviations and onsets of drum hits are normally investigated by analyzing an 

audio recording. Researchers have not only investigated the physical onset times 

(in audio), but have also looked at the perceptual onset and attack times (“PAT”) 

in order to measure when sounds are actually heard (Dolhansky, Mcpherson, and 

Youngmoo 2011). Here we consider the physical onset times from sensors on 

the actual performer in relation to the onset times determined from the 

acoustical output in what we call the Onset Difference Time, or ODT.  

 

 
Figure 37: Onset difference times for the 60-sec. of D1 (performer one top, performer two bottom) 

 

 Figure 37 shows the onset difference times (in seconds) between the left (+, 

red) and right (o, blue) hand accelerometer onsets and their corresponding audio 
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onset times. A horizontal line at the center (0 on the y-axis) would mean a 

perfect match (zero difference) in onset times, and an observation of the graphs 

shows that performer two (bottom) had a generally lower onset differentiation 

than performer one (top). This observation is reaffirmed by player two’s lower 

mean and range statistics shown in Table 13. Performer two was in fact a more 

highly experienced drummer, suggesting a great link in physical vs. acoustical 

onsets in this particular exercise. Observing Figure 37 it is also apparent that in 

this 60-second pass of D1, the onset difference times of performer two’s 

individual hands were more closely related (in terms of mean onset difference) 

than that of performer one’s. The following sections will begin to explore a 

statistical measure derived from the performers’ ODT. Throughout, Table 13 

and Figure 38 will be used to compare the various metrics. 

 

Table 13: Average onset difference statistics for both performers 

Data Set Min (rush) Max (lag) Mean Std. Dev. Range 
Performer 1 -0.0076 0.0148 0.0118 0.0116 0.0224 
Performer 2 -0.0070 0.0149 0.0107 0.0133 0.0219 
Performer 3 -0.0176 0.0164 0.0064 0.0286 0.034 
Performer 4 -0.0230 0.0228 -0.0082 0.0348 0.0458 
Performer 5 -0.0274 0.0186 -0.0203 0.0311 0.046 
Performer 6 -0.0286 0.0283 0.0128 0.0375 0.0569 
Performer 7 -0.0358 0.0205 -0.0205 0.0450 0.0563 
Performer 8 -0.0216 0.0289 0.0011 0.0772 0.0505 
Performer 9 -0.0468 0.0381 0.0098 0.0723 0.0849 

Performer 10 -0.0383 0.0357 0.0056 0.0522 0.074 
 
 

 
Figure 38: Bar graph visualizing average onset difference time metrics (Table 13 - rush, lag, mean, 

standard deviation, and range) for all ten performers, in seconds 
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 GGETTING AHEAD OF THE BEAT: RUSH METRIC 

Table 13 and Figure 38 show averages from both hands of all performers and all 

data sets D1-D4. Min, or “rush”, is calculated as an average of the instances 

where the accelerometer onsets happened to come earlier than the audio onsets. 

As such it is determined by negative onset difference times. Rush is an 

interesting metric as the performer’s physical action reached its maximum 

acceleration before the strike’s acoustic onset. This was observed to be the case 

when the performer’s strike reached maximum velocity before slightly releasing 

the stick and transferring the motion to the drum.  

 On average, performers one and two had the smallest rush. Additionally, 

when performer two’s physical onsets rushed the audio onsets, it did so slightly 

less than performer one. Again this may be attributed to the fact that performer 

two was a faintly more experienced player, exhibiting tighter timing than 

performer one. Performers three and eight were two of the most advanced 

players, and also exhibited tight rush values among the group of performers. 

 Performer nine had the greatest average rush, meaning that when the 

performer’s physical onset rushed the audio onset, it did so more drastically than 

the other performers. Not surprisingly, performer 9 was one of the beginner 

level drummers in the group, which is further exposed in some of the other 

statistical measures.  

 GETTING BEHIND THE BEAT: LAG METRIC 

Max or lag is calculated as an average of the instances where the accelerometer 

onsets were later than their respective audio onsets (positive onset difference 

times). In the physical world this could be the result of the performer continuing 

their strike gesture after initial contact with the drum. When compared to rush, 

there is less deviation lag times across all performers (Figure 38). 

 Performers one and two averaged almost identical lag times, further 

exhibiting their similarity in performance. Additionally, they had the least amount 

of lag, resulting in the tightest range (difference between lag and rush), or tightest 

timing in the player pool. Similarly as with the rush metric, performer three (who 
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was one of the most advanced performers) achieved an average lag time that was 

generally closer to the ODT (compared to the other performers) when he played 

behind the beat. 

 Performer nine had the greatest amount of lag, again exposing the fact that 

performer nine was at a beginner level, and exhibited greater elasticity or 

deviation from the target ODT (zero).   

 PPUTTING IT ALL TOGETHER: MEAN, STANDARD DEVIATION, AND 

RANGE METRICS 

Mean is determined as the average onset difference time calculated over the 

entire vector of ODTs for each performer. Comparing performers one and two 

again, performer two performed with slightly less distance between physical and 

audio onset times. Interestingly, performer two’s standard deviation was slightly 

larger than performer one’s. Essentially this means that the amount of dispersion 

from the performer’s mean performance was greater. That being said, both 

performers achieved very similar timing characteristics across the board. 

 When analyzing rush and lag, performer nine generally performed the 

poorest in terms of having the greatest amount of rush and lag. Looking at the 

performer’s average ODT times however, performer nine achieved an average 

ODT that appears to be very close to that of performers one and two. This 

stresses the importance of looking at metrics beyond the average value, in 

particular the rush (min), lag (max), standard deviation, and range. In fact, 

looking at both standard deviation and range, it becomes apparent that 

performer nine deviated from their mean performance significantly greater than 

the other performers. Performers one, two, and three achieved the smallest 

standard deviation and range values, providing insight into the precision and 

accuracy of their performances. These standard statistical measures are extremely 

useful in analyzing musical analysis, as will be seen throughout the remainder of 

this dissertation. 
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 FFREQUENCY AND OTHER OBSERVATIONS 

The average (mean) onset difference time gives a general sense of the 

performer’s physical tendencies. On average, was the performer’s ODT behind 

or ahead of the (acoustic) beat? A positive average time would mean that the 

performer’s ODT generally lagged behind the beat, true for the majority of the 

performer’s (one, two, three, six, eight, nine, and ten) as illustrated in the 

previous section. However, it is also useful to know what percentage of strikes 

had rushed ODTs and what percentage had lagged onset difference times, to 

know a bit more about the distribution of strike onset differences. 

Table 14: Rush/Lag distribution of performer ODTs  

Data Set % Rush % Lag 
Performer 1 13 87 
Performer 2 18 82 
Performer 3 30 70 
Performer 4 68 32 
Performer 5 84 16 
Performer 6 27 73 
Performer 7 73 27 
Performer 8 55 45 
Performer 9 33 67 
Performer 10 41 59 

 

 As seen in Table 14, the percentage split follows the average ODT times 

accordingly. The more weighted a performer is to either side (greater percentage 

of strikes being either rush or lag), the more consistent the performer was in the 

physical motion of their strike. Under this criteria, performers one, two, and five 

were the three most consistent, with performer eight having the widest range of 

strikes falling on either side of the acoustic onset. Further investigation into the 

distribution could be useful in further research. For example, it is possible that 

the fairly even distribution in performer eight could be the result of human 

compensation of late and early beats. Other comparisons between the physical 

dimensions and the onset difference time could be useful to compare in terms of 

the relationship to the audible note onsets. 



Chapter 5. Drum-Stroke Computing 

 

97 

5.6 Discussion 

This chapter investigated two ways in which multimodal signal processing and 

sensor systems can benefit percussive computation. In the first case, direct 

sensors (accelerometers) on a performer were used to automatically annotate and 

train the computer to perform drum hand recognition from indirect sensors (a 

single microphone). Classification results show that it is possible for the 

computer to identify whether a performer hit a drum with their left or right hand, 

and will be able to benefit future musical interaction in a number of ways. For 

example, once trained with the direct sensors, the machine can non-invasively 

transcribe the physical attributes of a percussionist’s performance (with 

independence between hands), adding important detail to future automatic music 

transcription scenarios. Additionally automatic drum-hand recognition could be 

useful in many pedagogical scenarios such as rudiment identification, accuracy 

and other performance metrics scenarios. In live performance contexts where it 

may be desired to trigger musical events, processes, live visualizations based on 

particular sequences of strikes, and score following, drum stroke recognition 

using non-invasive methods can also be extremely powerful. 

 The second case looked at new performance metrics obtainable using a 

multimodal system. The research findings, synergistically utilizing data from 

direct and indirect sensors such as accelerometers and microphones (respectively) 

reconfirms the author’s notion that it is important to look at both the acoustical 

and physical domains (simultaneously) when investigating musical performance. 

Research often chooses one or the other for analysis, however investigating the 

space in between possesses great potential.  

 At the core of much of this is the trade-off between direct and indirect 

sensors. Indirect sensors such as microphones have proven to be extremely 

useful and reliable sources for music information retrieval, with the added 

benefit of not hindering performance. At the same time they lack certain physical 

attributes that are only possible to obtain by placing more invasive direct sensors 

on the performer, and/or instrument. In one sense this research hopes to bring 

wider attention to the novel technique called surrogate sensing which reduces the 

negative impact of invasive sensors by constraining their application to the 
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training phase of a musical system or experiment. At the same time there is a lot 

of work ahead and the future definitely still holds an important space for direct 

sensors in these scenarios. There is the very real possibility of a future where 

direct sensors such as accelerometers are small and light-weight enough to be 

embedded within a drum stick without altering performance in any way; but also 

one where a trained machine can play back a recording from great musicians of 

the past and automatically transcribe the magical expressivities of their 

performances for future generations.  

 In the future it would be useful to see how well the techniques generalize to 

different snare drums (and eventually other drums in the drum set). It would also 

be particularly useful to add a third strike to the test set, when a player performs 

more complex patterns, including striking with both hands. In the future we also 

hope to continue work in metrics tracking for percussionists, enabling 

performers to evaluate their playing in live performance and in the practice room. 

 Of course at the heart of this research is the interplay between audio and 

accelerometer modalities, which can be explored well beyond the scope of 

surrogate sensing. It should be reiterated that the goal of this dissertation is not 

to reject direct sensors due to possible invasive qualities; rather this research aims 

to explore the various synergies between sensing modalities. Surrogate data 

training is one such exploration and the technique is powerful in cases where 

extracted features from an indirect modality provide sufficient performance data 

for the task, but insufficient means of event acquisition or segmentation. The 

crucial role of direct sensors on the performer and/or instrument is evident in 

the fact that the direct sensor is needed to properly train the system.  

 Promising work has further explored this idea, inferring the direct sensor 

data from the indirect sensors using multivariate regression (Tindale, Kapur, and 

Tzanetakis 2011). The act of surrogate training a system with direct sensor 

features and then synthesizing the direct sensor features from indirect sensors 

alone reinforces the importance of multimodal and cross-modal reciprocity in 

musical performance.  
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Chapter 6  
 
Multimodal Onset Detection 

Improving Onset Detection Algorithms in Non-
Percussive Sounds using Multimodal Fusion 

In this chapter, fusion and the idea of cross-modal reciprocity will continue to be 

investigated, with the goal of improving note and event onset detection 

algorithms. 

6.1 On Music and Onsets 

Across all genre and styles music can generally be thought of as an event-based 

phenomenon. Whether formal pitch relationships emerge in note-based music, 

or timbre-spaces evolve in non-note based forms, music (in one regard) can be 

thought of as sequences of events happening over some length of time. Just as 

performers and listeners experience a piece of music through the unfolding of 

events, determining when events occur within a music scenario is at the core of 

many music information retrieval, analysis, and musical human-computer 

interaction scenarios. Determining the location of events in musical analysis is 

typically referred to as onset detection, and in this section discusses a novel 

approach for improving the accuracy of onset detection algorithms.  

 Collecting and analyzing data for long-term metrics tracking experiments (in 

Chapter 7) revealed the need for a robust multimodal onset fusion algorithm. 

During initial observations of the performer’s improvisation data, the onset 

detection algorithms tested could not accurately segment individual notes under 

certain playing conditions. As such, other options were explored, ultimately 

leading to the multimodal approach presented in this chapter. This chapter 

begins by clarifying key terms and concepts, followed by an overview and 

implementation of the multimodal fusion algorithm developed. 
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 An onset is often defined as the single point at which a musical note or 

sound reaches its initial transient. To further clarify what we refer to as the note 

onset, examine the waveform and envelope curve of a single snare drum hit 

shown in Figure 39. As one can see in the diagram, the onset is the initial 

moment of the transient, whereas the attack is the interval at which the 

amplitude envelope of the sound increases. The transient is often thought of as 

the period of time at which the sound is excited (e.g. struck with a hammer or 

bow), before the resonating decay. It should be noted that it is often the case that 

an onset detection algorithm chooses a local maxima as the onset from within 

the detected onset-space during a final peak-picking processing stage. This is true 

of the onset algorithm used in this experiment, and corresponds with the peak of 

the attack phase depicted in Figure 39. 

 

Figure 39: Snare drum waveform (left) and envelope representation (right) of the note oonse t  (circle), 
at tack  (bold) and t rans i ent  (dashed). Figure adapted from (Bello et al. 2005) 

 There are many established approaches to detecting note onsets (Bello et al. 

2005; Dixon, Simon 2007; Dixon 2006; Goto and Muraoka 1999; Lartillot, 

Olivier et al. 2008; Scheirer 1998). For percussive sounds with fast attacks and 

high transient changes, algorithms in the time, frequency, magnitude, phase, and 

complex domains have been established and have proven to be accurate. Earlier 

in section 4.4 we successfully used onset detection during automatic drum-hand 

recognition. The task of onset detection however becomes much more difficult 

when sounds are pitched or more complex, especially in instruments with slow 

or smeared attacks (like the common stringed instruments in an orchestra).  

 Whereas nearly all of the common onset detection algorithms available 

perform analysis on the acoustic signal of the instrument alone, this research 

proposes a technique that fuses onsets from gestural sensor data with the onsets 
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detected from the acoustic signal of the instrument. Using multimodal fusion of 

acoustical and gestural onsets, the robustness and accuracy of the onset detection 

algorithm is improved, especially in non-percussive and demanding performance 

scenarios (e.g. quick tremolo playing).  

 Others have started to apply fusion techniques to the task of improving 

onset detection algorithms in recent years. Toh, et al. propose a machine learning 

based onset detection approach utilizing Gaussian Mixture Models (GMMs) to 

classify onset frames from non-onset frames (Toh, Zhang, and Wang 2008). In 

this work feature-level and decision-level fusion is investigated to improve 

classification results. Improving onset detection results using score-level fusion 

of peak-time and onset probability from multiple onset detection algorithms was 

explored by Degara, Pena, and Torres (Degara-Quintela, Norberto, Pena, 

Antonio, and Torres-Guijarro, Soledad 2009). Degara and Pena have also since 

adapted their approach with an additional layer in which onset peaks are used to 

estimate rhythmic structure. The rhythmic structure is then fed-back into a 

second peak-fusion stage, incorporating knowledge about the rhythmic structure 

of the material into the final peak decisions. 

 While previous efforts have shown promising results, there is much room for 

improvement, especially when dealing with musical contexts that do not assume 

a fixed tempo, or that are aperiodic in musical structure. Many onset detection 

algorithms also work well for particular sounds or instruments, but often do not 

generalize across the sonic spectrum of instruments easily. This is particularly 

true for pitched instruments, as demonstrated in the Music Information Retrieval 

Evaluation eXchange (MIREX) evaluations in recent years (Anon 2006; Anon 

2007; Anon 2009). Added complexity also arises when trying to segment and 

correlate individual instruments from a single audio source or recording. These 

scenarios and others can be addressed by utilizing multimodal techniques that 

exploit the physical dimensionalities of direct sensors on the instruments or 

performers. In section 6.2 we discuss the strengths and weaknesses of 

performing onset detection on acoustic and sensor signals. An overview of our 

system and fusion algorithm is provided in sections 6.3 - 6.3.3, and finally we 

show how multimodal fusion can be used to integrate the strengths of both for 

superior results in section 6.4. 
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6.2 Audio vs. Sensor Onset Detection: Strengths and 
Weaknesses 

There are many strengths and weaknesses that contribute to the overall success 

of audio and sensor based onset detection algorithms. The first strength of 

audio-based onset detection is that it is non-invasive for the performer. It is also 

very common to bring audio (either from a microphone or direct line input) into 

the computer and many machines provide built-in microphones and line inputs. 

This makes audio-based approaches applicable to a wide audience without the 

need of special hardware.  In contrast, sensors have often added wires that 

obstruct performance, they can alter the feel and playability of the instrument, or 

restrict normal body movement. In the past, putting sensors on the frog of a 

bow could change its weight, hindering performance. In recent years however, 

sensors have not only become much more affordable, but also significantly 

smaller (and lightweight). Through engaging in communication with musicians 

during the experimental trials, the invasiveness of instrumental sensor systems 

was minimized enough for musicians not to notice that they were there at all. In 

fact, embeddable sensors like accelerometers and gyroscopes are already finding 

their way into consumer products beyond cellphones, as demonstrated by the 

emerging field in wearable technology. The technologies are also beginning to 

appear into commercial musical instruments, and wireless sensing instrument 

bows already exist such as the K-Bow from Keith McMillen instruments17. 

 Another consideration between audio onsets and sensor onsets has to do 

with what information the onsets are actually providing. In the acoustic domain 

researchers have not only explored the physical onset times but the closely 

related perceptual onset (when the listener first hears the sound), as well as the 

perceptual attack time (when the sounds rhythmic emphasis is heard) (Collins 

2006; Wright 2008). These distinctions are very important to make depending on 

the task, and when dealing with non-percussive notes, such as a slow-bowed 

stroke on a cello or violin (where the rhythmically perceived onset may be much 

                                                

 
17 http://www.keithmcmillen.com/ 
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later than the initial onset). This exposes a weakness in audio-based onset 

detection—which has trouble with non-percussive, slow, or smeared attacks. 

This section shows how this weakness can sometimes be addressed by sensor 

onset detection that can detect slow, non-percussive onsets very well. This does 

not come without certain considerations, as described in greater detail later in 

this chapter. 

 In the sensor domain, the onset and surrounding data is often providing a 

trajectory of physical motion, which can vary from than the acoustic output, and 

can sometimes even be correlated with the perceptual attack time. Sometimes 

however, the physical onset from a sensor might not directly align with the 

acoustic output or perceptual attack time, and so careful co-operation between 

onset-fusion is necessary. In learning contexts, this trajectory can provide a 

highly nuanced view into information about the player’s physical performance. 

The data can directly correlate with style, skill level, the physical attributes of the 

performance, and ultimately the acoustic sound produced.  

 As shown later in this section, the differences in the information provided 

from separate modalities can actually be used to strengthen our beliefs in the 

information from either modality individually. This helps overcome weaknesses 

in the modalities, such as the fact that a sensor by itself may not have any 

musical context (e.g. gesturing a bow in-air without actually playing on the 

strings). Combining information from both modalities can be used to provide 

the musical or other missing context from one modality for the other. 

 Additionally, while audio onset detection has proven to work very well for 

non-pitched and percussive sounds, they have increased difficulty with complex 

and pitched sounds. This can often be addressed with sensor onset detection that 

is not affected by (and does not necessarily have any concept of) pitch.  

 Lastly, many musical recordings and performances are outside of the practice 

room, and contain multiple instruments. This reality makes onset detection 

increasingly difficult as there is the additional task of segmenting instruments 

from either a single stream, or from bleed in an individual stream, as well as 

ambient noise and interference (e.g. clapping, coughing, door shutting, etc.). As 

there is a great deal of overlap in the typical ranges of sounds produced by 

traditional instruments, polyphonic sound separation is an extremely difficult 
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task. Physical sensors however are naive to other instruments and sensors other 

than themselves, and are typically not affected by other factors in the ambient 

environment. Thus, they provide (in some ways) an ideal homogenous signal 

from which to determine, or strengthen onset predictions. 

 

 

Figure 40: Strengths and Weaknesses of Audio and Sensor Onset Detection 

6.3 System Design and Implementation 

In designing this system, a primary goal was to create a fusion algorithm that 

could operate independently of any one particular onset detection algorithm. In 

this way, the system was designed such that it is given with two onset streams 

(one for onsets detected from the acoustic or audio stream of the instrument, 

and one from the sensors), without bias or dependence on a particular algorithm. 

The onset algorithms can be tuned both to the task and individual modalities 

(perhaps one onset detection function works best for a particular sensor stream 

vs. another sensor stream vs. the audio stream), while enabling compatibility with 

future onset functions that do not currently exist. Fusion happens as a post-

processing step (late-fusion) that does not replace, but rather improves, the 

robustness and accuracy of the chosen onset detection algorithm(s). 

Strengths Weaknesses

• Non-invasive
• Onset time can be close to 

perceptual attack time
• No special hardware

• Algorithms have trouble with 
pitched and complex sounds

• Algorithms have trouble with 
slow / smeared attacks

• Ambient noise / interference
• Source segmentation / non-

homogenous recording

Audio

Sensor
• Very sensitive physical 

measurements and trajectories
• Can detect onsets from slow / 

smeared attacks
• Not negatively affected by 

pitched or complex sounds
• Resistant to factors in the 

environment / ambience
• Typically mono-sources, no 

separation necessary

• Can sometimes be invasive
• No musical context
• Onsets may or may not be 

related to the acoustic / 
auditory onsets
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Figure 41: General Overview of Multimodal Onset Fusion 

6.3.1 ONSET DETECTION FUNCTION 

The onset detection used in these experiments works by computing the power-

spectrogram of the waveform to extract its envelope. By default the frame size is 

100ms, using a Hanning window and a hop factor of 10% although the 

parameters are adjustable depending on the task and need. The spectrogram is 

summed along the frequencies (frame-by-frame), resulting in a final onset curve. 

The onset curve is peak-picked at local maxima to determine the location (onsets) 

of the notes. The peak-picking function can be specified to use local minima as 

the onset positions, which corresponds more directly with the typical onset 

definition as described in the introduction. More information on the onset 

detection function and peak-picking algorithm can be found in (Lartillot 2011). 

 

 

Figure 42: Onset Curve (envelope) and peak-picked onsets (circles) for a short window of audio 

Audio Onset Detection

Sensor Onset Detection

Onset Fusion
Algorithm
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6.3.2 FUSION ALGORITHM 

The fusion function is provided with two onset streams, one from the audio 

output and one for the sensor(s). First the algorithm searches for audio onsets 

residing within a window (threshold) of each accelerometer onset. A typical 

window size is 30ms – 60ms and is an adjustable parameter called width which 

effects the sensitivity of the algorithm. If one or more audio onsets are detected 

within the window of a sensor onset, our belief increases; the best (closest in 

time) audio onset is considered a true onset; the onset is then added to the final 

output fusion onset list. 

Figure 43: Onset fusion algorithm pseudo-code 

  

 If a sensor onset is detected, however, no audio onset is found within the 

window (width), there is only a partial belief that the sensor onset is an actual 

note onset. To give a musical context to the sensor onset, the audio window is 

split into multiple frames and spectral-flux and RMS are calculated between 

successive frames. The max flux and RMS values are then evaluated against a 

threshold parameter called burst to determine if there is significant (relative) 

spectral and amplitude change in the framed audio-window. Because onsets are 

typically characterized by a sudden burst of energy, if there is enough novelty in 

the flux and RMS values (crosses the burst threshold), the belief in the onset 



Chapter 6. Multimodal Onset Detection 

 

107 

increases and the sensor onset time is added to the fusion onset list. The burst 

threshold is a dynamic value that is calculated as a percentage above the average 

spectral-flux and average RMS from the audio-window. By default, burst is set to 

equal 20% increase in the average flux value, and a 10% increase in the average 

RMS from the current audio window.  Increasing or decreasing the burst 

threshold decreases or increases the sensitivity to change in the relative spectral 

flux and RMS, ultimately changing the algorithms sensitivity. 

6.3.3 DATA COLLECTION 

The data used to test the onset fusion algorithm was chosen from a subset of the 

improvisation recordings (data set D4) recorded and discussed later in chapter 

7.3.1. It was while analyzing the player’s improvisations on the Ezither that we 

began to notice the difficulty in detecting note events in certain circumstances. 

The most obvious case was when the performer bowed back and forth very 

quickly in a tremolo style, and sometimes when bowing long, slow notes, and so 

this study focuses on a subset of recordings examining these scenarios. Five 

excerpts were extracted from four recordings made over the period of a month 

from January 20th 2012 through February 24th 2012, as well as an additional 

recording where the performer practiced playing tremolos in late March of 2012. 

In total 3,697 bows-strokes were performed, the majority being in a tremolo or 

similar style. 

6.4 Onset Detection and Fusion Results 

This section compares and contrasts the performance of the onset detection 

algorithm on the audio recording, the sensor recording, and finally using the 

multimodal onset fusion algorithm. Specifically the onset detection’s 

performance will be gauged by looking at the following common statistical 

performance and correctness measures: 

 

1. True Positives (TP) – The number of detected onsets that have been 

validated as notes actually played 
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2. False Positives (FP) – The number of detected onsets that have been 

validated as notes that were not actually played 

3. False Negatives (FN) – The number of onsets that were actually played but 

not detected by the algorithm 

All recordings and bow-strokes were annotated by hand to validate the onset 

detection results. 

6.4.1 DISCUSSION: AUDIO-ONLY ONSET DETECTION RESULTS 

The need to look for alternative onset detection methodology became apparent 

when analyzing audio recordings from the Ezither performer. As soon as the 

performer played at faster speeds or tremolo, or sometimes very long and slowly, 

the onset detection algorithms being used had difficulty detecting the notes 

played. In Figure 44, the audio recording of a performance excerpt is shown as 

the purple waveform, along with a spectrogram above. Detected onsets (TP) are 

shown as the tall black vertical lines and the areas highlighted with grey 

rectangles estimate problem zones where one or more onsets were not detected 

(FN). 

 

Figure 44: Audio onsets detected over an excerpt of mostly tremolo playing, TP (black vertical 
lines), FN (grey rectangles) 
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Table 15: Distribution of onsets detected from audio-only as either True Positive, False Positive, or 
False Negative 

# Bows True Positive False Positive False Negative 
1445 1425 20 2172 

 

 

 In terms of the number of onsets detected, audio-only onset detection 

performed the poorest when compared to accelerometer onset detection and 

fusion detection. When analyzing the audio recording, the onset detector 

identified only 1445 of 3597 bow-strokes performed. This can be seen as an 

extremely high FN rate. It should be noted that we were interested in improving 

the onset detection algorithm when bowing within certain problem scenarios, 

and so it is to be expected that the number of detected onsets is low. Out of the 

1445 strokes detected however, nearly all but 20 were actual onsets. As 

performing onset detection on the audio recording analyzes the actual musical 

output, the onset detection is robust to slow-moderate playing and musical rests, 

as marked in Figure 44. 

6.4.2 DISCUSSION: SENSOR-ONLY ONSET DETECTION RESULTS 

The first thing one might notice when comparing the sensor onsets detected in 

Figure 45 to the audio onsets detected in Figure 44 is the increased resolution of 

TP onsets. This heightened sensitivity however comes at the cost of detecting 

false positives when the player continues to move the bow between strikes. In 

Figure 45 the grey rectangles now represent FP (they represented FN previously 

in Figure 44) and one can see that 17 onsets are falsely identified during the rests 

previously detected in audio onset detection. 
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Figure 45: Sensor (accelerometer) onsets detected over an excerpt of mostly tremolo playing, TP 
(black vertical lines), FP (grey rectangles) 

 Whereas audio onset detection possessed the highest FN rate, sensor 

(accelerometer) onset detection missed the fewest notes, resulting in the highest 

TP and lowest FN rates. Sensor-only onset detection resulted in 3111 of 3597 

notes played being detected, leaving 486 undetected and a total of 467 incorrectly 

detected. While the sensor onset detection does exhibit a higher FP rate than 

audio onset detection, comparatively, it performs much more accurately in this 

scenario as it has far fewer FN’s (486 compared to 2172). 

Table 16: Distribution of onsets detected from sensor-only (accelerometer) as either True Positive, 
False Positive, or False Negative 

# Bows True Positive False Positive False Negative 
3578 3111 467 486 

6.4.3 DISCUSSION: MULTIMODAL ONSET FUSION RESULTS 

An excerpt of the fused onsets determined by running both audio and sensor 

(accelerometer) onsets through the fusion algorithm is shown in Figure 46. 

Compared to the sensor onsets shown over the same excerpt in Figure 45, most 

of the sensitivity and resolution is preserved while minimizing the amount of 

FP’s. A few FN’s do reappear and are shown as grey rectangles. 
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Figure 46: Multimodal fusion onsets detected over an excerpt of mostly tremolo playing, TP (black 
vertical lines), FN (grey rectangles) 

Table 17: Distribution of onsets detected from multimodal onset fusion as True Positive, False 
Positive, or False Negative 

# Bows True Positive False Positive False Negative 
3178 3022 156 575 

  

 Compared to sensor onsets, fusion onsets greatly lower the number of false 

onsets detected, reducing FP’s from 467 to 156 bow strokes. The number of 

TP’s stays quite high as well, retaining a total of 3022 correctly identified strokes 

out of the 3597 notes played in total. 

6.4.4 DISCUSSION: PRECISION, RECALL, AND F1-MEASURE 

Precision, recall and F-Measure are common evaluation measures for set-based 

analysis that are used to evaluate the quality of a retrieval or classification 

scenario. Take for example the case where a website search engine is given the 

task of returning a list of websites for a given search query. Precision would 

represent the portion of websites returned which are relevant to the actual search. 

In general this can be defined in the following equation 
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where relevant items are a subset of all items retrieved. Thus precision can be 

used to evaluate the performance of the onset detection algorithm in terms of 

the accuracy of the detected onsets by substituting 

 

 

 

 Examining the results in Figure 47 audio onsets returned the most precise 

results (98.62%), followed by the fusion onsets (95.09%), and lastly sensor onsets 

(86.95%). The number of notes detected by audio-only onset detection however 

was far fewer than both accelerometer and fusion onsets (1445 vs. 3578 vs. 3178 

respectively), and so the precision of the audio-only onsets comes at a great cost 

when compared to the accelerometer precision. Using multimodal onset fusion 

however yields over 8% gain in precision over sensor onsets, leaving just about a 

3.5% difference between fusion and audio-only onset detection—while also 

preserving the majority of TP’s returned by sensor onset detection. 

 This leads to Recall which in the web search example would represent the 

portion of websites relevant to the search that are retrieved from the total 

number of relevant websites in the search database. It can be thought of as 

measuring the search engine’s ability to present only those items that are in fact 

relevant to the query.  In general terms recall can be defined as 

 

 

 

where the numerator equals relevant items from the subset of retrieved items 

and the denominator is the total number of relevant items in the entire query 

space. Thus we can evaluate the onset detection performance in terms of how 

well it retrieves relevant documents (from the ground-truth) by substituting 
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 As illustrated in Figure 47 audio-only onset detection performed the poorest 

in terms of recall rate, returning less than half of the total TP’s at a mere 39.62%. 

Sensor onset detection scored the highest here with a recall rate of 86.49%, 

retrieving TP onsets nearly 47% better than audio onset detection. Onset fusion 

scored just under 2.5% lower than sensor-only onsets, which is to be expected as 

the fusion algorithm parameters were generalized across the data sets vs. being 

optimized to fit each data set as best as possible.  

 Fine-tuning the fusion algorithm parameters can help minimize the inherent 

trade-off between discarding TP’s from the sensor onsets, while attempting to 

reduce the amount of FP’s (by discarding).  

 

Figure 47: Comparison of precision, recall, and F1-Measure for audio, sensor, and fusion onsets 

Table 18: Comparison of precision, recall, and F1-Measure for audio, sensor, and fusion onsets 

Onsets Precision (%) Recall (%) F1-Measure (%) 
Audio 98.62 39.62 56.53 
Accel 86.95 86.49 86.72 

Fusion 95.09 84.01 89.21 
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 In a sense the fusion algorithm attempts to synergistically achieve the 

precision of audio onset detection, with the recall of the sensor onset detection. 

There often exists a trade-off between precision and recall, where greater 

precision yields poorer recall and vise versa—this can be seen in the audio-only 

onset results.  

 Both of these measures (precision and recall) can be taken into account by 

taking the harmonic mean, called the F-Measure. Because we weight both 

precision and recall equally, we refer to the measure as the F1-Measure, which is 

defined as 

 

 

  

 Taking into account both precision and recall, multimodal onset fusion yields 

the best results with F1-Measure of 89.21%. Audio-only onset detection 

performed the poorest at 56.53%, and sensor-only onset detection at 86.72%. In 

musical performance contexts, as well as in analysis and information retrieval 

scenarios, a balance must be struck between minimizing false detection, while 

maximizing true detection. The F1-Measure score signifies this balance.  The 

increase in F1-Measure between audio onsets, sensor onsets, and fusion onsets 

reveals even greater significance however when placed in real-world contexts. 

6.5 Musical Contexts and Conclusions 

In a musical context how can we interpret the 2.5% decrease in recall between 

accelerometer onsets and fusion onsets and the 8% increase in precision between 

accelerometer onsets and fusion onsets? Investigating Figure 48 can shed insight 

into these questions. In terms of actual numbers, we can see that this relates to 

many less FP’s being detected by the fusion onsets (146-fusion vs. 467-sensor), 

while the amount of TP’s remains very close proportionally (3022-fusion vs. 

3111-sensor). Relating back to Figure 45 and Figure 46, it was observed that at 

the loss of just a few notes from being detected, we gained the ability to discard 

many more false positives, which musically speaking were moments such as rests 
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and silence. In a performance context, false positives could equate to unwanted 

notes being played, processes and effects triggered, etc. In an analysis or 

information retrieval scenario, analyzing and/or extracting features at false 

locations can very negatively effect the results. 

 
Figure 48: Comparison of TP, FP, FN and #Bows for Audio, Sensor, and Fusion Onsets 

 

Table 19: Comparison of TP, FP, FN and #Bows for Audio, Sensor, and Fusion Onsets 

Onsets TP FP FN # Bows 
Audio 1425 20 2172 1445 
Accel 3111 467 486 3578 

Fusion 3022 156 575 3178 
 

 Results could be further improved by tailoring the fusion parameters more 

specifically to the data being analyzed. There are many ways to do this, both by 

hand and dynamically, and we hope to explore these in the future. For example, 

dynamic range compression (DRC) during a pre-processing phase could help 

generalize certain parameters by reducing the amount of variance in the dynamic 

range of the input data, which changes from day to day and recording to 

recording. Additionally, there is a considerable room to experiment with the 

onset detection function currently used, not only in terms of adjustable 
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parameters, but also in using different onset detection functions that are tailored 

to exhibit better performance for a specific modality. 

 This chapter showed both the power and promise of multimodal fusion for 

improving onset detection. Whether a performer, an audience member/listener, 

or a scientist, all humans possess the ability to deduce when musical events occur 

with great precision and recall. This ability to correctly differentiate musical 

events is at the core of all music related tasks, and in this chapter we have shown 

how the ability for computers to perform similar tasks can be greatly improved 

by the use of multimodal techniques. 
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Chapter 7  
 
Rethinking How We Learn: 
Performance Metrics and 
Multimodality in the Practice 
Room 

Investigating the Role of Multimodality in the 
Musical Practice Room 

Music education is a rich subject with many approaches and methodologies that 

have developed over hundreds of years. More than ever, technology plays 

important roles at many levels of a musician’s practice. This chapter begins to 

explore some of the ways in which technology, specifically with the help of 

multimodality, can inform a musician’s daily practice, through short and long 

term metrics tracking and data visualization. 

7.1 Background and Motivation 

Pursuing a higher education degree in music today, one will observe first-hand 

the increasing prominence of technology in the life of practicing musicians. It is 

not uncommon to see musicians recording ensemble practices and private 

lessons with portable recorders or laptops. The field recorder is often thought of 

as one of the most important inventions for ethno-musicological purposes but 

its impact on western music practice is also very significant. Portable recording 

devices however are just one of the simplest ways in which technology permeates 

today’s learning environments.  

 Many music programs (at the university and primary/secondary levels) now 

have “keyboard labs” where a group of students gather around computers with 

headphones and MIDI keyboards, engaging with interactive musicianship skills 

software. Computer-assisted learning has gained popularity in recent years and 
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most interactive software applications cover topics as diverse as aural 

identification/ear training, rhythm skills, scales, harmony, and other theory 

topics. Ear Conditioner18, Auralia19, Practica Musica20, EarMaster21, are a few of 

the many applications being used in music schools around the world everyday, 

which enable musicians to be conducted through aural and theory exercises with 

a virtual guide. Most operate by receiving symbolic (MIDI) input from users 

playing a digital piano keyboard or via mouse/keyboard computer input. While 

these software applications have proven to be effective, there are many 

limitations as a result of the restricted input modalities.  

 Firstly, computer-assisted music training currently gauges a (non-pianist) 

musician’s abilities via input other than their actual instrument. While basic 

keyboard skills are important for all musicians to acquire (at least in the Western 

tradition), it is important to engage and assess the student on their actual 

instrument or voice. 

 This leads to the second limitation, namely that the software is listening to 

the musician’s input in a narrow manner. Input via a MIDI keyboard is a step in 

the right direction; however, it does not provide insight into the acoustical and 

physical dimensionalities, two elements that are crucial to musical performance. 

This is what brings learning musicians in front of instructors, tutors, gurus, every 

day—years of experience, knowledge, and human musicianship. 

There are many other ways in which technology is influencing the 

environment in which musicians now learn. Universities such as McGill 

University in Montreal and others have been pushing the idea of “distance 

learning” in many of their disciplines (Bofinger and Whateley 2002; Bouillot and 

Cooperstock 2009; Jegede and Shive 2001; Lancaster 2007). In music education 

this enables educators (whether on tour, or music living in other countries) to 

administer lessons from afar via video conferencing technology. 

Anthropomorphic robotic music instructors that are capable of responding to 

human performers have even been explored (Petersen et al. 2008). Recently, 
                                                

 
18 http://www.michaelnorris.info/ 
19 http://www.sibelius.com/products/auralia/index.html 
20 http://www.ars-nova.com/practica6.html 
21 http://www.earmaster.com/ 
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Percival presented an interesting approach to computer-assisted violin practice 

and a good overview of the current state of “Computer-Assisted Musical 

Instrument Tutoring” (CAMIT) musical in (Percival and Schloss 2008). In line 

with the goals of this chapter, Percival places a strong emphasis on creating 

systems that concentrate a musician’s interactive practice exercises on areas that 

need the most practice, rather than the (relatively naive) general theory based 

software approaches that currently exist.  

 Of course traditional musicianship training (sight-reading, ear training, 

rudiment training, chord identification, etc.) in the form of classroom activities, 

private practice, and from engaging with other musicians in performances will 

always be essential to the future musical learning environment. Invaluable 

feedback from professional musicians and educators will always play a needed 

role in a practicing musicians development. The musical classroom however is an 

ever-expanding environment, moving beyond its traditional latitude. Today, 

searching “guitar lesson” on YouTube yields nearly 1-million results, tomorrow 

who knows?  

 This research asks how can we advance technology to supplement ones 

musical practice, both inside and outside of scheduled class times and lessons? 

How can multimodal signal processing provide musicians and educators alike, 

focused insight into the acoustical and physical dimensionalities of a musicians 

practice? This research begins to parameterize and visualize this information in 

an attempt to inform musicians and educators, following musical pedagogy into 

new domains. To that end, this chapter explores multimodal metrics, tracking the 

day-to-day, and long-term evolutions, of a musicians practice. Specifically, this 

chapter investigates metrics pertaining to the player’s tempo performance and 

accuracy, as well as the performer’s practice of various bow strokes 

(articulations). In addition to metrics and statistical measures, various 

visualizations and statistical representations are proposed, which can provide 

musicians and instructors with nuanced information about the performers 

playing at a glance. 
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7.2 Overview of Metrics Experiments 

These experiments investigate metrics from a musician learning a custom bowed 

string instrument called the Ezither (see section 3.1.2). 

7.3 Data Collection 

Nuance was used to record a variety of data sets for the Ezither performer, 

capturing the variability of the player’s performances under scenarios ranging 

from typical practice routines to improvisation. The following section describes 

in greater detail the data sets collected spanning these grounds. 

7.3.1 EZITHER DATA 

For roughly seven months between August 12th 2011 and March 22nd 2012, the 

Ezither performer regularly recorded his practice. As this was a new, custom-

built instrument, the performer was at a beginner level, and had no real prior 

experience playing a bowed stringed instrument (although he was a trained 

musician and composer on other instruments). The total data collected consisted 

of sixteen practice sessions over the seven-month period. 

 During each session the performer recorded four discrete data sets. The first 

data set (D1) targeted the practice of various bow strokes including Detaché, 

Martelé, and Spicatto. During a session each stroke was played for roughly 30 

seconds in up-bow down-bow succession at 120 beats-per-minute. The player 

was restricted to playing on one string (the lowest string, C) of the instrument to 

limit the effect of string and position changes on stroke performance. 

 The second data set (D2) aimed to capture the performer’s variability in 

tempo performance. As such the performer arpeggiated up and down the open-

strings of the instruments at three tempi, Andante (80bpm), Moderato (110bpm), 

and Allegro (140bpm). The passage was recorded in up-bow down-bow 

succession for roughly two-minutes. 

 In data set 3 (D3) the performer repeated a melody for about two minutes. 

The melody was played at a fixed tempo (100 bpm) however the line was less-

constrained than data sets D1 and D2 in that it was not confined to a single 
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string or moving up and down the strings linearly. The melody was a simple 4-

measure long line as noted in Figure 49. As the performer was a beginner Ezither 

player, the melody line mostly moved in a scalar fashion, with one small 

intervallic leap in the last measure. 

 

Figure 49: Melody Repeated in Data Set 3 (D3) 

 Lastly the final data set (D4) was purely improvisational. No instructions 

were given to the performer other than he should play whatever he liked. The 

performer was free to bow the notes, pluck the notes, and work his way through 

2-minute long mini improvisations (while listening to a metronome at 120 bpm). 

7.4 Tempo Metrics and Statistics 

The ability for a musician to perform at various speeds is of utmost important in 

musical performance. The tempo of a piece of music or section influences the 

music on many levels, from its performability, to the music’s affect and intent. 

This section focuses on examining the player’s performance at various tempi 

(with the goal of playing as closely to the target tempo, with as little deviation as 

possible).    

7.4.1 TEMPO ESTIMATION ALGORITHM 

Tempo estimation follows the algorithm proposed in (Lartillot 2011). First a 

filterbank decomposes the signal into multiple auditory channels and the 

envelope of each channel is extracted. Each channel is half-wave rectified (as 

interest is in the increase of energy), the signal is differentiated to emphasize 

peaks, and each channel is summed together. Next the periodicity of the signals 

onset envelope is extrapolated through autocorrelation (at time lags 

corresponding to a range of tempi), and the autocorrelation coefficients are 

normalized to compensate for higher coefficients given for small lags. Finally 

tempo is estimated through a peak-picking function. 
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7.4.2 TEMPO: PERFORMANCE TIMING 

As the tempo estimation algorithm determines the highest periodicity within the 

entire signal, the tempo estimated provides useful insight into the overall timing 

overture of the performance. 

 

Figure 50: Tempo estimated for three recordings from Ezither recording #7, data set D2 

Figure 50 shows the estimated tempos for three recordings from the Ezither 

recording session #7, data set D2. The first recording was played to a click track 

andante, with a target tempo of 80 bpm. The estimated tempo of the 2-minute 

performance was 81.138 bpm. This observation shows that the player was 

generally playing faster than the target tempo. Best performance was found at 

moderato speed (110 bpm), estimating an overall performance tempo of 110.110. 

The performer’s allegro recording yielded 139.560 bpm, just under 0.5 bpm 

slower than the target tempo (140 bpm). In terms of practice this brings up two 

interesting points. Firstly, playing at a “faster” tempo does not necessarily yield 

less accurate performance. In this particular case the slowest bpm yielded the 

poorest results in terms of overall accuracy, while the best performance was 

achieved at the mid-speed tempo performed. While it seems plausible to say that 

a beginner musician may perform more accurately at slower tempi with a 

relatively low upper ceiling in playing speed, the relationship between tempo and 

accuracy is not necessarily linear, even for intermediate to advanced performers 

60 73 86 99 111 124 137 150

139.560

110.110

81.138

BPM

Andante
(80 bpm)

Moderato
(110 bpm)

Allegro
(140 bpm)



Chapter 7. Performance Metrics and Multimodality in the Practice Room 

 

123 

with a wider range in acceptable speeds22. This leads to the second point, which 

is that in a pedagogical setting tempo estimation can be extremely helpful for 

practicing musicians when targeting or emphasizing areas of practice. Of course 

looking at one recording may not generalize about the overall trend of the 

performer, and so evolutionary and long-term analyses are very useful, as will be 

presented in sections 7.4.3 and 7.6 respectively. 

7.4.3 TEMPO: EVOLUTION OF TIMING OVER A PERFORMANCE 

Tempo estimation over the entire recording is useful to inform one about the 

overall nature of a performance’s tempo; however, it does not show the temporal 

evolution over the duration of a piece. To do so, the audio is framed (windowed) 

and tempo estimation is performed multiple times throughout the performance. 

In these examples, a frame-size of four seconds was used with a hop-size of 

twenty-five percent to ensure a minimum of four beats (one bar) was contained 

within a given frame. Visualizing the tempo evolution and discussing with 

performers, one to two bars was found to be an acceptable compromise between 

frequency of the tempo estimation and clarity of the tempo graph; displaying a 

finer frame-resolution (as used in 7.4.2) was often not macro enough to view 

overall trending. To further investigate the data discussed in 7.4.2, statistics are 

provided in Table 20, paired with visualizations and trending in Figure 51. Each 

graph in the figure represents a different tempo from the data set, and annotates 

various statistics (that are also presented in Table 20). 

Table 20: Tempo evolution statistics (min, max, mean, standard deviation, and range) of Ezither 
recording #7, data set D2, andante (80 bpm), moderato (110 bpm), and allegro (140 bpm) 

BPM Min Max Mean Std. Dev. Range 
Andante 
(80 bpm) 76.44 89.18 81.12 2.34 12.74 

Moderato 
(110 bpm) 104.60 119.40 110.34 2.44 14.82 

Allegro 
(140 bpm) 130.90 154.10 139.41 4.24 23.24 

                                                

 
22  An “acceptable speed” is of course subjective to the performer/listener/observer, and for our 
purposes generally describes speeds in which the performer can play with relatively high 
confidence and accuracy 
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A – andante (80 bpm) 

 
B – moderato  (110 bpm) 

 
C – allegro (140 bpm) 

Figure 51: Tempo evolution of Ezither recording #7, data set D2, (a) andante, (b) moderato, (c) 
allegro 

 In the previous section this research showed that the best tempo 

performance (closest to the target tempo) was achieved when playing moderato, 

followed by allegro, and finally andante. This was interesting as the poorest 

performance was at the slowest tempo, and so it is useful to look at the statistics 

displayed in Figure 51 and Table 20 to gather more specifics concerning the 

actual performance. The first general observations of the visualizations relate to 

the blue tempo line detailing the estimated tempo curve over the duration of the 

performance (annotated in A). Even with a four beat (one-bar) count-in the 

performer had to “get into the groove” before the recording commenced, it is 

apparent that (usually) the performer initially overshoots in tempo (plays faster), 
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followed by undershooting (slowing down to compensate), before stabilizing 

into the tempo (see the annotations in Figure 51, C). This could inform the 

performer to practice an exercise where he/she might start specifically from a 

stopped state, targeting the accuracy of the player’s initial timing. 

 The solid black horizontal line on each graph shows the arithmetic mean 

(average) tempo of the performance (annotated in A). As expected, the 

calculated means are very close to the overall tempi estimated in the previous 

section. The difference is expected as the periodicity and tempo estimated is 

calculated over a shorter context and then averaged, and thus will be slightly 

different than when considering the entire recording in the periodicity space. As 

confidence in the calculated tempo (from the tempo estimation algorithm used) 

is already quite high, the mean line can be swapped on the figure with the 

previously estimated tempo. However, for reference, the difference (in bpm) 

between the original tempo estimate and the average of the evolutionary tempo 

for each speed performed is: 0.018 (andante), 0.19 (moderato), and 0.16 (allegro). 

 The solid red horizontal lines at the extrema show the minima and maxima 

of each graph in the set (annotated in B). The difference between the min and 

max for each value determines its range, as shown in Table 20. The tightest range 

in values was achieved for andante (12.74), followed by moderato (14.82), and 

then allegro (23.24). In general the smaller the range, the more consistent or less 

variability in tempo there was over the duration of the performance. This is 

related to the standard deviation (shown in the graphs as two dashed green 

horizontal lines, annotated in B), which similarly measures the amount of 

variation or dispersion from the average. In Table 20, the smallest standard 

deviation was achieved in the andante performance (2.34), followed by moderato 

(2.44), and lastly allegro (4.24). 

 Taking all of this information into consideration, the initial observation that 

the overall best tempo performance was achieved for moderato, followed by 

allegro, and finally andante, can be revisited. While this is true in particular for 

overall tempo of the performance, this does not hold true in other regards. 

Whereas in overall tempo andante performance was technically the poorest, in 

terms of consistency andante performance achieved the highest rates (lowest 

standard deviation and range).   
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 It should be noted that although andante’s calculated standard deviation was 

technically lower than moderato’s, hypothesis/statistical significance testing 

shows that while both andante’s and moderato’s standard deviations are 

statistically significantly different than allegro, they are not statistically 

significantly different from one another. This is supported using a Fisher-

Snedecor Distribution (also called the F-Distribution) “F-test”. The F-test 

assesses whether the values of a quantitative variable within different groups 

actually differ from each other. In this case, the null hypothesis would be that 

there is no significant difference in standard deviation of tempo when playing the 

instrument at andante speed vs. moderato speed. Thus, the two-tailed null ( ) 

and alternative ( ) hypotheses are defined as 

 

        and         

 

where in this case,   is moderato’s variance, and  is andante’s variance. The 

F-test statistic (F ratio) is thus defined 

 

 

 

where  is an F-value determined by dividing  (one sets variance) by  (the 

other sets variance). As such moderato’s variance substitutes the numerator and 

andante’s variance substitutes the denominator, by taking the square of their 

standard deviations previously reported in Table 20. 

 

 

 

 Lastly, an F-table is used to compare  to the critical value, which is a value 

that describes the possibility of getting a particular value for , at a specified 

level of significance. In this case, a confidence interval of 95% was chosen, also 

called a significance level of , and the F-table at that significance level 
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was consulted. Because the critical value is dependent on sample size, the F-table 

is organized by degrees of freedom in the numerator and denominator of the F-

ratio. Both andante and moderato for the data in Table 20 consisted of 118 

tempo estimations ( = 118,  = 118), and as such, the degrees of freedom of 

the numerator, , and the degrees of freedom of the denominator,  are 

 

       and        

 

 Consulting the F-Table with  and F(117, 117), the critical value 

 and p value .  is greater than , and the p value 

is greater than the significance level of 0.05, and so the null hypothesis must be 

accepted. As such it is determined that in this case, the standard deviation for 

andante performance is not seemingly statistically significantly different from 

moderato’s standard deviation. When comparing standard deviation for andante 

and moderato to allegro however,  and  (respectively). 

The critical value obtained from the F-Table using F(127, 117) (because 

moderato is a slightly larger sample) is , and in both cases F is 

greater than the critical value, yielding  for andante,  for 

moderato. As such, the null hypothesis is rejected and it is determined that the 

standard deviations for both andante and moderato are extremely statistically 

significantly different than allegro’s standard deviation. 

 Allegro which was the median performer in overall tempo accuracy, has 

almost two-times the standard deviation and range in tempo when compared to 

andante and moderato. In a sense these metrics can be associated with accuracy 

vs. precision of performance at each tempo, where accuracy is defined as the 

proximity of the overall (or frame-averaged) tempo to the target tempo, and the 

precision is defined as the repeatability of the tempo performed (investigated 

through standard deviation). In these terms, the performer or instructor would 

learn that for this example, the performer was the least accurate andante, equally 

as accurate andante and moderato, and least precise allegro. These would be 

important metrics to continuously record to track the performer’s progress in 

tempo and timing over a longer period of time. 
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7.5 Bow Articulation Technique Metrics and Statistics 

The previous section evaluated a performer’s ability to play at various tempi, and 

how the information could be visualized to inform the performer’s practice. This 

section focuses on various aspects of how the performer plays various bow-

strokes. Building off acoustic studies in (Askenfelt 1989), recent work in the field 

concerning bowing technique has focused largely on utilizing low and mid-level 

features to automatically classify bow strokes or articulations (Fiebrink 2011; 

Rasamimanana, Fléty, and Bevilacqua 2006; Young 2002; Peiper, Warden, and 

Garnett 2003). This research instead looks at high-level features extracted from 

different bow articulations and how they relate to the overall performance 

technique and the abilities of the performer. 

7.5.1 DEFINITION OF BOW ARTICULATIONS 

The three bow strokes played in D1 included detaché, martelé, and spiccato. 

While definitions may vary slightly, detaché is a stroke in which only one bow is 

performed per note, with equal weight (pressure) in between strokes. Detaché 

appears to mean detached, however, it does not mean detached in the typical 

sense (that the bow leaves the string), and some refer to it being detached in that 

there are no slurs between notes. 

 Martelé is a hammered stroke with a strong crisp bite at the beginning of the 

stroke, which is immediately relaxed through the remainder of the stroke. 

 Spiaccto is a bounced stroke where the bow leaves the string. It is lighter 

than detaché and martelé and is often played at the balance point (center) of the 

bow. 

7.5.2 BOW ARTICULATION: TEMPO ACCURACY 

Building off of the previous section on tempo estimation, this section looks at 

the player’s tempo performance when playing the different strokes in D1. This 

section first compares statistics from each stroke side-by-side in a box and 

whisker plot (or simply the boxplot). The boxplot is traditionally used in 

descriptive analysis and statistics to show a general distribution of a data set. It 
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does not necessarily show as detailed a distribution as other plots (e.g. the 

histogram), however, it is extremely useful in showing the tendencies of data sets, 

and when comparing multiple sets. The boxplot visualizes a five-number 

summary of the data set including the median, the quartiles, and the smallest and 

greatest values in the distribution (more on these shortly). In this way the 

boxplot is useful in summarizing the shape of a data set’s distribution, its central 

value, and the variability in the set. It is useful for detailing outliers, or data that 

fall outside the normal range of the set, and so many general conclusions about 

the data can be drawn from a boxplot. 

 A box plot for data set D1 from recording #4 from the Ezither performer is 

shown in Figure 52. Each audio recording was roughly thirty seconds long and 

was windowed into three-second frames, with a twenty-five percent overlap 

between frames. The tempo was estimated once per frame. A three-second 

window was chosen to split the recording into roughly ten divisions, and to 

ensure three to six beats were included per tempo calculation. Two and four-

second windows were also explored and showed similar relationships between 

stroke statistics. 

 

 

Figure 52: Box and whisker plot for Ezither recording #4, data set D1 showing bowing statistics of 
three bow strokes (detaché, martelé, and spiccato) when playing at the target tempo of 120bpm 
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 The five-number summary displayed in the boxplot (Figure 52) provides 

insight into the data spread at a glance, making it useful for side-by-side 

comparison. Even without looking specifically at hard numbers, one can make a 

number of observations about the performances. Starting from the bottom of 

the box up, the lower quartile (Q1) shows the point at which 25% of the data 

resides below. The median (Q2) shows the point that splits the data set into halves 

(50%), and the upper quartile (Q3) splits the highest 25% of the data, or the point 

at which 75% of the data rests below. These are also commonly referred to as 

the 25th percentile, the 50th percentile, and the 75th percentile (respectively), with 

the entire area spanning Q1 to Q3 called the interquartile range. Formally, the 

interquartile range is defined as 

 

 

 

and is a very useful measure which shows how spread-out the values are. In 

particular it shows how spread out the “middle” values are (where most of the 

data clusters), and is not heavily influenced by extreme values.  

 Interpreting the figure, detaché had the tightest (smallest) interquartile range, 

which also happens to fall within shortest distance of the target tempo (120 

bpm). Detaché’s median was also closer to the target tempo than both martelé 

and spiccato. These results suggest that the performer’s ability to play at the 

target tempo is greatest when playing detaché. Martelé strokes’ interquartile range 

is smaller than spiccato’s, with the median falling closer to the target tempo, 

suggesting that in terms of tempo, the performer played martelé more accurately 

than spiccato. 

 Next the whiskers show the min and max values for each data set, and are 

marked accordingly on the figure. The closer the whiskers fall from the target 

tempo, the less the performer deviated below or above the target tempo. Again 

detaché was the most precise in terms of min and max tempi, followed by 

martelé, and then spiccato. 
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 The last main component on the box and whisker plot are the red ‘+’ 

symbols which mark the outliers (if present). An outlier is a value that is one and 

a half times the length of either end of the box, essentially a value that does not 

seem to fit the data set. There were no outliers in either detaché or spiccato, 

however there were two outliers that were determined in the martelé recording. 

For reference, the evaluations made in this section can be verified by examining 

the actual box plot data provided in Table 21. From left to right each row in the 

table shows the “five-number summary” for the respective bow strokes tempo. 

Table 21: Five number summary for each bow stroke in Ezither recording #4, data set D1  
(target tempo = 120 bpm) 

 Min Lower 
Quartile (Q1) 

Median 
(Q2) 

Upper 
Quartile (Q3) 

Max 

Detaché 117.36 119.40 120.67 121.79 124.41 
Martelé 113.22 118.56 121.16 121.96 130.21 
Spiccato 111.14 119.29 122.88 126.48 132.72 

 

 Of course, the boxplot is not the only visualization that can be used to 

describe the player’s tempo performance under various bow strokes. The 

statistics (mean, standard deviation, and range), as well as the tempo curve that 

were evaluated earlier are still very useful in understanding the bow performance. 

The boxplot allows one to quickly visualize the spread of the data to draw 

conclusions about the relationships and skew of the data on a somewhat macro 

level, but what was the actual average tempo for each bow stroke? 

 

 

Figure 53: Tempo estimate and statistics (mean, standard deviation, and range) for detaché, 
martelé, and spicatto bow strokes for the Ezither recording #4 data set D1 (target tempo = 120 

bpm) 
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 Analyzing Figure 53, a number of conclusions can be drawn about the three 

different bow recordings. Average tempo is shown in (a) as both the estimated 

tempo calculated over the entirety of each performance, as well as the mean 

(average) tempo of multiple windowed tempo estimations. While the tempi 

estimated vary by only a small amount, the relationships between bow strokes are 

consistent. Firstly though, to test if the tempo performances for each bow stroke 

are statistically significantly different, a one-way ANOVA (Analysis of Variance) 

test can be used. Similar to the F-test used earlier, the one-way ANOVA tests if 

the means (of three or more groups) are equal (or statistically significantly 

different), by taking into account their variances. That is, the one-way ANOVA 

tests the null hypothesis 

 

 

 

where  is a group population mean and  is the number of groups. The 

alternative hypothesis ( ) is that there are at least two group means that are 

significantly different from each other. The formula for the one-way ANOVA F-

test statistic is defined 

 

 

The “between group variability” is  

 

 

 

where  is the sample mean in the ith group,  is the number of observations in 

the ith group,  is the overall mean of the data, and  is the number of groups. 

 

The “within group variability” is 
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where  is the jth observation in the ith out of  groups, and  is the overall 

sample size. 

 

As such, the F-statistic is 

 

 

 

 The F-statistic is then compared with the critical value from the F-table, with 

between-group degrees of freedom ( ) in the numerator, and within-group 

degrees of freedom (  in the denominator, such that 

 

        and         

 

Consulting the F-Table with  and F(2, 110), the critical value

, and the p value is . In summary, the null hypothesis is rejected 

and with strong confidence, at least one or more of the bow strokes tempos are 

statistically significantly different than the others. 

 The performer’s best tempo performance was achieved almost identically 

playing martelé (120.25/120.53 bpm) and detaché (120.48/120.53 bpm), 

followed by spicatto (123.98/122.78 bpm) (see Figure 53a). Interestingly the 

technique required for both martelé and detaché are the most similar in the set, 

and when asked the performer said that he most commonly played detaché and 

martelé (or similar) in his repertoire, very rarely playing spiccato. 

 The one-way ANOVA and average tempo suggest stronger timing 

performance when playing detaché and martelé over spiccato; however, looking 

at just their mean tempi does not guarantee statistically significantly difference 

between the performance means. The one-way ANOVA test performed is an 

omnibus test, that is, it does not say which groups are significantly different from 
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each other, only that at least two groups were. To do so a post-hoc test must be 

performed, such as the Tukey Test, also called the Tukey honestly significant 

difference (HSD) comparison. Similar to the t-test, the HSD is typically used in 

conjunction with the one-way ANVOA to find if the means between multiple 

groups are statistically significantly different. The test applies simultaneously to 

the set of all pairwise comparisons, comparing each group’s mean to every other 

group’s mean, . The test statistic  is thus defined 

 

 

 

where  is the larger of the two means being compared,   is the smaller of the 

two means being compared,  is the within-group mean-squared, and  is the 

number of values in the sample (in instances such as this where the samples have 

different sizes, the harmonic mean is used). The results of the Tukey test are 

summarized in Table 22. 

 

Table 22: One-way ANOVA multiple comparisons (Tukey HSD) for each bow stroke, Ezither 
recording #4 data set D1 (dependent variable = tempo) 

(I) 
Stroke 

(J) 
Stroke 

Mean 
Difference 

(I-J) 

Std. 
Error 

Sig. 95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Detaché 
Martelé .00105 .89214 1.000 -2.1185 2.1206 

Spiccato -2.24902* .84598 .024 -4.2590 -.2391 

Martelé 
Detaché -.00105 .89214 1.000 -2.1206 2.1185 
Spiccato -2.25007* .83914 .023 -4.2437 -.2564 

Spiccato 
Detaché 2.24902* .84598 .024 .2391 4.2590 

Martelé 2.25007* .83914 .023 .2564 4.2437 
 
*. The mean difference is significant at the 0.05 level. 
 

 For the data in question (Ezither recording #4 data set D1), a Tukey post-

hoc test revealed that the tempo performance between detaché and martelé bow 
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strokes were not statistically significantly different ( ), however the tempo 

performance between detaché and spicatto ( ), and martelé and spicatto 

( ), were indeed statistically significantly different. This corroborates the 

earlier observation that the performer’s best tempo performance, in terms of 

average tempo, was achieved almost identically playing martelé and detaché, 

followed by spicatto. 

 Looking at standard deviation adds more to story, and shows that in fact 

martelé varied from the average tempo greater than detaché. This can again be 

supported using the F-test, given the null hypothesis that there is no statistically 

significant difference between the standard deviations of the performers detaché 

and martelé bow strokes in this instance. Here  (martelé’s variance 

divided by detaché’s variance). At the significance level  and F(35, 34), 

the critical value .  is greater than the critical value (

) and the null hypothesis is rejected. This reconfirms our previous 

observation in the boxplot (Figure 52), which showed a wider IQR (dispersion of 

values around the median). These measures of performance are further 

reinforced looking at the range (max – min), which was seen earlier in the 

boxplot by visualizing the spread of the whiskers. Detaché had a tempo range of 

7.05 whereas martelé’s range was 16.98, and spicatto’s 21.58. In the earlier 

definition where performed tempo related to accuracy and standard deviation 

and range related to precision, for this particular recording detaché and martelé 

had nearly the same accuracy, however detaché had greater precision. Both were 

more accurate and precise (than spiccato) across the board and the performer 

could benefit from extra emphasis on spiccato bowing in his practice and 

performance repertoire. 

7.5.3 BOW ARTICULATION: ONSET DIFFERENCE TIME (ODT) 

The Onset Difference Time (ODT) is a feature explored earlier for drum 

performance (see 5.4.5) which compares the note onset times between sensors 

on the performer/instrument with the note onset time from the resulting 

acoustic output. The ODT is also a useful metric in bow stroke analysis as it 

captures a characteristic of the performer’s performance with a particular bow 
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articulation, making it useful in both pedagogical situations as well as other 

contexts (e.g. bow stroke identification). This section looks at the former, 

detailing the ODT for different bow strokes performed by the Ezither performer 

and how the ODT may inform a player’s practice.  

 Generally speaking, the accelerometer placed on the frog of the bow will 

detect a sudden jerk at the beginning of a stroke from stand still, or when the 

performer twists their wrist at the start of the succeeding note. The acoustic 

sound produced is determined by a number of factors, ranging from the weight 

placed on the strings, the location of the bow on the strings, and sometimes the 

speed (although a skilled performer can play fast or slow while maintaining 

control of dynamics). Before the sound is produced, the performer gestures the 

start of the bow stroke, and this section compares the onset of the gesture to the 

acoustic output as a characteristic feature of the performer’s bow-stroke 

performance.  

 By subtracting the sensor onset time from the audio onset time it is possible 

to determine which onset preceded the other. A negative (-) ODT would mean 

that the sensor onset arrived earlier than the acoustic onset (rush), whereas a 

positive ODT would mean that the sensor onset was detected later than the 

acoustic onset (lag). The lag and rush times for detaché, martelé, and spiccato for 

recording #9 data set D1 are visualized in Figure 54, alongside the mean and 

standard deviation of the ODTs. 

 Overall the average ODT for each bow stroke was below zero (rush), 

meaning the sensor (accelerometer) onset was detected earlier than the acoustic 

onset. This seems likely when taking the twist of the performer’s wrist between 

notes into consideration, and the fact that the performer sets the stroke in 

motion, and then pressure and other dynamic/timbre control are applied. 

Earliest rush was detected for the performer’s martelé stroke, perhaps due to the 

fact that the performer must apply more pressure to the strings with the bow, 

affecting the gesture’s velocity curve. 

 When the accelerometer onset lags the acoustic onset, the performer 

continued the head of the note past the note’s start. Similar lag was detected for 

detaché and martelé strokes and both were greater than spiccato. Of the three 

strokes, detaché and martelé are the most similar, with martelé requiring the 
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easing up of pressure after the head of the note. This may account for the 

slightly lower maximum lag time vs. detaché, and the slightly earlier (earliest) 

rush time resulting from the sudden direction and pressure change between 

strokes. 

 

 

Figure 54: Onset difference time (ODT) statistics for recording #9 data set D1 

  

 Overall spiccato performance was the most regular in ODT when compared 

to the other two strokes. Detaché was slightly more regular than martelé and the 

performer could use these results to focus his practice to minimize the ODT or 

standard deviation through practice. In the future, further analysis into the ODT 

of expert performers would be useful to understand how the ODT contributes 

to the expressive qualities and acoustic output of skilled performers, and as a 

useful feature in other tasks such as bow stroke recognition. 

7.5.4 BOW ARTICULATION: ARTICULATION ATTACK SLOPE 

In addition to the onset difference time, another useful bow gesture metric is the 

(attack) slope of the bow articulation acceleration curve. Previous work by 

(Rasamimanana, Flety, and Bevilacqua 2006) parameterized min/max velocity 
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and acceleration for bow stroke classification using accelerometers, and 

demonstrated a strong bond between gesture bow articulations and 

velocity/acceleration. The work in this section parameterizes the slope of the 

curve leading up to the accelerometer note onsets, which we call the Articulation 

Attack Slope (AAS).  

 Following the audio attack slope detection strategy in (Lartillot 2011) the 

AAS is computed as a ratio between the magnitude difference between the start 

(local minima) and ending (local maxima/onset) of the attack phase, and the 

corresponding time difference. Figure 55 displays the entire attack phases of the 

detected AASs for a single detaché recording as the red lines in between onsets 

and their preceding local minima (valleys). The top of the figure shows the attack 

phase for AASs detected for the entire recording and the bottom of the figure 

displays a six-note excerpt between 10.0-seconds and 12.8-seconds. 

 

 

Figure 55: Note attack slope for Ezither recording #9 data set D1, Detaché entire recording (top), 
2.8 second window from 10sec – 12.8sec (bottom) 

 

 The actual AAS value as previously described is the ratio between the valley-

onset magnitude difference, and the corresponding time difference. Figure 56 

provides the average and standard deviations of the AAS values for each bow 

articulation. 
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Figure 56: Mean and standard deviation of bow stroke attack slopes for Ezither recording #9 data 
set D1 detaché, martelé, and spiccato 

7.6 Long-term Metrics Analysis 

In the previous sections various bow performance measures were explored 

across multiple modalities; the ultimate goal was to capture performance metrics 

(and their differences when compared to the ideal target performance) that could 

be used to help focus the performer’s practice. Timing metrics tracked how 

accurate the performer’s timing was at three tempi (andante, moderato, and 

allegro), as well as the performer’s tempo accuracy evolution over the length of a 

recording. Bow articulation metrics were also explored, including the performer’s 

tempo accuracy for three bow articulations (detaché, martelé, and spiccato), bow-

stroke and acoustic onset difference time, as well as the articulation attack slope. 

All of the metrics and derived statistics were visualized in various ways to inform 

the performer about their playing over the individual performances and 

recordings. In this section, the development of the performer’s playing is 

observed by examining similar metrics and statistical measures over the course of 

seven months. 
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7.6.1 LONG-TERM TEMPO METRICS: AVERAGE 

In looking at the performer’s progress over the seven months in which he 

recorded his practice, his average tempo (for all three tempi performed in a 

practice session) naturally deviated from the goal target tempo. Looking at the 

performer’s tempo averages for each pass over time it can be concluded that the 

performer tended to play slightly faster than the target tempo. This can be seen 

in Figure 57, which shows the average tempo for all data set D2 tempo 

recordings (over the entire corpus of practice sessions). The average tempo for 

all andante recording sessions is 81.25 bpm, 110.61 bpm moderato, and 140.21

bpm allegro. 

 
Figure 57: Average (mean) tempo of each D2 tempo recording (andante – bottom, moderato 

(middle), allegro (top), from the entire data corpus 1-16 

 

7.6.2 LONG-TERM TEMPO METRICS: STANDARD DEVIATION 

Evaluating the performer’s strongest or average tempo over a performance 

reveals the performer’s general ability to play at the desired tempo without 

knowing about how consistently the performer actually performed at the tempo. 

In fact the average tempo achieved across all three tempi from the earliest 
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recording sessions through the later sessions are actually very close in value. 

Merely looking at average tempo in this way would suggest very little progress (if 

any) was made in terms of tempo improvement over the course of the 

performer’s practice. Thus in order to gain more meaningful insight into the 

performances, it is necessary to add a temporal component to the analysis. This 

is similar to section 7.4.3 in which tempo graphs illustrated the tempo evolution 

of the performance, as well as various statistics determined from the evolution. 

In this section we will revisit the standard deviation of tempo over a given 

performance, while placing the singular performance’s standard deviation within 

the context of the entire collection of D2 recordings. In this way it is possible to 

not only capture the average amount of dispersion from the average tempo over 

a singular performance, but also how the performer’s ability to perform at a 

consistent tempo changes with time and practice. 

 Figure 58 shows the standard deviation of tempo in data set D2 for all 

practice sessions recorded by the Ezither performer. In general, smaller standard 

deviation means that the performer played with a higher consistency or less 

variation in tempo; earlier we loosely referred to this as “precision” or the ability 

to steadily play at a given tempo (whereas accuracy is defined in this context as 

the ability to play as close as possible to the target tempo). The blue line shows 

the standard deviation achieved for each practice session for andante tempo, red 

for moderato, and green for allegro. 

 As visualized in the graph, the performer almost always exhibited the 

smallest standard deviation and most consistent tempo when playing andante, 

followed by moderato, and finally allegro (exceptions include practice sessions 

#6, #9, #11, #15). The average standard deviation for andante over all practice 

sessions was 2.32, 2.40 moderato, and 3.53 allegro. This suggests that the 

performer exhibited less consistency in speed and timing the faster he played and 

was the most precise when playing andante. This is in accord with the previous 

results discussed in section 7.4.3. 
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Figure 58: SStandard dev ia t ion  for every session data set D2 tempo (solid) and linear trend lines 
(dashed) 

  

 To verify this observation, again the F-test was used to test the significance 

of andante’s average standard deviation vs. allegro’s average standard deviation. 

Similar to 7.4.3, the two-tailed null hypothesis is that there is no significant 

difference in standard deviation when playing at andante speed vs. allegro speed. 

Thus, the F-value is calculated using andante’s and allegro’s variance 

 

 

 

At a significance level of ,  is greater than the critical value of 1.9280 

( ), and the null hypothesis is rejected. To summarize, the average 

standard deviation of the player’s performance at andante speed (across all 16 

recordings sessions) may be regarded as statistically significantly different than 

the average standard deviation when playing allegro. Note, given the limited 

sample size and the nature of the test, a significance level of  was 
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deemed acceptable, although the p value is almost significant at the more 

stringent . 

 An interesting observation when looking at Figure 58 is that with a few 

exceptions, all three tempi exhibit similar change in standard deviation metrics 

from practice session to practice session. Between sessions one and two all three 

tempi lower in standard deviation and then rise from two to three. Andante and 

allegro both continue to raise between sessions three and four, and all decrease 

from four to five. Andante and moderato both continue to decrease between 

sessions five and six, and all increase in standard deviation between sessions six 

and seven. Again andante and moderato move similarly between sessions seven 

and eight, and then andante and allegro follow the same trend in standard 

deviation from session eight to ten. Moderato and allegro follow similar 

movement from ten to twelve, and from twelve through sixteen all exhibit 

similar movement in standard deviation—increasing from sessions twelve to 

thirteen, decreasing between thirteen and fourteen, and slightly rising again 

between fourteen and sixteen. 

 The tight inter-tempo standard deviation relationships between practice 

sessions may suggest the potency of various factors on practice metrics such as 

routine and consistency of practice (how many times the performer played 

and/or practiced between recorded practice sessions), physical parameters (not 

practicing enough to keep muscle memory active or practicing too much or with 

improper form), time constraints, mental focus, and other external factors, etc. 

Most importantly, the clear link in session-to-session metrics shows that the 

change in the performer’s metrics are consistent across all three tempi, showing a 

progression in performance metrics. 

 The progression in standard deviation was analyzed from session-to-session; 

however, one of the most insightful observations emerges when viewing the 

session-to-session standard deviation within a more macro scope. The dashed 

line overlaid on top of each tempo in Figure 58 shows the linear trend line for 

the tempo’s standard deviation over time. As shown in the figure, over the seven 

months in which the performer started playing and practicing the Ezither, his 

tempo precision (as measured by standard deviation) had steadily improved. The 
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steepest slope (or highest improvement) in terms of sheer magnitude of 

improvement was achieved for allegro tempo, which was previously concluded 

to be the least precise in the example in 7.4.3 (which still remains true). Andante 

and moderato has increased at a similar pace, however at the current rate, 

moderato might actually surpass andante in terms of precision. This information 

is extremely useful for a practicing musician or educator to visualize and 

understand, in order to tailor practice-to-practice sessions specifically to the 

performer’s needs. 

7.6.3 LONG-TERM TEMPO METRICS: RANGE 

Closely related to standard deviation is another statistic examined previously 

called range. Here range describes the distance between the min and max tempos 

estimated for each framed performance (recording session), showing the overall 

width of tempi (highest tempo subtracted by the lowest tempo) estimated for 

each pass. Whereas standard deviation measures the average variation per 

performance, range measures the total variation per performance. Like standard 

deviation, smaller range means less dispersion and more precise performance (in 

terms of tempo). 

 As shown in Figure 59 range doesn’t exactly follow the same curve as 

standard deviation, however it’s values are closely related and so the curves 

between the two over time are reminiscent of one another. Again, the link 

between particular recording sessions and practice outcomes can be seen where 

various tempi exhibit similar changes in range between recording sessions. 

Between sessions one and two all three tempi decrease in range, and from 

sessions two through eight andante and moderato follow similar changes. 

Between sessions eight and ten andante and allegro change similarly (first 

increasing and then decreasing in range), and from ten to eleven all three 

decrease. From eleven to thirteen andante and moderato increase and decrease in 

the same directions, and from thirteen through sixteen moderato and allegro 

change in range together. All three tempi change in range similarly between 

practice sessions fifteen and sixteen. 
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Figure 59: RRange  for every session data set D2 tempo (solid) and linear trend lines (dashed) 

  

 Again the gradual increase and decrease in range becomes meaningful when 

stepping back, exposing that the range steadily decreases as the performer 

continues to practice. This means that over time the performer improved at all 

tempi, reducing the average variation in tempos during practice. And while 

standard deviation showed that the performer was the most precise when 

performing andante, one can see from the figure that moderato actually has a 

slightly tighter range than andante, at the expense of a slightly less consistency 

(deviation) over time per performance. As a general measurement, the average 

range is shown in Table 23, showing that moderato had the smallest range 

(13.68), followed by andante (14.53), and lastly allegro (21.30). 

Table 23: Average Range of tempos from D2 for all data collected 

 
Andante 
(80 bpm) 

Moderato 
(110bpm) 

Allegro 
(140 bpm) 
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 Becoming a proficient musician requires the ability to accurately and 

precisely perform over a wide range of tempi. The ability to further subvert or 

“push and pull” tempo and speed at will is an important characteristic of 

nuanced performance and is a trait most musicians spend years honing 

(consciously and subconsciously). During practice it would be useful for 

musicians and educators alike to have a window into one’s tempo performance, 

and its evolution over time in various time scales. Combining the performer’s 

average, standard deviation, and range in tempo over a wide window of time 

begins to paint a detailed map of the player’s tempo performance, and can 

inform and help focus ones understanding of their performance, style, and 

practice. 

7.6.4 LONG-TERM BOW ARTICULATION METRICS: TEMPO 

ACCURACY 

Also useful is the performer’s ability to perform various bow stroke articulations. 

Bow articulation performance was explored earlier in this research; first in 

section 7.5.2 to gain insight into the Ezither performers tempo performance 

when playing different bow articulations over a single recording. These statistics 

will be revisited in this section, over the entire corpus of the musician’s practice 

sessions recorded. In this way, it is possible to investigate how the performer’s 

timing had progressed for the three articulations practiced (detaché, martelé, and 

spiccato) over the course of his training. For all statistics, the estimated tempo 

was calculated by windowing the articulation practice session recording every 

three seconds with 25% overlap between frames. 

 

Table 24: Tempo, range, and standard deviation averages over all practice sessions 

 Detaché Martelé Spiccato 
Tempo 120.67 120.60 120.61 

Std. Dev. 2.35 2.22 2.64 
Range 11.28 9.61 12.24 
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Figure 60: Standard deviation (A – top) and range (B – bottom) of bow articulation tempo across all 
D1 data sets collected 

The statistics are displayed in Figure 60 and show the standard deviation (top) 

and range of estimated tempos (bottom) over the sixteen practice sessions for 

each bow stroke articulation. Also shown are linear trend lines indicating the 

overall slope of the articulation tempo’s standard deviation and range. For the 

performer’s detaché stroke there seems to be little improvement (blue horizontal 
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dashed line); the performer hovers around the standard deviation average of 2.35 

bpm and average range of 11.28 bpm. 

 Previously from recording #4 alone this research concluded that the best 

tempo performance was achieved when playing martelé, although detaché was 

slightly more consistent (smaller standard deviation and range). This was 

confirmed by the distribution shown in the box and whisper plot (Figure 52) and 

then in Figure 53. While the analysis is true for recording #4 on its own, in 

looking at the statistics over time we see a slightly different picture painted. As 

detaché’s timing remains mostly consistent, the performer’s tempo for both 

martelé and spiccato continue to increase in tightness over time. 

 By practice session #16 the performer’s average standard deviation and 

range of his martelé stroke is now generally smaller than his detaché articulation 

(which was not the case earlier). His tempo performance while playing spiccato 

(previously far behind the other two articulations tempo accuracy) has gotten 

much closer to his tempo performance when bowing detaché and martelé 

(around session #8). Clear improvement has been made for both martelé and 

spiccato bow articulations, and by session #16, the performer’s tempo for all 

three articulations have become more consistent and similar to one another. 

 The trend lines in Figure 60 suggest that by session #16 the performer has 

the strongest (most consistent or precise as defined earlier) tempo performance 

when playing martelé. Looking at the average tempo, standard deviation, and 

range calculated over all sessions confirms that across the board, martelé is the 

strongest articulation in terms of tempo performance. However, all three 

articulations exhibit extremely similar characteristics, especially in average tempo 

and standard deviation; this shows that the Ezither performer has improved all 

three articulations such that he has near equal (tempo) performance for all of 

them. 

7.6.5 LONG-TERM BOW ARTICULATION METRICS: ONSET 

DIFFERENCE TIME 

In addition to reviewing bow articulation tempo performance over time, it is 

useful to investigate the Onset Difference Time explored previously in 7.5.3 as a 
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characteristic metric of each bow articulation. Observing statistics of a particular 

bow stroke’s ODT, the research showed the average ODT and its variability for 

a given articulation and performance. The ODT also showed how much the 

performer may have lagged or rushed the beat for the particular articulation and 

practice session recording. Thus it is useful to evaluate the ODT for each bow 

articulation over time, in order to evaluate the usefulness of the measure and 

how it can inform the performer’s practice. 

 Figure 61 shows the session-to-session difference between the average ODT 

for each practice session, for all (three) bow articulations performed. A smaller 

delta between sessions means that the ODT remained more consistent between 

sessions.  

 

 

Figure 61: Session-to-session change in Ezither articulation Onset Difference Time 

 As illustrated in the figure the difference between average ODTs from 

session to session was very close for both martelé and spiccato strokes. This can 

infer that (from the start) the particular onset properties of the performer’s 

physical and acoustic actions remained regular. This is also true for the 

performer’s detaché stroke the majority of the time, except between practice 

sessions five and eight. If the performer was aware of this at the time of practice, 

for example during practice session #6, he may have placed more focus or 

emphasis on his detaché stroke, to target the consistency of his detaché playing.
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7.6.6 LONG-TERM BOW ARTICULATION METRICS: ARTICULATION 

ATTACK SLOPE 

In this section we revisit the Articulation Attack Slope, a metric that measures 

the acceleration slope of the bow articulation gesture. As the nature of the 

physical gesture’s attack slope may change slightly between performer and/or 

playing style, this research does not compare the performer’s AAS against a 

target attack slope for the particular bow articulation; rather it investigates the 

consistency of the performer’s gesture over time. 

 

 

Figure 62: Ezither average articulation attack slope difference over time for (AAS difference – solid, 
trend lines dashed) 

  

 Theoretically as the performer’s technique improves the average AAS for 

each articulation recording should homogenize. Essentially the performer’s 

technique should become more consistent, leading to a regular AAS when 

performing a particular bow articulation. To investigate this relationship the delta 

in average AAS between successive practice sessions is examined and displayed 

in Figure 62. As expected, the difference in the average AAS in the earlier 

practice sessions is generally greater than in later practice sessions. The dashed 

trend lines show that for each of the three articulations practiced, the 

performer’s technique improved in terms of consistency of the gesture’s AAS. 
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 The performer’s best stroke (in terms of AAS regularity) was martelé, 

followed by detaché, and then spiccato. Greatest improvement over the sixteen 

practice sessions was achieved for spiccato, as illustrated by the steepest slope of 

the three trend lines. Martelé was the best stroke and also improved slightly 

greater than detaché (as illustrated by its steeper trend line). Interestingly, these 

characteristics mirror some of the characteristics discovered previously in the 

bow articulation tempo studies concluded in section 7.6.4. As in the previous 

tempo studies, spiccato was the weakest articulation, albeit showing much 

improvement, martelé was the strongest performer overall, and detaché was a 

strong stroke for the performer but showed the least amount of improvement 

over time. 

 Inevitably there will be variation in the AAS every time a performer plays a 

particular bow articulation. To further measure the consistency of the 

performer’s (physical) technique, one can also look at the change in standard 

deviation and range of the AAS between practice sessions. Just as the delta in 

average AAS regularize more over time if the performer’s technique improves 

(Figure 62), the range and standard deviation of an articulation’s AAS may also 

become more regular over time (hopefully decreasing). 

 As illustrated in Figure 63, this is the true for the Ezither performer. In terms 

of standard deviation of AAS, the performer’s AAS standard deviation for both 

martelé and spiccato regularize over time. When performing detaché, the 

performer’s AAS standard deviation remains fairly consistent, which also 

resembles earlier results in both change in average AAS for detaché (Figure 62), 

as well as the particular articulation’s standard deviation and range of tempo 

performance (Figure 60). Martelé and spiccato however become more regular 

over time in terms of AAS standard deviation, and all three articulations 

regularize in AAS range between sessions. These measurements are useful 

signifiers to the musician and his instructor about his overall progress and 

uniformity of the physical motion of his bow stroke articulations. 
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Figure 63: Ezither articulation attack slope standard deviation (top) and range (bottom) practice 
session-to-session difference over time for (AAS difference – solid, trend lines dashed) 

7.7 Summary 

There is no doubt that the role of technology in the practice room will continue 

to permeate the ways in which musicians and musical educators learn and teach. 

Interactive systems and computer assisted musical development have already 

been integrated into the everyday curriculum of music schools the world over. 

While current systems work satisfactorily for certain aspects of musical training, 

no readily available or widely-used system currently specializes to the individual 

needs of the performer, or the musical semantics of their particular instrument.  

 Musical performance is highly individualized in nature, and traditionally a 

musician learns to play in a formalized contract between the teacher (mentor, 

guru, master musician, etc.) and the student. Commonly the amount of time a 
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musician spends practicing alone compared to the amount of time they spend 

practicing within the guidance and presence of their instructor is often less than 

ideal. Thus, computer assisted practice offers great potential in helping musicians 

practice with greater understanding and focus, especially when practicing 

independently. 

 In order to enable effective and nuanced channels of understanding between 

musicians and the computer, this research argues that analysis in a number of 

modalities is necessary. In particular this chapter focuses on string performance, 

and some of the possibilities when combining analysis of the acoustic signal of 

the input with gesture data from an accelerometer in the bow of the instrument. 

By exploiting the information present in both modalities, this research attempts 

to highlight useful characteristics from the performers practice, including timing 

and tempo metrics and statistics, as well as information about the performers 

ability to play various bow articulations. The metrics and statistics are evaluated 

at various time-scales, obtaining useful performance metrics not only in 

individual practice sessions, but also over a seven-month period in which the 

performer learned to play his instrument, having never played the instrument 

before. 

 In analyzing the Ezither performer’s practice a concise set of statistical 

measurements and visualizations are presented. There are many other features, 

statistical measures, and visualization techniques that can be observed and 

provide useful information about performance. However, this research chose to 

focus on the following selection of common statistical tools for a number of 

reasons: (1) Statistics, 

(1a) Min, (1b) Max, (1c) Range, (1d) Standard Deviation, (2) Visualizations, (2a) 

Bar graph, (2b) Line plot, (2c) Box and whisker plot. 

 Firstly, the experiments and analysis tools proposed should not require 

trained mathematicians or scientists to be used and understood. As the ultimate 

goal is to eventually support these metrics in the regular practice room or 

bedroom of practicing musicians, there was a strong desire to keep the metrics 

and visualizations as simple and straightforward as possible. Relational 

observations are also desired, so many of the visualizations presented were 

chosen as they highlight certain musical performance relationships, for example 
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the performance differences between multiple tempi, or between various bow 

articulations. 

 While much of the discussion thus far has been under the scope of 

informing the musician about their practice, analysis tools as described in this 

chapter would also greatly benefit the educator. In observing the contract 

between teacher and student, the teacher’s role is to guide and nurture the 

student into honing their skills. By effectively identifying the strong and weak 

areas of the student’s practice, educators can best target and focus their limited 

time with their students. One exciting area to explore in the future would be 

combining multimodal musical performance metrics with practice content 

generation, an interesting concept being investigated by (Percival and Schloss 

2008). 

 Lastly, this chapter presents results calculated after recordings were collected; 

however, these techniques are feasible in real-time. The statistical measurements 

and visualizations presented are computationally lightweight, and could very well 

run on today’s computer, laptops, and other mobile devices such as the Apple 

iPad or iPhone. One benefit of a future real-time system would be that it creates 

a useful feedback loop—musicians and educators won’t only be able to see 

performance data in between lessons, but also during lessons, providing dynamic 

information to influence practice, in real time. 

 There is of course lots of additional room to continue exploring 

multimodality in the practice room, and many more families of instruments to 

reach. This research has also explored multimodal drum performance metrics 

previously in this dissertation (refer to section 5.5), and so this section has 

focused on string instruments as to cover a broad body of traditional western 

instruments. While multimodality in the practice room is still very new, this 

research hopes to show a glimpse of exciting possibilities of applying multimodal 

signal analysis to the everyday routine of practicing musicians. 
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Chapter 8  
 
Conclusion 

Summary and Conclusions of the Presented Research 

 

The overarching goal of this dissertation has been to explore the musical 

affordances of multimodal HCI. Early on it became evident that exploring this 

goal would require at least three vital steps in the process. The first was 

identifying valuable aspects of musical interaction in which to capture, and which 

motivate the crosspollination of multimodal techniques and musical scenarios. 

Secondly, capturing the heterogeneous information must also be efficient, in 

order to make the benefits of multimodality applicable to a large audience. Lastly, 

it was important to evaluate the outcomes of the techniques. To that end, this 

research has presented a variety of work that outlines our process, and the 

affordances garnered from applied multimodality in the face of musical 

interaction.  

8.1 Summary 

This research identified two specific areas of musical interaction that can benefit 

greatly from multimodality: musical practice and pedagogy; and secondly, live 

performance. Examples were provided that demonstrated the viability of 

multimodal techniques in these scenarios, and established its significance in 

future musical interactions. To facilitate multimodal communication, this work 

developed a valuable software tool that made it possible to easily acquire data 

from heterogeneous sensor systems and musical instruments. This tool was used 

to capture multimodal data in a number of different musical scenarios, and 

enabled an assortment of research investigations in which multimodal analysis 

was applied to the domains of machine musicianship, machine learning, and real-
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world performance. As a result, this research enables many new possibilities in 

musical interactions, including, the empowerment of musicians and educators to 

better understand ones playing; and secondly, facilitating new modes of musical 

expression in performance.  

8.2 Primary Contributions 

The remainder of this section provides a summary of the primary contributions 

presented in this work—specific research examples that we believe will 

significantly add to future musical interactions, both in the practice room, and on 

the stage. The primary contributions of this research include: 

1. A new software tool that enables anyone to easily access and record 

heterogeneous data from multimodal instruments and sensor systems. 

2. Two performer recognition examples that establish the importance of 

multimodal analysis for understanding the intricacies of musical 

performance. 

3. Investigations into multimodal percussion analysis including: 

a. Enabling the computer to automatically detect left and right hand 

hits from drummers. 

b. Detailing useful multimodal performance metrics (e.g. Onset 

Difference Time). 

4. A study of how multimodal techniques, such as multimodal fusion, can 

help improve machine musicianship tasks when unimodal techniques fail, 

exemplified through the core task of onset detection. 

5. Investigations into the future of multimodal musical practice including: 

a. Designing multimodal systems that can be used daily by 

practicing musicians. 

b. Conceiving useful multimodal metrics to help inform musicians 

and musical educators about progress and performance (e.g. 

Onset Difference Time). 

c. Demonstrating useful multimodal data visualizations. 
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8.2.1 ENABLING MULTIMODAL MUSICAL ANALYSIS WITH NUANCE 

Nuance is a software tool used throughout this research to facilitate multimodal 

analysis of musical performance. A fundamental strength of multimodal 

interaction is that the systems can be highly specific to the instrument, and 

sympathetic to technique and task. Unfortunately, this results in the need for 

tailored solutions to capture the data from individual instruments and sensor 

systems. This significantly inhibits the applicability of multimodal analysis in real-

world scenarios, and significantly slows down the research process. Nuance 

begins to address these issues, and is the first software program of its kind that 

enables one to tap into multimodal musical systems with little to no 

programming or patching. Nuance can be used by anyone, whether musician or 

researcher, and supports nearly any musical input through a combination of 

audio, MIDI, Open-Sound-Control, and direct serial I/O. 

8.2.2 TEACHING THE COMPUTER TO KNOW WHO YOU ARE 

Using Nuance, another primary contribution of this dissertation presented the 

first work in multimodal performer recognition. Research into multimodal 

performer recognition served two main purposes. The first was concerned 

specifically with the task of performer recognition itself—having the computer 

automatically detect who a performer is from learned performance data. The 

second was concerned with the holistic belief of this research, in that important 

detail of a player’s performance is not only in the acoustic output (or purely time 

and velocity based information from MIDI or symbolic data sources), but also 

within the physical actuation of performance (and the relationships between both 

domains). Thus, performer recognition was presented for both string (sitar) and 

percussion (snare drum) performers, and used a set of low-level features from 

audio and various sensors. This work not only showed improved performer 

recognition rates when a multimodal approach (vs. a unimodal approach) was 

employed, but also the strong bond between the physical and acoustical domain 

of musical performance. Investigating this link has been a tremendous 

motivating force behind this research in whole. 
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8.2.3 NEGOTIATING NOVEL UNDERSTANDINGS AND 

INTERACTIONS IN DRUM PERFORMANCE 

To further explore the links between the physical and acoustic domains, this 

dissertation presented work in multimodal drum-stroke computing. Drummers 

spend years training to achieve dynamic control over both of their hands; the 

ways in which drummers orchestrate their hands while playing, and control the 

dynamics of their strikes, is crucial to drum performance and practice. 

Unfortunately, from the perspective of an audio input alone, the computer has 

no way to tell which hand a performer is striking a drum with. This severely 

stunts applications and research into drum performance, as manually labeling 

data is often too time consuming, and is not robust to errors within the collected 

data set. To overcome this, this research examined multimodal surrogate data 

training. This technique used gestural data from accelerometers to automatically 

label acoustical onsets (note strikes). Next, this research presented the first work 

in automatic drum hand recognition, showing that that the machine can be 

trained to accurately recognize strike hand from a player pool of ten drummers 

ranging from beginner to advanced skill levels. Further investigating the strong 

associations between the physical and acoustical domains of drum performance, 

this work also introduced the first explorations in multimodal Onset Difference 

Time—a simple statistical measure which compares the onset times between 

audio and sensor onsets, and provides insight into the performance of the strike. 

8.2.4 ADVANCING MACHINE MUSICIANSHIP THROUGH 

MULTIMODAL FUSION 

All listening organisms have the ability to differentiate when sound events occur. 

Musically speaking, humans are exceptional at detecting when a musical event 

begins, when it ends, segmenting which instrument in the group or body it 

emanated from, etc. Thus, at the core of most machine musicianship and 

machine learning scenarios is onset detection—the task of detecting when 

musical events actually occur. When sounds have strong transients, such as in the 

drum-stroke computing experiments, onset detection algorithms work very well. 
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However, in instruments with slower or smeared attacks, such as bowed string 

instruments, there are many situations where this task becomes increasingly 

difficult (e.g. tremolo playing). Because much of this research and real-world 

applications are interested in also investigating the performance of bowed 

instruments, a solution for robust onset detection is needed. To this end, this 

dissertation presented the first work in multimodal onset fusion for bowed 

instruments. The onset detection fusion algorithm presented is a late-fusion 

process, meaning it is algorithm independent, and can fuse audio and sensor 

onsets from any (current or future) onset detection algorithm. Using the fusion 

algorithm, the high accuracy of the sensor onset detection was achieved, while 

maintaining the missing musical context that is normally only present in audio-

based onset detection.  

8.2.5 REFINING THE WAY MUSICIANS LEARN: MULTIMODAL 

PERFORMANCE METRICS AND MUSICAL PEDAGOGY 

Lastly, bowed string performance was further explored using a hyperinstrument 

called the Ezither. In this instance, the goal of the work was to show the benefits 

of multimodal techniques in musical practice and pedagogy. The metrics and 

visualizations investigated ranged from various tempo measurements, to metrics 

concerning the player’s performance of various bow stroke articulations. 

Specifically, the metrics included: accuracy of tempo performance; accuracy of 

tempo when playing with different articulations; and lastly, metrics concerning 

the physical properties of performance. Physical performance metrics contained 

the Onset Difference Time of difference articulations as well as the Articulation 

Attack Slope of the various bow stokes. The research investigated the 

performer’s practice at various time-scales, from looking at overall observations 

of a particular performance, to analyzing the player’s performance and progress 

over a seven-month period. This is the first work of its kind that not only shows 

the affordances of multimodality for metrics tracking and machine musicianship, 

but also takes the task outside of the research lab, and directly applies it to the 

everyday practice of a training musician. 
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8.3 Principles and Considerations on the Design of 
Multimodal Musical Instruments and Sensor Systems 

This section forms general guidelines stemming from the experiences and 

lessons gleaned from working with a variety of musicians, across many musical 

contexts and styles, in the research presented in this work. In order to effectively 

capture the nuances of musical performance, extreme care must be taken while 

designing multimodal sensor systems for a given instrument or input device. It is 

possible that different multimodal instruments and sensor systems can share 

similar input modalities and core sensing technologies. Thus systems must be 

extremely sympathetic to the individualized needs of the given instrument and or 

performance context. As a result, the responsibilities and the possibilities 

afforded by a multimodal system can change merely by the musical context for 

which they are being used. For example, the physical association of a simple 

force-sensing resistor dramatically changes when being used to measure 

characteristics of a percussionist’s playing, versus that of a North Indian sitar 

player. This section discusses a simple set of design principles for designing 

multimodal systems for musical performance.  

8.3.1 WHAT IS THE MUSICAL CONTEXT? 

The first questions that may be useful to ask when designing a multimodal 

system should aim to identify and understand the musical context for which 

there is a need or desire. Is the primary goal of the multimodal system for 

musicological, pedagogical, or performance scenarios? A combination? Once the 

musical ecology for which there is a need exists (and has been identified), it is 

possible to break down the instrument and its requisite performance attributes. 

In this way it is possible to identify how it is best to implement a sensor system. 

For example, in a controlled environment such as the research laboratory, it may 

be possible to use video camera systems to track a performer’s physical action. 

Implementing the same modality for a touring project may not be appropriate. 

There may be too many environmental variables that can negatively affect the 

sensing system (ambient lighting, busy RFI channels, unknowns about the 
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performance space, setup times, calibration, etc.). In this scenario it would be 

useful to explore other modalities or sensing techniques. The key is striking a 

balance between need and context. 

8.3.2 EXPLOITATION 

Depending on the desired outputs within the defined musical context, an 

effective multimodal sensor system may include modifications to an instrument 

(or other interface) and/or the performer’s body. This does not account for 

certain input channels (such as vision based sensing), which can potentially work 

in both areas at the same time. When modifying instruments, consideration 

should be made to exploit existing parameters of the instrument and its 

performance techniques. Doing so can provide the benefit of the additional 

modality without significantly increasing the learning curve or developing new 

techniques. Examples in this research include the thumb sensor on the Esitar, 

which captures the normal plucking activity from the performer, while turning 

the stream into control data and an analysis entry point (depending on the 

application).  

 Other examples include the accelerometers on the modified bow used in the 

experiments in Chapter 7 and performances in Appendix A. Embedding the 

sensor within the bow exploited the normal activity of the performer, while 

providing additional gestural dimensions to be explored on top of the traditional 

technique. This opened up a plethora of applications, both in the performing-

research domains, as well as in the creative.  

 It is the belief of this research that when identifying a scenario which truly 

calls for multimodal techniques, that it is possible to implement them in a way 

which exploits the informational channels already present. This is true especially 

for multimodal hyperinstruments, but can also be applied to NIMEs, and other 

sensor systems. This is in accord with Cook’s “Re-designing Principles for 

Computer Music Controllers”, in which two of his design principles say that, 

“Existing instruments suggest new controllers” and “Copying an instrument is 

dumb, leveraging expert technique is smart” (P. Cook 2001; P. R. Cook 2009). In 

these situations the multimodal system should work to exploit and extend the 
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natural mechanisms provided by the performer, unless sound reason is provided 

otherwise. 

8.3.3 TRANSPARENCY 

One of the most important factors in multimodal musical interaction design is 

transparency. This is related to the ideas in exploitation, with a strong emphasis 

on the playability, complexity, and effects on established techniques. At all stages 

of design it is paramount to ask the following questions. How intrusive is the 

system you are designing for the performer? Does it have a negative effect on the 

instruments playability? Does the new system have a steep learning curve or has 

the learning curve of the modified instrument increased?  

 The physicalities of an instrument are crucial to its playability by the 

performer, down to the weight and diameter of a drummer’s stick. The physical 

constraints the multimodal system places on the player and the instrument can 

dramatically influence the performance itself, the success, and usefulness of the 

system—therefore non-invasive solutions are highly desired. 

8.3.4 APPLYING MULTIMODALITY TO A MUSICAL TASK VS. APPLYING 

MULTIMODALITY INTO A MUSICAL TASK  

“Programmers who program “in” a language limit their thoughts to 
constructs that the language directly supports. If the language tools are 
primitive, the programmer’s thoughts will also be primitive. 

Programmers who program “into” a language first decide what thoughts they 
want to express, and then they determine how to express those thoughts using 
the tools provided by their specific language.” –McConnell (McConnell 
2004) 

 

In the highly regarded book on computer programming, Code Complete, author 

Steve McConnell describes the difference between programming in a language, 

vs. programming into a language. 

 The idea of programming in a language vs. into a language as McConnell 

describes is an extremely powerful idea that can be applied to multimodal 

musical interaction, and the broader field of musical HCI. At the core of 
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multimodal interaction is the facility of multimodal integration, both as 

complimentary modalities and multimodal fusion. As such, approaching a 

musical scenario (whether research analysis or performance), one should first ask 

what the requirements of the task are. If the task is able to be satisfactorily 

addressed unimodally, it should be done as so, rather than forcing it 

unnecessarily into the multimodal domain. On the other hand, it is possible to 

unimodally implement a system that is more complex, in which case it may be 

useful to consider multimodal options. 

 As such, it is important to always ask, “am I applying multimodality to the 

musical task, or am I applying multimodality into the musical task?”  If you are 

applying multimodality to a musical task, the benefits of a multimodal approach 

will be few, if not superficial. If you are applying multimodality into the musical 

task, the task will itself propose the need for a multimodal approach, and the 

affordances or outcomes will be greater. Multimodality is a means to an end, so it 

is always important to figure out the goal first, and to express the goal using a 

multimodal approach when necessary. 

8.3.5 ON CONTINUOUS CONTROLS AND ‘LEAKY FAUCETS’ 

Working with multimodal systems often involves various continuous controls, 

and working with continuous parameters means taming them in a number of 

ways. The first and most obvious is what I like to call “plugging the leaky faucet.” 

While continuous controls can be extremely nuanced channels of data, there are 

simple considerations that are often overlooked when designing multimodal 

systems. A standard knob (potentiometer) for example normally facilitates 

continuous control only while the user is actuating the parameter. It is the 

equivalent of turning on a faucet, and increasing and decreasing the water flow 

by turning the handles. The user has control over the temperature and flow of 

the water coming out of the faucet. The faucet can be left open, or shut before 

finishing.  

 Traditional knobs however are usually consistent data streams. They can be 

set to a value, and stay there consistently. Continuous gesture controls such as 

accelerometers on the other hand can be leaky faucets. The valves are often 
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always open, and they continue to stream water (data) incessantly, and with 

fluctuation. For musical control, this can be extremely unruly (and admittedly, 

sometimes interesting). When working with accelerometers in this research, a 

number of simple methods were used to help deal with constantly streaming 

(and fluctuating) data. In this work, “plugging the leaky faucet” included, (1) 

filtering the data source (e.g. low-pass filtering) to smooth the data; and (2) 

bypassing the data stream with a toggle switch (button). Using another button to 

toggle between receiving and discarding is reliable, at the cost of requiring 

additional buttons. Another variation on this method is having a momentary 

button/switch that is active only when one wishes to engage (or disengage) the 

parameter. This requires additional coordination from the performer. Another 

useful method is (3) thresholding the input data. While this can slightly limit the 

active-range of the data, it can provide an effortless means of control where a 

sensor’s data stream is discarded when the sensor has not exceeded the given 

threshold. 

8.4 Mapping Multimodal Musical Systems 

To paraphrase (Hunt, Wanderley, and Paradis 2002), in traditional acoustic 

instruments, the sound source is inherently bound to the physical performance 

interface. A guitarist may pluck a string, which is both the actuator, and the 

sound source at the same time. Working with digital musical instruments (DMIs) 

and NIMEs presents a vastly different scenario, as the physical interface is 

normally separated from the actual sound source (the BoSSA (Trueman and 

Cook 2000) and Overtone Fiddle (Overholt 2011) are examples of exceptions). 

Thus, the relationships between the interface and sound parameters, or mappings, 

must be designed (Hunt, Wanderley, and Paradis 2002).  

 Mappings can be considered the connective tissues between a performer’s 

actions with a DMI/NIME, and the resulting musical output. They are a 

translating layer connecting a performer’s gesture to the sound. The openness in 

possible mapping relationships makes the applications of DMIs and NIMEs 

extremely flexible, but can also make the task of defining and learning the 

instrument, difficult or lack direction. Approaches to instrument mapping and 
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parameterizations have been proposed. Hunt and Wanderley offer principles for 

mappings in gestural music in (Hunt and Wanderley 2002); these include the 

mapping parameterizations into four categories: as one-to-one, one-to-many 

(divergent), many-to-one (convergent), and many-to-many. Wessel and Wright 

propose specific metaphors for guiding computer-based musical interactions in 

(Wessel and Wright 2002). These metaphors include drag and drop, scrubbing (and 

variants), and dipping. While the above examples propose mapping techniques in 

specific instrument and gestural examples, Tanaka discusses higher level 

mapping strategies to enable the articulation of musical phrases (beyond specific 

instrument cases and designs) in (Tanaka 2010). 

 The scope of this section is not to provide an overview of all recent mapping 

principles and models. For a review on the current literature on mapping and 

computer music, please refer to (Hunt and Wanderley 2002), (Miranda and 

Wanderley 2006), and the previously cited sources. Rather, this section will 

highlight particular musical mapping principles. Many build off previous work as 

mentioned; however, here their definitions are extended to the context of 

multimodal musical interaction. 

8.4.1 ONE-TO-ONE, COMPLIMENTARY MODALITIES, AND MULTI-

DIMENSIONAL CONTROL 

Hunt and Wanderley discuss one-to-one mappings as mappings “where one 

synthesis parameter is driven by one performance parameter” (Hunt and 

Wanderley 2002). This dissertation has iterated that one of the primary goals of 

multimodal interaction is to enable new sonic situations through complimentary 

modalities. The idea that harnessing the affordances of two disparate modalities 

can lead to a more meaningful experience—a synergy between the independent 

modalities and modes. In working with one-to-one mappings in live performance 

in this research, the principle of one-to-one mappings has been found to lead to 

interesting performance affordances when under the guise of complimentary 

modalities. In the traditional definition, one-to-one mappings are independent 

channels. For example, a knob may be tied to the cut-off frequency of a low-pass 

filter on a synthesizer, and a slider to the attack of the synthesized sound. Both 
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parameters alter the output sound, but interaction wise, are independent acting 

agents. Under the definition of complimentary modalities, the sensing inputs are 

technically still independent agents, however, their interactions serve to 

complement one another. Complimentary modalities aim to encourage one-to-

one mappings that are both physically and psychologically more enticing. As an 

example, the Turbine application described in A.4.4 utilizes one-to-one mappings 

of the SmartFiducial’s multimodal sensors, to control various parameters of a 

wavetable synthesizer. Complimentarily, the individual sensing modalities afford 

a new multi-dimensional level of gestural control. The user is able to move and 

rotate the fiducial object (x, y, and rotation dimensions), while simultaneously 

gesturing above the object with their free hand. Using the vision tracking alone 

enables x, y (position), and rotation parameterizations, while a fourth parameter 

is enabled through the distance sensor embedded within the face of the fiducial 

object. The particular gesture enabled by the complimentary modalities, however, 

creates a new experience altogether—one that results in a more physically and 

psychologically nuanced interaction. 

8.4.2 MANY-TO-ONE AS A SPACE FOR MULTIMODAL INTEGRATION 

Hunt and Wanderley also discuss many-to-one mappings, where multiple 

performance parameters control just one sound parameter. Many-to-one 

mappings present an interesting space where multiple modalities can be 

democratized to facilitate a particular parameter, or gesture. Multimodal fusion is 

characteristically many-to-one by definition—data sensed from multiple 

modalities combine to form one final [musical] output. Tanaka discusses these 

“compound mappings” as effective means of articulating music phrases or single 

events, under his mapping model proposed in (Tanaka 2010). The idea of 

multimodal integration for many-to-one mappings in live performance is 

extremely powerful. In section 8.3.5, simply mapping a button to function as a 

momentary or toggle gate was discussed as an effective method of regulating 

unruly continuous parameters. This sort of many-to-one mapping, when 

combining information from multiple modalities, is a powerful method for 

manipulating and generating musical events. 
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8.4.3 DEFINING A SET OF PARAMETERIZATIONS 

As discussed in the performance reports in Appendix A, the definition of a finite 

set of parameterizations is key to successfully using multimodal instruments and 

sensor systems. With acoustic instruments, musicians spend years learning the 

fundamental techniques over a finite set of musical parameters. Even when 

considering extended techniques, the amount of possible parameterizations of 

DMIs and NIMEs far outweighs those possible with traditional acoustic 

instruments. The space then only becomes more dense in the case of multimodal 

musical instruments, as the cross-modal interactions add additional complexity to 

control parameters. Thus, it is important to revisit the original principles outlined 

in 8.3 to define a finite set of parameterizations for the piece or instrument. It is 

then, that non pre-determined parameterizations can arise, and be added, and 

non-useful mappings discarded. 

8.5 Future Work 

There are many areas that the work presented in this research can continue to 

develop. Nuance (or a sister-application) for example could develop as a system 

that not only captures multimodal data from musical systems, but also provides 

analysis and visualizations in one package. It would be useful to deploy a system 

like this within an active music curriculum, and to evaluate on a large scale, how 

training musicians and educators benefit from multimodal musical practice. 

 This work has shown some of the unique affordances in machine 

musicianship and machine learning scenarios. It can be argued that the moment 

the first intentional musical sound was ever produced, so was the need for 

multimodal integration. The nature of producing sound is intrinsically 

multimodal, in the sense that on a granular level, sound is a combination of 

physical actions, physics, and acoustics. To that end, there exist fervent 

possibilities for applied multimodal techniques for machine musicianship and 

machine learning tasks. These fields already enable many possibilities in both 

musical analysis and performance, and multimodal techniques can provide a 

unique vantage, which has been largely unexplored. Building on the particular 
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research presented in this work, one area to explore is in rudiment recognition. 

This research has already presented a framework for drum-hand recognition, and 

extending this work into pattern (rudiment) recognition could be useful for 

practicing drummers, and for score-level control in live performance (e.g. 

automatically enabling sound processes based on particular patterns played). 

8.6 Conclusion 

Over the past decade, the movement towards expanding established modes of 

musical interaction using HCI has been guided into many directions. In this 

research, we have shown the importance of providing a multimodal vocabulary 

to musical HCI. Using multimodality as a powerful and promising light, the 

future of nuanced musical HCI can continue to evolve. This research has shown 

that multimodal systems can enable many unique musical interactions when 

given the opportunity. To this end, we have proposed software, approaches to 

instruments and sensor systems, and other techniques that make it possible to 

tap into multimodal musical HCI. 

 Establishing multimodal communication channels, this research has shown 

that novel affordances in musical HCI are within grasp, and are very promising. 

The breadth of possibilities is far reaching, and as this work has demonstrated, 

can empower many new sonic engagements in creative and performance 

contexts, as well as in practice and pedagogical scenarios. Our investigations into 

multimodality have been inspired by, and applied to active areas of musical 

research, namely machine musicianship and machine learning. Exploiting the 

physical and acoustical dimensionalities of multimodality in these areas, this work 

hopes to inspire others in the field to begin asking, how else can multimodality 

help achieve our musical tasks and desires? Throughout time, music has often 

taken twisted and turning paths in response to individual and cultural needs. Like 

Russolo and many others before him, now more than ever, there is a widespread 

movement to negotiate new musical interactions, through the development of 

new instruments and techniques. In this work we have shown that leveraging the 

affordances of multimodal techniques can make this possible. As such this work 

asks, how else can multimodal techniques facilitate your musical needs? 
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Appendix A  
 
Live Performances and Applications 

Additional Explorations in multimodal live 
performance and HCI 

 

Chapter 3 through Chapter 7 have shown how multimodal techniques can be 

used in the laboratory or practice room for analysis. This appendix serves to 

show how some of these techniques can also be used for modern artistic 

endeavors. Selected performances and projects in which multimodal techniques 

were used to shape live musical performances and multimedia interaction are 

presented. These include musical performances in A.1 and A.2, and a multimedia 

performance in A.3. Lastly, a case study on applying multimodal techniques to 

alternative musical interfaces (tabletop surfaces) is explored in A.4. 

A.1 Minim Performance at the New Zealand 
School of Music Sonic Arts Exhibition 
Concert, October 9th, 2010  

On October 9th 2010, Owen Vallis and I performed an untitled piece from one 

of our collaborative music projects called Minim in the NZSM Sonic Arts 

Exhibition. In this section I will document a few elements from both the 

compositional and performance experiences, which relate specifically to the 

themes and research presented in this dissertation.  

 Initially we approached the piece thinking about previous Minim 

compositions, which were primarily long structure or slowly evolving ambient 

works. A large interest in previous works explored somewhat microevolutions of 

synthetic sounds and timbres. These could be as simple as the slow and 

controlled pendulum swing of synthesized parameters; paying close attention to 

the resulting perceived periodicities and movements produced in the sound.  
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 Brainstorming and composing our piece for this concert however, we chose 

to explore a few other key ideas that influenced my conceptions of music 

performance systems and sensors. Ultimately this concert very directly impacted 

my goals and necessities in future performances at the NZSM (detailed in A.2). 

 The first clear differentiation from other Minim pieces was that we decided 

not to compose for any synthesized sounds or generators. The piece was written 

specifically for piano and guitar (acoustic), and explored various themes in 

controlled feedback, excitation, and impulse. This was divergent from previous 

pieces that cycled around long, evolving timbre spaces. 

A.1.1 Excitation, Impulse, and Probability Machines 

Using acoustic instrumentation, we began thinking about a number of various 

interaction ideas and principles. How could we facilitate multiple modes of user 

or autonomous interaction? How could different sound processes embellish, or 

expose, various properties of the acoustic sounds. Specifically, we were intrigued 

with the idea of controlled feedback, inputting short musical events into the 

machine, and eliciting a response; essentially creating a situation in which the 

machine feedbacks musical events by exposing and manipulating parameters of 

the original input such as harmonics. I remember Owen bringing up a piece by 

David Tudor in which delays could stabilize feedback systems and reinforce 

overtones. 

 We ultimately wrote two software plugins for the piece, one a granular signal 

processor, and the other a probabilistic re-sequencing sampler. Owen wrote the 

granular effect in Reaktor, which acted as a harmonizing feedback machine. The 

input could initiate an impulse by triggering a reset button, which would pitch 

and overlap the grains with various probabilities and in relation to the input. The 

effect would expose various partials and harmonies of the input signal, in an 

overlapping sequence of pitched grains. The output would be resampled when 

retriggering, resulting in a controlled feedback-based granular system. 

 The second plugin was a probabilistic sampler we co-wrote in C++ called 

Audio Carwash. Upon triggering the impulse button, the incoming signal was 

sampled for the length of one bar. The sampled bar’s material was then 
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automatically divided into k divisions (steps) and pseudo-randomly re-sequenced. 

Each step in the sequence was assigned two parameters by the user; one 

parameter was the probability or likeliness of playing (on/off), and the other 

parameter was the amplitude or loudness of the step (if played).  

 We decided not to apply a smoothing ramp to the start and end of the steps, 

leaving a desired “clickiness” and attack to each step when playing back in the 

sliced order. The resulting effect was a highly rhythmical chopped and re-

sequenced one-bar phrase, and offered many levels of musical interaction. As an 

example, the performer and effect could initiate a game of cat and mouse, where 

the phrase would trail the performer’s input by one-to-n bars, by retriggering the 

sampling every n bars. The probability based sequencing was also free running; 

providing an autonomous degree of variation and dynamics to the piece. This in 

turn freed the performer to continue working on other aspects and interaction 

levels in the piece. 

A.1.2 Composing by Improvisation 

Before and during the compositional process we discussed and re-evaluated the 

macro structure of the piece. We established a form for the piece’s arc and 

development, but left the body of composition to structured improvisation. At 

first I found it useful to improvise with one another using our new effects, 

without worrying about form. I learned subtle ways to control and interact with 

the probabilistic nature of Audio Carwash. Eventually we saved particular 

probability sets (presets) we liked so that we could go through the piece and 

effect the input in an organized, yet still probabilistic manner. This facilitated a 

particular level of control for the performer, where one could influence the note 

density in the produced sound by cycling through a pre-defined sequence of 

probability sets. Still the element of uncertainty, and controlled randomness, gave 

the rhythmic portions of the piece a fresh, cyclical evolution that was exciting for 

me. 

 Ultimately the task of composing the piece (initially) improvisatorially 

worked quite well in this case. We were working with instruments we’ve played 

for many years, and gave ourselves a limited set of additional controls. 
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A.1.3 Performer Interaction 

For the performance we built simple foot control pedals with two buttons to 

control the plugins. One button reset the grain plugin, and the other triggered 

Audio Carwash to resample the input for one whole bar. We both played our 

instruments (Owen on piano, myself on guitar) mostly traditionally, with a few 

parts requiring other techniques, for example picking behind the bridge or at the 

headstock of the guitar. 

 As mentioned, working with probability-based effects was an interesting 

space to work in. It enabled the ability to set something in motion, with a refined 

state, and to simultaneously move into other areas or direct mappings. The 

uncertainty in the grain plugin, how it would sometimes latch onto the input and 

suddenly emerge harmoniously was particularly exciting. As the performer, I 

never knew exactly how the note would feedback and sound when I retriggered 

the grain plugin, although I could influence and initiate the event with a 

comfortable amount of confidence and control. The uncertainty however was 

electrifying, ultimately allowing me to focus and listen, and very much give over 

to the piece. 

 At the same time, giving over a lot of direct, continuous physical control left 

me desiring more in terms of interaction. Often I would pluck a single note as an 

impulse to the grain plugin, hear the response, but have no means of engaging 

with the sound further, other than re-inputting into the grain or Audio Carwash 

plugins. As a first performance I was ultimately happy with the general outcome, 

however, I desired the ability to interact with various parameters and 

manipulations with greater control. This was a primary concern I aimed to 

address in my next performance at the NZSM, which is detailed in A.2. 

A.2 III: Performance at the New Zealand 
School of Music Sonic Arts Exhibition 
Concert, October 9th, 2011 

III was composed and performed collaboratively between Jason Erskine, Blake 

Johnston, and myself. We got together with the goal of composing and 
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performing on hyperinstruments, investigating some of the possibilities of hybrid 

acoustic instruments with gestural controls. While I had played in groups in the 

past that incorporated hyperinstruments and other hybrid instruments, this was 

my first experience performing on a hybrid acoustic-electronic instrument myself, 

which led to a number of discoveries shared in this section. 

A.2.1 Hyperinstruments and Gesture 

 PPREVIOUS EXPERIENCE AND INSPIRATION 

In the previous years Sonic Arts Exhibition in which I performed with Owen 

Vallis, I had consciously constrained the amount of real-time parametric control 

I was able to input into the performance system. There was a certain level of user 

input and feedback as discussed, however my own personal constraints led to 

binary or impulse (trigger) input actions. The reasons for limiting the amount of 

control were two-fold. A major factor were physical limitations of picking and 

fretting a guitar. Although perhaps possible with extended practice, it was 

imprecise (physically) to control continuous parameters with my feet. The foot 

pedals we built to trigger our effects were large, containing only two buttons; this 

helped overcome the low precision of our feet for parametric control (similarly, 

foot pedals like wah-wahs use a large footprint with 1-D control). The other 

reason for limiting the parametric control was conceptual. The piece itself was 

concerned with setting up a situation of auditory feedback and probabilistic 

automata, and thus, impacted the kinds of performer interactions in the 

performance. 

 When approaching the piece this time, I was particularly inspired by Curtis 

Bahn’s EDilruba (Sensor Esraj) implementation from a (at the time) recent 

performance in our group, the KarmetiK Machine Orchestra (Ajay Kapur et al. 2011). 

The EDilruba is a traditional dilruba (esraj), a Hindustani bowed instrument 

found in North Indian classical music. The frets are played in a siding style, 

achieving portomento or meend, which is a common trait of Indian music. Bahn’s 

EDilruba uses a simple biaxial accelerometer at the frog of the bow, providing 

two axis of continuous parametric control of the sound. While there are other 
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examples of bow-controllers and performances, it was performing with Bahn 

earlier that year which really caught my attention as something I not only was 

interested in researching, but in using and performing with myself. 

 With two axes of continuous control, Bahn was able to negotiate many 

different sonic engagements with performer intent. Often he would play the 

instrument traditionally, followed by an in-air gesture of the bow, after lifting the 

bow off the strings at the end of a note. In this way he was able to continuously 

modulate the performed note with the gesture of the bow (as the note continued 

to decay naturally). The motion was both seamless and elegant, and by switching 

“modes” with a few buttons in front of him, he was able to exert a high level of 

parametric variety and control over the processing of his sound—without 

hindering his ability to play regularly. 

 

 

Figure 64: Curtis Bahn and the EDilruba (Sensor Esraj) 

  

 Other times he would use the bow independently of the acoustic instrument 

itself. For example, during a noise interlude, he would set off a free running 

noise process, controlling multiple parameters of the sounds evolution by subtly 

gesturing the bow in the air. The bow could be used and appropriated in many 

ways, from affecting the acoustic sound of the instrument itself, to becoming a 

musical wand in purely synthetic circumstances. There are many other elements 

of this that I felt worked very well, from the immediacy of the correlation 

between input and output for the audience, to the subtle and dynamic levels of 

control. Thinking about these components, I began to wonder how I could apply 
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some of these principles to guitar, freeing myself to explore similar ideas as the 

piece I performed the year prior with Owen, with the added level of interaction I 

desired. 

 FFORMING THE “GROUP” 

For almost a year I had been working independently with two students at the 

New Zealand School of Music on designing and building their own custom 

hyperinstruments. Jason Erskine and I had been working on refining his Esuling 

(see 3.1.3), a modified Balinese suling (ring flute), and Blake Johnston on his 

custom instrument called the Ezither (see 3.1.2). We quickly realized we shared a 

lot of similar musical interests, and that we had unintentionally created a 

situation in which we could collaboratively explore our modified instruments 

together. 

A.2.2 Composition, Improvisation, and Iteration 

 PREPARATION IS KEY 

Our compositional process was collaborative; we would get together over the 

course of a few weeks and play out the sounds we were currently getting out of 

our instruments. It was an iterative process that involved preparing signal chains 

and effect processes at home, and then playing in the context of the group. 

During rehearsal we would stop, assess the role and functions of the sounds we 

produced, parameterizations, mappings, and performative roles within the group. 

We would often stop to adjust our interfaces as necessary, adding particular 

functionalities as required.  

 WORKFLOW AND CHALLENGES 

Our two initial rehearsals exposed some of the challenges in workflow when 

working with newly designed hyperinstruments. We had yet to develop systems 

to easily allow us to map, and remap our controls to various parameters, as 

rehearsal sparked ideas. Jason had been performing for quite some time with an 
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earlier version of his Esuling, and so he was most prepared to switch between 

interaction modes and mapping of his instrument. After the second rehearsal, 

Blake and I both decided to come up with a framework to allow us to map our 

controllers more easily. This resulted in modifying our software that translated 

the sensor data into MIDI and OSC messages, allowing us to map parameters 

with the click of a button in the programs user interface. It was also useful to 

come up with two or three ideas and ways to use our instruments at home, and 

then to show those ideas to the group during rehearsal. From there we pieced 

elements together, and started forming the structure of the composition. One of 

the most important things that made rehearsals productive was preparation and 

streamlining of the possible interactions, and defining a set of practices that we 

could easily try out at any moment. 

 We did this until we were satisfied with out parameterizations, and could 

focus solely on performing the piece. Working with hyperinstruments, there 

were many levels of control, mappings, and other interactions possible. 

Ultimately, we knew that we could live within a state of defining (and redefining) 

our interactions forever, and decided to set a composition deadline for ourselves. 

As such, after the first couple of weeks we made an effort to solidify our 

technological structure and instrument mappings, so that we could focus wholly 

on the performative aspects of the piece (both the music and learning our newly 

mapped instruments). Of course the two (system design and performance) were 

not mutually exclusive, and influenced each other greatly during this process. 

Mappings and parameterizing came directly out of improvising and composing, 

and vice versa. 

 The composition itself was set into place, defining a macro-structure with 

space to improvise within if desired. We memorized the structure of the piece 

during rehearsals, which greatly afforded us the freedom to explore the music 

and the instruments when performing. 
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Figure 65: Performance of IIII , group (left), and close-up of modified 12-string acoustic guitar and 
bow (right) 

A.2.3 Performer-Interaction 

The main modes of interaction on all three instruments involved gestural control 

from triple-axis accelerometers. Jason’s Esuling included an accelerometer at the 

top of the instrument, and Blake and I both performed using modified bows 

(with accelerometers at the frog). Additionally, my accelerometer system 

described in 3.1.4 provided a secondary accelerometer that I attached to the body 

of the guitar. In this way I could also tilt and twist the guitar (played vertically), 

controlling six dimensions of parameters simultaneously. Excluding myself, 

additional control was facilitated by the use of knobs, pressure sensors, and 

buttons on the performers’ respective instruments. I however, controlled a MIDI 

device with my feet. Again because of the limited precision, I only mapped a few 

parameters (volume slider, and a few buttons), and placed them far apart on the 

controller to require less precise physical action. 

 A number of considerations emerged from interacting primarily with 

accelerometers, related to those discussed in 8.3.5. While some of these may 

seem obvious, they are useful guidelines when preparing, and arose through 

actual interaction. In order to effectively parameterize the accelerometers, and 

repurpose the data stream in real time, the following methodologies were 

practiced.  

 Firstly, buttons were assigned on the foot controller to toggle (bypass) each 

of the effects I was using. In this way I could easily switch between which effects 

were currently being controlled by the bow gestures. This was a simple yet 

effective way to repurpose the bow’s parameters in real-time, essentially giving 

the bow banks or modes in which I could switch between at any given moment. 
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 Parameters were also often considered and practiced in pairs. During 

rehearsal I experimented with pairing different parameters on the x-axis and y-

axis, and examining the intuitiveness of the mapping. Some pairs worked 

extremely well, while others did not. For example, one mapping-pair that worked 

well for this piece was mapping the x-axis as a wet/dry control, and the y-axis as 

an effect parameter. In one use case, this was achieved by creating a “return” 

channel with a delay effect and a hi-pass filter. The x-axis of the accelerometer 

was mapped to the return “send amount” on the guitar input track, while the y-

axis was mapped to the filter cut-off frequency. As I played I could slowly rotate 

the bow while bowing to send more or less to the return track—effectively 

adding in more or less delay. Tilting the bow forward or back, I also controlled 

the spectral shape of the delay, which gave me a high level of simultaneous 

control of the sculpted sound. I had previously experimented mapping those 

parameters individually, and paired with other parameters, which didn’t quite feel 

as natural. However, when I mapped them in this particular pair, the inter-

relationship between side-to-side roll, and front-to-back tilt of the bow opened 

up a more physically and musically intuitive path for me to engage. 

 There were also times where our instruments were excited with non-

traditional actions, and further manipulated by our gestures. For the intro of the 

piece, we used the resonating qualities of our instruments, without their actual 

excitation mechanisms. By tapping the instruments, we initiated impulses that 

were amplified by the microphones on the instruments. We then used the 

gestural sensors to sculpt the knocks and taps into rhythmic material. This 

foreshadowed a section of the piece later where the roles of impulse and 

interaction were reversed. Later in the piece I sampled and re-arranged one bar 

of a bowed line, using the Audio Carwash plugin described previously in A.1. 

The recorded phrase was post-effect processing, and so it included the bowed 

note (impulse), after being processed by the bow gestures and effects. In turn, 

the probability-based re-sequencing now affected the input. Whereas before I 

would input a knock, and affect it with the gesture (using the bow), in this case I 

would input the note post-bow processing, and the machine would 

probabilistically affect the gesture. 



Appendix A. Live Performances and Applications 

 

181 

A.3 Transformations: Integrating Multimodal 
Music, Dance, Visuals, and Wearable 
Technology, May 11 – 17, 2012 

In October of 2011, a friend, Leila Navon, approached me about an installation 

and performance project of hers titled Transformations. I helped advise the project 

with both technical and artistic direction, realizing her performance in three 

shows taking place on May 11th, 2012 and May 17th, 2012 at California Institute 

of the Arts. 

 Upon discussing her ideas, she wanted to develop an integrated multimedia 

piece that incorporated live computer music, dance, and visual projections. 

Ultimately she envisioned the dancer interacting with both the auditory and 

visual mediums, with the ability to guide the movements and interactions 

between modalities. This project was particularly interesting to me, as it was 

highly interdisciplinary and would enable the exploration of multimodal 

techniques not just in music, but in larger multimedia and art-based contexts. 

A.3.1 Designing the System 

I advised Leila in determining a list of interaction requirements in order to assess 

the technological needs of the project. After lengthy discussions the primary 

interaction requirements included: 

 

• Continuous control from the dancer to: 

o Manipulate the audio in real-time 

o Facilitate real-time interaction between the dancer and 

visualizations 

• Audio/Visual interaction from Leila herself 

Initially we planned to use a Microsoft Kinect23 camera for all dancer-

centered interaction. The Kinect is a motion-sensing camera designed by 

Microsoft that enables hands-free user interaction. Essentially the Kinect 

                                                

 
23 http://www.xbox.com/en-US/kinect 
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employs a 3D light scanning system that enables motion and gesture tracking in 

three dimensions (x, y, and depth). Very shortly after the Kinect was introduced 

to the public in 2010, the open-source online community developed drivers and 

entry points into the motion capturing data for most programming platforms. 

CCHALLENGES WITH THE MICROSOFT KINECT 

The Microsoft Kinect was a great solution in that it was readily available and 

affordable, and facilitated many of the interactions desired. However upon 

hands-on experimentation, a number of challenges arose that were eventually 

addressed with other modalities. The first limitation was an issue of frame rate. 

Working with the dancer, often the choreography demanded movements from 

the dancer that surpassed the camera’s frame rate of 30 Hz (frames-per-second). 

This led to the undesirable quantizing or sluggish response of audio/visual 

parameters.  

 While filtering, smoothing, and interpolation were possible solutions to help 

minimize the issue for musical parameters, other considerations arose. One such 

consideration was the camera’s limited field of view in the open plan 

performance space designated for the piece. We discussed focusing the camera 

on a particular zone of the room, and having all interactions take place in that 

zone; however, Leila expressed strong convictions in having the dancer interact 

with the musical parameters at any given moment or location within the space. 

 At this point it was clear another solution might be necessary for musical-

dancer interactions. However, an inspiration for the piece was a video Leila saw 

online in which projections were mapped (masked) onto the body of a dancer in 

real-time. As such the Kinect would still play a key role in the piece. 

 Working with the dancer and a real-time image masking solution called the 

Mad_KinectMasker24, the camera still exhibited less than ideal frame rates, and a 

limited active area in which the dancer could be reliably tracked. Other tracking 

frameworks exist, which exhibit a wider active tracking area, however the project 

                                                

 
24 Mad_KinectMasker renders an image mask of a persons shape in real-time which can be used 
to mask the projection output, available at http://www.madmapper.com/madlab/  
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time frame did not permit the design of a custom image masking solution 

utilizing these frameworks.  

 As such the two major limitations were carefully addressed in the 

implementation of the piece in the following ways. Firstly, the piece began 

without any visible projections. The dancer began on the ground, and slowly 

worked through the introduction choreography.  

 At a certain point in the piece, the dancer moved within the active tracking 

region of the camera. The projections then automatically appeared and masked 

to the body of the dancer. The music and movements of the dancer at this point 

were composed and choreographed more slowly, to help minimize the effects of 

a limited frame rate. The effects of frame-rate were most noticeable with the 

projections, and moving too fast would result in the projections lagging behind, 

essentially losing the mask and mapping onto the wall behind the performer. 

With practice and slower musical tempo selection, we were able to achieve 

satisfactory results with the dancer. 

 To deal with the limited tracking area, the dancer’s interaction with the 

Kinect happened within a limited footprint in the space. All choreography at this 

point happened low to the ground, enabling a tightly controlled space to be 

explored. In addition to mapping the projection onto the dancer, the dancer’s 

contour was tracked, and projected on the wall behind her. In a sense, the wall 

(projection space) behind the dancer became an interactive canvas. Leila 

improvised the projections, controlling the particular images and image 

processing in real time. Additionally, the depth sensing from the Kinect was used 

to manipulate the wall projection, making the dancer’s shadow on the wall 

appear larger or smaller depending on her proximity to the camera. With some 

of the projections on the wall, the dancer’s contour and movements were 

shadowed, while other times the wall acted as an interactive surface, responding 

to the choreography. 

 UUTILIZING THE XXL ACCELEROMETER SYSTEM 

In my other research and performances, I had utilized a general-purpose gesture 

sensing system I designed called XXL (see 3.1.4). XXL is a simple wireless 
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accelerometer based sensing device that I proposed could be combined with the 

Kinect tracking. While the accelerometer could not replace the Kinect in that it 

could not meet the real-time masking requirements of the project, it could 

support the Kinect interactions in a number of ways as a complimentary 

modality and sensor. 

 Firstly the accelerometer system can achieve quite long communication range 

(depending on the chip used, it can communicate up to a few kilometers or miles 

in an open-field). This overcame the Kinect’s limitation of only being able to 

sense in a limited area of the performance space. Secondly, the system was 

designed for musical control, achieving frame rates up to 100Hz and a resolution 

of 10-bits.  

 As such I helped Leila build her own version of the XXL system for the 

piece, using the original designs. The two accelerometers were placed on the 

hands of the performer (see Figure 66) and were used throughout the piece to 

control various musical and visual parameters. Leila controlled the mapping of 

the accelerometers to musical parameters in real-time, allowing the dancer to 

focus on their movements, while paying acute attention to the musical elements 

they were controlling. The circular dependency between the dancer and 

audio/visual environment led to very high synchronization between elements in 

the composition, visuals, and choreography. 
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Figure 66: Overview of dance technology, XXL accelerometers on hands, and Microsoft Kinect for 
real-time projection mapping (masking) onto the dancer 

A.3.2 Discussion 

Overseeing this project was a beneficial experience in which we were able to 

work through many challenges by using complimentary modalities. Utilizing both 

vision tracking and accelerometer control, we mapped projections onto a dancer 

in real-time, enabled interaction with an interactive surface on the wall behind 

the dancer, and enabled precise control over various musical and visual 

parameters of the piece with the XXL system. It was a valuable exercise in 

working within the constraints of the particular modalities, while satisfactorily 

meeting the initial artistic endeavors. For the Microsoft Kinect the limitations 

included limited frame rate and field of view. These were addressed by the high 

precision and speed of the accelerometer system. Subsequently the accelerometer 

system failed to meet the projection mapping requirements, which was achieved 

by the Kinect. Utilizing both modalities, a synergy was found and the artistic 

requirements and desires for the piece were faithfully met.  

 It was also particular interesting to observe both performers interacting with 

a shared social instrument. As the dancer moved and improvised with the 

musical parameters, Leila adjusted the dancer’s sensor mappings in real-time. 

There was a great deal of exploration and listening, and it was a particularly 

Projector

Kinect

Accelerometer
(both hands)

Computer

Arduino
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interesting experience to see both of them sharing a changing multimedia 

environment. While there was a structured form to the piece, as well as 

choreographed movements, the mappings possible (between the dancer, the 

technology, and the audio-visual output) were rehearsed, but improvisatorially 

arranged each performance. Ultimately, this led to many beautiful realizations 

and interpretations of the piece. 

A.4 SmartFiducial 

Affording new interactive musical experiences using 
“tangible surfaces” 

While the previous sections have focused on particular applications of 

multimodality in live performance contexts, early on I was also particularly 

interested in extending new performance interface capabilities using multimodal 

approaches. Multimodal performance metrics tracking and machine learning 

naturally lend themselves to using hyperinstruments and sensor augmented 

musical instruments; effectively capturing the performance characteristics of 

players on their traditional instruments. However, interfaces described in 2.2.1 as 

diverging from traditional performance paradigms, can also benefit greatly from 

multimodal techniques. In this section, we present the SmartFiducial, a wireless 

tangible object that facilitates additional modes of expressivity for vision-based 

tabletop surfaces. Using infrared proximity sensing and resistive based force-

sensors, the SmartFiducial affords users unique, and highly gestural inputs. 

Furthermore, the SmartFiducial incorporates additional customizable pushbutton 

switches. Using XBee radio frequency (RF) wireless transmission, the 

SmartFiducial establishes bipolar communication with a host computer. This 

section describes the design and implementation of the SmartFiducial, as well as 

an exploratory use in a musical context. 
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A.4.1 Background and Motivation 

Musicians have long been intrigued by gestural interfaces since the invention of 

the Theremin in the early 20th century (Glinsky 2000). This has led to the 

exploration of pressure-based input sensing for expressive musical interaction. 

Realizing the potential expressivity of gestural interaction in musical contexts, 

researchers have developed a number of hands-free and pressure based 

interfaces, exploring several sensing technologies. These include laser controllers 

such as Hasan, Yu, and Paradiso’s work on the Termenova (Hasan, Yu, and 

Paradiso 2002), Wiley’s Multi-Laser Gestural Interface (Wiley and Kapur 2009), 

Murphy’s force-sensing resistor based controller the Helio (Murphy, Kapur, and 

Burgin 2010), and countless others.  

 Concurrently, the last few years has seen an explosion of interest in musical 

tangible interaction including the Reactable (Jordà et al. 2005), the Bricktable 

(Hochenbaum and Vallis 2009; Hochenbaum et al. 2009; Hochenbaum et al. 

2010), Block Jam (Newton-Dunn, Nakano, and Gibson 2003), the Audiopad 

(Patten, Recht, and Ishii 2002), and other audio/visual interactions (Ferguson, 

Beilharz, and Calò 2012). The Microsoft Secondlight project (Izadi et al. 2008) is 

an interesting example of adding additional input freedom to tabletop surfaces 

by quickly alternating projection between two independent diffuse surfaces (the 

tabletop and ones above the tabletop). While Secondlight can track tangibles and 

gesture above the surface, it lacks distance tracking. Tangible surfaces can 

undoubtedly provide users with extremely dynamic interaction, however they 

lack the gestural qualities of non-contact and pressure based interfaces. 

 The SmartFiducial is an attempt to provide the best of both worlds—

offering and expanding upon the traditional x, y, and rotational modes of 

interaction available on tabletop surfaces, while providing the gestural 

expressivity and sensatory affordances experienced from hands free and pressure 

based interaction.  

 The remainder of this section is organized as follows: first the physical design 

and technology embedded within the SmartFiducial is described, followed by a 

discussion of the use of the SmartFiducial with an interactive musical application. 
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Lastly, a discussion is provided detailing the design considerations and 

affordances of the SmartFiducial. 

A.4.2 Implementation 

The SmartFiducial offers users multiple degrees of freedom and expressivity. In 

this section, we describe the hardware design of the SmartFiducial that enable 

these input freedoms, as well as our exploratory software implementation of 

using SmartFiducials in a musical setting. Figure 67 provides an overview of the 

SmartFiducial tracking system, which is further expounded upon in the following 

section. 

 

Figure 67: SmartFiducial System Overview Diagram 

 

A.4.3 Hardware 

 VVISION TRACKING 

X, Y, and Rotation tracking is achieved using a custom version of the open-

source vision tracking software CCV (Community Core Vision). CCV 
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implements the libfidtrack engine developed for the reacTIVision system 

(Kaltenbrunner and Bencina 2007). 

 ZZ-DEPTH 

In addition to x, y, and rotation information captured by the vision tracking 

system, the SmartFiducial enhances the traditional 2D optical tracking system 

into a three-dimensional space. Z-depth input freedom is achieved by a short-

range Sharp GP2D120XJOOF infrared (IR) proximity sensor embedded on the 

top face of the SmartFiducial (Figure 68, item C). The GP2D120XJOOF has an 

active sensing range of approximately 3cm – 40cm, providing users with a 

coverage area capable of highly expressive gesture sensing.  

 PRESSURE SENSITIVITY 

The SmartFiducial also provides pressure-based gestural input via two force-

sensing resistors (FSRs), on the sides of the SmartFiducial, as depicted in Figure 

68, item B. 

 

 

Figure 68: SmartFiducial hardware design and layout 
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 WWIRELESS TRANSMISSION 

Embedded within the SmartFiducial is an Arduino Funnel IO25 (Fio) equipped 

with an XBee wireless transmission module. XBee utilizes the ZigBee 

communication protocol, operates at 2.4GHz radio frequency, and exhibits 

extremely low power-consumption properties. This makes XBee an excellent 

candidate for wireless serial communication between the SmartFiducial and a 

host computer. Additionally, the XBee provides each SmartFiducial with a 

unique identifier, tied to its fiducial ID. 

 Data is received wirelessly via an XBee connected to the host machine, and is 

parsed by the custom version of CCV. CCV then sends out the ID and sensor 

data to other client applications using a custom implementation of the TUIO26 

protocol (Kaltenbrunner et al. 2005) that supports the additional data (Figure 69). 

 Additionally, a basic algorithm has been implemented in the SmartFiducial 

firmware to only broadcast new data when input is detected. This optimization 

helps to reduce the amount of data being transferred in larger system use-cases 

and scenarios, and can optionally be turned off in the firmware if constant 

streaming is preferred.  

 Once CCV receives new data bundles from the connected XBee, it first 

checks to make sure that the SmartFiducial’s ID is present in the list of active 

fiducials being tracked by the vision system, before broadcasting a new TUIO 

message. This prevents the SmartFiducial’s sensor data from being transmitted 

when not active on the tabletop surface, however, this can optionally be turned 

off if off-surface interaction is desired. Although the SmartFiducial messages 

include all information present in standard TUIO fiducial (“/2Dobj”) messages, 

CCV also broadcasts the SmartFiducial as part of its regular fiducial message 

broadcasting. Lastly, support for the SmartFiducial has been added into the 

standard C++ TUIO client implementation allowing easy integration into 

custom software applications. Support for the SmartFiducial in other TUIO 

client implementations (Java, Processing, openFrameworks, Max/MSP, Pure 

                                                

 
25 The Arduino Funnel IO is an Atmega based microprocessor designed by Shigeru Kobayash 
26 TUIO is a UDP based data-communication protocol, built around Open Sound Control (OSC) 
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Data, etc.) is planned for the future; however, the SmartFiducial data can still be 

accessed cross-platform via any OSC receiver application or library. 

 

 
sId Session ID int32 
id Fiducial ID int32 
x, y, z Position float32 
a Angle float32 
X, Y Velocity Vector (motion speed & direction) float32
A Rotation velocity vector (rotation speed & 

direction) 
float32 

m Motion Acceleration float32 
r Rotation Acceleration float32 
f, F Pressure float32 
b, B Button-state int32 

Figure 69: SmartFiducial TUIO Protocol Specification 

 SSERIAL PROTOCOL 

Figure 70 outlines the serial-protocol developed for SmartFiducial 

communication. All data is sent to the vision tracking software in 6-byte message 

bundles.  

  

 
Figure 70: Overview of the SmartFiducial Serial Protocol

 

Fiducial ID has a resolution of 8-bits, yielding support for 255 unique fiducial IDs. 

All analog sensors (z-depth and pressure sensitivity) retain full 10-bit resolution, 

while digital inputs (buttons) use 1-bit respectively. An additional 2-bits (bits 0 

and 1 in byte5) are reserved for two additional digital sensors in the future. Lastly, 

the most significant bit (MSB) in each of the six-bytes is reserved as a special 

/tuio/smartFid  set  sId  x  y  z  a  X  Y  A  m  r  f   F  b  B

Byte0

1
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0
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alignment bit, which is checked in CCV in order to ensure robustness and 

reliability of the wireless transmission. 

 

 
Figure 71: SmartFiducial Prototype (buttons 1 & 2 not pictured) 

A.4.4 Software 

In order to begin exploring the unique interactions afforded by the SmartFiducial, 

we have developed a basic wavetable synthesizer sequencer called Turbine (Figure 

72). When a SmartFiducial is placed on the tabletop surface, sixteen “nodes” are 

created around the object. Each node represents a sixteenth note in a one-bar 

sequence, and dragging the node away from the SmartFiducial changes the pitch 

of the step. Using the z-depth sensing, the user is able to gesturally morph 

between the wavetable’s single-cycle waveforms, creating highly expressive, 

complex oscillations. Visual feedback is provided to the user via a soft Gaussian 

circle emitting from underneath the SmartFiducial. Currently the circle grows 

larger in size as the user nears the SmartFiducial’s proximity sensor, although the 

visual feedback may change as additional functionality is added to the application. 

In the future, we hope to expand Turbine’s functionality, including the 

interaction between multiple SmartFiducials, as well as enabling regular fiducial 

objects to act as sound modifiers, effects, and other types of intermediaries. 

 

z-depth 

pressure
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Figure 72: Two SmartFiducials being used with Turbine 

8.6.2 DISCUSSION: SPATIAL RELATIONSHIPS AND TANGIBLE 

INTERFACES 

Because tangible surface interaction happens along the x/y plane, (input) 

interaction is often a result of 2D spatial manipulation of the objects and the 

resulting relationships to both the tabletop surface and other objects. Once a 

tangible is placed within this location-dependent context however, e.g. when 

actions are tied to specific x, y coordinates on the surface, the x and y input 

freedoms are no longer useable (without changing the set relationships). In this 

situation, the only user-interaction possible is by rotating the object, or 

interacting with a virtual parameter displayed on the surface itself (assuming the 

surface is also touch-enabled). Although manipulating on screen parameters can 

often be effective for input, it poses many user interface (UI) challenges 

(clogging the UI, dealing with movable UI elements tied to the fiducials, etc.) and 

is often less than ideal. Additionally, proximity sensing and pressure based input 

offer a wide range of interaction affordances not possible by other means, as 

further discussed in the following section. Thus, the addition of z-depth 

proximity sensing and pressure sensitivity on the SmartFiducial allows tangible 

interaction to be more expressive in this situation, and other scenarios in the 

following ways:  
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o Adding complementary modes of input that can be utilized 

independently or simultaneously with traditional x, y, and 

rotational tangible interaction 

o Beginning to address the loss of input modes in situations where 

the object must be placed in specific locations or when x,y spatial 

relationships and movement are primary means of surface 

interaction.  

 

This greatly strengthens the ability of having dynamic relationships possible 

between tangible objects and the surface, and also between tangible objects and 

neighboring objects. 

A.4.5 Discussion: New Affordances for Tabletop 

Interaction 

Affordance theory, originally proposed by perceptual psychology pioneer J.J. 

Gibson introduces the idea that the potential utility of an object is based on the 

perceived qualities of the object by the subject (Gibson 1986). Whereas previous 

work in vision-based tangible tabletop surfaces has given users a set of 

interaction affordances defined by spatial relationships within a 2D environment, 

the SmartFiducial not only extends these affordances into the third dimension, 

but also offers additional affordances, governed by the unique cognitive notions 

of gesture based input. The following are a few of the interaction affordances 

that we have discovered through our initial experimentation with the 

SmartFiducial: 

 

o Z-Depth proximity sensing may provide a more natural means of 

exploring 3D virtual environments on tabletop surfaces 

compared to traditional 2D interfaces. 

o Both pressure sensitivity and proximity sensing offer the user 

means of highly gestural continuous control. These are very 
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different than common touch-based input gestures such as 

pinching, zooming, etc. 

o Pressure sensitivity is not only gestural but may provide the user 

more tactile interaction and control over traditional tangible 

interaction, especially when employed in combination with other 

interaction techniques (for example, utilizing the pressure sensors 

simultaneously with moving and/or rotating the objects on the 

surface). 

o Proximity and pressure sensors lend themselves particularly well 

to the application of a parameter modifier, non-dependent on the 

tabletop surface’s GUI. 

 

Additionally, the design of the SmartFiducial is influenced by Donald Norman’s 

application of Affordance Theory to the field of Design, and Human Computer 

Interaction (Norman 1988). In accord with Norman’s idea that the design of an 

object can be such that it suggests potential usage, our qualitative use of 

SmartFiducials has matured in its design in ways we believe optimize the 

SmartFiducial to be naturally used, without previous experience. This includes 

the interaction design decision to place the IR proximity sensor on the top of the 

SmartFiducial, and the pressure sensors on both sides of the SmartFiducial, 

typically where users grip the object. While of course there will always be a 

familiarization stage between the user and the software running on the tabletop 

surface, our initial exploratory testing showed that the users easily learned that 

there was a proximity sensor on the top of the SmartFiducial, and pressure 

sensors on the sides. As a result, they were able to very naturally exert a high-

level of control and nuance in the use of the inputs. 

A.4.6 Final Thoughts on Augmented Fiducial 

Objects 

Building upon previous vision-based tangible surface interaction techniques 

(offering x, y, and rotational modes of input freedoms), the SmartFiducial is a 

novel tangible object that offers a new level of gesture and tactile affordances to 
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tangible tabletop interaction. While we present an initial exploratory application 

of these new input freedoms in the realm of music (Turbine), we believe the 

potentials enabled by the SmartFiducial can greatly enhance the user-experience 

when interacting with tangible tabletop surfaces across many disciplines and 

fields.  

 We are currently developing the Turbine synthesis engine to more 

thoroughly examine the affordances of the SmartFiducial in musical contexts. In 

the future we are particularly interested in conducting user-studies that explore 

our preliminary findings and experiences with the SmartFiducial, and will also 

hopefully illuminate new use cases and affordances of the SmartFiducial.  

 Additionally, we are excited to finally release the SmartFiducial and our 

branch of CCV into the community and see how others interpret and apply the 

new input freedoms. 

A.5 Summary 

While the research and analysis presented in this dissertation have looked at 

multimodal musical interaction in the laboratory and classroom, a core 

motivation has always been the application of such technologies in performance-

based contexts. To that end, this appendix has presented various projects and 

experience reports in which multimodal techniques were used to enable live 

musical interactions. Initial motivations arose from an early concert in which 

additional modes of real-time interaction were desired (see A.1). This was later 

achieved in A.2, a piece that was composed and performed exclusively with three 

multimodal hyperinstruments. This performance was a particularly enlightening 

experience, and brought to light many challenges and affordances of working 

with multimodal systems for live computer music.  

 Multimodal techniques can also greatly benefit other multimedia scenarios, as 

investigated in the performance detailed in A.3, and the SmartFiducial in A.4. In 

both cases, multimodal approaches were used to heighten musical and 

multimedia interactions, overcoming limitations of particular sensing modalities. 

In Transformations (A.3), a synergy was created between the auditory modality, the 

vision tracking modality, and sensors on a dancer’s body. Once combined, the 



Appendix A. Live Performances and Applications 

 

197 

entire performance space became an interactive environment for the dancer and 

musician to engage. In the SmartFiducial, multidimensional levels of control and 

gesture were added to tabletop surfaces, enabling a more dynamic and expressive 

platform for collaborative musical interactions. 

 An in depth review of the particular affordances, implementations, 

challenges, design and interaction principles, and other experiences from the 

projects described can be found in their respective sections. In a broader scope, 

the projects and experiences detailed have created a number of situations in 

which the application of multimodality has been applied to real-time interactive 

contexts with musicians (and other artists). The experiences have helped solidify 

the overarching “why” of this research. Through multimodal interaction, it was 

possible to fulfill many desired interaction needs as a composer, performer, and 

interaction designer in the pieces described. Multimodal techniques enabled 

additional levels of control over musical parameters, resulting in more 

heightened musical experiences. This of course was not without its challenges 

and considerations. Most importantly, the projects presented are not without 

many potential possibilities—promising powerful, and more heightened musical 

experiences and interactions in the future. 
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Appendix B  

Sensors 

Overview of sensor technologies used in research 
 

The research presented in this dissertation is multimodal in nature—combining 

the acoustical analysis of musical performance, with the analysis of various 

sensors on the instrument and performer. This section serves as a reference for 

the sensing technologies used in the research, and other sensors that are 

commonly used in musical HCI and physical computing. 

B.1 Transducers 

Nearly all sensors used in this research are a type of transducer. A transducer is 

simply a device that converts one form of energy (mechanical, electrical, 

magnetic, etc.) into another. Generally speaking, transducers output a variable 

electrical signal from some physical variable. 

 The most common transducers used in musical scenarios are microphones 

and loudspeakers. A microphone is essentially an acoustic-to-electrical transducer 

that converts sound (vibrations) to an electrical signal. Depending on the type of 

microphone (dynamic/moving-coil, condenser/capacitive, etc.) this is 

implemented slightly differently, although they operate under the same general 

principle. When a sound enters the microphone, the sound waves vibrate a 

diaphragm. In a dynamic or moving-coil microphone, the vibrating diaphragm 

moves a coil positioned in a magnetic field (created by a fixed magnet) which 

produces a varying electrical current in the coil via electromagnetic induction. A 

dynamic microphone essentially works like a normal loudspeaker, only in reverse. 

 Similarly, a condenser microphone also vibrates the diaphragm, however, the 

diaphragm instead acts as one plate of a capacitor. The distance between the 

diaphragm and another plate retains the voltage; when the sound vibrates the 
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diaphragm, the distance between the diaphragm and the plate varies, changing 

the voltage between the plates.  

 There are other types of microphone variations (electret, ribbon, etc.), and all 

are transducers. Transducers however are not just microphones and 

loudspeakers, they come in many forms of energy as illustrated in Figure 73.  

 

 

Figure 73: Overview of common forms of energy that transducers convert 

 

B.2 Piezoelectric Sensors 

Made from piezoelectric ceramics and single crystal materials, piezoelectric 

sensors are a type of transducer that converts mechanical measurements such as 

pressure, acceleration, strain, and force into electrical signals. Piezoelectric 

vibration sensors convert (wasted) energy from mechanical strain into electrical 

energy. Because piezoelectric sensors have a very high frequency response, and 

can sense and convert very small amounts of mechanical changes, they are 

extremely useful in musical applications and research. Common piezoelectric 

sensors include “contact” microphones, and the ceramic material in a record 

players stylus (the crystal flexes in the records grooves, resulting in a voltage). 
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B.3 Force-Sensing Resistors 

Force-Sensing resistors (FSRs) are made from a conductive polymer film that 

decreases in resistance under the application of pressure and force onto its 

surface. Although FSR resolution is quite high (± 0.5% of full use force for most 

common FSR’s), accuracy can vary depending on the setup consistency and can 

range anywhere form ± 5% to ± 20%.   

 

 
Figure 74: Common FSR shapes and configurations (force a and b, position c) 

 

 An advantage of FSRs, especially in musical contexts, is the ability to come in 

various sizes and configurations. Additionally, they are very flat, typically with 

thicknesses less that 0.5mm. Figure 74 shows three common FSR types; (a) is 

used as a thumb pressure sensor on the Esitar used in the performer recognition 

experiments, and (b) is commonly used for velocity sensitive drum triggers. The 

last FSR in the figure (c) is a special type of FSR called a linear softpot 

membrane potentiometer. These work similarly to regular FSRs, however, 

instead of changing resistance based on force applied anywhere on the surface, 

the membrane potentiometer changes the resistance based on the forces location 

along the strip.  
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B.4 Accelerometers 

Accelerometers are a sensor with many applications, and have become very 

common in everyday consumer electronics. For example, they allow a cellphones 

screen to orient itself properly when the phone tilted on its side; to help combat 

data corruption, they direct a laptops hard-drive to lock when sensing that the 

computer may have been dropped; they are also used to convert a users motion 

into gestural control, for example, in the Nintendo Wii gaming console. As such 

accelerometers are powerful sensors that can capture the physical motion of 

musical performance. 

 Accelerometers come from a family of motion sensors (including 

gyroscopes), and specifically they measure acceleration. There are generally two 

types of acceleration, static or tilt (due to gravity), and dynamic or movement. 

There are many different ways accelerometers are constructed, including 

piezoelectric and capacitive techniques. In a piezoelectric approach, tiny crystal 

structures are stressed by accelerative forces, which cause a voltage to be 

generated. In the capacitive approach, capacitance is created between two 

microstructures. An accelerative force causes one to move, changing the 

capacitance, which then gets converted into a voltage.  

 Accelerometers come in a number of configurations and sensitivities. 

Acceleration is measured in meters per second squared (m/s2), or g-force. 

Accelerometers are tuned to provide accurate acceleration measurements at 

either one or a configurable g-force. In general, the greater the g-force the 

accelerometer is capable of detecting, the lower the precision across the full-scale 

range of the accelerometer (upper and lower limits of detection), so it is 

important to select an accelerometer appropriately for the particular application. 

Additionally, accelerometers can measure acceleration in single, biaxial, and 

triaxial configurations (essentially one, two, or three 1D accelerometers in a 

single package). In musical applications and other gestural situations, biaxial (two) 

or triaxial (three) axis of acceleration is often desired. 

 Accelerometers also come in both analog and digital packages. Analog 

accelerometers produce a voltage output (for each axis), which is directly 
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proportional to the sensed acceleration. Digital accelerometers are normally 

more configurable, and communicate over a serial interface such as SPI or I2C. 

 Examples of accelerometers in the research can be found in the four sensor 

systems described in 3.1 and in the research found in Chapter 4, Chapter 5, 

Chapter 6, and Chapter 7. Additionally, accelerometers we used in the live 

performance scenarios documented in A.2, and A.3. 
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Appendix C  
 
Communication Systems and 
Protocols 

Information sharing though common languages  

 

At the center of computer music are communication systems and protocols—

information channels in which applications and hardware devices can exchange 

data with one another. Without protocols there would be no common language 

for electronic instruments or software applications to converse, and so 

establishing common languages is essential for computer music. 

C.1 MIDI 

The MIDI (Musical Instrument Digital Interface) protocol specification was 

created and adopted in the early 1980’s to standardize communication between 

musical devices. Still in use today, the protocol was designed to communicate 

information such as pitch, velocity, control parameters such as vibrato, panning, 

as well as clock signals for synchronization and tempo information. Prior to the 

MIDI standard, most synthesizers, drum machines, sequencers, and other 

hardware devices, implemented propriety communication protocols to 

communicate with one another. This often meant that devices from different 

manufacturers could not talk with one another, or required other middle-ware 

systems to translate the messages between devices. 

 Although MIDI was originally conceptualized to communicate between 

hardware devices, the MIDI standard defines communication for both hardware 

and software, and today most music software has adopted the MIDI standard for 

communication. Most MIDI communication consists of a two or three-byte 

message which includes a status byte, followed by one or two data bytes. Status 
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bytes begin with a ‘1’ (e.g. 1xxxxxxx) and data bytes begin with a ‘0’ (e.g. 

0xxxxxxx). Each byte is surrounded by a start and stop bit, resulting in each 

packet being a total of 10-bits long. 

There are five MIDI message formats: 

 

1. Channel Voice: Controls the instrument’s sixteen voices and is used to 

play notes, send CC (controller data), etc. 

2. Channel Mode: Controls the way the device responsds to incoming 

MIDI messages (monophonic/polyphonic, non-

multitimbral/multitimbral). 

3. System Common: Messages that must be sent across the entire MIDI 

system/network, to all devices, regardless of channel. 

4. System Real-Time: Mostly used for synchronization and clocking of 

connected devices. These contain only status bytes (no data bytes), and 

include MIDI Clock, start, stop, continue, system reset, etc. Because they 

are timing critical, Real-Time Messages can be inserted into the middle of 

any multi-byte MIDI message. 

5. System Exclusive: System Exclusive, or SysEx, is data designated to be 

used only by one piece of gear or manufacturer. SysEx was designed as a 

system in which non-standard MIDI messages could be sent to specific 

hardware units, for example remote patch editing, patch bank select, or 

parameters not supported by continuous controllers. 

 

For more information on MIDI and the full MIDI specification, please refer to 

the official MIDI Manufacturers Association website27. 

C.2 Open Sound Control 

Open Sound Control (OSC) is a network based communication protocol 

designed to take advantage of modern networking to deliver fast, descriptive, 

bidirectional communication between software applications, hardware devices, 
                                                

 
27 http://www.MIDI.org  
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and instruments. OSC is extremely useful for musical purposes because of its 

high speed, flexibility, and high resolution time stamping. Additionally, OSC is 

cross-platform and is available for most programming languages, making it a 

highly attractive communication protocol. 

 An advantage of OSC over other communication protocols (e.g. MIDI) is its 

descriptive and dynamic URL-style symbolic naming scheme. Information is 

communicated between devices or applications by packing and sending data over 

a URL-like address, e.g. /myinstrument/sensor1/[data1 data2] (where data1 and 

data2 are some data values which are being transmitted). This leads to another 

useful trait of OSC, which is that data can be bundled together and sent as a 

package (both data1 and data2 are sent at the same time in the example). How 

data is bundled is completely up to the developer and depends on the 

implementation and requirements of the system. 

 There are many other features that make OSC an extremely useful 

communication protocol for music and multimedia scenarios (e.g. sharing data 

and musical information with other people over a local computer network or the 

internet). For many of these reasons, it was important to include OSC support in 

the development of Nuance. Please refer to the Nuance section (3.2) for more 

information on motivations to include OSC directly within the software, and for 

more information on OSC refer to (Wright, Freed, and Momeni 2003) and 

www.opensoundcontrol.org.  

C.3 TUIO 

TUIO is an open framework that has been largely embraced by the online multi-

touch interface community. Built on top of OSC, TUIO was designed to define a 

common protocol and API for tangible and multi-touch interfaces to send 

information such as touch and object events. TUIO is open source, cross-

platform, and supported by nearly all of the available tangible and multi-touch 

vision tracking systems. A custom TUIO protocol was used in this research to 

broadcast information from the SmartFiducials to the computer in A.4. 
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Appendix D  
 
Machine Learning 

Teaching the computer to learn from experience 

 

In the typical model of computing, machines can only execute operations in 

which they are explicitly programmed to perform. But what if a computer could 

learn from experience as humans do? This is the primary goal of machine 

learning, an exciting branch of artificial intelligence, which aims to create 

algorithms that can evolve, or learn behaviors. This is achieved by creating 

machine learning algorithms that are capable of deducing the complex 

relationships that exist within sample training data. The training data however 

cannot possibly account for all instances of all unknown inputs, and so a main 

goal of machine learning algorithms is to generalize the relationships in the data as 

much as possible. In this way the algorithm can be optimized to make correct 

decisions (outputs) with new and unknown cases (inputs). As this work in this 

dissertation focused on a particular type of machine learning scenario called 

“supervised learning”, the following sections provide an overview of supervised 

learning, key terminology, and a brief description of the algorithms used in the 

research. 

D.1 Supervised Learning 

Supervised learning is a branch of machine learning in which an algorithm 

produces a mathematical model (function), which can produce some output, 

given some input (data) (that it may or may not have seen before). As illustrated 

in Figure 75, the algorithm learns to infer the model by training on a data set of 

previous observations (input and output pairs). Once the model has been trained, 

new inputs are fed into the model, which then computes a new output. The data 
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that is input into the algorithm is a feature-vector of observation examples, with 

their corresponding outputs.  

 

 

Figure 75: Illustration of a typical supervised learning flow, adapted from (Fiebrink 2011) 

 

 For an example of a typical classification task, lets revisit the performer 

recognition experiments from Chapter 4. The training sets included feature 

vectors (a list of attributes) of the player’s performance features, which were 

extracted from the audio and sensor data. The feature vectors included acoustical 

measures extracted from the audio, raw sensor values, and other computed 

statistics. Each feature vector in the training set was labeled with the 

corresponding label for each performer (the “output” in a performer 

classification scenario). Given the labeled training set, the algorithm generalizes 

and learns the relationships of the features, builds the model, and can assign a 

label (e.g. predicting who the performer is) to some new unlabeled feature vector 

input. 
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 Classification tasks are not the only types of supervised learning problems. 

Whereas in a classification scenario the output is a member of a finite set (in the 

performer recognition example the output could only be one of the performers 

in the training set), in a regression problem, the output can be any real value. A 

classic example of regression is predicting the selling price of a house given some 

set of features (size of the house, number of rooms, number of bathrooms, 

neighborhood, selling price of other homes in the area, other market statistics, 

etc.). Given these set of features, one might want to predict the optimal value to 

sell the house at. As the research in this dissertation does not explicitly deal with 

regression problems, this section won’t look into regression any further, and 

instead will turn to explaining the other terms, methods, and algorithms 

(classifiers) that were used in this research.  

D.2 KK-fold Cross-Validation 

Cross-validation is a technique used in machine learning and statistical analysis 

which helps achieve greater generalization and accuracy in the output (results); it 

helps to reduce over-fitting when a separate validation (test) set is not available. 

 For example supposed one were to attempt performer classification as per 

Chapter 4. Because machine learning algorithms normally attempt to create a 

model which best fits the training set, testing on validation data from the same 

population (the training set) may result in over-fitting. To overcome this 

problem, when an independent test set is not available, k-fold cross-validation 

can be used.  In k-fold cross validation, the training set is partitioned into k 

subsamples (sets). The model is trained using k – 1 of the subsamples, and the 

left over set is used as an independent test (validation) set. This process is 

repeated over the number of folds (k times), and the results from each fold are 

averaged. Each of the subsamples is used for validation only once, which ensures 

that all observations (instances) are used for both training and testing. 
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D.3 Algorithms 

There are many different algorithms for generalizing models, which are suited 

for different applications and tasks. This section will provide introductions to the 

various families of algorithms used in the machine learning scenarios presented 

the research. For more detailed information on the specific algorithms, and 

others, refer to (Witten, Frank, and Hall 2011). 

D.3.1 Decision Trees 

Decision trees are predictive models in which tree-like data structures are created 

to predict the output values.  In decision tree algorithms, starting from the root, 

branches represent features that lead to leaves—or target output attributes. 

Decision trees are particular appropriate for binary classification problems, or 

other scenarios where there are fixed sets of output attributes or real values. 

 As an example, suppose one would like to determine the genre of an audio 

recording given the following training data (instruments represent the feature 

vectors or the input, and genre is the corresponding classification label or output 

class): 

Table 25: Sample feature set of instruments for genre classification problem using a decision tree 
classifier 

Instruments Genre 
Electric guitar, drums, bass (upright), piano (electric) Jazz 
Electric guitar, drums, bass (electric), piano (electric) Rock 
Electric guitar, drums, bass (electric), piano (acoustic) Jazz 
Acoustic guitar, drums, Electric bass, piano (acoustic) Rock 

 

In such a case, a tree may be constructed as in Figure 76. In this example, each 

instrument type would be a node of the tree, or attribute of the instances feature 

vector. The branches (e.g. electric guitar or acoustic guitar) represent the values, 

which lead to leaf nodes, or class of the instance (e.g. the genre). 
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Figure 76: Sample decision tree constructed from the feature set of instruments (for genre 
classification) listed in Table 25 

  

 A benefit of decision trees is that they are whitebox systems—you can 

visually see the relationships that represent the data. While they are easy to 

understand and visualize, they can be prone to data over-fitting (whereas they do 

not generalize the data relationships enough), although most algorithms typically 

employ various pruning techniques to optimize their generality. 

D.3.2 Naive Bayes 

Naive Bayes is a simple probabilistic classifier based on the Bayesian theorem, 

which calculates the probability of an event occurring given the probability of 

another event that has already occurred. Each variable (feature) is considered 

independently from all other features, regardless of relationships that may or may 

not exist between them in the feature space.  Although having simplified 

assumptions, Naive Bayes continues to work very well in complex real-world 

machine learning problems, with the benefit or short training times. Depending 

on the problem however, covariance between features can sometimes greatly 

increase performance and so another algorithm may outperform Naive Bayes.  
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D.3.3 k-Nearest Neighbor (kNN) 

A kNN or k-nearest neighbor algorithm is a classification algorithm that classifies 

objects based on the proximity of training examples in the feature space. A 

typical implementation involves a distance function that calculates the distance of 

the test-points’ features to the feature sets of the training data (e.g. using 

Euclidian distance or another distance metric). In a “majority wins” approach, 

the class with the maximum k-nearest neighbors within the boundaries 

determines the class to be assigned to the test point. 

 As an example, Figure 77 illustrates a typical binary classification problem 

where the rounded rectangle (labeled ‘?’) in the center is an unknown test-point 

(input) which one would like to assign a class label (class 1 or class 2). If k = 3, 

the test-point would be labeled as class 2, as the three nearest neighbors includes 

two from class two, and only one from class three. It is common to use more 

advanced distance functions, or weight the class instances differently, e.g., 

weighting the class instances less the further away they are from the test point. 

 

 

 

Figure 77: Illustration of kNN classifier where there are two classes (class 1 and class 2), and a 
rounded rectangle marked ‘?’ in the center is the test or prediction point 
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D.3.4 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANN) are a type of algorithm modeled off of the 

biological interconnectivity of the human brain. ANNs are typically adaptive 

systems that can model highly complex relationships between inputs and outputs, 

finding patterns in data. While much about the human brain is yet to be 

discovered, ANNs operate under the following assumption of the brains 

biological functioning: the brain is composed of a complex interconnected 

structure of neurons. The connections between neurons continually adjust 

themselves as humans learn or gain new experiences. As signals are sent between 

neurons, the influence a signal has at a receiving neuron is a parameter that 

changes as one learns, altering the neurons output to other neurons, etc. 

 As such, a simple binary classification neural network is illustrated in Figure 

78. In the example, the input neurons (features) are interconnected through one 

hidden layer of neurons, which activate through weighted activation functions, 

ultimately leading to one of two outputs (e.g. class 1 or class 2).  

 In the research presented in this dissertation, we typically used a multilayer 

perception (MLP), which is a feedforward artificial neural network. Each node in 

a layer connects to every other node in the following layer with a certain weight 

. While training the MLP, the weights are updated during a process called 

backpropagation, which has the explicit goal of minimizing the output errors and 

updating the weights of the hidden layer activation functions using gradient 

descent. 

 An ANN can theoretically support any number of hidden layers, with non-

linear activation functions. As such, neural networks perform extremely well with 

complex data, and large feature spaces. 
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Figure 78: Simple artificial neural network with one hidden layer 
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