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Abstract: Pula maar is a Pliocene eroded, phreatomagmatic volcano, part of the Mio/Pliocene 

Bakony-Balaton Highland Volcanic Field. The remnant of the maar consists of a (1) distinct 

depression with a thick alginite, lacustrine laminite infill interbedded with coarse grained 

lapilli tuffs, (2) a narrow belt of a primary pyroclastic unit (tuff ring) in the marginal zone of 

the depression (erosion remnant of the tuff ring) and, (3) a reworked coarse-grained 

volcaniclastic unit in the marginal zone. . Paleo-earthquakes associated with ongoing nearby 

volcanic eruptions and/or large volume debris flows initiated by crater wall collapses into the 

maar crater lake are inferred to be responsible of formation of soft sediment deformation of 

fine-grained volcaniclastic sediments. 
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Introduction 

The intracontinental alkaline basalt volcanism at the Bakony- Balaton Highland Volcanic 

Field (BBHVF), western Hungary (Fig. 1) was active between 7.56 and 2.3 Ma (Balogh et al. 

1986; Borsy et al. 1986; Balogh 1995).  During the volcanic activity, short lived (days to 

month) monogentic volcanoes (Walker 2000) were formed and preserved such as erosional 

remnants of tuff rings, maars, scoria cones or basaltic mesa flows (Németh & Martin 1999). 

Maars and tuff rings have wide craters surrounded with often incomplete, crescent-shape 

phreatomagmatic tephra ring (Vespermann & Schmincke 2000). The maars are generally 

characterised by subsided crater floor, which form after the phreatomagamatic eruption due to 

collapse and subsidence of loose country rock and pyroclasts in a funnel shape volcanic 

conduit (Lorenz 1986). There is no sharp difference between tuff rings and maars in general, 

mailto:peperit@freemail.hu
mailto:csillag@mafi.hu


their tephra ring consists of similar accidental lithic clast-rich lapilli tuffs and tuffs rich in 

fragments of disrupted country rocks. Crater are commonly filled by water relatively quickly 

(days to months) from the water table disrupted by the phreatomagmatic. This crater lakes 

function as sedimentary traps in which loose tephra from the surrounding crater rim is 

transported (White 1992).  Due to  the steep inner crater wall of these volcanoes, sediment 

transported by energetic debris flows, (modified) grain flows as well as normal deep water 

turbidity currents (Smith 1986). In remnant hydrovolcanic fields these crater lakes may 

preserve a uniq sedimentary record of an entire area (Kulbe et al. 2000; Zolitschka et al. 

2000). From the BBHVF, alginite (oil-shale) studies in the past decades have characterised 

laminated sediments formed in closed crater lakes such as Pula or Gérce (Jámbor & Solti 

1976; Hably & Kvacek 1998; Willis et al. 1999; Pápay 2001). However, only recently the 

importance of studies aiming in the description and interpretaion of the sedimentary processes 

that are involved in the formation of these (Németh 2001) maar pitted basin. We therefore 

here intend to give a short describtion of the pyroclastic and maar crater deposits of Pula maar 

and highlight the importance of distinguishing primary, intra- and extra-crater sedimentary 

processes that operate in association with a hydrovolcanic field. 

 

Volcaniclastic succession of Pula 

The Pula crater is a north-south elongated depression, currently forming a max. 50 m deep 

basin (Fig. 1). The volcanic-related rocks have been grouped into four major lithofacies on the 

basis of their bedding, sorting, grading and compositional characteristics. The central part of 

the volcanic depression is filled with finely bedded, laminated, normally graded, fine-grained 

volcanic silt and sandstone with angular quartz and minor (up to 20 vol %) non-to-weakly 

vesicular, non-abraded tephrite to phonotephrite glass shards (facies 1 - central laminated).  

The mantle bedding, normal grading and the well-bedded characteristics of these beds 

indicate turbidite sedimentation (Walker 1992; Drohmann & Negendank 1993).  Thicker 

bedded, coarse-grained lapilli tuff beds are predominantly inverse-graded indicative of grain 

flow deposition (facies 2 - central juvenile-rich facies) (White 1992). Tephrite/phonotephrite 

glass shards in beds of facies 2 are weakly vesicular, microlite poor and blocky (Fig. 2) 

suggesting a phreatomagmatic explosive origin during their formation (Heiken 1974). Such 

glass shards were derived from the crater rim due to slumping and collapsing of part of the 

loose phreatomagmatic tephra surrounded the crater lake such processes are observed in 

young maar volcanoes (Büchel & Lorenz 1993). The coarse-grained beds often truncate 

underlying laminae causing dewatering-structures, soft sediment deformation and 



development of dish structures (Fig. 3). All these features suggest active syn-sedimentary 

slumping and shaking, and are interpreted as debris flow and/or turbidity current emplacement 

from the crater rim accompanied by paleo-earthquakes (Pirrung et al. 2001). The marginal 

area of the depression are formed by a narrow belt of phreatomagmatic lapilli tuff and tuff 

beds (facies 3 � tuff ring facies;~ 30 m thick). This lithofacies consists of rim-type 

accretionary lapilli bearing (Schumacher & Schmincke 1991), accidental lithic clast-rich, 

cross- and dune bedded lapilli tuffs/tuffs, whic are inferred to be primary in origin (Bull & 

Cas 2000).  They dip toward the centre of the basin or are subhorizontal. Flow indicators 

suggest that their source was in the centre of the depression. The fourth facies (facies 4 � 

volcaniclastic debris flow facies), a pyroclastic (~20 m) is related to the marginal primary 

pyroclastic facies (facies 3), which dips at 20-30º towards the centre of the depression. 

Sedimentary features of the volcaniclastic beds of facies 4, such as 1) presence of large (dm-

scale), semi-rounded lapilli tuff fragments in the volcaniclastic beds, 2) high percentage of 

carbonate cement, 3) larger proportion of broken, angular pyrogenic and/or xenocrystals 

(mostly olivine and clinopyroxene) and the lack of primary origin indicators (e.g. lack of 

accretionary lapilli) suggest a reworked origin by debris flows, which are generated on the 

inner wall of the crater (White 1992; Fisher et al. 2000). The large (dm-scale) floating lumps 

of lapilli tuff fragments in these beds, the unsorted, matrix-supported texture and disoriented 

fabric of the rock all support to interpret that the material was transported then deposited by 

energetic debris flows in the inner wall of the crater by similar way how it was reconstructed 

from Hopi Butte (White 1992). The common presence of abraded pyroclastic fragments in 

these beds show that already diagenised pyroclastic rocks existed prior to their disruption, 

however their origin is inconclusive and either could represent 1) pyroclastic rock fragments 

that were disrupted by the phreatomagmatic eruption of the Pula maar and incorporated into 

its own tephra as accidental lithic fragments or 2) an already diagenised part of the Pula 

maar's own tephra ring that was eroded into the maar crater. The large number of coherent 

lava clasts in reworked volcaniclastic beds (facies 4), their diverse shape and textural 

characteristics (microcrystalline to aphanitic) inidcates that older lava units were disrupted by 

the phreatomagmatic volcanic eruption(s) of Pula and subsequently reworked in form of 

debris flows that developed on the collapsing inner wall of a phreatomagmatic volcano. In this 

study clear sedimentological evidences show that monogenetic volcanism in western Hungary 

had different phases as well as significant time span (in comparison to the length of a usual 

monogenetic phreatomagmatic volcano life span � days to weeks) between eruptions allowing 

disruption of earlier emplaced lava flows and pyroclastic units.   



 

Conclusion 

Paleogeographical reconstruction focused on the crater lake deposition and their implication 

in understanding monogenetic volcanism in the region. This study suggests that the original 

maar basin at Pula was larger than previously suggested, showing the complexity of different 

depositional proccesses involved in the formation of such crater lake deposits. a well exposed 

example. The pyroclastic sequence of Pula is interpreted to be a typical accidental lithic clast-

rich lapilli tuff and tuff unit, showing indications that suggest a �damp and sticky� 

depositional environment. The preserved pyroclastic units record near-vent depositional 

environment, presumably close to the crater depression. In dissected outcrops, volcaniclastic 

debris flow deposits have been identified and interpreted to represent energetic debris flows 

which transported volcanic detritus into the crater lake from the tephra rim. This deposits 

were rich in intact pyroclastic rock fragments inferred to be a signature of the existence of 

already consolidated pyroclastic rocks that were recycled into the crater lake. The central 

lacustrine facies consists of laminated deposits (e.g. alginite) inferred to represent long, quite, 

intermittent depositional (thousands of years) period.  
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Fig. 1 
Simplified geological map of the Pula maar. 
 
Fig. 2 
Sideromelane glass shards (microcrystalline angular clasts) forming inverse graded lamina in 
facies 2 in the central part of the preserved maar lacustrine units. Note the large amount of 
quartz (white, angular clasts). Paralell polarized light. Shorter side of view is ~ 4 mm. 
 
Fig. 3 
Truncated load cast and dewatering structures cause by the sudden input of volcanic glass 
shard laden tephra into the Pula crater lake.  It is inferred to be transported by turbidity 
currents.  The twisted load casts may be dirrect results of paleoearthquackes, however, this 
interpretation still needs more work to be prooven. Long side of view is ~ 35 cm. 
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