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Abstract 

This research explores a new approach for building a complex intelligent robot 

multi-behaviour comprising of a variety of intelligent subsystems that are fused 

together into one hybrid system. The work mainly focuses on integrating 

reinforcement learning and fuzzy logic with genetic network programming, 

examining the different architectures, and aims to achieve multi-objective behaviours 

and alleviate the problem of learning and calibration by repeated interaction with 

the environment. Different components of the learning algorithm are studied 

separately and also in combination. They are developed systematically using an 

increasing level of complexity for robot behaviours. As a test bed, the work 

investigates how to achieve ball pursuit and wall avoidance behaviours 

simultaneously, in the realm of the robot soccer game. The training procedure and 

test environment is designed, as well as a variety of fitness functions are 

experimented for the multi-behaviour objectives. Furthermore, the novel 

evolutionary architecture is combined with hill-climbing to accelerate the search for 

the best individual. 

 

Keywords—robot soccer; multi-behaviour; multi-objectives; genetic network 

programming; fuzzy logic; reinforcement learning; 
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Chapter 1  
Introduction 

1.1. Overview of the Current State of 
Technology 

A large number of studies have been made on automatic design of behaviour 

sequences for agents, such as the sequence to carry out some tasks in the virtual 

world. The experiments of creating artificial life aiming to realize the behaviours of 

ants or fishes are a good example, as well as the planning for real mobile robots 

which have a simple object in the real world. Many models used to express such 

behaviour sequences for agents have been proposed. Many of these models use 

fuzzy logic, supervised leaning, reinforcement learning, and evolutionary 

optimization techniques such as Genetic Algorithm, Evolution Strategy and Genetic 

Programming. As a result, there are still some common problems that are hard to be 

addressed, such as enormous computational cost during training time, expert 

pre-knowledge required or poor ability in terms of adjustability in dynamic 

environments.  

 

Reinforcement learning is still a powerful algorithm for robot control, and several 

modifications and combinations of reinforcement learning with other algorithms 

show a strong potential for improvement. Some of these developments have 

sophisticated framework, and some of them run extremely fast (Pitoyo, et al., 2009). 

Recently, a graph structure based evolutionary algorithm Genetic Network 

Programming was proposed (Katagiri, et al., 2000). Within twelve years, this 

algorithm has been tested and combined with other algorithms, showing a solid 

capability to deal with dynamic environments. The latest research combined Genetic 

Network Programming, Fuzzy Logic and Reinforcement Learning together, and 

presented a strong potential to overcome weaknesses mentioned above. It has been 

tested by a wall following robot and the result was much better than conventional 

methods in dynamic environments (Mabu, et al., 2011). 
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1.2. Research Objectives 

The main objective of this research is to give agents the ability to learn a complex 

behaviour by themselves in dynamic environments, by using hybrid algorithms. To 

the best knowledge of the author, the combination of genetic network programming, 

fuzzy logic and reinforcement learning has not been tested yet to achieve a complex 

multi-behaviour through interacting with the environment.  This research aims to 

study the aforementioned algorithms and improve and extend them for learning 

more complex multi-behaviour operations. 

Specific Objectives 

1. Develop, test and analyse a simple robot behaviour using a cascade of fuzzy logic 

control systems. 

2. Develop, test and analyse a simple robot behaviour using reinforcement learning. 

3. Develop, test and analyse a simple robot behaviour using reinforcement learning 

and fuzzy logic system. 

4. Develop, test and analyse a simple robot behaviour using genetic network 

programming with reinforcement learning. 

5. Find other possible learning schemes to achieve multiple behaviour operations 

for a robot. 

6. Develop, test and analyse multiple behaviour functionality with 

fuzzy-reinforcement learning algorithm. 

7. Develop, test and analyse the genetic network programming with 

fuzzy-reinforcement learning nodes algorithm to achieve multiple behaviour 

operations for a robot. 

1.3. Scope and Limitations of Research 

1. All experiments should run in a simulation environment. There are limitations to 

the physics involved in the simulations. 

2. The experimental subject is a simulated bi-wheel robot, which is only able to 

control the speed and steering angle by controlling the velocity of the two wheels 

independently. 
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3. The testing field in the simulation environment complies with the FIRA 

Roboworld Cup standard soccer field. 

4. The multiple behaviours for the robot in the tests are limited to three simple 

tasks: target pursuit, speed control and wall avoidance.   

1.4. Overview of the Problem Domain 

The problem domain is limited to the FIRA micro-soccer robot. It only has two wheels 

and it is a popular test bed for artificial intelligent programs. The hybrid algorithm 

will be tested in a simulation environment where all sizes are the same as the real 

robot soccer. This research focuses on developing multiple behaviour operations for 

a bi-wheel robot. Two different behaviours are tested, ball pursuit (with speed 

control) and wall avoidance. The simulation program updates the status of the ball 

and robot every time step. All the simulations in this thesis only consider the position, 

speed and direction of the objects. Thus the angle and distance from ball to robot, or 

the angle and distance from wall to robot can be obtained as input values for the 

robot control algorithm. Moreover, the control system is able to adjust the speed and 

the direction of the robot directly.     

1.5. Significance of the Research 

This research presents a novel architecture for combing Fuzzy logic, reinforcement 

learning and genetic network programming. The new architecture inherits the 

flexible attribute from genetic network programming and adds complex processing 

nodes into the system (this research uses Fuzzy-Reinforcement nodes), making the 

new framework to be able to deal with complex multiple robot behaviours. The ball 

pursuit and wall avoidance behaviour for robot was achieved, as well as an efficient 

training methodology, involving a fitness function.  As compared to the other works 

(Mabu, et al., 2011) for robot control using the GNP algorithm, the experiments in 

this research proves that the new architecture has strong adaptability mechanisms 

for learning multi-objectives.  
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1.6. Research Methodology 

1. Study cascaded fuzzy logic systems. 

2. Write a program to test a Fuzzy logic system for achieving a simple task. 

3. Study Reinforcement Learning Algorithm. 

4. Write a program to test Reinforcement Learning for achieving a simple task. 

5. Study Genetic network programming. 

6. Write a program to test Genetic network programming for achieving a simple 

task. 

7. Follow the existing genetic network programming with reinforcement learning 

scheme to implement ball pursuit behaviour for robot. 

8. Combine fuzzy logic with reinforcement learning.  Write a program to test ball 

pursuit behaviour for robot. 

9. Improve the performance of fuzzy logic with reinforcement learning for ball 

pursuit. 

10. Write a program to achieve a complex multi-behaviour by using fuzzy logic with 

reinforcement learning. 

11. Write a program to achieve a complex multi-behaviour by using genetic network 

programming with Fuzzy-reinforcement learning nodes. 

12. Test and compare the GNP with Fuzzy-RL nodes scheme with Fuzzy-RL scheme. 

13. Through experiments, characterise all the aforementioned algorithms, in terms of 

performance efficiency, flexibility and adaptability. 
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1.7. Structure of the Thesis Documentation 

This document is comprised of 6 chapters. Chapter 2 provides a theoretical 

framework and detailed algorithms of fuzzy logic control system, reinforcement 

learning and genetic network programming. 

 

Chapter 3 presents three different algorithms to accomplish implementing a single 

robot behaviour – ball pursuit (with speed control). Detailed implementation and 

results are discussed in this chapter, as well as the limitation of each algorithm. 

 

Chapter 4 presents the Fuzzy-RL algorithm for achieving multi-behaviour for robot. 

Ball pursuit and wall avoidance are implemented and tested. Detailed 

implementation and testing results also shows in this chapter. 

 

Chapter 5 presents the novel architecture - GNP with trained Fuzzy-RL nodes for 

multi-behaviour. Ball pursuit and wall avoidance are implemented and tested, in 

contrast with Chapter 4, it is able to distinguish different walls for different actions. 

 

Lastly, chapter 6 summaries the whole document, and identifies promising areas of 

research worthy of conducting future works. 
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Chapter 2  
Review of Related Literature 

2.1. Fuzzy Logic Control 

Fuzzy logic has a very long history, the term is introduced in 1965 by Lotfi A. Zadeh 

(Zadeh, 1965) with the proposal of fuzzy set theory and it has been studied even 

earlier. Fuzzy logic has been applied to many field and wildly used in industry as a 

control system. It is a form of many-valued logic or multi-value logic, it gives an 

approximation rather than fixed and exact. 

2.1.1. Fuzzy Sets and Membership 

For crisp sets, an element x in the universe X is either a member of some crisp set A 

or not. This binary issue of membership can be represented mathematically as below, 

𝑋𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴 

  (1) (Berenji, et al., 1992) 

Zadeh extended the notion of binary membership to accommodate various “degrees 

of membership” on the real continuous interval [0, 1]. The membership function 

embodies the mathematical representation of membership in a set, and the notation 

used throughout this text for a fuzzy set is a set symbol with a tilde underscore, say 

𝐴 , where the functional mapping is given as 

𝜇
𝐴
(𝑥) ∈ [0,1]  (2) 

The symbol μ𝐴(𝑥) (Ross, et al., 2002) is the degree of membership of element x in 

fuzzy set 𝐴. 

 

For example, to describe the distance between two objects, it can be presented as (a) 

by using classic sets and (b) by using fuzzy sets in Figure 2.1. 
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(a)                                (b) 

Figure 2.1 Classic sets and fuzzy sets 

2.1.2. Algorithm Description 

Fuzzy control can be divided into three steps: fuzzification, rule evaluation and 

defuzzification. 

 

Figure 2.2 Sample fuzzy sets for distance 

In the first step fuzzification, the real input value will be mapped to a truth value in 

the 0 to 1 range by each membership function. Use Fig. 2.2 for instance, suppose the 

input value is 25. Thus the truth values for distance can be written as follows. 

𝜇𝑁𝐸𝐴𝑅(25) = 0 

𝜇𝑀𝐸𝐷𝐼𝑈𝑀(25) = 0.5 

𝜇𝐹𝐴𝑅(25) = 0.5 

Fuzzy logic usually use IF THEN statements for rules, and these rules will take truth 

values to the final fuzzy value. 

For instance: 

Rule 1: If distance is NEAR then low speed 

Rule 2: if distance is MEDIUM then medium speed 

Rule 3: if distance is FAR then high speed 

Now the firing degree of low speed is 0, the firing degree of medium speed is 0.5 and 

the firing degree of high speed is 0.5. 

0

0.5

1

0 5 10 15

Classic Sets

0

0.5

1

0 5 10 15

Fuzzy Sets

0

0.5

1

0 5 10 20 30 40

Sample Fuzzy Sets for Distance

NEAR MEDIUM FAR
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Suppose the value of low speed is 1, medium speed is 5 and high speed is 10. In the 

last step defuzzification, it uses a centroid method to reach the final output. 

Centre of mass formula: 

𝐶𝑂𝑀 =  
∑ 𝑚𝑖𝑥𝑖

𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

  (3) (Berenji, et al., 1992) 

Thus the output is: 

𝑜𝑢𝑡𝑝𝑢𝑡 =  
0 ∗ 1 + 0.5 ∗ 5 + 0.5 ∗ 10

0 + 0.5 + 0.5
= 7.5 

2.2. Reinforcement Learning 

Reinforcement learning addresses the problem of how an autonomous agent that 

senses and acts in its environment can learn to choose optimal actions to achieve its 

goals. The problem, due to its generality, covers tasks such as learning to control a 

mobile robot, learning to optimize operations in factories, and learning to play board 

games. The major difference between reinforcement learning and other forms of 

machine learning is that learner is not told which actions to take, but discover which 

actions yield the most reward by trying them. This section introduces the basic 

schematics of reinforcement learning and two well-known algorithms, Sarsa 

(Rummery, et al., 1994) and Q-Learning (Watkins, et al., 1992). 

2.2.1. Markov Decision Process 

In machine learning, the environment is typically formulated as a Markov decision 

process (MDP) (Bellman, 1957) and reinforcement learning is not an exception. 

Markov decision processes (MDP), named after Andrey Markov, provide a 

mathematical framework for modelling decision making in situations where 

outcomes are partly random and partly under the control of a decision maker. The 

essence of MDP is that a future state is determined only by the current state, 

because the current state already contains sufficient information for determine the 

next state.  

Markov Decision Process is defined by four elements S, A, R, P. (Faria, Gedson, et al., 

2000) 

S is a finite set of states 

A is a finite set of actions 

Ra
ss’ is the immediate reward received after taken action a transition from current 
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state s to next state s’. 

Pa
ss’ is the probability that action a in state s at time t will lead to state s' at time t+1. 

2.2.2. General Description 

MDP can solve the optimal policy for choosing actions by using Dynamic 

Programming if the R function and P function are known. Reinforcement Learning is 

used to learn the optimal policy when P function and R function are unknown. The 

four main elements (Bonarini, et al., 2009) of a reinforcement learning system are: a 

policy, a reward function, a value function, and, optionally, a model of the 

environment. 

A policy defines the learning agent's way of behaving at a given time (when 

selecting actions). 

A reward function defines the goal in a reinforcement learning problem. It 

maps each perceived state (or state-action pair) of the environment to a single 

number, a reward. 

A value function specifies what is good in the long run, whereas a reward 

function indicates what is good in an immediate sense. 

A model of the environment is something that mimics the behaviour of the 

environment. (e.g., a simulation program (although that in itself is NOT the 

model...)) 

A policy, π, is a mapping from each state, 𝒔𝝐𝑺, and action, 𝒂𝝐𝑨, to the probability 

π(s,a) of taking action a when in state s. Informally, the value of a state s under a 

policy π, denoted Vπ(s), is the expected return when starting in s and following π 

thereafter. For MDPs, Vπ(s) is defined formally as  

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠∞
𝑘=0 }  (4) (Sutton, et al., 

2012) 

Where 𝐸𝜋{} denotes the expected value given that the agent follows policy π, and t 

is any time step.  
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𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} 

= 𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

∞

𝑘=0

} 

= 𝐸𝜋 {𝑟𝑡+1 + 𝛾 ∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡 = 𝑠

∞

𝑘=0

} 

= ∑ 𝜋(𝑠, 𝑎)

𝑎

∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′

∞

𝑘=0

}]

𝑠′

 

= ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑆′)]𝑠′   (5) (Sutton, et al., 2012) 

The equation above is the Bellman equation for Vπ. It expresses a relationship 

between the value of a state and the values of its successor states. 

In reinforcement learning Ra
ss’ and Pa

ss’ are unknown, so it is impossible to update the 

value function by using the equation above. By using Monte Carlo Methods 

(Metropolis, et al., 1949), keeping the policy unchanged and keeping training the 

system repeatedly, one can use the estimated value function as below: 

𝑉(𝑠𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡 − 𝑉(𝑆𝑡)]  (6) (Sutton, et al., 2012) 

where st is the state visited at time t, Rt is the reward after time t and α is a constant 

parameter. 

This estimated value function will eventually be an approximation of equation (5). 

 

There are three common policies (Sutton, et al., 2012) used for action selection. The 

aim of these policies is to balance the trade-off between exploitation and exploration, 

by not always exploiting what has been learnt so far. 

ε-greedy - most of the time the action with the highest estimated reward is chosen, 

called the greediest action. Every once in a while, say with a small probability ε, an 

action is selected at random. The action is selected uniformly, independent of the 

action-value estimates.  

ε-soft - very similar to  ε-greedy. The best action is selected with probability 1 - ε 

and the rest of the time a random action is chosen uniformly. 

softmax - one drawback of  ε-greedy and ε-soft is that they select random actions 

uniformly. The worst possible action is just as likely to be selected as the second best. 
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Softmax remedies this by assigning a rank or weight to each of the actions, according 

to their action-value estimate. A random action is selected with regards to the weight 

associated with each action, meaning the worst actions are unlikely to be chosen. 

This is a good approach to take where the worst actions are very unfavourable. 

 

On-Policy (Poole, et al., 2010) Temporal Difference methods (introduced in next 

section) learn the value of the policy that is used to make decisions. The value 

functions are updated using results from executing actions determined by some 

policy. On the other hand, Off-Policy (Poole, et al., 2010) methods can learn different 

policies for behaviour and estimation. 

2.2.3. Temporal Difference Learning 

1-step TD Prediction TD(0) (Sutton, et al., 2012) 

Temporal Difference (TD) Learning methods can be used to estimate these value 

functions. If the value functions were to be calculated without estimation, the agent 

would need to wait until the final reward was received before any state-action pair 

values can be updated. Once the final reward was received, the path taken to reach 

the final state would need to be traced back and each value updated accordingly 

(Monte Carlo Methods). On the other hand, with TD methods, an estimate of the 

final reward is calculated at each state and the state-action value updated for every 

step of the way. Expressed formally: 

𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)]  (6) 

where rt+1 is the observed reward at time t+1. The pseudo code of TD(0) algorithm is 

shown as Pseudo code 1. 

Pseudo code 1: TD(0) algorithm (Sutton, et al., 2012) 

1.  Initialize V(s) arbitrarily, πto the policy to be evaluated 

2.  Repeat (for each episode) 

3.   Initialize s 

4.  Repeat (for each step of episode) 

5.   a ← action given by π for s 

6.   Take action a; observe reward, r, and next state, s’ 

7.   𝑉(𝑠) ← 𝑉(𝑠) + 𝛼[𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)] 

8.   𝑠 ← 𝑠′ 

9.  Until s is terminal 
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In the actual application, V(s) cannot be acquired directly, and Q(s, a) is introduced as 

an estimation of V(s). 

The value of taking action a in state s under a policy π is defined as below, denoted 

Qπ(s,a), as the expected return starting from s, taking the action a, and thereafter 

following policy π: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎∞
𝑘=0 }  (7) 

Qπ is called the action-value function for policy π. 

 

Therefore, two implementable TD(0) algorithm show as follows (Pseudo code 2, 

Pseudo code 3): 

 

Pseudo code 2: Sarsa (On-Policy) algorithm (Sutton, et al., 2012) 

1. Initialize Q(s,a) arbitrarily 

2. Repeat (for each episode) 

3.  Initialize s 

4.  Choose a from s using policy derived from Q (e.g. ε-greedy) 

5.  Repeat (for each step of episode) 

6.   Take action a, observe r, s’ 

7.   Choose a’ from s’ using policy derived from Q (e.g. ε-greedy) 

8.   𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

9.   𝑠 ← 𝑠′; 𝑎 ← 𝑎′ 

10.  Until s is terminal 

 

Pseudo code 3: Q-Learning (On-Policy) algorithm (Sutton, et al., 2012) 

1. Initialize Q(s,a) arbitrarily 

2. Repeat (for each episode) 

3.  Initialize s 

4.  Repeat (for each step of episode) 

5.   Choose a’ from s’ using policy derived from Q (e.g. ε-greedy) 

6.   Take action a, observe r, s’ 

7.   𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 

8.   𝑠 ← 𝑠′; 𝑎 ← 𝑎′ 

9.  Until s is terminal 
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n-step TD Prediction TD(λ) (Sutton, et al., 2012) 

In Monte Carlo backups the estimate value function is updated in the direction of the 

complete return: 

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑇−𝑡−1𝑟𝑇  (8) 

where T is the last time step of the episode. 

In one-step backups the target is the first reward plus the discounted estimated value 

of the next state: 

𝑅𝑡
(1)

= 𝑟𝑡+1 + 𝛾𝑉𝑡(𝑠𝑡+1)  (9) 

So, the n-steps target is: 

𝑅𝑡
(𝑛)

= 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛)  (10) 

The increment to Vt(St) (the estimated value of Vπ(st) at time t), due to an n-step 

backup of st, is defined by 

∆𝑉𝑡(𝑆𝑡) = 𝛼[𝑅𝑡
(𝑛)

− 𝑉𝑡(𝑠𝑡)]  (11) 

where α is a positive step-size parameter, as usual. 

The increments to the estimated values of the other states are 

∆𝑉𝑡(𝑠) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ≠ 𝑠𝑡  (12) 

In on-line updating, the updates are done during the episode, as soon as the 

increment is computed. In this case 

𝑉𝑡+1(𝑠) = 𝑉𝑡(𝑠) + ∆𝑉𝑡(𝑠)  (13) 

However, n-step TD methods are rarely used because they are inconvenient to 

implement. Computing n-step returns requires waiting n steps to observe the 

resultant rewards and states. For large n, this can become problematic, particularly in 

control applications. 

 

Backups can be done not just toward any n-step return, but toward any average of 

n-step returns. For example, a backup can be done toward a return that is half of a 

two-step return and half of a four-step return: 
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𝑅𝑡
𝑎𝑣𝑒 =

1

2
𝑅𝑡

(2)
+

1

2
𝑅𝑡

(4)
  (14) 

Any set of returns can be averaged in this way, even an infinite set, as long as the 

weights on the component returns are positive and sum to 1. 

The TD(λ) algorithm can be understood as one particular way of averaging n-step 

backups. This average contains all the n-step backups, each weighted proportional to 

λn-1, where 0≤λ≤1. A normalization factor of 1-λ ensures that the weights sum to 1. 

The resulting backup is toward a return, called the λ-return, defined by 

𝑅𝑡
𝜆 = (1 − 𝜆) ∑ 𝜆𝑛−1𝑅𝑡

(𝑛)
+ 𝜆𝑇−𝑡−1𝑅𝑡

𝑇−𝑡−1
𝑛=1   (15) 

If λ=0, then the overall backup reduces to its first component, the one-step TD 

backup. 

If λ=1, then the overall backup reduces to its last component, the Monte Carlo 

backup. 

On each step t, it computes an increment for state visited 

𝛥𝑉𝑠(𝑠𝑡) = 𝛼[𝑅𝑡
𝜆 − 𝑉𝑡(𝑠𝑡)]  (16) 

The increments to the estimated values of the other states are 

𝛥𝑉𝑡(𝑠) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ≠ 𝑠𝑡  (17) 

 

Eligibility Trace (Barto, et al., 1983) 

An eligibility trace is associated with each state. The eligibility trace for state s at time 

t is denoted. On each step, the eligibility traces for all states decay by γλ, and the 

eligibility trace for the one state visited on the step is incremented by 1: 

𝑒𝑡(𝑠) = {
𝛾𝜆𝑒𝑡−1(𝑠)          𝑖𝑓 𝑠 ≠ 𝑠𝑡

𝛾𝜆𝑒𝑡−1(𝑠) + 1  𝑖𝑓 𝑠 = 𝑠𝑡
  (18)  

This kind of eligibility trace is called an accumulating trace because it accumulates 

each time the state is visited, then fades away gradually when the state is not visited. 

The traces indicate the degree to which state is eligible for undergoing learning 

changes should a reinforcing event occur. The reinforcing events are the 

moment-by-moment one-step TD errors. For example, the TD error for state-value 

prediction is 

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉𝑡(𝑠𝑡+1) − 𝑉𝑡(𝑠𝑡)  (19) 
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The global TD error signal triggers proportional updates to all recently visited states, 

as signalled by their nonzero traces: 

𝛥𝑉𝑡(𝑠) = 𝛼𝛿𝑡𝑒𝑡(𝑠)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆  (20) 

Pseudo code 4: TD(λ) algorithm (Sutton, et al., 2012) 

1. Initialize V(s) arbitrarily and e(s)=0, for all s∈ S 

2. Repeat (for each episode) 

3.  Initialize s 

4.  Repeat (for each step of episode) 

5.   a ← action given by π for s 

6.   Take action a; observe reward, r, and next state, s’ 

7.   𝛿 ← 𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠) 

8.   𝑒(𝑠) ← 𝑒(𝑠) + 1 

9.   For all s: 

10.    𝑉(𝑠) ← 𝑉(𝑠) + 𝛼𝛿𝑒(𝑠) 

11.    𝑒(𝑠) ← 𝛾𝜆𝑒(𝑠) 

12.   𝑠 ← 𝑠′ 

13.  Until s is terminal 

 

In Pseudo code 4, if λ=0 it becomes completely same with TD(0) algorithm, and if λ=1 

this turns out to be just the right thing to do to achieve Monte Carlo behaviour. 

 

Almost any temporal-difference (TD) method, such as Q-learning or Sarsa, can be 

combined with eligibility traces to obtain a more general method that may learn 

more efficiently. The SARSA(λ) algorithm and Q(λ) algorithm are shown as follows 

(Pseudo code 5, Pseudo code 6). 
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Pseudo code 5: SARSA(λ) algorithm (Sutton, et al., 2012) 

1. Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s,a 

2. Repeat (for each episode) 

3.  Initialize s,a 

4.  Repeat (for each step of episode) 

5.   Take action a; observe reward, r, and next state, s’ 

6.   Choose a’ from s’ using policy derived from Q (e.g. ε-greedy) 

7.   𝛿 ← 𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎) 

8.   𝑒(𝑠, 𝑎) ← 𝑒(𝑠, 𝑎) + 1 

9.   For all s,a: 

10.    𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼𝛿𝑒(𝑠, 𝑎) 

11.    𝑒(𝑠, 𝑎) ← 𝛾𝜆𝑒(𝑠, 𝑎) 

12.   𝑠 ← 𝑠′;   𝑎 ← 𝑎′ 

13.  Until s is terminal 

 

Pseudo code 6: Q(λ) algorithm (Sutton, et al., 2012) 

1. Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s,a 

2. Repeat (for each episode) 

3.  Initialize s,a 

4.  Repeat (for each step of episode) 

5.   Take action a; observe reward, r, and next state, s’ 

6.   Choose a’ from s’ using policy derived from Q (e.g. ε-greedy) 

7.   𝑎∗ ← arg 𝑚𝑎𝑥𝑏𝑄(𝑠′, 𝑎′) (𝑖𝑓 𝑎′𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑎𝑥, 𝑡ℎ𝑒𝑛 𝑎∗ ← 𝑎′) 

8.   𝛿 ← 𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎) 

9.   𝑒(𝑠, 𝑎) ← 𝑒(𝑠, 𝑎) + 1 

10.   For all s,a: 

11.    𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼𝛿𝑒(𝑠, 𝑎) 

12.    If 𝑎′ =  𝑎∗ 𝑡ℎ𝑒𝑛 𝑒(𝑠, 𝑎) ← 𝛾𝜆𝑒(𝑠, 𝑎) 

13.    Else 𝑒(𝑠, 𝑎) ← 0 

14.   𝑠 ← 𝑠′;   𝑎 ← 𝑎′ 

15.  Until s is terminal 
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2.3. Genetic Network Programming 

2.3.1 The Basics of GNP 

Phenotype of the GNP 

The GNP uses a directed graph as its phenotype (Katagiri, et al., 2000). It contains 

three types of nodes, one start node, judgment nodes and processing nodes. The 

basic structure is shown in the Fig. 2.2. The only function of the start node is to 

determine which node to execute first, and the rest nodes never direct to the start 

node. The judgment node provides the ability to judge the environment. It has 

multiple connections to other nodes, and typically using if-then statements to 

process the input values in order to decide which connection to select. On the other 

hand, the processing node represent the actual action of an agent, e.g. a steering 

angle of a robot. It only has one connection to another node. 

 

Figure 2.3 Structure of genetic network programming 

GNP has time delays (Katagiri, et al., 2000) on executing judgment nodes and 

processing nodes. It can be considered as how much time consumed by executing 

the node, because when applying the GNP in the real world, the agent needs time to 

judge the environment and take actions. Processing nodes and judgment nodes may 

have different time delays, and it needs a maximum time to determine how many 

nodes can be executed in one time step of a simulation program or a real world 

control system. For example, set the maximum time to five units, set time delay of 

the judgment node to one unit and processing node to three units, so the GNP may 

execute two judgment nodes and one processing node in one step.  
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Once the GNP starts, it will execute nodes one by one according to the connection, in 

an infinite loop. The loop can only be stopped externally. In the training phase 

(introduced later), an execution time is a typical termination condition for GNP, while 

in the testing phase (introduced later), it can be terminated whenever there is no 

need to continue the system. 

Genotype of the GNP 

 

ID T F D C1 C2 …… 

Figure 2.4 Structure of the gene of a node 

The structure of the gene (Katagiri, et al., 2000) of a node is presented as Fig. 2.3. ID 

is a unique number of the node and it never changes. T is the type of the node (0: 

start node, 1: judgment node, 2: processing node). The GNP judgment node and 

processing node may have multiple functions (Katagiri, et al., 2000), F is the function 

type of a node. D is the time delay of a node. Finally Ci is the connection to the next 

node which is the most important part that decides the whole structure of the GNP. 

A complete GNP includes many nodes, so a complete GNP individual is in a two 

dimensional structure. 



20 

 

Schematic Diagram of the GNP 

Figure 2.5 Schematic diagram of the genetic network programming algorithm (training 

phase) 
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The process can be divided into two phases, training phase and test phase. The Fig. 

2.4 shows the schematic diagram of the GNP. It needs a population for evolution, and 

one graph is an individual in the population. 

 

The population needs to be initialized at first, then starts the evolution. Each 

individual is evaluated in every generation, elites are kept to next generation and the 

rest individuals of next generation is generated by gene operation (Mutation and 

Crossover). At the end of training phase, good individuals can be selected for the test 

phase (Fig. 2.5). 

Figure 2.6 Schematic diagram of genetic network programming (testing phase) 
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2.3.2  Initialization the GNP 

Determine the number of each type of node; therefore all individuals in a population 

have the same number of nodes and the nodes with the same ID have the same 

function. For each node, the connection is randomly assigned, but never directed to 

the start node. 

2.3.3  Running a GNP Individual 

When running a GNP individual, it begins from the start node, and the node 

transition is based on Ci. For judgment nodes, typically they have multiple 

connections to the next node (Fig. 2.6 a), for example, C1, C2, C3 etc. The result of the 

judgment node determines which connection to select. For processing node, there is 

only one connection typically (Fig. 2.6 b).  

(a)                                  (b) 

Figure 2.7 Judgment and Processing Node in GNP 

Before executing each node, it needs to check the remaining time (t2) as there is a 

maximum time in one time step. If the remaining time is not enough to execute the 

next node, the program will wait for the next time step in the simulation or a real 

world system to continue. 

2.3.4  Genetic Operators 

In every generation, after running every individual, the program will select one or 

more good individuals by comparing their fitness. These elite individuals will be kept 

to the next generation. The rest of the population will mutate or crossover to 

produce the offspring, so the population keeps steady. 
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The Mutation process is as follows: (Mabu, et al., 2007) 

1. Select one individual and reproduce it as a parent. 

2. Each connection of each node is selected with a probability of Pm. The selected 

Ci will change to other value randomly (Never points to the start node). 

3. Keep the mutated individual to the next generation. 

 

The Crossover process is as follows: (Mabu, et al., 2007) 

1. Select two individual and reproduce them as a parents. 

2. Each node is selected as a crossover node with the probability of Pc. 

3. Two parents exchange the genes of the corresponding crossover nodes, i.e., the 

nodes with the same node number. 

4. Generated new individuals become the new ones of the next generation. 

 

When processing the mutation and Crossover, the selection of individuals can use 

the tournament selection. It needs to define a tournament size N, randomly select N 

individuals and compare their fitness to choose the best individual. 

2.4. GNP with Reinforcement Learning 

Reinforcement learning changes the program every time step when running a task as 

an online learning algorithm. In order to obtain better results in dynamic 

environments, the GNP is extended by combining with reinforcement learning 

algorithm (Mabu, et al., 2007). In the GNP algorithm, the graph structure only 

changes during the evolution and once a good individual has been selected for 

testing phase the graph is fixed. On the other hand, the combination of GNP and 

reinforcement learning is able to change the connections of nodes in the testing 

phase, thereby improve its performance in dynamic environments. 

2.4.1. Basic Structure of GNP-RL 

In the GNP, each node only has one function, but in the GNP-RL each node may has 

several functions, and they can be considered as sub-nodes (Fig. 2.7). The major 

purpose of Reinforcement Learning is mapping a state to an action, so in this case 

the state is the ID of node and the action is the sub-node. In other words, the node 

only executes one sub-node a time and it is selected by the Reinforcement Algorithm. 

The state-action space is set as follows (Table 2.1). 
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Figure 2.8 Processing node and judgment node with sub-nodes 

Table 2.1 State-action space for RL in GNP-RL algorithm 

 Sub-node 1 Sub-node 2 Sub-node 3 … Sub-node M 

0 Q-Value Q-Value Q-Value … Q-Value 

1 Q-Value Q-Value Q-Value … Q-Value 

2 Q-Value Q-Value Q-Value … Q-Value 

3 Q-Value Q-Value Q-Value … Q-Value 

… … … … … … 

N Q-Value Q-Value Q-Value … Q-Value 

*Q-Value corresponds to each state-action pair 

 

For example, in original GNP algorithm, if there are four actions for the agent, they 

are considered as four different types of processing node in the network. On the 

other hand, in GNP-RL algorithm all four of these actions can be considered as 

sub-nodes of one processing node, and reinforcement learning algorithm is 

responsible for selecting which one to execute. By combining the reinforcement 

learning, it makes the structure even more compact, and the code for sub-nodes is 

also reusable. 

An Extension of GNP-RL: Fuzzy Judgment Node (Mabu, et al., 2011) 

Typically a judgment node is consists of some if-then statements, and each statement 

connects to a different node. However, the if-then statement is replaced by the 

fuzzification part of fuzzy logic system in fuzzy judgment node. Each membership in 

the fuzzy sets connects to a different node, and when executing the fuzzy judgment 

node, the degree of each membership function is used as a probability for selecting 

the connection. 
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2.4.2. Running a GNP-RL Individual 

Basically running a GNP-RL individual proceeds similar to a pure GNP individual, as 

defined in Section 2.3.3. The only difference is that it needs to update the 

state-action space in each time step (Fig. 2.8). If the judgment node uses RL, it 

cannot receive an immediate reward from the environment after execution, because 

there is no action been taken. Typically the state-action space will be updated after a 

whole time step, while for processing node, it also can be updated immediately after 

the execution depends on the training situation. During the training and testing 

phase, the reinforcement learning always uses the ε-Greedy policy to select the 

sub-node. It keeps exploring and learning to change the selection of sub-nodes, 

thereby improve the performance in dynamic environment. 

Figure 2.9 Schematic diagram of GNP- RL running in the testing phase 
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2.5. Summary 

The fuzzy logic control system is the last intelligent system among all the algorithms 

introduced in this chapter. However, it is able to produce an excellent performance, if 

the fuzzy sets and fuzzy rules all set perfectly. It is necessary to implement fuzzy logic 

control system first as a benchmark for measuring the performance of other 

algorithm. Reinforcement learning is simple and efficient, but it is weak dealing with 

input which is continuous value. For robot control, the obvious choice is to use the 

combination of fuzzy logic and reinforcement learning algorithm. Genetic network 

programming can be seen as a substitute of reinforcement learning, they have similar 

capabilities, except it is not an online learning algorithm. The GNP-RL algorithm (with 

fuzzy judgment node) combines all the advantages of all these three basic algorithms, 

the research focuses on implement the GNP-RL algorithm for robot control, until the 

limitations are found from experiments. By comparing with all implementations of 

each algorithm, the final decision for achieving multi-objectives is to develop a new 

architecture of GNP: GNP with Fuzzy-RL nodes. 
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Chapter 3  
Adaptations of the Algorithms for 
Robot Control: Single Behaviour 

3.1. Problem Domain Specifications 

This chapter focuses on testing two simple control objectives for the robot: steering 

angle and speed control for the ball pursuit behaviour. The robot needs to adjust its 

heading direction towards the ball and the robot speed is slowed down whenever 

the robot is close to the ball, and sped up whenever the robot is far from the ball.   

 

These control objectives are relatively easy to achieve as they contribute towards 

achieving the same target pursuit behaviour.    

 

Algorithm 1: Fuzzy logic implementing both steering angle and speed adjustment for 

ball pursuit 

Algorithm 2: Reinforcement learning with fuzzy logic implementing the steering angle 

controller for ball pursuit. 

Algorithm 3: Genetic network programming implementing both steering angle 

controller and speed adjustment for ball pursuit. 

  

Simulation Environment 

The simulation program is based on the FIRA Micro Robot World Cup Soccer 

Tournament. Since the robot and the ball are all moving on the same plane, it is 

simulated in a 2D environment. 

Dimensions: 

 Robot: 7.5 cm. x 7.5 cm. 

 Ball: 3 cm. (diameter) 

 Pitch: 220 cm. x 180 cm. 
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Figure 3.1 2D simulation environment 

The simulation program updates the status of ball and robot every time step, and all 

the simulations in this thesis only considers the position, speed and direction. It is 

simple to calculate the distance and angle between robot and ball (or wall) by using 

these attributes, and all experiments in this thesis uses these values as the input of 

the control system. The control system is only allowed to adjust the speed and 

direction of the robot. The four boundaries of the pitch is named as Fig. 3.1 shows 

above. The red dots are the trace of the ball, and the white dots are the trace of 

robot.  

3.2. Algorithm 1:  Fuzzy Logic Controller 

3.2.1. General Architecture 

In this experiment, the fuzzy logic control system receives two input values, one is 

the heading angle to the ball from robot, and the other is the distance between 

robot and ball. The schematic diagram of the algorithm is shown in Fig. 3.2. 

Figure 3.2 Flowchart of fuzzy logic control system 
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As we know, one fuzzy system only gives one final output value. In order to control 

the speed and the steering angle simultaneously, this experiment uses two fuzzy 

logic control systems, and both have the same input values. 

Figure 3.3 Fuzzy logic system design (NL-Negatively Large, NM-Negatively Medium, 

NS-Negatively Small, ZE-Zero, PS-Positively Small, PM-Positively Medium and 

PL-Positively Large) 

As the Fig. 3.3 shows, the experiment uses a traditional fuzzy logic system design 

(Reyes, et al., 2013), which divides the angle into seven regions and the distance into 

four regions. So here are two fuzzy sets corresponding to two input values. 

3.2.2. Problem-Specific Parameter Settings 

Figure 3.4 Angle fuzzy sets 
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Figure 3.5 Distance Fuzzy Sets 

Two fuzzy sets in this experiment are defined as Fig. 3.4 and Fig. 3.5 above. The rules 

for ball pursuit and speed control can be represented as fuzzy associative memory 

matrices, and they are shown in Table 3.1 and Table 3.2. 

 

Table 3.1 Fuzzy Associative Memory Matrix for Ball Pursuit: Steering Angle Adjustment 

 NEAR MED FAR VERY FAR 

NL Very Sharp Left Very Sharp Left Sharp Left Sharp Left 

NM Sharp Left Sharp Left Mild Left Mild Left 

NS Mild Left Mild Left Very Mild Left Very Mild Left 

ZE Zero Zero Zero Zero 

PS Mild Right Mild Right Very Mild Right Very Mild Right 

PM Sharp Right Sharp Right Mild Right Mild Right 

PL Very Sharp Right Very Sharp Right Sharp Right Sharp Right 
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Table 3.2 Fuzzy Associative Memory Matrix for Ball Pursuit: Speed Control 

 NEAR MED FAR VERY FAR 

NL Very Slow Very Slow Slow Slow 

NM Very Slow Slow Medium Medium 

NS Very Slow Medium Fast Very Fast 

ZE Slow Medium Fast Wicked Fast 

PS Very Slow Medium Fast Very Fast 

PM Very Slow Slow Medium Medium 

PL Very Slow Very Slow Slow Slow 

 

In general these rules are set to achieve two principles. 

1. Turn the robot sharply if the angle from the ball is large and the distance is small. 

2. Speed down if the angle from the ball is large and the distance is small. 

3.2.3. Experiment Results and Analysis 

The simulation program records the position of the ball and robot every time step. 

The Fig. 3.6 is a screen shot of the experiment. 

Figure 3.6 Trace of ball and robot (fuzzy logic controller) 

The robot moved very smooth in the experiment and achieved ball pursuit and speed 

control at the same time. The crucial part in fuzzy logic control system is determining 
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the appropriate fuzzy sets and rules.  These settings directly affect the system’s 

performance, and there is no simple method to set these parameters correctly and 

efficiently.  It is a time consuming job to try the different parameters and get a good 

performance. 

3.2.4. Limitations of the Algorithm 

There is no doubt that fuzzy logic control is able to present an excellent control 

system, but the major problem is that it needs an expert’s prior knowledge to design 

and create the fuzzy sets and rules. It’s a time consuming job for people to test and 

improve the performance of a fuzzy logic system. And when dealing with lots of input 

values, even a very experienced person cannot set proper rules for the system.   

3.3. Algorithm 2:  Reinforcement Learning 
with Fuzzy Logic 

In general, reinforcement learning maps states into actions, and the number of state 

and action are finite. However, for the navigation problem domain, the state is the 

input value and it is a real number, reinforcement learning needs the help of an 

intermediary algorithm, in this case. So the basic idea of this experiment is to fuzzify 

the input value to obtain limited states for the reinforcement learning, and it takes 

responsibility to construct the fuzzy rules. As compared to a pure fuzzy logic control 

system, this algorithm does not need any prior expert knowledge to create the fuzzy 

rules; thus, saving a lot of time. 

 

This experiment only tested the steering angle controller for ball pursuit behaviour, 

as speed control can be simply achieved by adding another reinforcement learning 

instance. The input value is the angle to the ball and the only output is the steering 

angle for the robot. The speed of the robot is set to a constant initially. The SARSA(λ) 

learning algorithm (Sutton, et al., 2012) was used for this experiment.  
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3.3.1  General Architecture 

To combine fuzzy logic and reinforcement learning together, this experiment tried 

two different architectures for implementation. The first one only combines a 

fuzzification component with reinforcement learning, and is referred to as RL with 

fuzzified input.  The second approach combines a complete fuzzy logic system with 

reinforcement learning, and is referred to as Fuzzy-RL. 

Algorithm 2a: Reinforcement Learning with a Fuzzified Input 

Figure 3.7 Schematic diagram of RL with fuzzified input algorithm 
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Algorithm 2b: Reinforcement Learning with Fuzzy Logic System (Fuzzy-RL) 

Figure 3.8 Schematic diagram of the Fuzzy-RL algorithm 

The two figures (Fig. 3.7, Fig. 3.8) above show the schematic diagram of RL with 

fuzzified input and Fuzzy-RL algorithm.  The system feeds only on one input; that is, 

the angle from the ball. The SARSA(λ) learning algorithm (Sutton, et al., 2012) is 

employed in both approaches. 

 

After the fuzzification, as we know there maybe more than one truth value gets a 
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nonzero degree. In Algorithm 2a, only the truth value with the largest degree of firing 

is used as the state in RL. In turn, the reinforcement learning algorithm chooses only 

one action corresponding to this state. 

 

On the other hand, in Algorithm 2b, the Fuzzy-RL algorithm considers all truth values 

with nonzero degree of firing, then, picks the truth value with the largest degree as 

the main state for updating and selecting the main action. This is because the 

reinforcement learning algorithm only reinforces one action-state pair, in one time 

step. The minor actions are chosen via the greedy policy, instead to limit the 

exploration phase and make use of knowledge exploitation more.  After 

defuzzification phase, the system calculates the final output, via the centre of mass 

formula. 

3.3.2 Problem-Specific Parameter Settings 

Figure 3.9 Angle Fuzzy Sets 

The two algorithms use the same fuzzy sets for the input value (angle from the ball) 

as Fig. 3.9 shows. This experiment uses seven actions as Table 3.3 shows, the positive 

degree means turn left and the negative degree means turn right. Once the robot 

exhibits the appropriate behaviour, it is deemed that the Q-values in the state-action 

space already converged.  At this stage, the reinforcement learning algorithm has 

completed the construction of the fuzzy rules. 
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Table 3.3 State-Action space (States are the truth value from Fuzzy system, Actions are 

steering angles for the robot) 

State\Action 0 deg. 1 deg. -1 deg. 5 deg. -5 deg. 25 deg. -25 deg. 

NL 6.13061 3.73286 5.5691 7.16532 38.6804 4.48876 1.10006 

NM 7.37921 1.95259 7.02415 7.27928 27.4277 3.42272 3.50469 

NS 2.82158 6.02192 5.59275 2.19006 3.62111 25.8563 2.38168 

ZE 13.9584 11.0166 21.4455 8.45386 14.0966 14.5892 7.41781 

PS 17.9597 23.5371 18.2677 22.2188 25.229 14.4371 15.3839 

PM 17.5066 16.1582 12.5777 29.9405 24.7555 8.59868 17.2286 

PL 12.8531 3.60552 13.6882 14.0344 17.576 44.8491 13.6786 

*The value in cells are hypothetical Q-Value, corresponds to each state-action pair 

The reward function is the most important part in this experiment. Generally, the 

system needs to generate a reward when the action accomplishes the goal.  In this 

case, the angle between the robot and the ball is within the range [-1, 1] degrees.  

The RL is able to reinforce previous actions executed, and by doing this repeatedly, it 

learns the optimal policy to achieve the goal (i.e. target robot behaviour). However, 

in the simulation environment, the robot may never get to the goal, but just 

constantly steers randomly in a small area. The solution to this problem is to evaluate 

every action and offer a reward that distinguishes a relatively bad action from a 

relatively good action.  

Reward Function 

Pseudo code 7: Reward function for RL with FLS 

1. If newangle is less than oldangle 

2. then reward = 30 * (1 - newangle / oldangle) 

3. An extra reward is given when the robot arrives at the goal. 

 

The parameters in SARSA(λ) learning is set as:  

Explore rate = 0.1, λ= 0.5, α= 0.1 γ= 0.7 

3.3.3  Results and Analysis 

The robot is placed initially at the centre of the field, facing wall 1, with a constant 

speed of 0.6 units per time step. The ball is set initially to be on the left, 85 units 

away from the robot with a speed of 0. As reinforcement learning is an online 

learning algorithm, once the simulation starts, the robot will gradually learn the 

behaviour of ball pursuit. 
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Figure 3.10 Initial part of RL with fuzzified input algorithm 

Figure 3.11 Results of Algorithm 2a: Average angle from ball every 50 time steps (y-axis 

= ave. angle; x-axis: 1 unit = 50 time steps). 
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Figure 3.12 Results of Algorithm 2b: Learning phase of the Fuzzy-RL algorithm. 

Figure 3.13 Results of Algorithm 2b: Average angle from ball every 50 time steps (y-axis 

= ave. angle; x-axis: 1 unit = 50 time steps). 
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As Fig. 3.10 and Fig. 3.12 show, the robot just moves randomly at first, and then 

learns how to pursue the ball. The average angle from ball decreases dramatically in 

the first 10 units (500 time steps) time steps, and then keeps steady (Fig. 3.11, Fig. 

3.13). There is a slight drop in Fig. 3.13 at the 85th unit (4250 time steps) and then the 

value fluctuates at around 5 degree. In contrast, the angle in Fig. 3.11 always 

fluctuates at around 15 degrees after 10 units (500 time steps).  

 

The figures in 3.14 and 3.15 below show the path traced after running the simulation. 

The speed of the ball is initialized faster than the speed of the robot, and it is slowing 

down because of the friction in the simulation environment. The Q-values in the 

state-action space already converged in both algorithms. Comparing the average 

angle from ball (Fuzzy-RL: around 5 degrees; RL with fuzzified input: around 15 

degrees) and the observable trace of robot, we can clearly see that Fuzzy-RL 

algorithm is much better than RL with only the fuzzified input algorithm. The robot 

using Fuzzy-RL algorithm moves very smoothly, just like using a hand-calibrated pure 

fuzzy logic control system. 

Figure 3.14 The performance after running for a while (RL with fuzzified input 

algorithm) 
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Figure 3.15 The performance after running for a while (Fuzzy-RL algorithm) 

3.3.4  Limitations of the Algorithm 

As we can see from the experiments, the RL with fuzzified input algorithm doesn’t 

perform well enough.  On the other hand, the Fuzzy-RL algorithm gives a wonderful 

performance just like the hand-calibrated fuzzy logic control system, and all the rules 

were generated automatically. The crucial part in this algorithm is the reward 

function, a well-designed reward function can accelerate the convergence of the 

Q-values in the state-action space, and produce an excellent result.  Otherwise, it 

may not be very efficient. The other limitation of Fuzzy-RL will be introduced in 

chapter 4. 
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3.4. Algorithm 3:  Genetic Network 
Programming with Reinforcement Learning 

3.4.1. General Architecture 

Figure 3.16 Schematic diagram of GNP with RL for training phase 
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The Fig. 3.16 shows the schematic diagram of GNP with RL for training phase. When 

training an individual in the environment, it needs to set some conditions for calling a 

failure, in order not to waste too much time (t1) on a very bad individual. For ball 

pursuit, if the robot is far away from the ball, or uses too much time steps (t1), it 

considers it a failure, then jumps to the next individual. Once the next individual 

enters the simulation environment, the environment is reset, so that every individual 

is trained using the same environmental conditions.  

 

Each GNP individual uses one reinforcement learning algorithm instance to select a 

(function) sub-node in a processing node. The state here is the ID of each node, and 

the actions are the functions (sub-nodes) in each node. The State-Action space is 

shown as Table 3.4. 

 

Table 3.4 The state-action space of RL 

State\Functio

n 

0 1 2 3 4 …… M=number of 

functions 

0 Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value 

1 Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value 

2 Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value 

…… …… …… …… …… …… …… …… 

N = number 

of nodes 

Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value 

*Q-Value corresponds to each state-action pair 

 

Fitness is calculated for each GNP individual after it is trained in the simulation 

environment.  The individual with the highest fitness is considered as the most elite 

and will be kept to the next generation. Once it reaches the last generation, the top 

five individuals are selected for the testing phase. 

 

The Fig. 3.17 shows the schematic diagram of GNP with RL for testing phase, in this 

stage the performance of the best individual is displayed by the graph engine, so it 

can be manually judged whether it is good or not. 
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Figure 3.17 Schematic diagram of GNP with RL for testing phase 

3.4.2. Problem-Specific Parameter Settings 

Judgment Nodes 

There are two different types of judgment node, one is for judging the angle from 

ball, and one is for judging the distance from ball. The judgment node settings are 

shown in the Fig. 3.18. 

Figure 3.18 Judgment node settings 

Processing Nodes 

Four different types of processing nodes are defined in this implementation, one is to 

turn left, one is to turn right, one is for high speed and one is for low speed, they are 

shown as Fig. 3.19. 
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Figure 3.19 Processing node settings 

The time delay of each judgment node is set to 1, the time delay for each processing 

node is set to 3, and the max time in a simulation time step is set to 8. The 

probability of mutation and crossover is not very sensitive to the performance as 

only the connection changes in this implementation.  They are all set to a small 

value; less than 0.5 is fine. The other parameters are set as follows: 

 Population: 100 

 Mutation: 63 

 Crossover: 32 

 Elites: 5 

 Tournament size: 6  

 

Reward Function 

Pseudo code 8: Reward function for GNP-RL 

1. If newangle is less than oldangle 

2. then reward = 30 * (1 - newangle / oldangle) 

3. An extra reward is given when the robot arrives at the goal. 
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There are three conditions to terminate one individual: 

1. if the time (t1) steps is over 200;  

2. if the robot moves too far away from the ball, and  

3. if the robot reaches the ball successfully. 

 

The fitness function is a bit complex, it can be generally described as follows:  

1. In each time (t1) step, if the robot gets the correct speed, then the fitness 

increases.  

2. At the end of the simulation, the robot that gets closer to the ball gets the 

higher fitness.   

3. If the robot reaches the ball successfully, the lesser time steps it took, gives it 

a higher fitness. 

3.4.3. Results and Analysis 

In the training phase, the ball and the robot is set to two fixed positions when an 

individual begins its training simulation. Figure 3.20 shows the fitness of the best 

individual in the training phase, the x-axis is the generation count. 

Figure 3.20 Fitness of the best individual (y-axis = fitness; x-axis = generation count) 

The fitness fluctuates dramatically before 155 generations, and mainly keeps a low 

value at around 100. After 155 generations, the fitness goes up relatively steady at 

around 300. This kind of figure is very different from genetic algorithm or even pure 

genetic network programming. All these fluctuations are caused by the 

reinforcement learning component, because it is also exploring in the training phase, 

and the performance is not steady yet.  So in this algorithm, the fitness is not a 
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strict indicator of the actual performance of an individual in the real-world, but 

merely an estimate.  This is why I keep five elite individuals at the end of training.  

The highest fitness does not accurately correspond to the best individual when 

testing them manually. Nevertheless, the fitness value is still able to indicate when 

should the training stop. It is clearly shown in the figure that the fitness stabilizes 

after 155 generations, this is the signal to stop the training phase. 

 

Table 3.5 Performance data of top five individuals 

 Fitness Average angle from ball* Percentage of time with the desired speed* 

1 282.189 80.0269 0.1% 

2 275.659 49.7347 19.6% 

3 271.19 29.8886 38% 

4 267.41 38.8341 31.7% 

5 260.921 19.4059 46.7% 

*Calculated by running the testing phase for 2000 time steps 

The first column in Table 3.5 shows the fitness value obtained during the training 

phase, the second column shows the average angle from ball - calculated in the 

testing phase (set X is the total angle from ball in 2000 time steps, Average angle 

from ball = X/2000), and the last column is the percentage of time of the robot with 

the desired speed in the testing phase (set an accumulator Y, in each time step if the 

robot gets the target speed corresponding to the distance from ball, Y plus 1. The 

percentage of time = Y/2000). The highest fitness does not correspond to the best 

performance though. The best had to be selected manually from the top five. 

Figure 3.21 Performance of the GNP with RL 
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Figure 3.21 depicts a well-trained individual running under testing phase. At first, the 

robot was far away from the ball, then it moved relatively faster towards the ball.  

As soon as it is close enough to the ball, it slowed down to catch it.  This is the 

reason that the trace of the robot is like a dashed line towards the end.  The speed 

control perfectly meets the expectations. The performance on ball pursuit is also 

good, as it achieved smooth turns when the ball changed its direction. 

3.4.4. Limitations of the Algorithm 

In general, this algorithm accomplishes the expected objectives: speed control and 

steering angle control for ball pursuit, simultaneously. However, there are some 

limitations that we can be observed from the experiments. The most obvious 

problem is that the fitness value always fluctuates.  It cannot reflect the quality of 

an individual accurately, so the best individual still needs to be picked manually from 

the five top individuals at the end of the training. The reinforcement learning part is 

exploring during the training phase, and therefore can cause some confusion.  It is 

hard to tell whether there is enough time (t1) steps allotted for learning in one 

generation, for one individual. The fitness relies on the performance of the 

reinforcement learning, as well. In this implementation it still works fine, but the 

fitness value can be expected to fluctuate even more, if we are to add more 

sub-nodes (functions) into the processing nodes. 

3.5. Summary 

From the results of all algorithms that tested in this chapter, there is no doubt that 

fuzzy logic control algorithm and Fuzzy-RL algorithm (Algorithm 2b) archives the best 

performance. However, fuzzy logic control algorithm is not continued for 

multi-behaviour robot test, because it requires too many manual settings which is 

not original intention of this research. Fuzzy-RL becomes the best candidate for 

testing multi-behaviour robot control, and the details of implementation and 

experiments are discussed in chapter 4. GNP with RL algorithm is also not continued 

due to the limitations mentioned before. Nevertheless, the flexible structure of GNP 

algorithm promised there are still lots of possibilities that can to be explored. The 

novel architecture introduced in chapter 5 is developed based on all the results of 

experiments in chapter 3 and 4. 
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Chapter 4  
Fuzzy-Reinforcement Learning for 
Robot Multi-behaviour 

4.1 Introduction 

This chapter focuses on combining a new behaviour, wall avoidance with ball pursuit 

and speed control. The general idea behind speed control for the ball pursuit 

behaviour is to slow down whenever the robot is close to the ball, and to speed up 

whenever it is away from the ball. Two different algorithms were tested in this 

chapter, namely: Fuzzy-Reinforcement learning and Genetic network programming 

with trained Fuzzy-RL nodes. The Fuzzy-Reinforcement learning algorithm has been 

tested earlier for ball pursuit in chapter 3.  However, it is modified in this chapter to 

will deal with more input values (such as the distance from the wall and the angle 

from the wall, as shown as Fig. 4.1) to form a more complex behaviour. 

Figure 4.1 Calculation of difference between the heading angle of the ball, and the 

nearest wall 

The Fuzzy-RL algorithm only considers the nearest wall to avoid. As introduced in 

chapter 3, Figure 3.1, there are four walls. The GNP with Fuzzy-RL nodes algorithm is 

designed to distinguish four walls and take different actions to avoid the different 

walls. The simulation environment is the same as in chapter 3. 
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4.2 General Architecture 

The general architecture is the same as in chapter 3, but with a few modifications 

concerning the reward function and the state-action space and the inputs to the 

system. The schematic diagram of the Fuzzy-RL algorithm is shown in Fig. 4.2. 

Figure 4.2 Schematic diagram of the Fuzzy-RL algorithm 
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4.3 Problem-Specific Parameter Settings 

4.3.1  Fuzzy Logic Parameters 

Three input values are used in this implementation: distance from the nearest wall, 

angle from the nearest wall, angle from the ball. The fuzzy sets for these input values 

are shown below (Fig. 4.3, Fig. 4.4 and Fig. 4.5). The negative values correspond to 

wall or ball positions that are located to the left of the robot’s heading angle. These 

were hand-calibrated, and use exactly the same parameters as those derived for 

Algorithm 2a & 2b.  

Figure 4.3 Angle from ball Fuzzy Sets 

Figure 4.4 Angle from wall Fuzzy Sets 
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Figure 4.5 Distance from wall Fuzzy Sets 

Now, the combination of the three input values corresponds to the states, and the 

actions correspond to the different steering angles. 

4.3.2  Reinforcement Learning Parameters 

States used by the Reinforcement Learning 

 

Table 4.1 The ID of states for corresponding input combination (Distance from wall is 

near) 

Angle from ball-> PL PM PS ZE NS NM NL 

Angle from wall 

PL 0 1 2 3 4 5 6 

PM 7 8 9 10 11 12 13 

SMALL 14 15 16 17 18 19 20 

NM 21 22 23 24 25 26 27 

NL 28 29 30 31 32 33 34 

 

Table 4.1 shows the ID of the reinforcement learning states corresponding to the 

three input combination (Distance from the nearest wall is NEAR, angle from nearest 

wall, angle from ball).  As there are two other regions left for the distance from wall 

input (i.e. Medium and Far), the ID numbers of the reinforcement learning states has 

a total of 104 (not shown here anymore). So there is a total of 105 states (ID numbers: 

0 … 104) in this implementation, and the State-Action space is defined below. 
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States-Action Space used by the Reinforcement Learning 

 

Table 4.2 State-Action space (y-axis: ID of RL States, x-axis: actions) 

 0 degree 1 degree -1 degree 5 degree -5 degree 25 degree -25degree 

0 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value 

1 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value 

2 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value 

3 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value 

4 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value 

…… …… …… …… …… …… …… …… 

104 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value 

*Q-Value corresponds to each state-action pair 

 

The number in the first column of Table 4.2 is the ID of the state. There are seven 

actions for the robot (i.e. 0, 1,-1, 5, -5, 25, -25 degrees of steering). The positive 

values mean turn the robot to the left, while the negative values mean turn to the 

right.  It is the job of the reinforcement learning to formulate a policy that maps the 

actions to their appropriate states. 

 

The SARSA(λ) algorithm was used in this research, and was set-up using the following 

parameters: 

 Explore rate = 0.1, Trace decay rate λ= 0.5, Learning rate α= 0.1, and the 

discount factor γ= 0.7 

 

Reward Function for the Integrated Ball Pursuit and Wall Avoidance 

In general, during ball pursuit, the reward awarded is increased whenever the angle 

from the ball decreases. On the other hand, during the wall avoidance phase, 

whenever the robot gets too close to the wall, the reward given is increased if the 

robot steers away from the wall (i.e. angle from wall is bigger).  An extra reward is 

added if the angle from the wall is larger than 90 degrees. When that happens, the 

robot will chase the ball again.   Overall, the expected result of using this reward 

function is that robot is able to chase the ball safely.  Detailed definition is shown 

below (Pseudo code 9). 
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Pseudo code 9: Reward function for ball pursuit and wall avoidance 

1. If the AngleFromWall is greater than or equal to 90 degrees and the robot is far 

from the wall, then: 

2. Reward function for ball pursuit:  

o If newAngleFromBall is less than oldAngleFromBall, then reward = 30 

* (1 - newAngleFromBall / oldAngleFromBall). 

o An extra reward of 10 is awarded when the angle from the ball is 

within the range of [-1, 1] degrees. 

3. Else Special case (wall avoidance):  If the ball is too close to the wall (the 

Distance is less than 15)  

4. If the angle from the wall is less than 90 degrees:  

 If newAngleFromWall is bigger than oldAngleFromWall, then reward = 30 

* (1 - oldAngleFromWall / newAngleFromWall). 

5. Else if the angle from wall is bigger than 90 degrees: 

 An extra 10 extra points is awarded. 

6. End 

 

4.4. Results and Analysis 

Figure 4.6 Average angle from ball (measured every 500 time steps) during robot 

training.  
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Figure 4.7 Pre-defined restricted area used in the experiments.  The ball is initially 

placed within the black region depicted in the figure.  The white region is the 

prohibited area. 

Figure 4.8 Close to the wall counts every 500 time steps 

The data of Fig. 4.6 is collected under normal circumstances in the simulation.  

There are no interruptions or limitations in this experiment. As can be observed in 

the graph, the Fuzzy-RL is able to make the robot chase the ball, as the average angle 

from the ball decreases over time.  

On the other hand, the data of Fig. 4.8 was collected in a restricted simulation, where 
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the ball is only allowed to move in a restricted region (black region that is close to the 

four walls in Fig. 4.7).  During wall avoidance training, if the ball moves out of this 

restricted area, the ball will be reset to a random position within the black region. 

This is because the pitch is a very big place, if the ball is allowed to go everywhere, 

the robot will also follow and they may spend most of the time in the central area of 

the pitch - in this case the data is meaningless for training the robot to avoid the 

walls.   

 

As the two figures (Fig.4.6, Fig. 4.8) show, it takes much longer time steps to train the 

robot to learn both ball pursuit and wall avoidance, as compared to learning only the 

pursuit behaviour. In real time, it may not be very long, approximately 5-10 min. 

 

Figures 4.9 – 4.16 show the performance of the robot when it gets too close to each 

of the walls. In performance 1, the ball is very close to the wall and the robot just 

patrols around it, and does not get too close to the wall as the experiment expected. 

In performance 2, the ball is manually put to the central area of the pitch, and the 

robot turns to pursue the ball immediately. And as above figures show, the robot 

behaviours whenever it gets close to each wall are similar.  This is because the 

algorithm only considers the nearest wall. It cannot distinguish between the different 

walls to act differently. 

 

The core code (written in C++) of this implementation is attached in Appendix A, and 

the video test result can be viewed at http://youtu.be/Ibs-sDoU5VM 
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Figure 4.9 Trained sample close to wall 1 performance 1 

Figure 4.10 Trained sample close to wall 1 performance 2 
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Figure 4.11 Trained sample close to wall 2 performance 1 

Figure 4.12 Trained sample close to wall 2 performance 2 
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Figure 4.13 Trained sample close to wall 3 performance 1 

Figure 4.14 Trained sample close to wall 3 performance 2 
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Figure 4.15 Trained sample close to wall 4 performance 1 

Figure 4.16 Trained sample close to wall 4 performance 2 
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4.4 Limitations of the Algorithm 

As chapter 3 already introduced, the reward function is very important to the 

performance and from the experiment results in this chapter, we can see that 

although the robot achieves the wall avoidance behaviour, it moves a bit randomly 

whenever it gets close to the wall. It is hard to change this behaviour because it 

needs expert knowledge to adjust the reward function. 

 

The other problem is, even though it just looks for the nearest wall, it already 

necessitates 105 reinforcement learning states.  If there is a need to add some more 

features, more states will be required. Also, it is hard to train the system because 

there is no guarantee that every state can be visited enough during a simple and 

relatively short training phase. Theoretically, all states can be visited enough if given 

enough time for running the simulation program, it is hard to determine the length 

of the training time, because everything is running automatically in the simulation 

environment and based on the initial status of the ball and the robot some situation 

(states) may never happen. The only possible solution is manually set all kinds of 

initial status for robot and ball to meet all the situation (states), and this is hard to do 

when the number of states becomes very large.  
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Chapter 5  
GNP with Trained Fuzzy-RL Nodes 
for Learning Multi-Behaviours 

5.1 General Architecture 

Two major changes were made to the original GNP, in order to allow the algorithm to 

incorporate trained control systems; therefore, making it a more powerful learning 

algorithm. 

 

Firstly, a new Fuzzy-RL processing node is introduced in the GNP composition. The 

new processing node now runs a complete Fuzzy-RL system, trained for the ball 

pursuit behaviour, with steering angle computation only (defined in Algorithm 2b).  

Consequently, the new processing node requires some input value from the 

environment (i.e. angle from the ball), and outputs a continuous-valued action 

(steering angle). In general, each type of processing nodes can supply a complex 

behaviour for the robot. Previously, this is not possible in the original design of GNP. 

Figure 5.1 Modified GNP Individual used in the new algorithm 
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Figure 5.2 Schematic diagram of GNP with trained Fuzzy-RL nodes algorithm 
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Secondly, the other change is the new implementation of the execution time (this is 

referred to as “time delay” in the original GNP, (Katagiri, et al., 2000)) of each node, 

comprising the GNP individual. Referring to Fig. 5.1, a GNP individual is defined with 

5 processing nodes, 3 judgment nodes, and a start node. As illustrated, there is a 

Fuzzy-RL processing node (for ball pursuit behaviour) with an execution time of 5.  

This means that the Fuzzy-RL will execute for 5 complete execution of the ball pursuit 

behaviour, before transitioning to the next node, which is a simple judgment node. 

The nodes executed within an individual solely depend on the environment 

conditions that the robot is experiencing while training. This is due to the decisions 

made by the judgment nodes. Also, during training, a fixed maximum training time is 

set, to evaluate the performance of the individual. The schematic diagram of GNP 

with trained Fuzzy-RL nodes algorithm is shown as Fig. 5.2.  

 

Altogether, the changes made to the architecture allow the processing node to form 

a more complex behaviour more easily. For example, if the robot needs to move 

forward for a certain angle and distance, this behaviour can be achieved by a 

processing node that turns the angle to some value, and setting the execution time 

to a certain value to control the distance travelled. 

 

In the example used in this thesis, only simple action processing nodes and Fuzzy-RL 

processing nodes were used, but there are no restrictions for the types of processing 

nodes in the new algorithm. Others, such as fuzzy logic control nodes or some 

machine learning algorithm-controlled nodes would be perfectly suitable, too.  

However, an important limitation is that the complex nodes have to be trained first 

before integrating it into the GNP architecture. A processing node should be able to 

present a stable behaviour, in order not to affect the fitness of an individual.   

 

During the training phase of the GNP algorithm, the trained Fuzzy-RL node used is 

only running the greedy policy, for stability reasons. It is the job of the GNP to evolve 

the GNP individuals by changing the connections between the nodes, as well as 

allowing for mutations. On the other hand, during the testing phase, the Fuzzy-RL 

node uses the ε-greedy policy, in order to adapt to changes in the environment. 

 

Lastly, the hill climbing algorithm, which is a greedy search algorithm that is often 

used to optimize evolutionary algorithms, is also used here. It is expected to help the 

GNP produce better individuals and also to accelerate the evolution process. 
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5.2 GNP with Trained Fuzzy-RL Pseudo Code: 
Training Phase 

Pseudo code 10: GNP with Trained Fuzzy-RL 

1. Load trained Fuzzy-RL instance into the GNP individual. 

2. Initialize the population. 

3. Repeat (for each generation) 

4.  Repeat (for each individual) 

5.   Repeat (for each time step) 

6.    Execute current node [*] 

7.    Update the environment 

8.    Update fitness of individual 

9. If the current node has been executed with enough time steps, go 

to next node 

10.   Until time steps exceeded the maximum value for one individual 

11.        Calculate final fitness of individual. 

12.  Until all individual have been evaluated 

13.  Apply hill-climbing algorithm for elites (e.g. top 3 individuals) 

14.  Keep elites, and select more individuals using tournament selection 

15.  Apply Mutation Operation 

16.  Apply Crossover Operation 

17. Until maximum generation is reached 

18. End 

[*] If the current node is a Fuzzy-RL node, take the input values and run the trained 

Fuzzy-RL instance 

 

 

5.3 Problem-Specific Settings 

5.3.1. Judgment Nodes 

There are two different types of judgment nodes (Fig. 5.3), one is for judging the 

angle from the ball, and the other is for distinguishing which wall the robot is close to.  

The input value for the angle judgment node is the angle from the ball and the input 

values of the wall judgment node are the coordinates of the robot. The execution 
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time for judgment node is set to 0, meaning in one time step, the next node can be 

executed after the judgment node. 

Figure 5.3 Judgment node settings 

5.3.2. Processing Nodes 

Figure 5.4 Absolute angle of the robot relative to the field 

There are six different processing nodes, for six different behaviours in this 

implementation. The angle mentioned in actions below are the absolute angle of the 

robot relative to the field (Fig. 5.4). 

 

Processing Node 1:  

 Input: angle from Wall 1  

 Description:  Wall 1 avoidance 

 Action: turn to 225 or 315 degrees corresponding to the angle from wall 

 Execution time: 5 
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Processing Node 2:  

 Input: angle from Wall2   

 Description:  Wall 2 avoidance 

 Action: turn to 135 or 225 degrees corresponding to the angle from wall 

 Execution time: 5 

 

Processing Node 3:  

 Input: angle from Wall 3  

 Description:  Wall 3 avoidance 

 Action: turn to 45 or 135 degrees corresponding to the angle from wall 

 Execution time: 5 

 

Processing Node 4:  

 Input: angle from Wall 4   

 Description:  Wall 4 avoidance 

 Action: turn to 45 or 315 degrees corresponding to the angle from wall 

 Execution time:  5 

 

Processing Node 5:  

 Input: distance from ball  

 Description:  Speed Control Action 

 Action: set speed to one of the following values: 0.5, 1, 1.5, 2 

 Execution time: 1 

 

Processing Node 6:  

 Input: angle from Wall   

 Description:  runs a trained Fuzzy-RL algorithm instance for ball pursuit 

 Action: steering angle to turn the robot 

 Execution time:  1 

 

The Fuzzy-RL algorithm for ball pursuit as defined in chapter 3, is used here as a 

processing node. All the parameters are the same as those defined in Algorithm 2b, 

and a trained state-action space is used. The ε-greedy policy is temporarily changed 

to greedy policy during the training phase of GNP, but the ε-greedy policy is used 

during the testing phase in order to allow the robot to adapt to any possible changes 

in the environment. 
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5.3.3. GNP Fitness Function for Integrated Target Pursuit and 
Wall 

Avoidance Behaviours 

The fitness function and the training environment is the most important part of the 

GNP with Trained Fuzzy-RL nodes. In order to achieve the different robot behaviours 

for avoiding the different walls, the GNP individual is subjected into four different 

environment settings during the training phase. The difference between these four 

environments is the position of the ball; it is set to a fixed point closed to each of the 

walls.  The initial positions of the robot are all in the central area of the pitch. 

 

The fitness function consists of three parts: one for ball pursuit behaviour, one for 

speed control behaviour, and one for the wall avoidance behaviour. 

 

Speed Control 

The fitness function for speed control behaviour (Pseudo code 11) is the simplest one, 

it increases every time step if the robot moves with the right speed.  

 

Pseudo code 11: Fitness function for speed control behaviour 

1. If (DistanceFromBall < 10 and speed = 0.5) or (DistanceFromBall∈ [10, 20) and 

speed = 1.0) or (DistanceFromBall∈ [20, 50) and speed = 1.5) or 

(DistanceFromBall>=50 and speed = 2.0) 

2. Then fitness += 6. 

 

Ball Pursuit 

The fitness function for ball pursuit behaviour can be the same as the reward 

function used in the Fuzzy-RL algorithm (Algorithm 2b), but that one is too specific 

and may cause some slight fluctuations of the fitness value. In order to make the 

fitness function perfectly stable and accurate enough to estimate the quality of an 

individual, a complete fuzzy logic system is used here. The parameters for the fuzzy 

sets and the fuzzy rules are shown in Fig. 5.5 and Table 5.1. The final fitness value is 

calculated via the centre of mass formula. 
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Figure 5.5 Angle from ball fuzzy sets 

Table 5.1 Fuzzy rules for calculating the ball pursuit behaviour fitness. 

Angle Fitness (Rules outputs) 

Small 8 

Medium 4 

Large 0 

 

Wall Avoidance 

The fitness function for wall avoidance employs a scheme based only on punishment, 

show as pseudo code 12. 

 

Pseudo code 12: Fitness function for wall avoidance 

1. If the distance from the wall is less than 15 units 

2. then decrease the fitness value by 50 

 

There is no reward given for taking an action for wall avoidance. Otherwise, the 

robot may move close to the wall, and respectively avoid the wall to obtain high 

fitness, and this is not desired. This was observed through the experiments 

performed but is not shown here. 
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Fitness Function Summary 

The fitness function now is still not good enough for the algorithm. When actually 

running the system under testing phase, some bad individuals still receive very high 

fitness.  Four wall avoidance processing nodes are simple actions turn to a fixed 

angle, if one individual only executes these processing node and combine with ball 

pursuit processing node or speed control processing node, they may still get very 

high fitness. When testing these kinds of individuals, they just make the robot turn 

around (as observed in the experiments). In order to eliminate these kinds of 

situations, two more rules are added to the fitness function: 

If the robot moves away from the ball the fitness value decreases a bit, and at the 

end of each individual’s training simulation, the distance of the robot from the ball is 

measured and used as a component in the fitness calculation. Consequently, when 

the robot moves closer to the ball it gets a higher fitness. 

The final fitness function is shown in Pseudo code 13. 

 

Pseudo code 13: Final fitness function 

1. Individual starts 

2. Fitness = 0 

3. Repeat (each time step) 

4.  If DistanceFromWall < 20 

5.   If the AngleFromWall <= -90 or AngleFromWall > 90 (AngleFromWall in figure 4.1) 

6.   Then Fitness += 20 + Ball Pursuit Reward [*] 

7.  Else 

8.   Fitness += Ball Pursuit Reward [*] 

9. If (DistanceFromBall < 10 and speed = 0.5) or (DistanceFromBall∈[10, 20) and speed = 

1.0) or (DistanceFromBall∈[20, 50) and speed = 1.5) or (DistanceFromBall>=50 and 

speed = 2.0) 

10.  Then Fitness += 6 

11.  If DistanceFromWall < 15 then Fitness -= 50 

12.  If the robot moves away from the ball then Fitness -= 15 

13. Until time steps exceeded the maximum training time for one individual 

14. Fitness += 500 – 10*DistanceFromBall 

15. Individual training ends. 

[*] Ball Pursuit Reward is generated by the Fuzzy logic system introduced 
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5.3.4. Parameters for GNP 

Number of population: 200  

Number of mutation: 77 

Number of crossover: 120 

Tournament size: 5 

Probability of mutation: 0.1 

Probability of crossover: 0.5 

5.3.5. Hill-climbing Algorithm 

This algorithm tries to improve the fitness of a GNP individual by examining the 

connections one node at a time by way of brute force greedy search. Pseudo code 14 

is the pseudo code of Hill-climbing algorithm. 

 

Pseudo code 14: Hill-climbing algorithm 

1. Hill-climbing algorithm for an individual  

2. Start 

3. Set the MaxFitness = individual’s fitness acquired through GNP evolution 

4. Repeat (for each node Nn) 

5.  Repeat (for each connection Cm) 

6.   Set the BestConnection = Cm  

7.   Repeat (for each ID of node exclude the start node) 

8.    Set the Cm = ID 

9.    Evaluate the individual and get newFitness 

10.    If newFitness > MaxFitness 

11.    Then MaxFitness = newFitness and BestConnection = ID 

12.   Until ID exceeded the maximum value 

13.   Set Cm = BestConnection 

14.   Set individual’s fitness = MaxFitness 

15.  Until all connections in a node been visited 

16. Until all nodes in an individual been visited 

17. End 

 

As hill-climbing algorithm tests every possible connections for each node, it takes 

long time for running on one individual, and the time is increasing dramatically with 

the increasing number of nodes. From the experience of experiments without 
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hill-climbing algorithm, the best fitness value is always stay the same for a long time 

in some period. The hill-climbing algorithm is expected to remit this situation, in 

order to accelerate the evolution. As it is a time-consuming job, it is only for the top 

three individuals and there is no need to run it in every generation. The hill-climbing 

algorithm is applied every five generations in the experiments. 

5.4 Results and Analysis 

Figure 5.6 shows one possible GNP individual that is able to accomplish the 

objectives defined, with the minimum number of nodes. At first, the number of each 

GNP nodes is set to one instance. However, in the actual experiments, using the 

settings shown in Fig. 5.6, the algorithm just can’t find a good individual within 200 

generations. The best individual found in one experiment is able to pursue the ball, 

control the speed and only avoid two walls. 

Figure 5.6 Sample GNP individual with the minimum number of nodes.  Note that the 

algorithm may generate a variety of individuals with different nodes and connections. 
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The solution is to add more nodes to a GNP individual, except there is always only 

one start node. From the experiments, it was observed that increasing the number of 

each type of nodes to two, helped in obtaining and a good individual (a good 

solution). The experiments results are shown below. 

 

Figure 5.7 General performance of a good individual 

 

As the Fig. 5.7 shows, this good individual is able to steer smoothly, control the speed 

corresponding to the distance from ball, and most importantly it is able to distinguish 

four walls and take different actions. More figures are attached below to show the 

behaviour when the robot is close to the wall. 
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Figure 5.8 The performance close to wall 1 

Figure 5.9 The performance close to wall 2 
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Figure 5.10 The performance close to wall 3 

Figure 5.11 The performance close to wall 4 
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The four figures above (Fig. 5.8-5.11) show the robot behaves as desired. It 

distinguishes the four different walls and chooses the right action. In contrast to the 

Fuzzy-RL algorithm defined in chapter 4, the wall avoidance behaviour here is fully 

controlled by those four processing nodes. 

The hill-climbing algorithm was also used in the experiments. The two figures below 

(Fig. 5.12, Fig. 5.13) show the fitness values of the top 3 individuals during the 

evolution phase, with and without the utilisation of the hill-climbing algorithm. 

Figure 5.12 Fitness of top 3 individuals with hill climbing 

Figure 5.13 Fitness of top 3 individuals without hill climbing 

The data in these two figures (Fig. 5.12, Fig. 5.13) were collected from two 

experiments, with all other settings kept the same. As we know, the performance of 

an evolutionary algorithm is not stable, sometimes the fitness goes very high in a few 

generations and sometimes it may keep a low value for a long time. However, in the 
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long run, these two figures are still representative of the general outcome. The 

hill-climbing algorithm was applied after every ten generations.  As can be observed 

from the graph, there is a huge increase in fitness value at the 10th generation.  

Consequently, it accelerated the evolution process towards finding a good individual.  

 

The core code (written in C++) of this implementation is attached in Appendix B, and 

the video test result can be viewed at http://youtu.be/woqMnbO-CKg 

5.5 Limitations of the Algorithm 

There are two major difficulties in this algorithm. One is the setting for the fitness 

function and the training environment and procedure. The fitness function is closely 

linked to the training environment, any improper settings among them can lead to 

failure in learning. Furthermore, if more behaviours are required, the fitness function 

will become more complex, and it may take some time to test and improve. Another 

problem is the same with other evolutionary algorithms, it does not guarantee to 

produce the optimal results, and it may need to run the training phase for a long 

period of time to get a good individual. Lastly, there is still room for improvement in 

the algorithms training implementation, as it takes about 30 minutes to train the 

system for 100 generations, although the program is already parallelized. In general, 

this algorithm needs to be implemented carefully to achieve a good performance in 

its training phase. Nevertheless, once a robot is trained, it can run very fast. 
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Chapter 6 
Summary and Future Work 

Table 6.1 Comparison of different algorithms 

 Fuzzy 

Logic 

System 

Fuzzy-RL GNP 

(Katagiri, 

et al., 

2000) 

GNP with 

RL (Mabu, 

et al., 

2007) 

Fuzzy-GNP 

with RL 

(Mabu, et 

al., 2011) 

GNP with 

Trained 

Fuzzy-RL 

Nodes 

Capable of 

Multi-behaviour 

Yes(multi

ple FLS) 

Yes 

Chap.4 

Yes * Yes * Yes * Yes 

Chap.5 

Calibration 

requirements 

Hand-cali

brated 

Reward 

function 

Fitness 

function 

Fitness 

function 

Fitness 

function 

Fitness 

function 

Chap.5.3.3 

Difficulty of setting 

the fitness/reward 

function for 

multi-behaviour 

N/A High 

Chap. 

4.3.2 

Theoretica

lly High ** 

Theoretica

lly High ** 

Theoretica

lly High ** 

Medium 

Chap.5.3.3 

Allows integration of 

multiple algorithms 

N/A N/A No No (only 

RL) 

No (only 

Fuzzy&RL) 

Yes 

Chap.5.1 

Allows integration of 

other trained 

complex nodes using 

different AI 

algorithms 

N/A N/A No No No Yes 

Chap.5.1 

Allows integration of 

simple processing 

nodes into GNP 

N/A N/A Yes Yes Yes Yes 

Chap.5.3 

Allows complete FLS 

integration into a 

GNP individual 

N/A Yes N/A N/A No Yes 

Chap.5.3 

Uses an additional 

learning mechanism 

that aids the 

evolutionary 

approach 

N/A N/A No No No Yes, 

Hill-climbi

ng 

Capable of on-line 

learning 

No Yes No Yes Yes Yes 

[*] No previous attempt in the literature. 

[**] The difficulty is estimated on a single behaviour problem tested in chapter 3.4 
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Three major algorithms, and their hybrid variants were introduced and tested in this 

thesis (i.e. Fuzzy logic control, Reinforcement learning and Genetic network 

programming, Fuzzy-RL, GNP with RL, GNP with trained Fuzzy-RL).  Using a 

simulation of the robot soccer platform, ball pursuit and ball pursuit with wall 

avoidance behaviours were used as benchmarking test beds.  As observed in the 

experiments, the algorithms have different advantages and disadvantages. The table 

above shows some of features tested for evaluating the performances of these 

algorithms. 

 

Pure Fuzzy Logic (Steering angle and speed control)  

From the results of experiments, it was able to produce an almost perfect 

performance (by visual inspection), provided that there is an expert prior knowledge 

to set all the fuzzy sets and the fuzzy rules, even though it is very hard and time 

consuming to calibrate, when multiple objectives are required.  

 

Reinforcement Learning 

Reinforcement learning is simple and efficient, but it is difficult to apply to control 

problems with continuous-valued outputs. The combination of reinforcement 

learning and fuzzy logic control was able to overcome their own weaknesses. Two 

different integration architectures of reinforcement learning and fuzzy logic were 

implemented for ball pursuit in this work: 

 Algorithm 2a – RL with fuzzified inputs  

 Algorithm 2b - RL integrate with a complete fuzzy logic system 

Algorithm 2a integrated only a fuzzification component to the reinforcement learning, 

which is equivalent to having nested if-then decision-control statements. The results 

of experiments clearly show that the performance of Algorithm 2a is worse than 

Algorithm 2b, which comprises the whole fuzzy logic system. The Fuzzy-RL algorithm 

(Algorithm 2b) surmounts the shortcomings of reinforcement learning and fuzzy logic 

control algorithm while keeping their strengths. However, when facing multiple 

objectives, the training phase becomes more and more complex to manage; it is very 

hard to define a reward function for a specific multi-behaviour. 

 

Genetic Network Programming 

The genetic network programming is based on genetic algorithm and provides a 

flexible graph structure for storing extra computational information (i.e. rules, 

processing nodes, judgment nodes, allotted node execution time).  It was first 

proposed by H. Katagiri, K. Hirasawa and J. Hu in 2000, and a Tile World game was 

used to demonstrate the algorithm. The execution of the GNP algorithm can be 
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divided into a training phase and testing phase, just like other evolutionary 

algorithms. The most outstanding advantage of GNP is that once a good individual is 

obtained from training phase, it can be used in a whole new dynamic environment 

for the same objective, because the graph structure is able to provide sufficient rules 

for operating in a dynamic environment. As a result, it is extremely fast and 

non-computationally intensive when running a GNP individual.  

 

Genetic Network Programming with RL 

In order to obtain better results in dynamic environments, the GNP was extended by 

combining it with reinforcement learning (Mabu, et al., 2007). It considers different 

types of processing nodes as sub-nodes, and uses reinforcement learning to select 

the best sub-node when executing a parent processing node of the GNP.  Now, the 

reinforcement learning takes most of the responsibility for the performance of an 

individual both in training or testing phases. The RL helps make the structure of a 

GNP individual more compact, and even more flexible.   

 

From the experiments performed in this thesis, some difficulty during training was 

experienced. In the GNP-RL algorithm, the reinforcement learning component 

explores a variety of possible actions during the training phase; unfortunately, this 

approach does not guarantee finding the best solution based solely on the fitness 

value of the individual. This eventually lead to some confusion for picking the best 

trained robot for a single behaviour (Chapter 3.4); probably even worse in 

multi-behaviour problem. To alleviate the problem, the top five GNP individuals were 

further tested to pick the best one by human visual inspection.   

 

In another related work, a variant called the Fuzzy Genetic Network Programming 

with Reinforcement Learning algorithm was tested for wall following behaviour for a 

bi-wheel robot (Mabu, et al., 2011). A fuzzification component was added to the GNP 

with RL algorithm to deal with inputs which are continuous-valued. 

 

Genetic Network Programming with Trained Fuzzy-RL 

A new novel architecture was introduced in this research. It uses both trained 

complex processing nodes and of simple action processing nodes in the GNP 

architecture. The complex processing node is able to output different actions 

corresponding to changes in the environment. As an example of the proposed 

architecture, a complex processing node was defined to be a trained Fuzzy-RL node. 

In contrast with the original GNP with RL algorithm (Mabu, et al., 2007), the new 

algorithm derived the different connections between the judgment nodes, complex 
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trained processing nodes and simple processing nodes to generate the desired 

multi-behaviour.  

 

During the testing phase, the Fuzzy-RL node has the responsibility of adapting to 

changes in the dynamic environment. The GNP with trained Fuzzy-RL node algorithm 

achieved ball pursuit and wall avoidance in the experiment while keeping its flexible 

and compact structure. This is a solid evidence that proves that the new algorithm is 

highly extendable and possesses a strong ability to learn multiple objectives. The 

graph structure and complex nodes have advantages in dealing with the dynamic 

environment, in other words, the algorithm is excellent for any control system (robot 

control, traffic light control, elevator control, etc.). Nevertheless, the core ability of 

the algorithm is to make a complex judgment and give the desired output.  It is also 

applicable to other problem domains that require determining the suitable judgment 

and processing nodes. For example, when using the algorithm for data mining 

purposes, it is simple to build a powerful classifier by integrating different kinds of 

judgment nodes.    

 

Development of the new GNP with Trained Fuzzy-RL Nodes 

In the original Fuzzy GNP with RL paper (Mabu, et al., 2007), the RL algorithm used 

simple processing nodes that take an action based on the state of the world.  The RL 

algorithm was used to learn a policy that maps the actions to the nodes, with the aim 

of maximising the rewards. The simple actions are represented as sub-nodes, 

enclosed within a parent node in the GNP architecture. On the other hand, in this 

research, in particular in the Fuzzy-RL integration part, the state of the RL was based 

on a fuzzified information that feeds on the angle from the ball.   

 

From the initial single behaviour learning test bed, the Fuzzy-RL integrated 

architecture succeeded in learning the ball pursuit behaviour.  Consequently, it was 

then hypothesized that any of the processing nodes within a GNP individual can be 

transformed into a complex trained intelligent system; thereby, allowing any AI 

algorithm to be used as a complex node within a GNP individual. As a general rule, 

given a complex multi-behaviour learning problem, the idea in this thesis is to 

subdivide the problem into multiple more manageable sub-problems. As a result, this 

research proceeded with the integration of the trained Fuzzy-RL and GNP to test the 

novel idea. In the course of algorithm development, the training component of the 

original algorithm (Mabu, et al., 2011) was modified to improve its learning stability 

(the details of the changes in the algorithm can be found in Chapter 5.1), and a 

multi-behaviour learning problem (ball pursuit with wall avoidance) served as a 
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benchmark for the new algorithm presented.   

 

Future Work 

There are four objectives that can be identified for future work: 

1. Test the compatibility of other algorithms, if they can work as processing nodes in 

the genetic network programming architecture.  

2. Find a solution for optimizing the number of nodes within one GNP individual. 

3. Depending on the application domain, more attributes (time allotted for node 

execution, mutation of processing nodes, mutation of judgment nodes, etc.) of a 

node can be changed during gene evolution. 

4. Create a better simulation environment with a more accurate physics engine 

implementation and more optimized implementation of the training phase of the 

algorithm. 

5. The fitness function could be modified to enhance the smoothness of navigation, 

while avoiding the walls.  In this research, wall avoidance did not take into 

account the “smoothness” factor, but merely safety of the robot. 
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Appendix A.  
Codes for the implementation of 
Fuzzy-RL 

void runGame() 

{ 

#region environment 

  //initialize settings 

  float ballX = 25; 

  robot.setSpeed(0.6); 

  robot.setX(110); 

  robot.setY(90); 

  robot.setAngle(90); 

  ball.setY(90); 

  ball.setX(ballX); 

  ball.setSpeed(0); 

  int steps = 0; 

  angleFromTarget = calcAngleFromTarget(robot, worldGx, worldGy, 

targetPosition); 

  double wallDistance; 

  preCalculateTextPositions(); 

  double wallAngle = getWallAngle(robot, wallDistance); 

  //init s,a 

  vector<double> preStateWeight;  //store all weights for each state 

  //toState() return the state with the max weight 

  myRL.preState = toState(angleFromTarget, wallAngle, wallDistance, 

preStateWeight); 

  myRL.preAction = 5; 

  // keep running the program until the ESC key is pressed    

  int collisionCount = 0; 

  ofstream outf1; 

  outf1.open("angle.txt"); 

  double anglesum = 0; 

  while ((GetAsyncKeyState(VK_ESCAPE)) == 0) 

  { 

   steps++; 

   setactivepage(page); 

   cleardevice(); 

   drawPanel();  
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   drawGrid(robot); 

   getKey(robot);  //get key strokes 

 

   float oldangle = calcAngleFromTarget(robot, worldGx, worldGy, 

targetPosition); 

   preCalculateTextPositions(); 

   wallAngle = getWallAngle(robot, wallDistance); 

 

   //calculate the turning angle 

   double myAngle = 0;//turning angle 

   double weightSUM = 0; 

   for (int i = 0; i < preStateWeight.size(); i++) 

   { 

    //if the weight for the state is larger than zero and it's not the 

state with the max weight 

    //using greedy search to find a action.  

       //Note: if the sum of Q value for this state is zero, it will choose 

action 0, which is turn 0 degree, so no bad effect. 

    if (i != myRL.preState && preStateWeight[i]>0) 

     myAngle += 

toAngle( myRL.chooseAction(i,1) )*preStateWeight[i]; 

    //if find the state with the max weight, the action is the previous 

choosed action 

    else if (i == myRL.preState) 

     myAngle += toAngle(myRL.preAction)*preStateWeight[i]; 

 

    weightSUM += preStateWeight[i]; 

   } 

   myAngle = myAngle / weightSUM; 

 

 

   float changedAngle = robot.getAngle() + myAngle; 

   if (changedAngle<0) 

    changedAngle = 360 + changedAngle; 

   else if (changedAngle>359) 

    changedAngle = changedAngle - 360; 

   robot.setAngle(changedAngle); 

 

   robot.move();   //Update Object's (x, y) position and (angle) 

orientation  

   robot.draw(page);     //Display Object 

   if (robot.getX() <= 3.75 || robot.getX() >= 216.25 || robot.getY() <= 
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3.75 || robot.getY() >= 176.25) 

   { 

    collisionCount++; 

    cout << "Wall Collision: " << collisionCount<<endl; 

   } 

     

 

   //get reward and update RL 

   float newangle = calcAngleFromTarget(robot, worldGx, worldGy, 

targetPosition); 

   float newdistance = calcDistanceFromTarget(robot, worldGx, worldGy); 

   double newwallDistance; 

   preCalculateTextPositions(); 

   float newwallAngle = getWallAngle(robot,newwallDistance); 

   int state = toState(newangle, newwallAngle, newwallDistance, 

preStateWeight); 

 

 

   double reward = 0; 

   //Reward for pursuing the ball 

   if (oldangle<0 && newangle<0 && newangle>oldangle) 

    reward +=  30 * (1 - newangle / oldangle); 

   else if (oldangle>0 && newangle > 0 && newangle < oldangle) 

    reward += 30 * (1 - newangle / oldangle); 

   else if (newangle < 1 && newangle >-1) 

    reward += 10; 

    

   //The RL only rewards the state which got the highest weight  

   myRL.process(state, reward,0); //update the state-action space 

 

#region DrawGraph 

  } 

  outf1.close(); 

 

} 

 

 

 
//update state-action space and other process in RL 

void RL::process(int state_ID, double reward,bool greedy) 

{ 

 int newAction = chooseAction(state_ID,greedy);   
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 //int maxAction = findMaxQ(state_ID); //Q learning 

 //if (stateSpace[state_ID].Q[newAction] == stateSpace[state_ID].Q[maxAction]) 

 // maxAction = newAction; 

 if (greedy == 0) 

 { 

  double Q = stateSpace[state_ID].Q[newAction]; //SARSA 

  //double Q = stateSpace[state_ID].Q[maxAction]; //Q learning 

 

  DELTA = reward + GAMMA*Q - stateSpace[preState].Q[preAction]; 

  e[preState].Q[preAction] += 1; 

 

  for (int i = 0; i < stateSpace.size(); i++) 

  { 

   for (int j = 0; j < stateSpace[i].Q.size(); j++) 

   { 

    stateSpace[i].Q[j] = stateSpace[i].Q[j] + ALPHA*DELTA*e[i].Q[j]; 

    e[i].Q[j] = GAMMA*LAMDA*e[i].Q[j]; 

   } 

   updateSum(i); 

  } 

 } 

  

 

 preAction = newAction; //set preAction 

 preState = state_ID; //set preState 

  

} 
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Appendix B.  
Codes for the implementation of 
GNP with trained Fuzzy-RL nodes 

//trainning phase 

void train(GNP &myGNP, int max_gen) 

{ 

 Fuzzy FuzzyAngle; //fuzzy logic system for fitness 

 FuzzyAngle.init(angle_regions); 

 FuzzyAngle.initMemFunc_Angle(); 

 double elitefitness = -99999; 

 int num_elite = myGNP.num_population - myGNP.num_crossover - 

myGNP.num_mutation; 

 myGNP.generation = 0; 

 ifstream ifs("FuzzyRL"); //Load Fuzzy-RL instance from file 

 boost::archive::text_iarchive ia(ifs); 

 RL FuzzyRL_Nav; 

 ia >> FuzzyRL_Nav; 

 ofstream outf; 

 outf.open("fitness.txt"); 

 while (true) //the Loop for evoluting generations 

 { 

  //each individual in the population do the process 

  //using open mp to accelerate the FOR loop 

  //each core has their own FuzzyRL and Fuzzy instance 

        #pragma omp parallel for //openMP 

  for (int i = num_elite; i<myGNP.num_population; i++) 

  { 

   trainIndiv(myGNP.population[i], FuzzyRL_Nav,FuzzyAngle); 

  }//-----------------each individual in the population do the process END 

 

  myGNP.generation++; 

  myGNP.population_temp.clear(); 

  myGNP.sortPopulation(); 

  cout << myGNP.generation << "// "; 

  for (int i = 0; i<num_elite; i++) 

  { 

   cout << myGNP.population[i].fitness << " - "; 

   outf << myGNP.population[i].fitness << "\t"; 
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  } 

  outf << "\n"; 

  cout << endl; 

  //if reach the max generation break the loop 

  if (myGNP.generation>max_gen - 1) 

   break; 

  //Run hill-climbing algorithm every 5 generation 

  if (myGNP.generation == 1 || myGNP.generation % 5 == 0) 

  { 

   for (int i = 0; i < num_elite; i++) 

   { 

    cout << "hillclimbing for " << i << " :"; 

    outf << "hillclimbing for " << i << "\t"; 

    hillclimbing(myGNP.population[i]); 

    cout << myGNP.population[i].fitness << endl; 

    outf << myGNP.population[i].fitness << "\n"; 

    //keep top n individual 

    myGNP.population_temp.push_back(myGNP.population[i]);     

 } 

  } 

  else 

  for (int i = 0; i < num_elite; i++) 

   //keep top n individual 

   myGNP.population_temp.push_back(myGNP.population[i]);      

  //Do gene operations 

  myGNP.mutation(); 

  myGNP.crossover(); 

  myGNP.population = myGNP.population_temp; 

 

 } 

} 

 

 

 

 
//Training for each individual which contains 4 environment setting 

void trainIndiv(GNP_INDIV& indiv, RL FuzzyRL_Nav, Fuzzy FuzzyAngle) 

{ 

 //positions of ball and robot for 4 training environment 

 double RobotSetting[4][4] = { { 110, 130, 1.5, 180 }, { 170, 90, 1.5, 270 }, 

{ 110, 50, 1.5, 180 }, { 50, 90, 1.5, 90 } }; 

 double BallSetting[4][4] = { { 110, 175, 0, 0 }, { 215, 90, 0, 0 }, { 110, 5, 
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0, 0 }, { 5, 90, 0, 0 } }; 

  

 double fitness[4] = { 0, 0, 0, 0 }; 

 #pragma omp parallel for// openMP 

 for (int x = 0; x < 4; x++) 

 { 

  double robotP[4] = { RobotSetting[x][0], RobotSetting[x][1], 

RobotSetting[x][2], RobotSetting[x][3] }; 

  double ballP[4] = { BallSetting[x][0], BallSetting[x][1], 

BallSetting[x][2], BallSetting[x][3] }; 

  //training for each environment setting 

  fitness[x] = IndivsPosition(indiv, FuzzyRL_Nav, FuzzyAngle, robotP, ballP);

   

 } 

 

 double totalfitness = 0; 

 for (int i = 0; i < 4; i++) 

  totalfitness += fitness[i]; 

 

 

 //update fitness 

 indiv.cal_fitness(totalfitness); 

} 

 

//training for a certain environment setting 
double IndivsPosition(GNP_INDIV indiv, RL FuzzyRL_Nav, Fuzzy FuzzyAngle, double 

robotP[], double ballP[]) 

{ 

 float minDistance = 0.0; 

 float tempDistance = 0.0; 

 float x, y; 

 int gX = 0, gY = 0; //Target in device coordinates 

 float worldGx, worldGy; //Target in world coordinates 

 float angleFromObstacle; 

 float angleFromTarget; 

 float distanceFromObstacle; 

 float distanceFromTarget; 

 char msg[100]; 

 

 //initial  robot and ball 

 Robot robot(robotP[0], robotP[1], robotP[2], robotP[3]); 

 Ball ball(ballP[0], ballP[1], ballP[2], ballP[3]); 
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 Position targetPosition; 

 initWorld(); 

 //initial goal position = center of screen 

 gX = getmaxx() / 2; 

 gY = getmaxy() / 2; 

 worldGx = float(((gX - fieldX1) * 220.0f) / abs(fieldX2 - fieldX1)); 

 worldGy = worldBoundary.y1 - (float(((gY - fieldY1) * 180.0f) / abs(fieldY2 -   

fieldY1))); 

 worldGx = ball.getX(); 

 worldGy = ball.getY(); 

 calcAngleFromTarget(robot, worldGx, worldGy, targetPosition); 

 preCalculateTextPositions(); 

 double fitness = 0; 

 

 //init for simulation ----------------------------------------------- 

 int time_step = 0; //accumulate time steps for one individual in the simulation 

environment 

 FuzzyRL_Nav.preAction = 0; 

 FuzzyRL_Nav.preState = toState(calcAngleFromTarget(robot, worldGx, worldGy, 

targetPosition), 0, 0, FuzzyRL_Nav.preStateWeight, FuzzyAngle); 

 indiv.Time_left = 0; 

 int current_node = 0; 

 

 //The simulation loop for one individual starts----------------------------- 

 //set some conditions to break the loop 

 while (time_step<200) 

 { 

  time_step++; 

  if (indiv.Time_left == 0 && indiv.Nodes[current_node].TD != 0) 

  { 

   indiv.Time_left = indiv.Nodes[indiv.next_node].TD; 

   current_node = indiv.next_node; 

  } 

  //current node type 

  int node_type = indiv.Nodes[current_node].type; 

 

  //input values--------------------------------------------- 

  angleFromTarget = calcAngleFromTarget(robot, worldGx, worldGy, 

targetPosition); 

  distanceFromTarget = calcDistanceFromTarget(robot, worldGx, worldGy); 

  float oldangle = angleFromTarget; 

  float olddistance = distanceFromTarget; 
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  //input selector----------------------------------------- 

  double input1 = 0, input2 = 0, input3 = 0; 

  switch (node_type) 

  { 

  case 1: 

   input1 = angleFromTarget; 

   break; 

  case 2: 

   input1 = distanceFromTarget; input2 = 0; input3 = 0; 

   break; 

  case 3: 

   input1 = angleFromTarget; 

   break; 

  case 4: 

   input1 = distanceFromTarget; input2 = 0; input3 = 0; 

   break; 

 

  } 

  int preNode = current_node; 

  //execute node and nextnode becomes current excuted node 

  indiv.toNextNode(ExeNode(robot, FuzzyRL_Nav, node_type, input1, input2, 

input3), current_node); 

  indiv.Time_left--; 

  if (indiv.Time_left == -1) 

  { 

   indiv.Time_left = indiv.Nodes[indiv.next_node].TD; 

   current_node = indiv.next_node; 

   continue; 

  } 

 

  //Update 

Environment-------------------------------------------------------------------- 

  robot.move();   //Update Object's (x, y) position and (angle) orientation

  

  if (robotTrails.size() > 250){ 

   robotTrails.clear(); 

  } 

 

  if (ballTrails.size() > 350){ 

   ballTrails.clear(); 

  } 

  ball.move(robot.getX(), robot.getY(), robot.getAngle(), 
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robot.getSpeed()); 

  worldGx = ball.getX(); 

  worldGy = ball.getY(); 

 

  //Calculate Reward-------------------------------- 

  float newangle = calcAngleFromTarget(robot, worldGx, worldGy, 

targetPosition); 

  float newdistance = calcDistanceFromTarget(robot, worldGx, worldGy); 

  double newwallDistance; 

  float newwallAngle = getWallAngle(robot, newwallDistance); 

  double reward = 0;//the Fuzzry-RL is using greedy search when training, so 

no need for reward 

 

  //PostProcess------------------- 

  PostProcess(FuzzyRL_Nav, node_type, newangle, reward, 0, FuzzyAngle);//no 

need reward now,only greedy search 

 

  //fitness 

  if (indiv.Nodes[preNode].TD != 0) 

  { 

   //Calculate fitness for wall avoidence and ball pursuing  

   if (newwallDistance<20) 

   { 

//only if the robot is heading away from the ball gives extra reward 

and reward for ball pursuing 

    if (newwallAngle <= -90 || newwallAngle >= 90) 

    { 

     fitness += 20; 

     fitness += ballReward.output(newangle, newdistance); 

    } 

   } 

   else 

    fitness += ballReward.output(newangle, newdistance); 

 

   //Calculate fitness for speed control 

   if (newdistance < 10 && robot.getSpeed() == 0.5) 

    fitness += 6; 

else if (newdistance >= 10 && newdistance < 20 && robot.getSpeed() == 

1.0) 

    fitness += 6; 

else if (newdistance >= 20 && newdistance < 50 && robot.getSpeed() == 

1.5) 
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    fitness += 6; 

   else if (newdistance >= 50 && robot.getSpeed() == 2.0) 

    fitness += 6; 

 

   //Some punishment for bad situations 

   if (newwallDistance < 15) 

    fitness -= 50; 

   if (distanceFromTarget - newdistance < 0) 

    fitness -= 15; 

  } 

 

 

 }//-------The simulation loop END 

 //after 200 time-steps, closer to the ball gets higher fitness 

 fitness += 500 - calcDistanceFromTarget(robot, worldGx, worldGy) * 10; 

 

 return fitness; 

} 

 

 
//hill-clibing algorithm for one individual 

void hillclimbing(GNP_INDIV& myBest) 

{ 

 Fuzzy FuzzyAngle; 

 FuzzyAngle.init(angle_regions); 

 FuzzyAngle.initMemFunc_Angle(); 

 RL FuzzyRL_Nav; 

 ifstream ifs("FuzzyRL"); 

 boost::archive::text_iarchive ia(ifs); 

 ia >> FuzzyRL_Nav; 

 double RobotSetting[4][4] = { { 110, 130, 1.5, 180 }, { 170, 90, 1.5, 270 }, 

{ 110, 50, 1.5, 180 }, { 50, 90, 1.5, 90 } }; 

 double BallSetting[4][4] = { { 110, 175, 0, 0 }, { 215, 90, 0, 0 }, { 110, 5, 

0, 0 }, { 5, 90, 0, 0 } }; 

  

 //change 1 connection each iteration 

 double maxfitness = myBest.fitness; 

 int i = myrand() % myBest.num_nodes; 

 for (int ii = 0; ii < myBest.num_nodes;ii++) 

 { 

  for (int j = 0; j < myBest.Nodes[i].C.size(); j++) 

  { 
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   int bestC = myBest.Nodes[i].C[j]; 

   for (int n = 1; n < myBest.num_nodes; n++) 

   { 

    myBest.Nodes[i].C[j] = n; 

    double fitness[4] = { 0, 0, 0, 0 }; 

    #pragma omp parallel for 

    for (int x = 0; x < 4; x++) 

    { 

double robotP[4] = { RobotSetting[x][0], RobotSetting[x][1], 

RobotSetting[x][2], RobotSetting[x][3] }; 

double ballP[4] = { BallSetting[x][0], BallSetting[x][1], 

BallSetting[x][2], BallSetting[x][3] }; 

 

fitness[x] = IndivsPosition(myBest, FuzzyRL_Nav, FuzzyAngle, 

robotP, ballP); 

    } 

    double totalfitness = 0; 

    for (int i = 0; i < 4; i++) 

     totalfitness += fitness[i]; 

    if (totalfitness >= maxfitness) 

    { 

     maxfitness = totalfitness; 

     bestC = n; 

    } 

   } 

   myBest.Nodes[i].C[j] = bestC; 

   myBest.cal_fitness(maxfitness); 

     

  } 

   

  i++; 

  if (i == myBest.Nodes.size()) 

   i = 0; 

 } 

} 
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