
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Genetic Network Programming with
Fuzzy Reinforcement Learning Nodes

for Multi-Behaviour Robot Control

A thesis presented in partial fulfilment of the requirements for the

degree of

Masters of Science

In

Computer Science

Massey University – Albany Campus

New Zealand.

Wenhan Wang

2014

I

Abstract

This research explores a new approach for building a complex intelligent robot

multi-behaviour comprising of a variety of intelligent subsystems that are fused

together into one hybrid system. The work mainly focuses on integrating

reinforcement learning and fuzzy logic with genetic network programming,

examining the different architectures, and aims to achieve multi-objective behaviours

and alleviate the problem of learning and calibration by repeated interaction with

the environment. Different components of the learning algorithm are studied

separately and also in combination. They are developed systematically using an

increasing level of complexity for robot behaviours. As a test bed, the work

investigates how to achieve ball pursuit and wall avoidance behaviours

simultaneously, in the realm of the robot soccer game. The training procedure and

test environment is designed, as well as a variety of fitness functions are

experimented for the multi-behaviour objectives. Furthermore, the novel

evolutionary architecture is combined with hill-climbing to accelerate the search for

the best individual.

Keywords—robot soccer; multi-behaviour; multi-objectives; genetic network

programming; fuzzy logic; reinforcement learning;

II

Acknowledgments

I would like to express my gratitude to all those who helped me during my research.

My deepest gratitude goes first and foremost to Dr. Napoleon Reyes (Supervisor) and

Dr. Andre Barczak (Co-Supervisor), for their constant encouragement and guidance.

They have walked me through all the stages of this research. Without their consistent

and illuminating instruction, this thesis could not have reached its present form.

Thanks for the time you spent with me.

My thanks would also go to my beloved parents for their loving considerations and

great confidence in me through all these years. I also owe my sincere gratitude to my

uncle’s family who gave me their help and time in supporting and helping me living in

New Zealand.

III

Table of Contents

Abstract ... I

Acknowledgments .. II

List of Figures ...V

List of Tables ...VII

List of Pseudo Codes ..VII

Chapter 1 Introduction ... 1

1.1. Overview of the Current State of Technology ... 1

1.2. Research Objectives ... 2

1.3. Scope and Limitations of Research .. 2

1.4. Overview of the Problem Domain ... 3

1.5. Significance of the Research .. 3

1.6. Research Methodology .. 4

1.7. Structure of the Thesis Documentation .. 5

Chapter 2 Review of Related Literature .. 7

2.1. Fuzzy Logic Control .. 7

2.1.1. Fuzzy Sets and Membership ... 7

2.1.2. Algorithm Description ... 8

2.2. Reinforcement Learning .. 9

2.2.1. Markov Decision Process .. 9

2.2.2. General Description .. 10

2.2.3. Temporal Difference Learning .. 12

2.3. Genetic Network Programming ... 18

2.3.1 The Basics of GNP ... 18

2.3.2 Initialization the GNP .. 22

2.3.3 Running a GNP Individual ... 22

2.3.4 Genetic Operators... 22

2.4. GNP with Reinforcement Learning .. 23

2.4.1. Basic Structure of GNP-RL... 23

2.4.2. Running a GNP-RL Individual .. 25

2.5. Summary .. 26

Chapter 3 Adaptations of the Algorithms for Robot Control: Single Behaviour 27

3.1. Problem Domain Specifications ... 27

3.2. Algorithm 1: Fuzzy Logic Controller .. 28

3.2.1. General Architecture .. 28

3.2.2. Problem-Specific Parameter Settings ... 29

IV

3.2.3. Experiment Results and Analysis .. 31

3.2.4. Limitations of the Algorithm ... 32

3.3. Algorithm 2: Reinforcement Learning with Fuzzy Logic 32

3.3.1 General Architecture .. 33

3.3.2 Problem-Specific Parameter Settings ... 35

3.3.3 Results and Analysis .. 36

3.3.4 Limitations of the Algorithm ... 40

3.4. Algorithm 3: Genetic Network Programming with Reinforcement

Learning.. 41

3.4.1. General Architecture .. 41

3.4.2. Problem-Specific Parameter Settings ... 43

3.4.3. Results and Analysis .. 45

3.4.4. Limitations of the Algorithm ... 47

3.5. Summary .. 47

Chapter 4 Fuzzy-Reinforcement Learning for Robot Multi-behaviour 49

4.1 Introduction ... 49

4.2 General Architecture ... 50

4.3 Problem-Specific Parameter Settings .. 51

4.3.1 Fuzzy Logic Parameters ... 51

4.3.2 Reinforcement Learning Parameters .. 52

4.4. Results and Analysis ... 54

4.4 Limitations of the Algorithm .. 61

Chapter 5 GNP with Trained Fuzzy-RL Nodes for Learning Multi-Behaviours 63

5.1 General Architecture ... 63

5.2 GNP with Trained Fuzzy-RL Pseudo Code: Training Phase 66

5.3 Problem-Specific Settings .. 66

5.3.1. Judgment Nodes ... 66

5.3.2. Processing Nodes .. 67

5.3.3. GNP Fitness Function for Integrated Target Pursuit and Wall 69

5.3.4. Parameters for GNP .. 72

5.3.5. Hill-climbing Algorithm ... 72

5.4 Results and Analysis ... 73

5.5 Limitations of the Algorithm .. 78

Chapter 6 Summary and Future Work ... 79

Appendix A. Codes for the implementation of Fuzzy-RL .. 84

Appendix B. Codes for the implementation of GNP with trained Fuzzy-RL nodes ... 88

Reference ... 96

V

List of Figures

Figure 2.1 Classic sets and fuzzy sets ... 8

Figure 2.2 Sample fuzzy sets for distance .. 8

Figure 2.3 Structure of genetic network programming ... 18

Figure 2.4 Structure of the gene of a node .. 19

Figure 2.5 Schematic diagram of the genetic network programming algorithm

(training phase) .. 20

Figure 2.6 Schematic diagram of genetic network programming (testing phase) 21

Figure 2.7 Judgment and Processing Node in GNP .. 22

Figure 2.8 Processing node and judgment node with sub-nodes 24

Figure 2.9 Schematic diagram of GNP- RL running in the testing phase 25

Figure 3.1 2D simulation environment .. 28

Figure 3.2 Flowchart of fuzzy logic control system .. 28

Figure 3.3 Fuzzy logic system design (NL-Negatively Large, NM-Negatively Medium,

NS-Negatively Small, ZE-Zero, PS-Positively Small, PM-Positively Medium and

PL-Positively Large) .. 29

Figure 3.4 Angle fuzzy sets ... 29

Figure 3.5 Distance Fuzzy Sets ... 30

Figure 3.6 Trace of ball and robot (fuzzy logic controller) ... 31

Figure 3.7 Schematic diagram of RL with fuzzified input algorithm 33

Figure 3.8 Schematic diagram of the Fuzzy-RL algorithm .. 34

Figure 3.9 Angle Fuzzy Sets .. 35

Figure 3.10 Initial part of RL with fuzzified input algorithm .. 37

Figure 3.11 Results of Algorithm 2a: Average angle from ball every 50 time steps

(y-axis = ave. angle; x-axis: 1 unit = 50 time steps). ... 37

Figure 3.12 Results of Algorithm 2b: Learning phase of the Fuzzy-RL algorithm. 38

Figure 3.13 Results of Algorithm 2b: Average angle from ball every 50 time steps

(y-axis = ave. angle; x-axis: 1 unit = 50 time steps). ... 38

Figure 3.14 The performance after running for a while (RL with fuzzified input

algorithm) ... 39

Figure 3.15 The performance after running for a while (Fuzzy-RL algorithm) 40

Figure 3.16 Schematic diagram of GNP with RL for training phase 41

Figure 3.17 Schematic diagram of GNP with RL for testing phase 43

Figure 3.18 Judgment node settings .. 43

Figure 3.19 Processing node settings ... 44

Figure 3.20 Fitness of the best individual (y-axis = fitness; x-axis = generation count)

VI

.. 45

Figure 3.21 Performance of the GNP with RL .. 46

Figure 4.1 Calculation of difference between the heading angle of the ball, and the

nearest wall .. 49

Figure 4.2 Schematic diagram of the Fuzzy-RL algorithm .. 50

Figure 4.3 Angle from ball Fuzzy Sets .. 51

Figure 4.4 Angle from wall Fuzzy Sets .. 51

Figure 4.5 Distance from wall Fuzzy Sets ... 52

Figure 4.6 Average angle from ball (measured every 500 time steps) during robot

training. .. 54

Figure 4.7 Pre-defined restricted area used in the experiments. The ball is initially

placed within the black region depicted in the figure. The white region is the

prohibited area. ... 55

Figure 4.8 Close to the wall counts every 500 time steps ... 55

Figure 4.9 Trained sample close to wall 1 performance 1 ... 57

Figure 4.10 Trained sample close to wall 1 performance 2 ... 57

Figure 4.11 Trained sample close to wall 2 performance 1 ... 58

Figure 4.12 Trained sample close to wall 2 performance 2 ... 58

Figure 4.13 Trained sample close to wall 3 performance 1 ... 59

Figure 4.14 Trained sample close to wall 3 performance 2 ... 59

Figure 4.15 Trained sample close to wall 4 performance 1 ... 60

Figure 4.16 Trained sample close to wall 4 performance 2 ... 60

Figure 5.1 Modified GNP Individual used in the new algorithm 63

Figure 5.2 Schematic diagram of GNP with trained Fuzzy-RL nodes algorithm 64

Figure 5.3 Judgment node settings .. 67

Figure 5.4 Absolute angle of the robot relative to the field .. 67

Figure 5.5 Angle from ball fuzzy sets ... 70

Figure 5.6 Sample GNP individual with the minimum number of nodes. Note that

the algorithm may generate a variety of individuals with different nodes and

connections. ... 73

Figure 5.7 General performance of a good individual ... 74

Figure 5.8 The performance close to wall 1 ... 75

Figure 5.9 The performance close to wall 2 ... 75

Figure 5.10 The performance close to wall 3 ... 76

Figure 5.11 The performance close to wall 4 ... 76

Figure 5.12 Fitness of top 3 individuals with hill climbing ... 77

Figure 5.13 Fitness of top 3 individuals without hill climbing 77

VII

List of Tables

Table 2.1 State-action space for RL in GNP-RL algorithm .. 24

Table 3.1 Fuzzy Associative Memory Matrix for Ball Pursuit: Steering Angle

Adjustment ... 30

Table 3.2 Fuzzy Associative Memory Matrix for Ball Pursuit: Speed Control 31

Table 3.3 State-Action space (States are the truth value from Fuzzy system, Actions

are steering angles for the robot) .. 36

Table 3.4 The state-action space of RL ... 42

Table 3.5 Performance data of top five individuals ... 46

Table 4.1 The ID of states for corresponding input combination (Distance from wall is

near) ... 52

Table 4.2 State-Action space (y-axis: ID of RL States, x-axis: actions) 53

Table 5.1 Fuzzy rules for calculating the ball pursuit behaviour fitness. 70

Table 6.1 Comparison of different algorithms ... 79

List of Pseudo Codes

Pseudo code 1: TD(0) algorithm (Sutton, et al., 2012) .. 12

Pseudo code 2: Sarsa (On-Policy) algorithm (Sutton, et al., 2012) 13

Pseudo code 3: Q-Learning (On-Policy) algorithm (Sutton, et al., 2012) 13

Pseudo code 4: TD(λ) algorithm (Sutton, et al., 2012) ... 16

Pseudo code 5: SARSA(λ) algorithm (Sutton, et al., 2012) ... 17

Pseudo code 6: Q(λ) algorithm (Sutton, et al., 2012) .. 17

Pseudo code 7: Reward function for RL with FLS ... 36

Pseudo code 8: Reward function for GNP-RL... 44

Pseudo code 9: Reward function for ball pursuit and wall avoidance 54

Pseudo code 10: GNP with Trained Fuzzy-RL ... 66

Pseudo code 11: Fitness function for speed control behaviour 69

Pseudo code 12: Fitness function for wall avoidance .. 70

Pseudo code 13: Final fitness function .. 71

Pseudo code 14: Hill-climbing algorithm ... 72

VIII

1

Chapter 1
Introduction

1.1. Overview of the Current State of
Technology

A large number of studies have been made on automatic design of behaviour

sequences for agents, such as the sequence to carry out some tasks in the virtual

world. The experiments of creating artificial life aiming to realize the behaviours of

ants or fishes are a good example, as well as the planning for real mobile robots

which have a simple object in the real world. Many models used to express such

behaviour sequences for agents have been proposed. Many of these models use

fuzzy logic, supervised leaning, reinforcement learning, and evolutionary

optimization techniques such as Genetic Algorithm, Evolution Strategy and Genetic

Programming. As a result, there are still some common problems that are hard to be

addressed, such as enormous computational cost during training time, expert

pre-knowledge required or poor ability in terms of adjustability in dynamic

environments.

Reinforcement learning is still a powerful algorithm for robot control, and several

modifications and combinations of reinforcement learning with other algorithms

show a strong potential for improvement. Some of these developments have

sophisticated framework, and some of them run extremely fast (Pitoyo, et al., 2009).

Recently, a graph structure based evolutionary algorithm Genetic Network

Programming was proposed (Katagiri, et al., 2000). Within twelve years, this

algorithm has been tested and combined with other algorithms, showing a solid

capability to deal with dynamic environments. The latest research combined Genetic

Network Programming, Fuzzy Logic and Reinforcement Learning together, and

presented a strong potential to overcome weaknesses mentioned above. It has been

tested by a wall following robot and the result was much better than conventional

methods in dynamic environments (Mabu, et al., 2011).

2

1.2. Research Objectives

The main objective of this research is to give agents the ability to learn a complex

behaviour by themselves in dynamic environments, by using hybrid algorithms. To

the best knowledge of the author, the combination of genetic network programming,

fuzzy logic and reinforcement learning has not been tested yet to achieve a complex

multi-behaviour through interacting with the environment. This research aims to

study the aforementioned algorithms and improve and extend them for learning

more complex multi-behaviour operations.

Specific Objectives

1. Develop, test and analyse a simple robot behaviour using a cascade of fuzzy logic

control systems.

2. Develop, test and analyse a simple robot behaviour using reinforcement learning.

3. Develop, test and analyse a simple robot behaviour using reinforcement learning

and fuzzy logic system.

4. Develop, test and analyse a simple robot behaviour using genetic network

programming with reinforcement learning.

5. Find other possible learning schemes to achieve multiple behaviour operations

for a robot.

6. Develop, test and analyse multiple behaviour functionality with

fuzzy-reinforcement learning algorithm.

7. Develop, test and analyse the genetic network programming with

fuzzy-reinforcement learning nodes algorithm to achieve multiple behaviour

operations for a robot.

1.3. Scope and Limitations of Research

1. All experiments should run in a simulation environment. There are limitations to

the physics involved in the simulations.

2. The experimental subject is a simulated bi-wheel robot, which is only able to

control the speed and steering angle by controlling the velocity of the two wheels

independently.

3

3. The testing field in the simulation environment complies with the FIRA

Roboworld Cup standard soccer field.

4. The multiple behaviours for the robot in the tests are limited to three simple

tasks: target pursuit, speed control and wall avoidance.

1.4. Overview of the Problem Domain

The problem domain is limited to the FIRA micro-soccer robot. It only has two wheels

and it is a popular test bed for artificial intelligent programs. The hybrid algorithm

will be tested in a simulation environment where all sizes are the same as the real

robot soccer. This research focuses on developing multiple behaviour operations for

a bi-wheel robot. Two different behaviours are tested, ball pursuit (with speed

control) and wall avoidance. The simulation program updates the status of the ball

and robot every time step. All the simulations in this thesis only consider the position,

speed and direction of the objects. Thus the angle and distance from ball to robot, or

the angle and distance from wall to robot can be obtained as input values for the

robot control algorithm. Moreover, the control system is able to adjust the speed and

the direction of the robot directly.

1.5. Significance of the Research

This research presents a novel architecture for combing Fuzzy logic, reinforcement

learning and genetic network programming. The new architecture inherits the

flexible attribute from genetic network programming and adds complex processing

nodes into the system (this research uses Fuzzy-Reinforcement nodes), making the

new framework to be able to deal with complex multiple robot behaviours. The ball

pursuit and wall avoidance behaviour for robot was achieved, as well as an efficient

training methodology, involving a fitness function. As compared to the other works

(Mabu, et al., 2011) for robot control using the GNP algorithm, the experiments in

this research proves that the new architecture has strong adaptability mechanisms

for learning multi-objectives.

4

1.6. Research Methodology

1. Study cascaded fuzzy logic systems.

2. Write a program to test a Fuzzy logic system for achieving a simple task.

3. Study Reinforcement Learning Algorithm.

4. Write a program to test Reinforcement Learning for achieving a simple task.

5. Study Genetic network programming.

6. Write a program to test Genetic network programming for achieving a simple

task.

7. Follow the existing genetic network programming with reinforcement learning

scheme to implement ball pursuit behaviour for robot.

8. Combine fuzzy logic with reinforcement learning. Write a program to test ball

pursuit behaviour for robot.

9. Improve the performance of fuzzy logic with reinforcement learning for ball

pursuit.

10. Write a program to achieve a complex multi-behaviour by using fuzzy logic with

reinforcement learning.

11. Write a program to achieve a complex multi-behaviour by using genetic network

programming with Fuzzy-reinforcement learning nodes.

12. Test and compare the GNP with Fuzzy-RL nodes scheme with Fuzzy-RL scheme.

13. Through experiments, characterise all the aforementioned algorithms, in terms of

performance efficiency, flexibility and adaptability.

5

1.7. Structure of the Thesis Documentation

This document is comprised of 6 chapters. Chapter 2 provides a theoretical

framework and detailed algorithms of fuzzy logic control system, reinforcement

learning and genetic network programming.

Chapter 3 presents three different algorithms to accomplish implementing a single

robot behaviour – ball pursuit (with speed control). Detailed implementation and

results are discussed in this chapter, as well as the limitation of each algorithm.

Chapter 4 presents the Fuzzy-RL algorithm for achieving multi-behaviour for robot.

Ball pursuit and wall avoidance are implemented and tested. Detailed

implementation and testing results also shows in this chapter.

Chapter 5 presents the novel architecture - GNP with trained Fuzzy-RL nodes for

multi-behaviour. Ball pursuit and wall avoidance are implemented and tested, in

contrast with Chapter 4, it is able to distinguish different walls for different actions.

Lastly, chapter 6 summaries the whole document, and identifies promising areas of

research worthy of conducting future works.

6

7

Chapter 2
Review of Related Literature

2.1. Fuzzy Logic Control

Fuzzy logic has a very long history, the term is introduced in 1965 by Lotfi A. Zadeh

(Zadeh, 1965) with the proposal of fuzzy set theory and it has been studied even

earlier. Fuzzy logic has been applied to many field and wildly used in industry as a

control system. It is a form of many-valued logic or multi-value logic, it gives an

approximation rather than fixed and exact.

2.1.1. Fuzzy Sets and Membership

For crisp sets, an element x in the universe X is either a member of some crisp set A

or not. This binary issue of membership can be represented mathematically as below,

𝑋𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

 (1) (Berenji, et al., 1992)

Zadeh extended the notion of binary membership to accommodate various “degrees

of membership” on the real continuous interval [0, 1]. The membership function

embodies the mathematical representation of membership in a set, and the notation

used throughout this text for a fuzzy set is a set symbol with a tilde underscore, say

𝐴 , where the functional mapping is given as

𝜇
𝐴
(𝑥) ∈ [0,1] (2)

The symbol μ𝐴(𝑥) (Ross, et al., 2002) is the degree of membership of element x in

fuzzy set 𝐴.

For example, to describe the distance between two objects, it can be presented as (a)

by using classic sets and (b) by using fuzzy sets in Figure 2.1.

8

(a) (b)

Figure 2.1 Classic sets and fuzzy sets

2.1.2. Algorithm Description

Fuzzy control can be divided into three steps: fuzzification, rule evaluation and

defuzzification.

Figure 2.2 Sample fuzzy sets for distance

In the first step fuzzification, the real input value will be mapped to a truth value in

the 0 to 1 range by each membership function. Use Fig. 2.2 for instance, suppose the

input value is 25. Thus the truth values for distance can be written as follows.

𝜇𝑁𝐸𝐴𝑅(25) = 0

𝜇𝑀𝐸𝐷𝐼𝑈𝑀(25) = 0.5

𝜇𝐹𝐴𝑅(25) = 0.5

Fuzzy logic usually use IF THEN statements for rules, and these rules will take truth

values to the final fuzzy value.

For instance:

Rule 1: If distance is NEAR then low speed

Rule 2: if distance is MEDIUM then medium speed

Rule 3: if distance is FAR then high speed

Now the firing degree of low speed is 0, the firing degree of medium speed is 0.5 and

the firing degree of high speed is 0.5.

0

0.5

1

0 5 10 15

Classic Sets

0

0.5

1

0 5 10 15

Fuzzy Sets

0

0.5

1

0 5 10 20 30 40

Sample Fuzzy Sets for Distance

NEAR MEDIUM FAR

9

Suppose the value of low speed is 1, medium speed is 5 and high speed is 10. In the

last step defuzzification, it uses a centroid method to reach the final output.

Centre of mass formula:

𝐶𝑂𝑀 =
∑ 𝑚𝑖𝑥𝑖

𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

 (3) (Berenji, et al., 1992)

Thus the output is:

𝑜𝑢𝑡𝑝𝑢𝑡 =
0 ∗ 1 + 0.5 ∗ 5 + 0.5 ∗ 10

0 + 0.5 + 0.5
= 7.5

2.2. Reinforcement Learning

Reinforcement learning addresses the problem of how an autonomous agent that

senses and acts in its environment can learn to choose optimal actions to achieve its

goals. The problem, due to its generality, covers tasks such as learning to control a

mobile robot, learning to optimize operations in factories, and learning to play board

games. The major difference between reinforcement learning and other forms of

machine learning is that learner is not told which actions to take, but discover which

actions yield the most reward by trying them. This section introduces the basic

schematics of reinforcement learning and two well-known algorithms, Sarsa

(Rummery, et al., 1994) and Q-Learning (Watkins, et al., 1992).

2.2.1. Markov Decision Process

In machine learning, the environment is typically formulated as a Markov decision

process (MDP) (Bellman, 1957) and reinforcement learning is not an exception.

Markov decision processes (MDP), named after Andrey Markov, provide a

mathematical framework for modelling decision making in situations where

outcomes are partly random and partly under the control of a decision maker. The

essence of MDP is that a future state is determined only by the current state,

because the current state already contains sufficient information for determine the

next state.

Markov Decision Process is defined by four elements S, A, R, P. (Faria, Gedson, et al.,

2000)

S is a finite set of states

A is a finite set of actions

Ra
ss’ is the immediate reward received after taken action a transition from current

10

state s to next state s’.

Pa
ss’ is the probability that action a in state s at time t will lead to state s' at time t+1.

2.2.2. General Description

MDP can solve the optimal policy for choosing actions by using Dynamic

Programming if the R function and P function are known. Reinforcement Learning is

used to learn the optimal policy when P function and R function are unknown. The

four main elements (Bonarini, et al., 2009) of a reinforcement learning system are: a

policy, a reward function, a value function, and, optionally, a model of the

environment.

A policy defines the learning agent's way of behaving at a given time (when

selecting actions).

A reward function defines the goal in a reinforcement learning problem. It

maps each perceived state (or state-action pair) of the environment to a single

number, a reward.

A value function specifies what is good in the long run, whereas a reward

function indicates what is good in an immediate sense.

A model of the environment is something that mimics the behaviour of the

environment. (e.g., a simulation program (although that in itself is NOT the

model...))

A policy, π, is a mapping from each state, 𝒔𝝐𝑺, and action, 𝒂𝝐𝑨, to the probability

π(s,a) of taking action a when in state s. Informally, the value of a state s under a

policy π, denoted Vπ(s), is the expected return when starting in s and following π

thereafter. For MDPs, Vπ(s) is defined formally as

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠∞
𝑘=0 } (4) (Sutton, et al.,

2012)

Where 𝐸𝜋{} denotes the expected value given that the agent follows policy π, and t

is any time step.

11

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠}

= 𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠

∞

𝑘=0

}

= 𝐸𝜋 {𝑟𝑡+1 + 𝛾 ∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡 = 𝑠

∞

𝑘=0

}

= ∑ 𝜋(𝑠, 𝑎)

𝑎

∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+2|𝑠𝑡+1 = 𝑠′

∞

𝑘=0

}]

𝑠′

= ∑ 𝜋(𝑠, 𝑎)𝑎 ∑ 𝑃𝑠𝑠′
𝑎 [𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑆′)]𝑠′ (5) (Sutton, et al., 2012)

The equation above is the Bellman equation for Vπ. It expresses a relationship

between the value of a state and the values of its successor states.

In reinforcement learning Ra
ss’ and Pa

ss’ are unknown, so it is impossible to update the

value function by using the equation above. By using Monte Carlo Methods

(Metropolis, et al., 1949), keeping the policy unchanged and keeping training the

system repeatedly, one can use the estimated value function as below:

𝑉(𝑠𝑡) ← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡 − 𝑉(𝑆𝑡)] (6) (Sutton, et al., 2012)

where st is the state visited at time t, Rt is the reward after time t and α is a constant

parameter.

This estimated value function will eventually be an approximation of equation (5).

There are three common policies (Sutton, et al., 2012) used for action selection. The

aim of these policies is to balance the trade-off between exploitation and exploration,

by not always exploiting what has been learnt so far.

ε-greedy - most of the time the action with the highest estimated reward is chosen,

called the greediest action. Every once in a while, say with a small probability ε, an

action is selected at random. The action is selected uniformly, independent of the

action-value estimates.

ε-soft - very similar to ε-greedy. The best action is selected with probability 1 - ε

and the rest of the time a random action is chosen uniformly.

softmax - one drawback of ε-greedy and ε-soft is that they select random actions

uniformly. The worst possible action is just as likely to be selected as the second best.

12

Softmax remedies this by assigning a rank or weight to each of the actions, according

to their action-value estimate. A random action is selected with regards to the weight

associated with each action, meaning the worst actions are unlikely to be chosen.

This is a good approach to take where the worst actions are very unfavourable.

On-Policy (Poole, et al., 2010) Temporal Difference methods (introduced in next

section) learn the value of the policy that is used to make decisions. The value

functions are updated using results from executing actions determined by some

policy. On the other hand, Off-Policy (Poole, et al., 2010) methods can learn different

policies for behaviour and estimation.

2.2.3. Temporal Difference Learning

1-step TD Prediction TD(0) (Sutton, et al., 2012)

Temporal Difference (TD) Learning methods can be used to estimate these value

functions. If the value functions were to be calculated without estimation, the agent

would need to wait until the final reward was received before any state-action pair

values can be updated. Once the final reward was received, the path taken to reach

the final state would need to be traced back and each value updated accordingly

(Monte Carlo Methods). On the other hand, with TD methods, an estimate of the

final reward is calculated at each state and the state-action value updated for every

step of the way. Expressed formally:

𝑉(𝑠𝑡) ← 𝑉(𝑠𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)] (6)

where rt+1 is the observed reward at time t+1. The pseudo code of TD(0) algorithm is

shown as Pseudo code 1.

Pseudo code 1: TD(0) algorithm (Sutton, et al., 2012)

1. Initialize V(s) arbitrarily, πto the policy to be evaluated

2. Repeat (for each episode)

3. Initialize s

4. Repeat (for each step of episode)

5. a ← action given by π for s

6. Take action a; observe reward, r, and next state, s’

7. 𝑉(𝑠) ← 𝑉(𝑠) + 𝛼[𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)]

8. 𝑠 ← 𝑠′

9. Until s is terminal

13

In the actual application, V(s) cannot be acquired directly, and Q(s, a) is introduced as

an estimation of V(s).

The value of taking action a in state s under a policy π is defined as below, denoted

Qπ(s,a), as the expected return starting from s, taking the action a, and thereafter

following policy π:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎∞
𝑘=0 } (7)

Qπ is called the action-value function for policy π.

Therefore, two implementable TD(0) algorithm show as follows (Pseudo code 2,

Pseudo code 3):

Pseudo code 2: Sarsa (On-Policy) algorithm (Sutton, et al., 2012)

1. Initialize Q(s,a) arbitrarily

2. Repeat (for each episode)

3. Initialize s

4. Choose a from s using policy derived from Q (e.g. ε-greedy)

5. Repeat (for each step of episode)

6. Take action a, observe r, s’

7. Choose a’ from s’ using policy derived from Q (e.g. ε-greedy)

8. 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]

9. 𝑠 ← 𝑠′; 𝑎 ← 𝑎′

10. Until s is terminal

Pseudo code 3: Q-Learning (On-Policy) algorithm (Sutton, et al., 2012)

1. Initialize Q(s,a) arbitrarily

2. Repeat (for each episode)

3. Initialize s

4. Repeat (for each step of episode)

5. Choose a’ from s’ using policy derived from Q (e.g. ε-greedy)

6. Take action a, observe r, s’

7. 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]

8. 𝑠 ← 𝑠′; 𝑎 ← 𝑎′

9. Until s is terminal

14

n-step TD Prediction TD(λ) (Sutton, et al., 2012)

In Monte Carlo backups the estimate value function is updated in the direction of the

complete return:

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑇−𝑡−1𝑟𝑇 (8)

where T is the last time step of the episode.

In one-step backups the target is the first reward plus the discounted estimated value

of the next state:

𝑅𝑡
(1)

= 𝑟𝑡+1 + 𝛾𝑉𝑡(𝑠𝑡+1) (9)

So, the n-steps target is:

𝑅𝑡
(𝑛)

= 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛) (10)

The increment to Vt(St) (the estimated value of Vπ(st) at time t), due to an n-step

backup of st, is defined by

∆𝑉𝑡(𝑆𝑡) = 𝛼[𝑅𝑡
(𝑛)

− 𝑉𝑡(𝑠𝑡)] (11)

where α is a positive step-size parameter, as usual.

The increments to the estimated values of the other states are

∆𝑉𝑡(𝑠) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ≠ 𝑠𝑡 (12)

In on-line updating, the updates are done during the episode, as soon as the

increment is computed. In this case

𝑉𝑡+1(𝑠) = 𝑉𝑡(𝑠) + ∆𝑉𝑡(𝑠) (13)

However, n-step TD methods are rarely used because they are inconvenient to

implement. Computing n-step returns requires waiting n steps to observe the

resultant rewards and states. For large n, this can become problematic, particularly in

control applications.

Backups can be done not just toward any n-step return, but toward any average of

n-step returns. For example, a backup can be done toward a return that is half of a

two-step return and half of a four-step return:

15

𝑅𝑡
𝑎𝑣𝑒 =

1

2
𝑅𝑡

(2)
+

1

2
𝑅𝑡

(4)
 (14)

Any set of returns can be averaged in this way, even an infinite set, as long as the

weights on the component returns are positive and sum to 1.

The TD(λ) algorithm can be understood as one particular way of averaging n-step

backups. This average contains all the n-step backups, each weighted proportional to

λn-1, where 0≤λ≤1. A normalization factor of 1-λ ensures that the weights sum to 1.

The resulting backup is toward a return, called the λ-return, defined by

𝑅𝑡
𝜆 = (1 − 𝜆) ∑ 𝜆𝑛−1𝑅𝑡

(𝑛)
+ 𝜆𝑇−𝑡−1𝑅𝑡

𝑇−𝑡−1
𝑛=1 (15)

If λ=0, then the overall backup reduces to its first component, the one-step TD

backup.

If λ=1, then the overall backup reduces to its last component, the Monte Carlo

backup.

On each step t, it computes an increment for state visited

𝛥𝑉𝑠(𝑠𝑡) = 𝛼[𝑅𝑡
𝜆 − 𝑉𝑡(𝑠𝑡)] (16)

The increments to the estimated values of the other states are

𝛥𝑉𝑡(𝑠) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ≠ 𝑠𝑡 (17)

Eligibility Trace (Barto, et al., 1983)

An eligibility trace is associated with each state. The eligibility trace for state s at time

t is denoted. On each step, the eligibility traces for all states decay by γλ, and the

eligibility trace for the one state visited on the step is incremented by 1:

𝑒𝑡(𝑠) = {
𝛾𝜆𝑒𝑡−1(𝑠) 𝑖𝑓 𝑠 ≠ 𝑠𝑡

𝛾𝜆𝑒𝑡−1(𝑠) + 1 𝑖𝑓 𝑠 = 𝑠𝑡
 (18)

This kind of eligibility trace is called an accumulating trace because it accumulates

each time the state is visited, then fades away gradually when the state is not visited.

The traces indicate the degree to which state is eligible for undergoing learning

changes should a reinforcing event occur. The reinforcing events are the

moment-by-moment one-step TD errors. For example, the TD error for state-value

prediction is

𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉𝑡(𝑠𝑡+1) − 𝑉𝑡(𝑠𝑡) (19)

16

The global TD error signal triggers proportional updates to all recently visited states,

as signalled by their nonzero traces:

𝛥𝑉𝑡(𝑠) = 𝛼𝛿𝑡𝑒𝑡(𝑠) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 (20)

Pseudo code 4: TD(λ) algorithm (Sutton, et al., 2012)

1. Initialize V(s) arbitrarily and e(s)=0, for all s∈ S

2. Repeat (for each episode)

3. Initialize s

4. Repeat (for each step of episode)

5. a ← action given by π for s

6. Take action a; observe reward, r, and next state, s’

7. 𝛿 ← 𝑟 + 𝛾𝑉(𝑠′) − 𝑉(𝑠)

8. 𝑒(𝑠) ← 𝑒(𝑠) + 1

9. For all s:

10. 𝑉(𝑠) ← 𝑉(𝑠) + 𝛼𝛿𝑒(𝑠)

11. 𝑒(𝑠) ← 𝛾𝜆𝑒(𝑠)

12. 𝑠 ← 𝑠′

13. Until s is terminal

In Pseudo code 4, if λ=0 it becomes completely same with TD(0) algorithm, and if λ=1

this turns out to be just the right thing to do to achieve Monte Carlo behaviour.

Almost any temporal-difference (TD) method, such as Q-learning or Sarsa, can be

combined with eligibility traces to obtain a more general method that may learn

more efficiently. The SARSA(λ) algorithm and Q(λ) algorithm are shown as follows

(Pseudo code 5, Pseudo code 6).

17

Pseudo code 5: SARSA(λ) algorithm (Sutton, et al., 2012)

1. Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s,a

2. Repeat (for each episode)

3. Initialize s,a

4. Repeat (for each step of episode)

5. Take action a; observe reward, r, and next state, s’

6. Choose a’ from s’ using policy derived from Q (e.g. ε-greedy)

7. 𝛿 ← 𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)

8. 𝑒(𝑠, 𝑎) ← 𝑒(𝑠, 𝑎) + 1

9. For all s,a:

10. 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼𝛿𝑒(𝑠, 𝑎)

11. 𝑒(𝑠, 𝑎) ← 𝛾𝜆𝑒(𝑠, 𝑎)

12. 𝑠 ← 𝑠′; 𝑎 ← 𝑎′

13. Until s is terminal

Pseudo code 6: Q(λ) algorithm (Sutton, et al., 2012)

1. Initialize Q(s,a) arbitrarily and e(s,a)=0, for all s,a

2. Repeat (for each episode)

3. Initialize s,a

4. Repeat (for each step of episode)

5. Take action a; observe reward, r, and next state, s’

6. Choose a’ from s’ using policy derived from Q (e.g. ε-greedy)

7. 𝑎∗ ← arg 𝑚𝑎𝑥𝑏𝑄(𝑠′, 𝑎′) (𝑖𝑓 𝑎′𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑎𝑥, 𝑡ℎ𝑒𝑛 𝑎∗ ← 𝑎′)

8. 𝛿 ← 𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)

9. 𝑒(𝑠, 𝑎) ← 𝑒(𝑠, 𝑎) + 1

10. For all s,a:

11. 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼𝛿𝑒(𝑠, 𝑎)

12. If 𝑎′ = 𝑎∗ 𝑡ℎ𝑒𝑛 𝑒(𝑠, 𝑎) ← 𝛾𝜆𝑒(𝑠, 𝑎)

13. Else 𝑒(𝑠, 𝑎) ← 0

14. 𝑠 ← 𝑠′; 𝑎 ← 𝑎′

15. Until s is terminal

18

2.3. Genetic Network Programming

2.3.1 The Basics of GNP

Phenotype of the GNP

The GNP uses a directed graph as its phenotype (Katagiri, et al., 2000). It contains

three types of nodes, one start node, judgment nodes and processing nodes. The

basic structure is shown in the Fig. 2.2. The only function of the start node is to

determine which node to execute first, and the rest nodes never direct to the start

node. The judgment node provides the ability to judge the environment. It has

multiple connections to other nodes, and typically using if-then statements to

process the input values in order to decide which connection to select. On the other

hand, the processing node represent the actual action of an agent, e.g. a steering

angle of a robot. It only has one connection to another node.

Figure 2.3 Structure of genetic network programming

GNP has time delays (Katagiri, et al., 2000) on executing judgment nodes and

processing nodes. It can be considered as how much time consumed by executing

the node, because when applying the GNP in the real world, the agent needs time to

judge the environment and take actions. Processing nodes and judgment nodes may

have different time delays, and it needs a maximum time to determine how many

nodes can be executed in one time step of a simulation program or a real world

control system. For example, set the maximum time to five units, set time delay of

the judgment node to one unit and processing node to three units, so the GNP may

execute two judgment nodes and one processing node in one step.

19

Once the GNP starts, it will execute nodes one by one according to the connection, in

an infinite loop. The loop can only be stopped externally. In the training phase

(introduced later), an execution time is a typical termination condition for GNP, while

in the testing phase (introduced later), it can be terminated whenever there is no

need to continue the system.

Genotype of the GNP

ID T F D C1 C2 ……

Figure 2.4 Structure of the gene of a node

The structure of the gene (Katagiri, et al., 2000) of a node is presented as Fig. 2.3. ID

is a unique number of the node and it never changes. T is the type of the node (0:

start node, 1: judgment node, 2: processing node). The GNP judgment node and

processing node may have multiple functions (Katagiri, et al., 2000), F is the function

type of a node. D is the time delay of a node. Finally Ci is the connection to the next

node which is the most important part that decides the whole structure of the GNP.

A complete GNP includes many nodes, so a complete GNP individual is in a two

dimensional structure.

20

Schematic Diagram of the GNP

Figure 2.5 Schematic diagram of the genetic network programming algorithm (training

phase)

21

The process can be divided into two phases, training phase and test phase. The Fig.

2.4 shows the schematic diagram of the GNP. It needs a population for evolution, and

one graph is an individual in the population.

The population needs to be initialized at first, then starts the evolution. Each

individual is evaluated in every generation, elites are kept to next generation and the

rest individuals of next generation is generated by gene operation (Mutation and

Crossover). At the end of training phase, good individuals can be selected for the test

phase (Fig. 2.5).

Figure 2.6 Schematic diagram of genetic network programming (testing phase)

22

2.3.2 Initialization the GNP

Determine the number of each type of node; therefore all individuals in a population

have the same number of nodes and the nodes with the same ID have the same

function. For each node, the connection is randomly assigned, but never directed to

the start node.

2.3.3 Running a GNP Individual

When running a GNP individual, it begins from the start node, and the node

transition is based on Ci. For judgment nodes, typically they have multiple

connections to the next node (Fig. 2.6 a), for example, C1, C2, C3 etc. The result of the

judgment node determines which connection to select. For processing node, there is

only one connection typically (Fig. 2.6 b).

(a) (b)

Figure 2.7 Judgment and Processing Node in GNP

Before executing each node, it needs to check the remaining time (t2) as there is a

maximum time in one time step. If the remaining time is not enough to execute the

next node, the program will wait for the next time step in the simulation or a real

world system to continue.

2.3.4 Genetic Operators

In every generation, after running every individual, the program will select one or

more good individuals by comparing their fitness. These elite individuals will be kept

to the next generation. The rest of the population will mutate or crossover to

produce the offspring, so the population keeps steady.

23

The Mutation process is as follows: (Mabu, et al., 2007)

1. Select one individual and reproduce it as a parent.

2. Each connection of each node is selected with a probability of Pm. The selected

Ci will change to other value randomly (Never points to the start node).

3. Keep the mutated individual to the next generation.

The Crossover process is as follows: (Mabu, et al., 2007)

1. Select two individual and reproduce them as a parents.

2. Each node is selected as a crossover node with the probability of Pc.

3. Two parents exchange the genes of the corresponding crossover nodes, i.e., the

nodes with the same node number.

4. Generated new individuals become the new ones of the next generation.

When processing the mutation and Crossover, the selection of individuals can use

the tournament selection. It needs to define a tournament size N, randomly select N

individuals and compare their fitness to choose the best individual.

2.4. GNP with Reinforcement Learning

Reinforcement learning changes the program every time step when running a task as

an online learning algorithm. In order to obtain better results in dynamic

environments, the GNP is extended by combining with reinforcement learning

algorithm (Mabu, et al., 2007). In the GNP algorithm, the graph structure only

changes during the evolution and once a good individual has been selected for

testing phase the graph is fixed. On the other hand, the combination of GNP and

reinforcement learning is able to change the connections of nodes in the testing

phase, thereby improve its performance in dynamic environments.

2.4.1. Basic Structure of GNP-RL

In the GNP, each node only has one function, but in the GNP-RL each node may has

several functions, and they can be considered as sub-nodes (Fig. 2.7). The major

purpose of Reinforcement Learning is mapping a state to an action, so in this case

the state is the ID of node and the action is the sub-node. In other words, the node

only executes one sub-node a time and it is selected by the Reinforcement Algorithm.

The state-action space is set as follows (Table 2.1).

24

Figure 2.8 Processing node and judgment node with sub-nodes

Table 2.1 State-action space for RL in GNP-RL algorithm

 Sub-node 1 Sub-node 2 Sub-node 3 … Sub-node M

0 Q-Value Q-Value Q-Value … Q-Value

1 Q-Value Q-Value Q-Value … Q-Value

2 Q-Value Q-Value Q-Value … Q-Value

3 Q-Value Q-Value Q-Value … Q-Value

… … … … … …

N Q-Value Q-Value Q-Value … Q-Value

*Q-Value corresponds to each state-action pair

For example, in original GNP algorithm, if there are four actions for the agent, they

are considered as four different types of processing node in the network. On the

other hand, in GNP-RL algorithm all four of these actions can be considered as

sub-nodes of one processing node, and reinforcement learning algorithm is

responsible for selecting which one to execute. By combining the reinforcement

learning, it makes the structure even more compact, and the code for sub-nodes is

also reusable.

An Extension of GNP-RL: Fuzzy Judgment Node (Mabu, et al., 2011)

Typically a judgment node is consists of some if-then statements, and each statement

connects to a different node. However, the if-then statement is replaced by the

fuzzification part of fuzzy logic system in fuzzy judgment node. Each membership in

the fuzzy sets connects to a different node, and when executing the fuzzy judgment

node, the degree of each membership function is used as a probability for selecting

the connection.

25

2.4.2. Running a GNP-RL Individual

Basically running a GNP-RL individual proceeds similar to a pure GNP individual, as

defined in Section 2.3.3. The only difference is that it needs to update the

state-action space in each time step (Fig. 2.8). If the judgment node uses RL, it

cannot receive an immediate reward from the environment after execution, because

there is no action been taken. Typically the state-action space will be updated after a

whole time step, while for processing node, it also can be updated immediately after

the execution depends on the training situation. During the training and testing

phase, the reinforcement learning always uses the ε-Greedy policy to select the

sub-node. It keeps exploring and learning to change the selection of sub-nodes,

thereby improve the performance in dynamic environment.

Figure 2.9 Schematic diagram of GNP- RL running in the testing phase

26

2.5. Summary

The fuzzy logic control system is the last intelligent system among all the algorithms

introduced in this chapter. However, it is able to produce an excellent performance, if

the fuzzy sets and fuzzy rules all set perfectly. It is necessary to implement fuzzy logic

control system first as a benchmark for measuring the performance of other

algorithm. Reinforcement learning is simple and efficient, but it is weak dealing with

input which is continuous value. For robot control, the obvious choice is to use the

combination of fuzzy logic and reinforcement learning algorithm. Genetic network

programming can be seen as a substitute of reinforcement learning, they have similar

capabilities, except it is not an online learning algorithm. The GNP-RL algorithm (with

fuzzy judgment node) combines all the advantages of all these three basic algorithms,

the research focuses on implement the GNP-RL algorithm for robot control, until the

limitations are found from experiments. By comparing with all implementations of

each algorithm, the final decision for achieving multi-objectives is to develop a new

architecture of GNP: GNP with Fuzzy-RL nodes.

27

Chapter 3
Adaptations of the Algorithms for
Robot Control: Single Behaviour

3.1. Problem Domain Specifications

This chapter focuses on testing two simple control objectives for the robot: steering

angle and speed control for the ball pursuit behaviour. The robot needs to adjust its

heading direction towards the ball and the robot speed is slowed down whenever

the robot is close to the ball, and sped up whenever the robot is far from the ball.

These control objectives are relatively easy to achieve as they contribute towards

achieving the same target pursuit behaviour.

Algorithm 1: Fuzzy logic implementing both steering angle and speed adjustment for

ball pursuit

Algorithm 2: Reinforcement learning with fuzzy logic implementing the steering angle

controller for ball pursuit.

Algorithm 3: Genetic network programming implementing both steering angle

controller and speed adjustment for ball pursuit.

Simulation Environment

The simulation program is based on the FIRA Micro Robot World Cup Soccer

Tournament. Since the robot and the ball are all moving on the same plane, it is

simulated in a 2D environment.

Dimensions:

 Robot: 7.5 cm. x 7.5 cm.

 Ball: 3 cm. (diameter)

 Pitch: 220 cm. x 180 cm.

28

Figure 3.1 2D simulation environment

The simulation program updates the status of ball and robot every time step, and all

the simulations in this thesis only considers the position, speed and direction. It is

simple to calculate the distance and angle between robot and ball (or wall) by using

these attributes, and all experiments in this thesis uses these values as the input of

the control system. The control system is only allowed to adjust the speed and

direction of the robot. The four boundaries of the pitch is named as Fig. 3.1 shows

above. The red dots are the trace of the ball, and the white dots are the trace of

robot.

3.2. Algorithm 1: Fuzzy Logic Controller

3.2.1. General Architecture

In this experiment, the fuzzy logic control system receives two input values, one is

the heading angle to the ball from robot, and the other is the distance between

robot and ball. The schematic diagram of the algorithm is shown in Fig. 3.2.

Figure 3.2 Flowchart of fuzzy logic control system

29

As we know, one fuzzy system only gives one final output value. In order to control

the speed and the steering angle simultaneously, this experiment uses two fuzzy

logic control systems, and both have the same input values.

Figure 3.3 Fuzzy logic system design (NL-Negatively Large, NM-Negatively Medium,

NS-Negatively Small, ZE-Zero, PS-Positively Small, PM-Positively Medium and

PL-Positively Large)

As the Fig. 3.3 shows, the experiment uses a traditional fuzzy logic system design

(Reyes, et al., 2013), which divides the angle into seven regions and the distance into

four regions. So here are two fuzzy sets corresponding to two input values.

3.2.2. Problem-Specific Parameter Settings

Figure 3.4 Angle fuzzy sets

(x,y

)

Z

E

NEAR

MED

FAR

VERY FAR

0

0.5

1

-180 -60 -45 -30 -15 -5 -3 0 3 5 15 30 45 60 180

Angle Fuzzy Sets

NL NM NS ZE PS PM PL

30

Figure 3.5 Distance Fuzzy Sets

Two fuzzy sets in this experiment are defined as Fig. 3.4 and Fig. 3.5 above. The rules

for ball pursuit and speed control can be represented as fuzzy associative memory

matrices, and they are shown in Table 3.1 and Table 3.2.

Table 3.1 Fuzzy Associative Memory Matrix for Ball Pursuit: Steering Angle Adjustment

 NEAR MED FAR VERY FAR

NL Very Sharp Left Very Sharp Left Sharp Left Sharp Left

NM Sharp Left Sharp Left Mild Left Mild Left

NS Mild Left Mild Left Very Mild Left Very Mild Left

ZE Zero Zero Zero Zero

PS Mild Right Mild Right Very Mild Right Very Mild Right

PM Sharp Right Sharp Right Mild Right Mild Right

PL Very Sharp Right Very Sharp Right Sharp Right Sharp Right

0

0.2

0.4

0.6

0.8

1

0 5 10 20 30 50 60 100

Distance Fuzzy Sets

Near Medium Far Very Far

31

Table 3.2 Fuzzy Associative Memory Matrix for Ball Pursuit: Speed Control

 NEAR MED FAR VERY FAR

NL Very Slow Very Slow Slow Slow

NM Very Slow Slow Medium Medium

NS Very Slow Medium Fast Very Fast

ZE Slow Medium Fast Wicked Fast

PS Very Slow Medium Fast Very Fast

PM Very Slow Slow Medium Medium

PL Very Slow Very Slow Slow Slow

In general these rules are set to achieve two principles.

1. Turn the robot sharply if the angle from the ball is large and the distance is small.

2. Speed down if the angle from the ball is large and the distance is small.

3.2.3. Experiment Results and Analysis

The simulation program records the position of the ball and robot every time step.

The Fig. 3.6 is a screen shot of the experiment.

Figure 3.6 Trace of ball and robot (fuzzy logic controller)

The robot moved very smooth in the experiment and achieved ball pursuit and speed

control at the same time. The crucial part in fuzzy logic control system is determining

32

the appropriate fuzzy sets and rules. These settings directly affect the system’s

performance, and there is no simple method to set these parameters correctly and

efficiently. It is a time consuming job to try the different parameters and get a good

performance.

3.2.4. Limitations of the Algorithm

There is no doubt that fuzzy logic control is able to present an excellent control

system, but the major problem is that it needs an expert’s prior knowledge to design

and create the fuzzy sets and rules. It’s a time consuming job for people to test and

improve the performance of a fuzzy logic system. And when dealing with lots of input

values, even a very experienced person cannot set proper rules for the system.

3.3. Algorithm 2: Reinforcement Learning
with Fuzzy Logic

In general, reinforcement learning maps states into actions, and the number of state

and action are finite. However, for the navigation problem domain, the state is the

input value and it is a real number, reinforcement learning needs the help of an

intermediary algorithm, in this case. So the basic idea of this experiment is to fuzzify

the input value to obtain limited states for the reinforcement learning, and it takes

responsibility to construct the fuzzy rules. As compared to a pure fuzzy logic control

system, this algorithm does not need any prior expert knowledge to create the fuzzy

rules; thus, saving a lot of time.

This experiment only tested the steering angle controller for ball pursuit behaviour,

as speed control can be simply achieved by adding another reinforcement learning

instance. The input value is the angle to the ball and the only output is the steering

angle for the robot. The speed of the robot is set to a constant initially. The SARSA(λ)

learning algorithm (Sutton, et al., 2012) was used for this experiment.

33

3.3.1 General Architecture

To combine fuzzy logic and reinforcement learning together, this experiment tried

two different architectures for implementation. The first one only combines a

fuzzification component with reinforcement learning, and is referred to as RL with

fuzzified input. The second approach combines a complete fuzzy logic system with

reinforcement learning, and is referred to as Fuzzy-RL.

Algorithm 2a: Reinforcement Learning with a Fuzzified Input

Figure 3.7 Schematic diagram of RL with fuzzified input algorithm

34

Algorithm 2b: Reinforcement Learning with Fuzzy Logic System (Fuzzy-RL)

Figure 3.8 Schematic diagram of the Fuzzy-RL algorithm

The two figures (Fig. 3.7, Fig. 3.8) above show the schematic diagram of RL with

fuzzified input and Fuzzy-RL algorithm. The system feeds only on one input; that is,

the angle from the ball. The SARSA(λ) learning algorithm (Sutton, et al., 2012) is

employed in both approaches.

After the fuzzification, as we know there maybe more than one truth value gets a

35

nonzero degree. In Algorithm 2a, only the truth value with the largest degree of firing

is used as the state in RL. In turn, the reinforcement learning algorithm chooses only

one action corresponding to this state.

On the other hand, in Algorithm 2b, the Fuzzy-RL algorithm considers all truth values

with nonzero degree of firing, then, picks the truth value with the largest degree as

the main state for updating and selecting the main action. This is because the

reinforcement learning algorithm only reinforces one action-state pair, in one time

step. The minor actions are chosen via the greedy policy, instead to limit the

exploration phase and make use of knowledge exploitation more. After

defuzzification phase, the system calculates the final output, via the centre of mass

formula.

3.3.2 Problem-Specific Parameter Settings

Figure 3.9 Angle Fuzzy Sets

The two algorithms use the same fuzzy sets for the input value (angle from the ball)

as Fig. 3.9 shows. This experiment uses seven actions as Table 3.3 shows, the positive

degree means turn left and the negative degree means turn right. Once the robot

exhibits the appropriate behaviour, it is deemed that the Q-values in the state-action

space already converged. At this stage, the reinforcement learning algorithm has

completed the construction of the fuzzy rules.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-180 -30 -25 -8 -7 -5 -2 -1 1 2 5 7 8 25 30 180

Angle Fuzzy Sets

NL NM NS ZE PS PM PL

36

Table 3.3 State-Action space (States are the truth value from Fuzzy system, Actions are

steering angles for the robot)

State\Action 0 deg. 1 deg. -1 deg. 5 deg. -5 deg. 25 deg. -25 deg.

NL 6.13061 3.73286 5.5691 7.16532 38.6804 4.48876 1.10006

NM 7.37921 1.95259 7.02415 7.27928 27.4277 3.42272 3.50469

NS 2.82158 6.02192 5.59275 2.19006 3.62111 25.8563 2.38168

ZE 13.9584 11.0166 21.4455 8.45386 14.0966 14.5892 7.41781

PS 17.9597 23.5371 18.2677 22.2188 25.229 14.4371 15.3839

PM 17.5066 16.1582 12.5777 29.9405 24.7555 8.59868 17.2286

PL 12.8531 3.60552 13.6882 14.0344 17.576 44.8491 13.6786

*The value in cells are hypothetical Q-Value, corresponds to each state-action pair

The reward function is the most important part in this experiment. Generally, the

system needs to generate a reward when the action accomplishes the goal. In this

case, the angle between the robot and the ball is within the range [-1, 1] degrees.

The RL is able to reinforce previous actions executed, and by doing this repeatedly, it

learns the optimal policy to achieve the goal (i.e. target robot behaviour). However,

in the simulation environment, the robot may never get to the goal, but just

constantly steers randomly in a small area. The solution to this problem is to evaluate

every action and offer a reward that distinguishes a relatively bad action from a

relatively good action.

Reward Function

Pseudo code 7: Reward function for RL with FLS

1. If newangle is less than oldangle

2. then reward = 30 * (1 - newangle / oldangle)

3. An extra reward is given when the robot arrives at the goal.

The parameters in SARSA(λ) learning is set as:

Explore rate = 0.1, λ= 0.5, α= 0.1 γ= 0.7

3.3.3 Results and Analysis

The robot is placed initially at the centre of the field, facing wall 1, with a constant

speed of 0.6 units per time step. The ball is set initially to be on the left, 85 units

away from the robot with a speed of 0. As reinforcement learning is an online

learning algorithm, once the simulation starts, the robot will gradually learn the

behaviour of ball pursuit.

37

Figure 3.10 Initial part of RL with fuzzified input algorithm

Figure 3.11 Results of Algorithm 2a: Average angle from ball every 50 time steps (y-axis

= ave. angle; x-axis: 1 unit = 50 time steps).

0

10

20

30

40

50

60

70

80

90

100

110

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Average angle from ball every 50 time
steps

38

Figure 3.12 Results of Algorithm 2b: Learning phase of the Fuzzy-RL algorithm.

Figure 3.13 Results of Algorithm 2b: Average angle from ball every 50 time steps (y-axis

= ave. angle; x-axis: 1 unit = 50 time steps).

0
10

20
30

40

50
60

70
80

90

100
110

120
130

140

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Average angle from ball every 50 time steps

39

As Fig. 3.10 and Fig. 3.12 show, the robot just moves randomly at first, and then

learns how to pursue the ball. The average angle from ball decreases dramatically in

the first 10 units (500 time steps) time steps, and then keeps steady (Fig. 3.11, Fig.

3.13). There is a slight drop in Fig. 3.13 at the 85th unit (4250 time steps) and then the

value fluctuates at around 5 degree. In contrast, the angle in Fig. 3.11 always

fluctuates at around 15 degrees after 10 units (500 time steps).

The figures in 3.14 and 3.15 below show the path traced after running the simulation.

The speed of the ball is initialized faster than the speed of the robot, and it is slowing

down because of the friction in the simulation environment. The Q-values in the

state-action space already converged in both algorithms. Comparing the average

angle from ball (Fuzzy-RL: around 5 degrees; RL with fuzzified input: around 15

degrees) and the observable trace of robot, we can clearly see that Fuzzy-RL

algorithm is much better than RL with only the fuzzified input algorithm. The robot

using Fuzzy-RL algorithm moves very smoothly, just like using a hand-calibrated pure

fuzzy logic control system.

Figure 3.14 The performance after running for a while (RL with fuzzified input

algorithm)

40

Figure 3.15 The performance after running for a while (Fuzzy-RL algorithm)

3.3.4 Limitations of the Algorithm

As we can see from the experiments, the RL with fuzzified input algorithm doesn’t

perform well enough. On the other hand, the Fuzzy-RL algorithm gives a wonderful

performance just like the hand-calibrated fuzzy logic control system, and all the rules

were generated automatically. The crucial part in this algorithm is the reward

function, a well-designed reward function can accelerate the convergence of the

Q-values in the state-action space, and produce an excellent result. Otherwise, it

may not be very efficient. The other limitation of Fuzzy-RL will be introduced in

chapter 4.

41

3.4. Algorithm 3: Genetic Network
Programming with Reinforcement Learning

3.4.1. General Architecture

Figure 3.16 Schematic diagram of GNP with RL for training phase

42

The Fig. 3.16 shows the schematic diagram of GNP with RL for training phase. When

training an individual in the environment, it needs to set some conditions for calling a

failure, in order not to waste too much time (t1) on a very bad individual. For ball

pursuit, if the robot is far away from the ball, or uses too much time steps (t1), it

considers it a failure, then jumps to the next individual. Once the next individual

enters the simulation environment, the environment is reset, so that every individual

is trained using the same environmental conditions.

Each GNP individual uses one reinforcement learning algorithm instance to select a

(function) sub-node in a processing node. The state here is the ID of each node, and

the actions are the functions (sub-nodes) in each node. The State-Action space is

shown as Table 3.4.

Table 3.4 The state-action space of RL

State\Functio

n

0 1 2 3 4 …… M=number of

functions

0 Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value

1 Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value

2 Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value

…… …… …… …… …… …… …… ……

N = number

of nodes

Q-Value Q-Value Q-Value Q-Value Q-Value …… Q-Value

*Q-Value corresponds to each state-action pair

Fitness is calculated for each GNP individual after it is trained in the simulation

environment. The individual with the highest fitness is considered as the most elite

and will be kept to the next generation. Once it reaches the last generation, the top

five individuals are selected for the testing phase.

The Fig. 3.17 shows the schematic diagram of GNP with RL for testing phase, in this

stage the performance of the best individual is displayed by the graph engine, so it

can be manually judged whether it is good or not.

43

Figure 3.17 Schematic diagram of GNP with RL for testing phase

3.4.2. Problem-Specific Parameter Settings

Judgment Nodes

There are two different types of judgment node, one is for judging the angle from

ball, and one is for judging the distance from ball. The judgment node settings are

shown in the Fig. 3.18.

Figure 3.18 Judgment node settings

Processing Nodes

Four different types of processing nodes are defined in this implementation, one is to

turn left, one is to turn right, one is for high speed and one is for low speed, they are

shown as Fig. 3.19.

44

Figure 3.19 Processing node settings

The time delay of each judgment node is set to 1, the time delay for each processing

node is set to 3, and the max time in a simulation time step is set to 8. The

probability of mutation and crossover is not very sensitive to the performance as

only the connection changes in this implementation. They are all set to a small

value; less than 0.5 is fine. The other parameters are set as follows:

 Population: 100

 Mutation: 63

 Crossover: 32

 Elites: 5

 Tournament size: 6

Reward Function

Pseudo code 8: Reward function for GNP-RL

1. If newangle is less than oldangle

2. then reward = 30 * (1 - newangle / oldangle)

3. An extra reward is given when the robot arrives at the goal.

45

There are three conditions to terminate one individual:

1. if the time (t1) steps is over 200;

2. if the robot moves too far away from the ball, and

3. if the robot reaches the ball successfully.

The fitness function is a bit complex, it can be generally described as follows:

1. In each time (t1) step, if the robot gets the correct speed, then the fitness

increases.

2. At the end of the simulation, the robot that gets closer to the ball gets the

higher fitness.

3. If the robot reaches the ball successfully, the lesser time steps it took, gives it

a higher fitness.

3.4.3. Results and Analysis

In the training phase, the ball and the robot is set to two fixed positions when an

individual begins its training simulation. Figure 3.20 shows the fitness of the best

individual in the training phase, the x-axis is the generation count.

Figure 3.20 Fitness of the best individual (y-axis = fitness; x-axis = generation count)

The fitness fluctuates dramatically before 155 generations, and mainly keeps a low

value at around 100. After 155 generations, the fitness goes up relatively steady at

around 300. This kind of figure is very different from genetic algorithm or even pure

genetic network programming. All these fluctuations are caused by the

reinforcement learning component, because it is also exploring in the training phase,

and the performance is not steady yet. So in this algorithm, the fitness is not a

0

50

100

150

200

250

300

350

400

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

Fitness of the best individual

46

strict indicator of the actual performance of an individual in the real-world, but

merely an estimate. This is why I keep five elite individuals at the end of training.

The highest fitness does not accurately correspond to the best individual when

testing them manually. Nevertheless, the fitness value is still able to indicate when

should the training stop. It is clearly shown in the figure that the fitness stabilizes

after 155 generations, this is the signal to stop the training phase.

Table 3.5 Performance data of top five individuals

 Fitness Average angle from ball* Percentage of time with the desired speed*

1 282.189 80.0269 0.1%

2 275.659 49.7347 19.6%

3 271.19 29.8886 38%

4 267.41 38.8341 31.7%

5 260.921 19.4059 46.7%

*Calculated by running the testing phase for 2000 time steps

The first column in Table 3.5 shows the fitness value obtained during the training

phase, the second column shows the average angle from ball - calculated in the

testing phase (set X is the total angle from ball in 2000 time steps, Average angle

from ball = X/2000), and the last column is the percentage of time of the robot with

the desired speed in the testing phase (set an accumulator Y, in each time step if the

robot gets the target speed corresponding to the distance from ball, Y plus 1. The

percentage of time = Y/2000). The highest fitness does not correspond to the best

performance though. The best had to be selected manually from the top five.

Figure 3.21 Performance of the GNP with RL

47

Figure 3.21 depicts a well-trained individual running under testing phase. At first, the

robot was far away from the ball, then it moved relatively faster towards the ball.

As soon as it is close enough to the ball, it slowed down to catch it. This is the

reason that the trace of the robot is like a dashed line towards the end. The speed

control perfectly meets the expectations. The performance on ball pursuit is also

good, as it achieved smooth turns when the ball changed its direction.

3.4.4. Limitations of the Algorithm

In general, this algorithm accomplishes the expected objectives: speed control and

steering angle control for ball pursuit, simultaneously. However, there are some

limitations that we can be observed from the experiments. The most obvious

problem is that the fitness value always fluctuates. It cannot reflect the quality of

an individual accurately, so the best individual still needs to be picked manually from

the five top individuals at the end of the training. The reinforcement learning part is

exploring during the training phase, and therefore can cause some confusion. It is

hard to tell whether there is enough time (t1) steps allotted for learning in one

generation, for one individual. The fitness relies on the performance of the

reinforcement learning, as well. In this implementation it still works fine, but the

fitness value can be expected to fluctuate even more, if we are to add more

sub-nodes (functions) into the processing nodes.

3.5. Summary

From the results of all algorithms that tested in this chapter, there is no doubt that

fuzzy logic control algorithm and Fuzzy-RL algorithm (Algorithm 2b) archives the best

performance. However, fuzzy logic control algorithm is not continued for

multi-behaviour robot test, because it requires too many manual settings which is

not original intention of this research. Fuzzy-RL becomes the best candidate for

testing multi-behaviour robot control, and the details of implementation and

experiments are discussed in chapter 4. GNP with RL algorithm is also not continued

due to the limitations mentioned before. Nevertheless, the flexible structure of GNP

algorithm promised there are still lots of possibilities that can to be explored. The

novel architecture introduced in chapter 5 is developed based on all the results of

experiments in chapter 3 and 4.

48

49

Chapter 4
Fuzzy-Reinforcement Learning for
Robot Multi-behaviour

4.1 Introduction

This chapter focuses on combining a new behaviour, wall avoidance with ball pursuit

and speed control. The general idea behind speed control for the ball pursuit

behaviour is to slow down whenever the robot is close to the ball, and to speed up

whenever it is away from the ball. Two different algorithms were tested in this

chapter, namely: Fuzzy-Reinforcement learning and Genetic network programming

with trained Fuzzy-RL nodes. The Fuzzy-Reinforcement learning algorithm has been

tested earlier for ball pursuit in chapter 3. However, it is modified in this chapter to

will deal with more input values (such as the distance from the wall and the angle

from the wall, as shown as Fig. 4.1) to form a more complex behaviour.

Figure 4.1 Calculation of difference between the heading angle of the ball, and the

nearest wall

The Fuzzy-RL algorithm only considers the nearest wall to avoid. As introduced in

chapter 3, Figure 3.1, there are four walls. The GNP with Fuzzy-RL nodes algorithm is

designed to distinguish four walls and take different actions to avoid the different

walls. The simulation environment is the same as in chapter 3.

50

4.2 General Architecture

The general architecture is the same as in chapter 3, but with a few modifications

concerning the reward function and the state-action space and the inputs to the

system. The schematic diagram of the Fuzzy-RL algorithm is shown in Fig. 4.2.

Figure 4.2 Schematic diagram of the Fuzzy-RL algorithm

51

4.3 Problem-Specific Parameter Settings

4.3.1 Fuzzy Logic Parameters

Three input values are used in this implementation: distance from the nearest wall,

angle from the nearest wall, angle from the ball. The fuzzy sets for these input values

are shown below (Fig. 4.3, Fig. 4.4 and Fig. 4.5). The negative values correspond to

wall or ball positions that are located to the left of the robot’s heading angle. These

were hand-calibrated, and use exactly the same parameters as those derived for

Algorithm 2a & 2b.

Figure 4.3 Angle from ball Fuzzy Sets

Figure 4.4 Angle from wall Fuzzy Sets

0

0.2

0.4

0.6

0.8

1

-180 -30 -25 -8 -7 -5 -2 -1 1 2 5 7 8 25 30 180

Angle from ball Fuzzy Sets

NL NM NS ZE PS PM PL

0

0.2

0.4

0.6

0.8

1

-180 -90 -70 -40 -30 30 40 70 90 180

Angle from wall Fuzzy Sets

NL NM SMALL PM PL

52

Figure 4.5 Distance from wall Fuzzy Sets

Now, the combination of the three input values corresponds to the states, and the

actions correspond to the different steering angles.

4.3.2 Reinforcement Learning Parameters

States used by the Reinforcement Learning

Table 4.1 The ID of states for corresponding input combination (Distance from wall is

near)

Angle from ball-> PL PM PS ZE NS NM NL

Angle from wall

PL 0 1 2 3 4 5 6

PM 7 8 9 10 11 12 13

SMALL 14 15 16 17 18 19 20

NM 21 22 23 24 25 26 27

NL 28 29 30 31 32 33 34

Table 4.1 shows the ID of the reinforcement learning states corresponding to the

three input combination (Distance from the nearest wall is NEAR, angle from nearest

wall, angle from ball). As there are two other regions left for the distance from wall

input (i.e. Medium and Far), the ID numbers of the reinforcement learning states has

a total of 104 (not shown here anymore). So there is a total of 105 states (ID numbers:

0 … 104) in this implementation, and the State-Action space is defined below.

0

0.2

0.4

0.6

0.8

1

0 5 7.5 10 15 30

Distance from wall Fuzzy Sets

Near Medium Far

53

States-Action Space used by the Reinforcement Learning

Table 4.2 State-Action space (y-axis: ID of RL States, x-axis: actions)

 0 degree 1 degree -1 degree 5 degree -5 degree 25 degree -25degree

0 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value

1 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value

2 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value

3 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value

4 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value

…… …… …… …… …… …… …… ……

104 Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value Q-Value

*Q-Value corresponds to each state-action pair

The number in the first column of Table 4.2 is the ID of the state. There are seven

actions for the robot (i.e. 0, 1,-1, 5, -5, 25, -25 degrees of steering). The positive

values mean turn the robot to the left, while the negative values mean turn to the

right. It is the job of the reinforcement learning to formulate a policy that maps the

actions to their appropriate states.

The SARSA(λ) algorithm was used in this research, and was set-up using the following

parameters:

 Explore rate = 0.1, Trace decay rate λ= 0.5, Learning rate α= 0.1, and the

discount factor γ= 0.7

Reward Function for the Integrated Ball Pursuit and Wall Avoidance

In general, during ball pursuit, the reward awarded is increased whenever the angle

from the ball decreases. On the other hand, during the wall avoidance phase,

whenever the robot gets too close to the wall, the reward given is increased if the

robot steers away from the wall (i.e. angle from wall is bigger). An extra reward is

added if the angle from the wall is larger than 90 degrees. When that happens, the

robot will chase the ball again. Overall, the expected result of using this reward

function is that robot is able to chase the ball safely. Detailed definition is shown

below (Pseudo code 9).

54

Pseudo code 9: Reward function for ball pursuit and wall avoidance

1. If the AngleFromWall is greater than or equal to 90 degrees and the robot is far

from the wall, then:

2. Reward function for ball pursuit:

o If newAngleFromBall is less than oldAngleFromBall, then reward = 30

* (1 - newAngleFromBall / oldAngleFromBall).

o An extra reward of 10 is awarded when the angle from the ball is

within the range of [-1, 1] degrees.

3. Else Special case (wall avoidance): If the ball is too close to the wall (the

Distance is less than 15)

4. If the angle from the wall is less than 90 degrees:

 If newAngleFromWall is bigger than oldAngleFromWall, then reward = 30

* (1 - oldAngleFromWall / newAngleFromWall).

5. Else if the angle from wall is bigger than 90 degrees:

 An extra 10 extra points is awarded.

6. End

4.4. Results and Analysis

Figure 4.6 Average angle from ball (measured every 500 time steps) during robot

training.

0

20

40

60

80

100

120

140

160

180

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9
Average angle from ball every 500 time

steps

55

Figure 4.7 Pre-defined restricted area used in the experiments. The ball is initially

placed within the black region depicted in the figure. The white region is the

prohibited area.

Figure 4.8 Close to the wall counts every 500 time steps

The data of Fig. 4.6 is collected under normal circumstances in the simulation.

There are no interruptions or limitations in this experiment. As can be observed in

the graph, the Fuzzy-RL is able to make the robot chase the ball, as the average angle

from the ball decreases over time.

On the other hand, the data of Fig. 4.8 was collected in a restricted simulation, where

0

100

200

300

400

500

600

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

Close to the wall counts every 500 time steps

56

the ball is only allowed to move in a restricted region (black region that is close to the

four walls in Fig. 4.7). During wall avoidance training, if the ball moves out of this

restricted area, the ball will be reset to a random position within the black region.

This is because the pitch is a very big place, if the ball is allowed to go everywhere,

the robot will also follow and they may spend most of the time in the central area of

the pitch - in this case the data is meaningless for training the robot to avoid the

walls.

As the two figures (Fig.4.6, Fig. 4.8) show, it takes much longer time steps to train the

robot to learn both ball pursuit and wall avoidance, as compared to learning only the

pursuit behaviour. In real time, it may not be very long, approximately 5-10 min.

Figures 4.9 – 4.16 show the performance of the robot when it gets too close to each

of the walls. In performance 1, the ball is very close to the wall and the robot just

patrols around it, and does not get too close to the wall as the experiment expected.

In performance 2, the ball is manually put to the central area of the pitch, and the

robot turns to pursue the ball immediately. And as above figures show, the robot

behaviours whenever it gets close to each wall are similar. This is because the

algorithm only considers the nearest wall. It cannot distinguish between the different

walls to act differently.

The core code (written in C++) of this implementation is attached in Appendix A, and

the video test result can be viewed at http://youtu.be/Ibs-sDoU5VM

57

Figure 4.9 Trained sample close to wall 1 performance 1

Figure 4.10 Trained sample close to wall 1 performance 2

58

Figure 4.11 Trained sample close to wall 2 performance 1

Figure 4.12 Trained sample close to wall 2 performance 2

59

Figure 4.13 Trained sample close to wall 3 performance 1

Figure 4.14 Trained sample close to wall 3 performance 2

60

Figure 4.15 Trained sample close to wall 4 performance 1

Figure 4.16 Trained sample close to wall 4 performance 2

61

4.4 Limitations of the Algorithm

As chapter 3 already introduced, the reward function is very important to the

performance and from the experiment results in this chapter, we can see that

although the robot achieves the wall avoidance behaviour, it moves a bit randomly

whenever it gets close to the wall. It is hard to change this behaviour because it

needs expert knowledge to adjust the reward function.

The other problem is, even though it just looks for the nearest wall, it already

necessitates 105 reinforcement learning states. If there is a need to add some more

features, more states will be required. Also, it is hard to train the system because

there is no guarantee that every state can be visited enough during a simple and

relatively short training phase. Theoretically, all states can be visited enough if given

enough time for running the simulation program, it is hard to determine the length

of the training time, because everything is running automatically in the simulation

environment and based on the initial status of the ball and the robot some situation

(states) may never happen. The only possible solution is manually set all kinds of

initial status for robot and ball to meet all the situation (states), and this is hard to do

when the number of states becomes very large.

62

63

Chapter 5
GNP with Trained Fuzzy-RL Nodes
for Learning Multi-Behaviours

5.1 General Architecture

Two major changes were made to the original GNP, in order to allow the algorithm to

incorporate trained control systems; therefore, making it a more powerful learning

algorithm.

Firstly, a new Fuzzy-RL processing node is introduced in the GNP composition. The

new processing node now runs a complete Fuzzy-RL system, trained for the ball

pursuit behaviour, with steering angle computation only (defined in Algorithm 2b).

Consequently, the new processing node requires some input value from the

environment (i.e. angle from the ball), and outputs a continuous-valued action

(steering angle). In general, each type of processing nodes can supply a complex

behaviour for the robot. Previously, this is not possible in the original design of GNP.

Figure 5.1 Modified GNP Individual used in the new algorithm

64

Figure 5.2 Schematic diagram of GNP with trained Fuzzy-RL nodes algorithm

65

Secondly, the other change is the new implementation of the execution time (this is

referred to as “time delay” in the original GNP, (Katagiri, et al., 2000)) of each node,

comprising the GNP individual. Referring to Fig. 5.1, a GNP individual is defined with

5 processing nodes, 3 judgment nodes, and a start node. As illustrated, there is a

Fuzzy-RL processing node (for ball pursuit behaviour) with an execution time of 5.

This means that the Fuzzy-RL will execute for 5 complete execution of the ball pursuit

behaviour, before transitioning to the next node, which is a simple judgment node.

The nodes executed within an individual solely depend on the environment

conditions that the robot is experiencing while training. This is due to the decisions

made by the judgment nodes. Also, during training, a fixed maximum training time is

set, to evaluate the performance of the individual. The schematic diagram of GNP

with trained Fuzzy-RL nodes algorithm is shown as Fig. 5.2.

Altogether, the changes made to the architecture allow the processing node to form

a more complex behaviour more easily. For example, if the robot needs to move

forward for a certain angle and distance, this behaviour can be achieved by a

processing node that turns the angle to some value, and setting the execution time

to a certain value to control the distance travelled.

In the example used in this thesis, only simple action processing nodes and Fuzzy-RL

processing nodes were used, but there are no restrictions for the types of processing

nodes in the new algorithm. Others, such as fuzzy logic control nodes or some

machine learning algorithm-controlled nodes would be perfectly suitable, too.

However, an important limitation is that the complex nodes have to be trained first

before integrating it into the GNP architecture. A processing node should be able to

present a stable behaviour, in order not to affect the fitness of an individual.

During the training phase of the GNP algorithm, the trained Fuzzy-RL node used is

only running the greedy policy, for stability reasons. It is the job of the GNP to evolve

the GNP individuals by changing the connections between the nodes, as well as

allowing for mutations. On the other hand, during the testing phase, the Fuzzy-RL

node uses the ε-greedy policy, in order to adapt to changes in the environment.

Lastly, the hill climbing algorithm, which is a greedy search algorithm that is often

used to optimize evolutionary algorithms, is also used here. It is expected to help the

GNP produce better individuals and also to accelerate the evolution process.

66

5.2 GNP with Trained Fuzzy-RL Pseudo Code:
Training Phase

Pseudo code 10: GNP with Trained Fuzzy-RL

1. Load trained Fuzzy-RL instance into the GNP individual.

2. Initialize the population.

3. Repeat (for each generation)

4. Repeat (for each individual)

5. Repeat (for each time step)

6. Execute current node [*]

7. Update the environment

8. Update fitness of individual

9. If the current node has been executed with enough time steps, go

to next node

10. Until time steps exceeded the maximum value for one individual

11. Calculate final fitness of individual.

12. Until all individual have been evaluated

13. Apply hill-climbing algorithm for elites (e.g. top 3 individuals)

14. Keep elites, and select more individuals using tournament selection

15. Apply Mutation Operation

16. Apply Crossover Operation

17. Until maximum generation is reached

18. End

[*] If the current node is a Fuzzy-RL node, take the input values and run the trained

Fuzzy-RL instance

5.3 Problem-Specific Settings

5.3.1. Judgment Nodes

There are two different types of judgment nodes (Fig. 5.3), one is for judging the

angle from the ball, and the other is for distinguishing which wall the robot is close to.

The input value for the angle judgment node is the angle from the ball and the input

values of the wall judgment node are the coordinates of the robot. The execution

67

time for judgment node is set to 0, meaning in one time step, the next node can be

executed after the judgment node.

Figure 5.3 Judgment node settings

5.3.2. Processing Nodes

Figure 5.4 Absolute angle of the robot relative to the field

There are six different processing nodes, for six different behaviours in this

implementation. The angle mentioned in actions below are the absolute angle of the

robot relative to the field (Fig. 5.4).

Processing Node 1:

 Input: angle from Wall 1

 Description: Wall 1 avoidance

 Action: turn to 225 or 315 degrees corresponding to the angle from wall

 Execution time: 5

68

Processing Node 2:

 Input: angle from Wall2

 Description: Wall 2 avoidance

 Action: turn to 135 or 225 degrees corresponding to the angle from wall

 Execution time: 5

Processing Node 3:

 Input: angle from Wall 3

 Description: Wall 3 avoidance

 Action: turn to 45 or 135 degrees corresponding to the angle from wall

 Execution time: 5

Processing Node 4:

 Input: angle from Wall 4

 Description: Wall 4 avoidance

 Action: turn to 45 or 315 degrees corresponding to the angle from wall

 Execution time: 5

Processing Node 5:

 Input: distance from ball

 Description: Speed Control Action

 Action: set speed to one of the following values: 0.5, 1, 1.5, 2

 Execution time: 1

Processing Node 6:

 Input: angle from Wall

 Description: runs a trained Fuzzy-RL algorithm instance for ball pursuit

 Action: steering angle to turn the robot

 Execution time: 1

The Fuzzy-RL algorithm for ball pursuit as defined in chapter 3, is used here as a

processing node. All the parameters are the same as those defined in Algorithm 2b,

and a trained state-action space is used. The ε-greedy policy is temporarily changed

to greedy policy during the training phase of GNP, but the ε-greedy policy is used

during the testing phase in order to allow the robot to adapt to any possible changes

in the environment.

69

5.3.3. GNP Fitness Function for Integrated Target Pursuit and
Wall

Avoidance Behaviours

The fitness function and the training environment is the most important part of the

GNP with Trained Fuzzy-RL nodes. In order to achieve the different robot behaviours

for avoiding the different walls, the GNP individual is subjected into four different

environment settings during the training phase. The difference between these four

environments is the position of the ball; it is set to a fixed point closed to each of the

walls. The initial positions of the robot are all in the central area of the pitch.

The fitness function consists of three parts: one for ball pursuit behaviour, one for

speed control behaviour, and one for the wall avoidance behaviour.

Speed Control

The fitness function for speed control behaviour (Pseudo code 11) is the simplest one,

it increases every time step if the robot moves with the right speed.

Pseudo code 11: Fitness function for speed control behaviour

1. If (DistanceFromBall < 10 and speed = 0.5) or (DistanceFromBall∈ [10, 20) and

speed = 1.0) or (DistanceFromBall∈ [20, 50) and speed = 1.5) or

(DistanceFromBall>=50 and speed = 2.0)

2. Then fitness += 6.

Ball Pursuit

The fitness function for ball pursuit behaviour can be the same as the reward

function used in the Fuzzy-RL algorithm (Algorithm 2b), but that one is too specific

and may cause some slight fluctuations of the fitness value. In order to make the

fitness function perfectly stable and accurate enough to estimate the quality of an

individual, a complete fuzzy logic system is used here. The parameters for the fuzzy

sets and the fuzzy rules are shown in Fig. 5.5 and Table 5.1. The final fitness value is

calculated via the centre of mass formula.

70

Figure 5.5 Angle from ball fuzzy sets

Table 5.1 Fuzzy rules for calculating the ball pursuit behaviour fitness.

Angle Fitness (Rules outputs)

Small 8

Medium 4

Large 0

Wall Avoidance

The fitness function for wall avoidance employs a scheme based only on punishment,

show as pseudo code 12.

Pseudo code 12: Fitness function for wall avoidance

1. If the distance from the wall is less than 15 units

2. then decrease the fitness value by 50

There is no reward given for taking an action for wall avoidance. Otherwise, the

robot may move close to the wall, and respectively avoid the wall to obtain high

fitness, and this is not desired. This was observed through the experiments

performed but is not shown here.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 20 30 180

Angle from ball Fuzzy Sets

Small Medium Large

71

Fitness Function Summary

The fitness function now is still not good enough for the algorithm. When actually

running the system under testing phase, some bad individuals still receive very high

fitness. Four wall avoidance processing nodes are simple actions turn to a fixed

angle, if one individual only executes these processing node and combine with ball

pursuit processing node or speed control processing node, they may still get very

high fitness. When testing these kinds of individuals, they just make the robot turn

around (as observed in the experiments). In order to eliminate these kinds of

situations, two more rules are added to the fitness function:

If the robot moves away from the ball the fitness value decreases a bit, and at the

end of each individual’s training simulation, the distance of the robot from the ball is

measured and used as a component in the fitness calculation. Consequently, when

the robot moves closer to the ball it gets a higher fitness.

The final fitness function is shown in Pseudo code 13.

Pseudo code 13: Final fitness function

1. Individual starts

2. Fitness = 0

3. Repeat (each time step)

4. If DistanceFromWall < 20

5. If the AngleFromWall <= -90 or AngleFromWall > 90 (AngleFromWall in figure 4.1)

6. Then Fitness += 20 + Ball Pursuit Reward [*]

7. Else

8. Fitness += Ball Pursuit Reward [*]

9. If (DistanceFromBall < 10 and speed = 0.5) or (DistanceFromBall∈[10, 20) and speed =

1.0) or (DistanceFromBall∈[20, 50) and speed = 1.5) or (DistanceFromBall>=50 and

speed = 2.0)

10. Then Fitness += 6

11. If DistanceFromWall < 15 then Fitness -= 50

12. If the robot moves away from the ball then Fitness -= 15

13. Until time steps exceeded the maximum training time for one individual

14. Fitness += 500 – 10*DistanceFromBall

15. Individual training ends.

[*] Ball Pursuit Reward is generated by the Fuzzy logic system introduced

72

5.3.4. Parameters for GNP

Number of population: 200

Number of mutation: 77

Number of crossover: 120

Tournament size: 5

Probability of mutation: 0.1

Probability of crossover: 0.5

5.3.5. Hill-climbing Algorithm

This algorithm tries to improve the fitness of a GNP individual by examining the

connections one node at a time by way of brute force greedy search. Pseudo code 14

is the pseudo code of Hill-climbing algorithm.

Pseudo code 14: Hill-climbing algorithm

1. Hill-climbing algorithm for an individual

2. Start

3. Set the MaxFitness = individual’s fitness acquired through GNP evolution

4. Repeat (for each node Nn)

5. Repeat (for each connection Cm)

6. Set the BestConnection = Cm

7. Repeat (for each ID of node exclude the start node)

8. Set the Cm = ID

9. Evaluate the individual and get newFitness

10. If newFitness > MaxFitness

11. Then MaxFitness = newFitness and BestConnection = ID

12. Until ID exceeded the maximum value

13. Set Cm = BestConnection

14. Set individual’s fitness = MaxFitness

15. Until all connections in a node been visited

16. Until all nodes in an individual been visited

17. End

As hill-climbing algorithm tests every possible connections for each node, it takes

long time for running on one individual, and the time is increasing dramatically with

the increasing number of nodes. From the experience of experiments without

73

hill-climbing algorithm, the best fitness value is always stay the same for a long time

in some period. The hill-climbing algorithm is expected to remit this situation, in

order to accelerate the evolution. As it is a time-consuming job, it is only for the top

three individuals and there is no need to run it in every generation. The hill-climbing

algorithm is applied every five generations in the experiments.

5.4 Results and Analysis

Figure 5.6 shows one possible GNP individual that is able to accomplish the

objectives defined, with the minimum number of nodes. At first, the number of each

GNP nodes is set to one instance. However, in the actual experiments, using the

settings shown in Fig. 5.6, the algorithm just can’t find a good individual within 200

generations. The best individual found in one experiment is able to pursue the ball,

control the speed and only avoid two walls.

Figure 5.6 Sample GNP individual with the minimum number of nodes. Note that the

algorithm may generate a variety of individuals with different nodes and connections.

74

The solution is to add more nodes to a GNP individual, except there is always only

one start node. From the experiments, it was observed that increasing the number of

each type of nodes to two, helped in obtaining and a good individual (a good

solution). The experiments results are shown below.

Figure 5.7 General performance of a good individual

As the Fig. 5.7 shows, this good individual is able to steer smoothly, control the speed

corresponding to the distance from ball, and most importantly it is able to distinguish

four walls and take different actions. More figures are attached below to show the

behaviour when the robot is close to the wall.

75

Figure 5.8 The performance close to wall 1

Figure 5.9 The performance close to wall 2

76

Figure 5.10 The performance close to wall 3

Figure 5.11 The performance close to wall 4

77

The four figures above (Fig. 5.8-5.11) show the robot behaves as desired. It

distinguishes the four different walls and chooses the right action. In contrast to the

Fuzzy-RL algorithm defined in chapter 4, the wall avoidance behaviour here is fully

controlled by those four processing nodes.

The hill-climbing algorithm was also used in the experiments. The two figures below

(Fig. 5.12, Fig. 5.13) show the fitness values of the top 3 individuals during the

evolution phase, with and without the utilisation of the hill-climbing algorithm.

Figure 5.12 Fitness of top 3 individuals with hill climbing

Figure 5.13 Fitness of top 3 individuals without hill climbing

The data in these two figures (Fig. 5.12, Fig. 5.13) were collected from two

experiments, with all other settings kept the same. As we know, the performance of

an evolutionary algorithm is not stable, sometimes the fitness goes very high in a few

generations and sometimes it may keep a low value for a long time. However, in the

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Fitness of top 3 individuals without hill climbing

First Second Third

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Fitness of top 3 individuals with hill climbing

First Second Third

78

long run, these two figures are still representative of the general outcome. The

hill-climbing algorithm was applied after every ten generations. As can be observed

from the graph, there is a huge increase in fitness value at the 10th generation.

Consequently, it accelerated the evolution process towards finding a good individual.

The core code (written in C++) of this implementation is attached in Appendix B, and

the video test result can be viewed at http://youtu.be/woqMnbO-CKg

5.5 Limitations of the Algorithm

There are two major difficulties in this algorithm. One is the setting for the fitness

function and the training environment and procedure. The fitness function is closely

linked to the training environment, any improper settings among them can lead to

failure in learning. Furthermore, if more behaviours are required, the fitness function

will become more complex, and it may take some time to test and improve. Another

problem is the same with other evolutionary algorithms, it does not guarantee to

produce the optimal results, and it may need to run the training phase for a long

period of time to get a good individual. Lastly, there is still room for improvement in

the algorithms training implementation, as it takes about 30 minutes to train the

system for 100 generations, although the program is already parallelized. In general,

this algorithm needs to be implemented carefully to achieve a good performance in

its training phase. Nevertheless, once a robot is trained, it can run very fast.

79

Chapter 6
Summary and Future Work

Table 6.1 Comparison of different algorithms

 Fuzzy

Logic

System

Fuzzy-RL GNP

(Katagiri,

et al.,

2000)

GNP with

RL (Mabu,

et al.,

2007)

Fuzzy-GNP

with RL

(Mabu, et

al., 2011)

GNP with

Trained

Fuzzy-RL

Nodes

Capable of

Multi-behaviour

Yes(multi

ple FLS)

Yes

Chap.4

Yes * Yes * Yes * Yes

Chap.5

Calibration

requirements

Hand-cali

brated

Reward

function

Fitness

function

Fitness

function

Fitness

function

Fitness

function

Chap.5.3.3

Difficulty of setting

the fitness/reward

function for

multi-behaviour

N/A High

Chap.

4.3.2

Theoretica

lly High **

Theoretica

lly High **

Theoretica

lly High **

Medium

Chap.5.3.3

Allows integration of

multiple algorithms

N/A N/A No No (only

RL)

No (only

Fuzzy&RL)

Yes

Chap.5.1

Allows integration of

other trained

complex nodes using

different AI

algorithms

N/A N/A No No No Yes

Chap.5.1

Allows integration of

simple processing

nodes into GNP

N/A N/A Yes Yes Yes Yes

Chap.5.3

Allows complete FLS

integration into a

GNP individual

N/A Yes N/A N/A No Yes

Chap.5.3

Uses an additional

learning mechanism

that aids the

evolutionary

approach

N/A N/A No No No Yes,

Hill-climbi

ng

Capable of on-line

learning

No Yes No Yes Yes Yes

[*] No previous attempt in the literature.

[**] The difficulty is estimated on a single behaviour problem tested in chapter 3.4

80

Three major algorithms, and their hybrid variants were introduced and tested in this

thesis (i.e. Fuzzy logic control, Reinforcement learning and Genetic network

programming, Fuzzy-RL, GNP with RL, GNP with trained Fuzzy-RL). Using a

simulation of the robot soccer platform, ball pursuit and ball pursuit with wall

avoidance behaviours were used as benchmarking test beds. As observed in the

experiments, the algorithms have different advantages and disadvantages. The table

above shows some of features tested for evaluating the performances of these

algorithms.

Pure Fuzzy Logic (Steering angle and speed control)

From the results of experiments, it was able to produce an almost perfect

performance (by visual inspection), provided that there is an expert prior knowledge

to set all the fuzzy sets and the fuzzy rules, even though it is very hard and time

consuming to calibrate, when multiple objectives are required.

Reinforcement Learning

Reinforcement learning is simple and efficient, but it is difficult to apply to control

problems with continuous-valued outputs. The combination of reinforcement

learning and fuzzy logic control was able to overcome their own weaknesses. Two

different integration architectures of reinforcement learning and fuzzy logic were

implemented for ball pursuit in this work:

 Algorithm 2a – RL with fuzzified inputs

 Algorithm 2b - RL integrate with a complete fuzzy logic system

Algorithm 2a integrated only a fuzzification component to the reinforcement learning,

which is equivalent to having nested if-then decision-control statements. The results

of experiments clearly show that the performance of Algorithm 2a is worse than

Algorithm 2b, which comprises the whole fuzzy logic system. The Fuzzy-RL algorithm

(Algorithm 2b) surmounts the shortcomings of reinforcement learning and fuzzy logic

control algorithm while keeping their strengths. However, when facing multiple

objectives, the training phase becomes more and more complex to manage; it is very

hard to define a reward function for a specific multi-behaviour.

Genetic Network Programming

The genetic network programming is based on genetic algorithm and provides a

flexible graph structure for storing extra computational information (i.e. rules,

processing nodes, judgment nodes, allotted node execution time). It was first

proposed by H. Katagiri, K. Hirasawa and J. Hu in 2000, and a Tile World game was

used to demonstrate the algorithm. The execution of the GNP algorithm can be

81

divided into a training phase and testing phase, just like other evolutionary

algorithms. The most outstanding advantage of GNP is that once a good individual is

obtained from training phase, it can be used in a whole new dynamic environment

for the same objective, because the graph structure is able to provide sufficient rules

for operating in a dynamic environment. As a result, it is extremely fast and

non-computationally intensive when running a GNP individual.

Genetic Network Programming with RL

In order to obtain better results in dynamic environments, the GNP was extended by

combining it with reinforcement learning (Mabu, et al., 2007). It considers different

types of processing nodes as sub-nodes, and uses reinforcement learning to select

the best sub-node when executing a parent processing node of the GNP. Now, the

reinforcement learning takes most of the responsibility for the performance of an

individual both in training or testing phases. The RL helps make the structure of a

GNP individual more compact, and even more flexible.

From the experiments performed in this thesis, some difficulty during training was

experienced. In the GNP-RL algorithm, the reinforcement learning component

explores a variety of possible actions during the training phase; unfortunately, this

approach does not guarantee finding the best solution based solely on the fitness

value of the individual. This eventually lead to some confusion for picking the best

trained robot for a single behaviour (Chapter 3.4); probably even worse in

multi-behaviour problem. To alleviate the problem, the top five GNP individuals were

further tested to pick the best one by human visual inspection.

In another related work, a variant called the Fuzzy Genetic Network Programming

with Reinforcement Learning algorithm was tested for wall following behaviour for a

bi-wheel robot (Mabu, et al., 2011). A fuzzification component was added to the GNP

with RL algorithm to deal with inputs which are continuous-valued.

Genetic Network Programming with Trained Fuzzy-RL

A new novel architecture was introduced in this research. It uses both trained

complex processing nodes and of simple action processing nodes in the GNP

architecture. The complex processing node is able to output different actions

corresponding to changes in the environment. As an example of the proposed

architecture, a complex processing node was defined to be a trained Fuzzy-RL node.

In contrast with the original GNP with RL algorithm (Mabu, et al., 2007), the new

algorithm derived the different connections between the judgment nodes, complex

82

trained processing nodes and simple processing nodes to generate the desired

multi-behaviour.

During the testing phase, the Fuzzy-RL node has the responsibility of adapting to

changes in the dynamic environment. The GNP with trained Fuzzy-RL node algorithm

achieved ball pursuit and wall avoidance in the experiment while keeping its flexible

and compact structure. This is a solid evidence that proves that the new algorithm is

highly extendable and possesses a strong ability to learn multiple objectives. The

graph structure and complex nodes have advantages in dealing with the dynamic

environment, in other words, the algorithm is excellent for any control system (robot

control, traffic light control, elevator control, etc.). Nevertheless, the core ability of

the algorithm is to make a complex judgment and give the desired output. It is also

applicable to other problem domains that require determining the suitable judgment

and processing nodes. For example, when using the algorithm for data mining

purposes, it is simple to build a powerful classifier by integrating different kinds of

judgment nodes.

Development of the new GNP with Trained Fuzzy-RL Nodes

In the original Fuzzy GNP with RL paper (Mabu, et al., 2007), the RL algorithm used

simple processing nodes that take an action based on the state of the world. The RL

algorithm was used to learn a policy that maps the actions to the nodes, with the aim

of maximising the rewards. The simple actions are represented as sub-nodes,

enclosed within a parent node in the GNP architecture. On the other hand, in this

research, in particular in the Fuzzy-RL integration part, the state of the RL was based

on a fuzzified information that feeds on the angle from the ball.

From the initial single behaviour learning test bed, the Fuzzy-RL integrated

architecture succeeded in learning the ball pursuit behaviour. Consequently, it was

then hypothesized that any of the processing nodes within a GNP individual can be

transformed into a complex trained intelligent system; thereby, allowing any AI

algorithm to be used as a complex node within a GNP individual. As a general rule,

given a complex multi-behaviour learning problem, the idea in this thesis is to

subdivide the problem into multiple more manageable sub-problems. As a result, this

research proceeded with the integration of the trained Fuzzy-RL and GNP to test the

novel idea. In the course of algorithm development, the training component of the

original algorithm (Mabu, et al., 2011) was modified to improve its learning stability

(the details of the changes in the algorithm can be found in Chapter 5.1), and a

multi-behaviour learning problem (ball pursuit with wall avoidance) served as a

83

benchmark for the new algorithm presented.

Future Work

There are four objectives that can be identified for future work:

1. Test the compatibility of other algorithms, if they can work as processing nodes in

the genetic network programming architecture.

2. Find a solution for optimizing the number of nodes within one GNP individual.

3. Depending on the application domain, more attributes (time allotted for node

execution, mutation of processing nodes, mutation of judgment nodes, etc.) of a

node can be changed during gene evolution.

4. Create a better simulation environment with a more accurate physics engine

implementation and more optimized implementation of the training phase of the

algorithm.

5. The fitness function could be modified to enhance the smoothness of navigation,

while avoiding the walls. In this research, wall avoidance did not take into

account the “smoothness” factor, but merely safety of the robot.

84

Appendix A.
Codes for the implementation of
Fuzzy-RL

void runGame()

{

#region environment

 //initialize settings

 float ballX = 25;

 robot.setSpeed(0.6);

 robot.setX(110);

 robot.setY(90);

 robot.setAngle(90);

 ball.setY(90);

 ball.setX(ballX);

 ball.setSpeed(0);

 int steps = 0;

 angleFromTarget = calcAngleFromTarget(robot, worldGx, worldGy,

targetPosition);

 double wallDistance;

 preCalculateTextPositions();

 double wallAngle = getWallAngle(robot, wallDistance);

 //init s,a

 vector<double> preStateWeight; //store all weights for each state

 //toState() return the state with the max weight

 myRL.preState = toState(angleFromTarget, wallAngle, wallDistance,

preStateWeight);

 myRL.preAction = 5;

 // keep running the program until the ESC key is pressed

 int collisionCount = 0;

 ofstream outf1;

 outf1.open("angle.txt");

 double anglesum = 0;

 while ((GetAsyncKeyState(VK_ESCAPE)) == 0)

 {

 steps++;

 setactivepage(page);

 cleardevice();

 drawPanel();

85

 drawGrid(robot);

 getKey(robot); //get key strokes

 float oldangle = calcAngleFromTarget(robot, worldGx, worldGy,

targetPosition);

 preCalculateTextPositions();

 wallAngle = getWallAngle(robot, wallDistance);

 //calculate the turning angle

 double myAngle = 0;//turning angle

 double weightSUM = 0;

 for (int i = 0; i < preStateWeight.size(); i++)

 {

 //if the weight for the state is larger than zero and it's not the

state with the max weight

 //using greedy search to find a action.

 //Note: if the sum of Q value for this state is zero, it will choose

action 0, which is turn 0 degree, so no bad effect.

 if (i != myRL.preState && preStateWeight[i]>0)

 myAngle +=

toAngle(myRL.chooseAction(i,1))*preStateWeight[i];

 //if find the state with the max weight, the action is the previous

choosed action

 else if (i == myRL.preState)

 myAngle += toAngle(myRL.preAction)*preStateWeight[i];

 weightSUM += preStateWeight[i];

 }

 myAngle = myAngle / weightSUM;

 float changedAngle = robot.getAngle() + myAngle;

 if (changedAngle<0)

 changedAngle = 360 + changedAngle;

 else if (changedAngle>359)

 changedAngle = changedAngle - 360;

 robot.setAngle(changedAngle);

 robot.move(); //Update Object's (x, y) position and (angle)

orientation

 robot.draw(page); //Display Object

 if (robot.getX() <= 3.75 || robot.getX() >= 216.25 || robot.getY() <=

86

3.75 || robot.getY() >= 176.25)

 {

 collisionCount++;

 cout << "Wall Collision: " << collisionCount<<endl;

 }

 //get reward and update RL

 float newangle = calcAngleFromTarget(robot, worldGx, worldGy,

targetPosition);

 float newdistance = calcDistanceFromTarget(robot, worldGx, worldGy);

 double newwallDistance;

 preCalculateTextPositions();

 float newwallAngle = getWallAngle(robot,newwallDistance);

 int state = toState(newangle, newwallAngle, newwallDistance,

preStateWeight);

 double reward = 0;

 //Reward for pursuing the ball

 if (oldangle<0 && newangle<0 && newangle>oldangle)

 reward += 30 * (1 - newangle / oldangle);

 else if (oldangle>0 && newangle > 0 && newangle < oldangle)

 reward += 30 * (1 - newangle / oldangle);

 else if (newangle < 1 && newangle >-1)

 reward += 10;

 //The RL only rewards the state which got the highest weight

 myRL.process(state, reward,0); //update the state-action space

#region DrawGraph

 }

 outf1.close();

}

//update state-action space and other process in RL

void RL::process(int state_ID, double reward,bool greedy)

{

 int newAction = chooseAction(state_ID,greedy);

87

 //int maxAction = findMaxQ(state_ID); //Q learning

 //if (stateSpace[state_ID].Q[newAction] == stateSpace[state_ID].Q[maxAction])

 // maxAction = newAction;

 if (greedy == 0)

 {

 double Q = stateSpace[state_ID].Q[newAction]; //SARSA

 //double Q = stateSpace[state_ID].Q[maxAction]; //Q learning

 DELTA = reward + GAMMA*Q - stateSpace[preState].Q[preAction];

 e[preState].Q[preAction] += 1;

 for (int i = 0; i < stateSpace.size(); i++)

 {

 for (int j = 0; j < stateSpace[i].Q.size(); j++)

 {

 stateSpace[i].Q[j] = stateSpace[i].Q[j] + ALPHA*DELTA*e[i].Q[j];

 e[i].Q[j] = GAMMA*LAMDA*e[i].Q[j];

 }

 updateSum(i);

 }

 }

 preAction = newAction; //set preAction

 preState = state_ID; //set preState

}

88

Appendix B.
Codes for the implementation of
GNP with trained Fuzzy-RL nodes

//trainning phase

void train(GNP &myGNP, int max_gen)

{

 Fuzzy FuzzyAngle; //fuzzy logic system for fitness

 FuzzyAngle.init(angle_regions);

 FuzzyAngle.initMemFunc_Angle();

 double elitefitness = -99999;

 int num_elite = myGNP.num_population - myGNP.num_crossover -

myGNP.num_mutation;

 myGNP.generation = 0;

 ifstream ifs("FuzzyRL"); //Load Fuzzy-RL instance from file

 boost::archive::text_iarchive ia(ifs);

 RL FuzzyRL_Nav;

 ia >> FuzzyRL_Nav;

 ofstream outf;

 outf.open("fitness.txt");

 while (true) //the Loop for evoluting generations

 {

 //each individual in the population do the process

 //using open mp to accelerate the FOR loop

 //each core has their own FuzzyRL and Fuzzy instance

 #pragma omp parallel for //openMP

 for (int i = num_elite; i<myGNP.num_population; i++)

 {

 trainIndiv(myGNP.population[i], FuzzyRL_Nav,FuzzyAngle);

 }//-----------------each individual in the population do the process END

 myGNP.generation++;

 myGNP.population_temp.clear();

 myGNP.sortPopulation();

 cout << myGNP.generation << "// ";

 for (int i = 0; i<num_elite; i++)

 {

 cout << myGNP.population[i].fitness << " - ";

 outf << myGNP.population[i].fitness << "\t";

89

 }

 outf << "\n";

 cout << endl;

 //if reach the max generation break the loop

 if (myGNP.generation>max_gen - 1)

 break;

 //Run hill-climbing algorithm every 5 generation

 if (myGNP.generation == 1 || myGNP.generation % 5 == 0)

 {

 for (int i = 0; i < num_elite; i++)

 {

 cout << "hillclimbing for " << i << " :";

 outf << "hillclimbing for " << i << "\t";

 hillclimbing(myGNP.population[i]);

 cout << myGNP.population[i].fitness << endl;

 outf << myGNP.population[i].fitness << "\n";

 //keep top n individual

 myGNP.population_temp.push_back(myGNP.population[i]);

 }

 }

 else

 for (int i = 0; i < num_elite; i++)

 //keep top n individual

 myGNP.population_temp.push_back(myGNP.population[i]);

 //Do gene operations

 myGNP.mutation();

 myGNP.crossover();

 myGNP.population = myGNP.population_temp;

 }

}

//Training for each individual which contains 4 environment setting

void trainIndiv(GNP_INDIV& indiv, RL FuzzyRL_Nav, Fuzzy FuzzyAngle)

{

 //positions of ball and robot for 4 training environment

 double RobotSetting[4][4] = { { 110, 130, 1.5, 180 }, { 170, 90, 1.5, 270 },

{ 110, 50, 1.5, 180 }, { 50, 90, 1.5, 90 } };

 double BallSetting[4][4] = { { 110, 175, 0, 0 }, { 215, 90, 0, 0 }, { 110, 5,

90

0, 0 }, { 5, 90, 0, 0 } };

 double fitness[4] = { 0, 0, 0, 0 };

 #pragma omp parallel for// openMP

 for (int x = 0; x < 4; x++)

 {

 double robotP[4] = { RobotSetting[x][0], RobotSetting[x][1],

RobotSetting[x][2], RobotSetting[x][3] };

 double ballP[4] = { BallSetting[x][0], BallSetting[x][1],

BallSetting[x][2], BallSetting[x][3] };

 //training for each environment setting

 fitness[x] = IndivsPosition(indiv, FuzzyRL_Nav, FuzzyAngle, robotP, ballP);

 }

 double totalfitness = 0;

 for (int i = 0; i < 4; i++)

 totalfitness += fitness[i];

 //update fitness

 indiv.cal_fitness(totalfitness);

}

//training for a certain environment setting
double IndivsPosition(GNP_INDIV indiv, RL FuzzyRL_Nav, Fuzzy FuzzyAngle, double

robotP[], double ballP[])

{

 float minDistance = 0.0;

 float tempDistance = 0.0;

 float x, y;

 int gX = 0, gY = 0; //Target in device coordinates

 float worldGx, worldGy; //Target in world coordinates

 float angleFromObstacle;

 float angleFromTarget;

 float distanceFromObstacle;

 float distanceFromTarget;

 char msg[100];

 //initial robot and ball

 Robot robot(robotP[0], robotP[1], robotP[2], robotP[3]);

 Ball ball(ballP[0], ballP[1], ballP[2], ballP[3]);

91

 Position targetPosition;

 initWorld();

 //initial goal position = center of screen

 gX = getmaxx() / 2;

 gY = getmaxy() / 2;

 worldGx = float(((gX - fieldX1) * 220.0f) / abs(fieldX2 - fieldX1));

 worldGy = worldBoundary.y1 - (float(((gY - fieldY1) * 180.0f) / abs(fieldY2 -

fieldY1)));

 worldGx = ball.getX();

 worldGy = ball.getY();

 calcAngleFromTarget(robot, worldGx, worldGy, targetPosition);

 preCalculateTextPositions();

 double fitness = 0;

 //init for simulation ---

 int time_step = 0; //accumulate time steps for one individual in the simulation

environment

 FuzzyRL_Nav.preAction = 0;

 FuzzyRL_Nav.preState = toState(calcAngleFromTarget(robot, worldGx, worldGy,

targetPosition), 0, 0, FuzzyRL_Nav.preStateWeight, FuzzyAngle);

 indiv.Time_left = 0;

 int current_node = 0;

 //The simulation loop for one individual starts-----------------------------

 //set some conditions to break the loop

 while (time_step<200)

 {

 time_step++;

 if (indiv.Time_left == 0 && indiv.Nodes[current_node].TD != 0)

 {

 indiv.Time_left = indiv.Nodes[indiv.next_node].TD;

 current_node = indiv.next_node;

 }

 //current node type

 int node_type = indiv.Nodes[current_node].type;

 //input values---

 angleFromTarget = calcAngleFromTarget(robot, worldGx, worldGy,

targetPosition);

 distanceFromTarget = calcDistanceFromTarget(robot, worldGx, worldGy);

 float oldangle = angleFromTarget;

 float olddistance = distanceFromTarget;

92

 //input selector---

 double input1 = 0, input2 = 0, input3 = 0;

 switch (node_type)

 {

 case 1:

 input1 = angleFromTarget;

 break;

 case 2:

 input1 = distanceFromTarget; input2 = 0; input3 = 0;

 break;

 case 3:

 input1 = angleFromTarget;

 break;

 case 4:

 input1 = distanceFromTarget; input2 = 0; input3 = 0;

 break;

 }

 int preNode = current_node;

 //execute node and nextnode becomes current excuted node

 indiv.toNextNode(ExeNode(robot, FuzzyRL_Nav, node_type, input1, input2,

input3), current_node);

 indiv.Time_left--;

 if (indiv.Time_left == -1)

 {

 indiv.Time_left = indiv.Nodes[indiv.next_node].TD;

 current_node = indiv.next_node;

 continue;

 }

 //Update

Environment--

 robot.move(); //Update Object's (x, y) position and (angle) orientation

 if (robotTrails.size() > 250){

 robotTrails.clear();

 }

 if (ballTrails.size() > 350){

 ballTrails.clear();

 }

 ball.move(robot.getX(), robot.getY(), robot.getAngle(),

93

robot.getSpeed());

 worldGx = ball.getX();

 worldGy = ball.getY();

 //Calculate Reward--------------------------------

 float newangle = calcAngleFromTarget(robot, worldGx, worldGy,

targetPosition);

 float newdistance = calcDistanceFromTarget(robot, worldGx, worldGy);

 double newwallDistance;

 float newwallAngle = getWallAngle(robot, newwallDistance);

 double reward = 0;//the Fuzzry-RL is using greedy search when training, so

no need for reward

 //PostProcess-------------------

 PostProcess(FuzzyRL_Nav, node_type, newangle, reward, 0, FuzzyAngle);//no

need reward now,only greedy search

 //fitness

 if (indiv.Nodes[preNode].TD != 0)

 {

 //Calculate fitness for wall avoidence and ball pursuing

 if (newwallDistance<20)

 {

//only if the robot is heading away from the ball gives extra reward

and reward for ball pursuing

 if (newwallAngle <= -90 || newwallAngle >= 90)

 {

 fitness += 20;

 fitness += ballReward.output(newangle, newdistance);

 }

 }

 else

 fitness += ballReward.output(newangle, newdistance);

 //Calculate fitness for speed control

 if (newdistance < 10 && robot.getSpeed() == 0.5)

 fitness += 6;

else if (newdistance >= 10 && newdistance < 20 && robot.getSpeed() ==

1.0)

 fitness += 6;

else if (newdistance >= 20 && newdistance < 50 && robot.getSpeed() ==

1.5)

94

 fitness += 6;

 else if (newdistance >= 50 && robot.getSpeed() == 2.0)

 fitness += 6;

 //Some punishment for bad situations

 if (newwallDistance < 15)

 fitness -= 50;

 if (distanceFromTarget - newdistance < 0)

 fitness -= 15;

 }

 }//-------The simulation loop END

 //after 200 time-steps, closer to the ball gets higher fitness

 fitness += 500 - calcDistanceFromTarget(robot, worldGx, worldGy) * 10;

 return fitness;

}

//hill-clibing algorithm for one individual

void hillclimbing(GNP_INDIV& myBest)

{

 Fuzzy FuzzyAngle;

 FuzzyAngle.init(angle_regions);

 FuzzyAngle.initMemFunc_Angle();

 RL FuzzyRL_Nav;

 ifstream ifs("FuzzyRL");

 boost::archive::text_iarchive ia(ifs);

 ia >> FuzzyRL_Nav;

 double RobotSetting[4][4] = { { 110, 130, 1.5, 180 }, { 170, 90, 1.5, 270 },

{ 110, 50, 1.5, 180 }, { 50, 90, 1.5, 90 } };

 double BallSetting[4][4] = { { 110, 175, 0, 0 }, { 215, 90, 0, 0 }, { 110, 5,

0, 0 }, { 5, 90, 0, 0 } };

 //change 1 connection each iteration

 double maxfitness = myBest.fitness;

 int i = myrand() % myBest.num_nodes;

 for (int ii = 0; ii < myBest.num_nodes;ii++)

 {

 for (int j = 0; j < myBest.Nodes[i].C.size(); j++)

 {

95

 int bestC = myBest.Nodes[i].C[j];

 for (int n = 1; n < myBest.num_nodes; n++)

 {

 myBest.Nodes[i].C[j] = n;

 double fitness[4] = { 0, 0, 0, 0 };

 #pragma omp parallel for

 for (int x = 0; x < 4; x++)

 {

double robotP[4] = { RobotSetting[x][0], RobotSetting[x][1],

RobotSetting[x][2], RobotSetting[x][3] };

double ballP[4] = { BallSetting[x][0], BallSetting[x][1],

BallSetting[x][2], BallSetting[x][3] };

fitness[x] = IndivsPosition(myBest, FuzzyRL_Nav, FuzzyAngle,

robotP, ballP);

 }

 double totalfitness = 0;

 for (int i = 0; i < 4; i++)

 totalfitness += fitness[i];

 if (totalfitness >= maxfitness)

 {

 maxfitness = totalfitness;

 bestC = n;

 }

 }

 myBest.Nodes[i].C[j] = bestC;

 myBest.cal_fitness(maxfitness);

 }

 i++;

 if (i == myBest.Nodes.size())

 i = 0;

 }

}

96

Reference

Barto, A.G., Sutton, R.S. and Anderson, C.W. 1983. Neuronlike adaptive elements

that can solve difficult learning control problems. Man and Cybernetics. Sept.-Oct.

1983, Vols. SMC-13, 5, pp. 834-846.

Bellman, R. 1957. A Markovian Decision Process. 1957, Vol. 6.

Berenji, H.R. and Khedkar, P. 1992. Learning and tuning fuzzy logic controllers

through reinforcements. Neural Networks, IEEE Transactions. Sep. 1992, Vol. 3, 5, pp.

724-740.

Berenji, Hamid R. 1992. A reinforcement learning—based architecture for fuzzy logic

control. International Journal of Approximate Reasoning. February 1992, Vol. 6, 2, pp.

267-292.

Bonarini, Andrea, et al. 2009. Reinforcement distribution in fuzzy Q-learning, Fuzzy

Sets and Systems. 10, 16 May 2009, Vol. 160, pp. 1420-1443.

Faria, Gedson and Romero, R. 2000. Incorporating fuzzy logic to reinforcement

learning [mobile robot navigation]. Fuzzy Systems, 2000. FUZZ IEEE 2000. The Ninth

IEEE International Conference. 2000, Vol. 2, pp. 847-852.

Katagiri, H., Hirasawa, K. and J. Hu. 2000. Genetic Network Programming Application

to Intelligent Agents. 2000.

Kormushev, P., Calinon, S. and Caldwell, D.G. 2013. Reinforcement Learning in

Robotics: Applications and Real-World Challenges. Robotics. 2013, Vol. 2, pp.

122-148.

Li, Xianneng, Mabu, S. and Hirasawa, K. 2014. A Novel Graph-Based Estimation of

the Distribution Algorithm and its Extension Using Reinforcement Learning. 2014, Vol.

18, 1, pp. 98-113.

Mabu, Shingo and Kotaro Hirasawa. 2011. Fuzzy Genetic Network Programming

with Reinforcement Learning for Mobile Robot Navigation. 2011.

Mabu, Shingo, Kotaro Hirasawa and Jinglu Hu. 2007. A Graph-Based Evolutionary

Algorithm: Genetic Network Programming (GNP) and Its Extension Using

Reinforcement Learning. 2007, Vol. 15, 3, pp. 369-398.

Metropolis, Nicholas and S. Ulam. 1949. The Monte Carlo Method. Journal of the

American Statistical Association. 247, Sep. 1949, Vol. 44.

Mukherjee, S., et al. 2011. Reinforcement Learning Approach to AIBO Robot's

Decision Making Process in Robosoccer's Goal Keeper Problem. Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). 6-8

July 2011, pp. 24-30.

Pitoyo, Hartono and Kakita, Sachiko. 2009. Fast reinforcement learning for simple

97

physical robots. Memetic Comp. 1, 2009, pp. 305–313.

Poole, David and Alan Mackworth. 2010. Artificial Intelligence: Foundations of

Computational Agents. s.l. : Cambridge University Press, 2010.

Reyes, N. H., et al. 2013. Real-Time Fuzzy Logic-based Hybrid Robot Path-Planning

Strategies for a Dynamic Environment. [book auth.] & J. Zurada B. Igelnik. Efficiency

and Scalability Methods for Computational Intellect. s.l. : Hershey, 2013, pp. 115-141.

Ross, Timothy J., Jane M. Booker and W. Jerry Parkinson. 2002. Fuzzy Logic and

Probability Applications: Bridging the Gap. 2002. pp. 29-31.

Rummery and Niranjan. 1994. Online Q-Learning using Connectionist Systems. 1994.

Sutton, Richard S. and Andrew G. Barto. 2012. Reinforcement Learning: An

Introduction. s.l. : The MIT Press, 2012.

Watkins, C. and P. Dayan. 1992. Q-learning. Machine Learning. 1992, Vol. 8, pp. 279–

292.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control. 3, 1965, Vol. 8, pp. 338–353.

