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Abstract

In this thesis we consider two problems regarding mappings between various two-

dimensional spaces with some constraint on their distortion.

The �rst question concerns the use of mappings of �nite distortion that blow up

a point where the distortion is in some Lp class; in particular, we are interested in

minimal solutions to the appropriate functional. We �rst prove some results con-

cerning these minimal solutions for a given radially symmetric metric (in particular

the Euclidean and hyperbolic metrics) by proving a theorem which states the con-

ditions under which a minimizer exists, as well as providing lower bounds on the

Lp-norm of the function. We then apply these results to the problem of resolving

decompositions that arise in the study of Kleinian groups and the iteration of ra-

tional maps. Here we prove a result concerning for which values of p we can �nd a

mapping of a particular form which shrinks the unit interval and whose inverse has

distortion in the Lp space.

The second is in regards to the Schoen conjecture, which expresses the hope that

every quasisymmetric self-mapping of the unit circle extends to a homeomorphism of

the disk which is both quasiconformal and harmonic with respect to the hyperbolic

metric. The equation for a harmonic map between Riemann surfaces with given

conformal structures is a nonlinear second order equation; one wishes to solve the

associated boundary value problem. We show here that the existence question can

be related to a nonlinear inhomogeneous Beltrami equation and discuss some of the

consequences; this result holds in more generality for other conformal metrics as

well.
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Chapter 1

Introduction

The theory of quasiconformal mappings began with Grötzsch [16] in 1928, but its

importance became more apparent during the 1930s, principally from the work of

Ahlfors and Teichmüller. Ahlfors used quasiconformal mappings in his work in

value distribution theory, and in 1935 he coined the term �quasiconformal� [3] in

work that earned him a Fields medal. Teichmüller used quasiconformal mappings

to create a metric on the set of conformally inequivalent compact Riemann surfaces,

which started Teichmüller theory [50].

As a brief aside, quasiconformal mappings can be made for not just Riemann

surfaces, but Riemann manifolds in general. However, in this thesis we are generally

interested solely in the two-dimensional case.

It seems �tting to mention these three here, as all of them have played an active

role in forming the background results for the two major problems with which this

thesis is concerned.

Quasiconformal mappings have numerous applications in a variety of �elds: holo-

morphic dynamical systems, singular integral operators, inverse problems, the geom-

etry of mappings, and the calculus of variations. Like most such ideas it is founded

on a simple concept, namely being a generalised version of a conformal mapping, a

very core concept from complex analysis, and many results are known about them.

Seeing which of these results we can generalise by the use of quasiconformal map-

pings is therefore of a great deal of interest.

Alongside quasiconformal mappings there are two other particularly notable and

related classes of mappings in this area: the concepts of quasisymmetry and of �nite

distortion. In Chapter 2 we shall present some more detailed de�nitions and details

on this topic necessary for the remainder of the thesis.
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1.1 Resolving Decompositions By Blowing Up Points

In the �rst part of this thesis we will be investigating functions that blow up a point:

we shall de�ne this more precisely in Chapter 3, but for now we will illustrate it

with Figure 1.1.1 on page 2. These are orientation-preserving mappings, generally

with some control on their distortion in the cases that we are interested in, which

transforms a punctured disk into an annulus.

Figure 1.1.1: Blowing up a point: an orientation preserving mapping.

We �rst want to discuss such mappings in the setting where we aim to minimise

some functional of the distortion (say the Lp-norm) and the domain has a metric

measure, for instance Euclidean or hyperbolic. We would also like to retain some

control in some Sobolev space (for example W 1,2
loc ) on the inverse map. In Chapter

3 we �rst show there are minimisers in Lp for all p < ∞ in the Euclidean case

(or any �at metric of �nite area). In the general curved case the geometry of the

metric obviously comes into play and the results are quite di�erent. We handle this

case by applying and generalising the work of Martin and McKubre-Jordens [35] to

construct suitable bounds on the minimisers.

Having identi�ed the structure of these extremal mappings, we then seek to

apply these results to the problem of resolving decompositions of the plane that

arise naturally in the study of Kleinian groups (shrinking a curve or lamination on

a surface; see Figure 1.1.2 on page 3) and iteration of rational maps (dynamically

de�ned combinatorial correspondences), among other things. We do not identify

the extremal mappings in these cases of course, but expect that by basing our

constructions around these extremal mappings we obtain optimal (or at least close

to optimal) regularity.

To approach these questions analytically we will need a good class of geometric

mappings. Such a class consists of the mappings of �nite distortion. In this thesis

we will assume that our mappings f are (orientation preserving) homeomorphisms,

away from a countable set or a small set of dimension less than two - the singular

set, and of �nite distortion, a precise de�nition will be given in Section 4.1.
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Figure 1.1.2: Shrinking a curve on a surface.

A typical example where one might want to blow up points to resolve a decom-

position comes from the theory of dynamical systems where one seeks to resolve the

structure of the Julia set of a rational mapping.

Figure 1.1.3: Julia set of a quadratic polynomial.

Here the map de�ned on the exterior is conjugate to z2 by the Riemann Map-

ping Theorem (see Theorem 2.3), and the dynamics yield an identi�cation pattern

between pairs of points on the circle - joined by closed hyperbolic lines (subarcs of

orthogonal circles) - and a model for this Julia set is the image of the plane via the

quotient map of the decomposition associated with these lines. A similar situation

arises when shrinking a curve on a Riemann surface: the lift of a closed geodesic

to the hyperbolic disk gives a family of lines which, when pinched, give either a

surface at a boundary point of Teichmüller space or a model of the limit set (which

one depends on the choice of point of view of the map). See [37] for a discussion

of Kleinian groups and their degenerate limits. Other examples are discussed with

regard to the theory of convergence groups in [36].

3



Figure 1.1.4: Quotient map from left to right. Blowing up points from right to left.

There is no map C \E → C \ {0}, where E is a non-degenerate continuum, by a

mapping whose distortion is in any reasonable integrability class (i.e. L1 or better);

see 3.18 for a proof of this result. However, we can blow up points with distortion

in a good class, and thus opening up the possibility of �nding an analytic inverse

to these quotient maps. Although we could choose to resolve these singularities

by blowing up bigger sets, for certain applications (and to stay in su�ciently nice

Sobolev classes) we require the singular set to be as small as possible.

By resolving a decomposition we mean taking a planar curve separating the plane

into a countable collection of disjoint domains Ωi, say with a subcollection touching

at the origin,
⋂
i∈I Ωi = {0} (where I is the (possibly countable) subcollection's

indexing set). We then seek a mapping f of the plane which is of �nite distortion

and a homeomorphism away from the origin so that int
(
f
(⋃

i∈I Ωi

))
is a domain,

thereby reducing the (possibly in�nite) number of components. Resolutions of de-

compositions can be achieved by blowing up points and in Chapter 4 we investigate

what can be done in regards to mappings whose distortion is in an Lp class.

1.2 Quasiconformal Extensions

The de�nition of quasiconformal mappings (which we shall come to in Chapter 2)

requires them to be de�ned on open sets; however, it is often useful to have a similar

property on more arbitrary planar subsets. Quasisymmetry serves this purpose; it

was introduced by Ahlfors and Beurling on the real line [5], and for general metric

spaces by Tukia and Väisälä [52].

Although we will give more precise de�nitions later, we shall introduce the two

variants of quasisymmetric mappings. A self-mapping f of the real line is M -

quasisymmetric (where M ≥ 1) if for all x ∈ R and all h ∈ R \ {0} .

1

M
≤ f (x+ h)− f (x)

f (x)− f (x− h)
≤M.

A mapping f de�ned on any subset Ω of the complex plane C is η-quasisymmetric

4



(where η an increasing homeomorphism of [0,∞)) if for each triple z0, z1, z2 ∈ Ω we

have that
|f(z0)− f(z1)|
|f(z0)− f(z2)|

≤ η

(
|z0 − z1|
|z0 − z2|

)
, (1.2.1)

The two classes of functions (quasisymmetric and quasiconformal) are closely

related: quasisymmetric mappings are, in fact, quasiconformal, and although qua-

siconformal mappings are not necessarily quasisymmetric, those whose domain is

the entire complex plane are, and there are certain results for dealing with local

equivalence. These can be found in the work of Astala, Iwaniec and Martin[6].

One of the desired properties of such a function would be to allow us to construct

quasiconformal mappings by extending these quasisymmetric mappings onto open

domains; in particular, if we have a quasisymmetric mapping de�ned on the real

line (respectively, the unit circle), if we can extend this function into the upper half-

plane (respectively, the unit disk) so that this new function is quasiconformal, then

this will be very useful: for example, the fact that we can do this has important

applications to conformal welding and Teichmüller theory. For more details on why

this is so, see [6].

The Beurling-Ahlfors Extension

The �rst proof that we are in fact able to perform this extension process is

due to Beurling and Ahlfors [5]. They �rst de�ne the dilatation of a di�erentiable

topological mapping f(x, y) = u(x, y) + iv(x, y) by D ≥ 1 where

D +
1

D
=
u2
x + u2

y + v2
x + v2

y

|uxvy − uyvx|
;

that is geometrically, the ratio between the major and minor axis of the in�nitesi-

mal ellipse obtained by mapping an in�nitesimal circle of centre (x, y). Given the

mapping f̃ : R → R, we de�ne the Beurling-Ahlfors extension f : H → H by

f(x, y) = u(x, y) + iv(x, y) where

u(x, y) =
1

2

ˆ 1

0

f̃(x+ ty) + f̃(x− ty) dt,

v(x, y) =
1

2

ˆ 1

0

f̃(x+ ty)− f̃(x− ty) dt.

We have the following theorem from [5] with re�ned estimates from [9] (see also [49]

for a summary of the evolution of estimates):

Theorem 1.1. There exists a quasiconformal mapping f of the upper half-planes

with the boundary correspondence x 7→ f̃(x) if and only if f̃ is M-quasisymmetric

5



for some constant M ≥ 1. More precisely, there exists a mapping f whose dilatation

K (z, f) satis�es

3

4
ln 2 ≤ lim inf

y→0+

K (x+ iy, f)

% (x, y) %m (x, y)
≤ lim sup

y→0+

K (x+ iy, f)

% (x, y) %m (x, y)
≤ 2,

where

% (x, y) = max

{
f̃ (x+ y)− f̃ (x)

f̃ (x)− f̃ (x− y)
,
f̃ (x)− f̃ (x− y)

f̃ (x+ y)− f̃ (x)

}
≤M

and

%m (x, y) = min
{
%
(
x+

y

2
,
y

2

)
, %
(
x− y

2
,
y

2

)}
.

There are equivariant versions of this due to Tukia [51] and Douady-Earle, which

we shall now discuss in more depth.

The Douady-Earle Extensions

The Douady-Earle extension [11] provides us with an extension with a partic-

ularly useful property: it has conformal naturality. That is, if the quasisymmetric

function commutes with a Fuchsian group (a discrete subgroup of Möbius transfor-

mations that leaves a disk invariant), the Douady-Earle extension will also commute

with this group.

Let G be the group of conformal automorphisms of D. If G operates on X and

Y , and T : X → Y is a mapping, then T is conformally natural if, for all g ∈ G
and a ∈ X

T (g · a) = g · T (a), (1.2.2)

while ifG×G operates onX and Y , then T is conformally natural if, for all g1, g2 ∈ G
and a ∈ X,

T ((g1, g2) · a) = (g1, g2) · T (a). (1.2.3)

In particular, when X is the the space C(S,S) where S is the unit circle

S = {z : |z| = 1} ,

and Y is the space C(D,D)

T (g1 ◦ a ◦ g−1
2 ) = g1 ◦ T (a) ◦ g−1

2 .

We will assume henceforth that probability measures have no atoms to avoid

6



going into the details of speci�cs on the matter.

Theorem 1.2. (Douady-Earle Extension Theorem) There is a conformally natural

extension of any quasisymmetric homeomorphism ϕ : S → S to a quasiconformal

homeomorphism f = E(ϕ) where f : D → D, such that E(ϕ) maps the identity on

S to the identity on D, and if ˆ
S
ϕ(z)dz = 0,

then f(0) = 0.

The construction, as stated before, is in [11].

The Schoen Conjecture

The Douady-Earle extension is of particular interest because it has the property of

being conformally natural. The automorphisms of the Riemann sphere (and thus

the half-plane or unit disk) are Möbius transformations; these also happen to be

the isometries of the Poincaré half-plane and Poincaré disk models of the hyperbolic

plane. A natural question is then: is there a quasiconformal extension which is also

harmonic with respect to the hyperbolic metric?

The Schoen conjecture [45] suggests that the answer to this question is �yes�;

in particular, that every quasisymmetric self mapping of the unit circle extends

to a quasiconformal homeomorphism of the disk that is harmonic with respect to

the hyperbolic metric. Such extensions are unique by Li and Tam [30], and also,

since isometries preserve the property of being harmonic, the extension would com-

mute with the group of hyperbolic isometries (and thus be an alternative to the

Douady-Earle extension operator). It would also have the nice property of produc-

ing homeomorphic harmonic maps between Riemann surfaces in a given homotopy

class.

Although the conjecture has not been proven, there have been some steps made

in that direction.

A Theorem Of Hardt And Wolf

In [19], Hardt and Wolf proved the following theorem (we restate it here for the

two-dimensional case only, although the result was proved for higher dimensions as

well):

7



Theorem 1.3. The set of quasisymmetric maps f̃ : R → R which admit a quasi-

isometric harmonic extension f : H → H is open in the set of quasisymmetric

self-maps of R.

Here the topology is the one derived from the distance function d (·, ·) on H.
The outline of the proof goes as follows: extend the quasisymmetric map to a quasi-

isometry F ; that is, show that there exists A ≥ 1, B ≥ 0 such that for all z, w ∈ H,

1

A
ρH (z, w)−B ≤ ρH (F (z) , F (w)) ≤ AρH (z, w) +B

(for example, by using either the Beurling-Ahlfors or Douady-Earle extension), cho-

sen so that unit tangent vectors v have close-to-unit images:

|‖dF (v)‖ − 1| < ε1

for small ε1 > 0. We then divide H into compact isometric two-dimensional blocks

B, by dyadic decomposition, and on each construct a hyperbolic isometry GB that

is close to F , namely for small ε2 > 0 we construct a hyperbolic isometry GB on

each block B so that

d(F (b), GB(b)) + ‖(dF )b − (dGB)b‖ < ε2

for all b ∈ B, and construct the rest of G from these blocks by interpolating in

neighborhoods of the dyadic 1-skeleton, and then the dyadic 0-skeleton. (By dyadic

n-skeleton, we mean the subspace formed by the union of the cells, arising from the

dyadic decomposition, of dimensions m ≤ n.) Thus the tension �eld τ(G) has small

norm, and G has the same asymptotic boundary values as F . We then construct a

compact exhaustion of H, and construct the sequence of the unique harmonic maps

that agree with G on the boundaries (see [18]).

The harmonic maps are estimated by their distance from G by observing

ρH(x+ iy, u+ iv) = cosh−1

(
1 +

(u− x)2 + (v − y)2

2vy

)
,

(also see later as (2.2.5)) and calculating the Laplacian of the hyperbolic cosine of

the distance, creating a bound where this Laplacian is at most zero. The energy

density of the harmonic maps is then bounded, and by the Arzelà-Ascoli theorem

(see Theorem A.1) we can construct a subsequence of these harmonic maps that

converge uniformly on compacta (metrizable compact spaces) to a map of small

bounded distance from G, which must have the same asymptotic boundary values

as G, and therefore as F .
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The Harmonic Map Equation

The equation for a harmonic map u between Riemann surfaces with given conformal

structures is a nonlinear second order equation called the harmonic map equation:

uzz̄ + φ (u)uzuz̄ = 0,

where φ (u) = (log ρ)u (u) and ρ (u) is the metric density of the range Riemann

surface. We will come back to this equation later (see (2.3.1)).

One wishes to solve the associated boundary value problem and this has been

done in a very limited setting. In Chapter 5 we show that this existence question

can be related to a nonlinear inhomogeneous Beltrami equation and discuss some of

the consequences. The results hold in more generality for other conformal metrics

as well.

Finally, in Chapter 6, we shall summarise the results we have obtained, as well

as discuss some prospects for future research.
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Chapter 2

Preliminary Topics

This chapter contains the de�nitions and foundation theorems used in this thesis.

Since we wish to consider quasisymmetric mappings, their extension to quasiconfor-

mal mappings, and to the closely related class of mappings of �nite distortion, this

chapter will generally be dedicated to providing the relevant background to explain

these mapping classes. We then de�ne a few classes of functions that we will be

making use of in this thesis in several places, and provide some properties of them

that we will be using.

We shall �rst de�ne the complex di�erential operators

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

where z = x + iy ∈ C and x and y are the real and imaginary parts respectively.

We will often use the shorthand fz for
∂f
∂z

and similarly for the z-derivative. Also,

Df is the di�erential matrix of the function f(x, y) = u(x, y) + iv(x, y):

Df =

[
ux uy

vx vy

]
.

The most fundamental concept that we are concerned with is the distortion

caused by a mapping. Distortion measures the deformation to a space caused by a

given mapping: for example, the mapping f (x+ iy) = 2x + iy on C stretches the

plane in the horizontal direction by a factor of two. What we would like to be able

to do would be to describe the distortion for an arbitrary mapping, in a way that

ignores the direction of the deformation - as this may vary from region to region -

but still tell us of the magnitude of this deformation.

For our purposes, we want a mathematical de�nition of distortion that works

11



at the pointwise level: since a function can distort the image in di�erent localised

regions, we need a local de�nition, and having it be pointwise makes it simple to

express when we try to �nd solutions which minimise this distortion. We do this by

considering the distortion of circles of small radii around the point, then taking the

limit as the radius goes to zero:

De�nition 2.1. The linear distortion function is de�ned to be

H(z, f) = lim sup
r→0

max|h|=r |f(z + h)− f(z)|
min|h|=r |f(z + h)− f(z)|

.

a

b
h

z

Figure 2.0.1: Diagram illustrating the e�ect of linear distortion.

For example, in Figure 2.0.1 on page 12, the circle of radius h centred at z has

been transformed by f to the ellipse with semi-major axis a and semi-minor axis b.

The linear distortion H(z, f) is then a/b.

Conformal mappings are another core concept: quasiconformal mappings can be

seen as a generalised form of conformal mappings, and because mappings of �nite

distortion are another relaxation of these same ideas, it is important to understand

them as well, especially as some of our results we will be using will require that

certain mappings be conformal.

De�nition 2.2. A conformal mapping of a domain Ω ⊂ C is a holomorphic home-

omorphism. Two Riemannian metrics g and h are conformally equivalent if there is

a positive function α2 such that g = α2h. A mapping f : (M, g) → (N, h) between

two Riemannian manifolds (M, g) and (N, h) is a conformal mapping if the pull-back

metric f ∗h is conformally equivalent to g.

From the perspective of distortion, conformal mappings map in�nitesimal circles

to in�nitesimal circles, and so for a conformal mapping f , H(z, f) = 1.

By domain we mean a connected, open subset of the complex plane. Two do-

mains are conformally equivalent if there is a holomorphic homeomorphism between

12



them. For simply connected domains, the answer as to whether two such domains

are conformally equivalent is answered by the Riemann Mapping Theorem.

Theorem 2.3. (Riemann Mapping Theorem) Let Ω be a simply connected subset

of the complex plane, not equal to C. Let a ∈ Ω be arbitrary. Then there exists

a (unique) conformal map f from Ω onto the unit disk D such that f(a) = 0 and

f ′(a) > 0.

An extension of this theorem is the uniformisation theorem:

Theorem 2.4. (Uniformisation Theorem) Any simply connected surface is biholo-

morphically equivalent to the Riemann sphere, the complex plane or the unit disk.

No two of these surfaces are conformally equivalent.

Proofs for the Riemann Mapping Theorem and uniformisation theorem can be

found in [15], [27] and [21].

Another core de�nition in this area is that of the symmetric map. Because we

are primarily interested in these mappings on the real line and the unit circle, we

will de�ne it explicitly for both for convenience.

De�nition 2.5. A mapping f : R→ R is symmetric if

lim
h→0

f (x+ h)− f (x)

f (x)− f (x− h)
= 1, (2.0.1)

and a mapping f : S→ S is symmetric if

lim
h→0

f
(
ei(θ+h)

)
− f

(
eiθ
)

f (eiθ)− f (ei(θ−h))
= 1. (2.0.2)

2.1 Möbius Transformations

Möbius transformations are mappings of the form

z 7→ az + b

cz + d
, (2.1.1)

where a, b, c, d ∈ C and ad − bc 6= 0, (or ad − bc = 1 as we may cancel out any

common factors of the coe�cients without changing the mapping). These mappings

form a group which we can identify with the projective linear group PSL (2,C).

The groups of Möbius transformations that we discussed earlier are subgroups of

this group whose elements �x the real line (in the case of the hyperbolic half-plane)

or the unit circle (in the case of the disk).

A Kleinian group is a discrete subgroup of Möbius transformations; a Kleinian

group is Fuchsian if it it leaves a disk invariant.

13



2.2 The Hyperbolic Plane

This thesis will focus on two-dimensional Riemannian manifolds. While we will be

talking about certain results with regards to general metrics, we are particularly

interested in the hyperbolic metric. A Riemannian manifold is hyperbolic if it is of

constant negative sectional curvature; and the hyperbolic plane is thus a hyperbolic

Riemannian manifold of two dimensions. There are several models of the hyperbolic

plane: the hyperboloid model, the Klein model, the Poincaré disk and half-plane

models. We will be making use of the latter two, so we shall go into further detail

for them. We will also brie�y mention the hyperbolic metric on the punctured unit

disk.

2.2.1 Poincaré Disk

The Poincaré disk model uses the unit disk D = {z ∈ C : |z| < 1} equipped with the

Riemannian metric

dshypD(z) =
2 |dz|

1− |z|2
, (2.2.1)

and thus the metric

ρD(z, w) = inf
γ

ˆ
γ

dshypD = ln
|1− z̄w|+ |z − w|
|1− z̄w| − |z − w|

, (2.2.2)

where the in�mum is taken of all recti�able curves γ joining z to w in D. Lines are
in fact represented by diameters of the boundary circle as well as the arcs of circles

orthogonal to the boundary.

The group of all isometries is the group of Möbius transformations

z 7→ eiθ
z − a
1− āz

, a ∈ D, θ ∈ [0, 2π) (2.2.3)

and their complex conjugates. We denote GD as the group of these isometries, and

G+
D as the group of Möbius transformations.

2.2.2 Poincaré Half-Plane

The Poincaré half-plane model uses the upper half-plane

H = {z ∈ C : =(z) > 0}
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equipped with the Riemannian metric

dshypH =
|dz|
=(z)

(2.2.4)

and metric

ρH(x+ iy, u+ iv) = cosh−1

(
1 +

(u− x)2 + (v − y)2

2vy

)
. (2.2.5)

The isometries here are similarly the Möbius transformations

z 7→ az + b

cz + d
, (2.2.6)

where a, b, c, d ∈ R and ad − bc 6= 0. We shall denote this group by GH, which we

note is isomorphic to PGL(2,R), and the group of orientation-preserving isometries

by G+
H, which is isomorphic to PSL(2,R).

The mapping

z 7→ i
1− z
1 + z

is an isometry from the hyperbolic metric of the disk to the hyperbolic metric of the

upper half-plane. The inverse mapping is

z 7→ i− z
i+ z

.

We will primarily be using the Poincaré disk model, although we will make use of

the isometry and its inverse to choose a model which suits the particular problem

at hand better.

2.2.3 Hyperbolic Punctured Disk

As a brief aside, we will mention the hyperbolic metric on the punctured disk later

as an illustration, so we shall formulate it here although it is not used as frequently

as the other two in this thesis. The hyperbolic metric on the punctured unit disk

D∗ = {z ∈ C : 0 < |z| < 1} is

ds =
|dz|
|z| ln |z|

. (2.2.7)
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2.3 Harmonic Mappings

Harmonic mappings are critical points of the Dirichlet energy functional

E (f) =
1

2

ˆ
M

‖df‖2 (det g)1/2 dz

on functions f : (M, g)→ (N, h) between Riemannian manifolds (M, g) and (N, h).

Often we are interested in these critical points; in particular, there are numerous

physical models that require some system to be in lowest energy state possible.

Harmonic maps have some other nice properties, though we shall leave that for

other sources to go into, for example, [12] and [25].

When examining mappings between Riemannian manifolds with various metrics,

we often want the properties that we examine to be independent of the coordinate

system. The Dirichlet energy functional of such a mapping is one geometrically im-

portant invariant of these mappings. Given compact oriented Riemannian surfaces

M and N without boundary, with metrics λ(z) |dz|2 and ρ(u) |du|2 respectively, we

can represent the energy density by

|du|2 = 2
ρ(u(z))

λ(z)

(
|uz(z)|2 + |uz̄(z)|2

)
and so the Dirichlet energy functional as

E(u) =

ˆ
M

|du|2 λ(z) |dz|2 = 2

ˆ
M

ρ(u(z))
(
|uz(z)|2 + |uz̄(z)|2

)
|dz|2 .

From this we can derive (see [46]) the harmonic map equation as the Euler-

Lagrange equation for the minimiser of E(f).

uzz̄ + (ln ρ)u (u)uzuz̄ = 0. (2.3.1)

Hence for mappings between copies of the hyperbolic disk, the associated harmonic

map equation is

uzz̄ +
2u

1− |u|2
uzuz̄ = 0, (2.3.2)

while for the hyperbolic half-plane, it is

uzz̄ +
i

=(u)
uzuz̄ = 0. (2.3.3)

We will also note that for Euclidean metrics this gives us the expected de�nition

for the complex plane in complex analysis (see for example [8]). In this case we have

that ρ(z) = 1 and so (log ρ)z = 0.
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2.4 Lp-Spaces And Sobolev Spaces

The de�nitions of the core concepts of bounded and �nite distortion make use of Lp

and Sobolev spaces, amongst others. We will provide a brief introduction to them

here.

For 1 ≤ p ≤ ∞, we denote the standard Lp-norm for mappings of Ω ⊂ C → C
as usual:

‖f‖p =


(´

Ω
|f |p ρ(z) |dz|2

)1/p
p <∞,

inf {C ≥ 0 : |f(z)| ≤ C for almost every x } p =∞,

and say that f ∈ Lp(Ω) if ‖f‖p < ∞. Note that‖f‖∞ = limp→∞ ‖f‖p if f ∈
L∞(Ω) ∩ Lq(Ω) for some q < ∞. More general discussion of the Lp-norms can be

found in [38].

The Sobolev norm ‖f‖k,p we de�ne by

‖f‖k,p =


(∑

|α|≤k ‖Dαf‖pp
)1/p

p <∞,∑
|α|≤k ‖Dαf‖∞ p =∞,

where Dαf denotes the weak partial derivative associated with the multi-index α;

by weak partial derivative of f ∈ L1
loc (Ω), we mean any g ∈ L1

loc (Ω) such that

ˆ
Ω

fDαϕ |dz|2 = (−1)|α|
ˆ

Ω

gϕ |dz|2

for all in�nitely di�erentiable functions ϕ with compact support in Ω.

The Sobolev space W k,p(Ω) is the space of functions f : Ω→ C where ‖f‖k,p <
∞.

2.4.1 Local Lp-Spaces and Local Sobolev Spaces

The de�nition of quasiconformality will depend on local versions of these: f ∈
Lploc(Ω) (resp. W k,p

loc (Ω)) if f ∈ Lp(Ω′) (resp. W k,p(Ω′)) for every relatively compact

subdomain Ω′ with Ω′ ⊂ Ω. More information on Sobolev spaces can be found in

[41].

2.5 Distortion And Quasiconformality

The major results of this thesis centre around �nding families of functions, in partic-

ular minimizing functions, where there is some integral limit applied to (some simple
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function of) some measurement of distortion: the mappings of bounded distortion

(quasiconformal functions) and the mappings of �nite distortion. To explain these

concepts, and to introduce related concepts that will appear in this thesis, we begin

with a brief introduction to the Beltrami equation, which we will be using to help

de�ne di�erent measures of distortion.

2.5.1 The Beltrami Equation And Complex Dilatation

Let D be a domain in the complex plane C, and µ : D → C be a measurable

function. The Beltrami equation is then given by

fz̄ = µ(z)fz for almost every z ∈ D. (2.5.1)

Because we are interested with this in terms of quasiconformal mappings, we note

that if ‖µ‖∞ = k < 1 then the solution to the Beltrami equation is a quasiconformal

mapping with complex dilatation µ, also known as the Beltrami coe�cient. If we

are given a function f , we may write the associated Beltrami coe�cient as µf .

We note some results associated to this from [24]. First is the transformation for

the Beltrami coe�cient of a composition:

µf◦g−1(g(z)) =
µf (z)− µg(z)

1− µf (z)µg(z)

(
gz(z)

|gz(z)|

)2

. (2.5.2)

We also note the relation derived from the observations from the chain rule

Theorem A.2 between the Beltrami coe�cient of f and that of its inverse g:

µf (g(z)) =
fw̄(g(z))

fw(g(z))
= −gz̄(z)

gz(z)
= −µg(z)

gz(z)

gz(z)
. (2.5.3)

2.5.1.1 The Hopf Di�erential

The Hopf di�erential is de�ned on mappings f : M → N between Riemannian

manifolds M and N , respectively equipped with the metrics

ds2
M = λ(z) |dz|2 and ds2

N = ρ(f(z)) |df |2

by

Φf (z) dz2 = ρ(f(z))fz(z)fz̄(z)dz2. (2.5.4)

Note that f is harmonic if and only if the Hopf di�erential Φf is holomorphic [46].
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2.5.2 Quasiconformal Mappings

Quasiconformal mappings are a generalization of conformal mappings. Where con-

formal mappings are mappings that are distortion-free, quasiconformal mappings

are principally mappings of bounded distortion.

A mapping f : Ω→ Ω′ has bounded distortion if, for all z ∈ Ω, we have that

H(z, f) ≤ K <∞.

However, because this de�nition can be di�cult to work with, we shall instead

use an alternate form as our de�nition for quasiconformal mappings, which will be

formulated here in terms of the Beltrami coe�cient.

De�nition 2.6. (Quasiconformality)The distortion function K(z, f) for a mapping

f at a point z is de�ned by

K(z, f) =
1 + |µf (z)|
1− |µf (z)|

. (2.5.5)

A mapping f : Ω→ Ω′ is quasiconformal if f is orientation preserving, f ∈ W 1,2
loc (Ω)

and if

‖K(z, f)‖∞ <∞.

In particular, we say that a mapping f is K-quasiconformal if K ≥ ‖K(z, f)‖∞ .

In Chapter 5 and any other time we discuss quasiconformal mappings, this will be

the formulation for distortion that we mean. A di�erent de�nition will be required

when we discuss mappings of �nite distortion; we will introduce this de�nition later.

2.5.3 Some Established Results Of Quasiconformal Mappings

Here we shall state some important previously-established results of quasicon-

formal mappings.

Theorem 2.7. (Existence Theorem)

Let µ : D → D be a measurable function with ‖µ‖∞ = k < 1. Then there is a

quasiconformal homeomorphism f : D→ D with complex dilatation equal to µ,

µf (z) = µ(z), a.e. z ∈ D.
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See [1] for details. In fact we have the stronger result of the measurable Riemann

mapping theorem from [4] that this correspondence is holomorphic: if µ depends

holomorphically on a complex variable, then so does f .

Theorem 2.8. (Composition and Inversion of Quasiconformal Mappings) Let f :

Ω→ Ω′ be a K-quasiconformal mapping from the domain Ω ⊂ C onto Ω′ ⊂ C, and
let g : Ω′ → C be a K ′-quasiconformal mapping. Then

◦ f−1 : Ω′ → Ω is K-quasiconformal,

◦ g ◦ f : Ω→ C is KK ′-quasiconformal, and

◦ for all measurable sets E ⊂ Ω, |E| = 0 if and only if |f(E)| = 0.

For the proof of these results, see [6].

Lemma 2.9. (Quasiconformality, Harmonicity and the Hopf di�erential)The com-

plex dilatation of a harmonic quasiconformal mapping is the product of a real-valued

function and an anti-holomorphic function (that is, the complex conjugate of a holo-

morphic function).

Proof. Because f is quasiconformal, we can rewrite Φf as

Φf (z) = ρ(f(z)) |fz(z)|2 µf (z),

hence µf can be factored in the manner described, after rearrangement and the fact

that Φf is holomorphic.

2.5.4 Quasisymmetric Mappings

The de�nition of quasiconformality requires that the function is de�ned on an

open set of C. However, there are certain places where this will not be the case: for

example, we consider quasiconformal extensions of functions from the unit circle S
to the unit disk D; however S is not open in C. Therefore we would like to have a

more general form of quasiconformality. The concept of quasisymmetry, which was

introduced by Ahlfors and Beurling[5] for the real line and for general metric spaces

by Tukia and Väisälä[52], gives us a satisfactory alternative.
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De�nition 2.10. Let η : [0,∞)→ [0,∞) be an increasing homeomorphism, Ω ⊂ C
and f : Ω → C a mapping, and orientation preserving if Ω is open. Then f is

η-quasisymmetric if for each triple z0, z1, z2 ∈ Ω we have that

|f(z0)− f(z1)|
|f(z0)− f(z2)|

≤ η

(
|z0 − z1|
|z0 − z2|

)
, (2.5.6)

and f is quasisymmetric if some such η exists.

We may also speak ofM -quasisymmetric mappings, whereM is a constant, when

f is a self-mapping of the real line R.

De�nition 2.11. LetM ≥ 1. Then f : R→ R isM-quasisymmetric if for all x ∈ R
and all h ∈ R \ {0} .

1

M
≤ f (x+ h)− f (x)

f (x)− f (x− h)
≤M.

Quasisymmetric mappings de�ned on open subsets are mappings of bounded

distortion, as can be seen in [6]. From here as well we have that the inverse of

quasisymmetric mappings are quasisymmetric.

2.5.5 Mappings Of Finite Distortion

Although quasiconformal mappings are an important class of functions, there are

some limitations: some problems which can be modelled by the Beltrami equation

(2.5.1) where again |µ| < 1 almost everywhere, but it might be the case that

‖µ‖∞ = 1.

Such problems arise in several areas, such as in two-dimensional hydrodynamics

when the �ow approaches a critical value, and in holomorphic dynamics when ex-

amining the �ow of quasicircles of the Julia set of λz + z2 as |λ| → 1. Obviously

we would like to have solutions to these problems as well, so we consider a class

of functions derived from the relationship between the Beltrami equation and the

distortion inequality (2.5.5).

We refer to [6] for further details on this class of mappings and their role in

modern geometric function theory and analysis.

De�nition 2.12. A mapping f : Ω → C is a mapping of �nite distortion if f ∈
W 1,1
loc (Ω), J(z, f) ∈ L1

loc(Ω), and there is a measurable function K(z, f), �nite almost

everywhere, such that f satis�es the distortion inequality

‖Df‖2 ≤ K(z, f)J(z, f).
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Principally in Chapter 3 and Chapter 4, where we are primarily interested in

mappings of �nite distortion (rather than quasiconformal mappings), when we refer

to distortion we will be using it to refer to K (z, f).

Note the similarity to the de�nition of mappings of bounded distortion, or qua-

siconformal mappings. The di�erences are that f is in the class of W 1,1
loc rather than

W 1,2
loc , the addition of the integrability condition of the Jacobian, and the use of the

Hilbert-Schmidt norm

‖A‖2 =
1

2
tr
(
AtA

)
rather than the operator norm

|A|2 = max
|ζ|=1
|Aζ| .

(Note these are not the most general of de�nitions, but are su�cient for our appli-

cations).

We note that K (z, f) can also be written as

K(z, f) =
1 + |µf (z)|2

1− |µf (z)|2
.

OFrom this formula, it is clear that K(z, f) ≤ K(z, f) so all quasiconformal map-

pings are mappings of �nite distortion. Also note that, as we are dealing with

two-dimensional spaces, a linear mapping can be written as a linear matrix A(z); if

At(z)A(z) has eigenvalues λ1(z), λ2(z) then

K (z, A) = max

{
λ1(z)

λ2(z)
,
λ2(z)

λ1(z)

}
,

whereas

K (z, A) =
1

2

(
λ1(z)

λ2(z)
+
λ2(z)

λ1(z)

)
,

and so, where the eigenvalues cross, K is di�erentiable whereas K is not. We also

have

K (z, f) =
1

2

(
K (z, f) +

1

K (z, f)

)
.

As this is a convex function of K (z, f), the L∞ minimisers will be the same (see

[6]).

We shall list some additional properties of this distortion similar to that used for
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quasiconformality. Suppose that ϕ is conformal; then ϕz = 0 and so

µf◦ϕ (z) =
(f ◦ ϕ)z (z)

(f ◦ ϕ)z (z)

=
fz (ϕ (z))ϕz (z)

fz (ϕ (z))ϕz (z)
.

Thus |µf◦ϕ (z)| = |µf (ϕ (z))| and, as a consequence,

K (z, f ◦ ϕ) = K (ϕ (z) , f) . (2.5.7)

Similarly

µϕ◦f (z) =
(ϕ ◦ f)z (z)

(ϕ ◦ f)z (z)

=
ϕz (f (z)) fz (z)

ϕz (f (z)) fz (z)

=
fz (z)

fz (z)
= µf (z) , (2.5.8)

so

K (z, ϕ ◦ f) = K (z, f) . (2.5.9)

We also have the following proof due to Hencl, Koskela and Onninen [20]

Theorem 2.13. Let f ∈ W 1,1
loc (Ω,Ω′), where Ω,Ω′ are bounded domains in C, be a

homeomorphism of �nite distortion with

ˆ
Ω

K (x, f) dx <∞.

Then the inverse map h : Ω′ → Ω belongs to W 1,2 (Ω′,Ω) and

ˆ
Ω′
|Dh (y)|2 dy =

ˆ
Ω

K (x, f) dx.

2.6 Separable Functions

We say that a function f of n ≥ 2 variables {xi : i = 1, . . . , n} is separable if it

can be written in the form

f(x1, . . . , xn) =
n∏
i=1

fi(xi).

In this thesis we will often make use of certain classes of separable functions, as

they are often useful classes for simplifying problems. In particular, we will see that
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a class of such functions form the minimisers we seek for Theorem 3.13.

2.6.1 Radial Stretchings And Radially Symmetric Mappings

For a few reasons, not the least of which is the frequency with which we will be

doing calculations in polar coordinates, we will introduce a class of functions where

the argument is kept �xed. They also form very useful classes when examining

problems on (subsets of) the unit disk due to being the class of mappings the minimal

solutions to Theorem 3.13 fall into when transformed into the Nitsche version of that

problem.

Let ρ : [0,∞]→ [0,∞] be a piecewise di�erentiable, strictly increasing function.

We then say f : C→ C is a radial stretching if it is of the form

f (z) =
z

|z|
ρ (|z|) .

For functions with domains as subsets of C, in particular for mappings from the

unit disk D to itself, we will say that such functions are radial stretchings if they

are restrictions of a radial stretching to the appropriate domain, and if the mapping

preserves boundaries.

We note some results from [24] that will be convenient. First the complex partial

derivatives of a harmonic mapping are given by

fz =
1

2

[
ρ̇ (|z|) +

ρ (|z|)
|z|

]
,

and

fz̄ =
1

2

[
ρ̇ (|z|)− ρ (|z|)

|z|

]
z

z̄
.

The Jacobian is then

J (z, f) = |fz|2 − |fz|2 =
ρ̇ (|z|) ρ (|z|)

|z|
(2.6.1)

and Beltrami coe�cient is then

µf =
|z| ρ̇ (|z|)− ρ (|z|)
|z| ρ̇ (|z|) + ρ (|z|)

z

z̄
,

so

K(z, f) = max

{
|z| ρ̇ (|z|)
ρ (|z|)

,
ρ (|z|)
|z| ρ̇ (|z|)

}
and

K(z, f) =
1

2

(
|z| ρ̇ (|z|)
ρ (|z|)

+
ρ (|z|)
|z| ρ̇ (|z|)

)
. (2.6.2)

Note that the inverse of a radial stretching is a radial stretching. We will also use
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the term anti-radial stretching to refer to a mapping that is the complex conjugate

of a radial stretching, that is a function of the form

f(z) =
z̄

|z|
ρ (|z|) .

A similarly useful class is that of radially symmetric functions : the only di�erence

is that ρ need not be strictly increasing. We may similarly de�ne anti-radially

symmetric functions in the same manner.

2.6.2 Radially Fixed Mappings

For radially symmetric mappings, we �x the argument; we shall now propose to �x

the modulus. Let τ : [0, 2π)→ [0, 2π) be a piecewise di�erentiable, injective function

that is 2π-periodic (that is, if we extend the domain of τ to R the extension is 2π-

periodic). We then say f : C→ C is radially �xed if it is of the form

f
(
reiθ
)

= reiτ(θ),

and we extend this de�nition to subdomains of C in a similar fashion to radial

stretchings.

In this case, we have that

fz
(
reiθ
)

=
1

2
[1 + τ ′ (θ)] ei(τ(θ)−θ)

and

fz̄
(
reiθ
)

=
1

2
[1− τ ′ (θ)] ei(τ(θ)+θ).

The Beltrami coe�cient is therefore given by

µf
(
reiθ
)

=
1− τ ′ (θ)
1 + τ ′ (θ)

ei2θ.

Note that when f is orientation preserving, τ is increasing, and τ is decreasing when

f is orientation reversing.

2.6.3 Polar Independent Mappings

We can combine these two concepts to create a more general class of functions: in

this case, we have a function f : reiθ → ρeiτ where ρ and τ are functions of r and θ

respectively:

f
(
reiθ
)

= ρ (r) eiτ(θ).
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The derivatives are

fz
(
reiθ
)

=
1

2

[
ρ′ (r) +

ρ (r)

r
τ ′ (θ)

]
ei(τ(θ)−θ)

and

fz̄
(
reiθ
)

=
1

2

[
ρ′ (r)− ρ (r)

r
τ ′ (θ)

]
ei(τ(θ)+θ).

In this case the Jacobian is

J
(
reiθ, f

)
=
ρ′ (r) ρ (r) τ ′ (θ)

r

and Beltrami coe�cient is

µf
(
reiθ
)

=
rρ′ (r)− ρ (r) τ ′ (θ)

rρ′ (r) + ρ (r) τ ′ (θ)
ei2θ.
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Chapter 3

Blowing Up Points

We now de�ne some common terms for this chapter and the following one: we

de�ne D∗ = {z ∈ C : 0 < |z| < 1} to be the punctured unit disk, and also the family

of annuli of inner radius 1 as AR = {z ∈ C : 1 < |z| < R}.

De�nition 3.1. We say f blows up a point if f : D∗ → AR is an orientation

preserving homeomorphism with

lim
z→0
|f(z)| = 1, lim

|z|→1
|f(z)| = R.

3.1 Extremal Problems

3.1.1 Modulus Of Annuli

In this thesis we shall be making use of two similar and related concepts: that of the

extremal length and modulus of a collection of (locally recti�able) curves. Because

one is the reciprocal of the other, we do not cause too much confusing by using

modulus to refer to extremal length for the most part; many other results pertaining

to the classic modulus we can import (with perhaps some slight adjustment where

necessary) because of this reciprocity. Although the concept can be generalized,

here we shall only de�ne it in the two-dimensional case.

De�nition 3.2. Let Λ be a collection of curves in C. A non-negative Borel measure

ρ : C→ R is admissible if ˆ
λ

ρds ≥ 1

for every locally recti�able curve λ ∈ Λ. The collection of all admissible Borel

measures with respect to Λ is denoted adm (Λ). We de�ne the modulus to be

mod (Λ) =

[
inf

ρ∈adm(Λ)

ˆ
C
ρ2dm

]−1

. (3.1.1)

27



Where the curves are given in, or are understood to lie within, some Ω ⊂ C, then
we may de�ne

mod (Ω) =

[
inf

ρ∈adm(Λ)

ˆ
Ω

ρ2dm

]−1

.

We note some useful properties of the modulus, which we take from [34]. First,

if Λ1 ⊂ Λ2, then mod (Λ2) ≤ mod (Λ1). Second, if Λ1 is minorised by Λ2 (that is,

each curve λ1 ∈ Λ1 has a subcurve λ2 ∈ Λ2) then mod (Λ2) ≤ mod (Λ1) as well.

Finally, we have the important theorem which ties this modulus in with conformal

mappings.

Theorem 3.3. The modulus of a family of curves is a conformal invariant.

The proof for this theorem can be found in [34].

As an example, let A (r, R) be the annulus with inner radius r and outer radius

R. If we consider the set of paths to be those lying between the inner and outer

boundary components, then

mod (A (r, R)) =
1

2π
ln

(
R

r

)
.

A proof of this can be found in [54]. In the �rst half of this thesis we shall be

examining mappings to and from annular regions, and as the mappings will generally

be within the realm of conformal mappings and those of bounded distortion, we shall

use this measure for reasons we will explain in a moment.

The Riemann mapping and uniformisation theorems (Theorem 2.3 and Theorem

2.4 respectively) classify all simply connected spaces as being biholomorphically

equivalent to exactly one of Ĉ, C and D; the next simplest case will be the doubly

connected surfaces: the punctured plane C \ {0}, the punctured disk D \ {0} and
the annuli A (r, R).

We shall now mention a few pertinent results in this area. The �rst result is due

to Schottky [47]:

Theorem 3.4 (Schottky Theorem). The annuli AR1 = A (1, R1) and AR2 = A (1, R2)

are conformally equivalent if and only if R1 = R2. In general, there exists a confor-

mal homeomorphism h from A (r, R) onto A (r′, R′) if and only if the annuli have

the same modulus; thus,
R

r
=
R′

r′
.

Moreover, up to the rotation of the annuli, every such map takes the form

h (z) =

 r′

r
z, if preserving the order of the boundary components, and

rR′

z
if reversing the order of boundary components.
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We refer to [23] for the proof. We gain �exibility by considering this mapping

problem for harmonic homeomorphisms (univalent complex-valued harmonic func-

tions).

Another pertinent theorem is the following.

Theorem 3.5. Every doubly connected region Ω in the complex plane is conformally

equivalent to the round annulus A (r, R) with the same modulus.

This is a special case of a result found in [2, 255-256].

3.1.2 Nitsche-Type Extremal Problems

In [42], Nitsche demonstrated that a harmonic homeomorphism between annuli does

not exist if the image annulus is too conformally thin in comparison, which led him

to conjecture the following:

Theorem 3.6. (Nitsche Conjecture) A harmonic homeomorphism h : A (r, R) →
A (r′, R′) onto exists if and only if

R′

r′
≥ 1

2

(
R

r
+
r

R

)
.

This inequality is known as the Nitsche bound. In [22] this was proven by Iwaniec,

Kovalev and Onninen when the domain annulus satis�es log R
r
≤ 3

2
, and in general

under the assumption that h or its normal derivative has vanishing average on the

inner boundary circle. It was then proved in full in [23].

In our situation, we wish to do something similar; but instead of minimizing

some functional of the energy, we wish to minimise some functional of the distor-

tion; so in our case we are interested in the inverse mapping. In [35], Martin and

McKubre-Jordens generalised this approach to solve a class of similar problems by

post-transformation of the distortion K by a convex function Φ; for our purposes,

we will be particularly interested in the cases where Φ : x 7→ xp, for they provide us

with Lp-bounds and related results.

De�nition 3.7. Consider f : AR → AS a homeomorphism which maps the bound-

ary components of AR = A (1, R) to the appropriate ones of AS = A (1, S),

f ({|z| = 1}) = {|z| = 1} and f ({|z| = R}) = {|z| = S} .

Let Φ : [1,∞)→ [0,∞) be a convex function. A Nitsche-type extremal problem is

to �nd the existence or otherwise of a minimiser or stationary point of the functional

f 7→
¨

AR
Φ (K (z, f)) η2 (z) |dz|2 . (3.1.2)
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Figure 3.1.1: A Nitsche-type extremal problem.

When posed in this manner, 3.6 may be written in the following way.

Corollary 3.8. An extremal mapping f : A (r, R) → A (r′, R′) for the functional

(3.1.2) exists if and only if
R

r
≥ 1

2

(
R′

r′
+
r′

R′

)
.

3.1.3 Grötzsch-Type Extremal Problems

Classically, the Grötzsch problem is the identi�cation of the homeomorphism of least

maximal distortion f that maps the rectangle Q1 = [0, `] × [0, 1] to the rectangle

Q2 = [0, L]× [0, 1] where the mapping is orientation-preserving and maps the edges

to the edges as follows:

◦ < (f (0, y)) = 0,

◦ < (f (`, y)) = L,

◦ = (f (x, 0)) = 0 and

◦ = (f (x, 1)) = 1.

The solution of this is, in fact the linear mapping. The formulation of the general-

ization this problem is very similar to that of Nitsche-type extremal problems.

De�nition 3.9. Consider f : Q1 → Q2 a homeomorphism of �nite distortion which

maps edges to edges in the manner described before. Let Φ : [1,∞) → [0,∞) be a

convex function and λ(z) a positive weight function. A Grötzsch-type extremal prob-

lem is to establish the existence or otherwise of a minimiser satisfying the boundary

conditions from the edge-mapping of the functional

f 7→
¨

Q1

Φ (K (z, f))λ (z) |dz|2 .
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Figure 3.1.2: A Grötzsch-type extremal problem.

3.2 The Condition And Bounding Theorems

We have two main theorems for this chapter that we will prove together. The �rst

states the conditions under which we have a mapping whose distortion lies in Lp for

a given radially symmetric metric.

Theorem 3.10. Let p ≥ 1 and let η2(z) be a radially symmetric metric of �nite

area de�ned on the punctured unit disk D∗. Set

α =
2

p+ 1
≤ 1. (3.2.1)

Then there is a mapping of �nite distortion blowing up the origin f : D∗ → AR for

each R > 1, with

Kp =

¨
D∗

K(z, f)pη2(z) |dz|2 <∞ (3.2.2)

if and only if

Ip =

¨
D∗
ηα(z) |z|α−2 |dz|2 <∞. (3.2.3)

The second provides a lower bound on Kp, which we use to prove Theorem 3.10,

in terms of Ip.

Theorem 3.11. If (3.2.3) holds, then there is a minimiser, unique up to rotation,

with K(z, f) ∈ Lp ((D∗, η2)) and the estimate ,

(
c2

22p+1p

)p/(p+1) Ip
(2π)2−2/(p+1)

≤ Kp, (3.2.4)

where c is chosen so that

¨
D∗

ηα (z) |z|α−2

cα + p1/(p+1) (2π |z| η (z))α
|dz|2 =

2 (2π)1−α

p1/(p+1)
lnR; (3.2.5)

thus c↗∞ as R↘ 1 and for �xed R, Kp ↗∞ as p→∞.

In the estimate (3.2.4) it is the term cαp which is large and grows rapidly; we will

give explicit estimates later in this chapter. We also have the following corollary to

Theorem 3.10 for the �at metric:
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Corollary 3.12. Suppose η ≡ 1. Then for all �nite p ≥ 1 there exists an f : D∗ →
AR with K (z, f) ∈ Lp (D∗). However, p =∞ is not allowed.

Proof. From Theorem 3.10 we know that we have such an f whenever

¨
D∗
|z|α−2 |dz|2 <∞.

Since

α− 2 =
2

p+ 1
− 2 =

−2p

p+ 1
,

if we convert to polar coordinates we get

2π

ˆ 1

0

r dr

r2p/(p+1)
= 2π

ˆ 1

0

dr

r(p−1)/(p+1)
;

this last integral is integrable when p−1
p+1

< 1. This is always true for �nite p ≥ 1.

When p =∞ then α = 0 and so the similar conversion gives the integral

2π

ˆ 1

0

dr

r
,

which means we do not have integrability.

3.3 Preliminary Results

In order to prove Theorems 3.11 and 3.10, we need some preliminary results: �rst,

how to reduce the Nitsche-type problem to a Grötzsch-type problem, so that we

may easily �nd the distortion minimisers. We shall them perform some preliminary

calculations on the Ip term that arises as a result of this reduction. We then prove

the result explicitly for the case where p = 1, before proceding to the full proof of

Theorem 3.11; this is then used to prove Theorem 3.10.

3.3.1 Reductions To A Grötzsch Problem

Following the analysis in [35], we have that if the minimisers exist, then they are

radially symmetric. However, the radially symmetric form of the Euler-Lagrange

equations are quite di�cult to deal with. However, we note that if we transform the

problem into a Grötzsch problem, then we �nd not only that the Euler-Lagrange

equations are much easier to deal with, but they are in fact not really di�erential

equations at all. We shall make heavy use of this fact in this proof to provide explicit

estimates, so we will go into this in more detail.

Figure 3.3.1 on page 33 illustrates the general idea from [35]: the mappings

σ : z 7→ 1
2π

ln z and τ : w 7→ e2πw are both conformal, so they are easy to deal with
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σ : z→
1
2π
ln (z) τ :w→ e2πw

g

f

Figure 3.3.1: Diagram demonstrating the conversion of a Nitsche problem to a
Grötzsch problem; dashing and colour of the boundaries indicates correspondence
between the boundary lines and/or circles between the mappings.

in the analysis. For our purposes we will essentially be doing the same; the only

change being that instead of f mapping from an annulus we are mapping from a

punctured disk (which we can consider as a �limit annulus� informally).

Let Q1 = [−∞, 0] × [0, 1] and Q2 = [0, L] × [0, 1], and de�ne σ1 : D∗ → Q1 and

τ2 : Q2 → AR where R = exp (2πL) to be the equivalent to the conformal mappings

σ and τ mentioned earlier, that is, σ1 : z 7→ 1
2π

ln z and τ2 : w 7→ e2πw, choosing

a branch of the logarithm (although which branch is immaterial for our analysis).

Given f we de�ne g by

f(z) = τ2 ◦ g ◦ σ1(z) = exp

(
2πg

(
1

2π
ln z

))
,

or more explicitly, where w = 1
2π

ln z,

g : w 7→ 1

2π
ln
(
f
(
e2πw

))
.

Since τ2 is conformal, we have that

K (z, f) = K
(
z, exp

(
2πg

(
1

2π
ln z

)))
= K

(
z, g

(
1

2π
ln z

))
,
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and by our rules for composition by conformal mappings (2.5.7) and (2.5.9),

K (z, f) = K (σ1 (z) , g) = K (w, g) .

So by the change of variables w = σ1 (z), we want

¨
D∗

Φ (K (z, f)) η2 (z) |dz|2 =

¨
D∗

Φ (K (w, g)) η2
(
e2πw

)
4π2

∣∣e2πw
∣∣2 |dw|2

=

¨
D∗

Φ (K (w, g))
(

4π2
∣∣e2πw

∣∣2 η2
(
e2πw

))
|dw|2

=

¨
D∗

Φ (K (w, g))λ2 (w) |dw|2 .

We obtain this with the choice

λ(w) = 2π
∣∣e2πw

∣∣ η (e2πw
)

= 2πe2π<(w)η
(
e2πw

)
. (3.3.1)

We have that the original Nitsche problem and the Grötzsch problem are equivalent

for our problem: certainly Nitsche problems can be converted readily into Grötzsch

problems; and because we are fortunate that, for our problem concerning the min-

imisers of the distortion functional, the solutions have the nice feature of having

the horizontal boundary values match (see the grey lines in Figure 3.3.1 on page

33), which is a requirement for the conversion from Grötzsch problems to Nitsche

problems.

We slightly rephrase the result from [35] which identi�es the extremal solutions

to the Grötzsch problem, which become radial when lifted to the annuli. Note that

we want η2 to be radially symmetric; under the relationship de�ned by (3.3.1), this

means λ2 is constant on the imaginary axis, so we can write λ2(x) instead.

Theorem 3.13. Let λ2(x) > 0 be a positive weight and Φ : [1,∞) → [0,∞) be

convex. Let the function u : [−∞, 0]→ [0, L] with

lim
t→−∞

u(t) = 0, u(0) = L (3.3.2)

be a solution to the ordinary di�erential equation

λ2(x)

(
1− 1

u2
x(x)

)
Φ′
(
ux(x) +

1

ux(x)

)
= C, (3.3.3)

where C is a nonzero constant. Set

f0(z) = u(x) + iy, f0 : Q1 → Q2. (3.3.4)
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Let f : Q1 → Q2 be a homeomorphism of �nite distortion with

lim
t→−∞

< (f (t, y)) = 0, < (f (0, y)) = L, = (f (x, 0)) = 0, = (f (x, 1)) = 1.

Then
¨

Q1

Φ (K(z, f))λ2(x) |dz|2 ≥
¨

Q1

Φ (K(z, f0))λ2(x) |dz|2 , (3.3.5)

with equality if and only if f = f0 up to rotation. (This means any other map for

which equality holds at (3.3.5) is of the form z 7→ ζf0 (z) and |ζ| = 1.)

The question then becomes: can we choose C so that there is such a function

u? Furthermore, in [35] we have a construction of minimizing sequences when these

equations cannot be solved, so no solution implies no (homeomorphic) minimiser.

3.3.2 Converting Ip

We shall now show that the results for the Grötzsch problem we obtain later are in

fact the same as those we need to prove Theorem 3.10. We begin by considering the

natural change of coordinates from D∗ to Q1:

w 7→ z = e2πw.

Under this transformation,

Ip =

¨
D∗
ηα(z) |z|α−2 |dz|2

=

¨
Q1

ηα
(
e2πw

) ∣∣e2πw
∣∣α−2

4π2
∣∣e2πw

∣∣2 |dw|2
= 4π2

¨
Q1

∣∣e2πw
∣∣α ηα (e2πw

)
|dw|2 ,

and because λ(w) = 2π |e2πw| η (e2πw) from (3.3.1)

Ip =
4π2

(2π)α

¨
Q1

(2π)α
∣∣e2πw

∣∣α ηα (e2πw
)
|dw|2

= (2π)2−α
¨

Q1

λα (w) |dw|2 .

So Ip <∞ if and only if
˜

Q1
λα (w) |dw|2 <∞.

35



3.4 The L1 Problem: Mean Distortion

We �rst examine the case of D∗ equipped with a radially symmetric metric ds =

η(z) |dz| that is smooth away from the origin, and the calculation of the mean

distortion of mappings of �nite distortion D∗ → AR. We start with the conversion

into a Grötzsch problem. From Theorem 3.13, with λ and η associated as in (3.3.1),

we must solve the equation

λ2(x)

(
1− 1

u2
x(x)

)
= C. (3.4.1)

At some point we must have ux(x) < 1, because we are compressing the in�nite

rectangle (−∞, 1] × [0, 1], and as λ2 (x) > 0, we require C < 0. Writing C = −c2

gives

ux(x) =
1√

1 + c2

λ2(x)

, (3.4.2)

so the solution u will be de�ned by

u(x) =

ˆ x

−∞

dt√
1 + c2

λ2(t)

=

ˆ x

−∞

λ(t)dt√
λ2(t) + c2

. (3.4.3)

As c 6= 0 is constant, this integral converges if and only if

ˆ x

−∞
λ(t)dt <∞. (3.4.4)

To show this, we note

0 <
1√

λ2(t) + c2
≤ 1

c
,

and so we have

lim
t→−∞

1√
λ2(t) + c2

= 0

if and only if we have limt→−∞ λ(t) = ∞. Therefore by the limit comparison test

we have that the integrals of both λ(t) and λ(t)
(√

λ2(t) + c2
)−1

are either both

convergent or both divergent.

Since ˆ x

−∞
λ(t)dt =

ˆ x

−∞
2πη

(
e2πt
)
e2πtdt = 2π

ˆ r

0

η (s) ds,

we have, from symmetry, that this is proportional to the length of the geodesic

terminating at the boundary point 0. That it is �nite means the metric is incomplete

at the origin.

Corollary 3.14. Let D∗ be endowed with the radially symmetric metric η2(z) |dz|2
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of �nite area. Then there is a minimiser of the mean distortion problem

min
f

¨
D∗

K(z, f)η2(z) |dz|2

if and only if the metric is incomplete at the origin.

As an aside, from the hyperbolic metric on the punctured unit disk (2.2.7), we

have that η (z) =|z|−1 ln |z|−1 and so, by (3.3.1), that λ(x) = x−1; then

u(x) =

ˆ x

−∞

dt√
1 + t2c2

=∞.

Therefore, in the case of the hyperbolic metric we have no L1-minimisers. This is

a similar result to that obtained in Corollary 3.14, as the hyperbolic metric on this

space is complete.

3.5 Proof Of The Bounding Theorem

Proof. (See Theorem 3.11) Most of the details we shall leave for the next section,

but we shall provide an outline here. First, we construct a minimal solution for the

problem; we know that minimal solutions of these problems are radial stretchings.

We transform this problem into a Grötzsch problem, creating some estimates above

and below the real parts of the Grötzsch mappings (since the minimal solutions of

the original problem are radial stretchings, the imaginary components remain �xed

by the mapping, so don't impact the analysis much). These create bounds on Kp,
that establish the requirement (3.2.4), and with further calculations we obtain the

theorem.

3.6 The Lp Problem

Following the same argument as above, we start by noting that

¨
D∗

K(z, f)pη2(z) |dz|2 =

¨
Q1

K (w, g)p λ2(w) |dw|2 . (3.6.1)

As there must be some point with ux(x) < 1, we have that C < 0 from (3.6.2).

Again we set C = −c2. We thus wish to solve

pλ2(x)

(
1

u2
x(x)

− 1

)(
ux(x) +

1

ux(x)

)p−1

= c2. (3.6.2)

37



Figure 3.6.1: Graphs of P (t) for p = 1, 2, 3 and 7.

3.6.1 Determining Bounding Functions

For even small p and nice λ, a closed form will be di�cult to calculate, so instead

we try to �nd some bounding functions for which we can solve explicitly. De�ne

P (t) =

(
1

t2
− 1

)(
t+

1

t

)p−1

, (3.6.3)

and as illustrated by Figure 3.6.1 on page 38, we can see some general trends that

we should consider when constructing our bounding functions for various values of

p and t. First, that it is decreasing for all values of p. The second thing to note

is the values as t gets close to 0 and 1: as t → 0, P (t) → ∞, and in particular as

t→ 1, we have that P (t)→ 0.

Let us set

A(t) =

(
1

t
− 1

)p+1

(3.6.4)

and

B(t) =

(
1 +

1

t

)p+1

− 2p+1. (3.6.5)

Lemma 3.15. For t ∈ [0, 1] we have functions A and B strictly decreasing with

A(1) = B(1) = 0 and

A(t) ≤ P (t) ≤ B(t). (3.6.6)

Proof. The fact that A(1) = P (1) = B(1) = 0 and A and B are strictly decreasing

can be seen by simple substitution. Noting

P (t) =

(
1

t
− 1

)(
1

t
+ 1

)(
1

t
+ t

)p−1

and

1

t
+ 1 ≥ 1

t
+ t ≥ 1

t
− 1,
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Figure 3.6.2: Graph demonstrating A(t) ≤ P (t) ≤ B(t) for p = 3

we have that

P (t) ≥
(

1

t
− 1

)p+1

= A(t).

For the second inequality, we note

P ′(t) = −(t2 + 1)
p−2

tp+2

(
1 + 4t2 − t4 + p

(
1− t2

)2
)

and

B′(t) = −(p+ 1) (t+ 1)p

tp+2
.

The second inequality follows if we establish that B′(t) ≤ P ′(t). Note that this

follows from

(p+ 1) (t+ 1)2 ≥ 1 + 4t2 − t4 + p
(
1− t2

)2
,

reducing to

3pt2 + 2 (p+ 1) t ≥ 3t2 + (p− 1) t4,

which follows as p ≥ 1 and t ∈ [0, 1] in the domain in question.

These estimates are good if t is small, but for speci�c values or ranges of p they

can be improved. Some examples are given in Appendix B.

3.6.2 Bounding Solutions And Bounding Distortion

We now �x x temporarily. Then, as A(t), P (t) and B(t) are strictly decreasing with

range [0,∞), by the intermediate value theorem we can �nd unique numbers t−, t, t+

such that

pλ2 (x)A (t−) = c2,

pλ2 (x)P (t) = c2, and

pλ2 (x)B (t+) = c2;
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and furthermore that these numbers vary continuously with c and x. As the graph

of P (t) lies above A(t) and below B(t), and all are decreasing, we have that

t− ≤ t ≤ t+. (3.6.7)

We then de�ne for each x

u−x (x) = t−, u− (s) =

ˆ s

−∞
u−x (x) dx, (3.6.8)

ux(x) = t, u (s) =

ˆ s

−∞
ux(x) dx, (3.6.9)

u+
x (x) = t+, and u+ (s) =

ˆ s

−∞
u+
x (x) dx; (3.6.10)

and de�ne, for z = x+ iy,

f−(z) = u−(x) + iy, f(z) = u(x) + iy, and f+(z) = u+(x) + iy.

Then for each p and each choice of constant c at (3.6.2), f is the unique minimiser

onto its range. Although we have used them to provide bounds, neither f+or f−

can be extremal: f+ has a better distortion integral than f , but its image is a larger

rectangle (fatter annulus in terms of the original problem), while f− has a worse

distortion integral.

We have, for the bound-derived functions, explicit formulae: �rst, for A we have

that

c2 = pλ2

(
1

u−x
− 1

)p+1

,

which we rearrange to give

1

u−x
= 1 +

(
c2

pλ2

)1/(p+1)

or

u−x =
(pλ2)

1/(p+1)

c2/(p+1) + (pλ2)1/(p+1)
.

Integration gives

u−(x) =

ˆ x

−∞

p1/(p+1)λ2/(p+1)(s) ds

c2/(p+1) + p1/(p+1)λ2/(p+1)(s)
. (3.6.11)
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Similarly,

c2 = pλ2

[(
1 +

1

u+
x

)p+1

− 2p+1

]

becomes

1

u+
x

=

(
c2

pλ2
+ 2p+1

)1/(p+1)

− 1

or

u+
x =

1(
c2

pλ2
+ 2p+1

)1/(p+1)

− 1

,

which, after integrating, gives us that

u+(x) =

ˆ x

−∞

λ2/(p+1)(s) ds(
c2

p
+ 2p+1λ2 (s)

)1/(p+1)

− λ2/(p+1) (s)

. (3.6.12)

Noting that the �rst of these is in a similar form to that which we used earlier for

the L1 case (see Section 3.4), and the second is bounded above and below by similar

integrals by using Lemma A.4, we have that if Ip converges, then both of these

solutions converge after the substitution λ 7→ λα into (3.4.3) and (3.4.4). Therefore

u exists and Kp converges for the associated f(x+ iy) = u(x) + iy.

3.6.3 Bounding c

The equation (3.6.12) and (3.6.11) de�ne u−(0) and u+(0) as strictly decreasing

continuous functions of c with in�nite limit as c ↘ 0 and limit zero as c ↗ ∞.

From (3.6.7) we have that

u−(x) ≤ u(x) ≤ u+(x), (3.6.13)

and by the squeeze theorem and continuity, we have for each T > 0 that there exists

a c so that u(0) = T . In fact, noting that u−(0) ≤ u(0), we have that

p1/(p+1)

ˆ 0

−∞

λ2/(p+1)(s) ds

c2/(p+1) + p1/(p+1)λ2/(p+1)(s)
≤ T, (3.6.14)

which places a lower bound on c.
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Integrating by y over [0, 1] then gives

p1/(p+1)

¨
Q1

λ2/(p+1)(s) ds dy

c2/(p+1) + p1/(p+1)λ2/(p+1)(s)
≤ T,

and as ds dy = 1
2
|dw|2, by converting back into a Nitsche problem we have that

p1/(p+1)

2

¨
Q1

(2π |e2πw| η (e2πw))
α |dw|2

cα + p1/(p+1) (2π |e2πw| η (e2πw))α
≤ T ;

the change of coordinates w 7→ z = e2πw gives

(2π)α−2 p1/(p+1)

2

¨
D∗

ηα (z) |z|α−2

cα + p1/(p+1) (2π |z| η (z))α
|dz|2 ≤ T.

For our problem we want u (0) = L = 1
2π

lnR; substituting this for T and rearranging

for the equality gives (3.2.5).

As R → 1, the right hand side of (3.2.5) goes to zero; the only term on the left

that varies with R is c, so that must tend to in�nity.

3.6.4 Bounding Kp

Since (3.6.13) and as t 7→ t+ 1/t is convex decreasing for t ≤ 1 then

K+ = K
(
z, f+

)
≤ K = K (z, f) ≤ K− = K

(
z, f−

)
,

thus providing our bounds on K.
From (3.6.12) and (3.6.11) we can see that

λ(x) ∈ L2/(p+1) ((−∞, 0]) . (3.6.15)

We also want a lower bound on Kp. So

Kp ≥
(
K+
)p

= 2−p
(
u+
x +

(
u+
x

)−1
)p

;

as 0 ≤ u+
x ≤ 1, we have that

(
u+
x +

1

u+
x

)p
≥ 1

(u+
x )p

=

((
c2

pλ2
+ 2p+1

)1/(p+1)

− 1

)p

,

and thus

Kp ≥ 2−p
ˆ 0

−∞

((
c2

pλ2(x)
+ 2p+1

)1/(p+1)

− 1

)p

λ2(x) dx.
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We shall now use Lemma A.4 here two times. First note that(
c2

2ppλ2

)1/(p+1)

+ 21/(p+1) ≤
(
c2

pλ2
+ 2p+1

)1/(p+1)

.

As 21/(p+1) ≥ 1 we then get the inequality(
c2

2ppλ2

)1/(p+1)

+ 21/(p+1) − 1 ≥
(

c2

2ppλ2

)1/(p+1)

,

and so our lower bound is

Kp ≥ 2−p
(
c2

2pp

)p/(p+1) ˆ 0

−∞
λ2/(p+1)(x) dx. (3.6.16)

This is equivalent to

Kp ≥ 2−p
(
c2

2pp

)p/(p+1)¨
Q1

λ
2
p+1 (w) |dw|2 ,

which we can rewrite in terms of our initial problem: �rst note that

¨
Q1

λ
2
p+1 (w) |dw|2 = (2π)α−2 Ip.

This gives us (3.2.4):

Kp ≥
(

c2

22p+1p

)p/(p+1) Ip
(2π)2−α .

3.6.5 Near Extremals

Through our previous arguments, we have a method for �nding near extremal map-

pings. Even though we have chosen them to be nice for calculating distortion integral

bounds, the functions f−and f+ will not be easy to express in closed form for even

nice metrics. However, we can still examine the asymptotics of these functions.

Let us suppose that λ is small. For �xed c, (3.6.2) implies that

P (t) = c2p−1λ−2(x)

will be solved for small values of t (as P (t) is decreasing, and λ−2 (x) is large), and

so P (t) ∼ t−(p+1). Therefore solving

t−(p+1) =
c2

pλ2(x)

should give us examples with correct asymptotic behaviour near −∞. To do this
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we should really have λ �nite; then we can normalise so that

sup
x∈(−∞,1]

λ(x) = 1. (3.6.17)

We must have c2 ≥ pλ2(x) for all x, so from our normalization we have the bound

c2 ≥ p. This provides us with the candidate map

fc(z) =
( p
c2

)1/(p+1)
ˆ x

−∞
λ2/(p+1)(s) ds+ iy, (3.6.18)

and as

0 ≤ fc(0) ≤
ˆ 0

−∞
λ2/(p+1)(s) ds,

we cannot map arbitrarily far with this map. However, we can calculate

2pKp(z, fc) =

((
c2

pλ2(x)

)1/(p+1)

+

(
pλ2(x)

c2

)1/(p+1)
)p

≤ 2p
(

c2

pλ2(x)

)p/(p+1)

,

so if fc(0) = T ≥ 0 then

T =
( p
c2

)1/(p+1)
ˆ 0

−∞
λ2/(p+1)(s), ds

and we then obtain the inequality

ˆ 0

−∞
Kp(z, fc)λ

2(x) dx ≤
(
c2

p

)p/(p+1) ˆ 0

−∞
λ2/(p+1)(x) dx

≤ 1

T P

(ˆ 0

−∞
λ2/(p+1)(x) dx

)p+1

.

Thus

‖K(z, fc)‖Lp(λ2) ≤
1

T

(ˆ 0

−∞
λ2/(p+1)(x) dx

)1+1/p

. (3.6.19)

3.6.6 Limit Case: The L∞ Problem

Rearranging (3.6.2) we have that(
1

u2
x(x)

− 1

)(
ux(x) +

1

ux(x)

)p−1

=
c2

pλ2(x)
.
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We shall now examine what happens when p→∞. We can intuitively see what will

happen from this equation: since c is `constant' and λ(x) > 0, on the right hand side

the term tends to zero as p→∞: c2p−1λ−2(x)→ 0. On the left, as (ux + u−1
x ) ≥ 2,

we must then have that1 − u2
x(x) → 0, which implies that ux(x) → 1. This also

means that c → 0 and u(x) → ∞. This intuitive idea has one problem: c depends

on p, so we could potentially have c2p−1λ−2 not going to zero. However, as we shall

soon see, we still get no minimisers here by �xing R.

For �xed R, from (3.6.16) we have that as p→∞, α = 2
p−1
→ 0 and so λα → 1.

If the constant term does not go to zero as p → ∞, then the integral will tend to

in�nity and so will Kp. Suppose that the constant coe�cient does tend to zero; then

for su�ciently large p we have the bound

c2 < ε22p+1p

for some ε ∈ (0, 1). Substituting this into (3.6.14) and using the fact we chose ε < 1,

we have that ˆ 0

−∞

λα(s) ds

2(2p+1)/(p+1) + λα(s)
<

1

2π
lnR,

but while the right side is �xed as p→∞,

λα(s)

2(2p+1)/(p+1) + λα(s)
→ 1

5
,

as p→∞ and so the left side tends to in�nity. Therefore, Kp ↗∞ as p→∞.

3.7 Proof Of The Condition Theorem

Proof. (See Theorem 3.10) Theorem 3.10 follows from Theorem 3.11 with the fol-

lowing observations.

First, in the previous section, we proved the theorem (as well as Theorem 3.11)

explicitly for the case p = 1, that is for mappings in L1(D∗, η2).

Next suppose Iq diverges at q > 1. Set

p0 = sup
p
{p : Iq <∞} ≤ q.

If there is a mapping of �nite distortion f : D∗ → AR for which Kq < ∞ then

Kp ≤ Kq for all p ≤ p0. In particular, Kq is an upper bound for the extremal

problem for each p < p0. However, the lower bound on the value of the extremal

map (3.2.4) from Theorem 3.11, which does exist, increases to ∞ as p→ p0 as both

c and Ip necessarily tend to in�nity (as R is �xed). So if Iq diverges, then there is

no such f .
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The other direction follows from our construction of bounds on u and a similar

argument to that appearing in the L1 case.

3.8 Minimisers On The Euclidean Metric

The case of the �at metric is of particular interest, as we shall need to make use of it

in the following chapter when we apply the example mapping we construct here to

the problem of resolving decompositions. For the Euclidean metric on the punctured

disc, η(z) ≡ 1 so λ(x) = 2πe2πx. In this case, we see a corollary to Theorem 3.11.

Corollary 3.16. Let p ≥ 1. Then, for each R > 1 there is an extremal mapping

of �nite distortion blowing up a point f : D∗ → AR, unique up to rotation, with

Kp <∞ and the lower estimate

π1/p (p+ 1)1/p

2(2p+1)/(p+1)

1

R2/(p+1) − 1
≤ ‖K (z, f)‖p <∞. (3.8.1)

This estimate is sharp for each R.

We shall prove this result in the following sections. However, we shall take a

brief look at the asymptotics of this mapping: for large p the lower bound is

π1/p (p+ 1)1/p

2(2p+1)/(p+1)

1

R2/(p+1) − 1
≈ 1

4

1

R2/p − 1
,

so tends to ∞ with p. This �ts in with what we observed for 3.12 for the behaviour

of the Lp norm of K (z, f) at p =∞.

3.8.1 Example Mapping

Our primary question is to determine what is the optimal degree of integrability of

the distortion functions of mappings which blow up points. By way of an example,

the simplest obvious candidate is the map f : D∗ → AR for R > 1 de�ned as follows.

Let β > 0 and ρ (t) = Rtβ ; then the radial stretching

f (z) =
z

|z|
R|z|

β

(3.8.2)

blows up the origin, and the derivatives are

fz (z) =

(
|z|β β lnR + 1

)
2 |z|

R|z|
β
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and

fz (z) =

(
|z|β β lnR− 1

)
2 |z|

z

z
R|z|

β

.

Let Ω be a compact subset of D∗; then Ω is closed and thus cannot be arbitrarily

close to zero. Let z0 be a point of Ω closest to zero and de�ne δ := |z0|.

‖f‖p1,p,Ω =

¨
Ω

(
|f |p +

(
|fz|2 + |fz̄|2

)p/2) |dz|2
=

¨
Ω

Rp|z|β |dz|2

+

¨
Ω

Rp|z|β

2p |z|p
((
|z|β β lnR + 1

)2

+
(
|z|β β lnR− 1

)2
)p/2

|dz|2 ,

which we can rearrange to give

‖f‖p1,p,Ω =

¨
Ω

Rp|z|β

1 +

(
|z|2β β2 ln2R + 1

)p/2
2p/2 |z|p

 |dz|2 .
Then using the fact that |z| < 1, we have the upper bound

‖f‖p1,p,Ω ≤ πRp

(
1 +

(
β2 ln2R + 1

)p/2
2p/2δp

)
<∞,

the latter following as δ > 0. So f is certainly in the locally Sobolev class W 1,1
loc (D∗)

(such mappings need not be continuous); and by (2.6.1), the Jacobian

J(z, f) = β lnR |z|β−2R2|z|β

is locally integrable (that is, J(z, f) ∈ L1
loc (D∗)) by [24, page 7] as f preserves

orientation, and by (2.6.2) we have that

¨
Ω

K(z, f)p |dz|2 =
1

2p

¨
Ω

(
|z|β β lnR +

1

|z|β β lnR

)p

|dz|2 . (3.8.3)

From changing to polar coordinates (|dz|2 = r drdθ), the fact that Ω ⊂ D∗ and

Lemma A.4, we have the inequality

¨
Ω

K(z, f)p |dz|2 ≤ π

(
βp lnpR

ˆ 1

0

rpβ+1dr +
1

βp lnpR

ˆ 1

0

dr

rpβ−1

)
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after integrating through by dθ, and so

¨
Ω

K(z, f)p |dz|2 ≤ π

(
βp lnpR +

1

βp lnpR

ˆ 1

0

dr

rpβ−1

)
.

For convergence we require that 1 − pβ > −1, or pβ < 2. The integral Kp for

this f has a closed expression in terms of the hypergeometric function 2F1 which

might give slightly better asymptotics, but we will simply use the above estimate.

The choice β := α = 2/ (p+ 1) gives us the estimate

‖K (z, f)‖p ≤
(
π

(
βp lnpR +

1

βp lnpR

1

2− pβ

))1/p

= π1/p

((
2

p+ 1

)p
lnpR +

(p+ 1)p+1

2p+1 lnpR

)1/p

≤ π1/p

((
2

p+ 1

)
lnR +

(p+ 1)1+1/p

21+1/p lnR

)

∼ (p+ 1)

2 lnR
=

1

lnR2/(p+1)

once p is su�ciently large. Although this is not the extremal mapping we should

compare with (3.8.1) to see that this is close to a minimum as soon as p is su�ciently

large:
π1/p

2(2p+1)/(p+1)
(p+ 1)1/p 1

R2/(p+1) − 1
∼ 1

R2/(p+1) − 1

and lnx ∼ x− 1 when (for small ε) 1− ε < x ≤ 1, which we certainly have for large

p.

Next, we shall make some observations of the inverse map,

g (z) =
z

|z|

(
ln |z|
lnR

)1/β

. (3.8.4)

First, it shrinks a disk. The complex derivatives of this are

gz (z) =

(
ln |z|
lnR

)1/β
(β ln |z|+ 1)

2β |z| ln |z|

and

gz (z) =

(
ln |z|
lnR

)1/β
(β ln |z| − 1)

2β |z| ln |z|
z

z
.

Therefore because

‖g‖p1,p,Ω =

¨
Ω

(
|g|p +

(
|gz|2 + |gz̄|2

)p/2) |dz|2 ,
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we have that

‖g‖p1,p,Ω =

¨
Ω

(
ln |z|
lnR

)p/β
|dz|2

+

¨
Ω

(
ln |z|
lnR

)p/β ((β ln |z|+ 1)2 + (β ln |z| − 1)2)p/2
2pβp |z|p lnp |z|

|dz|2 ;

rearrangement gives

‖g‖p1,p,Ω =

¨
Ω

(
ln |z|
lnR

)p/β (
1 +

(
β2 ln2 |z|+ 1

)p/2
2p/2βp |z|p lnp |z|

)
|dz|2 .

Converting to polar coordinates gives

‖g‖p1,p,Ω =

¨
Ω

(
ln r

lnR

)p/β (
1 +

(
β2 ln2 r + 1

)p/2
2p/2βprp lnp r

)
r dr dθ.

Then, by the change of variables t = ln r,

‖g‖p1,p,Ω =

¨
Ω

(
t

lnR

)p/β (
1 +

(β2t2 + 1)
p/2

2p/2βpetptp

)
e2t dt dθ.

By using the fact that t < lnR, we have the upper bound

‖g‖p1,p,Ω ≤ 2πR2 lnR +
2πR2

lnp/β R

(
β2 ln2R + 1

)p/2
2p/2βp

ˆ lnR

0

tp/β−p dt,

the latter being integrable when p
β
−p > −1 or p < β

β−1
. In particular, it is integrable

if β = 1. Therefore, g ∈ W 1,p
loc (A (1, R)) whenever p < β

β−1
.

Also

K (z, g) =
1

2

(
β ln |z|+ 1

β ln |z|

)
.

This distortion is in Lp (AR) for all p < 1, but it is not in L1 (AR) : �rst we note

¨
AR

K(z, g)p |dz|2 =
1

2p

¨
AR

(
β ln |z|+ 1

β ln |z|

)p
|dz|2 ;

since β ln |z| ≥ 0, we have that

¨
AR

K(z, g)p |dz|2 ≥ 2π

2pβp

ˆ R

1

r dr

lnp r
,
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so by a change of coordinates, we have that

¨
AR

K(z, g)p |dz|2 ≥ 2π

2pβp

ˆ lnR

0

ds

sp
.

Similarly

¨
AR

K(z, g)p |dz|2 ≤
2π
(
β + 1

β

)p
2p

ˆ R

1

r dr

lnp r

≤ 2π

2pβp

ˆ lnR

0

ds

sp
.

Nor is it in the Lorentz-Zygmund space L1/ ln (L); however it does lie in the

space L1/ ln p (L) for all p > 1:

¨
AR

K(z, g)

(lnK(z, g))p
|dz|2 =

¨
AR

1
2

(
β ln |z|+ 1

β ln|z|

)
lnp
(

1
2

(
β ln |z|+ 1

β ln|z|

)) |dz|2

= π

ˆ R

1

r
(
β ln r + 1

β ln r

)
dr

lnp
(

1
2

(
β ln |z|+ 1

β ln|z|

))
= 2π

ˆ β lnR

0

e2s/β

β

s2 + 1 ds

2s lnp
(
s2+1

2s

) .
Since 1 ≤ e2s/β ≤ R2, and β > 0 and 1 ≤ s2 + 1 ≤ β2 ln2R+ 1, we need only worry

about the integrability of ˆ S

0

Cds

s lnp
(
C
s

)
for some non-zero constant C and S = β lnR. The change of variables t = ln

(
C
s

)
gives

´∞
T
t−pdt where T = ln

(
C
S

)
and so we have proved our earlier claim about

which Lorentz-Zygmund spaces these minimal solutions lie in.

It is a nontrivial theorem that a map shrinking a disk cannot have distortion in

L1, though this is easy to see for radially symmetric mappings.

Theorem 3.17. There is no radially symmetric mapping f : A (1, R) → D∗ such
that K (z, f) ∈ L1 (A (1, R) ,D∗).

Proof. The result follows as a result of the proof given in [23] for the proof of the

Nitsche conjecture. Suppose there exists a mapping; then

¨
A(1,R)

K (z, f) dz <∞.

Let δ > 0 be small; then because f is homeomorphic, the image f (S (1 + δ)) of the
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circle of radius 1 + δ is a simple closed curve within D∗, so the region between this

and S = f (S (R)) is doubly connected, and thus conformally equivalent to a round

annulus. Let

f̃ : A (1 + δ, R)→ A (ε (δ) , 1)

be de�ned by

f̃ (z) = ϕ ◦ f (z) ,

where ϕ is a conformal map mapping the image f (A (1 + δ, R)) to the conformally

equivalent annulus. Then

¨
A(1+δ,R)

K
(
z, f̃
)
dz =

¨
A(1+δ,R)

K (z, f) dz <∞.

So

K
(
z, f̃
)
∈ L1 (A (1 + δ, R) ,A (ε (δ) , 1)) ,

and from the Nitsche conjecture,

1 + δ

2

(
ε (δ) +

1

ε (δ)

)
≤ R;

by choosing δ small enough (as ε (δ)→ 0 as δ → 0) we must obtain a contradiction

when R is �nite.

Corollary 3.18. There is no map f : C\E → C\{0}, where E is a non-degenerate

continuum, by a radially symmetric mapping with distortion K (z, f) ∈ L1.

Proof. Choose an open disk D = D (0, R) such that E ⊂ D. Let f : C\E → C\{0}
be a mapping with K (z, f) ∈ L1. From Theorems 3.17, and from 3.5 we know

that D \ E is conformally equivalent (by, say, the mapping ψ) to an annulus, and

therefore the image f ◦ψ (D \ E) cannot be conformally equivalent to D∗. This is a
contradiction.

3.8.2 L1-minimisers In The Euclidean Metric

From (3.4.3) we have, noting that λ(x) = 2πe2πx for the Euclidean metric, that

u(x) =

ˆ x

−∞

e2πydy√
c2 + e4πy

=
1

2π

ˆ S

0

ds√
c2 + s2

=
1

2π
log

1

c

(
S +
√
c2 + S2

)
,

where S = e2πx. Hence the extremal radial mapping is de�ned by

ρ(r) =
1

c

(
r +
√
r2 + c2

)
,
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with ρ(0) = 1 and

ρ(1) = R =
1 +
√

1 + c2

c
.

Checking that the mean distortion is in fact �nite, we observe that

¨
D∗

K(z, f) |dz|2 = π

ˆ 1

0

(
t√

t2 + c2
+

√
t2 + c2

t

)
t dt

= π
√

1 + c2 = π
R2 + 1

R2 − 1
= π coth 2πσ,

where σ = 1
2π

lnR is the modulus of the ring AR.

From this, and the invariance under postcomposition by a conformal mapping,

we have the estimate (which is the Nitsche result of Astala, Iwaniec and Martin [6]):

Theorem 3.19. Let D∗ε = {z : 0 < |z| < ε} . Let f be a mapping of �nite distortion

f : D∗ε → C. Then

coth 2πσ ≤ 1

πε2

¨
D∗ε

K(z, f) |dz|2 , (3.8.5)

where σ = mod (f (D∗ε)) is the modulus of the image.

This result tells us that the modulus cannot be too small unless the L1 norm of

the distortion is large.

3.8.3 Lp-minimisers In The Euclidean Metric, 1 < p <∞

Note that λ(x) = 2πe2πx ≤ 2π for x ∈ (−∞, 0]. The lower bound on c from (3.6.14)

reads as ˆ 0

−∞

p1/(p+1) (2πe2πs)
2/(p+1)

ds

c2/(p+1) + p1/(p+1) (2πe2πs)2/(p+1)
≤ T.

Writing c = 2πp1/2C and integrating the left hand side gives

p+ 1

4π
ln
(
1 + C−2/(p+1)

)
≤ T,

so we have the estimate for c2

c2 ≥ 4π2p

(e4πT/(p+1) − 1)
p+1 ,
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γ

f

z

w

f (z )

f (w)=0

1
R

M 1

f (γ)

Figure 3.8.1: Illustration of the de�nitions of 1
R
and M1 from a given f .

Returning to the estimate (3.6.16), as

ˆ 0

−∞
e4πx/(p+1) dx =

p+ 1

4π
,

we then obtain the bound on the original problem on the punctured disk:

Kp ≥ 2−p
(
c2

2pp

)p/(p+1)

(2π)2/(p+1) p+ 1

4π

≥ π

(e4πT/(p+1) − 1)
p

p+ 1

2p(2p+1)/(p+1)
,

which, upon taking the pth root, becomes

‖K (z, f)‖p ≥
π1/p

(e4πT/(p+1) − 1)

(p+ 1)1/p

2(2p+1)/(p+1)
.

Taking the choice T = 1
2π

lnR gives us (3.8.1).

As a consequence of the proofs of Theorem 3.10 and Theorem 3.11, we obtain

the following `large scale injectivity' estimate.

Corollary 3.20. Let p ≥ 1 and 0 < ε < ∞. Suppose f is a mapping of �nite

distortion f : D→ D with Kp <∞. Then there is an M = M (Kp, ε) such that

ρD (f (z) , f (w)) ≥M =⇒ ρD (z, w) ≥ ε.

Proof. Because postcomposition by a Möbius transformation does not changeK (z, f)

and so Kp, we may assume f (w) = 0. We then consider the hyperbolic ε-ball about

w; we set γ to be its boundary, and then set 1
R
to be the minimum and M1 to be

the maximum Euclidean distances from f (γ) to the origin.

From (3.8.1), we have the lower bound of ‖K (z, f)‖p for �xed p, and so we have

the constant

Cp =
π1/p (p+ 1)1/p

2(2p+1)/(p+1)
.

Using the Euclidean metric, we construct a mapping of �nite distortion g̃ : D∗ → AR
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for which Kp <∞ and

K1/p
p ≥ Cp

R2/(p+1) − 1
,

for the R we established earlier, noting R is �nite. A simple conformal dilation allows

us to change the range to A
(

1
R
, 1
)
without a�ecting Kp. Since we have M1 ≥ 1

R
,

and noting (
K1/p
p

Cp +K1/p
p

)(p+1)/2

≥ 1

R
,

we choose M2 to be the maximum of M1 and
(
Cp+K1/p

p

K1/p
p

)−(p+1)/2

.

From the de�nition of ρD we know that for z ∈ D we have f (z) ∈ D and so

ρD (f (z) , 0) = ln
1 + |f (z)|
1− |f (z)|

.

As the mapping

M : t 7→ ln
1 + t

1− t
is strictly increasing, letting M = M(M2) gives us ρD (f (z) , f (w)) ≤ M and this

gives us our result.
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Chapter 4

Resolving A Decomposition

4.1 Decompositions

A subset E of the complex plane C is a continuum if E is compact and connected,

while E is cellular if E is compact connected and Ĉ \ E is simply connected. A

decomposition of the complex plane C is a collection E of disjoint cellular continua

such that ∪E∈EE = C. Moreover we will assume in this thesis that only countably

many of these continua are non-degenerate; that is, does not consist of a single

point. In fact we shall mostly restrict our study to the case that the non-degenerate

elements of the decomposition are generated by a countable family of closed geodesic

lines {γi}i∈N in the disk; all the results apply equally when the decomposition is

ambiently quasiconformally equivalent to such a decomposition. We shall also make

some geometric assumptions that imply upper-semicontinuity and regularity on the

continua: we shall explain what each of these mean now.

The de�nition for upper-semicontinuity comes from Moore [39]. We say that the

distance d(x,E) between a point x and a point set E to be de�ned as

d (x,E) = inf
y∈E

d (x, y) .

Given two point sets E and E ′, we de�ne the lower distance

l (E,E ′) = inf
x∈E

d (x,E ′) ,

and E is said to be the lower distance l (E,E ′) from E ′. We also have the upper

distance

u (E,E ′) = sup
x∈E

d (x,E ′) ,

provided the supremum exists, and E is said to be the upper distance u(E,E ′) from

E ′. Note that the order of E and E ′ matters here, as the de�nition for upper distance
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is not symmetric. Upper-semicontinuity on a collection E of continua means that

for each continuum E ∈ E and for each ε > 0 there exists a δ > 0 such that if E ′ ∈ E
at a lower distance from E less than δ, then the upper distance of E ′ from E is less

than ε.

The de�nition of regularity comes from Chinen [10]. The mesh of an open cover

U of a continuum E is the supremum of the diameter of the elements of U , which is

denoted by meshU . For an open cover U of E we set Bd (U) =
⋃
{Bd (U) : U ∈ U},

where Bd (U) denotes the boundary of U in E. A continuum E is said to be regular

if for each ε > 0, there exists a �nite open cover U of E with meshU < ε such that

Bd (U) is �nite.

Given such a decomposition, we can de�ne an equivalence relation ∼ on C by

using the elements of E as the equivalence classes: that is z ∼ w if and only if there

is an E ∈ E such that z, w ∈ E. From the assumptions of upper-semicontinuity,

we have from Moore [39] that the quotient space is homeomorphic to the complex

plane, or in the words of the article:

Theorem 4.1. (Theorem 25 of [39]) If, in a plane S, M is a closed and bounded

point set no subset of which separates S, and every maximal connected subset ofM is

considered as an element, and every point which does not belong to M is considered

as an element, then the set of all such elements is topologically equivalent to the set

of all points in a plane.

We shall restate what we mean by resolving a decomposition: taking a planar

curve separating the plane into a countable collection of disjoint domains Ωi, say

with a subcollection touching at the origin,
⋂
i∈I Ωi = {0} (where I is the (possibly

countable) subcollection's indexing set), then seeking a mapping f of the plane

which is of �nite distortion and a homeomorphism away from the origin so that

int
(
f
(⋃

i∈I Ωi

))
is a domain.

An example of what we mean by this resolution is given in Section 4.2 and

illustrated by Figure 4.2.2 on page 62, where we illustrate the decomposition of a

�nite collection of disjoint domains. However, we �rst need to make a few de�nitions

that we shall make use of later in this chapter in proving some useful results.

4.1.1 Separation In Modulus And Distance

De�nition 4.2. A decomposition is separated in moduli if there is a positive number

δ such that for each non-degenerate component E ∈ E there is an open neighborhood
U of E meeting no other non-degenerate components of E and such that the modulus

of U \ E is greater than δ.
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A more general situation which arises naturally - for instance, in the lifts of

simple geodesics - is when there is a uniform lower bound on the hyperbolic distance

between these lines. Then non-degenerate continua can accumulate, but only at the

endpoints.

De�nition 4.3. Let E be a decomposition of C whose non-degenerate components

form a family {γi}i∈N of closed geodesic lines in the hyperbolic Poincaré disk. We say

that E is separated in distance if there is a constant M > 0 such that the hyperbolic

distance dhyp(γi, γj) ≥M whenever i 6= j.

Lemma 4.4. If the non-degenerate components of a decomposition that is separated

in moduli are geodesic arcs γi, then for each i there is an annulus Ai of de�nite

modulus (natural logarithmic ratio of inner and outer radii greater than ε) which

has γi as its central curve and meets no other (Aj ∩ Ai = ∅ if i 6= j).

Proof. For each arc γi, choose a Möbius transformation ϕi such that ϕi (γi) = [−1, 1].

Set Vi = ϕi (Ui) where Ui is given by the de�nition of separation in modulus (so

Ui ∩ γj = ∅ when j 6= i, and the modulus of Ui \ γi > δ for some given δ > 0).

There is a δ′ > 0 so that for any open neighborhoodX of [−1, 1], if l (∂X, [−1, 1]) <

δ′ then mod (X \ [−1, 1]) < δ. Set W ′ = {z : d (z, [−1, 1]) < α} where α = α (δ′)

is chosen such that mod (W ′ \ [−1, 1]) = δ
8
; we also de�ne Wi = ϕ−1

i (W ′). Clearly

Wi ⊂ Ui, and mod (Wi \ γi) > ε = ε (δ′) for ε (δ′) > 0 as ϕi are conformal and W ′

has de�nite modulus.

IfWi∩Wj 6= ∅ for j 6= i, then let z ∈ Wi∩Wj. We de�ne the following collections

of locally recti�able curves (that is, for these de�nitions we will assume the curves

are locally recti�able):

◦ Λ is de�ned to be the set of all curves from γi to γj.

◦ Λ′ is the set of all curves from γi to the boundary ∂Ui of Ui. Note that Λ is

minorised by Λ′ because γi ⊂ Ui while Ui ∩ γj = ∅, so any such curve must

cross the boundary of Ui at some point. Therefore, from the de�nition of Ui

and the properties of moduli, we have that

δ < mod (Λ′) ≤ mod (Λ) .

◦ Λz is the set of all curves from γi to γj which pass through z. Note that

Λz ⊂ Λ, so

δ < mod (Λ) ≤ mod (Λz) .

◦ Λi is the set of all curves from γi to z. If Λ′i is the set of all curves from γi to

∂Wi then note Λ′i is minorised by Λi, since z ∈ Wi; therefore mod (Λi) ≤ δ
8
.
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◦ Λj is the set of all curves from z to γj. If Λ′j is the set of all curves from ∂Wj

to γj then note Λ′j is minorised by Λj, since z ∈ Wj; therefore mod (Λj) ≤ δ
8
.

Suppose ρ ∈ adm (Λz); then for every λ : [a, b]→ C ∈ Λz

ˆ
λ

ρds =

ˆ b

a

ρ (λ (t)) dt ≥ 1.

Note that λ can be represented by

λ (t) =

λi
(
a+ (b− a) t−a

c−a

)
a ≤ t ≤ c,

λj
(
a+ (b− a) t−c

b−c

)
c ≤ t ≤ b,

where λ (c) = z, λi : [a, b]→ C ∈ Λi and λj : [a, b]→ C ∈ Λj. So

ˆ b

a

ρ (λ (t)) dt =

ˆ c

a

ρ (λ (t)) dt+

ˆ b

c

ρ (λ (t)) dt

=

ˆ c

a

ρ

(
λi

(
a+ (b− a)

t− a
c− a

))
dt

+

ˆ b

c

ρ

(
λj

(
a+ (b− a)

t− c
b− c

))
dt

=

ˆ b

a

ρ (λi (t)) dt+

ˆ b

a

ρ (λj (t)) dt.

This means ˆ b

a

ρ (λi (t)) dt+

ˆ b

a

ρ (λj (t)) dt ≥ 1,

which gives us

ˆ b

a

ρ (λi (t)) dt = α and

ˆ b

a

ρ (λj (t)) dt = β

with α + β ≥ 1.

If α ≥ 1 then de�ne ρi := ρ and ρj ∈ adm (Λj) be arbitrary; and de�ne σi = 1

and σj = 0. Similarly, if β ≥ 1 then ρj := ρ and ρi ∈ adm (Λi) be arbitrary; and

de�ne σi = 0 and σj = 1. Otherwise 0 < α, β < 1, and we de�ne ρi := ρ
α
and

ρj := ρ
β
with σi = α

2
and σj = β

2
. In all cases, ρi ∈ adm (Λi) and ρj ∈ adm (Λj) and

ρ = σiρi + σjρj with σi, σj ∈ [0, 1].

Therefore, for each ρ ∈ adm (Λz) we have that

ˆ
Ω

ρ2dm =

ˆ
Ω

(σiρi + σjρj)
2 dm,
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so ˆ
Ω

ρ2dm ≥ σ2
i

ˆ
Ω

ρ2
i dm+ σ2

j

ˆ
ρ2
jdm.

If we consider the in�ma for each integral, we have that

1

mod (Λz)
≥ σ2

i

mod (Λi)
+

σ2
j

mod (Λj)
=
σ2
i mod (Λj) + σ2

jmod (Λi)

mod (Λi) mod (Λj)
,

or

mod (Λz) ≤
mod (Λi) mod (Λj)

σ2
i mod (Λj) + σ2

jmod (Λi)
,

and from the moduli of Λi and Λj we have the bound

mod (Λz) ≤
δ

8

1

σ2
i + σ2

j

.

Finally, from the de�nitions of σi and σj, we know

σ2
i + σ2

j =

1 α ≥ 1 or β ≥ 1,

α2+β2

4
0 < α, β < 1,

and in the latter case we have 1 ≤ α + β < 2, so by Lemma A.4,

1

8
≤ (α + β)2

8
≤ α2 + β2

4
≤ (α + β)2

4
< 1.

Hence mod (Λz) ≤ δ, which is a contradiction, as we have already shown δ <

mod (Λz).

Finally, we construct Ai by extending W ′ to cover the whole of the real line:

A′ = {z : d (z,R) < α} = {z : |= (z)| < α} ;

and de�ne the annulus Ai = ϕ−1
i (A′). For convenience, for j 6= i we let Sj,i = ϕi (Sj)

where Sj is the circle or diameter for which Sj∩D = γj; similarly Aj,i = ϕi (Aj). The

tangent lines l1, l2 of Sj,i where it intersects S pass through zero, and divide the plane

into four regions. Moreover, Sj,i belongs to exactly one of the two regions from these

four which only intersect the real line at the origin, as otherwise γi and γj would

intersect. We observe that in either of these two regions, the points of Aj,i nearest

the origin must lie within D, and so within W ′; however, this is a contradiction.

This result leads us to the following theorem.

Theorem 4.5. (Separation in Modulus Decomposition Resolution Theorem) Let E
be a decomposition of C whose non-degenerate components are closed geodesic lines
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in the disk, and which is separated in modulus. Then there is a mapping g : C\E → C
which acts as a quotient map of E whose inverse mapping f = g−1 : C→ C gives a

resolution of this decomposition such that

◦ g is a continuous monotone mapping in W 1,2
loc (C),

◦ the image of the non-degenerate continua under g form a �nite set or a count-

able set K of Hausdor� dimension 0,

◦ f is a mapping of �nite distortion with K (z, f) ∈ L1
loc (C), and

◦ each component of C \ g(S) is conformally equivalent to a round disk.

See Figure 1.1.4 on page 4 for an illustration of this theorem. We shall prove this

theorem later in 4.2.1. However, we shall be making use of an intermediary result,

Theorem 4.7, which we need to establish �rst.

Notice that the property of a decomposition being separated in moduli is pre-

served (with variation of constants) by quasiconformal mappings. The condition

of separation in modulus does not allow the accumulation of non-degenerate con-

tinua at a point of another non-degenerate continua (they can of course accumulate

elsewhere). We have the following result.

Lemma 4.6. If E is separated in modulus, then E is upper semicontinuous.

Proof. Choose an arbitrary E ∈ E and ε > 0. Choose E ′ ∈ E such that u(E ′, E) ≥ ε.

Then E ′ 6= E (the upper distance between a set and itself is easily shown to be zero

by the de�nition). As E is separated in modulus we have an open neighborhood

of E, UE, such that UE ∩ E ′ = ∅ and the modulus of UE \ E is greater than some

δ0 > 0. The lower distance of ∂UE from E is therefore greater than some δ > 0

where δ depends on δ0 and E; the lower distance of E
′ from E ′ must also be at least

this distance.

4.2 Resolution Of Decompositions

Before we proceed, let us make what we want clear, as there are many ways that we

could resolve the singularities which arise from decompositions. Let us �rst discuss

brie�y what we don't want: that is, resolving the singularity without separating the

�point of contact�. Consider the cusp de�ned by the equation

C =
{
z = x+ iy : y = ± |x|β ,−1 ≤ x ≤ 1

}
.
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The angle at the origin will be 0 as soon as β < 1. One obvious way to resolve such

a cusp is consider the mapping for a, b > 0,

h : (x, y)→
(

sgn(x) |x|a , sgn (y) |y|b
)
, βb = a.

Figure 4.2.1: Resolving a cusp without separation.

The image of C under this mapping is the (noncusped) curve {y = |x|} . We

calculate that (in the positive quadrant)

Dh =

(
axa−1 0

0 byb−1

)
K (z, f) =

1

2

(
axa−1

byb−1
+
byb−1

axa−1

)
,

so that

¨
Q1

Kp (z, f) |dz|2 =
1

2p−1

ˆ 1

0

ˆ 1

0

(
axa−1

byb−1
+
byb−1

axa−1

)p
dx dy

≤
ˆ 1

0

ˆ 1

0

apxp(a−1)

bpyp(b−1)
+
bpyp(b−1)

apxp(a−1)
dx dy

=
ap

bp (1 + p (a− 1)) (1− p (b− 1))

+
bp

ap (1− p (a− 1)) (1 + p (b− 1))

is �nite when

1− 1

p
< βb ≤ b < 1 +

1

p
,

but this resolution does not separate the �point of contact� as zero is �xed by this

family of functions. Since this is what we are primarily interested in, we need to

�nd another technique.

Let us now consider resolving a multi-cusped object as illustrated by Figure 4.2.2

on page 62. The parametric equation of a 2q-lobed curve is

z(θ) = |sin(qθ)| eiθ, θ ∈ [0, 2π]. (4.2.1)
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Figure 4.2.2: Resolution of a 6-lobed curve to a quasidisk.

Let us consider what happens near θ = π/q. We have the derivatives

z′(θ) =

(q cos(qθ) + i sin(qθ)) eiθ, θ < π/q

− (q cos(qθ) + i sin(qθ)) eiθ, θ > π/q

and so the tangent vectors z′+(π/q) = −qeiπ/q and z′−(π/q) = qeiπ/q turn an angle π

at π/q and we have a cusp. Let us examine the image under the map

z 7→ z

|z|
e|z|

α

that we explored earlier. The parametric equation of the image is

w(θ) = e|sin(qθ)|αeiθ, θ ∈ [0, 2π]

and

w′(θ) =

e|sin(qθ)|α (αq |sin(qθ)|α−1 cos(qθ) + i
)
eiθ, θ < π/q

e|sin(qθ)|α (−αq |sin(qθ)|α−1 cos(qθ) + i
)
eiθ, θ > π/q

.

If α < 1, then as θ → π/q, the tangent turns through π and the image is again a

cusp. However, if α = 1 then

w′+(π/q) = (−q + i) eiπ/q,

w′−(π/q) = (q + i) eiπ/q.

The angle turned is the argument of w′−w
′
+,

arg
(
w′−w

′
+

)
= arg ((q + i) (−q − i)) ,

which shows that the angle formed by the image curve at θ = π/q is

arg
(
− (i+ q)2) = 2 arctan

(
1

q

)
+ π mod 2π,
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and so the image does not have a cusp for �nite q.

Consider the mapping F : C→ C de�ned by

F
(
reiθ
)

= re|sin(qθ)|eiθ.

This function is invertible (as it is multiplication by a non-zero value for all θ), and

we calculate |µF |: ∣∣µF (reiθ)∣∣ =
q |cos(qθ)|√

4 + q2 |cos(qθ)|2
,

which attain a maximum when qθ = 0 modπ. Then

|µF | ≤
q√

4 + q2
,

and so

K ≤ 1 +
q2

2
;

therefore the image is a quasicircle (the image under the unit circle of aK-quasiconformal

homeomorphism of C). Important for us is the case q = 1 which shows we can resolve

the tangency of two round disks.

Theorem 4.7. There is a mapping f : D → C of �nite distortion with K(z, f) ∈
L1(D) with the following property: the boundary of the two tangent disks D1 ={∣∣z − 1

2

∣∣ ≤ 1
2

}
and D2 =

{∣∣z + 1
2

∣∣ ≤ 1
2

}
is mapped to the unit circle and the image

f ((D1 ∪D2) \ {0}) is the disk minus a line segment, D \ i [−1, 1].

Figure 4.2.3: Resolution of a cusp

Proof. The boundary of two disks is smoothly parametrised by the equation z =

|cos θ| eiθ: we show this is the case by �rst noting that for θ ∈ [−π/2, π/2) we require
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that

r cos θ =
1

2
(1 + cosα) and

r sin θ =
1

2
sinα

for some α. Squaring and adding both sides gives

r2 =
1

4

[
(1 + cosα)2 + sin2 α

]
=

1

4

[
1 + 2 cosα + cos2 α + sin2 α

]
,

and so

r2 =
1

2
(1 + cosα) = r cos θ.

Thus r = cos θ in this region; note also that cos θ ≥ 0 in this region as well. For

θ ∈ [π/2, 3π/2) we have that cos θ ≤ 0, and for some α

r cos θ = −1

2
(1− cosα) and

r sin θ =
1

2
sinα.

Squaring and adding both as before gives us, after a similar simpli�cation

r2 =
1

2
(1− cosα) = −r cos θ,

so r = − cos θ. From this we determine r = |cos θ|.

We �rst blow up the origin via the map f1 : z 7→ z
|z|e
|z|; the image now omits the

unit disk. We calculated and examined the integrability properties of the distortion

of this mapping in 3.8.1. We follow by the conformal mapping f2 : z 7→ 1
2

(
z − 1

z

)
de�ned on the exterior of the disk. (Note that this is similar to the case above,

just rotated so the lobes lie on the real axis.) The conformal map takes C \ D to

C \ i [−1, 1], and as this last map is conformal, it does not change the integrability

properties of K.

The image of the boundary of the two disks is smoothly parametrised by the

equation

{z (θ) = sinh (|cos (θ)|+ iθ)} . (4.2.2)

The composition of the two maps given earlier is

z 7→ 1

2

(
z

|z|
e|z| − |z|

z
e−|z|

)
= sinh

(
|z|+ ln

z

|z|

)
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and when substituting in the boundary value parametrization z = |cos θ| eiθ we

obtain this fact, noting that ln z
|z| = iθ. We must now �nally map this boundary

to the unit circle, which can be done by a minor postcomposition with a conformal

mapping f3 using the Riemann mapping theorem (we can assume that f3 (±i) = ±i
as we can simply transform the circle by a Möbius transformation). Again, as this

map is conformal, it does not change the integrability properties of K.

(a) The two tangent disks. (b) Blowing up the origin to the
unit disk.

(c) Squashing the unit disk to
i [−1, 1]

(d) Mapping the image to the
unit circle.

Figure 4.2.4: Illustration of Theorem 4.7

Notice that the inverse of the map we have constructed has a continuous ex-

tension to the �missing arc� by de�ning it to be zero there. Furthermore, it is a

mapping of �nite distortion, and although the distortion is not in any reasonable

integrability class (as we noted earlier when we examined this example function)

we note that the mapping itself is in the better Sobolev space W 1,2
loc (which we can

note by setting p = 2 into the appropriate working in 3.8.1). This inverse mapping

shrinks a diameter of the unit disk in the plane. The image of the unit disk is two

tangent disks.

Clearly we can further modify the map of Theorem 4.7. Any postcomposition by

a quasiconformal map will not e�ect the integrability properties of the distortion,

which will be multiplied by an L∞ function, or the Sobolev W 1,2 regularity of the
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inverse, and so on.

Thus, using the quasiconformal Schoen�ies Theorem (see for example [17], [32]

and [53] for results pertaining to this theorem) we can construct such a mapping f

blowing up the origin for which:

◦ the domain of f is C,

◦ outside D(0, ε) the map is a dilation z 7→ λz, λ ∈ R+,

◦ for properties we want in its capacity as an inverse, K− 1 ∈ L1 (C), and

◦ given any in�nite collection of disks {Di = D (zi, ri)} ⊂ D (0, ε) \ {0} which is

separated, and separated away from 0, in the sense that there is a δ > 0 such

that

D (zi, (1 + δ) ri) ∩ D (zj, (1 + δ) rj) = ∅, i 6= j and

D (0, δ) ∩ D (zj, (1 + δ) rj) = ∅, for all j,

the map f |Dj is a similarity.

We �rst make some observations. First, we can change the domain D to D(0, ε) by

simply scaling the variable. Although this is conformal, it a�ects the integral of

the distortion by the action of the Jacobian. Set g(z) = f(z/ε). Then K(z, g) =

K(z/ε, f) and

¨
D(0,ε)

K(z, g) |dz|2 =

¨
D(0,ε)

K(z/ε, f) |dz|2 = ε2
¨

D
K(w, f) |dw|2 ,

so the change in the integral of the distortion is just the change in areas of the

domains. Of course our initial map is radial and therefore can be extended by a

similarity, with a little attention where we had to change the smooth curve to the

circle.

Second, our mapping f is a Kδ-quasiconformal di�eomorphism outside D(0, δ)

and the separation of these disks by annuli of a de�nite modulus tells us - via the

quasiconformal Schoen�ies Theorem - that the modi�ed mapping has had its distor-

tion increased to a number which depends only on δ (and Kδ). The construction is

to modify the map inductively on D(zj, 2rj) keeping the boundary values the same

near S(zj, 2rj). Of course, we do not modify the map in D(0, δ) and so the integral

of the distortion has gone up by a factor which depends only on δ.

We do not seem to be able to allow these disks to accumulate at the origin. One

can see that a basic requirement for the techniques we have used so far is that the

images of the disks in question are all K-quasicircles, for some bounded K. The
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eccentricities of any family of disks accumulating at the origin must tend to∞ under

this mapping.

Another problem we face is that if we move things around into a geometrically

nice con�guration by a quasiconformal map before we blow up some points, then

when we compute the Lp class of the distortion of the mapping, there is a change

of variable involved in the integral (it has a term involving the Jacobian of this

quasiconformal mapping). Post composition is �ne, since the distortion of a qua-

siconformal map is in L∞ and can be pulled out of an integral estimate. There

are ways to resolve these problems, for example Muckenhoupt weight estimates (see

[40]), etc., but the easiest way is to simply ensure that when we move important

things around (sets which contain points to be blown up) that we do so by similarity

transformations. Then the (constant) Jacobian term comes out and is proportional

to the change in area, and therefore easily controlled.

4.2.1 Proof of Separation in Modulus Decomposition Reso-

lution Theorem

Proof. (Theorem 4.5) We �rst prove this result where E consists of one closed

geodesic line. We �rst map this closed geodesic line to the imaginary interval i [−1, 1]

by the use of an appropriate Möbius transformation η. We de�ne f as the inverse

of g, where g = g1 ◦ g2 ◦ g3 ◦η and where gi = f−1
i are the inverses of the appropriate

mappings from Theorem 4.7: in particular, for g1 and g2 these are

g1 (z) =
z ln |z|
|z|

and

g2 (z) =

z +
√
z2 + 1 <(z) > 0,

z −
√
z2 + 1 otherwise.

Each of the component functions is continuous and monotone, so the function

itself is continuous and monotone. Let us write h for the composition g2 ◦ g3 ◦ η. We

have on the compact subset Ω ⊂ C \ (i [−1, 1])that

‖g‖1,2,Ω =

¨
Ω

|g1 ◦ h|2 + |(g1 ◦ h)z|
2 + |(g1 ◦ h)z|

2 |dz|2 .

As h is conformal,

‖g‖1,2,Ω =

¨
Ω

|g1 (h (z))|2 +
(
|(g1)w (h (z))|2 + |(g1)w (h (z))|2

)
|h′|2 |dz|2 .
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This means we have that g is inW 1,2
loc (C \ (i [−1, 1])): by letting Ω′ = h (Ω) , we may

write the previous equation as

‖g‖1,2,Ω =

¨
Ω

|g (z)|2 |dz|2 +

¨
Ω′

(
|(g1)w (w)|2 + |(g1)w (w)|2

)
|dw|2 .

The �rst integral is �nite, as |g| is bounded on Ω. The second is �nite from (3.8.4);

as g1 is in W 1,2
loc (AR) for the annulus AR = {z : 1 < |z| < R}, and the domain of g1

we know to be a compact (and hence bounded) subset of C \ D. This satis�es our
�rst requirement.

The closed geodesic line is �rst mapped by η to i [−1, 1]. This imaginary interval

is kept constant by g3. Under g2 this interval gets mapped to the unit disk, and

�nally under g1 the unit disk is mapped to the origin. A set consisting of one point

is certainly Cantor, therefore this mapping satis�es our second requirement.

The inverse f we have already discussed somewhat: in Theorem 4.7 we proved

that K (z, f) ∈ L1 (D). We shall use this case to prove the result to say that

K (z, f) ∈ L1
loc (C): the mapping f here may be written

η−1 ◦ f3 ◦ f2 ◦ f1,

where η−1, f3 and f2 are all conformal, so do not a�ect the integrability properties

of K. Let Ω be any compact subset of C; then Ω ⊂ D (0, S) for some S, since Ω

must be closed and bounded, and hence

¨
Ω

K(z, f1) |dz|2 ≤
¨

D(0,S)

K(z, f1) |dz|2 .

From (3.8.3) we have, given β = 1 and p = 1 by our assumptions and a change of

coordinates, that

¨
D(0,S)

K(z, f1) |dz|2 =
1

2

¨
D(0,S)

(
r lnR +

1

r lnR

)
r drdθ,

where R comes from the de�nition f1 : D∗ → A (1, R). Since

¨
D(0,S)

K(z, f1) |dz|2 =
1

2

ˆ 2π

0

ˆ S

0

r2 lnR +
1

lnR
drdθ

= π

(
S3

3
lnR +

S

lnR

)
<∞,

this mapping satis�es our third requirement.

Both components are also round disks, satisfying the last requirement.

Before we continue we make the following observation. Certain problems may
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Figure 4.2.5: Illustration of mappings g2 and g1 shrinking a line to a point.

arise, however, when we come to iterate the process (say for a countable number

of geodesic arcs). First, g1 is not conformal, so there is not necessarily a conformal

mapping which will map the next geodesic arc to the imaginary interval in order to

shrink it, and though we may be able to handle this for the case of a �nite number

of arcs, there is no assurance that we can continue in such a way. Second, we should

have some control over the images of the earlier contracted arcs. We therefore wish

to amend our function for each of the geodesic arcs γi in such a way that no other

geodesic arc is a�ected. Since the γi are separated in moduli, this is possible.

From Lemma 4.4, for each geodesic arc γi in the decomposition E , let Ai be the
open annular neighborhood of γi as described in the lemma. Let Ui ⊂ Ai be an

open subset chosen such that Ui is simply connected, and that under the Möbius

transformation ηi which maps γi to the interval i [−1, 1]), Ui is mapped to the open

rectangle

Ri (1, 1 + ε) = {x+ iy : −1 < x < 1,− (1 + ε) < y < 1 + ε} , ε > 0.

By the Riemann mapping theorem, there is a conformal mapping τi that maps

Ri (1, 1 + ε) to D (0, 1 + 2δ) for some δ > 0 such that τi maps i [−1, 1] to itself: we

can see this by using the inverse of the Schwarz-Christo�el transformation (see [8, p.

333]) that maps the upper half-plane H to Ri (1, 1 + ε), outside of a scaling factor,

we have that

ˆ iy

0

ds√
(1− s2) (1− k2s2)

= i

ˆ y

0

dt√
(1 + t2) (1 + k2t2)

,

so any imaginary values remain imaginary under this mapping, and similarly for the

inverse for values within the rectangle. The conformal mapping z 7→ −i (1 + 2δ) i−z
i+z

similarly maps imaginary values to imaginary values. De�ne ωi = τi ◦ ηi on Ui, and
de�ne Wi and Vi by

Wi = ω−1
i (D) and Vi = ω−1

i (D (0, 1 + δ)) .
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U i

V i

W i

γi

Figure 4.2.6: Example of neighborhoods Ui, Vi and Wi of geodesic arc γi.

For each geodesic arc γi, we construct a mapping hi in the following manner: we

�rst focus on Ui, which we map to the disk D (0, 1 + 2δ) via the conformal mapping

ωi described above.

We then focus on ωi (Vi) = D (0, 1 + δ). Let f̃ be the mapping f3 ◦ f2 ◦ f1from

Theorem 4.7 restricted to D (0, 1 + δ) and g̃ = f̃−1. We now need a quasiconformal

mapping which maps D (0, 1 + δ) to D = f̃ (D (0, 1 + δ)) and �xes i [−1, 1]. Away

from the origin (say in D (0, 1 + δ) \ D
(
0, 1 + δ

2

)
), f̃ is quasiconformal: as f2 and

f3 are conformal, we only need worry about f1. We note that, as f1 is a radial

stretching, that

K (z, f1) = max

{
|z| , 1

|z|

}
.

Since 0 < 1 + δ
2
< |z| < 1 + δ, K is �nite over this region. Therefore, by using the

quasiconformal Schoen�ies theorem (at least, the version mentioned as Theorem

17c of [32]), we may construct a κ-quasiconformal χ : D (0, 1 + δ)→ f̃ (D (0, 1 + δ))

which �xes the imaginary axis (since we can ensure f does, and because we may

rotate conformally the result from [32]) and agrees with f̃ near the boundary, and

where κ is a function of K and δ.

We then de�ne

hi : z 7→

ω−1
i ◦ g̃ ◦ χ ◦ ωi (z) z ∈ Vi
z z /∈ Vi

.

We de�ne g to be the concatenation of all {hi}i∈I where I is a countable index

of the geodesic arcs in the decomposition E . Note that then, on each Ui, g|Ui = hi.
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Figure 4.2.7: Illustration of the construction of hi inside Ui.

◦ From the de�nition of hi, we have that g is continuous and monotonic on

each Vi. Outside of the Vi, g is the identity, and is therefore continuous and

monotonic there as well. Because we ensured that the boundaries ∂Vi match

up in a su�ciently nice way, we have continuity and monotonicity of g on the

entire domain. For every compact Ω ⊂ C,

‖g‖1,2,Ω =

¨
Ω

|g (z)|2 + |gz (z)|2 + |gz (z)|2 |dz|2

=
∑
i∈I

[¨
Ω∩Vi
|hi (z)|2 + |(hi)z (z)|2 + |(hi)z (z)|2 |dz|2

]
+

¨
Ω\∪Vi

|z|2 + 1 |dz|2 .

Because Ω is compact, it is bounded (say, |z| ≤ R for z ∈ Ω) and so |z|2 + 1 ≤
R2 + 1; therefore

¨
Ω\∪Vi

|z|2 + 1 |dz|2 ≤
(
R2 + 1

)¨
Ω\∪Vi

|dz|2 ,

this last integral being the area of Ω \ ∪Vi. This is bounded, and as a result

we may safely ignore it when considering whether g ∈ W 1,2 (Ω). Instead, we

focus on whether the restriction of g to Ω ∩ Vi lies in W 1,2 (Ω ∩ Vi) for each i;
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if this is the case, then we have that g ∈ W 1,2 (Ω). For each i ∈ I,

‖g‖1,2,Ω∩Vi =

¨
Ω∩Vi

∣∣ω−1
i ◦ g̃ ◦ χ ◦ ωi (z)

∣∣2 |dz|2
+

¨
Ω∩Vi

∣∣(ω−1
i ◦ g̃ ◦ χ ◦ ωi

)
z

(z)
∣∣2 |dz|2

+

¨
Ω∩Vi

∣∣(ω−1
i ◦ g̃ ◦ χ ◦ ωi

)
z

(z)
∣∣2 |dz|2 .

Because ωi is conformal and χ is quasiconformal, by the chain rule we have

(
ω−1
i ◦ g̃ ◦ χ ◦ ωi

)
z

=
(
ω−1
i

)
u
· [(g̃)v · χw + (g̃)v · χw] · (ωi)z , and(

ω−1
i ◦ g̃ ◦ χ ◦ ωi

)
z

=
(
ω−1
i

)
u
· [(g̃)v · χw + (g̃)v · χw] · (ωi)z.

Therefore, by substituting χw = µχχw where possible, we get that

‖g‖1,2,Ω∩Vi =

¨
Ω∩Vi

∣∣ω−1
i ◦ g̃ ◦ χ ◦ ωi (z)

∣∣2 |dz|2
+

¨
Ω∩Vi

∣∣(ω−1
i

)
u

∣∣2 |(ωi)z|2 |χw|2 ∣∣∣∣(g̃)v ·
χw
χw

+ (g̃)v · µχ
∣∣∣∣2 |dz|2

+

¨
Ω∩Vi

∣∣(ω−1
i

)
u

∣∣2 |(ωi)z|2 |χw|2 ∣∣∣∣(g̃)v · µχ + (g̃)v ·
χw
χw

∣∣∣∣2 |dz|2 .
By the triangle inequality we have

‖g‖1,2,Ω∩Vi ≤
¨

Ω∩Vi

∣∣ω−1
i ◦ g̃ ◦ χ ◦ ωi (z)

∣∣2 |dz|2
+2

¨
Ω∩Vi

∣∣(ω−1
i

)
u

∣∣2 |(ωi)z|2 |χw|2 (|(g̃)v|
2 + |µχ|2 |(g̃)v|

2) |dz|2
+2

¨
Ω∩Vi

∣∣(ω−1
i

)
u

∣∣2 |(ωi)z|2 |χw|2 (|µχ|2 |(g̃)v|
2 + |(g̃)v|

2) |dz|2 .
Since χ is a quasiconformal di�eomorphism, |µχ| < 1, and so

‖g‖1,2,Ω∩Vi ≤
¨

Ω∩Vi

∣∣ω−1
i ◦ g̃ ◦ χ ◦ ωi (z)

∣∣2 |dz|2
+4

¨
Ω∩Vi

∣∣(ω−1
i

)
u

∣∣2 |(ωi)z|2 |χw|2 (|(g̃)v|
2 + |(g̃)v|

2) |dz|2 .
Note

∣∣ω−1
i ◦ g̃ ◦ χ ◦ ωi

∣∣2 is bounded on Ω ∩ Vi (as it maps Ω ∩ Vi to itself, and

Ω is bounded). So

∑
i∈I

¨
Ω∩Vi

∣∣ω−1
i ◦ g̃ ◦ χ ◦ ωi (z)

∣∣2 |dz|2 ≤ R2
∑
i∈I

¨
Ω∩Vi
|dz|2
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which again is simply the area of ∪i (Ω ∩ Vi). As this is �nite, we can focus on

the second integral. By the conformal change of variables by the mapping ωi,

we have that this integral becomes

¨
ωi(Ω∩Vi)

∣∣(ω−1
i

)
u

∣∣2 (|(g̃)v|
2 + |(g̃)v|

2) |χw|2 |dw|2 .
Then, as this is bounded above by

¨
ωi(Ω∩Vi)

∣∣(ω−1
i

)
u

∣∣2 (|(g̃)v|
2 + |(g̃)v|

2) (|χw|2 + |χw|2
)
|dw|2 ,

we can then change variables on this bound by using the quasiconformal dif-

feomorphism χ to get

¨
χ◦ωi(Ω∩Vi)

∣∣(ω−1
i

)
u

∣∣2 (|(g̃)v|
2 + |(g̃)v|

2) |dv|2 .
Then as g̃ ∈ W 1,2

loc (D), and as ωi is conformal, we obtain a bound on this

depending on the area of χ ◦ ωi (Ω ∩ Vi) similar to . The summation of all of

these terms will then be bounded above by a term proportional to the area of

Ω, which is �nite. This implies thatg ∈ W 1,2
loc (C).

◦ The image of the non-degenerate continua under g form a �nite set or a count-

able set K: if E consists of a �nite number of continua, then K is certainly

�nite; otherwise as it is separated in modulus it must be countable. We can

see this by �rst noting that S with the usual topology is second countable (the

topology has a countable basis), so any collection of disjoint open sets must

be countable. If we then note that each Ui overlaps with S twice (one at either

end of the geodesic arc γi), and that the Ui must be disjoint we can form a

collection of disjoint open sets by considering the collection {Ui ∩ S}. Such a

collection must be countable, which means the collection {Ui} is countable;

hence the number of geodesic arcs, and so points under the image mapping,

must be countable. K has Hausdor� dimension 0, because it is the countable

(possibly �nite) union of a set of points, each of which has Hausdor� dimension

0.

◦ For the inverse f of g, for a compact Ω ⊂ C, the L1 (Ω) norm of the distortion

is

‖K (z, f)‖1 =

¨
Ω

K (z, f) |dz|2

=
∑
i∈I

¨
Ω∩Vi

K
(
z, h−1

i

)
|dz|2 +

¨
Ω\∪Vi

|dz|2 .
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On each Ω ∩ Vi, we have h−1
i = ω−1

i ◦ χ−1 ◦ f̃ ◦ ωi. Since f̃ = f3 ◦ f2 ◦ f1 with

f3 and f2 conformal, and since χ−1 is quasiconformal because χ is, we may

write h−1
i = χ̃i ◦ f1 ◦ ωi with χ̃i quasiconformal. Since postcomposition with

quasiconformal mappings and precomposition with conformal mappings will

not a�ect the integrability of K, we only need worry about K (w, f1). From

(3.8.3), and the fact that R = e and p = β = 1, we obtain that

¨
ωi(Ω∩Vi)

K(z, f1) |dw|2 ≤ e2 + 1

2e

¨
ωi(Ω∩Vi)

|dw|2 ,

so ∑
i∈I

¨
Ω∩Vi

K
(
z, h−1

i

)
|dw|2 ≤ e2 + 1

2e
κ̃
∑
i∈I

¨
ωi(Ω∩Vi)

|dw|2

where κ̃ is the factor of distortion caused by the κ-quasiconformalχ, which

will be the same for each of the χ̃i. We then have ‖K (z, f)‖1 bounded above

by some factor depending on the area of Ω and some constant. Since Ω is

compact, this is �nite. Therefore f : C → C is a mapping of �nite distortion

with K (z, f) ∈ L1
loc (C).

◦ Finally, each component of C \ g (S) is conformally equivalent to a round disk

by the Riemann mapping theorem, as the components are simply connected

open sets.

4.3 Shrinking The Line Segment

Here we revisit the sort of maps we need to resolve decompositions. Our map needs

to shrink the interval [−1, 1] to a point, but be a homeomorphism away from this

interval; therefore although the composition of 1
2

(
z + 1

z

)
and 1

2

(
z − 1

z

)
would shrink

the disk to the interval, and then the interval to a point, and is conformal, it is not a

homeomorphism on the unit disk. Here we explore an interesting di�erence between

radial maps and more general mappings for this problem.

We know from 3.16 that there exists h : D∗ → AR with K (z, h) ∈ Lp for any

1 ≤ p < ∞; let ϕ := z 7→ 1
2

(
z + 1

z

)
be the conformal mapping which maps AR

to D \ [−1, 1]; therefore the composition ϕ ◦ h : D∗ → D \ [−1, 1] has distortion

K (z, ϕ ◦ h) ∈ Lp as well, for K (z, ϕ ◦ h) = K (z, h). However, we shall now show

that, if we assume that f : D∗ → D\ [−1, 1] has some radially symmetric properties,

there is an upper limit on the p for which we can have K (z, f) ∈ Lp, in stark contrast

to our earlier result.

We shall begin the analysis by considering a class of functions that act on a
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slightly larger disk: on D we take some nice homeomorphic function that �xes the

interval (say, the identity) and multiply by argument-depended weight h (θ) that

shrinks the interval; outside of D we construct it so that it is homeomorphic, matches

the common boundary with the function de�ned on D and the outer boundary is a

quasicircle.

Figure 4.3.1: Shrinking the line segment, showing the circles of radius 1 and 2, and
their images under a sample mapping. The grey lines represent the preimage.

Let us consider the simplest of such functions. The map f is de�ned on C by

the following formula:

reiθ 7→

rh (θ) eiθ r ≤ 1

(r − 1 + h (θ)) eiθ r > 1
, (4.3.1)

where h(θ) has the following properties:

◦ h is C∞ smooth and 2π periodic,

◦ 0 ≤ h(θ) ≤ 1,

◦ for a given ε > 0, h(θ) = 1 if θ /∈
⋃
k∈Z [kπ − ε, kπ + ε], and

◦ h(θ) = 0 if and only if θ = kπ, k ∈ Z.

Away from [−1, 1], the mapping f is a homeomorphism: outside of the unit disk it

is invertible by the mapping seiφ 7→ (s+ 1− h (φ)) eiφ, and inside and away from

the interval it is seiφ 7→ s
h(φ)

eiφ as h (φ) > 0 away from the origin. Also, f shrinks

this segment to a point as the points are multiplied by h (θ) = 0. The di�erential of
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this map is

‖Df‖2 = |fr|2 +
|fθ|2

r2

=


∣∣h (θ) eiθ

∣∣2 +
|(rh′(θ)+irh(θ))eiθ|2

r2
r < 1,∣∣eiθ∣∣2 +

|(h′(θ)+i(r−1+h(θ)))eiθ|2
r2

r > 1

=

2h2(θ) + h′(θ)2, r < 1,

1 + (r−1+h(θ))2

r2
+ h′(θ)2

r2
r > 1.

Therefore, any reasonable function h will put the map f in W 1,2.

We calculate the distortion of the inverse map (away from the origin). The

inverse is de�ned by g,

seiφ 7→


s

h(φ)
eiφ s ≤ h(φ) 6= 0,

0 h(φ) = 0,

(s+ 1− h (φ)) eiφ s > h(φ)

(4.3.2)

and since we have that h(φ) = 0 only at φ = 0 and φ = π, the problematic de�nition

of the inverse g of f which shrinks [−1, 1] to {0} does not a�ect us. Since

‖Dg‖2 = |gs|2 +
|gφ|2

s2

=


∣∣∣ eiφh(φ)

∣∣∣2 +
∣∣∣(− h′(φ)

h2(φ)
+ i

h(φ)

)
eiφ
∣∣∣2 s < h (φ) ,∣∣eiφ∣∣2 +

|(−h′(φ)+i(s+1−h(φ)))eiφ|2
s2

s > h (φ) ,

=

 2
h2(φ)

+ h′(φ)2

h4(φ)
s < h (φ) ,

1 + h′(φ)2+(s+1−h(φ))2

s2
s > h (φ) ,

and

J(seiφ, g) =
2

s
= (gφgs)

=

2=
((
− h′(φ)
h2(φ)

+ i
h(φ)

)
eiφ e

−iφ

h(φ)

)
s < h (φ) ,

2
s
=
(
(−h′ (φ) + i (s+ 1− h (φ))) eiφe−iφ

)
s > h (φ) ,

=

 2
h2(φ)

s < h (φ) ,

2(s+1−h(φ))
s

s > h (φ) ,
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the distortion is

K(w, g) =

1 + h′(φ)2

2h2(φ)
s < h(φ),

1 + (1−h(φ))2

2s(s+1−h(φ))
+ h′(φ)2

2s(s+1−h(φ))
s > h(φ).

(4.3.3)

and note that for no function h can this term be bounded: for if so, h′ (φ) [h (φ)]−1

must be bounded, and as h (φ) → 0 as |φ| → 0, then h′ (φ) → 0; therefore by

de�nition

lim
φ→0

h (φ)

φ
<∞.

Write a (t) = limφ→t φ
−1h (φ); then

h (t) = lim
φ→t

h (φ) = lim
φ→t

φ lim
φ→t

h (φ)

φ
= ta (t) ,

and so

lim
t→0

h′ (t)2

h (t)2 = lim
t→0

1

t2
+ lim

t→0

a′ (t)2

a (t)2 =∞.

Let us now calculate the Lp norm of K−1 of the map on the image f (D (0, 2)) =

Ω. Note that f
(
eiθ
)

= h (θ) eiθ and f
(
2eiθ
)

= (1 + h (θ)) eiθ. We shall use the norm

of K − 1 and not K because from Lemma A.4 they are more or less the same

problem as Ω has �nite area under the �at metric, and it makes our calculations a

little cleaner.

‖K(w, g)− 1‖pLp(Ω) =

¨
Ω

(K(w, g)− 1)p |dz|2

=
1

2p+1

ˆ 2π

0

h′(φ)2p

h2p−2(φ)
dφ

+
1

2p

ˆ 2π

0

ˆ 1+h(φ)

h(φ)

((1− h(φ))2 + h′(φ)2)
p

sp−1 (s− h(φ) + 1)p
ds dφ.

The behaviour of the second integral changes at various values of p: we shall inves-

tigate them in turn, and assume ‖·‖ to be the appropriate Lp norm for each value

of p.
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4.3.1 L1 Norm Of K− 1

If p = 1 then we can calculate the norm precisely:

‖K(w, g)− 1‖ =
1

4

ˆ 2π

0

h′(φ)2 dφ

+
1

2

ˆ 2π

0

ˆ 1+h(φ)

h(φ)

(1− h(φ))2 + h′(φ)2

(s− h(φ) + 1)
ds dφ

=

ˆ 2π

0

(
1

4
+

ln 2

2

)
h′(φ)2 +

ln 2

2
(1− h (φ))2 dφ,

and from our conditions on h we have that(
1

4
+

ln 2

2

) ˆ 2π

0

h′(φ)2 dφ ≤ ‖K(w, g)− 1‖ ≤ 1 + 2 ln 2

4

ˆ 2π

0

h′(φ)2 dφ+ π ln 2.

If we take as �su�ciently nice� h the condition that
´ 2π

0
h′ (φ) dφ is bounded,

this ensures that the L1 norm of K− 1 is �nite.

4.3.2 Lp Norm Of K− 1, p > 1

Let

J (φ) =

ˆ 1+h(φ)

h(φ)

ds

sp−1 (s− h(φ) + 1)p
. (4.3.4)

If p > 1 we have that

‖K(w, g)− 1‖pLp(D(0,2)) ≥
1

2p

ˆ 2π

0

h′(φ)2p

h2p−2(φ)
dφ+

1

2p

ˆ 2π

0

h′(φ)2pJ (φ) dφ

+
1

2p

ˆ 2π

0

(1− h(φ))2pJ (φ) dφ,

and

‖K(w, g)− 1‖pLp(D(0,2)) ≤
1

2p

ˆ 2π

0

h′(φ)2p

h2p−2(φ)
dφ+

1

2

ˆ 2π

0

h′(φ)2pJ (φ) dφ

+
1

2

ˆ 2π

0

(1− h(φ))2pJ (φ) dφ.

Since 1 ≤ s− h (φ) + 1 ≤ 2 on this region we have the bounds

2−pJ0 (φ) ≤ J (φ) ≤ J0 (φ) ,
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where

J0 (φ) =

ˆ 1+h(φ)

h(φ)

ds

sp−1
=


(1+h(φ))2−p−h2−p(φ)

2−p 1 < p 6= 2,

ln (1 + h (φ))− lnh (φ) p = 2.

Also note that (1− h (φ))p is bounded above and below, so we may ignore it for

the purposes of integrability. Therefore we �nd the integrability properties of this

mapping by considering the integrability of

h′(φ)2p

h2p−2(φ)
,J0(φ) and h′(φ)2pJ0 (φ) .

The behaviour of J0(φ) changes depending on where p is in relation to 2. We shall

consider the three cases momentarily, after making an observation that will simplify

this problem. Since we already have speci�ed behaviour for h(φ) outside of some

ε-balls about φ = 0 and φ = π (namely that it is constantly 1, and thus the mapping

f and its inverse g become the identity mapping outside of these ε-balls), where it

certainly is integrable we can instead focus on the behaviour of h(φ) within these

ε-balls. Observe that near π we can make similar arguments as we can near zero, and

that we only really need to concern ourselves with one side of the interval because

of smoothness and the fact that similar arguments can be made for either side, even

if the function is not symmetric about these points, and through some appropriate

smoothing with, say the identity mapping, we can determine the rest of h(φ).

Lp Norm Of K− 1, 1 < p < 2

If 1 < p < 2 then the integrand of J0 (φ) is �nite everywhere, so integrability really

only depends on h′(φ)2ph2−2p(φ) as long as h′ (φ)2 is integrable. As h(0) = 0, and

it is a minimum of a smooth function, we must also have h′(0) = 0. Let us assume

that near zero h(φ) ≈ φq. Then q > 1 and we have that

h′(φ)2ph2−2p(φ) ≈ qpφ2q−2p, (4.3.5)

so for integrability (locally near zero) we require p < q + 1
2
. Certainly the choice of

q = 2 satis�es this for all such p. We shall see later why this particular choice of q

was made here.

L2 Norm Of K− 1

When p = 2 we have that

J0(φ) = ln (1 + h (φ))− ln (h (φ)) .

79



As before, let us suppose that near zero h (φ) ≈ φ2; we have already established

integrability for one term (see (4.3.5)), we just need to calculate it for the other two.

We can then explicitly evaluate the integral for this in some small interval about

zero. First note

ˆ
J0 (φ) dφ = φ

(
ln
(
1 + φ2

)
− ln

(
φ2
))

+ 2 arctan (φ) ;

which is �nite when integrated on su�ciently small intervals:

ˆ ε

0

J0 (φ) dφ = ε
(
ln
(
1 + ε2

)
− ln

(
ε2
))

+ 2 arctan (ε) .

As h′(φ)4 ≈ 16φ4 ≤ 1 on
[
−1

2
, 1

2

]
we have the integrability of J0h

′ (φ)4 as well.

Lp Norm Of K− 1, 2 < p < 5
2

When 2 < p < 5
2
we evaluate

J0 (φ) =
h2−p (φ)− (1 + h (φ))2−p

p− 2
,

as p− 2 is some �xed constant and 1 ≤ (1 + h (φ)) ≤ 2 we are principally interested

in whether h2−p (φ) is integrable.

Again, we consider the case h (φ) ≈ φ2; since this choice ensures integrability

of h′(φ)2ph2−2p(φ) from (4.3.5), and for su�ciently small intervals around the origin

h′ (φ)2p < 1 we need only concern ourselves with the integrability of h2−p (φ) ≈ φ4−2p.

Since 4− 2p > −1, this is integrable as well.

Lp Norm Of K− 1, p ≥ 5
2

Our example where h (φ) ≈ φ2 near the origin breaks down once p ≥ 5
2
; we shall

expand on this in more detail later, but for now let us consider the more general

h (φ) ≈ φq. If h′(φ)2ph2−2p(φ) is to be integrable near zero, we must have p− 1
2
< q

from (4.3.5); meanwhile, just as in the previous case, we also require the integrability

of h2−p (φ) ≈ φ(2−p)q. In this case,

(2− p) q > −1⇔ q <
1

p− 2
.

So p− 1
2
< 1

p−2
, or p < 5

2
.

We can now see why the choice q = 2 may be considered `best' for this problem:

let p = 5
2
− ε for some small positive ε. Then the range from which we may pick q

is
(
2− ε, 2

1−2ε

)
and as both 2− ε→ 2 and 2

1−2ε
→ 2 as ε→ 0 this is the one choice
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of q that works for any p < 5
2
.

We shall now prove this result in more generality. We want h(0) = 0, so let us

suppose that

h(t) = t2qa(t), (4.3.6)

where 2q > 0, a(0) > 0 (as h(t) ≥ 0) and, from the de�nition of h, a(t) is C∞

smooth (which implies a(t) > 0 for t ∈ (−δ, δ) for some δ > 0) and bounded (we use

2q instead of q to try to ensure a common de�nition for both positive and negative

values of t). Then

h′(t) = t2q−1 (2qa(t) + ta′(t)) , (4.3.7)

and so
h′(t)2p

h2p−2(t)
= t2(2q−p) (2qa(t) + ta′(t))2p

a2p−2(t)
. (4.3.8)

As stated earlier, we need the integrability of h2−p (t), which we shall handle

�rst. We have that

h2−p (t) =
t2q(2−p)

ap−2(t)
,

and if we choose our interval of integration as being within (−δ, δ), we only need

to focus on the integrability of tq(2−p), as then a(t) has nonzero upper and lower

bounds. This happens when

(2− p) 2q > −1 or 2q <
1

p− 2
.

Returning to (4.3.8), we see that our bound on 2q implies

h′(t)2p

h2p−2(t)
≥ t2(

1
p−2
−p) (2qa(t) + ta′(t))2p

a2p−2(t)
.

Let us examine the term 2qa(t) + ta′(t) for a moment. Note that

lim
t→0

2qa(t) + ta′(t) 6= 0,

as otherwise

lim
t→0

ta′(t) = −2qa(0) 6= 0;

this would mean a′(t) ≈ −2qa(0)t−1 near zero, and would make a(t) not smooth at

zero. As it is also continuous, by choosing δ su�ciently small then we also can bound

2qa(t)+ta′(t) away from zero, and so can bound the term (2qa(t) + ta′(t))2p a2−2p(t)

from below by a nonzero amount. Hence for integrability we require 2
(

1
p−2
− p
)
>

−1 or p < 5
2
. Therefore we have the following result.
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Theorem 4.8. When p ≥ 5
2
there is no choice of analytic function h with the

properties listed above for (4.3.1), such that

0 < lim
t→0

h(t)

tq
<∞

for any q > 0 satisfying (4.3.1) such that the inverse g of the mapping f ∈ W 1,2
loc (C)

has distortion in Lploc(C).

Although we have eliminated all analytic choices, there may be a choice of h (θ)

that is smooth but non-analytic. However, as we shall soon see, we do not even get

this when p ≥ 5
2
.

Corollary 4.9. Theorem 4.8 also holds when

lim
t→0

t−qh(t) = 0 (4.3.9)

for all q > 0.

Proof. Since (4.3.9) holds for all q > 0, we must certainly have it true for q = 2, so

lim
t→0

t−2h(t) = 0.

Thus there exists some δ > 0 such that for any 0 < t < δ we have that t−2h(t) < ε

where 0 < ε < 1 and ε depends on δ. As we need integrability of h2−p (t), as

ε2−pt4−2p ≤ h(t)2−p when |t| < δ and if h is integrable near zero then t4−2p must be

as well. This happens only if 4− 2p > −1 or p < 5
2
.

4.3.3 Generalization

Following roughly the same argument, we can extend this result to a more general

class of functions than those of the form given in the previous theorem. Since we

know solutions exist for p < 5
2
, we shall assume that p ≥ 5

2
.

Theorem 4.10. Theorem 4.8 also holds where f has the form

f : reiθ 7→

R (r)h (θ) eiθ r ≤ 1,

(R (r)− 1 + h (θ)) eiθ r > 1,
(4.3.10)

where h(θ) has the same properties as given above, and R : [0,∞) → [0,∞) is a

strictly increasing C1 di�eomorphism whose inverse is also in C1 and R(1) = 1.

Before we prove this, we note that the conditions on R follow from how we want

it to behave:
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◦ We �rst want to ensure that it �xes [−1, 1], as then our de�nition of h(t) can

remain the same, therefore R(1) = 1.

◦ In order to perform the analysis, we will need to take derivatives; R must

therefore be di�erentiable; similarly, its inverse S must also be di�erentiable.

We would also like it to be as smooth as possible to avoid issues; however, we

shall require at least that the function and its inverse are in C1.

◦ It has to be invertible, as we require f to be invertible (at least su�ciently

far away from the interval to be shrunk), and we also want R(0) = 0 and

limr→∞R(r) = ∞ so we need R to be increasing; and since we want it to be

invertible and for there to be a �nite derivative at every point for both R and

its inverse, we will assume that R is strictly increasing di�eomorphism.

Proof. (4.10) We start by squaring the Hilbert-Schmidt norm of the di�erential of

f : this is

‖Df‖2 =


(
R′(r)2 + R(r)2

r2

)
h(θ)2 + R(r)2h′(θ)2

r2
r < 1,

R′(r)2 + h′(θ)2+(R(r)−1+h(θ))2

r2
r > 1,

and thus we have that, as in the case we have just established, the choice of suf-

�ciently nice R and h will put the map f in W 1,2. The inverse g is then given

by:

g : seiφ 7→


S
(

s
h(φ)

)
eiφ s ≤ h(φ) 6= 0,

0 h(φ) = 0,

S (s+ 1− h (φ)) eiφ h (φ) < s,

(4.3.11)

which we shall further explain. The mapping f maps the unit circle S to a two

lobed structure parametrised by h (θ) eiθ: h evaluates to zero precisely at two points

in [0, 2π), namely 0 and π, and R (1) = 1. Outside of f
(
D
)
the inverse is simple

and obtained by rearrangement; and if seiφ ∈ C \ f
(
D
)
, we have that s > h (φ).

A similar argument holds when h (φ) 6= 0 inside f
(
D
)
; here if seiφ ∈ f

(
D
)
, then

s ≤ h (φ). Otherwise we lie in f
(
D
)
and h (φ) = 0; let be such a point. Then if

seiφ is such a point, s = 0 (because 0 ≤ s ≤ h (φ)) and so seiφ = 0. As f (0) = 0 we

want g (0) = 0.

As before, we do not need to worry about the problematic de�nition of g. Here

‖Dg‖2 =


1

h2(φ)
S ′
(

s
h(φ)

)2 (
1 + h′2(φ)

h2(φ)

)
+ 1

s2
S2
(

s
h(φ)

)
s < h (φ) 6= 0,

S ′ (s+ 1− h (φ))2
(

1 + h′(φ)2

s2

)
+ S2(s+1−h(φ))

s2
s > h (φ) ,
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and

J
(
seiφ, g

)
=


2

sh(φ)
S ′
(

s
h(φ)

)
S
(

s
h(φ)

)
s < h (φ) 6= 0,

2S(s+1−h(φ))
s

S ′ (s+ 1− h (φ)) s > h (φ) ,

so the distortion is

K
(
seiφ, g

)
=


1

h2(φ)
S′( s

h(φ))
2
(

1+
h′2(φ)
h2(φ)

)
+ 1
s2
S2( s

h(φ))
2

sh(φ)
S′( s

h(φ))S( s
h(φ))

s < h (φ) 6= 0,

S′(s+1−h(φ))2
(

1+
h′(φ)2

s2

)
+
S2(s+1−h(φ))

s2

2
S(s+1−h(φ))

s
S′(s+1−h(φ))

s > h (φ) ,

or, after some rearranging,

K
(
seiφ, g

)
=


1
2

(
s

h(φ)

S′( s
h(φ))

S( s
h(φ))

(
1 + h′2(φ)

h2(φ)

)
+ h(φ)

s

S( s
h(φ))

S′( s
h(φ))

)
s < h (φ) 6= 0,

1
2s

(
S′(s+1−h(φ))(s2+h′(φ)2)

S(s+1−h(φ))
+ S(s+1−h(φ))

S′(s+1−h(φ))

)
s > h (φ) .

We then calculate the Lp norm of the distortion (from here we shall assume that the

norm is the Lp (Ω) norm). We shall suppress the arguments of the various functions

here for clarity.

‖K(w, g)‖p =

¨
Ω

(K(w, g))2 |dw|2

=
1

2p

ˆ 2π

0

ˆ h

0

(
s

h

S ′

S

(
1 +

h′2

h2

)
+
h

s

S

S ′

)p
s ds dφ

+
1

2p

ˆ 2π

0

ˆ 1+h

h

1

sp−1

(
S ′ (s2 + h′2)

S
+
S

S ′

)p
ds dφ.

Let us construct some bounds on these integrals. From Lemma A.4 we have that

A ≤
(
s

h

S ′

S

(
1 +

h′2

h2

)
+
h

s

S

S ′

)p
s ≤ 2p−1A

and

B ≤ 1

sp−1

(
S ′ (s2 + h′2)

S
+
S

S ′

)p
≤ 2p−1B,

where

A =
sp+1

hp
S ′p

Sp

(
1 +

h′2

h2

)p
+

hp

sp−1

Sp

S ′p
(4.3.12)

and

B =
1

sp−1

(
S ′p (s2 + h′2)

p

Sp
+
Sp

S ′p

)
; (4.3.13)

we thus only have to worry about the integrability of A and B.

Let us begin with B. The change of variables s 7→ t = s + 1 − h transforms
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the domain of integration to the annulus A2. As S ′ (t) is continuous on the closed

interval [1, 2], we have, by the extreme value theorem, that there are some a, b ∈ [1, 2]

such that S ′(a) ≤ S ′(t) ≤ S ′(b); and as S ′(t) > 0 (since R is increasing, so S is),

then S ′(a) > 0; moreover S ′(b) < ∞ . We also have 1 ≤ S(t) ≤ S(2) < ∞ on this

interval as well, which means

B ≥ S ′ (a)p

Sp (2)
sp+1 +

S ′ (a)p

Sp (2)
s1−ph′2p +

s1−p

S ′ (b)p
,

and as ˆ 1+h

h

s1−pds =
h2−p

p− 2
− (1 + h)2−p

p− 2
,

we see that integrability of B requires integrability of h′2ph2−p and h2−p.

Returning to A, we perform the change of variables s 7→ t = s
h
;

A = htp+1S
′p

Sp

(
1 +

h′2

h2

)p
+

h

tp−1

Sp

S ′p
,

and as h ≥ 0 and the second term has no other terms dependent on φ we have the

bound

A ≥ htp+1S
′p

Sp

(
1 +

h′2

h2

)p
.

We may do this as h 6= 0 almost everywhere. Since ds = h dt, we have the integral

ˆ 2π

0

ˆ 1

0

Ah dt dφ ≥
ˆ 2π

0

h′2p dφ

h2p−2

ˆ 1

0

tp+1S
′p

Sp
dt.

When t > 0, S ′ > 0 and S > 0, then
´ 1

0
tp+1 S′p

Sp
dt > 0, so integrability of Ah on

this region requires the integrability of h′2ph2−2p , however, these are the same two

requirements as in Theorem 4.8 and there we proved there were no solutions where

limt→0 h(t)t−q <∞.

4.3.4 Distortion Properties Of f

We know that there is no extremal mapping of the functional (3.1.2) that maps the

annulus to the punctured disk; however, because of the change of variables induced

in the mapping 1
2

(
z + 1

z

)
, it may be possible that there is such a mapping from

D \ [−1, 1] to the punctured disk. Let us examine that problem now for functions of

this form:
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The Jacobian is

J(reiθ, f) =
2

r
=
(
fθfr

)
=

2h2 (θ) r < 1,

2
r

(r − 1 + h (θ)) r > 1,

and so, the distortion is

K
(
reiθ, f

)
=

1 + h′(θ)2

2h2(θ)
r < 1,

1 + (1−h(θ))2

2r(r−1+h(θ))
+ h′(θ)2

2r(r−1+h(θ))
r > 1.

(4.3.14)

We shall calculate the Lp norm of K − 1 (again, for the same reason as before)

of the map on the disk of radius 2.

‖K(z, f)− 1‖pLp(D(0,2)) =

¨
D(0,2)

(K(z, f)− 1)p |dz|2

=

ˆ 2π

0

ˆ 1

0

h′(θ)2p

2ph2p(θ)
r dr dθ

+

ˆ 2π

0

ˆ 2

1

(
(1− h(θ))2 + h′ (θ)2)p
2prp−1 (r − 1 + h (θ))p

dr dθ

=
1

2p+1

ˆ 2π

0

h′(θ)2p

h2p(θ)
dθ

+
1

2p

ˆ 2π

0

ˆ 2

1

((1− h(θ))2 + h′(θ)2)
p

rp−1 (r − 1 + h(φ))p
dr dθ.

For p = 1 we then have

‖K(z, f)− 1‖ =

ˆ 2π

0

h′(θ)2

4h2(θ)
+

[ln (1 + h (θ))− ln (h (θ))] [(1− h(θ))2 + h′(θ)2]

2
dθ.

Let us now examine what happens near θ = 0, and use the same argument as used

earlier. We want h(0) = 0, so approximating ln (1 + h (θ)) ≈ 0 and (1− h (θ))2 ≈ 1

(we may treat these as bounded by constants that do not a�ect the analysis, and

these will be the approximate values of such constants) gives

‖K(z, f)− 1‖ &
ˆ ε

0

h′(θ)2

4

(
h−2 (θ) + 2 ln

(
1

h (θ)

))
+

1

2
ln

(
1

h (θ)

)
dθ,

so we certainly need this integral to be �nite. Near zero, h will be small and therefore

ln
(
[h (θ)]−1) will be positive. Let us examine the term

(
h′ (θ)

h (θ)

)2
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for a moment; as in our earlier proof, let us focus on t small and positive and assume

that h (t) = tqa(t) for some q > 0 where a(0) ≥ 0, a′(t) ≥ 0 and a(t) is C1 and

bounded; then
h′ (t)

h (t)
≥ q

t
,

so the integral is not convergent.

Thus we have established the following result.

Lemma 4.11. There is no extremal mappings, in the form given at (4.3.1), of a

functional analogous to (3.1.2) for maps from D \ [−1, 1] to the punctured disk.
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Chapter 5

Quasiconformal Harmonic Extensions

5.1 Properties Of The Inverse

If we put z = g(w), then from the property of the Jacobian we have the identity

J(w, g)J(z, f) = 1.

Multiplying through by ρ(f) = ρ(w) and noting that from (2.5.3) we have that

|µf (g(w))| = |µg(w)|, and so

ρ(w) = ρ(w)
(
|fz|2 − |fz|2

)
J(w, g)

= ρ(w) |fz| |fz|
(

1

|µf (g)|
− |µf (g)|

)
J(w, g)

= |Ψf (g)|
(

1

|µg|
− |µg|

)
J(w, g),

We wish to write this in terms of the dilatation of g. Note that

K − 1

K
=

1 + |µ|
1− |µ|

− 1− |µ|
1 + |µ|

=
4 |µ|

1− |µ|2
.

We now recollect from (2.3.2) and (2.3.3) the de�nition of a harmonic mapping in

the hyperbolic metric for the disk and half-plane models. With this, we have the

following lemma.

Lemma 5.1. Let f : D → (D, ρ) be a harmonic di�eomorphism, g = f−1 and Ψf

the Hopf di�erential. Then

ρ(w)

(
K(w, g)− 1

K(w, g)

)
= 4 |Ψf (g)| J(w, g) (5.1.1)

and

ρ(w)
(
K2(w, g)− 1

)
= 4 |Ψf (g)| |Dg(w)|2 ,
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where K(·, g) is the distortion function of g.

Let us �rst note that t 7→ t− 1/t is increasing on [1,∞) and therefore if f (and

hence g) is K-quasiconformal, then

K(w, g)− 1

K (w, g)
≤ K − 1

K
,

and then by integrating both sides of (5.1.1) we have the following estimate on the

growth of the Hopf di�erential:

Corollary 5.2. Let f : D → (D, ρ) be a harmonic di�eomorphism that is K-

quasiconformal and Ψf the Hopf di�erential (2.5.4). Let E ⊂ D be a measurable

set. Then ˆ
f−1(E)

|Ψf (z)| |dz|2 ≤ 1

4

(
K − 1

K

)
|E|ρ ,

where |E|ρ is used to denote the area of E in the ρ metric.

Let

ρ (w) =
1(

1− |w|2
)2 ;

if we have that|ρ (w)| < M |ρ (g)| , then

ρ (w)

ρ (g)

(
K (w, g)− 1

K (w, g)

)
=

4 |Ψf (f)| J(w, g)

ρ (g)

and integrating and estimating gives

4

ˆ
f−1(E)

|Ψf (z)|
ρ (z)

|dz|2 ≤ KM.

Letting E = D gives ˆ
D

|Ψf (z)|
ρ (z)

|dz|2 ≤ 1

4
KM.

The term
|Ψf (z)|
ρ(z)

is related to the Bloch norm of the Hopf di�erential: in general,

this norm is given by

f 7→ ‖f‖B = |f (0)|+ sup
z∈D

(
1− |z|2

)
|f ′ (z)| .
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5.2 A First-Order Nonlinear PDE For A Beltrami

Coe�cient

From Theorem 2.8 we have that the inverse of a quasiconformal mapping is quasicon-

formal. Since the expression of (2.3.1) contains the term (log ρ(u))u, the expression

is somewhat complicated by its dependence on derivatives from both spaces. How-

ever, we may rewrite (2.3.1) in such a way that this complication is removed.

Theorem 5.3. (Inverse Complex Dilatation Condition)A di�erentiable function µ :

D → C, ‖µ‖∞ = k < 1, is the complex dilatation of the inverse of a harmonic

mapping if and only if µ satis�es the �rst order PDE

µz + µφ = µ
(
µz̄ − µφ

)
. (5.2.1)

Proof. (Theorem 5.3)Let g = f−1 and we use coordinates w and z for f and g

respectively, so z = f (w) and w = g(z). The Beltrami coe�cient µ = µg then

satis�es (2.5.1):

gz̄ = µgz.

From the chain rule (Theorem A.2), we have that

−fw̄ = µfw,

and taking the w derivative then gives

−fww̄ = µfww̄ + µwfw.

Next, we expand the µw term by using the chain rule:

µw = µzfw + µzfw,

thereby giving us

−fww̄ = µfww̄ + µzfwfw + µzfwfw.

We then substitute for the fww term by using the equation for harmonic maps

(2.3.1). Writing φ (z) for (ln ρ (z))z and rearranging (2.3.1) gives

fww̄ = −φ (z) fwfw̄.
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And so the substitution gives

φ (z) fwfw̄ = −µφ (z) fwfw̄ + µzfwfw + µzfwfw.

Our next goal is to rearrange and substitute so there is no mention of f . Dividing

through by |fw|2 gives, after some rearrangement,

φ (z)
fw̄

fw
= µz +

fw
fw

(
µz − µφ (z)

)
.

From (2.5.3), we obtain

−φ (z)µ = µz − µ
(
µz − µφ (z)

)
.

After some rearrangement, this argument shows that the complex dilatation of the

inverse of a harmonic map satis�es (5.2.1). The converse implication follows by

the reverse argument, where we obtain the harmonic mapping from the existence

theorem, Theorem 2.7.

Remark 5.4. We �rst investigate some general results for all metrics. Later, we will

provide an alternate proof using Möbius transformations later for the case of the

hyperbolic metric by substituting into the case of the Euclidean metric.

From Theorem 5.3 we can take any smooth function µ and using (5.2.1) de�ne a

function φ. We can solve the equation (ln ρ)z = φ using the Cauchy transform (see

[6]). However, we have already made the observation that the complex dilatation

of an inverse harmonic map has a special form (real positive multiples of anti-

holomorphic functions). The reconciliation is that not every Cauchy transform yields

a real valued function (in this case ln ρ).

5.3 Observations From Inverse Complex Dilatation

Condition

We shall now make some well known observations on the complex dilatation

which follow from this theorem.

We begin with two lemmas based on (2.3.1).

Lemma 5.5. Let f : D → D be harmonic and de�ne h : D → D by h(z) = f(z).

Then h is harmonic.

Proof. (Lemma 5.5) We �rst note that if a(w) = b(w), then

aw(w) = bw(w), and aw(w) = bw(w). (5.3.1)
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Then

hzz (z) + φ (h (z))hz (z)hz (z) = fzz (z) + φ
(
f (z)

)
fz (z)fz (z)

= fzz (z) + φ (f (z))fz (z)fz (z) ,

by applying (5.3.1) to φ (w) = (ln ρ (w))w. Since this is the conjugate of (2.3.1),

since f is a harmonic mapping then this equals zero.

Lemma 5.6. Let f : D→ D be a homeomorphism, g = f−1 and h (z) = f (z). Then

h−1 (z) = g (z).

Proof. We compute

h
(
g (z)

)
= f (g (z)) = z.

From these two lemmas, we have the following corollary to Theorem 5.3.

Corollary 5.7. Suppose that µ : D→ D is the complex dilatation of the inverse of

a harmonic mapping. Then so is

σ (z) = µ (z).

Proof. Suppose that g is the inverse of a harmonic mapping. The previous two

lemmas imply that h (z) = g (z) is also the inverse of a harmonic mapping, and that

µh (z) =
hz (z)

hz (z)
=
fz (z)

fz (z)
= µg (z).

It now follows that if µ satis�es (5.2.1) then so does σ (z) = µ (z): we have that

µz (z) + µ (z)φ (z) = µ (z)
(
µz̄ (z)− µ (z)φ (z)

)
.

Substitution gives

σz (z) + σ (z)φ (z) = σ (z)
(
σz̄ (z)− σ (z)φ (z)

)
,

which is the conjugate of (5.2.1).
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5.3.1 Ellipticity

From the de�nition of µg we have that (5.2.1) is equivalent to

gzz =
gzgz

|gz|2 + |gz|2
gzz +

gzgz

|gz|2 + |gz|2
gzz −

gzgz
(
gzφ− gzφ

)
|gz|2 + |gz|2

.

If we put

a = a(z) =
gzgz

|gz|2 + |gz|2
,

then the equation reads as

gzz = agzz + agzz −
(
gzaφ− gzaφ

)
. (5.3.2)

In [7] it is shown that for such systems, the condition for ellipticity takes the

form ∣∣1 + aλ+ aλ
∣∣ > 0

for all λ ∈ C with modulus 1. The choice λ = − gzgz
|gz ||gz | gives∣∣|gz|2 + |gz|2 − 2 |gz| |gz|
∣∣ > 0,

which is equivalent to the condition that J(z, g) > 0. Since

J(z, g)J(g(z), f) = 1,

we have the corollary to Theorem 5.3.

Corollary 5.8. The equation de�ned at (5.3.2) for g is elliptic, and uniformly

elliptic if and only if ‖J(z, f)‖∞ <∞. A homeomorphic solution g : D→ D to the

equation (5.3.2) will have as its inverse a harmonic map f : D→ (D, ρ).

5.3.2 Gradient And Laplacian Of |µ|2

Note that ∇ |µ|2 vanishes if and only if |µ|2z = 0 as |µ|2z = |µ|2z. At these critical

points we have that

µzµ+ µµz = 0,

and so from (5.2.1) we have, after rearrangement, that

µz = −µ
(
µz +

(
φ+ µφ

))
.
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Substituting the complex conjugate into itself gives

µz = −µ
(
−µ
(
µz +

(
φ+ µφ

))
+
(
φ+ µφ

))
,

or (
1− |µ|2

)
µz = −µφ

(
1− |µ|2

)
;

therefore µz = −µφ (as ‖µ‖∞ ≤ k < 1) and also µz = µφ at points where the

gradient vanishes. Among these are the points where the dilatation of a harmonic

mapping has its maximum.

For the Laplacian of |µ|2, we have that

|µ|2zz = µzzµ+ |µz|2 + |µz|2 + µµzz

= 2< (µzzµ) + |µz|2 + |µz|2 ,

so at critical points we have that

1

4
∆ |µ|2 = 2< (µzzµ) + |µ|2 |φ|2 .

5.4 Solutions For Separable Families

We shall now take a short look into cases where either f or µ have a speci�c form.

We �rst note that the case of the Euclidean and hyperbolic metric they are radially

symmetric: their metrics can be represented as a function of |z|, that is ρ (z) =

λ (|z|). We will consider metrics of this form on the disk. Note

φ(z) = (log ρ(z))z =
λ′ (|z|)
2λ (|z|)

z̄

|z|
,

and that it is separable. We shall now investigate when we have solutions belonging

to certain families of separable functions.

5.4.1 Solutions With f Separable

We know that the identity is the only radial stretching solution from the following

argument. From [30], we have that any quasiconformal harmonic extension of a

quasisymmetric mapping is unique. Any radial stretchings mapping the unit disc

to itself must be the identity on the restriction the boundary unit circle. Since the

identity mapping of the unit disk is quasiconformal and harmonic, this must be the

unique extension of any mapping that �xes the boundary. A similar argument shows

an analogous result holds for anti-radial stretchings.
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Before we examine the case for radially �xed solutions reiθ 7→ reiτ(θ) and similar,

we shall note �rst that when we say τ is linear, etc., that it is linear on [0, 2π) after

some rotation.

Lemma 5.9. The identity is the only radially �xed solution.

Proof. (Lemma 5.9) We have, since the inverse of a radially �xed mapping is radially

�xed, when g
(
reiθ
)

= f−1
(
reiθ
)

= reiτ(θ) where τ is not a simple rotation (that is,

τ ′ (θ) 6≡ 1), that

µ
(
reiθ
)

=
1− τ ′ (θ)
1 + τ ′ (θ)

ei2θ.

The θ-derivative is

µθ
(
reiθ
)

= 2i

(
1− τ ′ (θ)
1 + τ ′ (θ)

+ i
τ ′′ (θ)

(1 + τ ′ (θ))2

)
ei2θ.

Therefore

µz =
1

r

(
1− τ ′ (θ)
1 + τ ′ (θ)

+ i
τ ′′ (θ)

(1 + τ ′ (θ))2

)
eiθ,

and

µz = −1

r

(
1− τ ′ (θ)
1 + τ ′ (θ)

+ i
τ ′′ (θ)

(1 + τ ′ (θ))2

)
ei3θ.

After rearranging, (5.2.1) becomes

2

1 + τ ′

[
1

r

(
1− τ ′

1 + τ ′
+ i

τ ′′

(1 + τ ′)2

)
+

1− τ ′

1 + τ ′
λ′

2λ

]
= 0,

so

1 + i
τ ′′

(1− τ ′2)
= −r λ

′

2λ
.

The right-hand side is real, which means we must have τ(θ) linear (in the same sense

as given before), and also λ(r) = Cr−2 for some constant C. By Picard-Lindelöf

(Theorem A.6) this solution is unique for �xed C away from 0, thus there is no

solution of this form as limr→0 λ(r) =∞.

5.4.2 Solutions With µ Separable

Lemma 5.10. Suppose D is equipped with a radially symmetric metric. If µ satis�es

(5.2.1) and µ is radially symmetric or anti-radially symmetric, then µ is identically

zero or µ (z) is a constant multiple of z
|z| and the metric density ρ (z) is a constant

multiple of |z|.

Proof. (Lemma 5.10) Suppose µ(z) = z
|z|α (|z|), we then have from (5.2.1), after
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some rearranging,

α′ (|z|) +
α (|z|)
|z|

+ α (|z|) λ
′ (|z|)
λ (|z|)

=
z

|z|
α (|z|)

(
α′ (|z|)− α (|z|)

|z|
− α (|z|) λ

′ (|z|)
λ (|z|)

)
.

Note that the left side of this equation is real for all z; therefore the right must be

as well. This can only happen if both sides equal zero, otherwise for any choice of z

not real the equality will be incorrect; so either α(t) = 0 for all t, or both

α′ (|z|) +
α (|z|)
|z|

+ α (|z|) λ
′ (|z|)
λ (|z|)

= 0

and

α′ (|z|)− α (|z|)
|z|

− α (|z|) λ
′ (|z|)
λ (|z|)

= 0.

We add and subtract these last two equations from one another, then rearrange the

results. Upon cancellation of a common α (|z|) term, which we have assumed is

nonzero, we obtain that

α′ (|z|) = 0 and that
1

|z|
= −λ

′ (|z|)
λ (|z|)

.

In this case λ(t) = Ct−1 for some constant C, and α(t) is constant. So for the

Euclidean and hyperbolic metrics, the only radially symmetric solution has µ(z) = 0

everywhere.

Similar analysis for anti-radially symmetric case gives (we suppress the argu-

ments for clarity) [
α′ − α

|z|
+ α

λ′

λ

]
z̄

z
=

z

|z|
α

([
α′ +

α

|z|

]
− αλ

′

λ

)
requires either α(t) = 0 everywhere or α(t) constant and λ(t) = Ct for C constant.

Since ‖µ‖∞ = k < 1, we cannot have µ radially �xed. However, we can scale the

family by some constant k ∈ [0, 1).

Lemma 5.11. Suppose D is equipped with a radially symmetric metric. If µ satis�es

(5.2.1) and µ
(
reiθ
)

= kreiτ(θ) for some constant k ∈ [0, 1), then k = 0.

Proof. We will assume that k 6= 0, as we know the result for µ (z) ≡ 0. Suppose

µ
(
reiθ
)

= kreiτ(θ); (5.2.1) becomes(
1 + τ ′ (θ) +

rλ′ (r)

λ (r)

)
ei(τ(θ)−2θ) = kr

(
1− τ ′ (θ)− rλ′ (r)

λ (r)

)
.
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Note that the right side of this equation is real for all z = reiθ; therefore the left

must be as well. This can only happen if τ(θ) = 2θ, τ (θ) = 2θ+π or both sides are

zero.

In the �rst and second cases, we then have

3 +
rλ′ (r)

λ (r)
= ∓kr

(
1 +

rλ′ (r)

λ (r)

)
,

so, for some constant c,

λ(r) = c
(rk ± 1)2

r3
,

and by Picard-Lindelöf (Theorem A.6) this solution is unique for �xed c away from

0. Since λ must be �nite on D, this is impossible as this formula goes to in�nity as

r → 0.

Therefore we must have the third case, where(
1 + τ ′ (θ) +

rλ′ (r)

λ (r)

)
= rk

(
1− τ ′ (θ)− rλ′ (r)

λ (r)

)
= 0,

but this too is impossible as r 6≡ 0 and k 6= 0, as otherwise

1 + τ ′ (θ) +
rλ′ (r)

λ (r)
= 0 = 1− τ ′ (θ)− rλ′ (r)

λ (r)
,

and adding both sides together would have 2 = 0.

Lemma 5.12. Suppose D is equipped with a radially symmetric metric λ. If µ

satis�es (5.2.1) then µ is a polar independent function if and only if

◦ µ ≡ 0, or

◦ λ (r) = Krc for some constants K, c > 0 and µ = Le−i(cθ+α) for L ≥ 0 and α

constant.

In particular, the only polar independent solution for the Euclidean and hyperbolic

metrics is µ (z) = 0.

Proof. (Lemma 5.12) Suppose µ
(
reiθ
)

= ρ (r) eiτ(θ) where ρ (r) 6≡ 0; (5.2.1) becomes(
ρ′ +

ρ

r
τ ′ + ρ

λ′

λ

)
ei(τ−2θ) = ρ

(
ρ′ − ρ

r
τ ′ − ρλ

′

λ

)
.

If τ (θ) = 2θ + nπ where n ∈ Z, we have that

ρ′ (r) = −ρ (r)
1 + ρ (r)

1− ρ (r)

(
2

r
+
λ′ (r)

λ (r)

)
,
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so, for some constant C, we have that

ρ (r) =
2

r

(
Crλ (r)±

√
C2r2λ (r)2 − 4Cλ (r)

)
− 2

,

however, as r → 0, ρ (r)→ −1, which is impossible as ρ ≥ 0.

Otherwise, as before, the absolute value of both sides must equal zero; since

ρ 6≡ 0 we require

ρ′ +
ρ

r
τ ′ + ρ

λ′

λ
= 0 = ρ′ − ρ

r
τ ′ − ρλ

′

λ
,

so ρ is constant, and τ ′ = −rλ′λ−1; therefore τ = cθ + L and λ = Kr−c. For

orientation preserving maps, no λ work and so no solutions exist. Therefore, µ

must be orientation-reversing and be of the form stated in the statement of the

theorem.

5.5 Investigation Of The Euclidean Metric Case

In the case of the Euclidean metric, φ ≡ 0 and (5.2.1) reduces to

µz = µµz̄. (5.5.1)

Although we are obviously interested in these results primarily in the hyperbolic

case, we shall discuss the Euclidean case brie�y, as using only this version of Theorem

5.3 we may derive the result for the hyperbolic case as well. We formulate the result

in the following corollary.

Corollary 5.13. We may derive (5.2.1) for the hyperbolic metric from (5.5.1).

Proof. (Corollary 5.13) First note that at the origin the hyperbolic metric is �at, so

harmonic functions with respect to either metric are indistinguishable at this point.

Therefore

µz (0) = µz (0)µ (0)

for both metrics.

Let g be the inverse of a harmonic mapping and η (z) be a Möbius transformation:

η (z) = λ
z − a
1− az

, |λ| = 1, a ∈ D.

Then g ◦ η is also the inverse of a harmonic mapping as composition with isometries
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preserves harmonicity. We compute µg◦η:

(g ◦ η)z = gz (η) η′

(g ◦ η)z = gz (η) η′

η′ (z) = λ
1− |a|2

(1− az)2(
η′

η′

)
(z) = λ−2 (1− az)2

(1− az)2

so

µg◦η (z) = µg (η (z))λ−2 (1− az)2

(1− az)2 . (5.5.2)

Calculating the �rst-order derivatives, we obtain

(µg◦η)z (z) = [µg (η (z))]z λ
−2 (1− az)2

(1− az)2 + µg (η (z))λ−2

[
(1− az)2

(1− az)2

]
z

= (µg)z (η (z)) η′ (z)λ−2 (1− az)2

(1− az)2 − µg (η (z))λ−22a
(1− az)

(1− az)2 ,

and

(µg◦η)z (z) = [µg (η (z))]z λ
−2 (1− az)2

(1− az)2 + µg (η (z))λ−2

[
(1− az)2

(1− az)2

]
z

= (µg)z (η (z)) η′ (z)λ−2 (1− az)2

(1− az)2 + µg (η (z))λ−22a
(1− az)2

(1− az)3 ,

so at zero, we have that

(µg◦η)z (0) = (µg)z (η (0)) η′ (0)λ−2 − 2aµg (η (0))λ−2

= (µg)z (−λa)
(
1− |a|2

)
λ−1 − 2aµg (−λa)λ−2,

and that

(µg◦η)z (0) = (µg)z (η (0)) η′ (0)λ−2 + 2aµg (η (0))λ−2

= (µg)z (−λa)
(
1− |a|2

)
λ−3 + 2aµg (−λa)λ−2.

Substituting this into our earlier equation gives, with w = −λa

((
1− |w|2

)
(µg)w + 2wµg

)
λ−1 =

((
1− |w|2

)
(µg)w − 2wµg

)
µgλ

−1,
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which upon simpli�cation gives

(µg)w (w) +
2w

1− |w|2
µg (w) =

(
(µg)w (w)− 2w

1− |w|2
µg (w)

)
µg (w) , (5.5.3)

which equals (5.2.1) for the hyperbolic metric (as can be seen by the substitution

φ(z) = 2z
(
1− |z|2

)
); since w can be any value in D we have Theorem 5.3 for that

case.

Remark 5.14. Let us return to the �rst-order derivatives of µg◦η: the choice of λ = −1

gives

(µg◦η)z (0) = −
[
(µg)z (a)

(
1− |a|2

)
+ 2aµg (a)

]
(µg◦η)z (0) = −

[
(µg)z (a)

(
1− |a|2

)
− 2aµg (a)

]
,

so

−a (µg◦η)z (0) = a
(
1− |a|2

)
(µg)z (a) + 2 |a|2 µg (a)

−a (µg◦η)z (0) = a
(
1− |a|2

)
(µg)z (a)− 2 |a|2 µg (a) ,

which upon adding gives

a (µg◦η)z (0) + a (µg◦η)z (0) = −
(
1− |a|2

) (
a (µg)z (a) + a (µg)z (a)

)
. (5.5.4)

Therefore we obtain

(µg◦η)z (0) = (µg◦η) (0) (µg◦η)z (0) = µg (a) (µg◦η)z (0) .

5.6 The Hyperbolic Metric Case

We already derived this formula earlier, but we will restate it here: we are interested

in �nding solutions to

µz +
2z

1− |z|2
µ = µ

(
µz −

2z

1− |z|2
µ

)
. (5.6.1)

Suppose that µ (z0) = 0. From (5.5.2) we have, when λ = 1 and a = −z0, that

µg◦η (0) = µg (z0) ;

therefore we may assume that z0 = 0. Hence either µ ≡ 0 or there is some other

value at, say, w with µ (w) 6= 0. In the �rst case, gz ≡ 0 and so g (and thus f) must
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be holomorphic; we shall assume the second case is true.

Let us suppose µ (z) = zmznα (z) where m + n > 0, α has �nite (at least)

�rst-order partial derivatives, α(0) 6= 0 and |α| is bounded. Then

µz (z) = mzm−1znα (z) + zmznαz (z) ,

µz (z) = nzmzn−1α (z) + zmznαz (z) ,

and

zm−1zn

(
zαz +

(
m+

2 |z|2

1− |z|2

)
α

)
= zm+nzm+n−1α

(
zαz +

(
n− 2 |z|2

1− |z|2

)
α

)
,

so when z 6= 0 we have that

zαz +

(
m+

2 |z|2

1− |z|2

)
α = zn+1zm−1α

(
zαz +

(
n− 2 |z|2

1− |z|2

)
α

)
.

Choose ε > 0 and evaluate this at εeiθ :

εeiθαz +

(
m+

2ε2

1− ε2

)
α = εm+neiθ(n−m+2)

(
εe−iθαzα +

(
n− 2ε2

1− ε2

)
|α|2
)
.

This means∣∣∣∣εeiθαz +

(
m+

2ε2

1− ε2

)
α

∣∣∣∣ ≤ εm+n |α|
(
ε |αz|+

(
n− 2ε2

1− ε2

)
|α|
)
.

If we take the limit as ε → 0, as αz and αz are �nite then the right hand goes

to zero while the left goes to m |α (0)|; as |α (0)| 6= 0 we must have m = 0. So

µ (z) = znα (z).

5.7 Extending Quasisymmetric Maps

We shall now brie�y investigate the use of the equation (5.2.1) to the problem

of the Schoen conjecture. First, suppose we are given a quasiconformal mapping

f : D → D with smooth complex dilatation. We wish to know when the boundary

values of f are also those of a harmonic mapping. Equivalently, that there is a

harmonic mapping h : D→ D such that (h−1 ◦ f) (z) = z, z ∈ S.
It is a di�cult question to decide when two mappings have the same boundary

values from their complex dilatation. However, because of stability results of Wolf,

Markovic, etc., (see [19] and [33], for example) , we need only show that g ◦ h is

quasisymmetric with small constant (depending on h). To remove this dependence

we in fact need that h−1 ◦ f is symmetric. This can be formulated as a condition on
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the dilatation of the composition.

Lemma 5.15. The mapping f : D→ D has symmetric boundary values if |µf | → 0

appropriately where µf is the complex dilatation of f .

As we have stated earlier, a proof for this can be found in [33].

Note that if f has symmetric boundary values, then so does g = f−1 : we know

that |µg| = |µf | by (2.5.3).

From 2.5.2, we have that

µh−1◦f (z) = µf◦g−1(g(z)) =
µh−1(z)− µf−1(z)

1− µh−1(z)µf−1(z)

(
(f−1)z (z)

|(f−1)z (z)|

)2

,

and therefore we set µ = µf−1 and de�ne (for an as yet undetermined harmonic

function h)

ν (z) =
µh−1(z)− µ(z)

1− µh−1(z)µ(z)
,

where we want |ν (z)| → 0 as appropriate. Solving this for µh−1 gives

ν − νµh−1µ = µh−1 − µ

ν + µ = µh−1 (1 + νµ)

µh−1 (z) =
ν (z) + µ (z)

1 + ν (z)µ (z)
,

and as the left-hand side of this equation is supposed to be the complex dilatation

of a harmonic mapping, it must satisfy (5.2.1). Noting(
ν + µ

1 + νµ

)
z

=
(νz + µz) (1 + νµ)− (ν + µ) (νzµ+ νµz)

(1 + νµ)2

=
νz
(
1− |µ|2

)
+ (1 + νµ)µz − (ν2 + µν)µz

(1 + νµ)2(
ν + µ

1 + νµ

)
z

=
νz
(
1− |µ|2

)
+ (1 + νµ)µz − (ν2 + µν)µz

(1 + νµ)2 ,

then (5.2.1) becomes

νz
(
1− |µ|2

)
+ (1 + νµ)µz − (ν2 + µν)µz

(1 + νµ)2 +
ν + µ

1 + νµ
φ

=
ν + µ

1 + νµ

(
νz
(
1− |µ|2

)
+ (1 + νµ)µz − (ν2 + µν)µz

(1 + νµ)2 − ν + µ

1 + νµ
φ

)
,
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so

νz =
ν + µ

1 + νµ

(
νz +

(1 + νµ)(
1− |µ|2

)µz − ν (ν + µ)(
1− |µ|2

)µz − (1 + νµ) (ν + µ)(
1− |µ|2

) φ

)

− (1 + νµ)(
1− |µ|2

)µz +
ν (ν + µ)(
1− |µ|2

)µz − (1 + νµ) (ν + µ)(
1− |µ|2

) φ.
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Chapter 6

Conclusions And Future Work

The most interesting results of this thesis are Theorem 3.10 and Theorem 3.11.

It provides us with a condition on a radially symmetric metric which says whether

there exists any mappings of �nite distortion blowing up the origin whose Lp-norm

of their distortion is �nite. Using this theorem, we may then attempt to resolve

decompositions that arise in the studies of Kleinian groups and the iterations of

rational maps. This generalises some results previously established by Martin and

McKubre-Jordens that ties into many problems in the physical sciences.

Theorem 4.10 was quite a surprising result: in the equivalent problem of the

disk, we may �nd mappings that blow up the point to a disk in any Lp space for any

p ≥ 1; D \ [−1, 1] is quasiconformally equivalent, yet we can only blow up a point

to this interval in the method listed for spaces where 1 ≤ p < 5
2
for functions of the

given form from Section 4.3.

6.1 Blowing Up Points And Resolving Decomposi-

tions

In Chapter 3 we focused primarily on establishing some results that we would be

using in Chapter 4 to resolve singularities arising from decompositions in certain

situations. Theorems 3.10 and 3.11 provide us with a good test for the existence of

functions of �nite distortion whose distortions lie in Lp spaces for particular values

of p, as well as bounds on the Lp norm and the constant that appears in Theorem

3.13. One obvious thing that could be done would be to investigate this for other

metrics; this would probably depend on the application of interest.

For Theorem 4.10, there are a few more extensions that could be investigated:

for example, an arbitrary function that mapped the disk to itself that preserved the

interval multiplied the same type of h(t) listed in Chapter 4. However, it seems

unlikely, as near φ = 0, π the function would have to act quite similarly to the

form given in Theorem 4.10, and since that is the area where the problems generally
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arise, it seems reasonable to conjecture that the same di�culties crop up once again.

Other potential functions would have to have a very di�erent form to this.

Let us consider another problem. Let t ∈ R and r < t ≤ 1. For an interval about

t of radius r, I = [t− r, t+ r] we de�ne the mapping

φI (z) = z − r2

z − t+
√

(z − t)2 − r2

“ = ”t+

√
(z − t)2 − r2

where “ = ” is used here because of some issues around the choice of branches; it

is illustrated below for t = 0, r = 1. A way to con�rm these observations is via

composition α− ◦ α−1
+ where

C \ [−1, 1]
α+←− C \ D α−−→ C \ [−i, i]

and α± (z) = 1
2

(
z ± 1

z

)
: �rst, the inverse of α+ is

α−1
+ (z) “ = ”z +

√
z2 − 1,

where again we use “ = ” to be mindful of the branch choice. The composition is

then

α− ◦ α−1
+ (z) =

1

2

(
z +
√
z2 − 1 +

1

z +
√
z2 − 1

)
= z − 1

z +
√
z2 − 1

.

Figure 6.1.1: The map z 7→ z− 1
z+
√
z2−1

maps the unit circle (left) to the lemniscate

(right)

For our purposes, a key property will be that the image of the unit circle is the

�gure eight curve, with four angles of π/2 formed at the origin. The map has the

additional properties that it is symmetric in the real axis and imaginary axis, as

each of the composites is, which makes the map odd: a fact not obvious from the

simpli�cation to
√
z2 − 1. Given an interval I we write φI (2i) = a + ib; clearly

b > 0, and set

ϕI (z) =
2

b
(φI (z)− a) .
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This map conformally takes C\ [t− r, t+ r]→ C\ [t− is, t+ is] for some real s and

the exterior of the disk D (t, r) to the exterior of a lemniscate with vertex at t. In

particular,

◦ ϕI (2i) = 2i,

◦ ϕI (R \ [t− r, t+ r]) = R \ {t}, and

◦ ϕI has a continuous surjective extension to the upper half-space H+ → H+,

and also to the lower half-space.

Let I0 =
⋃
I0
k be a possibly in�nite collection of disjoint closed intervals I0

k =

[tk − rk, tk + rk]. Set

ϕ1 (z) = ϕI01 (z) , I1 =
∞⋃
k=2

I1
k

where

I1
k = ϕ1 ([tk − rk, tk + rk]) =

[
t̃k − r̃k, t̃k + r̃k

]
.

Then we may inductively de�ne

ϕk (z) = ϕIk−1
k

(ϕk−1 (z)) , Ik =
∞⋃

j=k+1

Ikj .

This gives us a sequence of conformal mappings C \ {I0} → C. We would like to

prove some result such as:

Conjecture 6.1. Suppose C \ {I0} is a domain. Then the sequence {ϕk}∞k=1 con-

verges locally uniformly on H+, and hence H−, to a mapping ϕ : C → C which

is

◦ continuous on C \
⋃
k I

0
k ,

◦ conformal on C \
⋃
k I

0
k , and

◦ ϕ (D (tk, rk)) consists of two lobes (forming a lemniscate) meeting the real line

with internal angle π/2 and external angles π/4.

Remark. Note that C \ {I0} may not be a domain: for example, setting tk = 1
k
and

rk = 1
3k(k+1)

gives an I0 that is not closed.

From Theorem A.3, we know that there is a subsequence which converges locally

uniformly to a conformal mapping on C\
⋃
k I

0
k since we have a family of normalised

(by ϕk (±2i) = ±2i) conformal mappings. Consider such a convergent subsequence

{ϕk}. Also, by the inductive construction, ϕk ◦ϕ−1
k−1 maps the kth disk D (tk, rk) to a

lemniscate whose lobes meet at 0. The problem arises for n 6= k ϕn ◦ϕ−1
n−1: the disks
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D (tk, rk) do not remain circular under these mappings; and certain obvious �xes

such as `�lling in' the area in some bounded quasi-annulus around the appropriate

disk in a simple way to ensure the mapping on the boundary is the identity, or using

the technique used in the proof of Theorem 4.5 via the quasiconformal Schoen�ies

extension do not permit the given function to remain conformal.

If we could solve this problem, the inductive construction shows that the sequence

ϕk◦ϕ−1
1 converges locally uniformly on C\

⋃
k I

1
k . The properties then follow from the

properties of local uniform convergence (continuity), Theorem A.3 (conformality)

and of the inductive construction (lemniscates).

6.2 Quasiconformal Harmonic Extensions

In Chapter 5, we tied together the two properties of quasiconformal and harmonic

mappings to construct Theorem 5.3. This is a very tempting result: it is a �rst order

partial di�erential equation (albeit a nonlinear one), and we already know how to

turn the solution of this problem into the �nal form that we want: a quasiconformal

harmonic extension of a quasisymmetric mapping on the boundary of some model

of the hyperbolic plane. However, the big di�culty here is the lack of boundary

conditions for this new equation: we have the quasisymmetric mapping, but outside

of certain classes of such mappings the ability to relate the boundary conditions of

one problem to another is still unknown.

Other analysis for certain more general classes of functions were done, but in

general the ability to analyze them was rather limited, due to the corresponding

forms of (5.2.1) being very complex. Perhaps there is a currently unknown class of

functions that provide solutions to this PDE: if there are any, they would have to

be somewhat asymmetric, for as we have noted in Chapter 5 there are no radially

symmetric solutions.

Aside from this, it is a rather elegant equation that captures this problem: it is

structurally similar to the simpler case for the Euclidean metric if we consider (say)

the operators D1 : µ 7→ µz +φµ and D2 : µ 7→ µz −φµ as some variants of the usual

derivative operators that have been altered to depend on the metric.

Future work that could be done in this area would be to perhaps use this, along-

side some other techniques that were not covered during this thesis, to try to work

on, for example, situations where |µ| 6→ 0 at the boundary. For example, if we

examine (5.2.1), for the hyperbolic disk case

(
1− |z|2

)
µz + 2zµ = µ

((
1− |z|2

)
µz̄ − 2zµ

)
.

If we consider the case where |z| → 1, if µz and µz are �nite going towards the
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boundary, we get (if µ
(
eiθ
)
6= 0),

e−2iθ = −µ (eiθ)

and as ‖µ‖∞ < 1 we need |µ| → 0. However, there are certainly ways for us to

construct a bounded function µ over D (or H, as appropriate) where both �rst

derivatives go to in�nity at the boundary, which if it decreased at a su�cient rate

would balance out the factor
(
1− |z|2

)
.
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Appendix A

Miscellaneous Theorems And Results

In this section we will list theorems mentioned and arguments used in the text in

multiple areas whose details would break the �ow of the argument.

Theorem A.1 (Arzelà-Ascoli Theorem). A family F of continuous functions from a

separable metric space to a compact metric space is normal if and only it is equicon-

tinuous.

A proof appears in [43].

Lemma A.2 (Chain Rule for Partial Derivatives (Two-Dimensional)). If g is a

function real di�erentiable at z and f is a function real di�erentiable at w = g (z)

then

(f ◦ g)z (z) = fw (w) gz (z) + fw̄ (w) gz̄ (z),

and

(f ◦ g)z̄ (z) = fw (w) gz̄ (z) + fw̄ (w) gz (z).

We highlight it here to make the following observation which we will use multiple

times: suppose that g is the inverse of f . Then, writing w = g (z) we have that

fw(w) =
gz (z)

J(z, g)
,

and

fw̄(w) = − gz̄ (z)

J(z, g)
.

Theorem A.3. Let {fk}∞k=0 be a family of K-quasiconformal mappings fk : C →
C normalised by the conditions fn (0) = 0 and fn (1) = 1. Then {fk}∞k=0 is a

normal family. Moreover every limit mapping is a nonconstant K-quasiconformal

homeomorphism of Ĉ.

The proof can be found in [6, p.134]. Note that we can change these normaliza-

tion conditions easily as there are many suitable conformal mappings.
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Lemma A.4 (Application of Jensen's Inequality). If p ≥ 1 and a, b ≥ 0 then

ap + bp ≤ (a+ b)p ≤ 2p−1 (ap + bp) . (A.0.1)

Proof. The second inequality follows from the convexity of x 7→ xp on [0,∞) and

Jensen's inequality. The �rst follows from the Minkowski inequality.

For the next theorem we require a speci�c case of the Lipschitz condition.

De�nition A.5. Let f : R→ R. We say that f satis�es a Lipschitz condition if for

all x, y ∈ R,
|f (x)− f (y)| ≤M |x− y|

for some constant M .

We quote the theorem from [28]:

Theorem A.6 (Picard-Lindelöf Theorem). Let Ω be an open subset of R2 and a

continuous function f(x, y) de�ned as f : Ω → R. If (x0, y0) ∈ Ω and f satis�es a

Lipschitz condition in the variable y in Ω. Then the ordinary di�erential equation

de�ned as dy
dx

= f (x, y) with the initial condition y (x0) = y0 has a unique solution

y (x) on some interval |x− x0| ≤ δ.

A proof for this can be found in [26].
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Appendix B

Alternative Bounds For P

Lemma B.1. For 1 ≤ p ≤ 2 and t ∈ [0, 1] we have that

P (t) ≤ P2(t) =
1

tp+1
− tp+1, (B.0.1)

whilst for 2 ≤ p we have that

P (t) ≥ P1(t) =
1

tp+1
− 1. (B.0.2)

Proof. For the �rst result, we want

(
1− t2

) (
1 + t2

)p−1 ≤ 1− t2p+2.

Let s = t2 and write the di�erence

h(p) = 1− sp+1 − (1− s) (1 + s)p−1

as a function of p. Then h(1) =s− s2 and h(2) = s2− s3, both of which are positive

in the domain so the result is true for p = 1, 2 (noting for later that h(2) ≤ h(1)).

Di�erentiating with respect to p, we obtain

h′(p) = sp+1 ln

(
1

s

)
− (1− s) (1 + s)p−1 ln (1 + s) .

We wish to �nd the minimum value of this function. Setting h′(p) = 0 gives

sp+1 ln

(
1

s

)
= (1− s) (1 + s)p−1 ln (1 + s) .

The left hand side is a decreasing function of p as s ≤ 1 while the right hand side is

increasing. So there is a unique p value for which this is true for a given s; therefore,
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as a function of p, there is at most a single maximum or minimum. As h(1) > 0 and

h(2) > 0 and

h′(2) = s3 ln

(
1

s

)
−
(
1− s2

)
ln (1 + s) ≤ 0

then the minimum occurs at p = 1 or p = 2, and as we observed earlier, it is in fact

at p = 2.

For the second, choose N such that N ≤ p < N + 1; from our assumptions,

N ≥ 2. We want to show

1− tp+1 ≤
(
1− t2

) (
t2 + 1

)p−1
,

which follows from

1− tN+2 ≤
(
1− t2

) (
t2 + 1

)N−1
.

This is clearly true for t = 1, so assume t < 1. We can then rewrite this as

bN+1
2 c∑

k=0

t2k +

bN2 c∑
k=0

t2k+1 ≤
N−1∑
k=0

(
N − 1

k

)
t2k +

N−1∑
k=0

(
N − 1

k

)
t2k+1.

and as
⌊
N
2

⌋
≤
⌊
N+1

2

⌋
≤ N − 1 and 1 ≤

(
N−1
k

)
this result holds.
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Nomenclature

AR The annulus with inner radius 1 and outer radius R.

A (r, R) The annulus with inner radius r and outer radius R.

C The complex plane.

C∞ The class of all in�nitely di�erentiable functions.

D The unit disk of the complex plane.

D∗ The unit disk with the origin removed.

GD The group of isometries of the Poincaré disk.

G+
D The group of Möbius transformations of the Poincaré disk.

GH The group of isometries of the Poincaré half-plane.

G+
H The group of Möbius transformations of the Poincaré half-plane.

H The upper half-plane.

Ip A condition integral of a radially symmetric metric that, if �nite, is nec-

essary and su�cient to show that there is a mapping of �nite distortion

that blows up the origin with distortion in the speci�ed Lebesgue space.

Kp Given a mapping of �nite distortion, an integral specifying the associ-

ated Lebesgue norm of the distortion.

K(z, f) The quasiconformal distortion function.

K(z, f) The �nite distortion function.

µ, µf The Beltrami coe�cient or complex dilatation.

PGL(2,R) The projective general linear group of 2 by 2 real matrices.

PSL(2,R) The projective special linear group of 2 by 2 real matrices.
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Φf (z) The Hopf di�erential of the function.

S The unit circle.
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Index

Lp-space, 17

local, 17

admissible, 27

Beltrami coe�cient, 18

Beltrami equation, 18

blowing up a point, 27

cellular, 55

complex di�erential operators, 11

complex dilatation, 18

conformal, 12

conformally equivalent, 12

conformally natural, 6

continuum, 55

decomposition, 55

resolution, 56

resolution of, 4

di�erential matrix, 11

dilatation, 5

Dirichlet energy, 16

Dirichlet energy functional, 16

distortion, 11

bounded, 19

�nite, 21

�nite distortion function, 21

quasiconformal distortion function, 19

extension

Beurling-Ahlfors, 5, 8

Douady-Earle, 6, 8

Fuchsian group, 13

Grötzsch-Type extremal problem, 30

harmonic map equation, 9, 16

harmonic mapping, 16

Hilbert-Schmidt norm, 22

Hopf di�erential, 18

hyperbolic manifold, 14

hyperbolic plane, 14

inverse complex dilatation condition, 91

Kleinian group, 13

linear distortion function, 12

Lipschitz condition, 112

lower distance, 55

Möbius transformation, 13

mesh, 56

minorised, 28

modulus, 27

Nitsche-Grötzsch conversion, 32

Nitsche-Type extremal problem, 29

operator norm, 22

Picard-Lindelöf Theorem, 112

Poincaré

disk, 14

disk-half-plane equivalence, 15

half-plane, 14

polar independent, 25

quasicircle, 63

quasiconformal, 17
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K-quasiconformal, 19

quasisymmetric, 20

M -quasisymmetric, 21

η-quasisymmetric, 21

radial stretching, 24

anti-radial, 24

radially �xed, 25, 96

radially symmetric, 25

anti-radially symmetric, 25

regular, 56

Riemann Mapping Theorem, 13

Schoen Conjecture, 7

separable, 23

separation

in distance, 57

in modulus, 56

Sobolev norm, 17

Sobolev space, 17

local, 17

symmetric, 13

Theorem

Bounding, 31, 37

Condition, 31, 45

Martin�McKubre-Jordens, 34

uniformisation theorem, 13

upper distance, 55

upper-semicontinuity, 56
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