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Abstract 

As part of the New Zealand Aluminium Smelters (NZAS) upgrade, a hot butt 

· cleaning system has been proposed, this would remove the bath from anodes as 

they are removed from the cells. It is expected that the time to cool for hot 

cleaned anodes would be significantly less than for current method of allowing the 

butts to cool before the bath is removed. 

In this project a mathematical model of the cooling process of both the clean and 

dirty anodes is developed. This model will aid in the investigation of the hot butt 

cleaning system by showing the difference in cooling times between the clean and 

dirty anodes. 

The temperature profiles within both clean and dirty anodes is calculated for one-, 

two- and three-dimensional models. Temperature changes in the anodes with time 

are also compared to experimental data. 
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Nomenclature 

All constants and variables used in this thesis are defined when first used. Com­

monly used notation is summarized here. 

a , b, c, d, e, f , g 

A 

A,B,C,D 

Ah 

Bi 

c 

D 

F(x), G(t) 

Fo 

g 

h 

diffusivity coefficients [m2/s) 

surface area [m2) 

defined variables 

horizontal downward facing surface area [m2
) 

Biot number [-] 

heat capacity [kJ/kgK] 

defined constant 

diameter of sphere [m) 

energy generated in a system [ J) 

energy transferred into a system [J] 

energy transferred out of a system [J] 

energy stored in a system [ J) 

defined function 

Fourier number [-] 

gravitional acceleration [m/ s2
) 

heat transfer coefficient [W/m2 K] 

convection heat transfer coefficient [W/m2 K] 



H 

H 

H 

k 

L 

Nu 

p 

Pr 

q 

radiation heat transfer coefficient [W/m2 I<] 

height [m] 

characteristic length [m] 

dimensionless heat transfer coeffecient [-] 

thermal conductivity [W/mI<] 

thermal conductivity in x-direction [W/mI<] 

thermal conductivity in y-direction [W/mI<] 

thermal conductivity in z-direction [W/mI<] 

length [m] 

longest linear dimension [m] 

x dimension [m] 

y dimension [ m] 

z dimension [ m] 

Nusselt Number[-] 

mean horizontal perimeter [m] 

Prandtl Number[-] 

rate of heat transfer [kW] 

rate of convection heat transfer [kW] 

rate of radiation heat transfer [kW] 

rate of heat transfer [kW] 

qi, qz , q3, q4, q5, q6 rate of heat transfer from specific direction [kW] 

RaH Rayleigh Number [-] 

Re Reynolds Number[-] 

t time [s] 

v 



T 

v 

x,y,z 

time normalisation constant ( s] 

normalised time (-] 

temperature (K] 

initial temperature (K] 

temperature normalisation constant ( K] 

surface temperature of anode (K] 

ambient temperature (K] 

normalised temperature [-] 

air speed (m/ s2
] 

length normalisation constant [m] 

volume of body [m3] 

spatial coordinate 

length normalisation constant [m] 

x, y, y normalised spatial coordinate [-] 

X(x), Y(y), Z(z) defined function 

ZJ 

Greek 

8 

t:..t 

6.x 

t:..y 

6.z 

thickness of body ( m] 

thermal diffusivity (m2 
/ s] 

coefficient of thermal volumetric expansion (K-1] 

ratio of timesteps to grid size squared [s/m2
] 

size of timestep [ s] 

distance between mesh points in x-direction [m] 

distance between mesh points in y-direction [m] 

distance between mesh points in z-direction [m] 

emissivity [-] 

Vl 



v 

p 

Subscripts 

b 

c 

J 

k 

s 

Superscripts 

m 

defined variables 

viscosity of air at surface temperature [kg/ sm) 

viscosity of air at ambient temperature [kg/ sm) 

kinematic viscosity [ m 2 
/ s) 

density [kg /m3
) 

Stefan-Boltzmann Constant [W/m2 K 4 ] 

bath 

carbon 

grid points 

grid points 

grid points 

steel 

timesteps 

Vll 
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