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Abstract 

This thesis presents models formulated to describe ryegrass and clover growth inde­

pendently, with the long-term goal of constructing a unified ryegrass/ clover model. 

The purpose of this unified model will be to address the questions of co-existence 

of ryegrass and clover when grown together, and persistence of ryegrass in these 

mixed pastures. 

An overview of the problem and background of the biology is provided. This 

may be particularly useful for the reader with no prior knowledge of ryegrass or 

clover biology. 

A physiologically-based model for ryegrass growth is investigated. This model 

is a modification of that proposed by Johnson and Thornley [14] who only consider 

the vegetative growth phase. The modified model accounts for the reproductive 

growth phase. Some numerical results, with and without reproduction, are pre­

sented. These results show that increased growth occurs when reproduction is 

included. 

A model for ryegrass growth based on tiller numbers is then investigated. This 

model has far fewer state variables than the above-mentioned physiologically-based 

model, although only vegetative growth is considered. The differential-delay equa­

tions which result from the mathematical formulation of this model are presented. 

Mathematical analysis of these equations reveals two steady states: a zero steady 

state and a finite steady state. A threshold condition that determines which of 



these two steady states is eventually reached is given. The effects of harvesting the 

growth are also studied using numerical simulation. 

Two models for clover growth, both of which are structurally similar to the 

second ryegrass model, are described. However the first clover model does not have 

any inbuilt delay mechanisms. Mathematical analysis of these models also shows 

the existence of two steady states: a zero steady state and a finite steady state. 

Again , a threshold condition determining which of these is eventually reached is 

given. There is little difference between the results from the two clover models , 

even when the numerical simulations from harvesting are considered. 

Finally, a summary is given of the models studied and an indication of possible 

extensions to these models. A suggestion as to how a unified ryegrass/ clover model 

might be formulated is also given. 

Ill 
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Chapter 1 

Introduction 

This thesis describes the investigation of dynamical mathematical models of grass 

and clover growth. The motivation for this work comes from a research programme 

at AgResearch Limited, Grasslands at Palmerston North that has a long-running 

interest in constructing and validating a dynamic model of population densities of 

grass and white clover. Of particular interest is using such a model to examine the 

influence management decisions have on such issues as: 

• seasonal growth patterns 

• persistence 

• co-existence 

• stability. 

Dynamical systems models are particularly suitable for addressing these issues 

because there are well-established techniques for examining the stability of long­

term solutions. Furthermore, newer techniques of bifurcation analysis (Murray [22]) 

can reveal the necessary conditions for "switching" between multiple long-term 

solutions, which is the mathematical analogue of the biological issue of persistence. 

Time-varying functions, which occur in describing seasonal growth, are also easily 

accommodated in the dynamical systems approach. 



CHAPTER 1. INTRODUCTION 2 

1.1 Description of the problem. 

New Zealand pastoral agriculture is based on mixed grass/clover pastures, but 

problems arise due to the non-persistence of sown grasses (principally ryegrass) 

and lower than desirable proportions of white clover. The maintenance of sown 

grasses is deemed to be important because the benefits of new higher-yielding va­

rieties \vill not be realised if they disappear from the pasture (Laidlaw and Reed 

[17]). A high proportion of clover is desirable because of its ability to fix nitrogen 

from the atmosphere and its high nutritive value (Frame and Newbold [10]). 

The day to day management of pastures can influence the amount of material 

harvested from pastures as well as the persistence and balance of species present 

within a pasture community (Humphreys [12]). However, because of the large num­

ber of management options available, an experimental comparison of these options 

is not feasible. Constructing a model to investigate the behaviour of a two species 

mixture is a difficult problem and so the initial approach has been to model the 

behaviour of each species growing as a monoculture. 

The formulated models will be described in detail in later chapters but to un­

derstand the underlying biology a brief description of the morphology and growth 

of grass and clover is necessary. 

Grass 

Grass has two morphologically different phases, vegetative and reproductive. 

In the vegetative state, the grass plant consists of a collection of shoots, normally 

referred to as tillers (Figure 1.1), each with a short stem, known as a pseudostem 

(Langer [18]). The production and death of leaves is synchronised and on average 

each tiller comprises three fully-expanded leaves (Robson, Parsons and Williams 

[27]). New leaves arise from nodes at the base of the tiller. New tillers arise from 
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incipient bnach 

Figure 1.1: Grass plant (left) and clover plant (right) 

tiller buds produced at the leaf axil. A tiller bud is produced each time a new leaf 

is produced. In its lifetime a ryegrass tiller produces many leaves but on average 

only one of the associated tiller buds develops into an adult tiller (Robson, Parsons 

and ·Williams (27]) . Mature tillers (i.e. those with three fully-expanded leaves) are 

generally referred to as parent tillers and those with less than three leaves, daugh­

ter tillers. A vegetative ryegrass pasture therefore comprises a collection of parent 

tillers and their associated daughters. 

The reproductive phase of grass growth is characterised by the formation of 

flowers and eventually seed heads on elongated stems. In the Southern Hemisphere 

this process begins in September/October. To change from the vegetative to the 

reproductive state tillers must first be vernalised, i.e. experienced winter conditions 

of cold temperatures and/or short day lengths (Robson, Parsons and Williams (27]). 

The timing of the change from the vegetative to the reproductive stage is influenced 

by lengthening photoperiod (daylength) and rising temperatures (Langer [18]). An 
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important point about reproductive tillers is that the production of a flowering 

stem stops the production of new leaves and the tiller therefore dies . 

C lover 

'White clover plants are stoloniferous,.consisting of a creeping network of elongated 

stems known as stolons (Figure 1.1). Each stolon produces nodes from its apex 

at regular intervals and leaves are attached by a short stem ( a petiole) to each 

node. New stolons arise from buds ( axillary buds) produced at each node. As 

stolons produce new nodes at the apex, older nodes die and plants fragment as 

they spread in a pasture (Robson, Williams and Parsons [27]). Stolons with at 

least three nodes are called growing points and young stolons with less than three 

nodes, incipient branches. The buds from which incipient branches arise can also 

be separated into those that are viable (those capable of producing an incipient 

branch under favourable conditions) and non-viable (those incapable of producing 

an incipient branch whatever the conditions) (Newton et al. [24]). 

1. 2 Survey of previous work. 

Pastoral agriculture produces a large proportion of the world's milk and meat. 

In an effort to increase the output from pastures many models have been con­

structed to predict dry matter production from pastures subjected to different 

managements and fluctuating environmental conditions. These vary from simple 

regression-based models (Baars [l]) relating pasture productivity to environmental 

variables , through to complex dynamical systems models comprising large numbers 

of state variables and parameters ( e.g. Johnson and Thornley [15]). Many of these 

models are physiologically-based where the production of new material arises from 

the interception of light by a leaf canopy and the production of carbon ( or simply 

dry matter) via photosynthesis (e.g. McCall [20]; Johnson, Ameziane and Thorn­

ley [13]; Johnson and Thornley [14, 15]) . These models also usually describe the 
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behaviour of a single species and/or a pasture where there is no attempt to differen­

tiate between the component species (e.g. Johnson and Thornley [14, 15]; McCall 

[20]). Although there are some exceptions (e.g. Woodward [32]; ·woodward and 

Wake [33]) even where these models are amenable to formal mathematical analysis 

this has not been attempted. 

The ability of pasture plants to change the rates of tiller/ growing point num­

ber production in response to both management and environmental factors is well 

documented (Bircham and Hodgson [4]; Jones, Collett and Brown [16]) but models 

looking at population dynamics in pastures based on tiller/ growing point dynamics 

are uncommon (but see Brereton [5]; Dayan, Van Keulen and Dovrat [8]; Olsen et 

al. [25]). There is however a well-developed theoretical base for modelling popula­

tion dynamics in both single and competing species (Begon, Harper and Townsend 

[2]; Begon and Mortimer [3]) and many models using plants and animals have 

been published. In these types of models the regulation of population numbers by 

processes which are density-dependent is very important (Cappaccino [7]). The 

main emphasis in population dynamic models is usually on survival/ co-existence 

rather than productivity, although there are exceptions ( e.g. Silliman and Outsell 

[28]; Dayan, Van Keulen and Dovrat [8]; Olsen et al. [25]). Difference equations, 

differential equations and transition matrices have been used to construct pop­

ulation models (for examples see Begon and Mortimer [3]; Edelstein-Keshet [9]; 

Begon, Harper and Townsend [2]). In contrast to the physiologically-based models, 

population-based models have often been subjected to formal mathematical anal­

ysis ( e.g. Guckenheimer, Oster and Ipaktchi [11]; McDonald and Watkinson [21]; 

Pacala [26]; Watkinson [31]). 

The ryegrass (Chapter 3) and clover (Chapter 4) models constructed in this 

thesis attempt to combine the approaches described in the above two paragraphs. 

It is planned that eventually a single model will be constructed whose output 

will provide information on how different management strategies affect dry matter 
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production and the balance of species present in a ryegrass/white clover pasture. 

The starting point for these models is that dry matter production can be expressed 

simply as 

(tiller/growing point) number x (tiller/growing point) size. 

Therefore, the models need to incorporate population dynamics and each popu­

lation unit has to have a size that changes with time. The link between the two 

processes is that tiller/ growing point births are assumed to be dependent on the 

mass density of tillers/ growing points. The biological justification for this density­

dependent relationship is that tillers/ growing points are competing for limited re­

sources and as each unit increases in size, fewer units can be supported per unit 

area (Bullock [6]). A principal aim of these models is to incorporate enough biology 

for their behaviour to be realistic but to keep them simple enough so that they can 

be subjected to formal mathematical analysis. 

1.3 This work. 

In Chapter 2, a large, physiologically-based dynamic model for the vegetative 

growth of ryegrass, developed by Johnson and Thornley [14], has been extended to 

include reproductive growth. This model uses the idea of partitioning the above­

ground dry matter into four compartments: growing leaves, first fully-expanded 

leaves , second fully-expanded leaves, and senescing leaves. Long-term simulations 

are presented, with seasonal variations in growth rate. The effects of regular har­

vesting are investigated. Some of the difficulties associated with this type of model 

are pointed out. 

Chapter 3 introduces a grass growth model which treats a pasture as a pop­

ulation of parent tillers and daughter tillers. The use of delay in the differential 

equations is investigated. Numerical solutions are presented, with and without 

harvesting. A steady-state analysis is given along with the stability of these steady 
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states . 

Chapter 4 investigates a model for clover which uses an approach similar to 

the grass model of Chapter 3 by treating clover as a population of growing points, 

incipient branches , and viable buds. A modification to this model introduces the 

use of delay in the differential equations . Steady states and their stability are in­

vestigated . 

The final chapter contains conclusions drawn from working with these models. 

The options available for further work are also outlined. 
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Chapter 2 

A Physiologically based Grass 

Model 

The first of the ryegrass models to be investigated was developed by Johnson and 

Thornley [14]. This is a physiologically-based model of grass growth that looks in 

detail at the growth of the vegetative grass crop. This model was studied first, 

partly to provide familiarisation with MATLAB [29], but also with the aim of 

introducing more realistic behaviour, specifically by modifying the equations to 

take account of reproductive growth (refer to Section 1.1). 

2.1 Model description 

In the vegetative state, the grass plant consists of a collection of shoots, or tillers 

(Figure 2.1 ). As described in Section 1. 1, there are three live fully-expanded leaves 

per tiller. This vegetative crop growth model divides the total above-ground struc­

tural crop into four compartments corresponding to growing leaves, first fully­

expanded leaves, second fully-expanded leaves, and senescing leaves. This model is 

based on the flow of carbon between these leaves [kg ( carbon) m-2 (ground)], and 

the leaf area development of each leaf [m2 (leaf) m-2 (ground)]. The nine state 

variables are: leaf area indices for each compartment, L1 , L2 , L 3 , L 4 ; structural 

weights of each compartment , W1 , W2 , liV3, W4; and a single storage component, 
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~ - - Leaf sheath 

Soil level 

Figure 2.1: A grass plant 

vVs. The total structural weight We is 

4 

vVc = L W; 
i=l 

and the total crop weight is 

W = vVc + Ws. 

The total leaf area index (LAI) is given by 

4 

L = LL;. 
i=l 

The storage compartment, vVs , is supplied with carbon by photosynthe~is 

which is utilised for new structural growth and maintenance. Photosynthesis is 

related to light intensity and the precise relationship is shown in light-response 

curves (Thornley [30]). One curve (Johnson and Thornley [151) used to describe 

the relationship between the photosynthetic rate, P9 , and the light flux intensity, 
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ft, is a non-rectangular hyperbola with equation 

where 

I1 is the light flux density on the leaf 

0 is a dimensionless parameter 

a is the photosynthetic efficiency 

[J m- 2 (leaf) s- 1 J 

(o::;e::;1) 

[kg ( C02) J- 1
] 

Pm is the asymptotic value of P9 at high light [kg (C02 ) m-2 (leaf) s- 1J. 

10 

(2.1) 

The single leaf photosynthetic rate, P9 [kg ( C0 2 ) m- 2 (leaf) s- 1
], is given by 

the smaller root of Equation (2.1), 

The canopy gross photosynthetic rate, Pc, is obtained by integrating P9 over 

the leaf area index L, 

To evaluate this integral it is assumed that the light flux density incident on the 

surface of a leaf at depth L, is related to the instantaneous light flux density above 

the canopy, I0 , by 

I1 = (-k ) 10 e - kl 
1-T 

where k is the canopy extinction coefficient and r is the leaf transmittance. 

The following integral gives the daily carbon input P [kg ( carbon) m- 2J day-1 

where h is the daylength [seconds], 0 is a factor to convert C0 2 to carbon and </> 

is the fraction available for shoot growth. 
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The rate of synthesis of new structural material , G [kg m-2 day- 1] is given by 

G = µ vVs We 
w 

where µ is a rate constant. 

A yield factor Y is defined as the proportion of carbon in the substrate carbon 

pool used to produce a new structure. Thus the rate of utilisation of the substrate 

carbon for new growth is G/Y. 

Maintenance respiration is assumed to be proportional to the plant dry weight , 

and varies between the different compartments vVi, i =1-4. The total maintenance 

respiration is given by 

i=l 

where the A{, i = 1-4 are maintenance coefficients. 

It is assumed that the flux of material from vVi to W2 , W2 to W3 , and vV3 to 

vVi depend on the leaf appearance rate , 1 . The weight of the average leaf passing 

from vVi to vV2 will be considerably greater than the average leaf weight in vVi as 

this compartment comprises growing leaves. Therefore, the flux of live structure 

from W1 to W2 is given by 

where the weighting factor A allows for the difference in leaf weight . 

Senescence, described by the flux of material out of vVi , is also dependent on 

the rate of leaf appearance 1 . 

The rate of production of new leaf area is 

5pG 
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where p is the fraction of new growth which is partitioned to leaf growth and 8 is 

treated as the incremental specific leaf area. It is assumed that 

( 
vVs) 8 = 8m 1-(w 

where Dm is the maximum value of the leaf area to leaf weight ratio, and ( is an 

incremental specific leaf area parameter. 

The flow of material from L1 to L2, L2 to L3, and L3 to L4 depend on the leaf 

appearance rate, ,. Also, the flux of material from L1 to L2 is weighted by the 

factor >., and is given by 

The differential equations, describing the flow of carbon between compart-

ments , are: 

dvVS 
dt 

dW1 
dt 

dW2 
dt 

dW3 
dt 

dvVi 
dt 

dL1 
dt 

dL2 
dt 

dL3 
dt 

dL4 
dt 

-

P- G/Y - Rm (2 .2) 

G - >.,W1 (2 .3) 

>., vVi - , vVi (2.4) 

,vv2 - ,vv3 (2.5) 

,vV3 - ,vv4 (2 .6) 

8pG - >.,L1 (2.7) 

>.,L1 - ,L2 (2.8) 

,L2 - ,L3 (2.9) 

,L3 -,L, (2.10) 
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where the derived variables and units1 are defined in Table 2.1, and parameters with 

their estimates in Table 2.2. Derived variables can be obtained once the values of 

the state variables are known. For example, G = µ w~;r. can be calculated from 

knowledge of vVi, i = 1-4, and vVs. 

Seasonal variations 

The parameters which vary with season are 

T mean daily temperature 

h daylength 

cc 
seconds 

J daily energy (photosynthetically active J m- 2. 

radiation, PAR) 

The rate parameter 1 , growth coefficient µ, maintenance coefficients lvl;, and 

light-saturated gross photosynthetic rate Pm, increase linearly as temperature in­

creases by the factor 
T-To 
20 -To' 

where T0 (taken to be 0°C) is the temperature where crop growth effectively ceases . 

The instantaneous light flux density above the canopy, which is required to 

calculate the total daily photosynthetic input available for shoot growth, is directly 

proportional to the daily energy 

Io=J/h. 

The environmental parameters T, h and J were read from a weather datafile in the 

simulations of Section 2.3. That is, values for T, h and J were known throughout 

the period when the simulations were carried out. 

1 Unless otherwise stated, mass (kg) refers to carbon and area (m 2 ) refers to ground . 
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Derived Biological meaning Units 
Variable 

G Rate of production of new structure kg m- 2 day-1 

I1 Instantaneous light flux density on the leaves at J m-2 s- 1 

leaf area index L 
L Leaf area index of crop m2 (leaf) m-2 

p Total daily carbon input to the shoot k"' m-2 dav-1 
0 " 

Rm Maintenance respiration kg m- 2 day- 1 

vV Total crop dry weight k"' m-2 
b 

vVc Total structural dry weight kO' m-2 
0 

0 Incremental specific leaf area m 2 (leaf) kg-1 

Table 2.1: Derived variable definitions for Johnson/ Thornley model 

Parameter Biological meaning Estimated value 

k Extinction coefficient of canopy 0.5 
j\tfi Maintenance respiration coefficients day-1 

i = 1-4 depends on temperature 

Pm Light-saturated gross photosynthetic rate kg (C02) m-2 s- 1 

- vegetative value, reproductive value depends on temperature 
y Yield factor 0.75 

Q Leaf photosynthetic efficiency 
- vegetative value lOx 10-9 kg (C02 ) J-1 

- reproductive value 12x 10-9 kg (C02 ) J-1 

' Rate of leaf appearance day-1 

depends on temperature 

Dm Maximum value of leaf area/leaf weight 40 m 2 (leaf) kg-1 

ratio 
( Incremental specific leaf area parameter 1 

0 Leaf photosynthesis parameter 0.95 

0 Conversion factor from C02 to carbon 12/44 
). Weighting factor for flux of material from 2 

first component to second component 

/l Growth coefficient depends on temperature 

p Fraction of new growth partitioned to leaf 0.7 
growth 

T Leaf transmission coefficient 0.1 

<I> Proportion of carbon fixed partitioned 0.9 
above ground 

Table 2.2: Parameter definitions for Johnson/Thornley model 
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Modifications for Reproductive Growth 

As explained in Section 1.1, the rate of reproductive growth is higher than the rate 

of vegetative growth. To model this behaviour, the photosynthetic efficiency, a, 

and asymptotic value of P9 at high light, Pm, (Equation 2.1) have been modified 

as follows. 

Grass growth is assumed to be vegetative until August 1st when reproductive 

growth commences. Both a and Pm are increased linearly to reach the higher 

reproductive a and Pm values when daylength, h, is 10.5 hours (37800 seconds). 

These reproductive values continue until the accumulated daily average temper­

atures reach 500°C, when a and Pm are decreased in a linear manner, to again 

be at the vegetative values on December 31. Using the weather datafile, the days 

obtained were 32, 77, 167, and 184, corresponding to August 1, September 15, 

November 14, and December 31 respectively. Figure 2.2 shows the change in val­

ues for Pm. 

Figures 2.3, 2.4, 2.5, 2.7 and 2.8 show vegetative grass growth ( dotted lines) 

and the addition of reproductive growth (solid line). 

Reproductive 

Pm 

daylength = 

37800 seconds ~ 

Vegetative ~n 1-----

D 
Sum Temperatures = 500° C 

D 
Aug I Sep 15 Novl4 Dec31 

Figure 2.2: Varying Pm over time 

time 
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2.2 Calculations (simulations) 

2.2.1 Method of calculation. 

The set of simultaneous ordinary differential equations (ODEs) , (2.2) - (2. 10), were 

solved numerically using a fourth and fifth order Runge-Kutta ODE solver in MAT­

LAB [29]. A time step of one day was used. Decreasing the time step had no 

significant effect on the solutions. The differential equations were integrated over 

one year (36,5 days), where day one represents July 1. Reproductive growth begins 

at day 32 and finishes on day 184. 

2.2.2 Initial conditions. 

The initial conditions for W5 and the vVi and L;, z 

arbitrary small values, as follows: 

vVs (0) = 0.005 g m- 2 

W1 (0) = 0.010 g m-2 

W2 (0) = 0.010 g m-2 

vV3 (0) 0.010 g m-2 

0.010 g m-2 . 

2.3 Results of calculations 

1-4, were chosen to be 

L1 (0) = 0.2 

L2 (0) = 0.2 

L3 (0) = 0.2 

L4 (0) = 0.2 

The results of running this model with initial conditions as given in Section 2.2.2, 

for one year, are shown in Figure 2.3. 

These solution curves show that constant values are approached at large time. 

The dotted lines show the solutions obtained before modifications for reproductive 

grass growth were added. For all components the effect of reproductive growth is 

to enhance the structural dry weight or leaf area index during the reproductive 
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F igure 2.3: Plots of the structural dry mass components and leaf area indices vs 
time with initial conditions as given in Section 2.2.2 
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period, as expected biologically. The effect is more pronounced in the third and 

fourth leaf components (vV3 , vVi, L3 and L4 ) where the solution curves do not 

coincide until well past day 250, although the reproductive period ends on day 184. 

Figure 2.4 compares the structural storage weight, Ws, with the sum of the 

structural weight in the four leaf compartments, vVc. Most of the structural weight 

is in the leaves. The total structural weight (vVs + vVc), and leaf area index are 

also shown. They both reach maximum values at approximately 180 days, corre­

sponding to the time when most of the grass crop is growing reproductively. After 

approximately 250 days, the total structural weight "sett les" at around 0.6 kg m-2
, 

and the leaf area index around 13. 
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Figure 2.4: Plots of total structural weight and leaf area index vs time 
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Trajectories of solutions to Equations (2 .2)-(2.10) are curves in nine-dimensional 

space. These cannot be displayed, so Figure 2.5 shows projections of these curves 

on to some appropriate plane. For example, the first plot is a projection on to the 

T1Vi-vV5 plane. The '+' indicate time intervals of 30 days, where the starting time 

t0 is shown by ' o'. These plots show that steady values for all structural weight 

components are being approached as t increases because the size of the intervals 

between the '+' is becoming very small. The dotted lines in Figure 2.5 are pro­

jections of the solution curves which only consider vegetative growth. They also 

converge to the same steady values as the solution curves with reproductive growth 

which have been seen in Figures 2.3 and 2.4. 
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Figure 2.5: Projection of trajectories onto Wi-Ws, i=l-4, planes 
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Sensitivity to Initial Condit ions 

Only the model modified to exhibit reproductive growth is used to investigate the 

sensitivity to the initial conditions. Figure 2.6 shows the total structural weight and 

leaf area index vs time, with four different initial conditions. The solid line shows 

the curves with initial conditions as given in Section 2.2.2. The dotted curve has 

init ial conditions for the total structural weight multiplied by ten and t he leaf area 

indices unchanged, the dashed line has initial conditions for the total structural 

weight unchanged and the leaf area indices multiplied by ten, and in the last curve 

initial conditions for both structural weight and leaf area indices are multiplied by 

ten. 

It is found that this model is not sensitive to the initial conditions and all curves 

follow the same path after about 200 days. 

Total Structural Weight Leaf Area Index 
25 

0.8 20 

0.6 
3:: ,,,·/ , ... 

. I .· 
0.4 .... , ·· 

I 

~ : 
15 II : 

5 t . I . 
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,,,· I 

// 
/ 

5 

100 200 300 100 200 300 
time (days) time (days) 

[ Ws W1 W2 W3 W4 Li L2 £3 £4) 
(0.005 0.01 0.01 0.01 0.01 0.2 0.2 0.2 0.2] 

(0.050 0.10 0.10 0.10 0.10 0.2 0.2 0.2 0.2] 

(0.005 0.01 0.01 0.01 0.01 2.0 2.0 2.0 2.0] 

(0.050 0. 10 0. 10 0.10 0.10 2.0 2.0 2.0 2.0] 

Figure 2.6: Total structural weight and leaf area index with different initial condi­
tions as stated above 
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2 .4 Harvesting 

At harvest the total structural weight , vV, is reduced to the original total weight. 

The leaf area indices are then reduced by the same proportion. 

To describe this quantitatively, let H be days between harvests , a superscript 

'-' indicates time immediately prior to the harvest and a superscript '+' indicates 

time immediately after a harvest, i.e . 

nH- is the time immediately prior to the nth harvest , 

nH+ is the time immediately after the nth harvest. 

Define the proportion by which the weight and leaf components are reduced at 

harvest n by 

(2.11) 

The values of the weight and leaf components immediately after harvest n are 

for i = 1-4, n = l, 2, 3, ... 

Ws(nH+) 

W;(nH+) 

L;(nH+) 

Cn vVs(nH-) 

Cn W;(nH-) 

CnL;(nH-) 

The results obtained by simulating harvesting are shown in Figure 2.7. The re­

productive and vegetative phases of grass growth are represented by the solid lines 

and dotted lines respectively. They differ during the reproductive phase but coin­

cide after approximately 200 days. The solution curves appear to have reached a 

repeating pattern corresponding to Cn tending to some constant value as n increases. 

The total weight, W, and the total Leaf Area Index , L , against time in Fig­

ure 2.8 shows the enhanced growth rate over the reproductive phase. This figure 

also shows the cyclic behaviour exhibited in Figure 2. 7. 
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Figure 2. 7: Plots of the structural dry mass components and leaf area indices vs 
time with initial conditions as given in Section 2.2.2 and a harvesting interval of 
30 days 
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Figure 2.8: Plots of total structural weight and leaf area index with harvesting 
every 30 days 

The trajectories are curves in nine-dimensional space. Figure 2.9 illustrates 

projections of the solution curves on to two-dimensional planes, namely the Ws­

vVi, i = 1-4 planes. The starting time, t0 , is indicated by 'o' in Figure 2.9. Since 

the harvesting interval is 30 days, each 'segment' represents 30 days. 

The cyclic behaviour seen in Figures 2. 7 and 2.8 is shown in Figure 2.9 by 

the 'segments' following repeating paths. There appears to be two separate cyclic 

paths, especially noticable in the third plot of Figure 2.9 (vV3 against vVs). These 

reflect the two different growth rates resulting from vegetative and reproductive 

grass growth. 

Similar graphs were obtained from plotting the other state variables m this 

nine-dimensional model. 
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Figure 2.9: Projection of trajectories with harvesting 

Sensitivity to Initial Conditions 

The sensitivity to the initial conditions was investigated for the model with re­

productive growth incorporated. The ini tial values of each weight component was 

doubled while the initial values for the leaf area indices remained as in Section 2.2.2. 

Figure 2.10 shows that it does not return to the same cycle as the original initial 

conditions. However, changing the initial conditions for the leaf area indices to 

ten times the original showed no effect on the long-term behaviour of the model 

(Figure 2.11). 

The solution curves do not return to the same cycle when the initial values for 

the weights are changed because the procedure used for harvesting (Section 2.4) is 

dependent on the initial total structural weight. 
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Figure 2.10: Total structural weight and leaf area index with changed initial con­
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2.5 Summary and Comments 

Numerical solutions were obtained for this model for both vegetative growth and 

reproductive growth of ryegrass. These simulations showed that steady states were 

being reached. However , because of the complexity of the model , it is difficult to 

obtain this steady state analytically. 

Another drawback in this model is the large numbers of parameters. There 

remains the problem of estimating their values biologically, rather than merely 

providing some plausible values (as in Tables 2.1 and 2.2). 

For these reasons, attention is directed to smaller models in the following two 

chapters . These models are not physiologically ( carbon) based but take as their 

fundamental unit the tiller for ryegrass or the growing point for clover. 
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Chapter 3 

A Tiller based Grass Model 

The next model to be investigated describes the growth of a typical grass ( e.g. 

ryegrass) in terms of tillers. This model considers only vegetative grass growth. 

3.1 Model Description 

A grass plant consists of a collection of tillers. Tillers are classified as either daugh­

ter tillers or parent tillers (see Figure 3.1). Each parent tiller has three live leaves. 

Daughter tillers have less than three leaves, and arise from buds in axils of leaves. 

Parent tiller 

Daughter tillers 

IAltlJir---- Leaf sheath 

Soil level 

Figure 3.1: Grass plant with tillers 
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The model is based on the representation of ryegrass tillers as comprising two 

interacting state variables, the number densities of Parent tillers (P), and Daughter 

tillers (T), see Figure 3.2 . 

death Daughter 
-

Tillers 

I 

maturation 

death Parent 
-

Tillers 

~ - ---, 
I 
I 
I 
I 
I 
I 

A "birth" 
I 
I 
I 
I 
I 
I 

... ____ , 

Figure 3.2: Conceptual diagram of tiller-based grass model 

From Figure 3.2, the processes governing the change in daughter tiller numbers 

are: two outward flows depleting the daughter tiller pool, namely maturation of 

daughter tillers into parent tillers and death of daughter tillers; and one inward 

flow, the "birth" of daughter tillers . 

The birth rate of daughter tillers is dependent on the mass density of parent 

tillers. This mass density is defined as the product of parent tiller number density P 

(m- 2
) and the average parent tiller size S (g) at that time. The density dependence 

is introduced to model the effect of "crowding" and means that the likelihood of 

a parent tiller giving rise to a daughter tiller is lower when the mass density of 

parents is high, as shown in Figure 3.3. The mathematical formulation for this is 

given by: 
A 2 L P(t) 

C2 + [S(t) P(t)]2 

where L is the leaf appearance rate and ( ~ )2 is the likelihood of a parent tiller 

giving rise to a daughter when the parent mass density is zero. 
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Figure 3.3: Likelihood of parent tiller giving rise to a daughter vs parent tiller mass 
density 

The death of daughter tillers is purely random and the result of some accidental 

outside influence. Mathematically, the death rate of daughter tillers is given by 

/3 D(t). 

Since a tiller is classified as a daughter tiller until it has three leaves, the mat­

uration interval is two leaf appearance intervals. Therefore, the daughters which 

become parents at time t depends on the number of daughter tillers "born" two leaf 

appearance intervals earlier, (t- f), scaled by a factor, exp(-t3), which takes into 

account the "random" deaths of these daughter tillers over this time interval. This 

neccessitates the introduction of a delay term into this model. Mathematically, the 

rate of maturation of daughters into parent tillers is given by 

A2 L P(t - t ) exp(=}!-) 

C2 + [S(t - t;) P(t - t)J2. 

Collecting these terms, the rate at which the number density of daughter tillers 

changes over time is equal to the birth of daughter tillers less the maturation into 

parent tillers and death. Mathematically, 

dD(t) A2 LP(t) 
dt = -/3 D(t) + C2 + [S(t) P(t)]2 ..____., 

death births 

A2 L P(t - r) exp( f) 
C2 + [S(t- t) P(t - f)]2 . 

maturation 
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The change in parent tiller numbers is governed by the maturation of daughter 

tillers into parent tillers and the death of parent tillers. Note that the birth of 

daughter tillers from the parent tiller pool does not deplete the parent pool ( de­

noted by dashed line in Figure 3.2). The rate of maturation of daughter tillers into 

parent tillers is exactly as shown earlier. 

Since a parent tiller produces a finite number of leaves in its lifetime, the death 

rate of parent tillers depends on the leaf appearance rate. The simplest dependence 

is linear and this gives the death rate of parent tillers as 

a.LP(t). 

The rate at which the number density of parent tillers changes over time is 

equal to the number of daughters maturing into parents less the number of deaths 

of parent tillers. This is given mathematically by 

dP(t) A2LP(t - J;) exp(=}f) 
dt = ~ + C2 + [S(t - t) P(t - t)J2. 

death maturation 

The increase in average parent tiller size, S, is described by the well-known 

logistic equation 

dS(t) = r S(t) (i _ S(t)) 
dt Sm 

where Sm is the maximum size of a parent tiller and the parameter r is the specific 

growth rate when S is much smaller than Sm. By the technique of separation of 

variables, this can be solved exactly, and 

S() Sm 
t = (Sm/ So - l)e-rt + 1 

where So = S(O) . The relative size of daughter tillers is very small and is neglected 

by assuming that their size is zero. 
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Assembling the equations which describe the change in daughter and parent 

tiller number densities (m-2
) and the average size of parent tillers (g) over time 

gives the following set of ordinary differential equations: 

d P(t) A2 LP(t - t;) exp( - f13 ) 
(3.1) -- -aLP(t) + c2 + [S(t- tJ P(t - f)]2 dt 

d D(t) A2 LP(t) A2LP(t - f) exp(-t°) 
(3.2) 

dt - /3 D(t) + C2 + [S(t) P(t)]2 C2 + [S(t - tJ P(t - tW 
dS(t) 

rS(t)(1-~~))· (3.3) 
dt 

The parameter definitions and estimates are given in Table 3.1. 

Parameter I Biological meaning Estimated value 

Ct death proportion of parent tillers 0.075 

/3 death rate of daughter tillers 0.005 day- 1 

L leaf appearance rate 0.03-0.14 day- 1 

A ( g. )2 is the likelihood of birth of daughter 190 g m-2 

tiller from parent tiller when "mass" of par-
ent tillers is zero 

C parent tiller "mass" at which births of daugh- 200 g m- 2 

ters from parent tillers is decreasing most 
rapidly 

Sm maximum size of parent tiller 0.2 g 
r specific growth rate of parent tiller size when 0.462 * L day- 1 

size is much smaller than maximum 

Table 3.1: Parameter values for tiller-based grass model 

3.2 Numerical solutions 

The set of ordinary differential equations (3.1)-(3.3) was solved numerically using 

a fourth and fifth order Runge-Kutta ODE solver in MATLAB. This was modified 
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so that it could be used to solve a system of equations which included delay terms . 

The initial conditions were chosen as follows: 

and for -i2 < t < 0, 

P(O) 200 m- 2 

D(O ) 500 m- 2 

5(0) 0.02 g 

P(t) = P(O) 

5(t) 5(0). 

The results obtained by running this model are shown in Figure 3.4. It shows 

the tiller density of both parent and daughter tillers over 1000 days. Both tiller 

densities have reached constant values. 
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Figure 3.4: Plot of parent tiller density and daughter tiller density vs time 

Plotting daughter tiller density against parent tiller density gives Figure 3.5. 

In this figure, t=O is denoted by 'o', and every successive 60 days is represented 

by a'+'. The maximum number density of daughter tillers is at approximately 60 

days (seen at the first '+'). Similarly, the number density of parent tillers reaches 
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Figure 3.5: Projection of trajectories of tiller-based grass model 
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a maximum at approximately 120 days. The rate of change then becomes very 

small, shown by the convergence of'+', again illustrating that steady state values 

are being reached. This motivated a stability analysis of this steady state, described 

in the next section. 

3.3 Steady States and Stability 

3.3.1 Nondimensional Model 

To simplify the algebra involved in the analysis of the steady states, it is useful 

to perform a nondimensionalisation of Equations (3.1)-(3.3). This was done by 

choosing 

T = tL 

as a dimensionless time, and scaling parameters so that Equations (3.1 )-(3.3) be-

come 

d?(T) - a 2 P ( T - 2) e - 2/3 
(3.4) 

dT -a P(T) + c2 + [s(T - 2) P(T - 2)]2 

dD(T) 
-~D(T)+ 

a2 P( T) a2 P( T - 2) e-2/3 
(3.5) 

c2 + [s(T) P(T)]2 
-

dT c2 + [s(T - 2) P(T - 2)]2 

ds(T) 
f s(T) (1 - s(T)) (3.6) = dT 
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where 

lowercase denotes division by Sm ( e.g. a = A/ Sm) 

· denotes division by L ( e.g. /3 = /3 / L) 

- denotes division by Po = P(O) ( e.g. c = c/ Po = C /(SmPo)). 

3.3.2 Steady States 

The steady states1 of the system of Equations (3.4)-(3.6) are found by setting all 

the time derivatives to zero and solving for the steady states. 

From Equation (3.6) there are two steady state values for s, namely Sss = 0 and 

Sss = l. Since a size s = 0 for a tiller is not biologically sensible, only the steady 

state Sss = 1 is considered in this analysis. Substituting Sss = 1 into the other 

equations, and then solving for the steady states, two possible values are obtained. 

Let ( P, D, s )ss represent the steady states of the nondimensional system. 

The steady states are: 

(i) an 'ext inct ' state 

and 

(ii) a 'finite' state 

where 

1 denoted by ., 

(P, D, sts = (0,0,1) (3.7) 

(3.8) 

(3.9) 
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3.3.3 Local Stability 

In the local stability analysis of these steady states, linear systems are obtained 

by considering a small perturbation from these steady states. Since these pertur­

bations are assumed to be very small, any nonlinear combinations of them can be 

neglected, and the linear systems are of the form 

dx 
dT = Ax(T ) + Bx(T - 2) 

where the perturbation variables are 

X(T) 
F(T)-Fss 

D(T) - Dss 

s(T)-S33 

1r( T) 

O(T) 

17( T) 

and A and B are 3 x 3 matrices with constant entries. 

Assuming solutions of the form 

where k is a constant vector, 

substituting into Equation (3. 10) , 

Akeh + Bke.\(T-2) 

=? >-k 

or (A + Be-2
.\ - .\I)k = 0. 

(3.10) 

There are nonzero solutions for k only if ,\ satisfies the characteristic equation 

det[A + Be-2
.\ - >-I] = 0. 

If all the eigenvalues have negative real parts then all solutions are decaying 

with time, and therefore the steady state is locally stable. 

Stability of 'extinct' steady state 

Linearisation of the system around (P, D, s)ss = (0, 0, 1), by considering a per­

turbation (1r, o, 1 + 17) where 1r, o and 17 are very small, gives 

d1r(T) a2 
• = -o:1r(T) + _

2 
e-2/3 7r(T - 2) 

dT C 
(3.11) 
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d5(r ) a2 -2 
- /35(r) a 2/J 

(3 .12) 
dr + -2 1r(r ) - - e- 1r(r - 2) 

C c2 

clO'(r ) 
= -f O' (r ). (3.13) dr 

In thi s linearised system the equations for 1r( r) and O' ( r) are completely uncoupled. 

Equations (3.11)-(3.13) can be written as 

-a 0 0 ii2 -2/J 0 0 &e 
dx 

ii2 x(r ) ii2 - 2/J x (r - 2). 
dr c.2 -/3 0 + - c.2 e 0 0 

0 0 - r 0 0 0 

The characteristic equation is 

- a+ ( i )2e-2(,0+-\) - ). 0 0 

det (%)2(1 - e-2(.0+-\J J - /3 - ). 0 =0 

0 0 - f - ). 

which simplifies to 

The eigenvalues are).= -f, -/3 and solutions of Equation (3. 14). 

a2 . ). + a = -:ze-2 (13+-\). 
C 

(3.14) 

An interesting feature of delay equations is that their characteristic equations 

are t ranscendental and generally will have an infinite number of solutions. It is 

necessary to look at solutions to Equation (3.14) for ). real and complex. 

Let ). = u + iv. Substituting this into Equation (3.14) and equating real and 

imaginary parts gives 

u 

V 

a . 
-a+ (-=)2e- 2(.6+u) cos 2v 

C 
a . 

-(-= )2 e-2(.6+ u) sin 2v. 
C 

(3.15) 

(3.16) 
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From Equation (3.16) if v is a solution then so is - v, so take v > 0 without any 

loss of generality. 

( i) ,\ real ( v = 0) 

v = 0 is a solution to Equation (3.16), and Equation (3.15) becomes 

a . 
u = -Q'. + (-= )2e-2(/3+u). 

C 

Let f(u) = u and g(u) =-a+ (%)2e-2(/3+u)_ 

Note that g'(u) = -2(%) 2 e- 2(.0+u) < 0 for all u so g(u ) is monotonic decreasing 

with u. The graphs of f (u) and g(u) are shown in Figure 3.6 for 

(a) g ( 0) > 0 =} - a + ( % )2 e-213 > 0 

( b) g ( 0) < 0 =} - a + ( % )2 e- 2.a < 0. 

The intersection of J(u) and g(u) occurs at negative u when g(O) < 0, i.e. when 

(b) 

(ii) ,\ complex 

(a) 

g(u) 

, 

, , , 

..... ,,,,,,,··············· ························································· 

' , 

Figure 3.6: ,\ real for 'extinct' state 

Consider Equation (3.16). Let 

j(v) = V 

and 

(a)2 . g(v) = - ~ e-2(.0+u) sin 2v. 
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Assume u > 0 and look for solutions to (3.16). 

Since ( ~ )2 is a proportion , then 

::::} 0 < ( ~) 2 e-2(/3+u) < e-2( /3+u) 

< -2/3 
e ' 

< 1, 

Multiplying through by -1 gives 

0 > - (~) 2 e-2(/3+u) > -1. 
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if u > 0 

since f3 > 0. 

Looking at the graph of - sin 2v, (Figure 3.7), shows that there are no nonzero 

solutions to Equation (3.16) for v, since jg( v) I < I sin 2v I. 

/ 
/ 

-1 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

f(v) = V 

-sin 2v 

7t 

Figure 3. 7: Graph of v against - sin 2v 

V 

A sufficient but not necessary condition that this steady state be stable is that 

a . 
a> (-=)2e-2f3. 

C 

However, for typical values of the parameters a, a, c and /3, the above inequality 

does not hold and the 'extinct' steady state is locally unstable. 
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Stability of 'finite' steady state 

Linearisation around the 'finite ' steady state given in equation (3.8) gives the fol­

lowing system of equations: 

[ 
c2 

• ] -a1r ( T) + a 2a a2 e
2.a - 1 1r(T - 2) 

3 

- 2aa112 e-/J [1 - a::e2/J] 2 O" (T -2) 
a [2a::e2/J - 1] [e 2/J1r(T) - 1r(T - 2)] - So(T) 

I • [ c
2 

·] ½ [ • ] -2aa 2 e-.a 1- aa
2
e2.a e2.aO"(T) - O"(T - 2) 

This can be written as 

-Q 0 0 
dx 3 

a e 2/3 [2~g2 e2{3 - 1] - S 
I . 

[ 1 - ~~2 e2/J] 'i X(T) 
dT 

-2aa'i e.a 

0 0 -r 

a [2~g2 e2{3 - 1] 0 
I . 

-2aa'ie-.a [1 - ~;2 e2/J] ½ 

+ -a [2~g2 e2{3 - 1] 0 
I . 

2aa'ie-.a 
3 

[1 - ~;2 e2/J] 'i x(T-2). 

0 0 0 

The characteristic equation is 

-a+ a[ 2~g2 e2/J-1]e-2,\-,X. 0 
3 

-2aa½e-.a [1 - ~c/ e20] 2 e-2,\ 

det a [2~f2 e2/J-1] (e20-c2,\) -j3-,X. 
3 

-2aa½ e- .6 [1-~f e20] 2 (e2.6 -e-2,\) 

0 0 -f- ,X. 

which simplifies to 

( [
2oc

2 
• ] ) (S + >.)(f + >.) -a+ a a2 e2.a - 1 e-2,\ - ,X. = 0. 

(3.17) 

(3. 18) 

(3. 19) 

=0 

Two eigenvalues are ,\ = -S, -f. The other eigenvalues are found by solving 

(3.20) 
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Putting ,\ = u + iv, substituting into Equation (3 .20), and equating real and 

imaginary parts gives 

u -a+ [
2;;2 e2/J - 1] ae-2

" cos 2v (3.21) 

v = -[
2;;2 e2/J - 1] ae- 2"sin2v. (3.22) 

Again note that if v is a solution to Equation (3.22) then so is - v, so take v > 0 

without loss of generality: 

( i) ,\ real. ( v = 0) 

v = 0 is a solution to Equation (3.22), and Equation (3.21) becomes 

[
2ac2 

- ] 
u =-a+ a2 e2

{3 - 1 ae-2
". 

Let f(u) = u and g(u) =-a+ [2~,f2 e2/J - 1] ae- 2
". Note that the slope of g(u) 

-2 • 

depends on the sign of 2~~ e2
{3 - 1 so look at each case separately. 

(a) 2~,f2e2/J-1 > 0 

Clearly, 

g'(u) = -2 [
2;;2 e2/J - 1] ae- 2

" < 0 
for all u , and Figure 3.Sa shows a similar argument to the 'extinct' steady state. 

Namely, f(u) = g(u) for u < 0 when g(O) < 0, leading to the inequality 

(b) 2~g2 e2/J - 1 < 0 

In this case, g'(u) > 0 for all u, and in fact g(u) < -a for all u. Figure 3.Sb shows 

that any solution to f( u) = g( u) will be for u < 0. 

Therefore , ,\ is negative when 

which is also the condition required for this steady state to exist (Equation 3.9). 
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(a) 

g(u) , , , 

, , , 

,' fluJ=u , 

(b) 

, , , 

, , , 

,,/ jfu)=u 
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Figure 3.8: ,\ real for 'finite ' state 

(ii) ,\ complex. (v-/= 0) 

Consider Equation (3.22). Let 

and 

j( V) = V 

[
2ac

2 
• ] g(v) = - a2e2/3 -1 ae-2usin2v. 

First look at the solutions to (3.22) for v on the assumption that u > 0. 

For existence of the 'finite' steady state, it is required that 

0 < 
2 • 

af e2f3 
a < 1 

=> 0 < 
2 • 

2af e2/3 < 2 a 

=> -1 < [2afe2.a-1] < 1. 

Consider the two cases 

(a) 0 < [2af e213 
- 1] < 1 

(b) -1 < [2af e2,a - 1] < 0. 
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(a) If O < [2af e213 - 1] < 1 then 

0 < [2af e213 - 1] ae - 2u < ae- 2u 

< a, if u > 0 

< 1, since a is a proportion 

and -1 < - [2af e213 - 1] ae - 2u < o. 

Thus , g( v) is a sine function g( v) = K sin 2v where - 1 < K < 0. Figure 3. 7 shows 

that there are no nonzero solutions for v, since lg(v)I < lsin 2vl. 

(b) -1 < [2af e213 - 1] < 0 

Since 

2a(f )2e213 - 1 < 0 

:::} 2a < (%)2e-2,a 

< e-2.a since % is a proportion 

< 1 since /3 > 0 

:::} a < 1 
2· 

Now, if 

-1 < [2afe2.B-1] < 0 

:::} 1 > [1 - 2a(¾) 2e2.6] > 0 

:::} 0 < [1 - 2a(¾)2] ae-2u < ae- 2u 

:::} 0 < [1 - 2a(¾ )2] ae-2u < .!.e-2u 
2 ( from above) 

:::} 0 < [1 - 2a(¾)2] ae-2u < .!. if u > o. 2 

Thus g( v) lies under the graph of ½ sin 2v. The derivative of ½ sin 2v is cos 2v, so 

the slope at v = 0 is 1. As v increases, the slope decreases, so the only intersection 

is at v = 0 as shown in Figure 3.9. 

Thus, if u > 0 there are no nonzero solutions of Equation (3.22). 

From (3.21) and (3.22) 

u = -( a + v cot 2v). 
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, , , 
, 

, , , 
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, 
, , , 

j(v) = V 

I 

2 sin 2v 

V 

Figure 3.9: Graph of v against ½ sin 2v 

Substituting into (3 .22) gives 

43 

(3.23) 

The assumption that u > 0 leads to the conclusion that (3.22) has no solutions. 

Hence any solutions of Equation (3.23) must correspond to u < 0. Therefore, if >. 

is complex then ~(>.) < 0. 

The inequality that ensures the real part of >. is negative , 

a2 . 
a< -e- 2/3 c2 ' 

is precisely the condition that the 'finite' steady state exists . Therefore, if this 

'finite ' steady state exists , it is locally stable. 

Bifurcation Graph 

The stability of the steady states can be shown graphically, on a bifurcation graph . 

Let 

~ = - a+ (~) 
2 

e- 26. 

Figure 3.10 shows the steady state of parent tillers Fss plotted against ~- This 

demonstrates that when ~ :::; 0, t he only steady state is Pss = 0 which is stable. 
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vVhen ( > 0 the steady state Pss 

state Pss = P· is stable. 

0 becomes unstable , and the 'finite ' steady 

~s stable 

PSS = P• 

stable unstab le 

~s = 0 

Figure 3.10: Bifurcation diagram for tiller-based grass model 

3 .4 Global stability 

Global stability of a steady state is much more difficult to establish because non­

linear terms can no longer be neglected. One option is to compute solutions via 

the numerical method described in Section 3.2 for various initial numbers of parent 

and daughter tillers. Figure 3.11 shows convergence of the solution curves towards 

the 'finite' steady state from three different initial population sizes. An initial size 

of 0.02 g was used throughout. 

The 'finite' steady state appears to be globally stable but numerical simula­

tion cannot prove this as there is an infinite amount of parameter space to be 

investigated . There must be some parent tillers present initially otherwise, from 

Equations (3.1) and (3.2) , the number of daughter tillers decays exponentially to 

zero. 
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Figure 3.11: Tiller number density against time with different initial conditions 

3. 5 Harvesting 

Harvesting was simulated by periodically reducing the size of the parent tillers back 

to the original size. Figure 3.12 shows the reduction of size with harvesting period 

of 30 days. 

:§0.08 

~ 
i:ii 0.06 

~ 
~ 004 
Q) 

;;; 
a.. 0.02 

o~-------~ 
0 100 200 300 400 500 

time (days) 

Figure 3.12: Size vs time with 30 day harvest 

Since daughter tillers are very small many escape harvesting. However, as a 

result of harvesting, a small proportion of both parents and daughters may die 

and this proportion can be set when running the model. The results obtained in 

Figure 3.13 assume no parent or daughter tillers die when harvesting. 
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Figure 3.13: Time plots of tiller-based grass model with different harvesting regimes 

Figure 3.13 shows the solutions without harvesting and three different harvest­

ing regimes. The harvesting intervals used are thirty days, forty days, and sixty 

days, respectively. It is evident that the solution curves have reached some limits 

within which they oscillate. The average tiller density reached is higher in the 

thirty day harvest than the forty and sixty day harvests. Figure 3.14 shows that 

the eventual average number of parent tillers decreases as the interval between har­

vests increases , 

It was found that as the frequency of harvesting increases, the average size of 

parent tillers decreases and the number density increases, i.e. there is an mverse 

relationship between tiller numbers and the size of parent tillers. 
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80 

Figure 3.14: Tiller number density just before harvest vs days between harvests 

The long-term growth rate (g m- 2 day-1 ) is relatively constant over a range of 

harvesting intervals (10-40 days), as shown in Figure 3.15 . 
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Figure 3.15: Long-term growth rate vs days between harvests 
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3.6 Summary and comments 

This chapter presented a model constructed to describe the growth of ryegrass 

based on tillering. This model introduced the use of delay to describe the matura­

tion of daughter tillers. The numerical simulations provided solution curves of the 

model. 

An investigation of the steady states of the system of equations showed an 

'extinct' steady state and a 'finite' steady state. A condition was found for the 

existence of the 'finite' steady state. When this condition is satisfied, the 'finite' 

steady state is locally stable and the 'extinct' steady state is locally unstable. For 

typical parameters this condition is satisfied. 

Establishing the global stability of the steady states is difficult and numerical 

solutions have been calculated for many different initial conditions. It appears that 

for all positive nonzero initial conditions the 'finite' steady state is reached. 

Harvesting was simulated and it was found that more regular harvesting re­

sulted in higher numbers of smaller tillers. 

The model presented in this chapter exhibits similiar behaviour to ryegrass 

plants growing in the field (H. Clark, personal communication). Typical behaviour 

includes 

1. steady state population number density is reached 

2. increased frequency of harvesting results in greater number of parent tillers 

(See Figure 3.14.) 

3. growth rate is relatively constant over a range of harvesting intervals. 
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A Growing Point based Clover 

Model 
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This chapter investigates two models describing the growth of clover. As described 

in Section 1.1, a clover plant consists of viable buds, incipient branches and growing 

points (Figure 4.1) . 

incipient branch 

growing points 

Figure 4.1: A clover plant 
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4.1 Model Description 

The model described by Louie et al. [19], comprises three interacting variables: 

viab le buds (VB ), incipient branches (I B ), and growing points ( GP). Viable buds 

grow into incipient branches, and these incipient branches become growing points 

once they have three leaves. Growing points give rise to new viable buds, but this 

does not decrease the growing point pool size, unlike the transition from viable buds 

to incipient branches, and incipient branches to growing points which do decrease 

their source pools . These interactions are shown in Figure 4.2. 

death Viable 
- Buds 

recruitment 

death Incipient 
Branches 

maturation 

death Growing 
Points 

... 

I 
I 
I 
I 
I 
I 
I 

.1 "birth" 

I 
I 
I 
I 
I 
I 
I 
I 

---~ 

Figure 4.2: Clover model interactions 

4.1.1 First Model - without delay 

Firstly consider the change in numbers of viable buds (Figure 4.2). The change 

in numbers is dependent on the "birth" of viable buds, recruitment of viable buds 

into incipient branches and natural death of viable buds. 

The recruitment of incipient branches from viable buds is assumed to follow the 
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same relationship as the "birth" of daughter tillers from parent tillers in the grass 

model of Chapter 3. The mass density of growing points is defined as the product 

S(t) GP(t). Mathematically the rate at which viable buds develop into incipient 

branches is 

C2 + [S(t) GP(t)]2 

where bis the bud appearance rate, and (A/C) 2 is the likelihood of viable buds 

developing into incipient branches when the growing point mass is zero. 

The "birth" of viable buds is taken as a proportion, J{ , of the growing point 

population. Mathematically the birth rate of viable buds is 

KbGP(t). 

The number of viable buds which die naturally depends on the bud appearance 

rate , b. The death rate is given by 

abVB(t). 

Collecting these terms, the differential equation representing the change in vi­

able bud number density over time is: 

d V B(t) 
dt 

KbGP(t) - abVB(t) 
'----v----' '--v-----" 

birth death 

C2 + [S(t) GP(t)]2. 

recruitment 

Similarly, the change in number density of incipient branches results from the 

number of viable buds developing into incipient branches, the number of incipient 

branches maturing into growing points and the natural deaths of incipient branches 

(Figure 4.2). 
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Recruitment of incipient branches from viable buds is precisely the term de­

scribed earlier, i.e. 
A 2 b V B(t) 

C2 + [S(t) GP(t)]2. 

The maturation of incipient branches into growing points at time t is assumed 

to be a proportion, ½, of the incipient branch population at that time. This is 

because the incipient branch population is assumed to consist of equal numbers 

of 0, 1 and 2 leaved members. The rate of maturation of incipient branches into 

growing points is described mathematically as 

1 

3b I B(t). 

The death rate of incipient branches is 

5 b [I B(t)P 

where , is a "shape" parameter whose value is usually taken as one. 

Together, these terms describe the rate of change in incipient branch number 

density over time 

d I B( t) 
dt 

A2 b V B(t) C b [IB( )]~' 
C2 + [S(t) GP(t)]2 - 0 t -

'--v--" 

recruitment death 

1 

3bJB(t). 
~ 

maturation 

Finally, the growing point population is governed by natural death of growing 

points and maturation of incipient branches into growing points. Note that al­

though growing points give rise to viable buds, this does not deplete the growing 

point population ( denoted by dashed line of Figure 4.2) . The rate of death of 

growing points is 

dbGP(t) 
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where d is the proportion of growing points dying naturally. 

Growing points which have matured from incipient branches is exactly that 

given above, i.e. 

Collecting these terms, the differential equation describing the rate of change 

of growing point number density over time is 

dGP(t) 
dt 

1 
~-~. 

maturation death 

The differential equation governing the average size of growing points, S(t), is 

taken as 

d~~t) = r S(t)(l - S(t)/ Sm) 

where Sm is the maximum size of a growing point and the parameter r is the specific 

growth rate when S is much smaller than Sm , This is exactly the same differential 

equation which describes the average size of parent tillers in the grass model of 

Chapter 3. 

The differential equations presented above together const itute the following 

dynamical system: 

dVB(t) 
dt 

I<bGP(t) - abVB(t) 
C2 + [S(t) GP(t)]2 

d!B(t) 
dt 

A2bVB(t) 'Y 1 
c2+ [S(t)GP(t)]2 - 8b[IB(t)] - 3b!B(t) 

dGP(t) 
dt 

ib!B(t) - dbGP(t) 

dS(t) = r S(t)(l - S(t)/ Sm), 
dt 

The parameters are defined in Table 4.1. 

( 4.1 ) 

(4.2) 

( 4.3) 

( 4.4) 
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Parameter I Biological meaning Estimated value 

b bud appearance rate 0.05-0.2 day- 1 

C growing point "mass" at which flux from vi- 100 g m- 2 

able bud to incipient branch is decreasing 
most rapidly 

A (A/C) 2 is the likelihood of transition from 95 g m- 2 

viable bud to incipient branch when growing 
point ,:mass" is zero 

8 specific death proportion of incipient 0.1 
branches 

'Y "shape" parameter for specific death rate of 1 
incipient branches 

!{ the proportion of growing points giving rise 0.7 
to new viable buds 

Q'. the proportion of viable buds being lost 0.05 
through natural mortality 

d specific death proportion of growing points 0.08 day- 1 

r specific growth rate of growing point size 0.4 day- 1 

when size is much smaller than maximum 
Sm maximum size of individual growing point 0.02 g 

Table 4.1 : Parameter values for clover model 
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4.1.2 Second Model - with delay 

The assumption of equal proportions of 0, 1 and 2 leaved members may not , in 

practice , be realistic. The model described above was therefore modified to incor­

porate the delayed regulation of the rate of production of growing points. Instead of 

assuming that , at every instant in time, a proportion of incipient branches become 

growing points, the number of viable buds that were "born" two bud appearance 

intervals ago, at time ( t - t) , will determine the number of growing points at time 

t. Therefore, instead of the rate of maturation being 

1 

3bJB(t) 

it is now described as the rate of incipient branches developing from viable buds 

evaluated at time ( t - t ). This is then scaled by the proportion that actually 

survive two bud appearance intervals , e-25. Thus the term describing the rate of 

maturation of incipient branches into growing points is 

A2 bVB(t-t) e-26 

C2 + [ S ( t - t) GP ( t - t) r . 
This term replaces ½ b I B(t) in Equations ( 4.2) and ( 4.3). The differential equa­

tions governing the viable bud number density and average size of growing points 

are precisely the same as Equation ( 4.1) and ( 4.4). 

Modifying the first model to account for this delay gives the following system 

of ordinary differential-delay equations: 

dVB(t) 
dt 

d I B( t) 
dt 

d GP(t) 
dt 

I<bGP(t) - abVB(t) 
C2 + [S(t) GP(t)]2 

A2 bVB(t) -r 
[S(t) GP(t)]2 - 8 b [IB(t)] 

A2 bVB(t-t)e-26 

c2 + [s(t - f) GP(t - f )]2 

A2 b V B(t - t) e-26 - d bGP(t) 

[ 2 2 ]
2 

C2 + S(t - b) GP(t - b) 

( 4.5) 

( 4.6) 

(4.7) 



CHAPTER 4. A GROWING POINT BASED CLOVER MODEL 

d S(t) 
dt 

r S(t) (1 - S(t)/ Sm). 

56 

(4.8) 

The size equation ( 4.4) or ( 4.8) is uncoupled from the others and is the well­

known logistic equation. Its solution is 

S(t) - Sm 
- (Sm/ So - l)e-r t + 1 

where 50 = 5(0). 

The parameters are defined in Table 4.1. 

4.2 Numerical solutions 

A fourth-fifth order Runge-Kutta ODE solver using MATLAB [29] was used to 

give numerical solutions, and a modification of this used for the model with delay. 

These simulations were run for 2000 days with initial conditions: 

and for 62 < t ::; 0 

VB(O) 

IB(O) 

GP(O) 

S(O) 

GP(t) 

S(t) 

lOOm-2 

lOOm-2 

lOOm-2 

0.02g 

GP(O) 

S(O) . 

Figure 4.3 shows the solution curves for both models where the model without 

the delay terms is given by the solid lines, and the dotted lines represent the "de­

layed" solution curves. It is apparent that all three state variables have reached 

asymptotic values after a long time. 
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Figure 4.3: Plots of viable bud, incipient branch and growing point number densi­
ties vs time 
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This asymptotic behaviour can also be seen from Figure 4.4 where every 200 

days is indicated by '+' (without delay) and '*' (with delay). This motivated an 

investigation of the steady states of the system, and the stability of these steady 

states. 
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Figure 4.4: Projection of trajectories 

4.3 Steady State Analysis 

3000 

As with the grass model described in Chapter 3, it is useful to express the clover 

models in nondimensional terms. This was done by choosing 

T = bt 

as a dimensionless time. The specific growth rate r was scaled by b as follows 

A r 
r = z;· 
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Also, the state variable S(t) was scaled by Sm , and the state variables VB, I Band 

GP were scaled by the initial value of viable buds V B(O), i.e. 

s( T) 
S(t) 

Sm 

V(T) 
V B(t) 
VB(O) 

J(T) 
I B(t) 
VB(O) 

G(T) 
GP(t) 
V B(O). 

With these scalings nondimensional parameters a and care introduced where 

a 

C 

4.3.1 Without delay 

A 

Sm V B(O) 
C 

Sm V B(O). 

With this change in variables, the following nondimensional system for equations 

( 4.1 )-( 4.4) is obtained: 

dV(T) a2 V( T) 
(4.9) 

dT ]{ G(T) - a V(T) - c2 + [s(T) G(T)]2 

d f(T) a2 V(T) 'Y 1 
(4.10) -- c2 + [s(T) G(T)]2 - 0 [J(T)] - 3l(T) dT 

dG(T) 1 
( 4.11) 

dT 
31(T) - dG(T) 

ds(T) 
f s(T)(l - s(T)). ( 4.12) 

dT 

The steady states of the system of Equations ( 4.9)-( 4.12) are found by setting 

all the time derivatives to zero and solving the resulting algebraic equations. From 

( 4.12) there are two steady state values for s, namely Sss = 0 and Sss = l. Since 
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a size s = 0 for a growing point is not biologically sensible, only the steady state 

Sss = l is considered in this analysis. Substituting Sss = l into the other equations, 

and then solving for the steady states, two possible values are obtained as follows: 

(i) an 'extinct' state 

(V, I , G, s )ss (0, 0, 0, 1) 

and 

(ii) a 'finite' state 

( 
K(c2 + c-2) c· 3dG* c· 1) 

a ( c2 + 0-2) + a 2 ' , ' 

where G· satisfies the equation 

a 8 (3d)"'1 ch+1l + 8 (3df1' (a c2 + a 2) ch- 1l + a dG2 + d(a c2 + a 2) - a 2 K = o. 

For the usual parameter value of, = 1, this reduces to a quadratic equation with 

positive solution 
I 

[ 

I( a2 a2 l 2 
c· = a (38 + l) d - -;; - c

2 ( 4.13) 

Note: Neither a nor d can equal zero. (If a = 0, this means that no viable buds 

die; if d = 0, then no growing points die. In either case, the clover population will 

"explode".) It is interesting to note that if the death of incipient branches is zero 

(8 = 0), a finite steady state is still reached. 

Stability of the 'extinct' state 

To look at the local stability of the first of these steady states, consider a small 

perturbation from (0, 0, 0, 1) by putting 

V = V 

I= i 

G = g 
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s l + O" 

where v, i, g, a- are assumed small. 

By neglecting all terms of second and higher order, the following linear system 

is obtained: 

dv a2 

dT 
Kg-[o:+-:;-]v 

c-

di a
2 1 

dT 
- V - (6 + -) i 
c2 3 

dg 1 . d 
dT 

-i - g 
3 

do-
dT 

-ro-. 

This linear system can be written as 

where 

and 

A 

dx 
-=Ax 
dr 

V 

X 

g 

O" 

-( 0: + :~) 0 
a2 - (5+ ½) ~ 

0 l 
3 

0 0 

J( 

0 

-d 

0 

0 

0 

0 

-r 

The solution of ( 4.18) is a linear combination of terms of the form 

( 4.14) 

(4.15) 

(4.16) 

( 4.17) 

(4.18) 

where the >.; are eigenvalues of A, i.e. they are the roots of the characteristic 

equation 

det(A - >.I) 0, 
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and wi is the eigenvector associated with the eigenvalue >.;. 

>. = -r is one eigenvalue. To find the other eigenvalues, it is necessary to solve 

+ d(a + a2 )(8 + .!.) - J(a2 = 0. 
c2 3 3c2 ( 4.19) 

For this steady state to be stable, the roots of the characteristic equation ( 4.19) 

must have negative real parts. Denoting 

a 2 1 
(a+ 2 +8+d+ - ) 

C 3 
a 2 1 a 2 1 

( a + 2 ) ( 8 + - ) + d( a + 2 + 8 + - ) 
C 3 C 3 

a2 1 Ka 2 

d(a+-)(8+-)--
c2 3 3c2 

and applying the Routh-Hurwitz criteria [23], the roots of (4.19) have negative real 

parts if and only if 

(i) all coefficients a 1 , a2 and a3 are positive, 

a2 1 Ka 2 

d(a+-)(8+-)>-
c2 3 3c2 

since a 1 and a2 are clearly positive, and 

(ii) a1a2 - a3 > 0. 

When expression (ii) is expanded and simplified, it is positive for all positive values 

of parameters a, a, c, 8, d and K. Therefore the condition that this steady state 

be stable is that condition (i) is satisfied, i.e. 

By choosing suitable values for proportions of death of viable buds, a, incipient 

branches, 15, and growing points, d, the clover population can be forced to die out. 

However, for typical values of these parameters the above inequality does not hold, 

and in general the 'extinct' steady state is locally unstable. 
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Stability of 'finite' steady state 

For simpler notation, write 

V= x 

I=y 

G=z 

with steady state values indicated by an asterisk,'* ' (i.e . x-, y*, z*). 

[Note: for the 'extinct' steady state, x * = y· = z· = OJ. 

Linearising around the ' finite ' steady state by putting 

X = x* + 'V 

y = y· + i 

z = z· + g 

and ignoring second and higher-order terms, the linear system obtained is 

dv a2 
( 2a

2
x* z* ) 

dT = -(a+ c2 + z*2)v + (c2 + z*2)2 + J( g 

di 
dT 

dg 

dT 
da 
dT 

a2 
---v 
c2 + z·2 

-ra. 

2a2 x* z* 2 

+----0" 
( c2 + z*2)2 

(0 •b-l) 1) . 2ax* z* 
,Y + 3 i - (c2 + z*2)2g 

63 

( 4.20) 

( 4.21) 

( 4.22) 

( 4.23) 

Using the same process as that used for the 'extinct' steady state, one of the 

eigenvalues of the system ( 4.20)-( 4.23) is ,\ = -f. To find the other eigenvalues, 

the following equation must be solved: 
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a2 1 
,\3 + (a+ 2 2+8+d+-),\2 

C + z• 3 

[ 
a

2 1 1 2a2
x*z· l 

+ (a+ c2 + z·2)(8 + 3 + d) + d(8 + 3) + 3(c2 + z*2)2 ,\ 

a2 1 2a2 x·z·a I{ a 2 

+ d(a+--)(8+-)+------- = 0. (4.24) 
c2 + z·2 3 3( c2 + z·2)2 3( c2 + z·2) 

From the Routh-Hurwitz criteria, the solutions have negative real parts if, and 

only if, all coefficients a1, a2 and a 3 are positive and a1a2 - a3 > 0, where 

a 2 1 
(a+ 2 2+8+d+-3) 

C + z• 
a2 1 1 2a2 x·z· 

(a+ c2 + z·2 )( 8 + 3 + d) + d( 8 + 3) + ( c2 + z·2)2 

a2 1 2aa2x*z• I<a 2 

d(a + c2 + z*2 )(8 + 3) + 3(c2 + z*2)2 - 3(c2 + z·2). 

( i) All coefficients are positive, 

a2 1 2aa2 x*z* I<a 2 

d(a + --)(8 + -) + --- > ---
c2 + z·2 3 3( c2 + z•2)2 3( c2 + z·2) 

since a 1 and a2 are clearly positive. This simplifies to 

2a2 z*2 a 
> 0 

a(c2 + z*2) + a2 

For this to be true, from ( 4.13) the following inequality must be satisfied: 

Ka2 > d(a2 + ac2)(38 + 1). ( 4.25) 

Note: for a physically existing steady state G*, this inequality is satisfied, otherwise 

G* is imaginary. 
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(ii) a 1a2 - a3 > 0. 

Using Maple to simplify this expression, it was found to be always positive for 

positive values of the parameters. 

Therefore , when the 'finite' steady state exists, it is locally stable. 

4.3.2 With delay 

Using the change of variables as given in Section 4.3, the nondimensional form of 

Equations (4.5)-(4.8) is 

dV(T) , a2 V(r) 
dT B. G(T) - a V(T) - c2 + [s(T) G(T)]2 ( 4.26) 

2 V( ) 2 V( ">) -2s 
a T -b'[!(T)j'Y- a T-~ e ( ) 

c2 + [s(T)G(T)]2 c2 + [s(T - 2)G(T - 2)] 2 4
·
27 

ds(T) 
dT 

a2V(T-2)e-25 - dG(T) 
c2 + [s(T - 2) G(T - 2)] 2 

To find the steady states of ( 4.26)-( 4.29) it is necessary to solve 

and assume 

dV 
dT 

d! 
dT 

dG 
dT 

ds - = 0 
dT 

V(T - 2) = V(T), G(T - 2) G(T), 

s(T - 2) = s(T) 

as T - oo . 

Only considering Sss = 1, the steady states are: 

(i) the 'extinct' state 

(V, I, G, s )ss = (0, 0, 0, 1) 

( 4.28) 

( 4.29) 
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and 

(ii) the 'finite' state 

( ±(K - d exp(28))G", [ ~ (exp(28) - 1) c·f. c·, 1) 

where 

[ 
2 l ½ c· = ;a(!{ exp(-25) - d) - c2 ( 4.30) 

[Note: here, G· is independent of ~/. Compare equation ( 4.30) with the equation 

immediately preceding (4 .13) which determines G· in the no-delay case.] 

In a similar manner to the stability analysis for the grass model of Chapter 3, 

linearisation leads to systems of the form 

where here 

dx 
dT = Ax(T) + Bx(T - 2) 

X(T) 

v(T) 
i( T) 

g(T) 

0-(T) 

and A and B are 4 x 4 matrices, with constant entries. 

Assuming solutions are of the form 

where k is a constant vector, 

then there are nonzero solutions for k only if >. satisfies the characteristic equation 

det[A + Be-2
,\ - >.I] = 0. 
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Stability of 'extinct' state 

The following linear system is obtained for determining the stability of the 'extinct ' 

state: 

dv(T) ? a-

dr 
Kg (T) - [a + 2 ] v(T) (4.31) 

C 

di( T) 2 2 a . a _ ? 8 ( 4.32) - v(T) - 8i(r) - - e - v(r - 2) 
dr c2 c2 

dg(T) 2 
a 28 ( 4.33) 

dr 2 e- v(r - 2) - dg(r) 
C 

dO"( T) 
-rO"(r). ( 4.34) 

dr 

Equations ( 4.31)-( 4.34) can be written as 

-(a+ ::) 0 I( 0 0 0 0 0 

dx 
a2 - 8 0 0 a 2 -26 0 0 0 ~ 

--e 
x(r) + c2 x ( T - 2) 

dr a 2 - 2S 0 0 -d 0 -e 0 0 0 c2 

0 0 0 -r 0 0 0 0 

where 

v(r) 

x (r) 
i( T) 

g(T) 

O"( T) 

The characteristic equation is 

-(a+:~) 0 I( 0 

:: (1 - e-2(H,\)) -8 0 0 
det =0 

a
2 e-2(8+,\) 

c2 0 -d 0 

0 0 0 - r 

which simplifies to 

(-8 - ,\)(-f - ,\) (a+ - + ,\)(d + ,\) - -e-2(H,\) = 0. 
( 

a2 I{ a
2 

) 

c2 c2 
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The eigenvalues are A = -5, -i- and the solutions of 

a2 a2 Ka2 
,\

2 +(a+ - + d),\ + d(a + -) = - e- 2(5+,\)_ 
c2 c2 c2 

( 4.35) 

It is now shown that there is a real solution to this equation. The right hand 

side of ( 4.35) is an exponentially decaying positive function which is decreasing 

for all A. The left hand side of ( 4.3-5) is a quadratic which is increasing for all 

,\>-½(a+ a2 /c2 + d). Let 

a2 a2 
f(>-) = ,\2 +(a+ 2 + d),\ + d(a + 2 ) 

C C 

and 

( ') = I( a2 - 2(c5+A) g A 
2 

e . 
C 

Figure 4.5 shows the cases where 

( a) g(O) > f (0) 

(b) g(O) < f(O). 

The intersection of these two functions is at a negative A value when g(O) < f(O) 

(curve (b) in Figure 4.5), i.e. when 

2 2 a , a -25 d( a + 2 ) > It 2 e . 
C C 

If this inequality is not satisfied then the real solution of ( 4.35) is positive ( curve 

( a) in Figure 4.5). 

Conjecture 1 There are an infinite number of complex solutions to {4,35), and the 

real parts of these solutions are always less than the solution found from Figure 4.5. 

If this conjecture holds then whenever 

a2 a2 
d(a + 2) > J(2e-20 

C C 

the 'extinct' steady state is locally stable. 
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' 

(b) 

' ' ' ' ' ' ' ' ' 

(a) 

g(A.) 

... ______ ... 

, , , , 

, , 

/(A.) 
, , , , 

Figure 4.5: A real for 'extinct' steady state 

Stability of 'finite' state 

69 

By considering a small perturbation and using the same notation as before the 

following linear system is obtained: 

This linear system can be written in the form 

dx - = Ax(r) + Bx(r - 2) 
dr 

( 4.36) 

(4.37) 

(4.38) 

( 4.39) 
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where 

- ( a + c2:: ,2) 0 ( 2a
2
x'•' r) 2a 2 x•z• 

[c2+z•2]2 + \ [c2 +z•2]2 
a2 -8 -2a2 x• z• -2a2 x •z• 

A= c2+x •2 (c2+z•2]2 (c2 +z•2 J2 

0 0 -d 0 

0 0 0 -r 

0 0 0 0 
- a2e -2 6 

0 2a2x' z•e-26 2a2 x•z • e - 26 

B= c2 +x•2 [c2+z•2]2 (c2 +z•2]2 

a2e-26 
0 - 2a2 x · z•e - 26 -2a 2 x• z • e-26 

c2 +x•2 [c2 +z•2]2 (c2+z •2]2 

0 0 0 0 

and 
V(T) 

X(T) 
i ( T) 

= 
g(T) 

Ci( T) 

From the characteristic equation 

det(A + Be-2
'' - ,U) = 0 

two eigenvalues are >. 1 

necessary to solve 

-8 and >. 2 = -r. To find the other eigenvalues, it is 

a2 a2 

). 2 + ( a + 2 2 + d)). + d ( a + 2 J = 
c + z"' c + z• 

( 4.40) 

For this steady state to be locally stable, the real part of the solutions to ( 4.40) 

must be negative. To examine the nature of these solutions, eliminate x"' and z· 

by substituting 

and 

x* !(I( - d e26 ) z* 
a 

z· [ ;: (K exp( -28) - d) - c2
] ½ (See Equation 4.30) 
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into Equation 4.40. 

Let 

where 

[J\!l - N(a + ,\ )Je- 2'\ 

NI 

N 

1( dae- 20 

J(e-28 _ d 

( 
o.dc

2 
) 

2d 1 - (I( e-28 - d)a2 . 

For existence of this steady state, 

adc2 

* 1 - (I( e-25 - d)a2 > 0 

* 2d (1- (Ke-~1~ d)a2) > 0, 

i.e. N is always positive. 

71 

This means that, as ,\ -t -co, g(>.) -t +co and also g(,\) -to- as ,\ -t +co. The 

graph of g( >.) intersects the >.-axis once only at 

Kae- 20a2 

>-o = --------- - a 
2[(I< e-20 - d)a 2 - adc2 ] 

M 
N -a. 

It is easy to show that g(>.) has only one local minima at ,\ = ,\0 + ½- The above 

information is summarised in Figure 4.6. This figure shows g(>.) for 

(a) g(O) > J(O) 
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/(A.) 

(b) 

' ' ' ..... ___ ... 

Figure 4.6: >. real for ' finite ' steady state 

(b) g(O) < f(O). 

Now f(>.) and g(>.) intersect at a negative>. when f (O) > g(O), i.e. 

da I( dae-25 [ adc2 l 
d(a + J(e-25 - d) > J(e-25 - d -2d 1- (J(e-25 - d)a2 a. 

This simplifies to give 
2 2 

, a -26 ( a ) l<.. 2 e > d a+ 2 . 
C C 

From Equation ( 4.30), this is the inequality required for G· to exist . 
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Conjecture 2 There are an infinite number of complex solutions to (4.40) with 

real parts always less than the real solution found above. 

If this conjecture holds then whenever 

a2 a2 
I(2e-2c > d(a + 2) 

C C 

the 'finite' steady state is locally stable. 

Therefore, as for the grass model in the preceding chapter , the 'finite' steady 

state is locally stable whenever it exists. 
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4.4 Global Stability 

To study the global behaviour of the systems (4.1)-(4.4) and (4.5)-(4.8), the only 

effective method is to compute solutions via the numerical method described in 

Section 4.2 for various initial population sizes VB, IB, GP and growing point 

size , S. Figure 4.7 (model without delay) shows the convergence of trajectories 

towards the 'finite' steady state from six different initial population sizes. 

2500 

2000 

"' .s 1500 
0 
Cl. 
Ol 
C 

-~ 1000 

ci 

500 

0 
2000 

3000 

Incipient Branches 0 0 
Viable Buds 

* steady state point 

Figure 4. 7: Trajectories (Without delay) 

Figure 4.8 shows similar results obtained from the model with delay. Again, 

the trajectories converge to the 'finite' steady state. However, it is interesting 

to note that if initially there are no viable buds, VB, and no growing points, 

GP, the 'extinct' steady state is obtained, i.e. the incipient branch population 

dies out. Looking at (4.5)-(4.8) it is evident that the populations cannot grow 

without viable buds and growing points. The only outcome in this case is an 
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( exponentially) decreasing incipient branch population, with the viable bud and 

growing point populations remaining at zero . 
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c ·o 
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0 
2000 

~ .... .. : . . . . . . 
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. · ··:·· · 

,:· · 

-500 O 
Viable Buds 

* steady state points 

Figure 4.8: Trajectories (With delay) 

4.5 Harvesting 

7000 

Harvesting was simulated by periodically reducing the size of growing points to 

their original size. Figures 4.9 and 4.10 show the numerical solutions of the model 

without delay and with delay, respectively, where the original size 50 = 0.02 g, and 

the harvesting interval is 30 days. The densities of viable buds, incipient branches 

and growing points are higher than the densities obtained from the simulations 

without harvesting (Figure 4.3). 

The results from simulating harvesting are similar. For example, the only signif­

icant difference between Figures 4. 9 ( no delay) and 4.10 (delay) is a small decrease 
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Figure 4.9: Harvesting (Without delay) 
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in incipient branch density after 2000 days. The oscillations in numbers between 

harvests do however appear slightly larger in the delay model, especially in the plot 

for growing points of Figure 4.10. 

4.6 Summary and Comments 

This chapter investigated two models constructed to describe the growth of white 

clover based on growing point numbers. Although the delay model would appear 

to be the more biologically realistic of the two, all analytic and numerical results 

reveal little qualitative difference between them. 

A steady state analysis revealed two steady states, a stable 'finite' state and 

unstable 'extinct' state. A threshold condition was found for each of the models 

determining which of the steady states was eventually reached. 

Simulating harvesting resulted in an increase in viable buds, incipient branches 

and growing points. 

This clover model exhibits in general terms the behaviour of clover plants m 

the field (Newton, personal communication). These include 

1. steady state population size 

2. harvesting increases growing point number. 
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Chapter 5 

Summary 

5.1 Conclusions 

The principal aim of this thesis was to construct a model which can be used to 

address the problem of ryegrass non-persistence and lower than desirable propor­

t ions of white clover in pastures. Due to the difficulty of this problem, it has been 

divided into two smaller problems of modelling the behaviour of grass and clover 

as separate populations. 

Chapter 2 outlined an example of a physiological approach in modelling ryegrass 

growth. One of the drawbacks of many physiological models is the large number 

of state variables and parameters. Estimation of these parameters can be difficult . 

Although there are numerous software packages available, with which numerical 

simulations can be calculated, mathematical analysis is difficult . 

Chapters 3 and 4 take a population dynamics approach to the problem. Al­

though the behaviour of grass and clover are modelled separately the models are 

constructed along similar lines. The parent tillers of ryegrass are thought to be 

analogous to the growing points of clover. Daughter tillers are analogous to incip­

ient branches. However, the ryegrass model does not have a term comparable to 

viable buds. It is hoped that the similarity in the form of these two dynamical 
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systems will facilitate the merging of the two models. It is only after the construc­

tion of a single model that the questions of co-existence and persistence can be 

addressed. 

From a mathematical viewpoint these models are not difficult to analyse. Both 

models have two steady states when a certain threshold condition is satisfied: a 

zero , or extinct, steady state and a finite steady state. The finite steady state is 

locally stable whenever it exists. However, when harvesting is included, it appears 

from the simulations that cyclic long-term behaviour is established although this 

has not been rigorously proven in this thesis. 

5.2 Further Work 

Grass Model 

In the simulations produced in Chapter 3 the leaf appearance rate remained fixed 

for any single run of the model. In practice, leaf appearance rates are strongly 

related to temperature and therefore vary throughout the year. This could be in­

corporated into the model by making leaf appearance rate a periodic function of 

time. 

Reproductive development is an important feature of grass growth. This could 

be incorporated into the model by introducing a reproductive tiller pool and a size 

pool for these reproductive tillers. Because reproductive development takes place 

only in the spring, this pool operates only during this time. 

Clover 

The bud appearance rate of Chapter 4 remains fixed throughout each simulation in 

the clover model. In practice, this varies seasonally and can be incorporated into 
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the model in a fashion similar to the leaf appearance rate of the ryegrass model. 

Combining Models 

The ultimate aim is to combine the grass and clover models so as to predict the 

balance of species , persistence and productivity in this mixed species association. 

This as yet has not been worked out in detail but a possible way to proceed is for 

the density-dependent birth processes in the two separate models to be dependent 

on the total mass density of grass and clover. An experiment is under way at 

AgResearch to test this idea. 
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