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Abstract

High-dimensional data sets, particularly those where the number of variables ex-

ceeds the number of observations, are now common in many subject areas includ-

ing genetics, ecology, and statistical pattern recognition to name but a few. The

sample covariance matrix becomes rank deficient and is not invertible when the

number of variables are more than the number of observations. This poses a se-

rious problem for many classical multivariate techniques that rely on an inverse

of a covariance matrix. Recently, regularized alternatives to the sample covari-

ance have been proposed, which are not only guaranteed to be positive definite

but also provide reliable estimates. In this Thesis, we bring together some of the

important recent regularized estimators of the covariance matrix and explore their

performance in high-dimensional scenarios via numerical simulations. We make

use of these regularized estimators and attempt to improve the performance of the

three classical multivariate techniques in high-dimensional settings.

In a multivariate random effects models, estimating the between-group covariance

is a well known problem. Its classical estimator involves the difference of two

mean square matrices and often results in negative elements on the main diago-

nal. We use a lasso-regularized estimate of the between-group mean square and

propose a new approach to estimate the between-group covariance based on the

EM-algorithm. Using simulation, the procedure is shown to be quite effective and

the estimate obtained is always positive definite.
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Multivariate analysis of variance (MANOVA) face serious challenges due to the un-

desirable properties of the sample covariance in high-dimensional problems. First,

it suffer from low power and does not maintain accurate type-I error when the

dimension is large as compared to the sample size. Second, MANOVA relies on

the inverse of a covariance matrix and fails to work when the number of variables

exceeds the number of observation. We use an approach based on the lasso reg-

ularization and present a comparative study of the existing approaches including

our proposal. The lasso approach is shown to be an improvement in some cases,

in terms of power of the test, over the existing high-dimensional methods.

Another problem that is addressed in the Thesis is how to detect unusual future

observations when the dimension is large. The Hotelling T 2 control chart has

traditionally been used for this purpose. The charting statistic in the control chart

rely on the inverse of a covariance matrix and is not reliable in high-dimensional

problems. To get a reliable estimate of the covariance matrix we use a distribution

free shrinkage estimator. We make use of the available baseline set of data and

propose a procedure to estimate the control limits for monitoring the individual

future observations. The procedure do not assume multivariate normality and

seems robust to the violation of multivariate normality. The simulation study

shows that the new method performs better than the traditional Hotelling T 2

control charts.
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