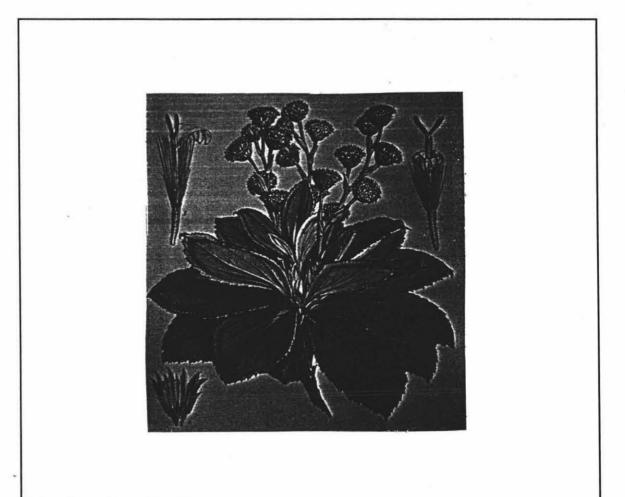
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ECOLOGY OF THE OLEARIA COLENSOI DOMINATED SUB-ALPINE SCRUB IN THE SOUTHERN RUAHINE RANGE, NEW ZEALAND.

A thesis presented in partial fulfilment of the requirements for the degree of


Master of Science in Botany

at

Massey University New Zealand

Peter Ronald van Essen

1992

Olearia colensoi in flower.

Reproduced from a lithograph by Walter Fitch in Flora Novae-Zelandiae (J.D. Hooker 1852). Source: Alexander Turnbull Library in New Zealand Heritage, Paul Hamlyn Ltd

ABSTRACT

The *Olearia colensoi* (leatherwood or tupari) dominated southern Ruahine sub-alpine scrub is the largest continuous area of sub-alpine asteraceous scrub in New Zealand - the result of a lowered treeline due to climatic conditions characterised by high cloud cover, high rainfall, and high winds and the absence of high altitude *Nothofagus* species.

Meteorological investigation of seven sites in the southern Ruahine found that altitude alone was the main environmental determinant of climatic variation, particularly temperature regime. Temperatures varied between sites at a lapse rate of 0.61°C 100m⁻¹ while daily fluctuation patterns were uniform for all sites. Rainfall increased with altitude over the Range at a rate of 3.8mm m⁻¹. Cloud interception, unrecorded by standard raingauges, adds significantly to total 'rainfall'.

Vegetative phenology of *Olearia colensoi* is highly seasonal and regular with an annual growth flush from mid November to January. Leaf litter production in *Olearia colensoi* formations is high (4.864 t ha ⁻¹ yr⁻¹), in comparison with world averages for cool temperate forest conditions (2.5 t ha ⁻¹ yr⁻¹), and is higher than some lowland forest systems in New Zealand. The high rate of litter production is the main contributor to the build up of the Takapari Peaty Loam on the southern Ruahine plateau regions (accumulating at up to 0.33mm yr⁻¹).

Olearia colensoi is an irregularly heavy (mast) flowering plant. Floral primordia are initiated in the summer / autumn preceding anthesis and the degree of flowering is correlated with the temperature regime at that time. Flowering in individual plants can occur in successive years. *Olearia colensoi* mast flowering / seeding appears to be a consequence of synchronised floral initiation during favourable (above average temperature) summers when adequate carbohydrate reserves are available. The evolutionary basis for this synchronisation may involve predator satiation, as a selective pressure, in combination with other 'efficiencies of scale' such as pollination success.

Phytosociological investigation of vegetation data from 34 plots in the southern Ruahine, Mt Taranaki, Westland and western Tararua Range, analysed using multivariate classification and ordination techniques, demonstrated that the southern Ruahine is significantly different from other leatherwood areas in New Zealand. Regional differences in species composition were apparent but the main differentiation was a high (91% mean) cover of *Olearia colensoi* in the southern Ruahine. Ordination analysis indicates that the southern Ruahine leatherwood communities are particularly homogeneous. Southern Ruahine Olearia colensoi formations are continuously regenerating. Areas of canopy opened by disturbance or die-back are replaced by Olearia colensoi without any intermediate successional vegetation. There are currently no impediments to Olearia colensoi regeneration and no indications that Olearia colensoi will not continue as the dominant vegetation cover, regardless of possible climate change and animal population fluctuations.

The extent of dominance over such a large area of sub-alpine scrub by a single habitatspecific (wetter-cloudier sub-alpine) species is an ecological feature unmatched elsewhere in New Zealand and renders the southern Ruahine a nationally significant ecological area.

ACKNOWLEDGMENTS

For supervision during this work I am especially grateful to Dr Jill Rapson and Associate Professor John (Skip) Skipworth. For encouragement and help with administrative matters I thank Professor R.G. Thomas and Dr R.A. Fordham. To the staff and students of the Department of Botany & Zoology my thanks for a congenial working environment. Mr Jens Jorgensen provided expertise in the construction of equipment.

The Robert Bruce Trust and the Heseltine Trust provided financial assistance for equipment and travel. The Ministry of Forestry at Palmerston North kindly loaned an increment corer. Rainfall data for the southern Ruahine was provided by the Manawatu Wanganui Regional Council. I thank the Department of Conservation for permission to work in the Ruahine Forest Park.

For the forbearance of my wife, Lesley and children, Rosemary, Gareth, and Rowan I am particularly grateful.

TABLE OF CONTENTS

ABSTRACTiii
ACKNOWLEDGMENTSiv
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1
INTRODUCTION
THE SOUTHERN RUAHINE SITUATION
AIMS OF THE STUDY:
CHAPTER 2 -
THE SITE - THE SOUTHERN RUAHINE RANGE
GEOGRAPHY9
GEOLOGY9
SOILS
HUMAN IMPACTS
VEGETATION
CHAPTER 3
CLIMATE OF THE SOUTHERN RUAHINE RANGE
INTRODUCTION
METHODS20
RESULTS23
DISCUSSION
CHAPTER 4
VEGETATIVE PHENOLOGY & PRODUCTIVITY
INTRODUCTION
METHODS
RESULTS35
DISCUSSION42
CHAPTER 5
FLORAL PHENOLOGY AND REPRODUCTIVE ABILITY OF
OLEARIA COLENSOI
INTRODUCTION
METHODS46
RESULTS47
DISCUSSION

CHAPTER 6

SYNECOLOGY OF LEATHERWOOD
INTRODUCTION
METHOD
RESULTS
DISCUSSION
CHAPTER 7
GENERAL DISCUSSION
THE PAST, PRESENT AND FUTURE OF OLEARIA COLENSOI
AND THE LEATHERWOOD FORMATION IN THE SOUTHERN
RUAHINE RANGE
APPENDIX
VASCULAR PLANT SPECIES RECORDED FROM THE
SOUTHERN RUAHINE LEATHERWOOD ZONE
REFERENCES

LIST OF FIGURES

FIGURE 1.1 Location of the southern Ruahine Range2
FIGURE 1.2 Olearia colensoi in flower
FIGURE 1.3 Distribution of Olearia colensoi4
FIGURE 2.1 Map of the southern Ruahine Range study area
FIGURE 3.1 Wind rose for Wharite Peak Meteorological Station
FIGURE 3.2 Mean daily wind speed (km hr-1) for Wharite Peak and P. North 18
FIGURE 3.3 Average monthly rainfall (mm) for Wharite Peak and P. North
FIGURE 3.4 Mean monthly frequency of rain-days for Wharite Peak and P.
North
FIGURE 3.5 Location of meteorological study sites in the southern Ruahine
FIGURE 3.6 Mean daily temperatures for the southern Ruahine
FIGURE 3.7 Difference between the yearly average minimum and maximum
temperatures of each of the southern Ruahine sites and
Palmerston North25
FIGURE 3.8 Maximum and minimum temperature lapse rates
FIGURE 3.9 Mean annual rainfall for the southern Ruahine
FIGURE 3.10 Wind caused 'waves' in the leatherwood canopy27
FIGURE 4.1 Map of the southern Ruahine permanent phenology plots
FIGURE 4.1 Density of <i>Olearia colensoi</i> plants per 50m ² with altitude35
FIGURE 4.2 Height of canopy Olearia colensoi plants with increasing altitude 36
FIGURE 4.3 Density of Brachyglottis elaeagnifolia plants per plot
FIGURE 4.4a Shoot of Olearia colensoi in late November with leaves emerging 37
FIGURE 4.4b Bud elongation and leaf length in Olearia colensoi
FIGURE 4.5 Average daily Olearia colensoi leaf litter fall
FIGURE 4.6 Dry weight of four Olearia colensoi plants
FIGURE 5.1 Percentage of plants flowering per season
FIGURE 5.2 Average summer month temperatures 1967-1990.and Degree of
flowering
FIGURE 6.1 Location of the phytosociology plots within the southern Ruahine 62
FIGURE 6.2 Species-area curves in the southern Ruahine leatherwood
FIGURE 6.3 Southern Ruahine leatherwood at Plot R9 at 1090m65
FIGURE 6.4 Uniform Olearia colensoi dominated leatherwood
FIGURE 6.5 Mount Taranaki leatherwood at 1281m
FIGURE 6.6 Typical leatherwood on Mount Fox at 1113m
FIGURE 6.7 Dendrogram of leatherwood plots from all regions

FIGURE 6.8 Detrended Correspondence Analysis ordination of leatherwood
plots from all regions 69
FIGURE 6.9 Detrended Correspondence Analysis ordination of species from all
plots from all leatherwood regions70
FIGURE 6.10 Canonical Correspondence Analysis of southern Ruahine plots72
FIGURE 6.11 Canonical Correspondence Analysis of species from the southern
Ruahine plots73
FIGURE 6.12 The leatherwood /Libocedrus -Halocarpus ecotone

•

LIST OF TABLES

TABLE 3.1 Total annual rainfall from four sites in the southern Ruahine Range
and Palmerston North DSIR
TABLE 3.2 Site details of the seven meteorological stations in the southern
Ruahine
TABLE 4.1 Physical and vegetative characteristics of thirteen permanent
phenology plots established in the southern Ruahine
TABLE 4.3 Size parameters of four Olearia colensoi plants harvested from the
southern Ruahine41
TABLE 4.4 Comparison of leaf litter fall rates from the southern Ruahine
leatherwood with other forest types in New Zealand
TABLE 5.1 Some indigenous New Zealand plants exhibiting masting
phenomena46
TABLE 5.2 Percentage of Olearia colensoi plants flowering at thirteen
permanent plots in the southern Ruahine
TABLE 5.3 Percentage of 810 tagged Olearia colensoi plants flowering for the
possible yearly combinations 1988/89 to 1990/91
TABLE 5.4 Correlation of percentage of Olearia colensoi plants flowering per
plot ($50m^2$) and flowering intensity per plot (racemes $50m^{-2}$) with
altitude
TABLE 5.5 Raceme measurements, percentage of viable seed (filled) and
percent germination of viable seeds
TABLE 6.1 Environmental parameters, dominant canopy species, average
canopy height and number of seedlings and saplings of Olearia
colensoi for Leatherwood plots from five regions
TABLE 6.3 Height, DBH and age of ecotone Libocedrus and Halocarpus, and
Olearia colensoi in the southern Ruahine